
Control Engineering Practice 73 (2018) 171–185

Contents lists available at ScienceDirect

Control Engineering Practice

journal homepage: www.elsevier.com/locate/conengprac

Increasing system test coverage in production automation systems
Sebastian Ulewicz *, Birgit Vogel-Heuser
Technical University Munich, Institute of Automation and Information Systems, Boltzmannstr. 15, 85748 Garching near Munich, Germany

a r t i c l e i n f o

Keywords:
Automated production system
System testing
Programmable logic controller
Test coverage assessment
Code instrumentation

a b s t r a c t

An approach is introduced, which supports a testing technician in the identification of possibly untested behavior
of control software of fully integrated automated production systems (aPS). Based on an approach for guided
semi-automatic system testing, execution traces are recorded during testing, allowing for a subsequent coverage
assessment. As the behavior of an aPS is highly dependent on the software, omitted system behavior can be
identified and assessed for criticality. Through close cooperation with industry, this approach represents the
first coverage assessment approach for system testing in production automation to be applied on real industrial
objects and evaluated by industrial experts.

1. Introduction

Automated production systems (aPS) in factory automation have
high requirements regarding availability and reliability (Vogel-Heuser,
Fay, Schaefer, & Tichy, 2015), as these systems typically run over long
periods of time (decades) and system failures or incorrect behavior can
increase costs. The volume and complexity of aPS’s software has risen
substantially over the last decade (Vyatkin, 2013), exacerbating the
problem of ensuring reasonable system quality. This quality is typically
investigated and assured by testing. Apart from unit tests performed
on single software modules in an early design phase, system tests of
the integrated functionality of software and hardware are defined and
performed in late phases of development, often as late as during on-site
plant commissioning.

From the authors’ experience, test plans for system testing exist in
most companies in the field of automated production systems engi-
neering, yet the definition of the individual test cases is abstract and
generic. On the one hand, large parts of these test plans can be reused
between projects, on the other hand, the individual test cases leave a
lot of room for interpretation during the testing process. Additionally,
tests are performed manually, as many functions are not related to
the software alone but also to the integrated system comprised of
mechanical and electrical hardware as well as software. Thus, many
actions performed during these tests, such as placing intermediate
products into the machine and visually verifying the correct product
quality, cannot be performed fully automatically: Sensors and actuators
that would enable automated testing are not available due to their cost.
Instead, the test operator is required to perform these actions manually.
This testing process is often performed under high time pressure in an

* Corresponding author.
E-mail address: sebastian.ulewicz@tum.de (S. Ulewicz).

uncomfortable on-site environment and based on the mentioned vaguely
specified requirements on the system. This results in uncertainty of the
adequacy of the performed tests: The adequacy of the performed tests
to ensure the abstractly defined required functionality is often based
on the experience and intuition of the test operator. Subsequently, the
possibility of not testing critical behavior and thus overlooking critical
faults in the system represents a realistic problem.

Code coverage is a possibility to assess test adequacy (Zhu, Hall,
& May, 1997). As the behavior of the integrated automated system is
largely dependent on the software, a coverage assessment of imple-
mented behavior can be performed: by identifying uncovered (untested)
code, unintended omissions of testing system behavior can be revealed.
Based on this finding, an approach was developed consisting of an
instrumentation of the control software to allow for recording of exe-
cution traces and an analysis of these traces for coverage assessment
and identification of untested code. The approach was implemented in
a prototypical tool and evaluated using a real industrial case study and
a subsequent expert evaluation yielding promising results.

The main contribution of the presented approach is the ability to
identify untested behavior during system testing of fully-integrated
industrial production automation systems controlling discrete processes
without the need for formalized requirements or simulations. Thus, for
the first time, the approach provides valuable support in quantitatively
assessing and increasing testing quality in fully-integrated industrial aPS
in industrial quality assurance scenarios.

The structure of the paper is as follows: In Section 2, an overview of
requirements gathered from industrial experts is presented in order to
rate existing approaches and to guide the development of the presented

https://doi.org/10.1016/j.conengprac.2018.01.010
Received 19 March 2017; Received in revised form 11 November 2017; Accepted 22 January 2018
Available online 8 February 2018
0967-0661/© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.conengprac.2018.01.010
http://www.elsevier.com/locate/conengprac
http://crossmark.crossref.org/dialog/?doi=10.1016/j.conengprac.2018.01.010&domain=pdf
mailto:sebastian.ulewicz@tum.de
https://doi.org/10.1016/j.conengprac.2018.01.010
http://creativecommons.org/licenses/by-nc-nd/4.0/


S. Ulewicz, B. Vogel-Heuser Control Engineering Practice 73 (2018) 171–185

approach. Section 3 presents related work in the field of production
automation and adjacent domains. These works are analyzed and a
research gap is identified. In the concept section (Section 4), the
approach is described in detail regarding the choice of the coverage
metric, the code instrumentation and coverage assessment. Information
about the implementation of the approach is detailed in Section 5
followed by an application on a case study and an expert evaluation
in Section 6 which allows for a qualitative impression of the concept’s
performance and applicability. In Sections 7 and 8, a conclusion and an
outlook on future work are discussed.

2. Industrial requirements regarding system testing in production
automation

The aim of the approach presented in this work is to be closely
aligned with industrial requirements in the field of production automa-
tion engineering. For this reason, multiple workshops with up to seven
highly experienced experts from three internationally renowned compa-
nies active in this field were conducted to infer these requirements. Six
main requirements regarding applicability of a possible approach were
identified:

Requirement 1 (R1): support of industrial software properties

Programming standards relevant for the industry, i.e. the program-
ming standard IEC 61131-3 for Programmable Logic Controllers (PLC)
dominant in the engineering of automated production machines, has to
be supported. Of the five defined programming languages, Structured
Text (ST) and Sequential Function Chart (SFC) in particular need to be
supported as these are the most commonly used programming languages
within the companies questioned.

Requirement 2 (R2): real time capability and memory size

The approach should not influence the real time properties of
the tested system in a way that would not permit needed real time
capabilities of the system to hold. The needed real time capabilities are
seen as unaffected if a possible increase in execution time of modified
code does not lead to the PLC scan cycle time to be exceeded. In addition,
possibly increased size of compiled control code software should not
lead to exceeded memory on the execution hardware (PLC).

Requirement 3 (R3): inclusion of hardware and process behavior

Testing a system integrates all parts of the system, meaning software,
hardware and the controlled process. To be able to assess a system’s
conformance to its specification, all parts should be as similar to the
final system as possible, i.e. the software running on the final execution
hardware, controlling the final version or the hardware setup and
technical process. For this reason, using a simulation rather than the
real hardware is often not sufficient for final system tests, as the validity
of the described behavior is a simplification of real hardware behavior.
In addition, simulations are costly to produce – in particular for aPS
produced in small lot sizes – and automatic generation of simulations
with available documents as proposed by Barth and Fay (2013) and
Puntel-Schmidt et al. (2014) are not available in many cases and for
the participating industry partners in particular. This problem especially
applies to medium and smaller sized companies, where an approach
which is independent of simulations is required, as these are often
no option for system testing in production automation for economic
reasons.

Requirement 4 (R4): manipulation of hardware and process behavior

The approach needs to be applicable on real industrial testing use
cases, as defined by the currently performed system test cases in the
company. System tests, as described in this approach, are defined as
black box tests (test derived from a specification rather than the code
itself) of a fully integrated system comprised of software, controlled
hardware and the technical process. The tests include manual manip-
ulations of the hardware or technical process that cannot be performed
by the software. As an example, manually opening and closing doors or
putting intermediate products in the machine can be typical operations
during system testing.

Requirement 5 (R5): no need for formalized functional requirements

The problems stated in the introduction could be mitigated us-
ing more detailed and formalized functional requirements. Using a
connection between requirements, test cases and models of different
engineering views of the system could enable validation of the involved
models (Estevez & Marcos, 2012) and more detailed relation between
requirements and a system’s software code itself could be created using
static feature location techniques (Dit, Revelle, Gethers, & Poshyvanyk,
2013). Yet in practice, this would require adequate software tools,
substantial effort regarding training and additional resources for spec-
ification for each new engineering project. As this tradeoff between an
initial investment and its outcome is highly speculative, according to
the participating industrial experts, the approach must be independent
from formalized functional requirements.

Requirement 6 (R6): support the assessment of test adequacy (finding
untested behavior)

Here, the approach is to increase efficiency and quality during
the quality assurance process of special purpose machinery by sup-
porting the tester, who might be experienced software engineers or
inexperienced technicians, when assessing the test adequacy. A generic
coverage assessment, i.e. ‘‘100% of behavior has been tested’’, is seen
as questionable because a resource for completely testing a system is
not feasible and specific numbers may have little meaning. Therefore,
rather than assessing how complete the system behavior was tested, the
requirement was set to finding untested behavior and assessing its need
for specifying tests.

3. Related work in the field of test coverage assessment

Coverage metrics in the field of computer science have been an
active research topic for many years. They can be used for test case
generation (Anand et al., 2013), change impact analysis (Bohner &
Arnold, 1996; De Lucia, Fasano, & Oliveto, 2008), regression test
selection and prioritization (Engström & Runeson, 2010; Yoo & Harman,
2012) or for assessing test suite adequacy (M. C. K. Yang & Chao,
1995; Zhu et al., 1997). While some approaches have already been
incorporated into the production automation domain, coverage metrics
have rarely been used for assessing test suite adequacy in this field. In
the following, a closer look into work related to the presented approach
will be taken.

3.1. Requirement based test coverage

These coverage metrics are based on the relation of requirements
and test cases in which test cases check whether the system under test
fulfills a set of requirements. In reverse, if an approach uses functional
requirements or specifications for test generation, it is assumed that the
generated test case is adequate for these requirements.

A basic realization of this approach is commercially available in
multiple requirements management tools, such as IBM Rational DOORS

172



S. Ulewicz, B. Vogel-Heuser Control Engineering Practice 73 (2018) 171–185

(IBM, 2016) or Siemens Polarion (Siemens, 2016): informally specified
requirements can be linked to informally specified test cases. If a
requirement does not have a related test case, it is assumed that a
test case is missing. In case one or more test cases are linked to a
requirement, the requirement is seen as fulfilled if all test cases were
completed successfully. This implies that the creator of the test cases
specified all relevant test scenarios, which is relying heavily on the
ability of the individual. If test cases for a requirement were missing,
this would not become apparent if all other test cases were executed
successfully as no quantitative measure beyond the connection of tests
and requirements is given.

Using formalized requirements, the expected behavior of the system
can be specified in more detail and a subsequent relation between
content of the requirement and the test cases can be performed, rather
than solely evaluating the connection of requirement and test case. This
was implemented in different research works in specific applications
for embedded systems (Siegl, Hielscher, German, & Berger, 2011),
computer science (Whalen, Rajan, Heimdahl, & Miller, 2006) and testing
of safety field busses (Krause, Hintze, Magnus, & Diedrich, 2012). In
production automation, multiple approaches in the field of model based
testing have generated test cases from formalized specifications (Rösch,
Ulewicz, Provost, & Vogel-Heuser, 2015). Some use environmental
models of the system (Kumar, Gilani, Niggemann, & Schäfer, 2013)
or special requirement ontologies (Sinha, Pang, Martínez, & Vyatkin,
2016) to generate executable test cases which requires these complex
models to be specified and validated. Some works use modified UML
sequence diagrams to specify test cases (Hametner, Kormann, Vogel-
Heuser, Winkler, & Zoitl, 2011; Kormann & Vogel-Heuser, 2011), al-
though this approach provides no information about coverage of the
defined test case. More recently, an approach using timing sequence
diagrams to generate test cases covering all possible signal mutations
for different classes of mutations was proposed (Rösch & Vogel-Heuser,
2017). Although a subsequent selection of relevant test cases can be
performed, the resulting coverage is not calculated.

An approach which bases test coverage on formalized or traceable
requirements exhibits multiple positive aspects: (1) it is a direct measure
of how well a test suite addresses a set of requirements, (2) it is
implementation independent and (3) it does not require execution or
instrumentation of the system under test (Whalen et al., 2006). At the
same time, this type of metric has several negative aspects:

1. Detailed requirements specification as well as a model of the
relation between these requirements and test cases need to be
available, this requires additional effort.

2. A quantitative evaluation of this metric requires formalized
requirements specifications or relies solely on the notion that a
given set of test cases can fully strengthen the notion that all
requirements are fulfilled, even if each requirement only relates
to a single test case.

3. Missing or incomplete requirements will go unnoticed in this
metric. If the set of requirements is not maintained correctly or
inadequately defined from the beginning, the metric cannot yield
satisfying results.

4. Unrequired parts of the code cannot be identified as test cases are
related to requirements only. If unneeded code was implemented
during code implementation, this metric is unable to identify
these unnecessary parts of the code resulting in additional main-
tenance effort in later stages of system maintenance.

3.2. Code structure based test coverage

Structural code coverage metrics have been a common method for
assessing software test adequacy in safety critical systems: For safety
critical avionics systems, the DO-178b standard proposes the use of
structural metrics for assessing the adequacy of a suite of tests for a
test subject (RTCA, 1992). Depending on the criticality, the standard

proposes more or less detailed metrics, such as statement coverage
(‘‘every statement in the program has been executed at least once’’
(RTCA, 1992)) or condition/decision coverage (‘‘every point of entry
and exit in the program has been invoked at least once, every condition
in a decision in the program has taken all possible outcomes at least
once, and every decision in the program has taken all possible outcomes
at last once’’ (RTCA, 1992)). While the presented approach does not aim
to fulfill coverage criteria as in software testing for safety critical systems
for economic reasons, certain properties about the different metrics
still apply to the field of aPS. The different metrics differ substantially
regarding the number of test cases to fulfill each criterion, but also
in their ability to detect faults. In most cases, full statement coverage
needs fewer test cases but can fail to detect errors in complex decisions
within the control flow. The practical ability to detect faults in desktop
software was evaluated for unit testing (Zhu et al., 1997) and complete
test suites (Gligoric et al., 2013; Gopinath, Jensen, & Groce, 2014).
From these evaluations, even the simple statement coverage metric turns
out to be a very valuable metric, especially for finding out if a test
suite is inadequate (missing test cases). The DO-178b (RTCA, 1992)
also proposes statement coverage as the minimal requirement for safety
critical systems.

There are many tools available from computer science for structural
based coverage analysis. An overview of available tools is given by Yang,
Li, and Weiss (2009), yet not all tools have remained in development.
Still, tools such as Atlassian Clover (Atlassian, 2016), BullseyeCoverage
(Bullseye, 2016) and Unicom PurifyPlus (Unicom, 2016) are readily
available and offer coverage analysis using multiple coverage criteria for
higher object-oriented programming languages (e.g. Java, C++, C#).
Even if their application on the programming languages and execution
hardware of PLCs could be achieved, these tools were not developed
in respect to the industrial scenarios required in the aPS industry: all
tests are executed fully automatic and do not require human operators.
In addition, the influence of the tracing algorithms used by the tools is
unsure regarding a port into the PLC field.

In comparison to computer science and critical embedded systems,
production automation engineering has seen few comparisons of struc-
tural code coverage metrics for test adequacy assessment. A tool for test
coverage measurement for Function Block Diagrams (FBD) is presented
by Jee, Kim, Cha, and Lee (2010) for use in safety critical programs
of nuclear reactors. The test case coverage is externally checked by
analyzing the data flow paths of the FBD and comparing them to the
test inputs. This approach seems to be hardly applicable to automated
production systems: discrete process step chains are prevalent in auto-
mated production systems which differ substantially from the complex
logical data flows of nuclear power plants. A reason for the hesitant use
of coverage criteria in production automation might be the strict real
time requirements and the overhead created by measuring coverage.
Only few works present efficient tracing algorithms for embedded
systems (Wu, Li, Weiss, & Lee, 2007) and automation software (Berger,
Prähofer, Wirth, & Schatz, 2012; Prähofer, Schatz, Wirth, & Mössenböck,
2011). As tracing algorithms are designed for embedded systems, the
scenarios and test environment prohibit an easy adaption to automated
production systems. The approach for automation software uses a very
sophisticated tracing approach aimed at debugging automated produc-
tion systems, not taking coverage assessment into account. In particular,
this approach does not include structured system tests or a connection of
tests to the recorded data, and focuses mainly on reproducing variable
values at certain points in time for debugging purposes.

Some works in the production automation field take a different
approach stemming from computer science: testing input sequence gen-
eration from the code itself to achieve full coverage related to a certain
criterion (Jee, Yoo, & Cha, 2005; Simon et al., 2015). Other works build
on this approach for software product lines offering efficient test input
sequence generation techniques (Bürdek et al., 2015; Lochau et al.,
2014). These approaches possess two main problems for system testing
in production automation: (1) the generation technique generates test

173



S. Ulewicz, B. Vogel-Heuser Control Engineering Practice 73 (2018) 171–185

input sequences directly from the code, but does not include an expected
behavior (‘‘test oracle’’). The test cases themselves are very focused on
software rather than system operation scenarios, thus realistic system
testing scenarios are hardly achievable. (2) As the generated test suite
is usually very large it is difficult to execute all test cases, especially in
regard to the complete system. Test coverage is completely unknown if
certain test cases are omitted.

3.3. Comparison of related approaches and identification of the research gap

In Table 1, all previously presented approaches are compiled and
rated regarding their fulfillment of the requirements imposed by the
industry partners. As can be seen, none of the approaches is able to
satisfy all requirements. Requirements-based test coverage approaches
either cannot fulfill the required independence from formalized re-
quirements or do not support test adequacy assessment (missing test
cases or untested code does not become apparent). Code coverage-based
approaches are mostly developed for the field of desktop computer
software and not adjusted to the needs of software and industrial
scenarios within production automation. While some approaches and
tools were tested for their execution time overhead, explicit influence
on the real time capability of production automation systems can only
be speculated. One approach (Berger et al., 2012; Prähofer et al., 2011)
presents a tracing method seemingly suitable for aPS, but does not take
structured system testing or test adequacy assessment into account.
Thus, a research gap is the lack of suitable test adequacy assessment
support for aPS engineering that addresses the independence from
formalized requirements while taking into account prevalent software
standards, industrial system testing scenarios and real time constraints.

4. Concept for coverage assessment during system testing of aPS
using execution tracing

The following sections describe the developed approach in detail.
As shown in Fig. 1, the concept consists of multiple processes (pictured
as oblong, dark gray items) to be performed in order to calculate and
assess test coverage. Based on an original control software program,
an instrumented version of the program is generated. In this process,
a dependency model and a trace point database are created for later
use in the coverage assessment process. Using a previously developed
concept for guided semi-automatic system testing (Ulewicz & Vogel-
Heuser, 2016) system test cases are manually derived from the system
requirements. This process can also be supported by structured methods
such as the failure mode and effect analysis (FMEA), which is commonly
used in safety validation of aPS in the field of food, beverages and
pharmaceutical products. The test cases are stored in a model format
and are subsequently embedded within the PLC software project, which
can be executed on the target hardware. During the guided semi-
automatic system test execution, execution traces are generated for
each test case along with a test report including the outcome of all
performed test cases. Using this information as well as the previously
generated dependency model and trace point information, coverage
within the project can be calculated and visualized. This represents a
support for the tester, especially inexperienced personnel, in assessing
the adequacy of the performed test cases and the possibility to identify
untested behavior, although the set of performed system tests was
initially seen as potentially adequate. Even if the definition of test cases
was performed thoroughly with methods such as the FMEA, critical
implemented functionality might still be unintentionally omitted due to
human error. The test set as well as other analysis artifacts, such as the
FMEA, can be subsequently improved. In the following sections, each
process will be presented in detail.

4.1. Code instrumentation

Instrumentation of the original control software program is required
in order to record execution traces. For this, a suitable coverage metric,
statement coverage, was chosen and a concept for code instrumentation
and execution tracing using a dependency model of the control code was
developed.

Choosing a suitable test coverage metric

As described in the section on related work, multiple different met-
rics have been developed in the field of computer science. Each metric
has positive and negative aspects for the presented problem (identifying
untested behavior), which were analyzed to choose a suitable metric
with the given requirements of no influence on real time behavior and
providing support in identifying untested system behavior.

Requirements based metrics are generally not suitable if detailed
functional specifications are not available. A coverage cannot be cal-
culated if the relation between detailed functional specifications cannot
be made. In addition, unneeded functions, i.e. unneeded code, cannot
be identified as these would not be specified even with detailed speci-
fications. This type of coverage metric is therefore not suitable for the
presented approach and was excluded from further consideration.

In contrast to this, code structure based metrics can be calcu-
lated without the need for additional detailed functional specifications.
The identification of unimplemented yet required functions cannot be
achieved with this type of metric, but this is not the goal of this
approach. As stated in the section on related work, different metrics
were developed in the field of computer science and checked for their
suitability for assessing test suite adequacy, i.e. whether a test suit
comprised of multiple test cases covers all relevant behavior in the
system. Statement coverage was found to be very effective in detecting
mutations, i.e. defects, in code (Gopinath et al., 2014). For identifying
non-adequate test suites, i.e. test suites missing test cases, statement
coverage does not seem to have any downsides compared to more
detailed criteria (Gligoric et al., 2013). In addition, to record these
detailed metrics, more detailed instrumentation is required: decisions
need to be analyzed in more detail resulting in more runtime overhead
and more memory is needed to store the information in case more
complicated decisions are present. According to requirement R2, both
available execution time and memory are critical and statement cover-
age is expected to require less of both in comparison to more complex
metrics, such as condition/decision coverage. Industrial application was
also expected to yield complex coverage results to be evaluated by the
tester, which would be amplified by the even more detailed results from
other metrics. Therefore, for this approach, statement coverage was
more promising for the requirement of minimal influence on real time
properties of the system and was subsequently chosen for the presented
approach. Concepts for acquiring needed data were developed based on
this choice. As stated in the outlook, an extension by or comparison to
more detailed metrics, such as condition/decision coverage, is surely an
interesting focus of future research.

Code instrumentation for recording test coverage

For recording statement coverage, information about executed code
statements during test execution, ‘‘execution traces’’ are needed. When
regarding the system as a black box, this information is typically not
available, i.e. not part of the interface of the system under test. In
addition, a way of reliably recording this information, especially in a
real time environment, poses certain problems: gathering this data must
not miss executions of lines and must not change the system’s real time
behavior during recording. The two main problems to solve are therefore
making the relevant information within the code observable and reliably
and unobtrusively recording this information for later analysis.

174



S. Ulewicz, B. Vogel-Heuser Control Engineering Practice 73 (2018) 171–185

Table 1
Overview of related approaches of system test adequacy assessment and rating of industrial requirements for aPS.

Fig. 1. Concept overview of coverage assessment for aPS software: An original PLC program is automatically instrumented and extended by executable test cases.
After semi-automatic system test execution, execution traces, a dependency model and information about generated trace points are used to automatically calculate
test coverage, which supports testers in adequacy assessment.

This was achieved in the presented approach by analyzing the code
and converting it to a system dependence graph (‘‘Dependency Model’’)
and subsequently instrumenting basic blocks (a set of statements with-
out decisions, such as if-statements) within the code with ‘‘trace points’’:
whenever a basic block is executed during execution a function call at
the trace point is invoked to record and store this information. The code
instrumentation was developed in such a way that minimal overhead
regarding memory and calculation time was aimed for. The goal was
to reduce the influence of real time properties of the system by the
instrumentation in such a way that the instrumentation might remain
in the final code, i.e. the code running on the final productive system
during regular operation.

Dependency model
The dependency model used for identifying decisive points and

basic blocks within the code is an extension of the dependency model

definition presented in Feldmann, Hauer, Ulewicz, and Vogel-Heuser
(2016). The original dependency model was designed to analyze pro-
grams for modularity and other maintainability properties by analyzing
the control flow as well as the data flow within control programs. As this
analysis did not consider the control flow within program organization
units (POUs), the meta model, which is partially presented in Fig. 2, was
extended by suitable stereotypes to be able to represent these features
in a generated model. The extended stereotypes are shown in light gray
in the figure.

The dependency model is a directed graph consisting of nodes and
edges. Nodes represent structural entities of a IEC 61131-3 project,
whereas edges represent the dependencies between these entities (Feld-
mann et al., 2016). An edge connects two nodes, a source node and
a target node, in one direction. The meta model is able to contain
nodes from different hierarchies in the project, starting from the project
itself, the defined tasks (threads) in the project, the POUs (functions,

175



S. Ulewicz, B. Vogel-Heuser Control Engineering Practice 73 (2018) 171–185

Fig. 2. Extended (gray shaded) dependency model for IEC 61131-3 based on Feldmann et al. (2016) for code analysis.

function blocks and functions) called by the tasks and other POUs and
now even code elements such as actions (functions embedded in POUs)
and basic blocks (code segments that do not contain decisions such
as if-statements). For the programming language Sequential Function
Chart (SFC), the ‘‘step’’ node was implemented, which can itself contain
multiple actions per step. In the current version of the approach, actions
with ST implementation and the type qualifiers P0 (single execution
upon step deactivation), P1 (single execution upon step activation)
and N (repeated execution while step being active) are supported
(for all qualifiers, see IEC (2003)). The edges represent dependencies
between the nodes, such as calls between POUs, write operations on
variables and, in the extended model, also progressions between basic
blocks (JumpsToEdge) and SFC-steps (SFCTransitionEdge). The ‘‘Jump-
sToEdge’’ is generated from control statements, such as if-statements,
and additionally stores the condition as expressed in the if-statement or
implicitly expressed in the else-statement. For example, if there is an
if-statement, the ‘‘then’’ – part of the if – statement will be represented
as an edge leading from the code before the ‘‘if’’ to the ‘‘then’’ part with
the condition specified in the if-statement. If there is an ‘‘else’’ part of
the statement, there will be an additional edge leading from the code
before the if-statement to the ‘‘else’’ part with the inverted condition of
the if-statement (see Fig. 3 for a practical example). If a basic block calls
another POU, there will be an edge leading from the first function block
to the initial function block within the called POU without a condition.
The same applies for the ‘‘SFCTransitionEdge’’: Transitions in SFC-charts
are converted to transition edges, showing the connection between SFC
steps as defined in the SFC chart.

Creation of the graphs
Based on the meta model presented in the previous section, a

dependency model is automatically generated from the source code of
the PLC program. This is done by identifying all defined tasks as initial
points for code exploration. The called POUs are identified from each
initial point. The code specified within these POUs (its implementation
body and, if available, its actions) is converted to an abstract syntax
tree (AST), which is then walked through iteratively. During this walk-
through, basic blocks and decisive points within the control flow are
identified and saved as nodes and edges. In case a basic block calls
another POU, this POU is equally walked through until the end of

the code is reached. In this process, each basic block is sequentially
numbered (sequentialID: int), to allow for an easy correlation between
basic blocks and traces data (see next section). The result is a call graph
spanning the control software project’s code which is relevant for the
control flow, omitting POUs which will never be called. These POUs will
already be identified by the compiler and in most cases directly marked
within the IDE and are thus of no further relevance. The created graph is
the basis for code instrumentation, explained in more detail in the next
section.

Inserting trace points and creating a trace point database
The recording of data needed to infer execution traces is achieved by

instrumenting the source code of the PLC project and saving information
about inserted parts within a database. The instrumentation consists
of inserting function calls in decisive points of the code and allocating
memory for temporal storage of execution trace information. The trace
information is realized as an array of Boolean variables for each decisive
point in the code (tpa: ARRAY[0..MAXTP] OF BOOL). The array is reused
for each test case by resetting each entry before each test case and saving
the recorded information after each test case. For this, two functions and
one function block were developed:

∙ Reset function tp_reset(): The reset function is called before each
test case and is used to reset the complete trace array to ensure
that all array items are set to their initial state (false).

∙ Record function tpr(INT i): This function, which is called at each
trace point, is given the identification number of the trace point
after which the related array item in the trace array is set to
‘‘true’’.

∙ Saving function block tp_save(BOOL xExecute, STRING szFile-
name): After each completed test case (failed or successful), this
function will be called to save the information stored within the
trace array into a common text file on the execution hardware.
As this process might take several PLC scan cycles, the writing
process needs to be completed (Output xDone = TRUE) before
the next test case is initiated. The data saved is the id and value
of each trace point (e.g. ‘‘1:true, 2:false, 3:false, . . . ’’).

These POUs are inserted into the project alongside the trace array
at the instrumentation phase of the control software project. Using the

176



S. Ulewicz, B. Vogel-Heuser Control Engineering Practice 73 (2018) 171–185

information collected in the dependency model, each basic block is
instrumented with a trace point. Function calls of the tpr-Function are
inserted into the code using the information about the location of the
basic blocks (see Fig. 3).

Alongside the instrumentation of the code, a trace point database is
created allowing for the relation between the instrumented code, the
dependency model and the execution trace information created during
test execution. As shown in Fig. 4, the database contains information
about the related basic block and thus about the trace point location
(sourceStartPos) of each inserted part within the code. In addition to
this information, an entity named ‘‘visit’’ will be filled with information
from the execution traces after the testing process is finished: each test
case will create an execution trace stating if a trace point was ‘‘visited’’ or
not. Thus, each trace point in the trace point database can be ‘‘visited’’
by each test case. This information is superimposed to identify which
test cases were not visited by any test case (‘‘WasVisited() = false’’) to
identify untested parts of the source code.

4.2. Testing project generation and test execution

System testing for automated production systems can rarely be per-
formed fully automatically: Many steps currently performed in system
testing require a testing operator to stimulate the system and validate
its behavior. During these manual processes, the relation between the
performed actions and the conformance of the system behavior cannot
be recorded and related automatically. Thus, neither the current ap-
proach of manual testing nor the automatic testing approach is suitable
for application in the approach presented in this paper. For this reason,
an approach for semi-automatic testing was introduced in previous work
(Ulewicz & Vogel-Heuser, 2016). In this previous approach, the tester is
embedded within a structured, guided system testing process. As many
test steps as possible are performed automatically, while the remainder,
where manual action of the tester is needed, are performed by the
tester. The tasks the tester has to perform are displayed on an HMI,
which is also used to give feedback to the testing system. In contrast
to usual software testing, the parts of the system that can usually not
be stimulated or checked by the test bed can be included through
intervention of the human operator. In addition, this approach enables
the recording of execution traces during testing and a direct relation of
these traces to the performed test cases. This approach (see Fig. 5) is
therefore a base for the coverage assessment.

The test cases, which are stored within the control software project,
are defined in a model format (XML). Using the functionality provided
by the CODESYS Test Manager (3S-Smart Software Solutions GmbH,
2016b), these test cases can be automatically converted into executable
test cases. The tool can, among other things, upload the generated
project onto any execution hardware, start the testing process, generate
a test report and download any specified files from the execution
hardware. This functionality was used in combination with the gener-
ation of additional tracing POUs and variables and the insertion of the
HMI components for displaying test case information on a display and
allowing for user input during test execution, respectively.

The existing functionality was further extended for this approach
by inserting calls into the test cases for invocation tracing function
at the respective time. Additionally, the tracing functionality, which
was previously used for tracing variable values during test execution,
was extended by the execution tracing functionality, and the test script
generation was adjusted to automatically download resulting execution
trace files from the PLC to the development system.

4.3. Coverage calculation and assessment

As pointed out by Piwowarski, Ohba, and Caruso (1993) and Yang et
al. (2009), high coverage scores are difficult to achieve even regarding
statement coverage. This may be due to unreachable code or complex
conditions, among other reasons. This fact was also pointed out by the

industry partners questioned in the initial requirements study: testing
all behavior in every detail in an automated production system is not
feasible. One reason why this is not possible in this particular field of
industry is economics: testing is resource intensive and performed under
significant time pressure.

As the goal of the presented approach is to identify untested be-
havior of the system, a quantitative measure as in a coverage percent-
age seemed unnecessary or unsuitable. Instead, a visual emphasis of
untested code was chosen. This also allows for the detailed investigation
by the tester to evaluate whether the untested parts are indeed critical
and therefore might require additional test cases. Inspired by a traffic
light color scheme, untested parts are marked ‘‘red’’, i.e. need investi-
gation, and partially tested parts are marked ‘‘yellow’’, i.e. potentially
critical. A ‘‘green’’ marking was deliberately not used as parts of the
system that were fully covered might still contain faults; many parts
of the code are active during different system behaviors, which was
deemed to be misleading.

For a quick assessment of the coverage of the system, different views
were chosen aggregating the underlying coverage (see Fig. 6). In a
software project call graph, all executable POUs are depicted starting
from the task calling the first POU. Each POU is marked ‘‘yellow’’ or
‘‘red’’ depending on the steps (in case of a POU programmed in SFC),
actions or its basic blocks were only partially covered or not covered
at all. More detailed views are presented by clicking on the respective
POUs. In case of POUs programmed in SFC, the individual steps as well
as their transitions are shown with a similar color coding. The level
closest to the code is a view depicting individual basic blocks.

For future work, the authors think a direct implementation into
the development environment’s editors would result in the highest
industrial acceptance of the approach as no new concepts would have
to be learned. A mock-up of this idea is depicted in Fig. 7.

By allowing the tester to quickly browse through the project to
identify untested parts of the system, a quick ability to detect untested
behavior of the code is expected. If a complete POU is marked as
untested, the user can quickly look into the code and decide whether
this block was previously tested or needs further investigation through
additional tests. If an automatic step chain was only partially covered,
the tester can identify the untested steps, which often correspond
directly to behavior in the machine, and analyze the item for further
investigation. This process can also be performed down to the basic
block level where individual lines can be identified as untested, critical
behavior or deliberately omitted.

5. Implementation

In order to be able to prove the applicability of the presented
concept within the production automation domain, a prototypical tool
for defining and executing tests and measuring and assessing test
coverage was implemented. The tool was implemented as a plug-in for
the widely used CODESYS V3.5 Integrated Development Environment
(IDE) for automated production systems programmed in the IEC 61131-
3 standard (3S-Smart Software Solutions GmbH, 2016a). Through the
close integration with the IDE, information about the source code, its
instrumentation and the automation of the test execution and coverage
measurement was achieved. Using the capabilities of the IDE, depen-
dencies and the abstract syntax tree could be easily extracted from the
compile context, i.e. the object model used as an input for the compiler.
The trace point database is saved as an XML-file for later use during the
instrumentation.

The test definition and test project generation could be included
from the previously developed semi-automatic system testing approach
(Ulewicz & Vogel-Heuser, 2016), which was built upon the CODESYS
Test Manager (3S-Smart Software Solutions GmbH, 2016b). Test gen-
eration was slightly extended by invoking function calls for resetting
and saving the trace point data to execution trace files. These execution
traces, saved between each test case, are stored directly on the embed-
ded PC during test execution and are automatically transferred to the

177



S. Ulewicz, B. Vogel-Heuser Control Engineering Practice 73 (2018) 171–185

Fig. 3. Instrumentation example: The original code (upper left) is extended by function calls recording the execution of basic blocks (visual representation, bottom)
resulting in instrumented code (upper right).

Fig. 4. Trace point database: Meta model to store information about instrumented points in the code and later relation to test case execution traces represented as
‘‘visits’’ or the respective trace point.

development system after finishing the testing process. The generated
test script for the Test Manager was slightly adjusted for this process.

After test execution and download of execution traces, the developed
plug-in automatically loads and analyzes the execution trace files cov-
erage information and displays and browses this information visually.

6. Evaluation

Several experiments were designed with industrial experts and
performed by the authors to evaluate the approach. The case study,
the representative group of participants and the measured data were
intentionally chosen as proposed by Runeson, Höst, Rainer, and Regnell
(2012) to allow for an evaluation of the initial requirements. During the
experiments, execution time measurements were performed to assess
the instrumentation’s influence on runtime properties and thus its
applicability for the production automation domain. In addition, the

ability to perform coverage assessments was performed. The findings
from the experiments were presented and discussed in a workshop
with six experts active in the field of specially engineered automated
production systems.

In the following sections, the system under test, the experiments
and the results of the case study will be presented and subsequently
discussed in relation to the requirements imposed on the approach in
the first chapters of this work.

6.1. Case study: the system under test (SUT)

This system used for experimentation had been part of a real
industrial factory automation system for depalletizing trays and passing
the individual items on to the next station. Trays with parts are fed
into the machine using conveyor belts. A lift system is used for locking
the tray in position for picking and subsequent transport to a conveyor

178



S. Ulewicz, B. Vogel-Heuser Control Engineering Practice 73 (2018) 171–185

Fig. 5. Inclusion of the tester (engineer or technician) into the system testing process (Ulewicz & Vogel-Heuser, 2016): By showing step-wise testing instructions on
a display, the human can stimulate and check the system wherever the test bed cannot (hardware and technical process).

Fig. 6. Hierarchical coverage views as developed for the approach: A software project call graph (left) gives a quick overview of covered (light gray and white) and
uncovered (dark gray) POUs. More detailed views can unveil uncovered parts of the code from SFC level (upper right) to ST level (lower right).

system transporting the empty tray out of the system. A 3-axis pick and
place unit (PPU) is used to pick up individual pieces off the locked tray
and place them into the next machine representing the next process step
(this process step was not regarded in this work). A schematic view of
the machine is depicted in Fig. 8.

For interaction with the hardware (including 3 drives), 69 input
variables and 26 output variables are defined (mostly Booleans). The
control program was written by the company (not by any of the
participants) and contained 119 program organization units and 372
actions adding up to about 15 500 lines of code. The program includes
two tasks, one for the control code, running at a PLC scan cycle time of
10 ms and one task for updating the visualization, running at 100 ms The
programming languages used were IEC 61131-3 Structured Text (ST)
and Sequential Function Chart (SFC). Thus, the size and complexity of
the program represent a realistic application example. The program was
initially written in the integrated development environment CODESYS
V2 and ported to CODESYS V3.5 for this evaluation as the plug-in was
developed for the newer version.

The system’s control hardware is a Bosch Rexroth IndraControl VPP
21 embedded PC with a Pentium III 701 MHz processor and 504 MB of
RAM. The embedded PC runs a CODESYS Control RTE V3.5.5.20 real
time capable runtime. An Ethernet connection was used to connect the
embedded PC to a development PC running the plug-in and uploading
the test project to the embedded PC for real time capable execution.

The development system used for generating the instrumented code,
the test project and the coverage assessment was a consumer laptop
with an Intel® Core™ i7 5600U CPU at 2.6 GHz, 8 GB RAM and running
Microsoft Windows 10 64-bit. CODESYS V3.5 SP8 Patch 1 and CODESYS
Test Manager Version 4.0.1.0. were used, including the developed plug-
in.

6.2. Case study: description of experiments and measurement results

The base for the experiments was a test suite of different system tests
based on industrial system tests as currently manually performed. Using
a generic test plan as defined for use in the cooperating company, 14
test cases were developed in cooperation with an industrial expert from

179



S. Ulewicz, B. Vogel-Heuser Control Engineering Practice 73 (2018) 171–185

Fig. 7. Mock-up of editor integration of coverage visualization: Insufficiently covered items can be easily spotted, such as POUs in the object tree view (left), steps
in the SFC-editor view (upper right) and basic blocks in the ST-editor view (lower right).

Fig. 8. Schematic view of the system under test (SUT).

this company and arranged into a test suite. The development of the test
suite required about one hour, performing the test suite once required
about 25 min including the generation of the test project. The test
suite consisted of test cases testing individual manual functions, such
as opening and closing the gripper using the HMI, automatic functions,
such as regular operation with partially and completely filled trays,
and special test cases, such as switching the operation mode during
automatic operation.

Two experiments were performed: experiment I investigated the
approach’s feasibility and applicability of the coverage measurement
qualitatively while experiment II was designed to investigate the prop-
erties of the overhead generated by the additional execution tracing.

Experiment I: feasibility and test suite coverage

The feasibility of the approach was investigated by measuring times
for generation, the successful execution and tracing of the individual
test cases and the coverage the test suite was able to achieve. The
instrumentation of the project, resulting in 2261 trace points, took less
than one second on each iteration. The complete test suite could be
executed without problems, meaning that the test suite could be com-
pleted in its entirety without breaking real time restrictions (10 ms for
the main task) and with each execution trace being written completely
onto the hard drive of the embedded hardware. Writing test traces was
performed using an asynchronous writing function after test execution,
which did not exceed 10 PLC scan cycles (the next test case was started
after writing was finished not to influence the cycle time during test
execution).

As coverage was never previously calculated or displayed, this was
the second interesting property of the experiment. As expected, the test
suite did cover most of the code but did not cover every detail although
the test suite was designed according to the notion that most important
behavior in the machine was included. Many manual functions were not
covered, as no test was designed to specifically allow for this, which was
decided due to the similarity to the other test cases for manual functions.
In real situations, these tests would have to have been specified. Some
function blocks representing initialization functions were not covered as
these were executed only once at program startup and thus not recorded
during the actual test case execution. Some step chains were not covered
as these represent behavior in case of emergency shut down. Most POUs
regarding the behavior of the machine that were addressed by test cases
were partially covered. In all cases, specific behavior of the system
was not included in the test case, mostly functionality related to fault
detection. As an example, the behavior of the system in case of cycle
time overrun was not investigated as no such errors occurred during test
execution (see Fig. 9). Another interesting finding was that unneeded
code was detected: Due to time restrictions, several step chains were
copied and modified resulting in complete branches of legacy SFC chains
not being executed (see Fig. 10).

Experiment II: runtime and memory overhead by execution tracing

Two test cases were used in this experiment, which represented
situations of different code being executed: a test case for a manual
function of the gripper and a test case for automatic operation with
a partially filled tray. Each test case was repeated five times, each in
different configurations of the system to assess the overhead associated
with each change:

∙ Original (no change): In this case, the test case was performed as
it is currently being done—the test was performed fully manually
without the semi-automatic guide of the HMI or any coverage
tracing.

∙ Guided Test: In this configuration, the test was performed accord-
ing to the guided semi-automatic testing approach as presented
in Ulewicz and Vogel-Heuser (2016). In this case, no tracing was
performed to investigate the overhead created by this concept
alone.

∙ Coverage Tracing: In this configuration, the test was performed
as proposed in this approach—the test was executed using the
semi-automatic system testing approach with additional tracing

180



S. Ulewicz, B. Vogel-Heuser Control Engineering Practice 73 (2018) 171–185

Fig. 9. Coverage assessment unveils untested fault handling routine: The code
branch for documenting faulty cycle timing was never executed during the tests.

Fig. 10. Coverage assessment uncovers unneeded legacy code: A complete
branch of the SFC code was never used and turned out to be obsolete upon
closer inspection.

of coverage. This last configuration was to separate the overhead
created by the guided test approach from the overhead created
solely by execution tracing.

Two individual measurements regarding execution time and memory
size were performed for each test case, configuration and experiment
repetition. The actual scan cycle time was measured during the test
execution itself using the task monitor. This time includes reading
inputs, executing the program and writing outputs and is relevant for
the investigation on real time properties of the approach: if this time
is below the desired PLC scan cycle time, real time properties can be
held. For each configuration, the measurements for both test cases were
averaged and the highest value was noted. Additionally, the size of the
compiled project divided into required memory for the compiled code

Fig. 11. Execution time overhead for SUT (Fig. 8).

Fig. 12. Memory overhead for SUT (Fig. 8).

and the global variables was noted. As this information did not change
between repetitions, this measurement was only performed once for
each configuration. The results of the measurements for the different
configurations with the SUT are shown in Fig. 11 for the execution time
overhead and in Fig. 12 for the overhead in required memory.

The average scan cycle time increases significantly due to the
guided testing concept (+47%), while the maximum time only increases
moderately (10%). Although the increase in average execution time is
unfortunate, the increase in maximum execution time is relevant for
influence on the real time properties: real time properties can be held if
the execution hardware and desired PLC cycle time allow for an increase
of 10% in this case. The increase in average execution time is most likely
due to an asynchronous, low priority writing operation, which was used
to record specified I/O variables during execution.

The increase both in average and maximum scan cycle time is
moderate regarding the addition of the execution tracing concept. The
maximum execution time only increases by 6%, adding up to about a
16% increase in maximally needed scan cycle time due to the approach.
Given the system under test (see Fig. 8) for this evaluation with a
required PLC scan cycle of 10 ms this increase would not influence the
real time properties of the system.

The increase in required additional memory is quite low regarding
the compiled code (+16% and +6%), yet the proportionate increase for
globally needed variables for the guided test cases is very high (+144%).
Although this increase is very high, the totally required memory is still

181



S. Ulewicz, B. Vogel-Heuser Control Engineering Practice 73 (2018) 171–185

very low (less than 5 MB). The increase for the implementation of the
execution tracing results in a slight increase of 4%.

6.3. Evaluation of results with industry experts

The results of the measurements as well as the approach itself
were discussed and evaluated in a group of six experts in the field of
automated production systems. The group comprised employees active
in the fields of commissioning, maintenance, aPS software engineering
and group management (technical development) from the company
engineering the machine used in the case study. The measurements in
the previous section were presented to the group and subsequently dis-
cussed in terms of the requirements initially imposed on the approach.
In addition, a questionnaire was filled out by each expert to quantify
the results. Certainly, the group size does not allow for a quantitative
rating of the approach although qualitative conclusions were rendered
a bit more precisely.

Requirement 1 (R1): support of industrial software properties

As the system under test used in the case study was provided by the
company as a representative example, the applicability of the support of
industrial software properties was agreed upon by the experts. The pro-
gramming languages used in the case study are the only programming
languages used by this company.

Requirement 2 (R2): real time capability and memory size

While the overhead in execution time did not represent a problem in
the case study, the experts agreed that this fact could be problematic for
machines with very short scan cycle times, e.g. highly automated mass
production machines. In these cases, scan cycle times are kept as low
as possible to increase production speed. Even slight increases in scan
cycle time can result in noticeable and mostly unacceptable increases
in production cycles (time needed for processing one product). This
is due to SFC steps being executed for at least one scan cycle, with
each increase in scan cycle time adding up for each step used in the
production cycle.

To quantify the criticism mentioned by the experts in their ques-
tionnaire answers, it was estimated that the presented approach – in its
current state – could only be applied to about 20%–33% of the machines
produced by the company based on the increase in runtime overhead.

The overhead regarding memory was not seen as critical at all.
Although the percentage increase seems large, current systems used by
the company never ran into problems regarding memory. The experts
estimated the approach to be applicable to about 90% of the machines
produced by the company.

Requirement 3 (R3): inclusion of hardware and process behavior

Using the guided, semi-automatic system testing approach, each test
was performed including the real hardware and process properties,
resulting in the fulfillment of the requirement.

Requirement 4 (R4): manipulation of hardware and process behavior

The test cases were based on a test plan provided by the company
and developed in cooperation with one of their experts, thus repre-
senting realistic test cases with realistic manipulation tasks. Therefore,
the requirement for allowing for the manipulation of hardware and
process during test execution was approved. Still, it was noted that
the resources needed to specify the test cases might not be reasonable
for completely unique machines; reusing complex sub-modules several
times might help to distribute the initial specification costs between
multiple machines. According to the answers given in the questionnaire,
it was estimated that the approach could be applied to 60% of the
machines produced by this company.

Requirement 5 (R5): no need for formalized functional requirements

In the case study, no additional formalized functional requirements
for generating test cases regarding coverage criteria or to assess test
coverage were needed, thus the requirement is fulfilled.

Requirement 6 (R6): support the assessment of test adequacy

The coverage visualization was generally seen as very beneficial.
While it was noted that marking the code as ‘‘tested’’ can be misin-
terpreted as ‘‘sufficiently tested’’, the positive aspects of the coverage
assessment were agreed upon.

The experts evaluated the ability to quickly identify untested parts
of the code as very beneficial. It had previously not been possible to
get an overview of the executed parts of the code during testing, so
test adequacy solely relied on the individual’s estimation. Through easy
identification of untested parts it is possible to (quickly) assess whether
additional tests are needed and adjust the test suite accordingly. This
results in the experts’ opinion that the approach supports the assessment
of test adequacy.

Evaluation conclusion

Summarizing the results of the case study and the expert evaluation,
the approach was able to address all requirements while in some
areas improvements could be made to extend the applicability in the
field of production automation. Especially the overhead in runtime
in the current version of the approach was seen as critical for some
applications. On the whole, the experts fully agreed that the presented
approach improves the ability to assess the code coverage compared to
the current state (1.33 on a scale of 1 to 7, where 1 is fully agreed).

Extrapolation of the evaluation results regarding scan cycle time overhead

Subsequent to the presentation and discussion of the results of
the evaluation, the reasons for the instrumentation overhead were
investigated preliminarily. Theoretically, this limitation stems from
two factors: remaining execution time in each PLC scan cycle and
computational expense of the code regarding the currently chosen path
through the control flow. With more control statements, more code
instrumentation is required, requiring more execution time, as more
inserted tracing functions need to be executed. This might lead to break-
ing real time requirements if not enough remaining execution time is
available. Thus, the limit cannot be directly related to the code size, but
might have to be calculated for each individual application using worst-
case execution time analysis (Wilhelm et al., 2008), e.g. using static code
analysis. Yet, code structure is not the only factor influencing execution
properties, but also task scheduling, caching and scan cycle time jitter.
In practice, the instrumented code could be treated as regular (more
computationally expensive) code and enforcing a minimum remaining
execution time, e.g. using a maximum of 80% of scan cycle time as a
practical measure to avoid breaches of hard real time.

To gain a better understanding about the scalability of the approach,
the data acquired during the case study was extrapolated for other
scan cycle times and trace function invocations. With the given code,
consisting of 119 POUs with an average cyclometric complexity of 9.47
and 372 actions with an average complexity of 2.13, 728 statements
were executed on average during the execution of the test cases used in
the evaluation. Using the average measured number of trace function
invocations per scan cycle (395) and the average increase of scan cycle
time attributed to the approach (0.26 ms) with the given setup (701
MHz, scan cycle of 10 ms), Table 2 was created: This data represents
an estimation of the average scan cycle time solely required for the
invocation of trace function calls in regards to the amount of invocations
and other scan cycle times. As expected, the percentage of required
time rises with the number of trace function calls and shorter scan cycle

182



S. Ulewicz, B. Vogel-Heuser Control Engineering Practice 73 (2018) 171–185

Table 2
Percentage of PLC scan cycle time required for coverage tracing with the setup
used in the case study.

Trace function calls per scan cycle PLC scan cycletime

10 ms 5 ms 1 ms

10 0.05% 0.11% 0.54%
50 0.27% 0.54% 2.72%

100 0.54% 1.09% 5.44%
200 1.09% 2.18% 10.89%
300 1.63% 3.27% 16.33%
400 2.18% 4.35% 21.77%

1000 5.44% 10.89% 54.43%

times. Whether the remaining scan cycle time suffices for holding real
time requirements (reading and writing input and output variables and
executing the rest of the statements) strongly depends on the amount
of statements invoked in a worst-case scenario (most computational
intensive path through the code, including the trace function calls). This
property is very specific for different aPS and their control software.

While this extrapolation gives an idea about the scalability properties
of the approach, further investigation would be beneficial. Yet, many
factors attribute to the real time capability of a system, as mentioned
above.

6.4. Threads to validity

The requirement analysis was performed with experts from three
companies. The resulting requirements might not be applicable for some
companies in the field of automated production systems. From the
authors’ experience and discussions with many experts from different
companies from the production automation domain, the collected re-
quirements are relevant for a large segment of this field of industry.
The absence of formal specifications and simulations and the need for
an improvement in system testing and its coverage assessment were
mentioned to be of importance by the vast majority of industry partners.

The case study was performed only on a single machine. This small
sample size does not permit making conclusions about scalability of
the overhead or other properties that might prohibit the approach to
be directly applied. In particular, aPS with significantly more control
statements might yield an increased runtime overhead, due to more
required tracing function calls. In particular for aPS controllers being
operated near their full capacity (e.g. over 80% of available CPU time),
this might lead to problems unless the PLC scan cycle time is increased.

The expert evaluation was performed with experts from a single
company. The outcome of the questionnaire might differ if experts
from other companies had been involved. To the best knowledge of the
authors, the case study is comparable to a significant part of automated
production systems and thus the evaluation can at the least provide a
qualitative impression on the applicability of the approach.

The implementation of the approach was performed in a CODESYS-
based environment with a real time capable embedded PC as execution
hardware. Although the approach was developed for the programming
standard IEC 61131-3, execution hardware and integrated development
environments differ between the different vendors of automation hard-
ware. For Siemens-based systems in particular, it is the authors’ opinion
that several problems might have to be overcome, such as creating the
abstract syntax tree, saving data during runtime and automating the
overall testing process. Yet, to the best knowledge of the authors, these
problems should be possible to solve.

7. Conclusion

An approach for supporting the assessment of test adequacy for
system testing in production automation was presented. For the first
time valuable support in assessing and increasing testing quality in fully
integrated industrial production automation systems is presented while

taking strict industrial requirements and quality assurance scenarios into
account. Notably, acceptable influence on real time constraints could
be achieved and no formalized requirements specifications or other
elaborate engineering artifacts are needed. In addition, the performed
test cases include the system’s real hardware and technical process
behavior and therefore allow for realistic system tests through the
partial inclusion of human testers within the system testing process.

The approach focuses on the identification of untested code and its
relation to untested behavior of the system. The requirements relevant
for this approach were gathered in collaboration with experts from the
industry. Based on these requirements, an approach was developed that
uses code instrumentation for tracing code execution during runtime
while test cases are performed. The information is subsequently gath-
ered and used for calculating and visualizing coverage of the performed
test suite. Through this process, it is possible to quickly identify untested
parts of the code and decide accordingly whether additional tests are
needed.

The approach was implemented in an industrial case study, assessing
its applicability with a group of experienced experts active in the fields
of aPS commissioning, maintenance and software engineering. The
approach is not applicable on all machines in its current state, mostly
due to the (currently not optimized) runtime overhead derived from the
code instrumentation.

Despite the discussion about the runtime overhead, it was agreed by
the experts that the approach allows for the first time support of the
tester in assessing test coverage and identifying untested behavior of
the system and is applicable for a significant proportion of machines
produced by this company.

As the experts’ requirements and machines are similar to a substan-
tial part of the authors’ industry partners, the approach represents a
significant improvement in supporting the testing process within the
production automation domain.

8. Outlook

Multiple threads of further research were identified given the results
of the evaluation and experience gained during the experiments.

As for the main criticism of the runtime overhead, multiple improve-
ments could be made and will be pursued in future work. For example,
the amount of trace points could be reduced by assuming deterministic
execution of code within one task, removing tracing else-blocks in if-
else-constructions: If the previous block was executed and the basic
block within the if-statement was executed, tracing of the else-block
can be omitted as these blocks mutually exclude each other. Another
example could be optimizing the I/O-tracing algorithms used in the
guided testing approach which was a source of a large increase in
average execution time.

Statement coverage as the coverage measure was mostly sufficient in
the case study, yet in certain cases, a closer investigation of the decisions
in the if-statements would have been of interest. For this reason it might
be interesting to look into a comparison of this metric with a version of
condition/decision coverage in terms of level of detail and additionally
required performance based on the more complicated instrumentation.
In addition, for measuring coverage of functions, which are not predom-
inantly complex because of decisions, e.g. mathematical or closed loop
controller functions, other coverage measures should be investigated for
more meaningful coverage results.

So far only the IEC 61131-3 languages Sequential Function Chart
(SFC) and Structured Text (ST) are supported. In future work a coverage
measurement and visualization of the visual programming languages
Function Block Diagram (FBD), Ladder Diagram (LD) and Continuous
Function Chart (CFC), and further consideration of all types and imple-
mentations of SFC actions, e.g. timed actions or action implementation
in programming languages other than ST, might be of interest.

183



S. Ulewicz, B. Vogel-Heuser Control Engineering Practice 73 (2018) 171–185

Acknowledgments

The authors would like to express their gratitude to the companies
3S-Smart Software Solutions GmbH, Bosch Rexroth AG and Robert
Bosch GmbH for helpful discussions and their support in optimizing and
evaluating the presented approaches.

This work was supported by the Bavarian Ministry of Economic
Affairs and Media, Energy and Technology within the research program
‘‘Informations- und Kommunikationstechnik in Bayern’’ [grant number
IUK413].

References

3S - Smart Software Solutions GmbH. (2016a). CODESYS Development System. Re-
trieved May 5, 2017, from https://www.codesys.com/products/codesys-engineering/
development-system.html.

3S - Smart Software Solutions GmbH. (2016b). CODESYS Test Manager. Retrieved May 5,
2017, from http://store.codesys.com/codesys-test-manager.html.

Anand, S., Burke, E. K., Chen, T. Y., Clark, J., Cohen, M. B., Grieskamp, W., et al. (2013).
An orchestrated survey of methodologies for automated software test case generation.
Journal of Systems and Software, 86(8), 1978–2001. http://dx.doi.org/10.1016/j.jss.
2013.02.061.

Atlassian, (2016). Atlassian Clover. Retrieved May 5, 2017, from https://www.atlassian.
com/software/clover.

Barth, M., & Fay, A. (2013). Automated generation of simulation models for control
code tests. Control Engineering Practice, 21(2), 218–230. http://dx.doi.org/10.1016/
j.conengprac.2012.09.022.

Berger, R., Prähofer, H., Wirth, C., & Schatz, R. (2012). A tool for trace visualization
and offline debugging of PLC applications. In International conference on emerging
technologies and factory automation. https://doi.org/10.1109/ETFA.2012.6489785.

Bohner, S. A., & Arnold, R. S. (1996). Software change impact analysis. Los Alamos, CA: The
Institute of Electrical and Electronic Engineers, Inc.

Bullseye, (2016). BullseyeCoverage. Retrieved May 5, 2017, from http://www.bullseye.
com/productInfo.html.

Bürdek, J., Lochau, M., Bauregger, S., Holzer, A., von Rhein, A., Apel, S., et al. (2015).
Facilitating reuse in multi-goal test-suite generation for software product lines.
In Evolutionary computation. Machine learning and data mining in bioinformatics, Vol.
7246 (pp. 84–99). http://dx.doi.org/10.1007/978-3-662-46675-9_6.

De Lucia, A., Fasano, F., & Oliveto, R. (2008). Traceability management for impact
analysis. In Frontiers of software maintenance (pp. 21–30). IEEE. http://dx.doi.org/10.
1109/FOSM.2008.4659245.

Dit, B., Revelle, M., Gethers, M., & Poshyvanyk, D. (2013). Feature location in source
code: A taxonomy and survey. Journal of Software: Evolution and Process, 25(1), 53–95.
http://dx.doi.org/10.1002/smr.567.

Engström, E., & Runeson, P. (2010). A qualitative survey of regression testing prac-
tices. In Product-focused software process improvement (pp. 3–16). Berlin Heidelberg:
Springer. http://dx.doi.org/10.1007/978-3-642-13792-1_3.

Estevez, E., & Marcos, M. (2012). Model-based validation of industrial control systems.
IEEE Transactions on Industrial Informatics, 8(2), 302–310. http://dx.doi.org/10.1109/
TII.2011.2174248.

Feldmann, S., Hauer, F., Ulewicz, S., & Vogel-Heuser, B. (2016). Analysis framework
for evaluating PLC software: An application of Semantic Web technologies. In IEEE
international symposium on industrial electronics (pp. 1048–1054). IEEE. http://dx.doi.
org/10.1109/ISIE.2016.7745037.

Gligoric, M., Groce, A., Zhang, C., Sharma, R., Alipour, M. A., & Marinov, D. (2013).
Comparing non-adequate test suites using coverage criteria. In International symposium
on software testing and analysis (p. 302). New York, New York, USA: ACM Press.
http://dx.doi.org/10.1145/2483760.2483769.

Gopinath, R., Jensen, C., & Groce, A. (2014). Code coverage for suite evaluation by
developers. In International conference on software engineering, (pp. 72–82). https:
//doi.org/10.1145/2568225.2568278.

Hametner, R., Kormann, B., Vogel-Heuser, B., Winkler, D., & Zoitl, A. (2011). Test case
generation approach for industrial automation systems. In International conference on
automation, robotics and applications (pp. 57–62). IEEE. http://dx.doi.org/10.1109/
ICARA.2011.6144856.

IBM. (2016). Rational DOORS. Retrieved May 5, 2017, from http://www-03.ibm.com/
software/products/en/ratidoor.

IEC. (2003). IEC 61131 Programmable Controllers - Part 3: Programming Languages
(Second Edition). International Electrotechnical Commission Std.

Jee, E., Kim, S., Cha, S., & Lee, I. (2010). Automated test coverage measurement for
reactor protection system software implemented in function block diagram. In LNCS:
Vol. 6351. Lecture notes in computer science (including subseries lecture notes in artificial
intelligence and lecture notes in bioinformatics) (pp. 223–236). http://dx.doi.org/10.
1007/978-3-642-15651-9_17.

Jee, E., Yoo, J., & Cha, S. (2005). Control and data flow testing on function block
diagrams. In LNCS: Vol. 3688. Lecture notes in computer science (including subseries
lecture notes in artificial intelligence and lecture notes in bioinformatics) (pp. 67–80).
http://dx.doi.org/10.1007/11563228_6.

Kormann, B., & Vogel-Heuser, B. (2011). Automated test case generation approach for
PLC control software exception handling using fault injection. In Annual conference of
the IEEE industrial electronics society (pp. 365–372). IEEE. http://dx.doi.org/10.1109/
IECON.2011.6119280.

Krause, J., Hintze, E., Magnus, S., & Diedrich, C. (2012). Model based specification,
verification, and test generation for a safety fieldbus profile. In LNCS: Vol. 7612.
Lecture notes in computer science (including subseries lecture notes in artificial intelligence
and lecture notes in bioinformatics) (pp. 87–98). http://dx.doi.org/10.1007/978-3-
642-33678-2_8.

Kumar, B., Gilani, S. S., Niggemann, O., & Schäfer, W. (2013). Automated test case
generation from complex environment models for PLC control software testing and
maintenance. In VDI-kongress automation (pp. 129–134).

Lochau, M., Bürdek, J., Lity, S., Hagner, M., Legat, C., Goltz, U., et al. (2014). Applying
model-based Software Product Line testing approaches to the automation engineering
domain. At - Automatisierungstechnik, 62(11), 771–780. http://dx.doi.org/10.1515/
auto-2014-1099.

Piwowarski, P., Ohba, M., & Caruso, J. (1993). Coverage measurement experience
during function test. In Proceedings of 1993 15th international conference on software
engineering, (pp. 287–301). https://doi.org/10.1109/ICSE.1993.346035.

Prähofer, H., Schatz, R., Wirth, C., & Mössenböck, H. (2011). A comprehensive solution for
deterministic replay debugging of SoftPLC Applications. IEEE Transactions on Industrial
Informatics, 7(4), 641–651. http://dx.doi.org/10.1109/TII.2011.2166768.

Puntel-Schmidt, P., Fay, A., Riediger, W., Schulte, T., Köslin, F., & Diehl, S. (2014).
Validierung von Steuerungscode fertigungstechnischer Anlagen mit Hilfe automatisch
generierter Simulationsmodelle. In Entwurf komplexer automatisierungssysteme. Magde-
burg. https://doi.org/10.1515/auto-2014-1127.

Rösch, S., Ulewicz, S., Provost, J., & Vogel-Heuser, B. (2015). Review of model-based test-
ing approaches in production automation and adjacent domains—current challenges
and research gaps. Journal of Software Engineering and Applications, 8(9), 499–519.
http://dx.doi.org/10.4236/jsea.2015.89048.

Rösch, S., & Vogel-Heuser, B. (2017). A light-weight fault injection approach to test
automated production system PLC software in industrial practice. Control Engineering
Practice, 58(2016 March), 12–23. http://dx.doi.org/10.1016/j.conengprac.2016.09.
012.

RTCA. (1992). RTCA DO-178B: Software Considerations in Airborne Systems and Equip-
ment Certification.

Runeson, P., Höst, M., Rainer, A., & Regnell, B. (2012). Case study research in software
engineering. John Wiley & Sons, Inc. Hoboken, NJ, USA: John Wiley & Sons, Inc.
http://dx.doi.org/10.1002/9781118181034.

Siegl, S., Hielscher, K. S., German, R., & Berger, C. (2011). Automated testing of embedded
automotive systems from requirement specification models. In LATW 2011 - 12th
IEEE latin-American test workshop, (April 2011). https://doi.org/10.1109/LATW.2011.
5985928.

Siemens, (2016). Polarion. Retrieved May 5, 2017, from https://polarion.plm.automation.
siemens.com/.

Simon, H., Friedrich, N., Biallas, S., Hauck-Stattelmann, S., Schlich, B., & Kowalewski,
S. (2015). Automatic test case generation for PLC programs using coverage metrics.
In IEEE international conference on emerging technologies and factory automation. IEEE.
http://dx.doi.org/10.1109/ETFA.2015.7301602.

Sinha, R., Pang, C., Martínez, G. S., & Vyatkin, V. (2016). Automatic test case generation
from requirements for industrial cyber-physical systems. At - Automatisierungstechnik,
64(3), 216–230. http://dx.doi.org/10.1515/auto-2015-0075.

Ulewicz, S., & Vogel-Heuser, B. (2016). Guided semi-automatic system testing in factory
automation. In IEEE international conference on industrial informatics (pp. 142–147).
IEEE. http://dx.doi.org/10.1109/INDIN.2016.7819148.

Unicom, (2016). PurifyPlus. Retrieved May 5, 2017, from https://teamblue.unicomsi.
com/products/purifyplus/.

Vogel-Heuser, B., Fay, A., Schaefer, I., & Tichy, M. (2015). Evolution of software in
automated production systems: Challenges and research directions. Journal of Systems
and Software, 110, 54–84. http://dx.doi.org/10.1016/j.jss.2015.08.026.

Vyatkin, V. (2013). Software engineering in industrial automation: State-of-the-art review.
IEEE Transactions on Industrial Informatics, 9(3), 1234–1249. http://dx.doi.org/10.
1109/TII.2013.2258165.

Whalen, M. W., Rajan, A., Heimdahl, M. P. E., & Miller, S. P. (2006). Coverage metrics for
requirements-based testing. In International symposium on software testing and analysis
(p. 25). New York, New York, USA: ACM Press. http://dx.doi.org/10.1145/1146238.
1146242.

Wilhelm, R., Mitra, T., Mueller, F., Puaut, I., Puschner, P., Staschulat, J., et al. (2008). The
worst-case execution-time problem—overview of methods and survey of tools. ACM
Transactions on Embedded Computing Systems, 7(3), 1–53. http://dx.doi.org/10.1145/
1347375.1347389.

Wu, X., Li, J. J., Weiss, D., & Lee, Y. (2007). Coverage-based testing on embedded systems.
In IEEE international conference on software engineering. https://doi.org/10.1109/AST.
2007.8.

184

https://www.codesys.com/products/codesys-engineering/development-system.html
https://www.codesys.com/products/codesys-engineering/development-system.html
https://www.codesys.com/products/codesys-engineering/development-system.html
http://store.codesys.com/codesys-test-manager.html
http://dx.doi.org/10.1016/j.jss.2013.02.061
http://dx.doi.org/10.1016/j.jss.2013.02.061
http://dx.doi.org/10.1016/j.jss.2013.02.061
https://www.atlassian.com/software/clover
https://www.atlassian.com/software/clover
https://www.atlassian.com/software/clover
http://dx.doi.org/10.1016/j.conengprac.2012.09.022
http://dx.doi.org/10.1016/j.conengprac.2012.09.022
http://dx.doi.org/10.1016/j.conengprac.2012.09.022
https://doi.org/10.1109/ETFA.2012.6489785
http://refhub.elsevier.com/S0967-0661(18)30010-8/sb7
http://refhub.elsevier.com/S0967-0661(18)30010-8/sb7
http://refhub.elsevier.com/S0967-0661(18)30010-8/sb7
http://refhub.elsevier.com/S0967-0661(18)30010-8/sb7
http://refhub.elsevier.com/S0967-0661(18)30010-8/sb7
http://refhub.elsevier.com/S0967-0661(18)30010-8/sb7
http://refhub.elsevier.com/S0967-0661(18)30010-8/sb7
http://refhub.elsevier.com/S0967-0661(18)30010-8/sb7
http://refhub.elsevier.com/S0967-0661(18)30010-8/sb7
http://refhub.elsevier.com/S0967-0661(18)30010-8/sb7
http://refhub.elsevier.com/S0967-0661(18)30010-8/sb7
http://refhub.elsevier.com/S0967-0661(18)30010-8/sb7
http://refhub.elsevier.com/S0967-0661(18)30010-8/sb7
http://refhub.elsevier.com/S0967-0661(18)30010-8/sb7
http://www.bullseye.com/productInfo.html
http://www.bullseye.com/productInfo.html
http://www.bullseye.com/productInfo.html
http://dx.doi.org/10.1007/978-3-662-46675-9_6
http://dx.doi.org/10.1109/FOSM.2008.4659245
http://dx.doi.org/10.1109/FOSM.2008.4659245
http://dx.doi.org/10.1109/FOSM.2008.4659245
http://dx.doi.org/10.1002/smr.567
http://dx.doi.org/10.1007/978-3-642-13792-1_3
http://dx.doi.org/10.1109/TII.2011.2174248
http://dx.doi.org/10.1109/TII.2011.2174248
http://dx.doi.org/10.1109/TII.2011.2174248
http://dx.doi.org/10.1109/ISIE.2016.7745037
http://dx.doi.org/10.1109/ISIE.2016.7745037
http://dx.doi.org/10.1109/ISIE.2016.7745037
http://dx.doi.org/10.1145/2483760.2483769
https://doi.org/10.1145/2568225.2568278
https://doi.org/10.1145/2568225.2568278
https://doi.org/10.1145/2568225.2568278
http://dx.doi.org/10.1109/ICARA.2011.6144856
http://dx.doi.org/10.1109/ICARA.2011.6144856
http://dx.doi.org/10.1109/ICARA.2011.6144856
http://www-03.ibm.com/software/products/en/ratidoor
http://www-03.ibm.com/software/products/en/ratidoor
http://www-03.ibm.com/software/products/en/ratidoor
http://dx.doi.org/10.1007/978-3-642-15651-9_17
http://dx.doi.org/10.1007/978-3-642-15651-9_17
http://dx.doi.org/10.1007/978-3-642-15651-9_17
http://dx.doi.org/10.1007/11563228_6
http://dx.doi.org/10.1109/IECON.2011.6119280
http://dx.doi.org/10.1109/IECON.2011.6119280
http://dx.doi.org/10.1109/IECON.2011.6119280
http://dx.doi.org/10.1007/978-3-642-33678-2_8
http://dx.doi.org/10.1007/978-3-642-33678-2_8
http://dx.doi.org/10.1007/978-3-642-33678-2_8
http://refhub.elsevier.com/S0967-0661(18)30010-8/sb26
http://refhub.elsevier.com/S0967-0661(18)30010-8/sb26
http://refhub.elsevier.com/S0967-0661(18)30010-8/sb26
http://refhub.elsevier.com/S0967-0661(18)30010-8/sb26
http://refhub.elsevier.com/S0967-0661(18)30010-8/sb26
http://refhub.elsevier.com/S0967-0661(18)30010-8/sb26
http://refhub.elsevier.com/S0967-0661(18)30010-8/sb26
http://refhub.elsevier.com/S0967-0661(18)30010-8/sb26
http://refhub.elsevier.com/S0967-0661(18)30010-8/sb26
http://refhub.elsevier.com/S0967-0661(18)30010-8/sb26
http://refhub.elsevier.com/S0967-0661(18)30010-8/sb26
http://refhub.elsevier.com/S0967-0661(18)30010-8/sb26
http://refhub.elsevier.com/S0967-0661(18)30010-8/sb26
http://refhub.elsevier.com/S0967-0661(18)30010-8/sb26
http://refhub.elsevier.com/S0967-0661(18)30010-8/sb26
http://refhub.elsevier.com/S0967-0661(18)30010-8/sb26
http://refhub.elsevier.com/S0967-0661(18)30010-8/sb26
http://refhub.elsevier.com/S0967-0661(18)30010-8/sb26
http://dx.doi.org/10.1515/auto-2014-1099
http://dx.doi.org/10.1515/auto-2014-1099
http://dx.doi.org/10.1515/auto-2014-1099
https://doi.org/10.1109/ICSE.1993.346035
http://dx.doi.org/10.1109/TII.2011.2166768
https://doi.org/10.1515/auto-2014-1127
http://dx.doi.org/10.4236/jsea.2015.89048
http://dx.doi.org/10.1016/j.conengprac.2016.09.012
http://dx.doi.org/10.1016/j.conengprac.2016.09.012
http://dx.doi.org/10.1016/j.conengprac.2016.09.012
http://dx.doi.org/10.1002/9781118181034
https://doi.org/10.1109/LATW.2011.5985928
https://doi.org/10.1109/LATW.2011.5985928
https://doi.org/10.1109/LATW.2011.5985928
https://polarion.plm.automation.siemens.com/
https://polarion.plm.automation.siemens.com/
https://polarion.plm.automation.siemens.com/
http://dx.doi.org/10.1109/ETFA.2015.7301602
http://dx.doi.org/10.1515/auto-2015-0075
http://dx.doi.org/10.1109/INDIN.2016.7819148
https://teamblue.unicomsi.com/products/purifyplus/
https://teamblue.unicomsi.com/products/purifyplus/
https://teamblue.unicomsi.com/products/purifyplus/
http://dx.doi.org/10.1016/j.jss.2015.08.026
http://dx.doi.org/10.1109/TII.2013.2258165
http://dx.doi.org/10.1109/TII.2013.2258165
http://dx.doi.org/10.1109/TII.2013.2258165
http://dx.doi.org/10.1145/1146238.1146242
http://dx.doi.org/10.1145/1146238.1146242
http://dx.doi.org/10.1145/1146238.1146242
http://dx.doi.org/10.1145/1347375.1347389
http://dx.doi.org/10.1145/1347375.1347389
http://dx.doi.org/10.1145/1347375.1347389
https://doi.org/10.1109/AST.2007.8
https://doi.org/10.1109/AST.2007.8
https://doi.org/10.1109/AST.2007.8


S. Ulewicz, B. Vogel-Heuser Control Engineering Practice 73 (2018) 171–185

Yang, M. C. K., & Chao, A. (1995). Reliability-estimation & stopping-rules for software
testing, based on repeated appearances of bugs. IEEE Transactions on Reliability , 44(2),
315–321. http://dx.doi.org/10.1109/24.387388.

Yang, Q., Li, J. J., & Weiss, D. M. (2009). A survey of coverage-based testing tools. The
Computer Journal, 52(5), 589–597. http://dx.doi.org/10.1093/comjnl/bxm021.

Yoo, S., & Harman, M. (2012). Regression testing minimization, selection and prioriti-
zation: a survey. Software Testing, Verification and Reliability , 22(2), 67–120. http:
//dx.doi.org/10.1002/stvr.430.

Zhu, H., Hall, P. A. V., & May, J. H. R. (1997). Software unit test coverage and ade-
quacy. ACM Computing Surveys, 29(4), 366–427. http://dx.doi.org/10.1145/267580.
267590.

185

http://dx.doi.org/10.1109/24.387388
http://dx.doi.org/10.1093/comjnl/bxm021
http://dx.doi.org/10.1002/stvr.430
http://dx.doi.org/10.1002/stvr.430
http://dx.doi.org/10.1002/stvr.430
http://dx.doi.org/10.1145/267580.267590
http://dx.doi.org/10.1145/267580.267590
http://dx.doi.org/10.1145/267580.267590

	Increasing system test coverage in production automation systems
	Introduction
	Industrial requirements regarding system testing in production automation
	Related work in the field of test coverage assessment
	Requirement based test coverage
	Code structure based test coverage
	Comparison of related approaches and identification of the research gap

	Concept for coverage assessment during system testing of aPS using execution tracing
	Code instrumentation
	Testing project generation and test execution
	Coverage calculation and assessment

	Implementation
	Evaluation
	Case study: the system under test (SUT)
	Case study: description of experiments and measurement results
	Evaluation of results with industry experts
	Threads to validity

	Conclusion
	Outlook
	Acknowledgments
	References


