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Abstract— Conditional tasks include a decision on how the
robot should react to an observation. This requires to select
the appropriate action during execution. For instance, spatial
sorting of objects may require different goal positions based on
the objects properties, such as weight or geometry. We propose
a framework that allows a user to demonstrate conditional
tasks including recovery behaviors for expected situations. In
our framework, human demonstrations define the required
actions for task completion, which we term solutions. Each
specific solution accounts for different conditions which may
arise during execution. We exploit a clustering scheme to assign
multiple demonstrations to a specific solution, which is then
encoded in a probabilistic model. At runtime, our approach
monitors the execution of the current solution using measured
robot pose, external wrench, and grasp status. Deviations from
the expected state are then classified as anomalies. This triggers
the execution of an alternative solution, appropriately selected
from the pool of demonstrated actions. Experiments on a real
robot show the capability of the proposed approach to detect
anomalies online and switch to an appropriate solution that
fulfills the task.

I. INTRODUCTION

The execution of a conditional task is affected by changes
in the executive context. Therefore, a conditional task has
several possible outcomes depending on the conditions of
the specific execution. For instance, one can consider sorting
of objects by their weight, where light and heavy objects
should be placed on different destinations (Fig. 1). Hence,
this sorting task has two possible actions and requires two
specialized behaviors to be accomplished. We call such
behaviors solutions and state that multiple solutions (solution
pool) have to be assigned to a conditional task. Furthermore,
the sorting example requires physical interaction with the
objects to estimate the weight, which is a property that
cannot be observed visually before the task execution. It
is clear that the correct execution of a conditional task
requires a continuous monitoring of the executive state and
the capability of detecting anomalies, i.e. deviations between
the expected state of the current (nominal) solution and the
measured state. Such anomalies can trigger the execution
of an alternative solution that fulfills the task. Finding an
appropriate solution requires a decision on which is the best
alternative solution in the solution pool (Fig. 1 right).

Our goal is to develop a framework that allows a user
to intuitively program a conditional task. Learning from
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Fig. 1. Teaching multiple solutions for different conditions in a task, e.g.
sorting by object weight. The robot executes a nominal solution (1) and
monitors measured state m and commanded state µ1. The scheduler selects
an alternative solution (2) with commanded state µ2, when the confidence
bound Σ1 of the current solution is violated.

Demonstrations (LfD) has been applied in a variety of
scenarios, including the motion and force domain. Many
works consider multiple demonstrations of a task in order to
achieve good generalization results and a robust execution,
for example task parametrization approaches [1], [2]. These
approaches require the selection of a task parameter and do
not generalize well if, as for conditional tasks, the required
action is too different from what has been demonstrated.
Other approaches consider that multiple demonstrations can
include information about specific strategies, which need to
be treated independently [3], [4].

It may be hard for a novice user to select either task
parameters or to program a higher level description of a
task involving decisions or recovery behaviors. Therefore, we
propose an approach to allow a user to program a conditional
task only by demonstration. In our framework, the user
demonstrates several solutions corresponding to different
executive conditions that influence the robots behavior. A
clustering algorithm is employed to assign multiple demon-
strations to a specific solution in an unsupervised fashion, i.e.
without explicitly labeling them. The task execution is con-
tinuously monitored to detect deviations from the expected
state and eventually switch to an alternative solution.

To summarize, the intuitive programming of conditional
tasks and recovery behaviors is obtained by
• learning a variety of task solutions without labeled

data or a symbolic task representation by clustering of



motion and force data,
• online switching of task solutions by anomaly detection

including forces and grasp status, and
• recovering from an error by choosing the most likely

state within the set of alternative task solutions.
We are exploiting the robot’s proprioceptive sensing with-

out incorporating an additional vision system, which requires
a partially structured environment with fixed object posi-
tions. We emphasize that the task is bootstrapped from the
demonstrations only, without requesting further knowledge
of how it shall be executed and how to react to changes in
the environment.

The document is outlined as follows. We first discuss
related work (Sec. II), introduce our scheme to learn multiple
solutions (Sec. III) and explain the task execution and
monitoring system (Sec. IV). We evaluate our approach in
the experiments section (Sec. V) and give a short conclusion
and outlook about future work (Sec. VI).

II. RELATED WORK

A. Learning Conditional Tasks from Demonstration

Conditional tasks require that the robot adapts to the state
of the environment and plans accordingly. Complex strategies
can be designed by hand in the form of a finite state machine
(FSM) [5]. Alternatively, plans can be directly learned from
demonstrations [6], where a knowledge base of manipulation
tasks is built from demonstrations by observation of a virtual
workspace and by segmentation into predefined skills with
pre- and post-conditions. In [4], these plans are interactively
built in form of a FSM, given visually tracked object poses.
Recovery behaviors are considered for grasp and object pose
failures, but unknown anomalies are not detected by the sys-
tem itself and the user has to intervene if a new behavior shall
be added. Our monitoring system observes continuously the
process parameters, including expected forces. This allows
also fault detection, whether a recovery behavior is available
or not.

Although there exist solvers that can handle continuous
state spaces and do not require predefined transition prob-
abilities, such as POMCPs [7], they require a black-box
model to sample from and the reward (or goal states) need
to be defined manually. In [8], a switching scheme between
deterministic planning and decision-theoretic planning in the
form of POMDP is proposed, but it requires a problem
description in the Planning Domain Definition Language.

Common planners, e.g. based on a probabilistic roadmap
(PRM) or on a rapidly exploring random tree (RRT) [9],
always require a model, which has to be built beforehand.
Instead, this is not needed with the presented approach. In
[10], multiple demonstrations are encoded in sequences of
predefined symbols to find the longest common subsequence.
Symbolic actions for planning are extracted from demon-
strations in [11] and [12]. In both works, preconditions and
effects of symbolic actions are learned from demonstration
but the corresponding symbols need to be manually defined.
In [13], complex tasks are learned by kinesthetic teaching

involving multiple visually tracked objects, where the task
structure itself has to be predefined beforehand.

B. Error Detection and Recovery

Our approach can be applied to error detection, where
a recovery behavior needs to be provided in advance for
expected faults. Faults can be divided into internal robotic
system faults and task execution faults [14]. We address task
execution faults, where anomalies in robot pose, external
wrench or grasp status can be detected. Geometric assembly
errors were theoretically described in [15], and possible
recovery strategies provided. The authors state that an event
is termed an error if no solution exists to handle it. Further,
they term an action a recovery strategy, if it is a possible
solution to the given problem. In general, an error can be
seen as a simple event in a guaranteed plan, if the system
can detect it and plan accordingly.

Several approaches in the literature exploit time series
of previously observed executions for error detection. In
[16], Hidden Markov Models (HMM) were trained as a
process monitor in robotic assembly. In [17], a HMM is
trained on the wrench and its derivative to monitor force-
based interactions with the environment and to classify if
the execution is successful or not. As a drawback, the
specific modality, which allows for detecting the deviation,
needs to be selected beforehand and an expert user need to
observe enough executions to manually label them. Finally,
the execution strategy is pre-programmed as a finite state
machine (FSM). In [18], Mahalanobis distance is used on
a subset of sensor time series of unmanned vehicles, but
recovery from errors was not scope of this work. Task strat-
ification [19] orders possible faults into classes such as ex-
ecution/planning/modeling and sensing errors and describes
a forward and backward correction process to successfully
accomplish an error-prone task. While providing labels for
error classes, a strategy how to identify an error given a
certain state is not provided. The task outcome prediction in
[20] compares sensor signals with successful trials coming
from a reinforcement learning system. A z-test predicts, if
the observed signals stem from a population of successful
trials, which requires cumbersome labeling by hand.

Learning from failed trials has been presented [21] to avoid
the human’s mistakes and to converge faster to an optimal
policy. The basic assumption thereof was that every shown
trial has failed and the robot tries to find a better strategy
in between these failures. On the other hand, our approach
focuses only on successful trials to bootstrap the desired
behavior.

C. Force Events in Robotic Manipulation

In assembly tasks, force signatures (i.e. force or torque
time-series) have been exploited in [22] to train a support
vector machine (SVM) with a bunch of successful and un-
successful assemblies from hand-labeled trials. The approach
does not handle fault states by a recovery strategy. Instead
of thresholds, force and torque transients were used in an
assembly task to accelerate the event detection in order to



move to the next state [23]. Events were inferred by a SVM,
trained on 60 samples of assembly. The state machine and
control schemes were predefined. Hand-designed detection
schemes for recognition of fault states can also detect abstract
error signatures, such as haptically detecting if a hand driller
is running or not by analyzing the frequency spectrum of the
“feeling” force sensor [5]. However, such abstract detection
schemes require great effort in manually designing them
and relating them to the right state during execution is not
straight-forward. For each task, specific failure detection and
recovery behaviors were defined by hand and added to a state
machine. Therefore, unexpected situations which were not
accounted for in the design cannot be handled. In contrast, we
do not need to relate a specific recovery behavior to a fault
state during execution but let the anomaly detection identify
the fault state and its appropriate solution, if existing.

D. Clustering of Time Series

We rely on time series clustering, which not only aligns
temporally distorted series but also uses a time-series pro-
totype where other series are warped to. Our problem in-
volves multidimensional series with unequal length due to
demonstration variations. The observed input data consists
of continuous variables from multiple modalities such as
position, orientation, wrench and grasp status. A survey of
time series clustering [24] groups the methods into raw-
data-, feature- and model-based approaches. Methods which
act in the raw-data domain with multidimensional input
and variable length often employ Euclidean distance as the
general distance metric. An approach which directly uses
dynamic time warping (DTW) distance for clustering is
presented in [25]. The authors not only warp multiple time
series but also provide a technique to find the average time
series representing the cluster center, which they term as the
prototype.

As proposed in [3], the number of clusters depends on a
distance parameter, which has to be specified by the system
designer but leads to an unpredictable number of clusters
depending on the scenario. Instead, we just let the user define
the number of clusters to make sure that the correct number
of solutions is learned. Additionally, we consider temporal
variations by DTW and additional modalities, such as force.

III. LEARNING MULTIPLE SOLUTIONS

We assume that our task is not a fixed temporal sequence
of skills or actions, but a variable execution strategy consid-
ering changes in the environment. We call a successful task
execution a solution, whereby several of these are included
in a solution pool (SP). Therefore, it does not matter if an
execution which deviates from the nominal one, is seen as a
recovery behavior or as an alternative solution to a problem.
In the same way, the event which leads to the adaptation of
execution can be seen as an error or just as the expected
environmental state deviating from the nominal execution,
which we can handle by an alternative solution.

We think that alternative solutions can be executed by
switching from the initial nominal solution to them at the

state where the environmental condition is met. This can be
compared with a state machine where the transition condition
is observed continuously. We switch to another state, in
our case the alternative solution, whenever the condition is
fulfilled.

In theory, all observable variables during execution can
be taken into consideration for error detection. However,
we apply our method to a vision-free approach using the
following modalities: a) robot pose, which can be simply
obtained by the robot measurements, b) wrench, which is
obtained by a force-torque (FT) sensor, and c) gripper finger
distance in accordance with a discrete grasp status (−1: no
object in gripper, 0: gripper moving, 1: object in gripper)
provided by the gripper interface.

A. Demonstration System

The user provides multiple demonstrations for varying
conditions, to which the robot shall account for. The teaching
system shown in [26] is used to transfer knowledge to the
robot, where a FT sensor is mounted between robot and
gripper. We use three foot pedals to trigger the start and
stop of teaching, gripper movements and to switch to the
next demonstration. A sample at time t of demonstration
i is given by xit = [p,o,w, g, h]T ∈ R15, representing
Cartesian end effector position p = [x, y, z] ∈ R3, orienta-
tion in unit quaternions o = [qw, qx, qy, qz] ∈ R4, wrench
w = [fx, fy, fz, tx, ty, tz] ∈ R6, gripper finger distance g ∈ R
and grasp status h ∈ {−1, 0, 1}. The wrench values are
filtered by a 1st order Butterworth low-pass filter with
cutoff frequency of 1Hz. The trajectories of demonstra-
tion i ∈ {1, . . . , I} with according sample length Ni for
demonstration i are stored in a matrix Xi = [xi1, ...,x

i
Ni

].
Steady states where there is nearly no change in position
and orientation are removed.

B. Clustering

Clustering is applied on all demonstrations to find a set
of solutions. In the pre-processing, all demonstrations are
dimension-wise standardized by subtracting the mean and
dividing by the standard deviation (z-transform). This allows
to use Euclidean distance metric over all dimensions for
DTW. In order not to favor signal modalities with rather
high amplitudes (e.g. force signals), standardization makes
sure that all dimensions contribute equally to the warping
error. For a common standardization, all demonstrations are
stacked in X̄ = [X1 . . .XI ]. The mean and standard devia-
tion are computed row-wise over X̄ to obtain standardized
demonstrations from X̂1 to X̂I . A pairwise distance matrix
between the demonstrations is obtained by the Dynamic
Time Warping (DTW) distance. We denote this distance as
DTW(A,B), for some multi-dimensional time series A and
B. The distance matrix over all demonstrations is given by

DDTW =

DTW(X̂1, X̂1) . . .DTW(X̂1, X̂I)
. . .

DTW(X̂I , X̂1) . . .DTW(X̂I , X̂I)

 .



We use single linkage hierarchical clustering [27], which uses
DDTW as distance matrix. At the current state, the user needs
to specify the number of clusters, which is simply the number
of demonstrated solutions S. In comparison, density based
clustering algorithms require a density parameter instead
of a desired cluster number, which is again task specific
as multiple demonstrations might have variable similarity
depending on user performance and task goals. In our
preliminary studies, such clustering approaches did not lead
to reliable results.

A number of S clusters is obtained by flattening the
hierarchical cluster structure. Hereby, a minimum threshold
is computed on the cophenetic distance between two obser-
vations in the same cluster such that no more than S flat
clusters are created.

The cluster medoid is found by the minimum sum of
squared distances to all other demos within the same cluster.
DTW is applied again between the medoid and all other de-
mos in the same cluster. The resulting warping path realigns
all demos with the medoid. Subsequently, the warped demos
are resampled to share the same length (Ns) within one
cluster. The warped demonstrations X̃i

s related to a cluster
corresponding to solution s, are stacked into a common
matrix Ĉs.

C. Trajectory Learning

The clustered data is converted into a generalized tra-
jectory for each cluster s. Remember that the data has
been standardized for clustering and warping, whereas we
use the original data in the trajectory learning by row-wise
multiplication with the standard deviation and addition of the
mean, resulting in a non-standardized cluster Cs. For each
solution s, a time-based Gaussian Mixture Model (GMM)
is used to generalize multiple demos into a common model
M. The input matrix

Gs =

[
Cs

u, . . . ,u

]
∈ R16×NsIs (1)

is used to learn a joint probabilistic model of all input
dimensions, denoted as

M = GMM(Gs), (2)

with a time vector u = [1, . . . , Ns]. Gaussian Mixture
Regression (GMR) provides a trajectory Ys and a time-series
of covariance matrices Zs by conditioning the model on
the time vector u with GMR(M|u). The trajectory of each
solution s is stored in Ys = [µ1, . . . ,µNs

] and the according
covariance time-series in Zs = [Σ1, . . . ,ΣNs

]. The symmet-
ric covariance matrix at time-step t is represented by

Σt =


Σp,p Σp,o Σp,w Σp,g Σp,h

. . . Σo,o Σo,w Σo,g Σo,h

. . . . . . Σw,w Σw,g Σw,h

. . . . . . . . . Σg,g Σg,h

. . . . . . . . . . . . Σh,h

 . (3)

The quaternions of the orientation trajectory are normalized
at this point. This is due to the regression and DTW, which

both act in Euclidean vector space and do not preserve
the quaternion properties. The deviation we faced is small
enough to promote the usage of such compact orientation
encoding alongside other modalities. Having the trajectories
for pose, wrench, gripper distance and grasp status, as well
as the covariance matrix at each time-step, the required data
has been computed for executing the task on the robot. This
data is generated for each solution and added to a solution
pool (SP).

IV. EXECUTION AND MONITORING OF CONDITIONAL
TASKS

A. Scheduler

The Scheduler (Fig. 2) is a decision module, which
manages a solution pool (SP) and takes care of events that
occur during task execution (Algorithm 1). Possible events
are anomalies or the finishing of a task. The initial nominal
solution for a task can be randomly preselected from the pool
or simply by user choice. We decided to select the nominal
solution with shortest length in the number of samples
in order to favor short execution times and less complex
behaviors. Whenever a solution is selected, its trajectory is
passed to the Execution.

Algorithm 1 Scheduler
Input: solution pool: SP; anomaly threshold: ε

1: Initialization :
2: t← 1 . set trajectory starting index
3: s← get nominal solution(SP) . (section IV-A)
4: while not empty(SP) do
5: goto start point(s, t)
6: execute solution(s)
7: remove solution s from pool SP
8: event← wait for event(ε) . anomaly or finished

task
9: if event is anomaly then

10: if not empty(SP) then
11: given: measured erroneous state: me

12: s, t← find alternative solution(me, s)
13: . (section IV-D)
14: else
15: return stop on error . no more solutions

available
16: end if
17: else
18: return finished . successful completion
19: end if
20: end while

B. Execution

The Execution module employs a Cartesian Impedance
controller with additional wrench term, leading to the joint
torque

τcmd = JT (K(xd − x) +wd −Dẋ) + g(q), (4)
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Fig. 2. Modules and data flow of the execution and observation system.

where J is the Jacobian, K the Cartesian stiffness matrix,
xd and x the desired and measured position, wd the de-
sired wrench, D a positive definite Damping matrix and g
represents the robot’s gravity term, depending on the joint
position q. We added the desired wrench term in order to
reproduce the demonstrated dynamics, which makes sure
that an external wrench which has been observed in the
demonstrations does not have major influence on the pose of
the robot. The gripper fingers are commanded by a simple
feed-forward controller.

C. Monitoring

The Monitoring module observes both nominal (com-
manded) and measured state during execution. Hereby,
anomalies are detected by a one-class classification [28],
where we model a probability distribution and employ an
error metric to identify outliers. Whenever an anomaly occurs
during execution, an event and relevant process data is sent
to the Scheduler.

The current measurement during execution is
mt = [p,o,w, g, h]T ∈ R15 and the commanded state of the
nominal solution is µt = [µp,µo,µw, µg, µh]

T ∈ R15. At
each time-step t, the deviation between nominal execution
and measured state is computed by the Mahalanobis distance

DM =

√
(mt − µt)TΣ−1t (mt − µt) (5)

which is compared with a threshold ε. This means that a
large enough deviation signalizes the failure of the nominal
solution. If the threshold is exceed for a few consecutive
timesteps, an anomaly event is triggered. Hereby, all modal-
ities contribute equally to the anomaly detection as their
errors are scaled by the covariance matrix. Errors can be
introduced by deviation in position or orientation, by an
abnormal wrench due to unexpected interaction forces or
object weights, by gripper finger distance or grasp status due
to object geometry or misplaced objects in the environment.
If an anomaly is detected at time-step te, the measured state
me is forwarded to the Scheduler.

D. Finding an Alternative Solution

The task of the Scheduler is to select a nominal solution in
the beginning and an appropriate alternative solution in the
case an anomaly is detected. If only two solutions exist and
one is currently executed, only one solution remains left as
a recovery strategy. Given more than two solutions, we want

to identify the best strategy to cope with the situation (see
Algorithm 1). Based on the current (erroneous) state me at
time te and current nominal solution η, the most appropriate
alternative solution s∗ can be found in the pool. Let Ys(t)
be the sample in the trajectory of solution s at time t and
Zs(t) the respective covariance matrix. Then, the minimum
squared Mahalanobis distance over each sample in solution
s is given by

Cs = min
t∈[1,Ns]

{(Ys(t)−me)
TZs(t)

−1(Ys(t)−me)}. (6)

The solution with the closest state to erroneous state is found
by

s∗ = argmin
s∈ SP\η

{Cs} , (7)

excluding the currently executed nominal solution η. The
identified alternative solution trajectory is stated as Ys∗ .

Inspired by human behavior, the recovery strategy shall be
executed ad-hoc, right after the error is identified. Addition-
ally, the task shall be continued to resolve only the error but
not by restarting the whole execution sequence. Therefore,
the time-step, in which the recovery strategy shall be started,
is identified similarly to (6) with

t∗ = argmin
t∈[1,N∗

s ]

{(Ys∗(t)−me)
TZs(t)

−1(Ys∗(t)−me)}. (8)

The trimmed solution trajectory, where the Scheduler
switches to at runtime, starts at index t∗ and is denoted by
Ys∗(t

∗, ..., Ns∗).

V. EXPERIMENTS

A. Evaluation of Monitoring System

In a baseline experiment, we evaluate that a system
without monitoring capabilities cannot detect anomalies
from an expected behavior, and show that the proposed
monitoring system is able to do so. The anomaly threshold
is set to ε = 6 throughout the next experiments. In a
simple peg-in-hole setup (Fig. 3), the nominal solution is
to insert the peg into a hole such that no high external
forces or blocking occurs during insertion as demonstrated
by the user. Four demonstrations of picking the peg and
inserting it in the hole were given. One solution has
been learned from a single cluster of demonstrations.
We use a DLR Light Weight Robot (LWR IV) [29]
mounted on a linear axis, equipped with a 2-finger Robotiq
85 gripper. For analysis, we show how errors from
different modalities contribute to the overall error DM.
Therefore, we define Dp =

√
(pt − µp,t)TΣ−1p,p(pt − µp,t)

for positional errors; force errors are defined by
Df =

√
(wt − µf,t)TΣ−1f,f (wt − µf,t), where wt, µf,t,

and Σf,f are the corresponding sub-vectors and sub-matrix
of the wrench; and gripper finger distance as well as grasp
status errors are defined by Dg and Dh respectively. In the
Monitoring module, we use the full state space to compute
DM, as denoted in (5). We conducted three execution runs,
where in the first run, the robot executes the nominal
solution without obstacle in the hole (Fig. 3 (c)). Hereby,
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Fig. 3. Robot is approaching the hole (a) and inserts the peg with expected
forces during the nominal solution (b). On the right, the empty hole (c) and
the hole with obstacle marked with purple arrow (d) are shown.
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Fig. 4. Peg-in-hole experiment: First run with nominal environment,
where running with or without monitoring does not affect the execution.
Top: Measured (m) and commanded (µ) force in z-axis and ±2 standard
deviations around commanded state (green). Bottom: Monitored error in
different domains with anomaly threshold set to ε = 6.

execution regardless of monitoring leads to success (Fig. 4).
Second, we insert an obstacle in the hole (Fig. 3 (d)) to
simulate unexpected forces during insertion and run the
task without monitoring (Fig. 5). In this case, the robot
executes the whole commanded motion, without detecting
the failed insertion, which could lead to possible robot or
object damage. Third, we run the task again with inserted
obstacle while the monitoring is activated. Consequently,
the monitoring detected the anomaly and stopped the robot
to prevent further damage and signalizes that something
went wrong during execution (Fig. 6). Since there are no
recovery behaviors available, the error cannot be resolved
in this state.
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Fig. 5. Second run with obstacle but without monitoring, leading to an
undetected error at around 16 s. Plot shows measured (m) and commanded
(µ) force in z-axis and ±2 standard deviations around commanded state
(green).
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Fig. 6. Third run with obstacle and active monitoring, stopping the
robot at the abnormal state (event EA marked by horizontal purple bars).
Top: Measured (m) and commanded (µ) force in z-axis and ±2 standard
deviations around commanded state (green). Bottom: Monitored error in
different domains.
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Fig. 7. Human demonstration at pick location and motion paths in green
(a) with empty milk carton disposed at the right box (b) and full milk carton
placed in the left box (c). Robot execution while picking up the carton (d).

B. Conditional Task: Weight-based Sorting

We focus now on a task, which can either be solved
by a nominal solution or where switching to an alternative
solution resolves the abnormal state. Figure 7 shows the
experimental setup, where full milk cartons shall be packaged
in the left box and empty milk cartons shall be disposed
in the right box. According to that, three demonstrations
were given for the full and three for the empty carton setup.
Given the number of two solutions, these demonstrations are
assigned autonomously to two clusters. Two solutions were
learned and added to the solution pool, namely full carton
and empty carton.

In the execution phase, the nominal solution is full carton,
which is successfully executed if also a full carton is present.
Figure 8 shows the force in z-axis and the monitored errors.
In the next run, an empty carton is present and the nominal
solution full carton causes an anomaly, as can be seen
from the force measurements and monitored error in Fig. 9.
Hereby a switch occurs from full carton to empty carton.
The same visual appearance of the full and empty carton
does not allow to detect their state by vision.

C. Switching with Multiple Alternatives

We evaluate that multiple alternatives can be used within
a task, may it be intended task goals such as sorting or
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Fig. 8. Top: Measured (m) and commanded (µ) force in z-axis for
execution with solution full carton and ±2 standard deviations around
commanded state (green). Bottom: Monitored error in different domains.
The monitoring does not affect the execution.
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Fig. 9. Top: Measured (m) and commanded (µ) force in z-axis for exe-
cution with solution full carton but environment with empty carton, while
monitoring is active. In green, ±2 standard deviations around commanded
state. Bottom: Anomaly during execution at event EB11 leading to a switch
from full carton to empty carton. Vertical purple bars mark switching event.

recovery behaviors. Hereby, we consider a partially struc-
tured environment where objects with same properties (e.g.
geometry and weight) are located at the same position
during execution. Figure 10 shows the experimental setup.
A conveyor belt (in blue to the right side of the robot) is
used to deliver new objects in a random sequence. It stops
whenever an object enters the light barrier and restarts after
the object has been removed. The teaching phase consists
of 9 demonstrations, showing three different behaviors to the
robot. Demonstrations are given in a random order, specified
by the sequence of objects arriving at the conveyor belt. In
three demonstrations according to solution empty box, the
user shows the desired behavior to sort empty boxes (mass
m = 0.15 kg, marked with yellow square) to a desired goal
pose. Similarly, three more demonstrations are provided for
solution full box, where full boxes (mass m = 0.85 kg,
marked with pink square) are placed at a different goal
pose, according to Fig. 10. Three more demonstrations are
dedicated to handle the profile object (mass m = 0.70 kg)
with solution profile. The clustering method assigns the
demonstrations to one of the three solutions (S = 3).

In the following, we evaluate that the robot is able to

light barrier

empty box

full box

b)a)

FT sensor & 
handhold

profile

conveyor belt:
moving

direction

Fig. 10. Possible initial setup a) and target configuration b). The blue
conveyor belt moves in direction of the thick blue arrow until an object
interferes with the light barrier.
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Fig. 11. Error during execution with solution empty box with a switch at
event EC11 to solution full box. Vertical purple bar marks the switch.

detect anomalies during execution and act without requiring
a symbolic task representation. We set the anomaly threshold
based on preliminary experiments to ε = 20. The task is to
manipulate the arriving objects (full box, empty box, profile)
onto the target locations as shown in Fig. 10.

When the robot executes solution empty box and having
an empty box present at the pick location, the task is solved
without anomalies. We analyze now the case where the
nominal solution is empty box but the robot faces a full box
at the pick location. Figure 11 shows the monitored error and
the detected anomaly during the lifting of the box, mainly
caused by the deviations in the force domain. This triggered
a switching event EC11, where the Scheduler switches from
empty box to full box.

In the next run, we consider again the nominal solution
empty box, but the robot faces the profile at the pick location.
Figure 12 on the top plot shows the grasp status, which is
a good indication if objects has been picked as intended.
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Fig. 12. Top: Measured (m) and commanded (µ) grasp status h, when robot
tries to pick an unavailable object. In green, ±2 standard deviations around
commanded state. Bottom: Error during execution with solution empty box
with a switch at event EC21 to solution full box and a 2nd switch at event
EC22 to solution profile. Vertical purple bars marks the switch in both plots.



The bottom plot shows the Mahalanobis distance and how
different modalities contribute to the overall error, especially
from grasp status (Dh) and force (Df). The first anomaly
when picking failed triggered a switching event EC21 from
empty box to full box, which has been identified as the next
closest solution mainly because of the proximity of the pick
location. The next picking attempt triggered the switching
event EC22 and the start of solution profile. Finally, the profile
object is manipulated to the target position successfully.

VI. CONCLUSION AND FUTURE WORK

The proposed approach uses an anomaly detection to
trigger an alternative solution to the current observed er-
roneous state. The alternative is parametrized such that it
starts at a proximal region, where the error occurred. Multiple
alternatives can be provided, where the most appropriate is
selected by minimizing the error to the failed state. This
framework allows a user to specify conditions and recovery
behaviors within a task by demonstration only.

We have shown that the solution switching works in our
evaluated scenarios but guaranteeing a successful transition
to an alternative may depend on the initially selected solution
and the demonstrator’s performance, which is a topic for
further investigation. Finding or learning a general anomaly
threshold on the state space, which is invariant of the
task goals and does not require any parametrization is an
interesting challenge for future work, where also learning
from executed trials could be considered to increase the
monitoring performance. Furthermore, handling of failed
demonstrations would increase the robustness of the system.
The proposed system capabilities might be fused with other
sensors, such as vision, to allow a more adaptive framework
in unstructured environments.
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