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We calculate the equation of state at high temperatures in 2þ 1 flavor QCD using the highly improved
staggered quark (HISQ) action. We study the lattice spacing dependence of the pressure at high
temperatures using lattices with temporal extent Nτ ¼ 6, 8, 10 and 12 and perform continuum
extrapolations. We also give a continuum estimate for the equation of state up to temperatures
T ¼ 2 GeV, which are then compared with results of the weak-coupling calculations. We find a reasonably
good agreement with the weak-coupling calculations at the highest temperatures.
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I. INTRODUCTION

Over the last several years there was a focused effort to
calculate the equation of state of strongly interacting matter
at net zero baryon density in lattice QCD using physical or
nearly physical quark masses and improved staggered
action [1–8]. As the result the continuum extrapolated
equation of state (EoS) has been obtained in 2þ 1 flavor
QCD for physical light and strange quark masses [7,8]. The
calculations have been performed using two different
improved staggered discretization schemes, the so-called
stout action and the highly improved staggered quark
(HISQ) action. These calculations cover a temperature
range up to T ¼ 400–500 MeV. Overall the results of
these calculations agree well, except for the highest temper-
atures, where tension between the two results can be seen
[8]. It is important to clarify if this tension is just due to
some statistical fluctuations or part of a systematic trend.
Furthermore, for the comparison with the weak-coupling
results it is highly desirable to extend the EoS calculations
to higher temperatures. At temperatures T > 400 MeV the
charm quark contributes significantly to thermodynamic
quantities and has to be included in the calculations [9].
Thus, one has to perform the calculations of the EoS in
2þ 1þ 1 flavor QCD. However, in the weak-coupling
calculations the inclusion of the charm quark complicates
the analysis, and the effects of the charm quark on the

thermodynamic quantities are only known up to next-to-
leading order (NLO) [10]. Also it is more difficult to
control the discretization effects in the presence of the
charm quark due to its large mass. Therefore, for com-
parison of the lattice QCD results and the weak-coupling
results it is advantageous to consider thermodynamic
quantities in 2þ 1 flavor QCD at higher temperatures.
Such calculations also provide a solid reference point
for estimating the charm quark contribution to QCD
thermodynamics.
The purpose of this work is to extend the calculations

presented in Ref. [8] to higher temperatures. As in Ref. [8]
the HISQ action will be used together with the physical
value of the strange quark mass, ms. The lattice spacing
(cutoff) dependence of the pressure will be studied in detail.
In the previous studies the continuum extrapolations have
been performed for the trace anomaly; the pressure and
other thermodynamic properties have been obtained from
the trace anomaly using the integral method [11]. The
cutoff dependence of the trace anomaly, however, is
expected to be more complicated than the cutoff depend-
ence of the pressure. The reason for this is the following. In
the weak-coupling picture the trace anomaly receives
contributions starting at three loop, i.e. at order α2s.
Therefore, the understanding of the cutoff dependence of
the trace anomaly at high temperature would in principle
require a three-loop calculation in lattice perturbation
theory. This is clearly formidable task. On the other hand
the pressure at high temperature receives the leading
contribution at one loop (Oðα0sÞ) corresponding to the
ideal gas limit. Therefore, the cutoff dependence of the
pressure at high temperature is known and to fairly good
approximation is described by the free gas [12,13].
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For better understanding of the cutoff dependence of the
EoS at high temperatures and a better control of the
continuum extrapolation it is desirable to study the cutoff
dependence of the pressure directly. This may also help
to understand the difference between the continuum-
extrapolated results and the results obtained with p4 or
asqtad-improved staggered actions and Nτ ¼ 6 and 8 at
high temperatures [3,4] since cutoff effects here should
be small.
It is expected that thermodynamic properties are not

sensitive to the value of the light quark masses at high
temperatures. The quark mass dependence of the EoS was
studied in Ref. [6] and it was found that for light quark
masses smaller than 0.4ms the quark mass dependence is
very small for T > 450 MeV. Therefore, we consider light
quark masses which are five times smaller than the strange
quark mass,ml ¼ ms=5, instead of the physical value. This
choice of the light quark mass corresponds to a pion mass
of about 320 MeV in the continuum limit.
The rest of the paper is organized as follows. In Sec. II

we discuss details of the lattice calculations. In Sec. III we
show our results for the trace anomaly. In Sec. IV we
present the calculation of the pressure and its cutoff
dependence. Comparison of the lattice calculations to the
weak-coupling results is discussed in Sec. V. Finally
Sec. VI contains our conclusions. Some technical aspects
of the calculations are presented in the Appendices.

II. LATTICE CALCULATIONS AT ZERO
TEMPERATURE

The goal of this paper is to extend the calculations of the
QCD equation of state in Ref. [8] to higher temperatures.
Therefore, as in Ref. [8] we use tree-level improved gauge
action and HISQ action for quarks. To calculate the EoS
gauge configurations at zero temperature had to be gen-
erated to perform the subtraction of the UV divergences in
the thermodynamic quantities as well for the determination
of the lattice spacing. We generated the gauge configura-
tions at T ¼ 0 using the rational hybrid Monte-Carlo
(RHMC) algorithm at five values of the lattice gauge
coupling β ¼ 10=g2. The parameters of the simulations
are shown in Tab. I, including the lattice volume. The
lowest two β values will be used for the purpose of
comparison with the previous 2þ 1 flavor results at smaller
light quark masses [8], enabling us to quantify the quark

mass effects in the scale setting procedure as well as in the
thermodynamic quantities.
The lattice spacings corresponding to the highest three β

values in Table I are smaller than 0.035 fm. At these small
lattice spacings it is expected that the Monte-Carlo (MC)
evolution of the topological charge will effectively freeze.
Indeed, we observe that the topological charge does not
change in the MC evolution. To deal with this problem we
generated MC streams corresponding to different values of
topological charge, namely Q ¼ 0, 1 and 2. We checked
whether the observables of interest are sensitive to the value
of the topological charge, but we did not find any
sensitivity. The dependence of different observables on
the topological charge is discussed in Appendix A.
To determine the lattice spacing we calculated the static

quark antiquark potential. The lattice spacing is determined
through the scale parameters r1 and r2 defined as

r2
dVðrÞ
dr

����
r¼r1

¼ 1; r2
dV
dr

����
r¼r2

¼ 1

2
: ð1Þ

The parameter r1 is widely used by the MILC and HotQCD
collaborations to set the lattice spacing (see e.g. Ref. [8]).
The value of this parameter is r1 ¼ 0.3106 fm [14]. Since
we consider smaller lattice spacings it is useful to consider
the scale parameter r2. The calculation of the static
potential and the determination of r1 and r2 scales is
discussed in Appendix A.
For the two lower β values in Table I we could compare

the results on the static potential calculated for ml ¼ ms=5
with the previous calculations performed at ml ¼ ms=20 to
study quark mass effects. We find no quark mass effects at
the shortest distances. Quark mass effects increase with
increasing distances but are less then 0.2% for r < r1. At
distances around r ¼ r1 the statistical errors in the static
potential are large enough so that no quark mass effects in
the derivative of the potential can be seen. Therefore, we
can combine the newly determined values of r1 with the
previously published HotQCD results to obtain r1=a as
function of β. The details of this analysis are given in
Appendix A.

III. THE QCD TRACE ANOMALY

To extend the calculation of the equation of state of 2þ 1
flavor QCD we used the integral method, which relies on
the calculation of the trace of the energy momentum tensor
Θμμ ¼ ϵ − 3p or the trace anomaly for short [3,4]. The
pressure can be calculated in terms of the trace anomaly as
follows:

pðTÞ
T4

−
pðT0Þ
T4
0

¼
Z

T

T0

dT 0 ϵ − 3p
T 05 ; ð2Þ

where T0 is some reference temperature, which is suffi-
ciently small, so pðT0Þ can be either set to zero or taken

TABLE I. The parameters of the T ¼ 0 simulations.

β ms vol a [fm] Number of traj.

7.030 0.03560 484 0.08253 1890
7.825 0.01542 644 0.04036 1265
8.000 0.01299 644 0.03469 3927
8.200 0.01071 644 0.02924 3927
8.400 0.00887 644 0.02467 3927

A. BAZAVOV, P. PETRECZKY, and J. H. WEBER PHYS. REV. D 97, 014510 (2018)

014510-2



from the hadron resonance gas calculation [3,4,8]. The
trace anomaly can be expressed in terms of the expectation
values of the gauge action, hsGiτð0Þ, and the light, hψ̄ψil;τð0Þ,
and strange, hψ̄ψis;τð0Þ, quark condensates, calculated at
finite and zero temperature, respectively. For the HISQ
action the corresponding formula has the form [8]:

ϵ − 3p
T4

≡ Θμμ
G ðTÞ
T4

þ Θμμ
F ðTÞ
T4

; ð3Þ

Θμμ
G ðTÞ
T4

¼ Rβ½hsGi0 − hsGiτ�N4
τ ; ð4Þ

Θμμ
F ðTÞ
T4

¼ −RβRm½2mlðhψ̄ψil;0 − hψ̄ψil;τÞ
þmsðhψ̄ψis;0 − hψ̄ψis;τÞ�N4

τ : ð5Þ

Here we used the same notation as in Ref. [8] and we
made explicit the separation of the trace anomaly into the
fermionic and gluonic parts. Furthermore, we introduced
the nonperturbative beta function and mass renormalization
function defined as [3,4]

RβðβÞ ¼
r1
a

�
dðr1=aÞ

dβ

�
−1
; ð6Þ

RmðβÞ ¼
1

msðβÞ
dmsðβÞ
dβ

: ð7Þ

The calculation of the nonperturbative beta function is
discussed in Appendix A. The mass renormalization
function is taken from Ref. [8]. As also discussed in
Appendix A, the new zero temperature calculations are
consistent with this mass renormalization function.
To calculate the trace anomaly at temperatures corre-

sponding to the values of β given in Table I we use the finite
temperature gauge configurations from the TUMQCD
collaboration [15,16]. These gauge configurations have

been generated on N3
σ × Nτ lattices with Nτ ¼ 4, 6, 8, 10

and 12 and Nσ ¼ 4Nτ. The maximal temperature corre-
sponding to these lattices is about 2 GeV.
Now we will discuss our numerical results on the trace

anomaly, in particular, its dependence on the light quark
masses. There are two sources of quark mass dependence
of the trace anomaly. First, is the dependence of the trace
anomaly on the light sea quark masses. The second is the
explicit dependence of the fermionic part of the trace
anomaly on the light quark mass. As we will see later
there are also differences in the cutoff (Nτ) dependence of
the fermionic and gluonic parts of the trace anomaly.
Therefore, in the following we will discuss the numerical
results forΘμμ

F andΘμμ
G separately. The fermionic part of the

trace anomaly, Θμμ
F is shown in Fig. 1 (left) and compared

with the published HotQCD results obtained for ml ¼
ms=20 [8] and shown as open symbols. To take into
account the explicit dependence on the light quark masses
in the calculation of Θμμ

F we used the value ml ¼ ms=20
instead of ml ¼ ms=5. We see from the figure that after
adjusting the light quark mass there is no quark mass
dependence in Θμμ

F for T > 300 MeV, i.e. the quark mass
dependence of Θμμ

F due to the sea quarks is very small.
From Fig. 1 (left) we also see that the cutoff effects in Θμμ

F
are very small in accordance with the previous study [8].
Finally, we note that statistical errors for Θμμ

F are tiny. Our
results for the gluonic part of the trace anomaly, Θμμ

G ,
are shown in Fig. 1(right). The cutoff and quark mass
dependence of Θμμ

G can be clearly seen. The quark mass
dependence of Θμμ

G is due to the sea quarks and thus cannot
be corrected. It is the sole source of the quark mass
dependence of the trace anomaly shown in Fig. 2. We
see, however, that quark mass effects become smaller at
high temperatures and statistically are not significant for
T > 400 MeV. The statistical errors for Θμμ

G are much
larger than forΘμμ

F and it is the dominant contribution to the
trace anomaly.
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FIG. 1. The fermionic part (left) and the gauge part (right) of the trace anomaly obtained with HISQ action. The open symbols
correspond to the HotQCD results for ml ¼ ms=20 [8].
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For the calculation of the trace anomaly at high temper-
atures we also used Nτ ¼ 4 lattices from the TUMQCD
collaboration obtained with ml ¼ ms=20 [15] and ml ¼
ms=5 [16]. Our results for the trace anomaly at high
temperatures are summarized in Fig. 2. The open symbols
in the figure refer to ml=ms ¼ 1=20 results, while the filled
symbols refer to ml=ms ¼ 1=5 results. All the ml ¼ ms=20
results for ϵ − 3p are from Ref. [8], except the ones for
Nτ ¼ 4 and those for Nτ ¼ 6 with β ¼ 7.03 or 7.825. From
Fig. 2 we see that ms=20 results smoothly match to the
ms=5 results at high temperatures. This is expected. From
the calculations of the trace anomaly performed with stout
action at several quark masses we can estimate that the
difference in the trace anomaly calculated for ml ¼ ms=5
and ml ¼ ms=20 is 10%, 4%, 3% and < 1% for T ¼ 300,
400, 500 and 600 MeV, respectively. Our calculations with
ml ¼ ms=5 at T ≤ 400 MeV confirm these expectations.
The statistical errors shown in Fig. 2 are much larger than
the above differences in the temperature range of interest,
so no quark mass effects are visible given the errors. In
Fig. 2 we also show the trace anomaly calculated with p4
action for ml=ms ¼ 1=10 and Nτ ¼ 6 [3]. The correspond-
ing results agree well with the HISQ results. Overall we see
that quark mass effects are very small at high temperatures
and therefore it is justified to study QCD thermodynamics
withml ¼ ms=5 in this region. Finally, we note that there is
no visible cutoff dependence for ϵ − 3p for Nτ ≥ 8 in the
high temperature region, while the Nτ ¼ 4 and 6 data are
systematically below the Nτ ≥ 8 results.
While the main purpose of this work is to extend the EoS

calculations to high temperatures we also revisited the trace
anomaly in the low temperature region for Nτ ¼ 10, 12
using the gauge configurations generated by the TUMQCD
collaboration for the study of the Polyakov loop [15]. The
reason behind this is the fact that unlike in Ref. [8] the

continuum extrapolations will be performed in terms of the
pressure and not the trace anomaly. Therefore, a more
accurate determination of the pressure and the trace
anomaly at low temperatures is needed. We added the
following temperatures: T ¼ 123 MeV (Nτ ¼ 10), and
T ¼ 133 MeV and T ¼ 140 MeV (Nτ ¼ 12). The T ¼ 0
gauge configurations are the same as in Ref. [8]. The
numerical results for the trace anomaly in the low temper-
ature region are shown in Fig. 3. We performed interpo-
lations of the lattice results on ϵ − 3p using smoothing
splines. The number of knots in the spline and the value of
the smoothing parameter have been adjusted such that we
obtain a smooth behavior with minimum number of knots
and keep the χ2=df close to one. The statistical error on the
spline has been estimated using bootstrap method. We see
sizable differences in ϵ − 3p calculated with Nτ ¼ 10 and
Nτ ¼ 12, indicating residual cutoff effects in the region
160 MeV < T < 180 MeV. We also compare our results
with the hadron resonance gas (HRG) model. We show two
versions of the HRG model: one that takes into account all
states from the particle data group, which we label as HRG-
PDG, and one that includes baryon states that are not yet
discovered experimentally, but predicted by the quark
model (missing states). We label the latter model as
HRG-QM. The details of the HRG models are described
in Appendix B. There we also introduce the HRG-QM
models for nonzero lattice spacing in addition to the
continuum HRG-QM model shown in Fig. 3. From the
figure we see that the difference between the two HRG
models is only significant for T > 150 MeV. The lattice
results for Nτ ¼ 10 and 12 agree with the HRG models
only for T < 145 MeV. This is in agreement with the
previous results [7,8]. Unlike in Ref. [8] we did not require
that the interpolations agree with the HRG model at low
temperatures. So these results serve as independent check
for the validity of the HRG model.
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FIG. 2. The numerical results for the trace anomaly at two
different quark masses (see text). The open symbols correspond
to ml=ms ¼ 1=20, while the filled symbols correspond to
ml=ms ¼ 1=5. The bursts correspond to calculations with p4
action and ml ¼ ms=10 [3].
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FIG. 3. The trace anomaly calculated in the low temperature
region using Nτ ¼ 10 and Nτ ¼ 12 lattices. The bands corre-
spond to interpolations (see text). The dashed line corresponds to
HRG-PDG, while the solid line corresponds to HRG-QM.
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IV. THE PRESSURE OF 2+ 1 FLAVOR QCD FROM
LOW TO HIGH TEMPERATURES

In this section we discuss the calculation of the pressure
in the wide temperature range from T ¼ 120 MeV to
2000 MeV. For this purpose we combine the published
HotQCD results for the trace anomaly with the results
obtained for ml ¼ ms=5 and discussed in the previous
section. We use the published HotQCD results for T ≤
407 MeV and Nτ ¼ 12, T ≤ 489 MeV and Nτ ¼ 10, T ≤
611 MeV and Nτ ¼ 8, and T ≤ 815 MeV and Nτ ¼ 6 [8].
For temperatures higher than these we use the new ms=5
results with Nτ ¼ 12, 10, 8 and 6. Since the quark mass
effects are smaller than the statistical errors we treat these
two data sets as one and perform interpolations of the data
from the combined set. Using the resulting interpolating
function we can calculate the pressure according to Eq. (2).
Essentially we will be computing the pressure for lines of
constant physics corresponding to ml ¼ ms=20 even
though the data for the trace anomaly at the high temper-
atures come from calculations at ml ¼ ms=5. To fix the
pressure completely we need to specify the lower integra-
tion limit T0 as well as the value of the pressure at T ¼ T0.
The lower integration limit T0 is determined by the lowest
data point for which a lattice calculation of ϵ − 3p is
available for given Nτ. As in Ref. [8] we will use HRG to
estimate the pressure at T0. However, when choosing the
value of pðT0Þ we need to take into account the discretiza-
tion effects of the staggered fermion formulation due to the
distortion of the hadron spectrum. Therefore we calculate
pðT0Þ in the HRG model with distorted hadron spectrum.
The details of these calculations are discussed in
Appendix B. As the result we obtain a value pðT0; NτÞ
for each Nτ. The values of T0 and pðT0; NτÞ used in the
calculation of the pressure are given in Table II.
With these inputs we can calculate the pressure for

Nτ ¼ 6, 8, 10 and 12. The results are shown in Fig. 4. We
see significant cutoff dependence in the low temperature
region and smaller cutoff dependence in the high temper-
ature region. In the low temperature region the pressure
follows qualitatively the cutoff dependence obtained in the
HRG model with distorted hadron spectrum, cf. Fig. 4
(left). The continuum limit for the pressure is approached
from below. The pressure shows stronger cutoff depend-
ence than the trace anomaly. Both of these features could be

understood in the framework of the HRG model with
distorted hadron spectrum (see Appendix B).
At high temperatures the cutoff dependence of the

pressure can be understood in the weak-coupling picture.
In this picture the pressure can be written as the sum of
quark and gluon pressures with the latter being defined as
the QCD pressure for Nf ¼ 0.1 The cutoff dependence of
the quark and gluon pressures has been studied in lattice
perturbation theory up to order αs [13,17,18]. To a good
approximation this cutoff dependence is described by the
ideal gas result. The cutoff dependence of the gluon
pressure is very small (< 1%) for Nτ ≥ 6 if improved
gauge action is used [12]. This is confirmed by direct lattice
numerical study [17]. Therefore we neglect it here. The
cutoff dependence of the quark pressure was studied in
Refs. [13,18] for improved staggered actions, namely the
Naik action and p4 action. The cutoff dependence of the
quark pressure is much bigger than of the gluon pressure
for Nτ ≤ 12. At tree level the HISQ action has the same
cutoff dependence as the Naik action. Thus, the ideal gas
limit for the HISQ action is determined by the result for
Ref. [13]. The ideal gas limit for each Nτ is shown in Fig. 4
as a horizontal line. Our numerical results for the pressure
at high temperatures shown in Fig. 4 (right) follow the same
trend in terms of cutoff dependence as the free theory result.
The Nτ ¼ 12 result appears to be an exception, though
given the statistical errors the deviations from the trend is
not very significant. At quantitative level the cutoff effects
in the pressure are smaller than in the free field theory. This
observation is in line with the cutoff dependence of the
pressure in SU(3) gauge theory [11] as well as cutoff effects
of quark number susceptibilities (QNS) obtained with
HISQ action [19,20]. For comparison we also show the
pressure obtained with p4 action and Nτ ¼ 6 or 8 lattices
[3,4]. The corresponding results are significantly larger
than the ones obtained with HISQ action at high temper-
atures and significantly lower at small temperatures. This is
most likely due to the large cutoff effects related to taste-
symmetry breaking for the p4 action (see discussions in
Appendix B).
The cutoff dependence of the pressure obtained with

HISQ action and p4 action closely resembles the cutoff
dependence of quark number susceptibilities (QNS)
defined as second and fourth derivatives of the pressure
with respect to quark chemical potential,

χq2n ¼
∂2npðT; μqÞ

∂μ2nq ; n ¼ 1; 2; q ¼ l; s: ð8Þ
TABLE II. The values of T0 and pðT0Þ used to calculate the
pressure for different Nτ (see text).

Nτ T0 [MeV] pðT0; NτÞ
6 135 0.189(54)
8 120 0.145(22)
10 125 0.226(23)
12 135 0.344(29)

1Note that this decomposition of the pressure into the quark
and gluon pressures is different from the decomposition of Θμμ

into Θμμ
G and Θμμ

F . The quark pressure does not vanish for zero
quark mass but Θμμ

F does.
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Since the cutoff dependence of the quark contribution to
the pressure and the cutoff dependence of QNS are similar,
we could use the latter to correct for the cutoff dependence
of the former. This can be done as follows. We write the
pressure as the sum of the quark and gluon pressures2

pðTÞ ¼ pqðTÞ þ pgðTÞ. Assuming that the gluonic pres-
sure has negligible cutoff dependence (see the above
discussions) we can write

pðTÞ ¼ pðT;NτÞ þ corrðT;NτÞ; ð9Þ

where pðT;NτÞ is the pressure at fixed lattice spacing (Nτ)
and

corrðT;NτÞ ¼ pqðTÞ
�
1 −

pqðT;NτÞ
pqðTÞ

�
ð10Þ

is the correction factor due to discretization errors. Here
pqðTÞ stands for the quark pressure in the continuum limit,
while pqðT;NτÞ is the quark pressure at nonzero lattice
spacing, a ¼ ðNτTÞ−1. If we assume that the cutoff
dependence of the quark pressure is the same as of the
second order QNS, χl2, i.e.

pqðT;NτÞ
pqðTÞ ≃ χl2ðT;NτÞ

χl2ðTÞ
ð11Þ

we can use the results of Ref. [19] to obtain the correction
provided we also have an estimate for continuum quark
pressure pqðTÞ. Lattice calculations show that the QCD
pressure is below the ideal gas limit by about 15% at high
temperatures. Therefore, the ideal quark pressure provides
a fair estimate for pqðTÞ. Thus, we have an estimate for the
correction. We apply this correction to the pressure

calculated for fixed Nτ. The results are shown in Fig. 5.
We see from the figure that the pressure bands correspond-
ing to different Nτ agree within errors, i.e. applying the
corrections largely reduces the Nτ dependence of the
results. We also see that while the p4 results are still higher
than the HISQ results they agree within the statistical errors
of the latter. The cutoff dependence of the pressure is
understood because to a fairly good approximation it is
given by the cutoff dependence of the free quark gas. This
is not the case for the cutoff dependence trace anomaly,
which would require a three-loop calculation as mentioned
in Sec. I.
Now, that the cutoff dependence of the pressure is

understood we can proceed with the continuum extrapo-
lations. As discussed above at high temperatures the
dominant cutoff dependence of the pressure is given by
the cutoff dependence of the ideal quark gas, and therefore,
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FIG. 4. Left: The pressure in the low temperature region. The lines correspond to HRG with distorted hadron spectrum (see text).
Right: The pressure in the entire temperature range. The horizontal lines correspond to the free theory result. Also shown are the results
for the pressure obtained with p4 action and Nτ ¼ 6 or 8 [3,4].
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FIG. 5. The pressure calculated with HISQ action for different
Nτ and corrected for cutoff effects. The filled squares are the
continuum results for the pressure. For comparison we also plot
the p4 results for the pressure corrected for cutoff effects at high
temperatures.

2This can be done if the weak-coupling picture holds at high
temperatures, as expected.
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for improved staggered actions like HISQ it is expected to
scale like 1=N4

τ . This expectation is confirmed by the study
of QNS at high temperatures with HISQ action [19,20]. On
the other hand at low temperatures the dominant cutoff
effects are due to taste-symmetry breaking of staggered
fermions and scale like a2 ∼ 1=N2

τ . This is also confirmed
by lattice calculations [21]. We find that the cutoff
dependence of the pressure is incompatible with 1=N2

τ

behavior for T > 400 MeV. Similar findings have been
obtained for QNS [19,20]. On the other hand, for T <
200 MeV we find that 1=N4

τ behavior of the cutoff effects
is incompatible with the data. Therefore, we will assume
that the cutoff effects are proportional to 1=N4

τ , when
performing continuum extrapolations for T > 400 MeV.
In the intermediate temperature region, 200 MeV < T <
400 MeV the cutoff effects should be proportional to some
combination of 1=N2

τ and 1=N4
τ . Thus, one should in

principle fit the data by a=N2
τ þ b=N4

τ form to obtain the
continuum limit. But because we have only four Nτ values
and the errors of the Nτ ¼ 10 and Nτ ¼ 12 data are large
the continuum result obtained from such fits has large
statistical error. It turns out, however, that in this inter-
mediate temperature region it is possible to fit the cutoff
dependence of the pressure with 1=N2

τ form as well as with
1=N4

τ form and obtain χ2=df ∼ 1. The 1=N2
τ fits give higher

values of the pressure than the 1=N4
τ fits, though the results

from both fits overlap within the error bands. The differ-
ence between the central values of the 1=N2

τ and 1=N4
τ fits

could be considered as a measure of the systematic error of
the continuum extrapolation. This difference turns out to be
about the same as the statistical errors of the 1=N4

τ

extrapolations. Therefore, we estimate the total error of
the continuum pressure for 200 MeV < T < 400 MeV by
doubling the statistical error of the 1=N4

τ fit. Alternatively
we could add the systematic error estimated as described
above with the statistical error in quadrature to obtain the
total error. The corresponding errors will be smaller. We
prefer to be more conservative. Similar analysis as above
has been performed to obtain the continuum extrapolated
result for the entropy density.
In the temperature interval 200 MeV < T < 660 MeV

we have four lattice spacings to perform continuum
extrapolations. As the result the continuum extrapolations
are most reliable in this temperature interval. In the
temperature range 660 MeV < T < 800 MeV we have
three lattice spacings, so controlled continuum extrapola-
tion is still possible. For T > 800 MeV, we can only
provide a continuum estimate for the pressure. For T <
1000 MeV we do this by performing constþ 1=N4

τ fit of
theNτ ¼ 6 and 8 data for the pressure. Interestingly, it turns
out that the coefficient of 1=N4

τ obtained when using only
Nτ ¼ 6 and 8 data, and when usingNτ ¼ 6, 8 and 10 data is
the same within errors for T ≃ 800 MeV. So perhaps this
extrapolation is not totally out of control. Finally, to obtain

the continuum estimate for T > 1000 MeV we assume that
the coefficient of the 1=N4

τ term is the same as obtained
from the fit of the Nτ ¼ 6 and 8 data at T ¼ 995 MeV and
correct the Nτ ¼ 6 pressure by 1=64 times this coefficient.
The continuum results for the pressure obtained using this
procedure are shown in Fig. 5 and compared to the
corrected results for Nτ ¼ 6, 8, 10 and 12. The continuum
result for the pressure agrees with the corrected results. This
serves as an important cross-check for our continuum
extrapolations for T < 1330 MeV.
For comparison of the lattice calculation of the EoS with

the weak-coupling results it is important to have an
alternative method to obtain continuum results for T >
800 MeV and also extend the calculation to higher temper-
atures. In order to do this we consider again the trace
anomaly. As discussed in Sec. III for Nτ ≥ 8 and T >
300 MeV we do not see any cutoff dependence of the trace
anomaly. This also means that given the statistical errors the
Nτ ¼ 8 results for the trace anomaly can be considered as
the continuum ones. Therefore, we can perform a combined
interpolation of the numerical results for the trace anomaly
obtained with Nτ ¼ 8, 10 and 12 in the temperature interval
300 MeV < T < 1000 MeV, providing a continuum esti-
mate. The Nτ ¼ 4 and 6 results for the trace anomaly lie
below this continuum estimate. However, if we rescale the
Nτ ¼ 4 and 6 results on the trace anomaly by factors 1.2
and 1.4, respectively, they agree with the above continuum
estimate for 800 MeV < T < 1000 MeV within errors.
This is demonstrated in Fig. 6. Therefore, to obtain a
continuum estimate for the trace anomaly beyond T ¼
1000 MeV we re-scale the Nτ ¼ 4 and Nτ ¼ 6 data for
T > 1000 MeV with the above factors. Here we tacitly
assume that the cutoff dependence of the trace anomaly is
temperature independent. This assumption, however, is
quite reasonable since the cutoff dependence at high
temperatures should be described by weak-coupling
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(ε-3p)/T4 av 8-12
6
4

 0.3
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FIG. 6. The interpolation of the lattice results for ðϵ − 3pÞ=T4

for Nτ ¼ 8, 10 and 12 compared with the interpolations for
ðϵ − 3pÞ=T4 obtained with Nτ ¼ 4 and 6. The latter have been
multiplied by 1.2 and 1.4 to bring them into agreement with the
former interpolation.
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expansion and thus is proportional to a2 ¼ 1=ðNτTÞ2 times
the coupling constant to some power. Since the coupling
constant depends on the temperature scale logarithmically
in a limited temperature interval the cutoff effects should be
approximately temperature independent. Our study of the
Nτ dependence of the pressure for T > 400 MeV confirms
this expectation. The cutoff dependence of the quark
number susceptibilities [19,20] and the free energy of
the static quark [15] also support this assumption.
Therefore, we perform a spline interpolation of the com-
bined Nτ ¼ 12, 10, 8, 6 and 4 data in the temperature
interval 400 MeV < T < 2000 MeV. Because we cor-
rected the trace anomaly obtained on Nτ ¼ 4 and Nτ ¼
6 lattices we assign an additional systematic error of 20%
and 40% to the corresponding data points before the
interpolation, i.e. the size of the systematic errors that
we assume is the same as the magnitude of the correction.
Using this interpolation we calculate the integral of the
trace anomaly from T ¼ 660 MeV to 2000 MeV, which
together with the continuum result for the pressure at
660 MeV obtained above gives us the continuum pressure
estimate that extends to temperatures as high as 2000 MeV.
From the pressure we can also calculate the entropy density.
These calculations will be used in the next section for the
comparison with the weak-coupling results. We also
compared this continuum estimate of the pressure with
the one discussed before. For T < 1330 MeV we find
excellent agreement between the two continuum estimates.
We note that our continuum result for T ¼ 500 MeV is

one and a half sigma higher than the continuum result of
Ref. [7], while our continuum estimate for higher temper-
atures is 5–7% higher than the continuum estimate of
Ref. [6]. Our continuum result for the pressure for T <
400 MeV agrees very well with the HotQCD result [8] but
has considerably smaller errors.

V. EQUATION OF STATE AT HIGH
TEMPERATURES AND COMPARISON

WITH WEAK-COUPLING CALCULATIONS

In this section we compare the lattice results on the EoS
with the weak-coupling calculations. We start our discus-
sion with the trace anomaly. In Fig. 7 we compare our
lattice results for the trace anomaly obtained with Nτ ¼ 8,
10 and 12 as well as the corrected results for Nτ ¼ 4 and 6
(see previous section) with the results of three-loop HTL
perturbation theory [22]. We see good agreement between
the lattice results and the results obtained in three-loop HTL
perturbation theory, although the error band of the latter is
still quite large. The lattice results on the trace anomaly
agree very well with the weak-coupling calculations based
on dimensionally reduced effective field theory, the electro-
static QCD (EQCD) [10].
Next we compare the high temperature lattice results for

the pressure and the entropy density with the three-loop
HTL perturbation theory [22] and the results obtained using

EQCD [10]. The comparison is shown in Fig. 8. For T <
660 MeV we use the continuum extrapolated lattice results
obtained from the calculations on Nτ ¼ 6, 8, 10 and 12
lattices. For higher temperatures, we use the continuum
estimate based on the trace anomaly calculated on the
coarsest Nτ ¼ 4 lattice. As discussed in the previous
section this continuum estimate is validated by direct
continuum extrapolation for T < 1000 MeV, but at higher
temperatures it relies on the temperature independence of
the cutoff effects. Therefore, in Fig. 8 we show the
continuum estimate as open symbols. We see that the
EQCD calculations are higher than our lattice results. Our
lattice results lie above the central value of the three-loop
HTL perturbative result by one sigma. However, the lattice
data are fully contained within the uncertainty of the three-
loop HTL result. In the considered temperature range the
uncertainty of the lattice results is significantly smaller than
the uncertainty of the three-loop HTL result. For the
entropy density we also compare our lattice results with
the resummed perturbative calculations in next-to-leading
log approximation (NLA) [23]. This comparison is shown
in Fig. 8 (right). The NLA calculation leads to higher
entropy density than the lattice result, although overlaps
within the uncertainty with latter for T > 1300 MeV. The
NLA calculation is based on theΦ derivable approach [24–
26]. In this approach one calculates the derivatives of the
pressure, which leads to cancellation of many higher order
diagrams. As the result one obtains relatively simple
expressions for the entropy density [26] or the quark
number susceptibility [27]. The calculation of the pressure
in this approach, however, is difficult.
It is clear that our lattice results are sufficiently precise to

test the various weak-coupling approaches and it would
be desirable to further reduce the uncertainty of the
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FIG. 7. The comparison of the lattice results for the trace
anomaly with three-loop HTL perturbation theory shown as the
line and the band. The size of the band corresponds to the scale
variation from μ ¼ πT to 4πT. Also shown as a dashed line is the
EQCD result for the trace anomaly (see text). The lattice results
for Nτ ¼ 4 and 6 for T > 600 MeV have been scaled by 1.2 and
1.4, respectively.
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weak-coupling approaches to see if the thermodynamics of
the quark gluon plasma can be indeed understood using the
weak-coupling expansion in the considered tempera-
ture range.

VI. CONCLUSIONS

We extended the previous calculation of the EoS with
HISQ action to higher temperatures. First, we extended the
calculation of the trace anomaly to higher temperatures using
lattice simulations at larger quark mass, ml ¼ ms=5. We
showed that the quark mass dependence of the trace anomaly
is negligible for T > 400 MeV given the statistical error.
Then using the results on the trace anomaly and the integral
method we calculated the pressure for Nτ ¼ 6, 8, 10 and 12.
We studied the cutoff (Nτ) dependence of the pressure and
performed the continuum extrapolation in the high temper-
ature limit. We pointed out that the cutoff dependence of
the pressure is dominated by the quark contribution and the
cutoff dependence of this contribution is very similar to the
cutoff dependence of QNS at high temperatures. We also
showed that using the known cutoff dependence of QNS it is
possible to correct for the cutoff effects in the pressure at
fixed Nτ. The corrected results for the pressure calculated
with HISQ action and p4 action for differentNτ agree within
errors and also agree with the continuum result. Thus, we
achieved a controlled continuum extrapolation of the pres-
sure at high temperatures. Finally, using Nτ ¼ 4 and 6
results on the trace anomaly we provided a continuum
estimate for the pressure that extends to temperatures as high
as T ¼ 2000 MeV. We compared this continuum estimate
with the weak-coupling calculations and found a reasonably
good agreement between the lattice and the weak-coupling
results.

ACKNOWLEDGMENTS

The simulations have been carried out on the computing
facilities of the Computational Center for Particle and
Astrophysics (C2PAP), SuperMUC and NERSC. We used
the publicly available MILC code to perform the numerical
simulations [28]. The data analysis was performed using the
R statistical package [29]. We thank F. Karsch for providing
the numerical values of the free quark pressure for finite Nτ.
We also thank M. Strickland and N. Haque for sending the
3-loop HTL results for the EoS. This work has been
supported in part by the U.S. Department of Energy through
grant Contract No. DE-SC0012704. J. H. Weber acknowl-
edges the support by theBundesministerium für Bildung und
Forschung (BMBF) under Grant No. “Verbundprojekt
05P2015—ALICE at High Rate (BMBF-FSP 202) GEM-
TPC Upgrade and Field theory based investigations of
ALICE physics” under Grant No. 05P15WOCA1.

APPENDIX A: ZERO TEMPERATURE
CALCULATIONS

For β ¼ 7.03 and 7.825 we generated a single stream of
MC evolution. For the highest three β values we generated
three streams of MC evolution called a, b and c; each of
these streams corresponds to a single value of topological
charge Q. The lengths of these streams for every value of β
are 1389, 1269 and 1269, respectively. The values of the
plaquette, rectangles, light and strange quark condensates
are given in Table III together with the values of Q. The
values of rectangles and plaquettes are the same within
errors for the streams with different Q. For the quark
condensate we see small, but in some cases statistically
significant differences. The difference in the value of the
light quark condensate is between 1% and 2%, while for the
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FIG. 8. The pressure (left) and the entropy density (right) in the high temperature region compared with the weak-coupling
calculations. The filled symbols correspond to the continuum results obtained from lattice calculations on Nτ ¼ 6, 8, 10 and 12 lattices.
The open symbols correspond to continuum estimate (see text). The errors of the continuum estimate have been enlarged by factor two
to indicate additional systematic errors that might be present. The red line and the band correspond to the three-loop HTL perturbation
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bands correspond to the scale variation from μ ¼ πT to 4πT. Also shown is the weak-coupling result obtained in EQCD [10].
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strange quark condensates it is < 0.5%. For β ¼ 8.4 there
are differences in the values of the light quark condensate
also for the streams that belong to the same topological
sector, which appear to be statistically significant. This is
most likely due to the fact that each of the streams is
relatively short. These small differences, are taken into
account in the calculations as additional systematic errors.
However, the additional systematic effects are largely
irrelevant for the calculation of the trace anomaly, since
the highest three beta values correspond to temperatures
T > 400 MeV, where the contribution of quark conden-
sates is very small.
To determine the lattice spacing we calculated the static

quark antiquark potential. We followed the same procedure
as in Ref. [8], in particular the same fit ranges in time were
used. For the highest three β values we used a fit range in
t=a, which is about the same as in Ref. [8] for β ¼ 7.825.
Our results for the potential are shown in Fig. 9. We
calculated the static quark antiquark potential for different
topological sectors and did not see any dependence on the
topological charge within the statistical errors.
It is interesting to compare the potential calculated for

ml ¼ ms=5 and ms=20 at the same value of β. Such a
comparison is shown in Fig. 10 for β ¼ 7.03. As one can
see from the figure the quark mass effects are very small for

r < r1. They are the smallest at the shortest distance and
gradually increase with increasing r. However, even for
r ¼ r1 the effects are smaller than 0.2% and for r < 0.8r1
are smaller than 0.1%. We get very similar results for
β ¼ 7.825.
We also find that the difference between the potential

calculated for ms=5 and ms=20 in units of r1 can be
parametrized as

ΔVðrÞ ¼ Vms=5ðrÞ − Vms=20ðrÞ ¼ bðr=r1Þ2: ðA1Þ

We get b ¼ 0.00577ð19Þ for β ¼ 7.03 and b ¼
0.00774ð51Þ for β ¼ 7.825. From these we can estimate
that r2V00ðrÞ is changed by about 1.4% around r ¼ r1, and
by about 0.2% or less around r ¼ r2, when changing ml
from ms=20 to ms=5. Therefore, we expect shifts in the
values of r1 and r2 with changing quark masses, which are
similar in magnitude.
The r1 scale obtained from the potential at β ¼ 7.03,

7.825, 8.00, 8.20 and 8.40 is given in Table IV. For β ≥
7.825 we also calculated the r2 scale. Moreover, this scale
was calculated for ml ¼ ms=20 using the data on the
potential from [8]. The results are given in Tab. IV. We
see that the r1 scale is about 1% smaller for ml ¼ ms=5
than forms=20. This difference is consistent with the above

TABLE III. The values of plaquette, rectangle, light and strange quark condensates at T ¼ 0 for different topological sectors
Q ¼ 0, 1, 2.

β plaquette hψ̄ψil hψ̄ψis rectangle Q stream

8.0
0.6641244(21) 0.0026400(66) 0.0117787(51) 0.4607658(29) 2 a
0.6641256(15) 0.0026061(122) 0.0117719(76) 0.4607666(23) 1 b
0.6641257(24) 0.0025923(87) 0.0117889(59) 0.4607666(35) 0 c

8.2
0.6738855(16) 0.00207849(52) 0.0095507(55) 0.4744956(24) 2 a
0.6738854(12) 0.00199916(69) 0.0095271(60) 0.4744943(17) 0 b
0.6738865(12) 0.00201003(95) 0.0095399(75) 0.4744971(18) 0 c

8.4
0.6830217(14) 0.00171386(47) 0.0078134(48) 0.4874515(22) 2 a
0.6830200(17) 0.00158675(57) 0.0077629(71) 0.4874514(28) 0 b
0.6830187(12) 0.00161808(63) 0.0077963(54) 0.4874474(18) 0 c
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expectations and statistically it is not very significant. The
value of r2 at β ¼ 7.825 is 0.3% smaller for ml ¼ ms=5
than for ml ¼ ms=20. Again this difference is statistically
not significant. Since the r2 scale shows smaller quark mass
dependence we could use it to extend the scale setting
procedure of Ref. [8] to higher β, namely up to β ¼ 8.40.
To do this we first consider the ratio r2=r1, which is shown
in Fig. 11. We do not see any β dependence of this ratio
within errors. Fitting β > 7.825we get 2.188(12), while the
fit with β ≥ 7.825 we obtain 2.210(14). Finally the fits for
all β in the interval ½7.373∶8.400� we get

�
r1
r2

�
av

¼ 2.198� 0.009; ðA2Þ

which agrees with the above values within errors. Since r2
is essentially mass independent and more accurately
determined than r1 for the highest β values we will use
it for the scale setting. We combine the results of Ref. [8]
together with ðr1=r2Þav · r2 for β ¼ 7.596, 7.825, 8.000,
8.200 and 8.400 from Table IV to obtain the lattice spacing
in units of r1 in the β region that extends to β ¼ 8.400. As
in Ref. [8] we fit a=r1 with an Allton-type form [30]:

a
r1

¼ c0fðβÞ þ c2ð10=βÞf3ðβÞ
1þ d2ð10=βÞf2ðβÞ

; ðA3Þ

fðβÞ ¼
�
10b0
β

�
− b1
2b2

0 exp

�
−

β

20b0

�
: ðA4Þ

Here b0 and b1 are the well-known coefficients of the two-
loop beta function, which for the three-flavor case read
b0 ¼ 9=ð16π2Þ, b1 ¼ 1=ð4π4Þ. Fitting the combined data
set for the coefficients c0, c2 and d2 we get:

c0 ¼ 43.12� 0.18; ðA5Þ

c2 ¼ 347008� 32131; ðA6Þ

d2 ¼ 5584� 599; ðA7Þ

χ2=df ¼ 0.25: ðA8Þ

The above errors have been estimated by bootstrap
method and they are smaller than those in [8], in
particular the error on c0 is reduced from 0.3 to 0.18.
This fit is shown in Fig. 12 with the band indicating its
uncertainty. The difference between this parametrization
of a=r1 and the one in Ref. [8] is less than 0.3% in the
entire range of β. It is interesting to note that for the
highest β value the deviation from the asymptotic 2-loop
result is only one sigma. From this fit we can determine
the smoothed value of r1=a for each value of β and thus
the temperature scale.
For the calculation of the EoS we also need the non-

perturbative beta function defined as
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FIG. 11. The ratio of the ratio of scales r1 and r2 as function of
β. Also shown is the fit (solid line) and its uncertainty
(dashed lines).

TABLE IV. The value of the scale parameters for different β
values and quark masses used in this study.

β ml=ms r1 r2

8.400 1=5 12.560(130) 5.742(31)
8.200 1=5 10.653(60) 4.861(36)
8.000 1=5 8.905(60) 4.075(30)
7.825 1=5 7.570(104) 3.469(18)
7.825 1=20 7.690(58) 3.479(21)
7.596 1=20 6.336(56) 2.865(11)
7.373 1=20 5.172(34) 2.350(40)
7.030 1=5 3.737(13) -
7.030 1=20 3.763(13) -
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FIG. 12. The lattice spacing in units of r1 as function of β. For
better visibility we divided a=r1 by the 2-loop beta function given
by Eq. (A4). The horizontal line shows the asymptotic 2-loop
result. Also shown as a dashed line is the old parametrization of
a=r1 from Ref. [8].
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Rβ ¼ −a
dβ
da

¼ r1
a

�
dðr1=aÞ

dβ

�
−1
: ðA9Þ

This is shown in Fig. 13. We also calculated the mass
of the unmixed ηss meson for β ¼ 8.0 and obtained
amηss ¼ 0.12282ð40Þ. This value agrees well with deter-
mination of mLCP

s ðβÞ given in Ref. [8]. For β ¼ 8.2 and 8.4
the lattices are too small to determine amηss reliably.

APPENDIX B: THE HADRON RESONANCE
GAS AND CUTOFF EFFECTS AT LOW

TEMPERATURES

In the HRG model the partition function of strongly
interacting matter at low temperatures is given by the
partition function of noninteracting hadrons and resonances

pHRG=T4 ¼ 1

VT3

X
i∈mesons

lnZMðmi; T; VÞ

þ 1

VT3

X
i∈baryons

lnZBðmi; T; VÞ; ðB1Þ

where

lnZM=Bðmi;T;VÞ¼∓Vdi
2π2

Z
∞

0

dkk2 lnð1∓ e−Ei=TÞ; ðB2Þ

with energies Ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

i

p
and degeneracy factors di.

The superscripts M and B refer to mesons and baryons.
Usually the sum in the above equation contains all the
meson and baryons from the Particle Data Group (PDG).
However, our information of the baryon spectrum may be
incomplete. There are lots of baryon states predicted by the
quark model (QM) [31] as well as by lattice QCD [32] that
are not included in the PDG. These are the so-called
missing states. It was shown that these missing states are
important for QCD thermodynamics [33–37]. Therefore,
we included these missing states in the HRG model.
We used the baryon spectrum from the quark model

calculations of Refs. [38,39]. We call this model HRG-
QM. For the strange baryons we also used the spectrum
from Ref. [31] and found that this only results in very small
differences relative to the above calculation. The difference
between the HRG-QM and the HRG model which includes
only hadrons from PDG, and therefore is called HRG-PDG,
is visible only for T > 150 MeV. At these temperatures,
however, the HRG model itself may not be reliable.
The hadron resonance gas can be used as a tool to

understand the cutoff effects in the EoS at low temper-
atures. Lattice discretization errors will modify the hadron
spectrum which then leads to the modification of the HRG.
This has been discussed in some details for p4 and asqtad
actions [40]. Below we will discuss the discretization
effects in the hadron spectrum for the HISQ action and
their effect on thermodynamics of hadrons.
The staggered fermion formulation describes four flavors

(tastes) of quarks in the continuum limit. To describe a
single quark flavor one takes the fourth root of the
staggered fermion determinant in the path integral of
QCD. This is the so-called rooting trick and amounts to
averaging over the four staggered tastes for each physical
flavor. For the discussion of the cutoff effects on the hadron
spectrum we first limit ourselves to the original four-flavor
case. There are 16 pseudo-scalar (ps) mesons, which are the
Goldstone bosons of the theory. At nonzero lattice spacing
only a Uð1Þ subgroup of the SUð4ÞA group is preserved,
and there is only one Goldstone boson in the chiral limit.
The other ps mesons have squared masses proportional to
a2, δmpsi eia

2. The breaking of the full chiral symmetry to a
Uð1Þ subgroup and the corresponding splitting of ps
mesons is referred to as taste-symmetry breaking. It is
the largest source of discretization errors in today’s lattice
calculations with staggered fermions. The size of taste-
symmetry breaking, i.e. the value of coefficients ei can be
reduced by using improved actions. All improved staggered
actions (p4, asqtad, stout and HISQ) reduce the size of
taste-symmetry breaking to some degree, The HISQ action
has the smallest taste-symmetry breaking among the
improved staggered fermion actions [41]. The taste sym-
metry breaking effects are particularly large for the p4
action.
Taste-symmetry breaking also causes nondegeneracy of

vector mesons and baryons that belong to different tastes.
However, the corresponding mass splittings are much
smaller than in the case of ps mesons. For the HISQ action
they are of the size of statistical errors and therefore can be
neglected in the following discussion. The dominant effects
of taste-symmetry breaking in the vector meson and baryon
sectors come from the fact that the calculations are
effectively performed at larger value of the pion mass than
the physical one if the lattice spacing is nonzero. Since
hadronic quantities like hadron masses and decay constants
decrease with decreasing pion masses, we expect that the
continuum limit for these quantities is approached from
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FIG. 13. The logarithmic derivative of the nonperturbative beta
function.
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above. The masses of the vector mesons, nucleons and Ω
baryons have been calculated with HISQ action for differ-
ent lattice spacings [8,41]. We complement these studies by
also calculating the masses of octet baryons with strange-
ness S ¼ −1 and S ¼ −2 for β ¼ 10=g2 ¼ 6.515 corre-
sponding to lattice spacing a ¼ 0.135 fm. In Fig. 14 we
show the vector meson and baryon masses as function
of the lattice spacing. We see that following our expect-
ations the hadron masses approach their continuum limit
from above. We fit the a-dependence of the hadron masses
by the form

r1mH ¼ ðr1mHÞcont þ
bHða=r1Þ2

1þ cHða=r1Þ2
: ðB3Þ

The values of bH and cH are given in Table V. The resulting
fits are also shown in Fig. 14 as lines and describe the data
fairly well. For S ¼ −1 and S ¼ −2 baryons we could not
perform the above fits. We model their lattice spacing
dependence using Eq. (B3) with coefficients bH and cH
obtained for the nucleon and divided by two and three,
respectively. This seems to capture the cutoff effects in
S ¼ −1 and S ¼ −2, see Fig. 14.
To reduce cutoff effects in the thermodynamic quantities

it has been suggested to use the kaon decay constant fK to
set the lattice spacing. Since fK shows an a-dependence
that is similar to that of the hadron masses the ratiosmH=fK
are expected to have much milder a-dependence. As the
consequence thermodynamic quantities will also have
smaller cutoff dependence if fK is used to set the scale.
We checked that the a-dependence almost entirely

disappears for K� and ϕ mesons, as well as for the Ω
baryon if fK is used to set the lattice spacing. However, for
the nucleon and other baryons this is not the case.
Furthermore, the large taste-symmetry breaking in the ps
meson sector cannot be compensated by changing scale
from r1 to fK .
To take into account the effects taste-symmetry breaking

in the ps meson sector the contributions of pions, kaons and
eta mesons are calculated as [40]

pπ;K;η=T4 ¼ 1

16

1

VT3

X7
i¼0

dpsi lnZ
Mðmpsi ; T; VÞ; ðB4Þ

where m2
psi ¼ m2

π;K;η þ δm2
psi . The quadratic pseudoscalar

meson splittings have been calculated in Ref. [41]. The
dependence of these splittings can be fitted well by the form

r1δm2
psi ¼

eiða=r1Þ2
1þ giða=r1Þ2

: ðB5Þ

The value of the coefficients ei an gi together with the
degeneracy factors dpsi are given in Table VI.
The contribution of the ground state vector mesons can

be evaluated at nonzero lattice spacing using Eqs. (B2)
and (B3) and the corresponding values of bH and cH from
Table V. The a-dependence of the octet baryon masses, as
well as of Ω mass is fixed through Eq. (B3) and the values
of the coefficients are given in Table V. To completely
specify the contribution of the ground state baryons to the
partition function we assume that the masses of the
decuplet baryons for S ¼ 0, −1 and −2 have the same
a-dependence as their octet partners. Thus the contribution
of all ground state hadrons at nonzero a is now fixed.
We need to consider also the contributions from the

excited mesons and baryons. Unfortunately not much is
known about the cutoff dependence of the excited hadron
states in the staggered fermion formulations. We will work
with two extreme assumptions about the cutoff dependence
of the excited hadron states. First, we will assume that the
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FIG. 14. The lattice spacing dependence of vector meson (left) and baryon masses (right). The lines show fits using Eq. (B3).

TABLE V. The values of the coefficients bH and cH entering
Eq. (B3) for different hadrons.

ρ, ω K� ϕ N Ω

bH 1.2138 0.259522 0.24377 1.85148 0.306749
cH 18.1236 0 0 5.42284 0

EQUATION OF STATE IN 2þ 1 FLAVOR QCD AT HIGH … PHYS. REV. D 97, 014510 (2018)

014510-13



masses of excited hadron states are not affected by the
lattice cutoff. Second, we will assume that the masses of
the excited hadron states are affected by the lattice cutoff
the same way as the masses of the corresponding ground
state hadrons. Furthermore, we will calculate the EoS in the
HRG model assuming that only ps mesons are affected by
the taste-symmetry breaking. We will compare these three
scenarios with the continuum HRG model in order to
understand the size of the cutoff effects. We will use the
HRG model with missing states (HRG-QM) in what
follows. The trace anomaly calculated for different Nτ is
shown in Fig. 15 and compared to the lattice results. In
Fig. 16 we show the pressure calculated for the same set of
Nτ values. We see that the difference between the con-
tinuum HRG and the lattice HRG is larger for the pressure

than for the trace anomaly, and the continuum limit is
approached from below. The difference in the cutoff
dependence of the trace anomaly and the pressure can
be understood as follows. The cutoff effects make the
hadrons heavier. This reduces the pressure as expected.
However, states with larger masses contribute more to the
trace anomaly. So this partially compensates the exponen-
tial suppression due to larger quark masses in the case of
the trace anomaly in the considered temperature range. At
sufficiently low temperatures, the cutoff dependence of the
pressure and the trace anomaly are qualitatively similar. We
also note that the reduction of the pressure relative to the
continuum HRG expectation is mostly due to the ps meson
sector. As one can see from Fig. 16 taking into account the
modification of the baryon and vector meson masses in the

TABLE VI. The values of the coefficients ei and gi entering Eq. (B5) for different tastes of ps mesons as well as
the degeneracy factors dpsi .

i 0 1 2 3 4 5 6 7

dpsi 1 1 3 3 3 3 1 1
ei 0 8.34627 8.17699 14.6245 16.0450 21.1623 23.0067 30.8425
gi 0 −4.83538 −6.09594 −6.72714 −5.2249 −6.47337 −5.49115 −3.64465
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FIG. 15. The trace anomaly calculated in the HRG-QM and in the HRG-QM with modified hadron spectrum for Nτ ¼ 6, 8, 10 and 12,
and compared with the lattice results, see Sec. III for details. The solid thick line corresponds to the continuum HRG-QM, while the top,
middle and bottom colored thin lines correspond to the lattice HRG-QM, where only the ps mesons are modified, all ground states
hadron are modified, and all ground state and excited state hadrons are modified, respectively.
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HRG calculations only results in relatively small effects.
We also note that for p4 and asqtad actions the cutoff effects
due to taste-symmetry breaking are much larger [40].
We use the value of the pressure in the modified HRG-

QM, in which the cutoff dependence of all the ground state
hadrons is taken into account as discussed above (middle
curves in Fig. 16) to determine the pressure at some initial

value of the temperature T0 in the integral method (see
Sec. IV). To estimate the uncertainty in pðT0Þ we consider
the difference between the HRG-QM model in which
only ps mesons are modified (upper curves in Fig. 16)
and the HRG-QM model in which all ground state and
excited state hadrons are modified (lower curves in
Fig. 16). The resulting values are given in Table II.
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