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Abstract
Teleoperating a robot for complex and intricate tasks demands a high mental workload from a human operator. Deploying
multiple operators can mitigate this problem, but it can be also a costly solution. Learning from Demonstrations can reduce
the human operator’s burden by learning repetitive teleoperation tasks. Yet, the demonstrations via teleoperation tend to be
inconsistent compared to other modalities of human demonstrations. In order to handle less consistent and asynchronous
demonstrations effectively, this paper proposes a learning scheme based on Dynamic Movement Primitives. In particular, a
new Expectation Maximization algorithm which synchronizes and encodes demonstrations with high temporal and spatial
variances is proposed. Furthermore, we discuss two shared teleoperation architectures, where, instead of multiple human
operators, a learned artificial agent and a human operator share authority over a task while teleoperating cooperatively. The
agent controls the more mundane and repetitive motion in the task whereas human takes charge of the more critical and
uncertain motion. The proposed algorithm together with the two shared teleoperation architectures (human-synchronized and
agent-synchronized shared teleoperation) has been tested and validated through simulation and experiments on 3 Degrees-of-
Freedom Phantom-to-Phantom teleoperation. Conclusively, the both proposed shared teleoperation architectures have shown
superior performance when compared with the human-only teleoperation for a peg-in-hole task.

Keywords Dynamic movement primitives · Learning from demonstrations · Teleoperation · Human-agent shared
teleoperation · Cooperative teleoperation · Human-synchronized · Agent-synchronized · Haptic feedback
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1 Introduction

Teleoperation allows for an operator to remotely control
a robot in situations where it is not possible to place
a human with the robot. From the human’s stand-point,
teleoperation requires a heavy mental workload and, for
repetitive tasks, it can be tedious and in turn, could lead
to errors. To mitigate these problems, multiple operators
can be deployed to execute the task. In such a setting for
complex teleoperation tasks, the control authority of a slave
robot is distributed among the human operators. This sub-
stantially decreases the cognitive workload of each operator
and hence, has shown to ensure a reliable execution of the
task (Usmani et al. 2015). The issue of dynamically divid-
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ing the control authority among multiple operators with
multiple Field-of-Views (FOVs) is addressed in Gromov
et al. (2012). That way, an operator can always take over
partial or full authority of the task, whenever and wher-
ever a need is. This distribution of the control authority
of the slave robot among many operators, based on the
information available to them, is absolutely pivotal for coop-
erative teleoperation systems. But usually having multiple
human operators can be very costly. Also, in a setting with
multiple operators, a fixed distribution of control cannot
handle a camera failure or an obstruction in FOV of one
operator.

Autonomous execution of the task is desirable to avoid
the challenges associated with teleoperation. But, generally,
a robot is pre-programmed for performing different repetitive
tasks. A slight change in a task or the environment requires
re-programming of the robot, which can be a painstakingly
tedious and temporally demanding process (Billard et al.
2008). Learning from Demonstrations (LfD), also known
as imitation learning, provides an intuitive way to automate
the task, by readily transferring new skills from humans to
robots, and generalizes the task in slightly changed environ-
ments (Argall et al. 2009; Billard et al. 2008; Calinon and
Lee 2018; Power et al. 2015).

Vision-based motion tracking systems can be utilized
to capture human motions when demonstrating a task. For
humanoid robots, bipedal systems, and robotic arms, this
modality can be easily utilized to collect demonstrations
since they have the similar kinematic structures as that
of a human (Hu et al. 2014; Ott et al. 2008). The main
demerit of this approach is that if the robot has a different
kinematic structure with that of a human then it creates a cor-
respondence problem. To rule out correspondence problem,
kinesthetic teaching can be employed for collecting human
demonstrations. In kinesthetic teaching, a human physically
interacts with a robot to demonstrate a task (Lee and Ott
2010; Saveriano et al. 2015). Hence, kinesthetic teaching
is one of the most widely utilized modalities for collecting
human demonstrations. But, as mentioned earlier, there are
situations where a direct human-robot interaction is not pos-
sible, as in deep sea (Havoutis and Calinon 2019) or outer
space applications, etc. In such a scenario, teleoperation can
be utilized for collecting demonstrations (Akgun et al. 2012;
Hokayem and Spong 2006). Figure 1 shows the applica-
tion of kinesthetic and teleoperation-based teaching for the
peg-in-hole task (details in experiments) while the y-axis
motion of the collected demonstrations can be visualized in
Fig. 2. It can be observed that teleoperated demonstrations
have high temporal and spatial variations, as compared to the
demonstrations recorded via kinesthetic teaching. Due to this
high inconsistency, existing LfD approaches tend to perform
poorly for teleoperated demonstrations (Bukchin et al. 2002;
Pervez et al. 2017).

Fig. 1 a Kinesthetic teaching by directly holding the robot, b
teleoperation-based teaching using 3-DOF phantom haptic devices
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Fig. 2 Y -axis motion for the four demonstrations recorded via a kines-
thetic teaching and b teleoperation-based teaching for the peg-in-hole
task

Although autonomous execution of a task on a robot
relaxes theworkload of a human operator, the issue of correct
task execution, especially in critical and intricate motions,
has to be addressed for effective performance. The efficiency
and safety in critical motions, like performing surgeries,
can be thoroughly ensured only when both a human and an
autonomous artificial agent leverage from each other’s capa-
bilities (Dragan and Srinivasa 2012; Medina et al. 2012).
If some DOFs in a task are repetitive while some have
non-repetitive motions, then those repetitive DOFs can be
encoded by LfD while those non-repetitive DOFs can be
controlled by a human operator.

Hidden Markov Models (HMMs) can be utilized for
skill learning in teleoperation (Yang et al. 1994). In Peters
et al. (2003), NASA space humanoid robot learned how
to perform low level task such as reaching and grasping,
whereas high-level commands were given by the operator.
Rozo et al. (2010a, b) used Gaussian Mixture Model (GMM)
and Gaussian Mixture Regression (GMR) for teaching a
rigid-container emptying skill to a robot via a haptic inter-
face. Other works considered encoding of force/torque signal
with large time discrepancies by using a GMM with tem-
poral information encapsulated by an HMM (Rozo et al.
2013). In Schmidts et al. (2011), authors used a teleoper-
ation setup for teaching human grasping skills, by utilizing
motion and force data. Teleoperation can be also utilized
for online human-in-the-loop robot learning schemes (Peter-
nel et al. 2016, 2018). In Peternel and Babic (2013), the
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Fig. 3 Block diagram of
human-agent shared
teleoperation

authors employ Locally Weighted Projection Regression to
gradually transfer control from a human demonstrator to an
incrementally built autonomous controller. To the best of our
knowledge, there has been no prior research on developing
an LfD approach that can handle inconsistent demonstrations
with large spatial and temporal variations. Most of the exist-
ing LfD approaches use Dynamic TimeWrapping (DTW) as
a preprocessing step in order to handle some level of spatial
and temporal variations.

In this work we compare kinesthetic teaching with the
teaching via teleoperation and highlight some inherent chal-
lenges associated with teleoperated demonstrations. We
propose a novel learning approach for handling the unique
features encountered during teleoperation. Our approach is
based on DynamicMovement Primitives (DMP) for learning
the demonstrations provided by an operator during teleoper-
ation. In contrast to LfD approacheswithDTW, our approach
aligns and encodes themotion data simultaneously and incor-
porates the temporal and spatial variance by adapting the EM
algorithm (Dempster et al. 1977; Pervez and Lee 2015). One
may think that the mentioned problem could be solved by
avoiding the use of an explicit temporal signal. However,
time-invariant dynamical systems (Khansari-Zadeh and Bil-
lard 2011) have limitation on the kind of motions that can be
encodedwith amovement primitive. For instance, for a given
position, if the end-effector has to move in different direc-
tions at different instances of time, then that kind of motion
cannot be encoded with the approach presented in Khansari-
Zadeh and Billard (2011). Examples are a peg being inserted
into and withdrawn from a hole, or an intersecting point for
drawing number 8. In such cases, it is necessary to encode a
temporal signal.

The major contributions of this work are:

– proposing a novel LfD method aimed at identifying and
hence, overcoming the challenges associated with using
teleoperation as an input modality for LfD, and

– extending the preliminary version of our work (Per-
vez et al. 2017) to the shared teleoperation architecture
between a human operator and the artificial agent for
cooperative teleoperation.

This paper presents two variants of the human-agent
shared teleoperation architecture for dual-operator-single-
slave teleoperation systems (pictorially represented inFig. 5):
human-synchronized and agent-synchronized shared teleop-
eration systems. The performance of the proposed human-
agent shared teleoperation methods is evaluated through
simulations and experiments. They are compared with the
human-only teleoperation, in terms of the speed, accuracy,
and the ease of execution of the task, while provisioned with
a visual perspective distortion. A general overview of the
human-agent shared teleoperation is presented in Fig. 3.

2 LfD for teleoperated demonstrations

While comparing kinesthetic teachingwith teleoperation, the
former is reported to be the more preferred and easier way
of demonstrating a task (Akgun and Subramanian 2011; Fis-
cher et al. 2016). Moreover, the demonstrations collected via
kinesthetic teaching have a shorter time duration and a higher
success rate of encoding a task. This is due to the operator’s
situational awareness of kinesthetic teaching, as compared to
the difficulty of control in teleoperation.

Most of the existing LfD literature focuses on DTW (San-
guansat 2012) based motions alignment before encoding
the demonstrations (Akgun et al. 2012; Calinon et al.
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2007). DTW is an algorithm which measures the similar-
ities between two temporal signals executed at different
speeds. However, the two-step approach of DTW-based
pre-alignment and then encoding of the trajectories does
not provide an optimal solution due to the high level of
temporal-spatial inconsistency associated with teleoperated
demonstrations. To tackle this problem, we propose an EM-
based algorithm for simultaneously aligning and encoding
the teleoperated demonstrations.

2.1 Dynamic movement primitives (DMP)

The artificial agent proposed in this paper is implemented
through DMP. In LfD, DMPs are widely used to learn motor
actions as they can encode discrete aswell as rhythmicmove-
ments (Schaal 2006). For encodingmultipleDOFs, a separate
DMP is learned for each considered DOF. In a DMP frame-
work, a canonical system acts as a clock. For synchronizing
motion of multiple DOFs, each DMP is driven by a common
clock signal (Kober and Peters 2010). The canonical system
for a discrete DMP is ṡ = −ταss, where the parameter s is
initialized to one and it monotonically decays to zero, τ is the
temporal scaling factor while αs determines the duration of
the movement. Similarly, the canonical system for a rhyth-
mic DMP is ṡ = τω, with the parameter s initialized to zero
and it increases to 2π at the end of a cycle, and ω determines
the phase rate of change of motion. The canonical system
drives the second order transformed system:

v̇ = ταx (βx (g − x) − v) + τaF(s)

ẋ = τv (1)

where g is either a goal position for discrete DMPs or a mean
position for rhythmic DMPs, a is an amplitude modifier term
which is usually set as g − x0 with x0 being the starting
position, while the parameters αx and βx are set such that the
second order system is critically damped. The learning of the
forcing term F(s) allows arbitrarily complex movements.

2.2 DMP learning using GMM

In the original DMP formulation (Sanguansat 2012), locally
weighted regression with basis functions is utilized in
order to learn the nonlinear forcing terms F(s). The forc-
ing terms of a DMP can be modeled with any suitable
function approximator (Pervez and Lee 2018; Stulp et al.
2013). In this work, we encode the forcing terms with a
GMM. A GMM with k components is parameterized by
Θ (k) = {πm,μm,Σm}km=1 where π1, . . . , πk are mixing
weights, μ1, . . . ,μk are means and Σ1, . . . ,Σk are covari-
ance matrices. The probability density function of y is said
to follow the k-component GMM if it can be written as

P(y|Θ(k)) = ∑k
m=1 πmN (y;μm,Σm), subject to the con-

straints 0 < πm < 1 and
∑k

m=1 πm = 1. When human
demonstrations are collected, each demonstration trajectory
is linearly re-sampled to have n number of samples. Re-
sampling is performed to ensure that each demonstration
gets equal weightage. Without the re-sampling, the shorter
demonstrations can get less importance in EM. For each tra-
jectory, the required forcing terms of each DOF at each time
instance s are calculated by rearranging the terms in theDMP
equation:

F(s) = v̇/(τa) − (αx (βx (g − x) − v))/a (2)

Then, we have a sequence of pairs of position x and forc-
ing term F(s). Assuming that we know the corresponding
phase variable s, nowwe encode the joint distribution of these
variables by using a GMM. The teleoperated demonstrations
can have large temporal and spatial variation. To handle
those variations, we employ the GMM learning approach
presented in Pervez et al. (2017). During the reproduction
phase, Gaussian Mixture Regression (GMR) is used for pre-
dicting the forcing term for a given phase signal s, which
is plugged into the DMP equation to get the acceleration
command. A separate controller is used for executing the
motion.

2.3 EM algorithm for learning from asynchronous
demonstrations

As discussed earlier, the teleoperated demonstrations can
have temporal variations and hence, we do not associate
the time-stamp of the system as the phase signal of each
trajectory. In order to handle such inconsistent and asyn-
chronous teleoperated demonstrations, we first separate the
demonstrations into two parts: one trajectory is taken as a
reference trajectory and the remaining trajectories are then
synchronized with this trajectory. The reference trajectory is
recommended to be taken as the trajectory with theminimum
jerk.

Now, with k demonstrations, we create two data sets. The
first data set contains the following variables: the reference
trajectory, its forcing terms and the concatenated phase sig-
nals (linearly spaced). We call it a complete data set (XCom).
The second data set contains the remaining trajectories and
their forcing terms. Their phase variables s are unknown in
this data set. Thus, it is termed as the incomplete data set
(XI nCom). The missing phase signals in the second data set
will be estimated by synchronizing this data set with the first
data set iteratively during EM.Wewill use the notation xCom

i
and xI nCom

i to denote i th column in complete (XCom) and
incomplete data sets (XI nCom) respectively.
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XCom = X1 =
⎡

⎢
⎣

F1(s0) x1,0 s0
...

...
...

F1(sn) x1,n sn

⎤

⎥
⎦

�

XI nCom =
⎡

⎢
⎣

X2
...

Xk

⎤

⎥
⎦

�

Now we fit a GMM to the data sets by using an EM algo-
rithm. The GMM parameters and the missing phase signals
in each trajectory should be estimated. These parameters are
initialized and are then iteratively updated during EM. The
GMM parameters i.e. π,μ and Σ are initialized by linearly
dividing XCom in time domain. The values of phase signals
are initialized as a linearly increasing value from 0 to 2π
in each trajectory for a rhythmic DMP and an exponentially
decreasing value from 1 to 0 in each trajectory for a discrete
DMP. Now we have n data points in the complete data set
and n2 = n ∗ (k − 1) data points in the incomplete data set.

The EM algorithm can be categorized into the E- and M-
steps as follows:

2.3.1 E-step

First,we separate the variables into two types,missing (miss)
denoting the phase variable and observable (Obs) denoting
all other variables except the phase variable.

μm =
[
μObs
m

μmiss
m

]

,Σm =
[

ΣObs
m ΣObs,miss

m
Σmiss,Obs

m Σmiss
m

]

In case of a rhythmic DMP, we first map all the phase
variables within the interval [μmiss

m −π,μmiss
m +π ], for cal-

culating the valid probabilities pi,m and q j,m for the mth
GMM component:

pi,m = πmN
(
xCom
i ;μm,Σm

)

q j,m = πmN
(
xI nCom
j ;μm,Σm

)

where the initialized (or updated during M-step) phase vari-
ables are used for probabilities calculation in incomplete data
set.

The responsibility terms for the i th and j th data points in
complete and incomplete data sets respectively are calculated
as:

E[zi,m |xCom
i , θ t ] = hi,m = pi,m

k∑

l=1
pi,l

, hm =
n∑

l=1

hl,m

E[z j,m |xI nCom
j , θ t ] = r j,m = q j,m

k∑

l=1
q j,l

, rm =
n2∑

l=1

rl,m

In the incomplete data set, the prediction of the j thmissing
value with respect to the mth GMM component is done as
follows:

x̂miss
j,m = μmiss

m +Σmiss,Obs
m (ΣObs

m )
−1

(
xI nCom,Obs
j − μObs

m

)

With this predicted value, two additional expectations are
calculated for the incomplete data set (Ghahramani and Jor-
dan 1994):

E
[
z j,m, x InCom,miss

j |xI nCom,obs
j , θt

]
= q j,m

(
x̂miss
j,m

)

E
[
z j,m, x InCom,miss

j x InCom,miss
j

�|xI nCom,obs
j , θ t

]
=

q j,m

(
Σmiss

m − Σmiss.obs
m Σobs

m
−1

Σmiss.obs�
m

+ x̂miss
j,m x̂miss�

j,m

)

2.3.2 M-step

The mixing weights πm are updated as:

πm = hm + rm
n + n2

while the GMM means μm are updated as:

μm =

n∑

l=1
xCom
l hl,m +

n2∑

v=1
xI nCom
v rv,m

hm + rm

In case of a rhythmic DMP, the phase signal lies on a
circular plane forwhichmeanof cos and sin terms is required:

c̄x =

n∑

l=1
cos

(
xCom,miss
i

)
hl,m +

n2∑

v=1
cos

(
x InCom,miss
i

)
rv,m

hm + rm

¯sx =

n∑

l=1
sin

(
xCom,miss
i

)
hl,m +

n2∑

v=1
sin

(
x InCom,miss
i

)
rv,m

hm + rm

Afterwards, the phase variable for a rhythmic DMP is
updated in the GMMmeans with these following conditions
and wrapped in the interval [0, 2π ]:

i f (c̄x) < 0) μmiss
m = tan−1 ¯sx

c̄x
+ π

elsei f ( ¯sx) > 0) μmiss
m = tan−1 ¯sx

c̄x

else μmiss
m = tan−1 ¯sx

c̄x
+ 2π

As before, for a rhythmic DMP, we map phase variable
within the interval [μmiss

m − π,μmiss
m + π ]. Next, the covari-

ances Σk are updated as:
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Σm =
∑n

i=1 hi,m
(
xCom
i − μm

) (
xCom
i − μm

)� + ∑n2
l=1 Al

hm + rm

Al = rl,m

[
xI nCom,obs
l − μobs

m

x InCom,miss
l − μmiss

m

] [
xI nCom,obs
l − μobs

m

x InCom,miss
l − μmiss

m

]�

=
[
A11 a12
a21 a22

]

where

A11 = rl,m
(
xI nCom,obs
l − μobs

m

) (
xI nCom,obs
l − μobs

m

)�

a21 =
(
E

[
zl,m, x InCom,miss

l

]
− rl,mμmiss

m

) (
xI nCom,obs
l

− μobs
m

)�

a12 = a21�

a22 = E
[
zl,m, x InCom,miss

l x InCom,miss�
l

]
+

rl,mμmiss
m

(
μmiss
m

)�−2E
[
zl,m, x InCom,miss

l

] (
μmiss
m

)�

For a detailed derivation ofAl , see Pervez and Lee (2018).
After updating the GMM parameters, the next step is to esti-
mate the phase signal values in the incomplete data set. This is
done by using GaussianMixture Regression but with respon-
sibilities calculated using all of the variables. For updating
the phase variable, the utilized phase values in the responsi-
bility terms come either from initialization or from the last
M-step. For a given input variable xI nCom,obs

i and a given

Gaussian distribution m, the expected value of x InCom,miss
i

is defined by:

P
(
x InCom,miss
i |xI nCom,obs

i ,m
)

= x̂i,m

where

x̂i,m = μmiss
m + Σmiss,obs

m

(
Σobs

m

)−1 (
xI nCom,obs
i − μobs

m

)

By considering the complete GMM, we get:

E
(
x InCom,miss
i |xI nCom,obs

i

)
=

k∑

l=1

ri,l x̂i,l

with ri,m = πmN
(
xI nCom
i ; μm, Σm

)

∑k
l=1 πlN

(
xI nCom
i ; μl , Σ l

)

where E(x InCom,miss
i |xI nCom,obs

i ) is the updated phase vari-
able value of the i th data point in the incomplete data set.

2.4 Performance of the learned artificial agent

First, we compare the performance of our learnedmodel with
some DTW-based pre-alignment LfD strategies for learning
from asynchronous trajectories. Figure 4e contains the result
ofLfDmethodpresented inAkgun et al. (2012),Calinon et al.
(2007). In their approach, the trajectories are first aligned by
DTW and then encoded with a GMM. The GMM is fitted to
the phase signal and the spatial data. Finally GMR is used
for motion reproduction. When applying GMR for a rhyth-
mic task, the data for the circular dimension (phase signal) is
alwaysmapped in the intervalμ−Xi andμ+Xi for calculat-
ing the valid responsibilities. The drawback of this approach
is that with phase signal as the only input, the GMM-GMR
based encoding does not consider the current position of the
end-effector when generating the motion. Due to the high
level of inconsistency in the data, the learned trajectory par-
tially completes the task, by inserting peg in three out of four
holes, as shown in Fig. 4e.

The next model that we have considered for compari-
son with our own model is the DMP-based encoding of the
demonstrations, with the phase signal and the forcing terms
encoded by using a GMM (Alizadeh 2014). Again the forc-
ing terms of different trajectories are first aligned with DTW.
This approach also fails to reproduce the task, as shown in
Fig. 4f. Because of dissimilarity in the forcing terms of dif-
ferent trajectories, the DTW fails to align them properly.

Figure 4g shows the result of our approach using DMP-
based encoding which successfully reproduces the task due
to the simultaneous alignment and encoding performed dur-
ing the proposed EM steps. Another benefit is that it also
considers the current position of the end-effector along with
the phase signal when doing motion reproduction. The start-
ing value of phase signal can easily be inferred by linearly
generating samples of phase signal in between 0 and 2π and
then the acceleration value v̇ for each of them is calculated by
using the DMP Eq. (1). The sample which yields the lowest
value of sum of absolute accelerations of all DMPs is used
as the starting point for integrating the canonical system.

3 Human-agent shared teleoperation

In teleoperation applications, there can be cases where some
DOFs in a task are repetitive, while the remainingDOFs have
non-repetitivemotion. In such cases, we can introduce shared
teleoperation instead of either human-only teleoperation or
even autonomous execution of the task. Thus, the DOFs
which have repetitive motion, can be encoded by LfD and
executed autonomously through the learned artificial agent,
and the remaining DOFs, which are either non-repetitive or
highly uncertain, can be controlled by a human operator. That
way,we can expand the application area of the proposed skills
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Fig. 4 All axes are in millimeters. The circle represents the starting
point and square symbolizes the ending point of each demonstration
trajectory. a–d Recorded motions of the peg-in-hole task for the four
teleoperation demonstrations. eReproducedmotionwithDTW+GMM

based encoding of spatial data with GMR based motion reproduction, f
reproduced motion with DMP model with DTW+GMM based encod-
ing of forcing terms and g reproduced motion with the learned agent in
our approach

learning method to more general tasks by removing the con-
straint that all DOFs should be fully repetitive.

However, in order to perform human-agent shared teleop-
eration, the main challenge is how to create synchronization
between the generated motion of the learned agent and
the motion command from the human operator on the fly.
To address this problem, we have proposed two human-
agent control sharing architectures in this paper: human-
synchronized shared teleoperation and agent-synchronized
shared teleoperation. In both of these architectures, the
human operator and the agent exercise decoupled fixed con-
trol authority of someDOFs over the slave, as shown inFig. 5.
The merging and the dividing block in the figure combines
the control inputs from both human operator and the agent
into one consolidated velocity command to be sent to the
slave over a network:

vslave = γ × voperator + (1 − γ ) × vAgent (3)

In Eq. (3), vslave, voperator and vAgent are the velocities of the
slave, operator, and agent, respectively. γ is the dominance
value of operator in an axis. Also, for a given DOF, γ is
either zero or one in our case, due to the decoupled control
considered here, where zero and one symbolize no authority
and complete authority over a respective axis, respectively.
For multiple operators, the dividing part enables the division
of the force feedback from the slave’s environment between
the operators controlling the slave. Since there is only one
human operating in our case, all the haptic force is fed back
to the only human operator.

Fig. 5 Fixed control authority distribution: the division of control
authority is based on Gromov et al. (2012), where velocity commands
from both human and agent are merged before rendered onto the slave.
The haptic force feedback from the slave’s end is subsequently fed back
to the human operator for perceptive guidance

3.1 Human-synchronized shared teleoperation

In the human-synchronized shared teleoperation, themotions
of the human operator and that of the agent’s are completely
decoupled. This means that both the human and the agent
provide velocity commands to the slave independently. In
order to synchronize the overallmotion of the task, the human
adapts his/hermotion to that of the agent’s by utilizing his/her
perceptive skills for a proactive alignment. The two key per-
ceptivemediumsusedbyhumanare sight andhaptic (sense of
touch). The agent’s motion generated by the slave is fed back
to the human in the form of a haptic force feedback, to guide
the humanwith regard to the agent’s and subsequently slave’s
motion. The control flow of the human-synchronized shared
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Fig. 6 In human-synchronized shared teleoperation architecture,
decoupled control inputs from a human and agent are executed simulta-
neously. Human synchronizes his/her motion with the learned artificial
agent by utilizing the haptic and visual feedback from the slave device

teleoperation architecture can be visualized in Fig. 6, where
the human operator utilizes the visual and haptic feedback
coming from the slave device, to synchronize his/her motion
while sharing control with the learned artificial agent.

3.2 Agent-synchronized shared teleoperation

In agent-synchronized shared teleoperation, unlike the
human-synchronized one, the learned agent (DMP) actively
participates in synchronizing its motion with that of the
human operator’s motion, as shown in Fig. 7. The basic idea
in this architecture is to reproduce the learnedmodel’smotion
basedonhuman’s control input. This is donebypredicting the
DMP’s clock signal, for the given robot configuration, which
is then utilized for generating the motion of the autonomous
DOFs. Hence, the motion of the learned agent is dependent
on the human operator’s motion and clock feedback value
from the last execution of motion.

The pseudocode for the agent-synchronized shared teleop-
eration is presented in Table 1. The initial clock signal value
is predicted by a numerical maximum likelihood approach
for the current end-effector configuration. Linearly spaced
samples of phase variable are generated and the likelihood
value of the generated samples along with the current end-
effector configuration is evaluated for the learned GMMs.
The sample which yields the maximum likelihood value is
selected as the predicted starting value for the clock signal.

For reproducing the motion of the autonomous DOFs
based on the learned model, the current clock signal value
along with the model parameters is used to estimate the forc-
ing term for the DMP, as in Eq. (2). The velocity command
thus obtained after numerical integration of acceleration
obtained fromEq. (1) is used in concatenationwith the human
control input for shared control.But for generating themotion
of the autonomous DOFs for the next time step, it is impor-
tant to synchronize them with the motion of the DOFs to
be controlled by the human. For that the current clock sig-

Fig. 7 In agent-synchronized shared teleoperation architecture, control
inputs from a human and agent are synchronized through a clock signal
that drives the learned model’s motion. The value of this clock signal is
actively updated based on the human operator’s control input

nal value is re-estimated after motion command at each time
step. To achieve this, an array of clock signal values is gen-
erated within a predefined window around the current clock
value:

sSamp = [scur − δ scur . . . scur + Nδ]�

The generated clock values, along with the slave’s current
configuration (given both master and slave have no corre-
spondence discrepancies) and learned model parameters, is
run through a numerical maximum likelihood round along
the DOF(s) controlled by the human:

Probo = N
(
soSamp; soSamp, σ 2

s

) D1∏

d1=1

Tempd1

where

Tempd1 =
k∑

m=1

πm,d1N
([
xd1 soSamp

]′ ;μ
[2 3]
m,d1,Σ

[2 3]
m,d1

)

The sample that maximizes the likelihood value is now
used as the corrected value of clock signal for the next step:

scur = sôSamp.

where

ô = argmax
o

{Probo, o = 1, . . . , N + 1}

The clock signal is an increasing function for a rhythmic
DMP. So, if the predicted clock value is greater than the
current clock value, we simply update the current value to it.

This corrected clock signal is now utilized for predicting
the clock value for next time step. This is done by increasing
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Table 1 Agent-synchronized shared teleoperation by using the learned
GMMs

Input: Θ1 = {{πm,d1, μm,d1, Σm,d1}k
m=1}D1

d1=1, σs, N2,
N, Δ, δ

Θ2 = {{πm,d2, μm,d2, Σm,d2}k
m=1}D2

d2=1
Initialize: Stepsum = 0, l = 0

Predict initial clock value
sSamp = [0 δ 2δ . . . 2π]′ � Generate N2 samples
for o = 1 to N2 do

for d1 = 1 to D1 do � DOFs controlled by operator

Tempd1 =
k∑

m=1
πm,d1N ([xd1 soSamp]′;μ

[2 3]
m,d1, Σ

[2 3]
m,d1)

end for
for d2 = 1 to D2 do � DOFs to be automated

Tempd2 =
k∑

m=1
πm,d2N ([xd2 soSamp]′;μ

[2 3]
m,d2, Σ

[2 3]
m,d2)

end for
Probo = N (soSamp; soSamp, σ2

s)
∏D1

d1=1 Tempd1
∏D2

d2=1 Tempd2
end for
ô = argmax

o
{Probo, o = 1, . . . , N2}

scur = sôSamp

while (GenerateMotion==1) do

Generate motion
F(s) ← GMR(scur, Θ2) � For autonomous DOFs
v̇ = ταx(βx(g −x)−v)+ τaF(s) � Apply control input

Re-estimate clock signal
sSamp = [scur − δ scur . . . scur + Nδ]′ � Generate N + 2

samples
for o = 1 to N + 1 do

for d1 = 1 to D1 do � DOFs controlled by
operator

Tempd1 =
k∑

m=1
πm,d1N ([xd1 soSamp]′;μ

[2 3]
m,d1, Σ

[2 3]
m,d1)

end for
Probo = N (soSamp; soSamp, σ2

s)
∏D1

d1=1 Tempd1
end for
ô = argmax

o
{Probo, o = 1, . . . , N + 1}

l = l + 1
if sôSamp < scur then

Stepsum = Stepsum + Δ
scur = scur + Δ

else
Stepsum = Stepsum + (sôSamp − scur) � Accumulate

step size
scur = sôSamp � Correct clock signal

scur = scur +
Stepsum

l
� Predict clock signal

end if
end while

its value with an average increment of the clock signal values
observed from the previous time steps:

scur = scur + Stepsum
l

whereStepsum accumulates all the corrections of the previous
clock signals: Stepsum = Stepsum + (sôSamp − scur). Thus
the magnitude of the increment is also learned on the fly.

If the estimated value after maximum likelihood approach
is less than the current value, we retain the current value as it

Fig. 8 Master (left) and slave (right) sides—perspective distortion due
to the camera position on the slave side

is, and then increment this current value by a small predefined
amount Δ for the next time step:

scur = scur + Δ

For the discrete DMPs, the same approach can be applied
butwith decreasing values, instead of increasing values of the
clock signal. In case of a collision or an external interference,
the time development of the canonical system can also be
automatically halted by utilizing the error in between the
desired and the actual end-effector positions, as in Schaal
et al. (2007).

4 Experimental results

4.1 Experimental setup

Ourproposed algorithm is evaluated experimentally on apeg-
in-hole task with a master-slave teleoperation system. The
setup consists of a 3-DOF SensAble PHANToM Omni as a
master device and a 3-DOF PHANToM Premium 1.5A as
a slave device. The pair of master and slave devices run on
the same computer. A web-camera streams the visual feed-
back from the slave environment to the human operator. The
camera position and the lack of depth information in the two
dimensional camera images introduce a perspective distor-
tion which inhibits a clear visual perception for the operator.
An aluminum plate with 4 holes is placed under the slave to
serve as the task rig for the peg-in-hole task, as illustrated in
Fig. 8. For the experimental evaluation of shared teleopera-
tion, the human operator observes the visual feedback on the
monitor in front and controls the motion of the slave device
in y-axis only, whereas the artificial agent controls both the
x and z axes of the motion. One execution cycle constitutes
insertion of the slave robot end-effector into four holes of
the task rig in clockwise direction, while starting and ending
above the same hole. The operator’s master device receives
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a haptic force feedback from the slave device. This provides
a kinesthetic coupling between the artificial agent and the
human operator. The haptic feedback increases the awareness
of the operator about the motion of the agent, thus easing the
task execution for cooperative teleoperation.

For encoding the DMP, a human operator performs four
teleoperated demonstrations of the peg-in-hole task. During
each cycle, the Cartesian coordinates of the slave’s end-
effector’s position are recorded for utilizing as an input to
the learning algorithm. The demonstrated trajectories can be
visualized in Fig. 4a–d.

4.2 Simulation of agent-synchronized shared
teleoperation

We verified the performance of our proposed learned model
as an artificial agent in a computer simulated shared teleoper-
ation setting. For shared teleoperation simulations, the values
of N , N2, δ and Δ are set to 4000, 1300, 2× 10−4 and 10−3

respectively. Furthermore, an operator is asked to demon-
strate a single motion of the peg-in-hole task as a reference
trajectory. Now, we use this reference trajectory along with
the learned agent in order to simulate a shared teleoperation
architecture. It is to be noted here that the reference trajec-
tory is passed as an input in an open loop manner because the
haptic and visual feedback in Fig. 7 ismissingwhen perform-
ing shared teleoperation in the simulation. We only pass the
motion of y-axis from the reference trajectory as human input
while that of x and z axes are autonomously generated. The
learnedmodel successfully completes the peg-in-hole task as
shown by the generated motion in Fig. 9a while the evolution
of its corresponding clock signal is shown in Fig. 9c.

Now we evaluate the performance for temporal variation
in the executionof themotion aswell as for the control ofmul-
tiple DOFs by the operator. We replay the recorded motion
at different speeds, in order to check the synchronization
capability of the learned agent. Figure 9b shows the result
of successful motion execution, when x and y axes of the
motion come from the reference trajectory while the motion
of z-axis is autonomously generated. In this simulation, we
significantly decreased the speed of execution of the motion
of DOFs controlled by the reference trajectory. As one can
see from Fig. 9d with Fig. 9c, the generated clock signal
also increases relatively slowly. Figure 9e shows the result
of successful motion execution in another simulation setting,
where the motion of y and z axes comes from the reference
trajectory, the motion of x-axis is autonomously executed,
and the speed of execution of the motion of DOFs controlled
by the reference trajectory is significantly increased.Thegen-
erated clock signal adapts accordingly by increasing faster.
This can be observed by comparing Fig. 9g with Fig. 9c.
In all of the simulations of shared teleoperation, the gener-
ated clock signal does not simply increase linearly but small

adjustments can be observed in the generated clock values
for synchronizing the motion of autonomous DOFs with the
DOFs controlled by the reference trajectory.

The generated motion can also switch from shared tele-
operation to fully autonomous mode and vice versa. If an
operator wants to rest or is confident of correct motion exe-
cution by the artificial agent then they can enable the fully
autonomousmode. Figure 9f shows the resultwhenhalf of the
motion is generated in shared teleoperation setting while the
second half of the motion is generated in fully autonomous
mode. For full autonomy, the clock signal increment becomes
linear, as is shown in Fig. 9h. Due to the use of a dynamical
system in the DMP model, the control transitions smoothly
from shared teleoperation to fully autonomous mode, as
shown in Fig. 9f.

4.3 Experimental evaluation of human-agent shared
teleoperation

Eight engineering students, both male and female, ages
ranging from 23 to 33, participated in performing 4 trials
for each of the three types of experiments - human-only
teleoperation, human-synchronized shared teleoperation and
agent-synchronized shared teleoperation. The subjects were
given sufficient time to familiarize themselves with the setup
of the three types of experiments. The three experiments
(with contiguous 4 trials of each) were performed by the
subjects in the same order as mentioned above. None of the
subjects had any prior experience in teleoperation, let alone
with Phantom devices. Thus, theywere provisionedwith pre-
liminary familiarization trials prior to each of the three types
of experiments. The subjects indicated of their readiness to
perform each experiment after sufficient familiarization with
the setup, of their own accord. The subjects observe the visual
feedback from the camera placed at the slave’s end. Dur-
ing the shared teleoperation experiments, both the agent and
the human operator have complete control authority over
their respective axes - human controls y-axis motion only,
whereas the agent controls x and z axes motion. In order to
evaluate the performance of the two proposed shared tele-
operation approaches against the human-only teleoperation,
we recorded the execution time, the rate of collision and
the overall workload index (NASA-TLX Hart and Staveland
1988).

Execution time Each execution cycle of the peg-in-hole task
comprised of moving to the four holes of the rig and inserting
the end-effector into them. Among the three teleoperation
architectures, the agent-synchronized shared teleoperation
on average enabled the fastest motion executions, as shown
in Fig. 10. This is due to the prediction of the next clock
signal based on human operator’s input. This allows the exe-
cution speeds to be variable for different subjects, and hence,
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Fig. 9 a y-axis of the recorded motion is used as the operator’s con-
trol input while the motion of x and z axes is autonomously generated.
b x and y axes of the recorded motion is used as the operator’s con-
trol input while the motion of z-axis is autonomously generated. The
speed of operators motion is significantly slower than the demonstrated
motions in this experiment. c Generated clock signal corresponding to
a for reference, the black dashed line in b, d, g and h shows the clock
signal for completely autonomous execution of the task without shared
teleoperation control, as in Fig. 4g. d Generated clock signal corre-
sponding to b. e y and z axes of the recorded motion is used as the

operator’s input while the motion of x-axis is autonomously generated.
The speed of operators motion is significantly faster than the demon-
strated motions in this experiment. f y-axis of the recorded motion is
used as the operator’s control input while the motion of x and z axes is
autonomously generated during first half of themotion. The later half of
the motion is generated in fully autonomous mode. g Generated clock
signal corresponding to e. h Generated clock signal corresponding to
f. The switching point from shared teleoperation to full autonomy is
indicated by the red line (Color figure online)
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Fig. 10 Average execution time of the peg-in-hole task for the two
shared teleoperation approaches compared with the human-only tele-
operation experiments. Error bars indicate the minimum and maximum
values

brisked up at points where human intended on moving faster,
whereas slowed down (less increment in the clock value)
where human wanted to take more time at critical points
of the task. Moreover, in the human-synchronized shared
teleoperation, the execution time, measured in milliseconds,
was almost constant throughout the course of experimenta-
tion across all subjects, with only minor variations due to the
noise introduced by the subjects (time taken by subjects to
stop the recording manually). This is because the execution
time in this setting is mainly governed by the artificial agent
to complete the task. Finally, the human-only teleoperation
posed the most difficulty and labour for the subjects, primar-
ily due to the visual distortion and zero haptic assistance from
any external agents, thereby making it the most slowest of
the three teleoperation modes for the same task.

Rate of collision and missed holes The three teleoperation
approaches were evaluated based on the rate of collision
and missed holes recorded while experimenting. By defi-
nition, collision here means involuntarily hitting the rig with
the slave’s end-effector anywhere apart from the hole itself
(including the walls surrounding the holes). It also incorpo-
rates dismantling the rig completely due to a delayed or brisk
move of the human controlled axis.Missing simply symbol-
izes losing the opportunity to insert the slave end-effector
into the hole of the rig as per the task’s requisite steps. Addi-
tionally, the maximum number of collisions incurred by each
subject throughout the four trials of each teleoperation setting
was averaged across all subjects. Figure 11 clearly shows that
the subjects had much less collisions and missed holes with
the task rig in the two shared teleoperation approaches, as
compared to the human-only teleoperation. The reason being
that in the human-synchronized control, the agent controlled
the slave to traverse through the rig as per the prescribed

Fig. 11 Average rate of collision/missed holes of the peg-in-hole task
for the two shared teleoperation approaches compared with the human-
only teleoperation experiments. Error bars indicate the minimum and
maximum values

steps of motion andwould only station itself right above each
hole, which gives the operator the time as well as the ease
to just insert the end-effector when it is at that point. Sim-
ilarly, the agent-synchronized shared teleoperation showed
best performance (no missed holes ), since the slave only
moved to the next step based on the human operator’s current
position, thereby synchronizing its speed with the human’s
speed at every instant. Whereas, the human-only teleopera-
tion incurred the most collisions and holes’ misses.

Workload index The NASA-TLX subjective assessment in
terms of the overall workload is shown in Fig. 12 for each of
the teleoperation methods. As a consequence of all the satis-
factory results in the previously mentioned metrics, both of
the proposed shared teleoperation approaches have ranked
subjectively to have a lower index of workload. The sub-
jects reported to have felt complete ease at having to only
care about inserting the end-effector into the holes (y-axis
motion) while the agent controlled the rest of the motion (x
and z axes). But, most of them rated the human-only shared
teleoperation as being the most forgiving of all in terms of
collision rectification.But on the flip side, they felt frustration
when they could not correctly perceive the slave’s environ-
ment through visual feedback which they attributed to their
poor performance in the human-only teleoperation architec-
ture.

Between the two shared teleoperation settings, the
human-synchronized one takes preeminence over its agent-
synchronized counterpart slightly. This precedence, even
though by a slight margin, could perhaps be accounted for
due to an obvious factor. The human subjects motion had
no affect on the agent’s motion in the human-synchronized
mode, as the agent’s motion is executed in an open loopman-
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Fig. 12 Overall workload index of the peg-in-hole task for the two
shared teleoperation approaches compared with the human-only tele-
operation experiments. Error bars indicate the minimum and maximum
values

ner. Whereas, in the agent-synchronized mode, the human
operators had to keep the robot’s end-effector within the
range of the demonstrated trajectories so that the agent could
correctly infer the clock signal’s value.

Both the human-agent shared teleoperation modes served
to be least laborious because of the task sharing with the
learned artificial agent.

Phase signal There is no clock signal involved in human-
only teleoperation while the clock signal increases linearly
in human-synchronized shared teleoperation. For the value
of the generated clock signal s during the agent-synchronized
shared teleoperation experiments, the increment of clock sig-
nal adapts basedonhumanoperator’s input, as it is also shown
in the simulation. The force feedback has no direct effect on
the autonomous DOFs, as only the human operator receives
the force feedback. The autonomous DOFs are solely driven
by the DMP, while its speed is regulated by the motion of
the human operator. Since DMP itself is inherently a stable
system, no instability issues arise in the shared teleoperation
architecture.

The value of s, that was generated on the fly based on
the current position of the master device, does not simply
increase linearly, but in fact, adjustments can be observed
in the generated clock values for synchronizing the motion
of the autonomously generated DOFs with the DOFs con-
trolled by the humanoperator. This phenomenon is visualized
in Fig. 13 which shows the generated clock signal for an
agent-synchronized shared teleoperation experiment. It can
be observed that the agent is proactive in its approach to
synchronize with human motion in real time.

Summary of experiments Hence, conclusively, the agent-
synchronized based teleoperation mode was evaluated to be
the one with the most accurate execution of task while taking

x-
ax

is

y-axis
z-axis

(a)

(b)

Fig. 13 a Generated motion for one complete cycle of the peg-in-hole
task and b its corresponding clock signal, for the agent-synchronized
shared teleoperation experiment

the least time to perform the experiments across all subjects.
Whereas human-synchronized shared control came out to be
the least burden-some of all.

5 Conclusion

LfD provides a way to automate a repetitive task by utilizing
human teleoperated demonstrations. LfD can be challeng-
ing for teleoperation, due to the large temporal and spatial
variations in teleoperated demonstrations. To address this
problem, we proposed an EM-based DMP approach for
simultaneously aligning and encoding the motion trajecto-
ries. The proposed approach shows superior performance
as compared to DTW based pre-alignment and then encod-
ing of motion trajectories. It has also been shown that the
learned model can be utilized in human-agent shared tele-
operation setup, of which we have proposed two variants
- human-synchronized, and agent-synchronized shared tele-
operation. The agent in both approaches is learned through
teleoperated demonstrations. The proposed approaches show
significant performance improvement given visual perspec-
tive distortion which deteriorated the efficiency significantly
when utilizing the human-only teleoperation.

Furthermore, between the two proposed shared teleoper-
ation approaches, the agent-synchronized one reduces the
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total execution time of the peg-in-hole task. Also, it has a
slightly more accurate execution of the task than the human-
synchronized one. However, it possess a slightly higher
workload for an operator, since the operator has to follow
the demonstrated intervals and has to also cooperate with an
active agent. Moreover, due to DMP-based LfD approach
, our generated artificial agent can scale up and/or down
its meta parameters, like spatial or temporal scaling of the
motions.
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