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1. Introduction

This dissertation tackles two different managerial problems that relate to the broad field
of workforce planning. In the following, I provide a brief overview of workforce planning,
and then I specify the topics addressed in this work.

1.1. Workforce planning

Every organization, regardless of its size, requires employees to run the organization and
produce its goods and services. Hence, employees are involved in the core functions of
every company, and at the same time, are a major cost factor. Workforce planning aims at
matching the supply and demand for employees; it defines when and how many employees
should be hired, promoted, transferred or dismissed and when and where these employ-
ees should work, and what they should do (see, e.g. Price et al., 1980; Bruecker et al.,
2015). Heterogeneous employees, their preferences, a multitude of workplace regulations,
and uncertain personnel requirements make workforce planning one of the most difficult
managerial tasks (see Bruecker et al., 2015; Ernst et al., 2004). In theory, an integrated
planning approach, in which the above decisions are made simultaneously, generates the
best possible planning. However, such a planning problem is intractable. Typically, a
hierarchical approach is taken where the planning horizon is decomposed along the time
axis giving rise to a series of interrelated problems, often defined as strategic, tactical and
operational (e.g., see Koutsopoulos and Wilson, 1987; Gans and Zhou, 2002; Zülch et al.,
2004).

Hierarchical planning approaches were first used in production planning, and later ap-
plied to a wide range of managerial activities. In his seminal work on planning and
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1. Introduction

control systems, Anthony (1965) was the first to classify managerial activities into three
broad categories: (i) long-range strategic planning based on very aggregated data with
a high degree of uncertainty, (ii) medium-range tactical planning, and (iii) short-range
operational control based on detailed data with a relatively low degree of uncertainty.
Different levels of management deal with these three classes of decisions: strategic plan-
ning is a responsibility of top management, tactical planning involve middle and top
management, and operational control is typically executed by lower management and
non-managerial personnel (Silver et al., 2016). Hence, hierarchical decomposition makes
the planning problem not only more tractable, but is also aligned with an organization’s
business practices (Ernst et al., 2004).

Workforce planning at the strategic level is concerned with the long-term development
and maintenance of human resources with the appropriate skills to run the organization
and produce its goods and services. The mix of employees and their effectiveness are key
variables determining an organization’s success. Workforce capacity planning corresponds
to the long-term capacity planning used in manufacturing environments (Gans and Zhou,
2002). For early reviews of strategic workforce planning, see Price et al. (1980), Purkiss
(1981) and Edwards (1983). Bruecker et al. (2015) provide a recent review spanning
the whole range of workforce planning, from strategic to operational problems. At the
strategic level, the planning horizon is typically two years and longer, and employees are
aggregated into homogeneous groups by common characteristics, such as relevant skills,
age, and length of service. The selection of these characteristics is domain-specific, bal-
ances complexity and accuracy, and also depends on the available data. For example,
Fragnière et al. (2010) classify back-office workers in a bank into non-qualified and quali-
fied, the latter of which are costlier and more efficient; Fowler et al. (2008) classify workers
in semiconductor manufacturing by their skillsets and general cognitive ability, where the
latter influences a worker’s productivity, salary and the speed at which new skills are
acquired; and Bard and Wan (2008) classify workers in mail processing and distribution
centers into full-time and part-time employees and by skill categories. Once the workforce
is structured into groups, the next step is to describe how employees transition from one
group to another. The means to influence the transitions of employees and thereby the
composition of the workforce include hiring, training, promotion, internal transfer, layoff,
firing, and retirement planning. Unfortunately, the dynamics are not entirely under the
control of the planner. For example, employees may voluntarily leave an organization to
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1. Introduction

relocate, make a career change, or retire. Whether it is manufacturing or service, man-
agement’s goal is to find the best mix of employees so as to strike a balance between
personnel costs and the ability to reliably meet current and future demand for employees.
The demand specifies how many employees with which skills are needed at different times
and possibly locations over some given planning horizon. Depending on the industry,
future demand may be predicted based on tasks (e.g. flight legs requiring cockpit and
cabin crew, Cordeau et al., 2000) or workload forecasts (e.g call centers, Gans and Zhou,
2002) or simply from a minimum number of required workers to operate a facility (e.g.
chemical plants, see Chapter 2). Poor demand predictions or capacity planning can lead
to an oversupply of workers with too much idle time, or periods with an undersupply
of workers with an attendant loss of business (Bard and Wan, 2008). In spite of good
planning, when demand or capacity fluctuate it is often impossible to perfectly match the
available skill pool to the demand. Besides overtime and employing temporary workers, a
popular option to mitigate this is to increase worker flexibility by means of cross-training
(e.g. Campbell, 2011; Fowler et al., 2008) or substitution (e.g. Bordoloi and Matsuo,
2001; Bard and Purnomo, 2005). Cross-training refers to extending workers’ skillsets by
teaching them additional skills. When skills are hierarchically structured, higher skilled
workers may fill in for lower skilled workers when shortages exist, which is known as substi-
tution or downgrading. Both cross-training and substitution can provide substantial cost
savings. Pinker and Shumsky (2000) investigate whether cross-training while enhancing
flexibility can create a workforce that performs many tasks with consistent mediocrity,
and come to the conclusion that the optimal staff mix combines flexible and specialized
workers. A related question is whether to hire predominantly specialists and broaden
their horizons or predominantly generalists and give them specific training (Price et al.,
1980).

These strategic decisions determine the composition of the permanent workforce and
thus constrain the lower planning levels. At the tactical level, assuming a permanent
workforce, timetables must be constructed such that operational requirements can be
met. This process is called rostering or personnel scheduling. For reviews of personnel
scheduling, see Ernst et al. (2004), Alfares (2004) and Van den Bergh et al. (2013). There
is also a large body of research with respect to nurse rostering (see Burke et al., 2004, for
a review). In personnel scheduling, the planning horizon is typically from half a year to
two years. When the length of a workweek does not match the operating week, personnel
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1. Introduction

scheduling must include days-off scheduling, i.e. determining an employee’s work- and
rest-days. When the length of an employee’s workday does not match the length of daily
operations, personnel scheduling must include shift scheduling, i.e. determining the shift
for each workday of an employee. An integrated approach that addresses both aspects is
tour scheduling (Baker, 1976; Brusco and Jacobs, 1998), which involves the creation of
either cyclic or non-cyclic schedules. A cyclic schedule consists of a set of work patterns
which are rotated among groups of workers, such that each group completes each pattern
exactly once per iteration. Cyclic schedules are fair, offer a high degree of regularity
and require relatively low scheduling effort. However, they lack flexibility when reacting
to demand fluctuations or absences due to, say, illness or vacations (Millar and Kiragu,
1998), and they do not take into account seniority or individual preferences. Kiermaier
et al. (2016) introduce the concept of a flexible cyclic roster that offers many of the
benefits of non-cyclic schedules while maintaining a high degree of regularity and fairness.
A recent trend in rostering, especially in industries where employee satisfaction is key, is
to take individual preferences into account. The motivation for preference scheduling is
that more individual control over workweeks will lead to higher morale, a more attractive
work environment, increased flexibility to deal with personal matters, and higher retention
rates (Bard and Purnomo, 2005). In general, rostering tends to become complex due to
the need to account for a variety of workplace regulations, especially when incorporating
measures of fairness and employee satisfaction (see Ernst et al., 2004; Balakrishnan and
Wong, 1990).

At the operational level, assigning tasks to individual shifts or individual employees may
be necessary. A task usually has a start time or a time window and a duration and
possibly a spacial dimension, where the start and end locations may or may not be
identical. Furthermore, a task may require one or more employees with certain skills and
additional equipment. For example, Eiselt and Marianov (2008) assign employees to tasks,
minimizing the discrepancy between an employee’s abilities and the task’s requirements,
minimizing overtime and unfair distribution of the workload, in order to increase job
satisfaction. For that purpose, they specify the skill requirements and employees’ skills
in a multi-dimensional skill space (Eiselt and Marianov, 2008). In many cases, tasks can
be executed in different ways, giving rise to multiple modes, which allow for several kinds
of trade-offs, such as time/resource, time/cost and resource/resource trade-offs (Reyck
and Herroelen, 1999). One area with many modes is airport baggage handling, where
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the baggage of each departing flight needs to be loaded into containers. While the end
time is determined by the flight departure, the start of the loading process and how many
workers should be loading bags at different times during the loading process, are flexible
(multiple modes). By planning the loading process, the speed at which bags are loaded
and the utilization of the airport facilities can be controlled (resource/resource trade-offs).

A major challenge in workforce planning is uncertainty, which is ubiquitous at all plan-
ning levels (see, e.g. Price et al., 1980). Uncertainty can be found on both demand- and
supply-side. On the demand-side, uncertainty exists with regard to the tasks (quantity
and duration) or the number of incidents requiring employee involvement (e.g. inbound
calls in a call-center, emergencies in a hospital, checked-in bags). On the supply-side, the
availability of employees may fluctuate. The central source of uncertainty at the strategic
level is the rate of voluntary turnover (Edwards, 1983). At the tactical and operational
level, absence, for example due to illness or parental leave, can cause unexpected capacity
shortfalls (e.g. Fragnière et al., 2010). Another example where capacity is reduced on
short notice is in crew rostering in the airline industry. Assume that there is congestion
at the destination airport, which requires additional flying time for the cockpit crew. By
the time the aircraft lands, the crew may not be legally allowed to fly their subsequent
leg because they have exceeded their allowed flying time, rendering a disruption to the
subsequent legs (Petersen et al., 2012). Approaches that address uncertainty, such as
stochastic programming, Markov decision problems or robust optimization, can be ex-
pected to outperform deterministic approaches. Nevertheless, Purkiss (1981) observed in
his practically oriented review of manpower planning models that linear programming,
despite using deterministic data, is more popular than Markov decision problems, which
can handle uncertainty. In fact, this trend has continued: the number of workforce plan-
ning related papers that incorporate uncertainty in their model remains rather limited
compared to the papers that investigate deterministic problems (Bruecker et al., 2015).
The reason for the lack of research on this subject is the additional computational com-
plexity, introduced by the explicit consideration of uncertainty, which prohibits the use
of such techniques in many cases (see Price et al., 1980).
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1. Introduction

1.2. Structure of the dissertation

This dissertation tackles a strategic workforce planning problem in Chapter 2 and an
airport operations problem, in which workers are allocated to flights, in Chapter 3. Both
problems involve uncertainty, which is explicitly considered in the optimization models.
Since the models are difficult to solve, customized solution procedures have been developed
for each context.

Chapter 2 uses results from the working paper Ruf et al. (2019a), which was submitted
for publication to the Production and Operations Management Journal on the 26th of
November 2018, and which is currently being revised. I am the main contributor to
all parts of the working paper from posing the research question, development of the
model, conceptual development and implementation of the solution procedure, design of
the computational study and its execution, and analysis and interpretation of the results.

This chapter addresses a strategic workforce capacity planning problem for a hierarchically
skilled workforce in a production environment, focused on hiring and training policies in
the face of random resignations. Recruits are hired with little or no experience and are
trained over multiple periods to perform jobs that require ever greater skills. The train-
ing can take place either off-the-job, on-the-job or a combination thereof. The problem
is complicated by random resignations that can lead to labor shortfalls that jeopardize
continuous operations. The objective is to balance workforce costs (salaries, hiring and
training) with penalty costs associated with skill shortages. The problem is modeled as a
Markov decision problem for which several parameterized decision rules are proposed to
find solutions. Good parameter values are determined with a very large-scale neighbor-
hood search that is designed to deal with noisy cost function measurements. My com-
putational experiments show that good parameter values can be found in less than four
hours for instances derived from real-world data. When training requires extensive super-
vision, my results indicate that the number of workers concurrently in training should be
limited. They also show that a shorter, intense training period during which employees
do not perform regular tasks is preferable, in general, to a longer training period where
employees spend time both on and off the job. Finally, the results demonstrate the value
of worker flexibility when downgrading is allowed.

Chapter 3 of this dissertation uses results from the working paper Ruf et al. (2019b),
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which was submitted for publication to the journal Transportation Science on the 7th
of November 2019. I am the main contributor to all parts of the working paper from
posing the research question, development of the model, conceptual development and
implementation of the solution procedure, design of the computational study and its
execution, and analysis and interpretation of the results.

This chapter deals with the intra-day planning of an airport’s outbound baggage han-
dling processes. Outbound baggage is transferred from the terminal or transfer flights to
departing airplanes. To that end, each flight’s baggage has to be loaded into containers,
which will then be forwarded to the airplane. Planning the loading process consists of
setting the start times for the loading process and depletion of the baggage storage, as
well as assigning handling facilities and workers. Flight delays and uncertain arrival times
of passengers at the check-in counters require robust plans that are adjusted dynamically
every few minutes, and hence necessitate an efficient planning procedure. The problem
is modeled as an integer program that utilizes observed flight data to generate robust
plans in a rolling planning fashion, allowing problem parameters to be updated in each
re-optimization. A column-generation-based heuristic is employed to solve the problem
in limited computational time. My computational experiments demonstrate the perfor-
mance of the proposed procedure based on real-world data from a major European air-
port. The results show that (i) the procedure outperforms a heuristic that mimics manual
decision-making, and (ii) being able to dynamically (re-)allocate baggage handlers leads
to improved solutions with considerably fewer mishandled bags. Finally, Chapter 4 draws
conclusions from the previous two chapters.
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2. Workforce Capacity Planning
with Downgrading, Training, and
Resignations

2.1. Introduction

Strategic workforce planning is concerned with the long-term development and mainte-
nance of employees with the appropriate skills to run the organization and produce its
goods and services (see Price et al., 1980). This involves five tasks: (i) identifying the
relevant skill types and structures, (ii) determining the size and skills of the current work-
force, (iii) predicting the future supply of qualified job-seekers, (iv) predicting the future
demand for each skill, and (v) determining a capacity plan to develop and maintain an
appropriate workforce (see Edwards, 1983; Song and Huang, 2008). This chapter focuses
on (v), where the workforce is hierarchically skilled and fluctuates over time.

Bruecker et al. (2015) identify two skill classes common in the literature: categorical and
hierarchical skills. In case of categorical skills, each worker has a set of skills and must
possess the skills required for a task in order to be able to perform it. For hierarchi-
cal skills, workers with a higher skill level are more educated or have more experience
and can therefore perform more tasks, or they can perform certain tasks better or faster
(Bruecker et al., 2015). Some authors combine hierarchical and categorical skills to better
capture the skill structure of the organization under consideration. For example, Wiro-
janagud et al. (2007) and Fowler et al. (2008) use categorical skills and additionally place
workers on a hierarchical scale measuring a worker’s cognitive ability, which influences
their productivity, costs, and learning speed. When skills are hierarchically structured,
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2. Workforce Capacity Planning with Downgrading, Training, and Resignations

higher skilled workers may fill in for lower skilled workers when shortages exist. This is
referred to as substitution or downgrading (Emmons and Burns, 1991; Bard, 2004; Bard
and Purnomo, 2005) and adds flexibility, but excessive use may be perceived as demeaning
and lead to boredom, dissatisfaction, and eventually to lower retention rates (Eiselt and
Marianov, 2008).

There are different ways of establishing and managing a permanent workforce: recruiting,
internal transfers, training, management of turnover, retirement planning and layoffs being
the key instruments for controlling the capacity. Increasing the total size of the workforce
requires recruiting. When skills are hierarchical, although it may be possible to hire
experienced employees, it is often the case that new employees start at the lowest skill
level (e.g., Gans and Zhou, 2002; Wang, 2005; Bordoloi and Matsuo, 2001; Anderson,
2001; Sandborn and Prabhakar, 2015). To increase the overall skill level of a workforce,
either learning or training is required. While learning happens automatically through
repeating tasks, acquiring certain skills or licenses necessitates formal training. Training
can be conducted off-the-job or on-the-job or in some combination of the two. Although
employees in training do not contribute fully (if at all) to capacity and may even require
that instructors be temporarily removed from the workforce, reduced availability during
training is rarely considered in the literature (Bruecker et al., 2015). However, training can
consume a considerable amount of time, in which case capacity reductions are significant.

Unfortunately, the dynamics are not entirely under the control of the planner. Employees
may voluntarily leave an organization, for example, for family relocation, a change in
career, or retirement. The rate of voluntary turnover, being the key uncontrolled factor
(Edwards, 1983), makes workforce capacity planning one of the most challenging manage-
rial tasks. New recruits in particular exhibit high turnover rates since many find that their
aptitudes and preferences are not a good fit for the job (Bordoloi and Matsuo, 2001). Ex-
perienced employees on the other hand are less likely to resign, but they are much harder to
replace when they do. The situation becomes problematic when unexpected resignations
lead to capacity shortfalls. When there is a lack of skilled employees, hiring and training
must be given top priority despite the accompanying drop in manpower. Resignations
combined with long training durations and reduced availability during training require
that somewhat larger workforce levels be maintained in many production environments
to prevent daily disruptions.
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2. Workforce Capacity Planning with Downgrading, Training, and Resignations

When building and maintaining a workforce, an organization must strike a balance be-
tween personnel costs (hiring and training costs, salaries) and the negative consequences
of potential capacity shortfalls. Personnel costs increase with the size of the workforce,
and are a result of strategic workforce planning decisions. Capacity shortfalls occur when
the workforce is too small. They are most evident when making medium- to short-term
personnel scheduling decisions that involve the construction of weekly timetables, and
short-term operational planning, such as the daily assignment of tasks.

The planning problem tackled in this chapter derives from the steel industry, where highly
specialized workers control and monitor processes in plants that operate 24/7. Common
examples include the production of pig iron in blast furnaces, and the further processing
in steel and rolling mills. A furnace may operate continuously over a period that can
exceed 20 years (e.g., see Thyssenkrupp AG, 2014). To keep production on track, workers
with ever increasing skills are required at the melting range, at the pig iron platform, and
at the control center. As the smelting process is subject to variation, constant monitoring
and adjusting are required to prevent costly disturbances. The vocational training to
become a steelworker alone takes 3.5 years. Trainees are paid a monthly salary and
receive instructions in the classroom and in the plant. Having passed their exam, trainees
become assistants. Most assistants are directly employed by the company that trained
them. Subsequently, an assistant can undergo further training to become a foreman in
metallurgy, which takes about three additional years. Before an employee can occupy a
position in the control center further supervision by experienced co-workers is necessary.
As steelworkers are in great demand, the pool of qualified workers is severely limited, so
companies have to rely on building a workforce with their own apprentices.

Another area where this problem exists is the chemical industry, where basic chemicals
such as methanol or ammonia are processed by specialized workers running highly auto-
mated equipment and plants. Such plants operate continuously and require a minimum
number of licensed operators to keep them going. If for some reason there is a shortage
of operators at any position, the plant has to be shut down, which leads to lost produc-
tion and a host of costs related to the shutdown and subsequent restart. The licenses to
operate a plant at a certain skill level are obtained in successive stages. The apprentice-
ship to become a chemical plant operator alone takes three and a half years. All further
licensing is plant-type specific, so except in rare instances, it is not possible to hire skilled
employees. Hence, deliberate workforce planning is essential in both industries mentioned.
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The purpose of this chapter is to investigate the strategic workforce capacity planning
problem with a hierarchically skilled workforce, downgrading, extended training periods
during which employee productivity is reduced, and random resignations. The goal is to
develop hiring and training policies that balance workforce costs with the negative con-
sequences of under-staffing. The problem is modeled as a discrete-time, infinite horizon
Markov decision process with discrete states (i.e., numbers of workers) and stationary
data, including training durations and costs, salaries, demands, and resignation proba-
bilities. This approach makes it easy to include random resignations. The assumption
of stationary demands is reasonable as the facilities targeted are long-term investments
and run continuously for many years. Stationary data further allows for employing time-
invariant and simple decision-rules suitable for strategic decision-making. The decision
rules are of a “base-stock” type common in inventory literature. However, since training
reduces capacities in the short run, a simple base-stock rule does not perform well. Con-
sequently, two enhancements are proposed: a “base/minimum-stock” decision rule and
a “base/minimum-stock/training-capacity” decision rule. For the latter, each decision is
made as a function of the current state, base-stock, minimum-stock as well as training-
capacity values, which determine the desired number of workers, the minimum number
of workers, and the maximum number of workers that can be in training simultaneously
for each skill level, respectively. The challenge is to find good values for the decision rule
parameters in the presence of noisy measurements. To address this issue, I present a
very large-scale neighborhood search that quickly finds the promising region of the solu-
tion space and then increases the sample size in that region. Computational experiments
demonstrate the effectiveness of the proposed approach in solving instances derived from
real world problems. They further indicate that when on-the-job training does not require
excessive supervision, decisions of the base/minimum-stock type perform well.

The contributions of this chapter are threefold. First, a new model for the strategic work-
force planning problem with downgrading, extensive training requirements and random
resignations is provided; second, intuitive and effective parameterized decision rules to find
solutions are provided; and third, an effective search procedure to find good parameter
values is developed. Although there is an abundance of literature on workforce planning,
determining the precise timing of hiring and training while accounting for reduced ca-
pacity when trainees and instructors are removed from the shop floor is a surprisingly
difficult problem due to its combinatorial nature (see Bruecker et al., 2015). These issues
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are addressed here and managerial guidance on preferable training schedules and on the
value of downgrading are provided. While both mentioned applications can be catego-
rized as continuous manufacturing industries, where the main processing is typically done
at facilities that have very high startup and shutdown costs and work around the clock
(see Kreipl and Pinedo, 2004), the model is applicable to different industries as long as
skills are strictly hierarchical. For example, Gans and Zhou (2002) apply their approach
to call centers. Their model differs from ours in that workers progress further up in the
skill hierarchy automatically through learning by doing, instead of formal training that is
initiated by the planner.

The remainder of this chapter is structured as follows. Section 2.2 provides an overview of
strategic workforce planning and clarifies its relationship with inventory problems. Sec-
tion 2.3 describes the tackled problem and assumptions made in the model in detail, and
Section 2.4 introduces the Markov decision process model. Section 2.5 develops the deci-
sion rules and the neighborhood search heuristic. Section 2.6 contains the computational
experiments, followed in Section 2.7 with insights and conclusions drawn from the study.

2.2. Literature Review

The first part of this section introduces concepts from the field of workforce capacity
planning, the second part reviews research related to the problem of this work. The third
part highlights the relationship between this work and multi-echelon inventory problems.

Workforce capacity planning. As mentioned, categorical and hierarchical skill struc-
tures, and combinations thereof are common in literature. In the context of this work,
skills are hierarchical. Hierarchical skills can be defined on a continuous scale or at dis-
crete levels depending on what the skills represent and how they change over time. For
example, when experience increases with age a continuous scale is appropriate. Skills
acquired in training, as in this work, can be suitably expressed in discrete increments.
There are different ways of establishing and managing a permanent workforce. The main
instruments for the planner to adapt the skill pool are recruiting, career planning, promo-
tions, internal transfers, training, management of turnover, and retirement planning (see
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Price et al., 1980). Although it may be possible to hire experienced employees, it is often
the case that new employees start at the lowest skill level (e.g., Gans and Zhou, 2002;
Wang, 2005; Bordoloi and Matsuo, 2001). To increase the overall skill level of a workforce,
learning or training is required. Learning happens automatically by repeating tasks. On
the other hand, employees may loose knowledge if a task is not performed for a long time,
which is referred to as forgetting (Bailey, 1989; Valeva et al., 2017). Learning may occur
at different rates, which is known as the learning curve. Learning is sometimes considered
a random variable in workforce planning research when the planner cannot exercise direct
control and because of the large variance in the rate at which apprentices learn (see, e.g.
Anderson, 2001; Gans and Zhou, 2002). Formal training is a more direct way at the
planner’s disposal to substantially raise an employee’s skill level. Training often incurs a
cost and can be conducted off-the-job or on-the-job. When employees undergo off-the-job
training they do not contribute to production; during on-the-job training the trainee may
contribute to production, but at the same time a supervisor out of the workforce may
be required, which would fully or partially remove him from performing his normal func-
tions. The overall size of the workforce decreases, when employees leave an organization,
which may be initiated by the employer, as in the case of layoffs, or by the employee,
as in the case of resignations. Whether companies should lay off experienced employees
during business downturns is a question investigated by Anderson (2001). Critical skill
loss describes the loss of skills that are either non-replenishable or take very long periods
of time to reconstitute (Sandborn and Prabhakar, 2015). In the context of this work,
employees voluntarily resign and training takes considerable time, e.g. years.

Related work. Martel and Price (1981) deal with a multistage workforce capacity
planning problem extending previous approaches to cover the case where manpower de-
mands are uncertain. Their model is very general in that workers can be in arbitrary
states. However, they do not consider random resignations. Anderson (2001) investigates
a similar problem with two skill levels: unproductive apprentices and fully productive
experienced employees, and non-stationary stochastic demand for a single product or
service. Changes to the workforce occur when trainees become experienced employees
and when experienced employees retire, which are assumed to occur at constant rates.
The employer can adjust the workforce by hiring apprentices and laying off experienced
employees in order to balance the costs and time lags associated with training against
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the need to meet ever changing demand. The model proves useful for understanding the
strategic dynamics of workforce capacity planning in a volatile environment. In contrast,
in our model workers advance through multiple skill levels as a result of training decisions
made in a stationary environment but in light of stochastic resignations.

Bordoloi and Matsuo (2001) consider a workforce capacity planning problem related to
staffing an assembly line of a factory producing semiconductor equipment. Two different
skill levels are required on the line, while employees at a third level can train and substitute
for those at the lower levels. The demand for the final product is an independent and
identically distributed random variable. Fixed training and retention rates per period are
assumed, and the employer is allowed to adjust the composition of the workforce by hiring
recruits at discrete points in time.

Gans and Zhou (2002) investigate a multistage workforce capacity planning problem with
a discrete skill hierarchy and random non-stationary demand. In the model, planning is
done at discrete points in time and inventory levels are treated as continuous. Additions to
the workforce are permitted solely by hiring unskilled recruits. At the end of each period
the workers at each skill level randomly either quit, progress to the next skill level, or stay
at their current level. Different patterns are possible at different levels and in different
periods. The authors show that a “hire-up-to” type policy is optimal. They also develop
an LP-heuristic based on average learning and turnover rates, and find that the heuristic
does not recognize the need for a “buffer” of excess staff. Therefore, when additional
capacity is expensive or unavailable, explicit modeling of stochastic learning and turnover
effects may improve performance significantly. Our model is similar to that of Gans and
Zhou (2002) in that both capture the interdependence of hierarchical workforce planning
with the help of a cost function that can be adapted to the operational environment.
Instead of focusing on optimal hiring policies and learning effects, though, we consider
long-term training. Ahn et al. (2005) extend the work of Gans and Zhou (2002) to discrete
inventory levels.

Song and Huang (2008) tackle a multistage workforce capacity planning problem with
categorical skills (representing business units) and random turnover. As is typically the
case, the skill pool is adjusted by hiring, firing and transferring workers between busi-
ness units. Each of these actions incurs a cost and may be bound by company policies.
The authors model the problem as a time-space network and apply a successive convex
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Martel Anderson Bordoloi Gans Song Ruf
Hierarchical skills

possible
(arbi-
trary
states)

2 levels 3 levels many
levels

no many
levels

Demand per skill no no
possible

yes yes
Downgrading no yes no yes
Hiring decision yes yes yes yes yes
Training decision no no no yes yes
Long-term training no no no no yes
Random resignations no no no yes yes yes

Table 2.1.: Literature summary

approximation method to obtain near-optimal solutions. In contrast, we use a Markov
decision model with hierarchical skills in which training durations may span more than a
single period. Table 2.1 summarizes the features of the related works and compares them
to the problem presented here.

Relationship to inventory models. A similarity exists between our problem and
multi-echelon inventory problems with a serial product structure, a single product, sta-
tionary problem data, and periodic reviews (see Clark, 1972). The inventory at each level
relates to the available workers and holding costs equate to salaries. Moreover, order lead
times correspond to training durations, ordering costs correspond to training costs and
random resignations correspond to state-dependent demands or product spoilage. What
distinguishes the problem considered here is that there is internal demand for manpower
at each skill level that can be satisfied by employees qualified to work at that level or
(due to the possibility of downgrading) at a higher level. In case demand cannot be met
shortage costs are incurred. In addition, employees in training from one skill level to
the next higher level affect capacity at the next higher level and at the current level. If
an employee needs a supervisor during on-the-job training, “shipping” an employee may
temporarily reduce the available capacity at the next higher level, and if training does
not fully utilize a worker, he contributes to capacity at the current level at a rate equal
to the fraction of remaining time. These factors add several layers of complexity to the
problem at hand. The decision rules presented in Section 2.5 are similar to a base-stock
policy, also commonly referred to as an (S − 1, S), order-up-to, or one-for-one replacement

15



2. Workforce Capacity Planning with Downgrading, Training, and Resignations

policy (see, e.g., Scarf, 1960; Clark and Scarf, 1960). Using a simple base-stock policy,
new workers are requested as soon as the inventory position falls below a given level so
as to restock up to that level. Nevertheless, because sending workers to training reduces
capacity at the starting level and may additionally decrease capacity at the level that
requests new employees, a more careful order and supply policy is needed.

2.3. Problem Description

The objective of the planning is to maintain an appropriately skilled workforce in the face
of random resignations and given demand. The options for doing so include (i) hiring
unskilled recruits, (ii) training employees from one skill level to the next over an extended
period of time, and (iii) downgrading workers for any length of time. Planning decisions
are made at discrete points in time, here every six months, and training can take up to
three and a half years. Between decision points, the workforce composition is assumed to
be constant. In each period and for each skill level, costs are incurred when the workforce
is insufficient to cover the demand. Costs include overtime, and in the extreme, plant
shutdowns.

Hiring. Steelworkers and others in the process industries are in great demand, and
virtually all recruits continue to work at the company where they are trained. Because
it is rarely possible to hire skilled workers in these industries, companies have to rely
on building a workforce with their own apprentices. Therefore, it is assumed that all
entrants are unskilled and are immediately enrolled in an apprenticeship program that
spans a minimum of one period.

Training. Training raises a worker’s current skill level to the next higher level and
requires one or more planning periods of non-interruptible participation. Both on-the-
job and off-the-job options are common. While a worker is undergoing training, his
availability at his current skill level may be reduced. During off-the-job training no work
is performed. During on-the-job training a worker is not available at his current skill level,
but may contribute to production at the skill level he is being trained for, which increases
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capacity at that level. On the other hand, an instructor may be required for supervision,
which reduces capacity at that level. Hence, the net contribution at the target level may
be positive, or negative when the capacity gained by having the apprentice do tasks is
less than the capacity lost from diverting part of the supervisor’s time from production
to training (Anderson, 2001). While training schedules may differ from level to level, it is
assumed that they are identical for all employees at the same skill level. In practice, off-
the-job training is more prevalent at the beginning of the period while on-the-job training
is more prevalent towards the end. For simplicity we assume that the proportion of
time spent off- and on-the-job training remains constant throughout the training period,
although the corresponding ratio can be a function of the level. Nevertheless, the model
can be easily adapted to allow for dynamic adjustments of these proportions.

Resignations. Typically, resignations occur randomly and are individually motivated
(Gans and Zhou, 2002). They can adequately be modeled with a binomial distribution
in each period and at each skill level, assuming a known probability that depends on the
skill level. This allows us to account for higher resignation rates among new recruits.
It is further assumed that employees who hand in their resignation during a planning
period actually leave the workforce at the end of that period, a reflection of the fact that
most worker contracts have a clause that requires a certain amount of notice. Also, we
assume that workers do not resign while in training. This can be justified by noting that
professional development usually increases job satisfaction and reduces turnover (Eiselt
and Marianov, 2008). From a modeling and computational point of view, this assump-
tion helps reduce complexity and simplifies the presentation without sacrificing much in
accuracy.

Retirements. Unlike resignations, retirements are in general known well in advance,
and it is a comparably easy task to replace retiring workers by hiring and training new
employees in a timely manner. Not considering retirements means not considering the
capacity a newly hired worker contributes and the costs he causes while he is in training
to fill the vacancy created by a retiring worker. Since, including this aspect does not
influence the dynamics much, but would not allow to tackle the problem as a stationary
Markov decision process, it is not included in the model.
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Figure 2.1.: Employee state diagram

Figure 2.1 depicts the state diagram for one employee with two skill levels. The first round
of training starts immediately and takes two periods; three more periods are required to
achieve proficiency at level 2. An employee can resign at any level but not while in
training.

Costs. To keep a plant operating smoothly, a minimum number of operators at each
skill level is required. Workers at higher skill levels can be downgraded to do jobs that are
usually done by lower skilled workers, which provides some flexibility. A lack of operators
can lead to reduced output and/or poor quality as well as costly disruptions. At a furnace,
for example, operators must continuously control the smelting process. Often, in case of
worker shortages, corrective measures must be taken immediately to avoid disastrous
situations such as “hanging burden” or “scaffolding” (Sarna, 2013).

In the model, labor requirements are given in terms of the minimum numbers of workers
per skill level necessary to operate a plant continuously over the course of one planning
period. These requirements could be derived by solving a single personnel scheduling
problem with demand per level as input. To focus on strategic planning, however, the
minimum worker demands are taken as given (refer to Bard (2004); Billionnet (1999); Al-
Yakoob and Sherali (2007) to see how the actual values might be derived). Staff shortages
are penalized in the model. Available capacity per skill level can be distributed among
the same and all lower skill levels, and a penalty is incurred per unit of missing capacity.
In practice, minor personnel shortages can be compensated with overtime. Regulations
regarding overtime pay make the labor cost a piecewise linear convex function of the
required capacity (e.g., see Ye et al., 2018). When overtime does not suffice to compensate
for the shortage, operations are endangered. Computational experience has shown that
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my methodology can handle different cost functions. For ease of presentation, though,
linear penalty costs are assumed.

Additionally, each worker receives a salary based on his skill level. Salaries may deviate for
workers in training, and training may incur additional costs. The objective is to minimize
the expected infinite sum of discounted costs per period, consisting of personnel costs and
penalties for staff shortages given the current workforce composition.

2.4. Model

In this section, the workforce capacity planning problem is modeled as a discrete-time,
infinite horizon Markov Decision Process (MDP) with planning horizon T = {0, . . . ,∞}.
The notation used to present the model is summarized in Table A.1 of Appendix A. At
any time, each employee is at one of L skill levels in the set L = {1, 2, . . . , L}. Changes
to the workforce composition can only take place at fixed points in time. Dummy skill
level 0 represents an external placeholder from which workers are hired. As mentioned,
new recruits have to undergo initial training. For simplicity, we may refer to hiring as
training from level 0. Let L0 = {0, 1, . . . , L− 1} denote the set of skill levels from which
workers can start training, and let ∆l denote the training duration in planning periods to
proceed from Level l ∈ L0 to l + 1.

2.4.1. States

For each possible training start time, the pre-decision state comprises (i) the number of
workers at each skill level, and (ii) the number of workers who are in training at each level.
Variables za

tl ∈ N0 track the number of available workers at level l ∈ L at time t ∈ T ,
excluding workers currently in training. Variables zt

tlt′ ∈ N0 track the number of workers
at level l ∈ L0 in training at time t to reach level l+ 1 who started their training at time
t′ ∈ Ttl, where Ttl = {t−∆l + 1, . . . , t− 1}. Variable vector zt ∈ NK

0 with K =
∑

l∈L0
∆l

denotes the pre-decision state at time t ∈ T . Furthermore, Z ⊆ NK
0 denotes the state

space.

To illustrate the model, the following problem instance is used throughout this section.
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• Two skill levels: L = 2

• Initial training duration: ∆0 = 2

• Training duration from level 1 to level 2: ∆1 = 3

The state at t ∈ T is given by zt =
(
za
t,1, z

a
t,2, z

t
t,0,t−1, z

t
t,1,t−2, z

t
t,1,t−1

)
. Variables za

0,1 and
za
0,2 are the number of available level 1 and 2 workers at time t = 0, respectively. Variable
zt
0,0,−1 is the number of workers who have been hired one period ago at time −1. They

will finish their training at the end of the current period at time 1. Variables zt
0,1,−2 and

zt
0,1,−1 are the numbers of workers who started training at level 1 to reach level 2 at times
−2 and −1, respectively; zt

0,1,−2 workers will become available at level 2 at the end of the
current period.

2.4.2. System dynamics

The evolution of the system from one decision to the next is a two-step process (see Figure
2.2). The first step captures the immediate effects of the decisions on the workforce leading
from the pre-decision state to the post-decision state. The one-period costs are calculated
based on the post-decision state as explained below. The second step is the transition
from the post-decision state to the pre-decision state of the next period. This separation
requires defining post-decision state variables, but simplifies the exposition.

Decisions. Let decision variables xtl ∈ N0 be the number of workers currently at level
l ∈ L0 sent to training at time t ∈ T . Let xt = (xtl)l∈L0

∈ NL
0 denote the decision vector

at time t. The feasible region is defined by the following constraints.

xtl ≤ za
tl ∀t ∈ T , l = 1, . . . , L− 1 (2.1)

xtl ∈ N0 ∀t ∈ T , l ∈ L0 (2.2)

Constraints (2.1) ensure that no more than the available level l workers are trained and
constraints (2.2) define the variable domains.

The post-decision state variables track the workforce composition directly after hiring
and training. They are signified by the superscript “x”. Variables zax

tl ∈ N0 represent the
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Figure 2.2.: Sequence of decisions, cost calculations and outcomes

number of available workers at level l ∈ L, and variables ztx
tlt′ represent the number of

level l ∈ L0 workers who are in training to reach level l + 1 and started their training
at t′ ∈ Ttl ∪ {t}. Similarly as before, variables zx

t ∈ NK
0 with K = L +

∑
l∈L0

∆l denote
the post-decision state of the workforce at time t ∈ T . The transition function from
pre-decision state zt to post-decision state zx

t , given the decision vector xt, is denoted by
zx
t = SMx (zt, xt) and defined by the following constraints.

ztx
tlt = xtl ∀t ∈ T , l ∈ L0 (2.3)
zax
tl = za

tl − xtl ∀t ∈ T , 1 ≤ l ≤ L− 1 (2.4)
zax
tL = za

tL ∀t ∈ T (2.5)
ztx
tlt′ = zt

tlt′ ∀t ∈ T , l ∈ L0, t
′ ∈ Ttl (2.6)

Constraints (2.3) track the newly hired or currently available workers who are sent to
training. Constraints (2.4) remove the workers sent to training from the available pool.
All other state variables remain unchanged as indicated by constraints (2.5) and (2.6).

Extending the previous example, assume the state at time 0 is such that

• one worker A is available at level 1 (za
0,1 = 1)

• one worker B is available at level 2 (za
0,2 = 1)

• one worker C is in training from level 1 to 2, and has started training at time −2
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(zt
0,1,−2 = 1)

Assume that the decision at time 0 is such that one worker D is hired (x0,0 = 1) and that
worker A is sent to training (x0,1 = 1). Then, the post-decision state zx

0 = SMx (z0, x0)

becomes

• worker D is in initial training (ztx
0,0,0 = x0,0 = 1)

• worker A is in training from Level 1 to 2 (ztx
0,1,0 = x0,1 = 1) and not available

anymore (zax
0,1 = za

0,1 − x0,1 = 1− 1 = 0)

• worker B is available at Level 2 as before: zax
0,2 = za

0,2 = 1

• worker C continues training (ztx
0,1,−2 = zt

0,1,−2 = 1)

Transition to the next period. When transitioning from post-decision state zx
t to

the next period’s pre-decision state zt+1 two things happen. First, during period (t, t+ 1)

employees at any skill level may hand in their resignation. It is assumed that those
workers continue working until the end of the period, and actually leave the company at
time t + 1. The probability that a level l worker resigns is denoted by pr

l . Binomially
distributed random variable Xr

tl ∼ B
(
zax
t−1,l, p

r
l

)
gives the number of workers that leave at

time t ∈ T under the assumption that departures are independent. For convenience, the
vector of random variables Xr

t = (Xr
tl)l∈L is defined. Second, workers in training either

finish their training at the end of the period if the training period is over, or remain in
training. The transition function from post-decision state zx

t to the next pre-decision state
zt+1, given the random information Xr

t+1, is denoted by zt+1 = SMX (zx
t , X

r
t+1

)
, which is

defined by the following constraints.

za
t+1,l = zax

tl + ztx
t,l−1,t−∆l−1+1 −Xr

t+1,l ∀t ∈ T , l ∈ L (2.7)
zt
t+1,l,t′ = ztx

t,l,t′ ∀t ∈ T , l ∈ L0, t−∆l + 2 ≤ t′ ≤ t (2.8)

Constraints (2.7) track the number of available workers at each level in each time period.
This number is increased at time t + 1 by the number of workers who started their
training at t − ∆l + 1 at level l − 1, and decreased by those that resign. Workers who
started their training later continue training as indicated by constraints (2.8). Finally,
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the composite transition function from pre-decision to pre-decision state is defined as
zt+1 = SM (zt, xt, X

r
t ) = SMX (SMx (zt, xt) , X

r
t

)
.

Extending the previous example and assuming that level 2 worker B resigns (Xr
1,2 = 1),

the new state z1 = SMX (zx
0 , X

r
1) becomes

• worker C is available, but worker B has resigned
(za

1,2 = zax
0,2 + ztx

0,1,−2 −Xr
1,2 = 1 + 1− 1 = 1)

• worker D is still in initial training (zt
1,0,0 = ztx

0,0,0 = 1)

• worker A is still in training from Level 1 to 2 (zt
1,1,0 = ztx

0,1,0 = 1)

2.4.3. Objective function and costs

The one-period costs are a function of the post-decision state and consist of workforce
costs, i.e., salaries and training costs, and the penalty costs for under-staffing. The ob-
jective is to minimize the total discounted costs, where γ denotes the discount factor.
Because the state at any future time is random, the objective is to find a policy that
minimizes the expected costs over all outcomes. Let Π denote the set of policies. A policy
π ∈ Π specifies a sequence of state-dependent decision rules, i.e., a decision rule to be
used for each state. A stationary policy uses the same decision rule for each decision. An
optimal policy is defined to be one that produces an objective function value that is as
good as or better than the value of any other policy for all states. Because the problem
data are stationary, an optimal policy is stationary as well (see Puterman, 2014, Chapter
6). Hence, I restrict my attention to stationary policies. Let Aπ (zt) 7→ xt denote the
decision rule of stationary policy π. This leads to the objective function

min
π∈Π

E
∞∑
t=0

γtC
(
SMx (zt, A

π (zt))
)

(2.9)

where C (zx
t ) = Cwf (zx

t ) + C− (zx
t ) is the one-period cost function of the post-decision

state consisting of workforce costs Cwf (zx
t ) and the under-staffing penalty C− (zx

t ).
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Workforce costs. Let ct
l denote the costs for a worker in training from level l ∈ L0

to l + 1, and let cs
l denote the regular salary for a level l worker. Furthermore, let

ztx
tl ≡

∑
t′=Ttl∪{t} z

tx
tlt′ . The workforce costs are linear in the post-decision state; that is,

Cwf (zx
t ) =

∑
l∈L0

ct
lz

tx
tl +

∑
l∈L

cs
lz

ax
tl (2.10)

Under-staffing penalty. Experienced workers are fully productive at their current
level while those in training from level l ∈ L0 to l + 1 have reduced availability. In
particular, the latter contribute to capacity at the target level l + 1 at potentially a
negative rate ρt

l , which is a function of their relative productivity at level l + 1 and
the amount of supervision required during on-the-job training. Also, they contribute to
capacity at their current level l at rate ρc

l , which corresponds to their remaining capacity
after on-the-job and off-the-job training is accounted for. Since a worker in training cannot
be more productive than an available worker, it is assumed that ρc

l +ρt
l ≤ 1. The capacity

at each level l ∈ L is

Kl (z
x
t ) = zax

tl +
∑

k=l:k<L

ρc
l z

tx
tl + ρt

l−1z
tx
t,l−1 (2.11)

Having reached skill level l ∈ L allows a worker to satisfy demand at all levels k ≤ l.
Therefore, capacity Kl (z

x
t ) can be distributed to levels k = 1, . . . , l. Now let Dl denote

the demand, i.e., the minimum number of required workers per period at level l ∈ L, and
let c− denote the penalty cost per unit of capacity shortage per period. The total penalty
costs per period are calculated as follows (see Algorithm 1). Let K denote the remaining
capacity, which is zero initially. Starting at the top level down to the lowest level, the
available capacity of that level is added to K. If K covers the demand, then it is reduced
by the demand. If the demand is greater than K, then the penalty is increased to account
for the uncovered demand and K is set to zero. Note that Kl (z

x
t ) may be negative, thus

decreasing K at level l.
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Algorithmus 1 : Under-staffing penalty
Function C− (zx

t ) : R
Input : Current post-decision state zx

t

Output : total under-staffing penalty per period, C− (zx
t ), denoted by c below

c← 0, K ← 0
for l = L, . . . , 1 do

K ← K +Kl (z
x
t )

if K ≥ Dl then K ← K −Dl

else c← c+ c− · (Dl −K), K ← 0
return c

2.5. Solution Methodology

In this section, various solution methods to solve model (2.1) – (2.9) are developed. If
the state space is sufficiently small, optimal solutions can be derived with policy iteration
(PI) or value iteration (VI) (see Powell, 2007; Puterman, 2014). Unfortunately, the state
space for instances of realistic size is far too large for the PI or VI algorithms, even if
worker counts are bounded. As an alternative, I employ heuristic decision rules or policy
function approximations, which directly return an action given a state, without resorting
to any form of embedded optimization (Powell, 2007). These decision rules are aimed
at maintaining certain workforce inventories or stocks. Hence, they are parameterized
by base-stock values expressing the number of workers the employer strives to maintain
at each level. The first decision rule uses only this parameter vector, and I call it base-
stock policy or base-stock rule. Base-stock values and current stocks indicate whether
there is a shortage or excess at each level and how many workers need to be hired and
trained to compensate for potential shortages. Sending too many employees to training
can create too large of a shortage at their current level. Therefore, the second decision rule
uses an additional parameter vector, which determines minimum-stock values that are not
undercut when sending workers to training. The result is a parameterized decision rule I
call base/minimum-stock policy or base/minimum-stock rule. When extensive supervision
is needed, i.e. when workers in training reduce the capacity at the target level, having
many workers simultaneously in training creates shortages at the target level. To prevent
such situations, the third policy uses a third parameter vector that specifies training-
capacity values. The result is a policy I call base/minimum-stock/training-capacity policy
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or base/minimum-stock/training-capacity rule. The difficulty is finding good parameter
values. For that purpose, simulation is used to obtain estimates of the value of a policy.
Key to the computations is an effective search strategy to deal with noisy measurements.
The notation used in this section is summarized in Table A.2 in Appendix A.

2.5.1. Policies

Let Sl denote the base-stock (desired number of workers) at level l ∈ L and let S =

(S1, . . . , SL). Let ztl = za
tl +

∑
t′∈Tt,l−1

zt
t,l−1,t′ be the number of workers at level l ∈ L or in

training to reach level l at time t and let ntl =
∑L

k=l (Sk − ztl) be the shortage (ntl > 0)
or surplus (ntl < 0) at level l ∈ L at time t. Note how ntl accounts for downgrading by
including potential excesses of workers at all levels above level l.

Definition. A base-stock policy specifies a decision rule A (S, zt) 7→ xt for all t such that

xtl = min
{
[nt,l+1]

+ , za
tl

}
for l = L− 1, L− 2, . . . , 1 (2.12)

xt0 = [nt,1]
+ =

[∑
l∈L

(Sl − ztl)

]+
. (2.13)

where [ · ] + denotes max {0, · }.

Equation (2.12) determines the number of workers that are sent to training at all levels,
excluding the hiring decision. Hence, at each level we try to send as many workers
to training as necessary to compensate for the shortage at the next higher level, but
no more than available. If there is a surplus at the next higher level, no workers are
trained. Equation (2.13) determines the number of workers to hire. The absence of
hiring restrictions means that it is always possible to directly address the demand for
entry workers. Therefore, the hiring decision (xt0) adjusts the total size of the workforce
to the sum of the base-stock values if there are too few workers in the system. The
computations are carried out incrementally starting at the top level with ntL = SL − ztL

and ntl = nt,l+1 + Sl − ztl for all lower levels.

As an example, assume a problem instance with two skill levels and let D1 = D2 = 1,
S1 = 3, S2 = 5, za

t1 = 4, za
t2 = 1, ρt

0 = ρc
1 = ρt

1 = 0. Since there is a shortage of four

26



2. Workforce Capacity Planning with Downgrading, Training, and Resignations

workers at level 2 (nt2 = S2 − zt2 = 4), with the base-stock policy, all four level 1 workers
will be trained immediately and three workers will be hired (nt1 = 3). This creates a
manpower shortage of one at level 1, however, so it may not be the best option. Because
there is an oversupply of one at level 1 (S1 + 1 = za

t1), the employer can send one worker
to train with assurance that the stock does not drop below the base-stock value. Training
two workers would create a temporary shortage of one worker at level 1 compared to the
base-stock value, but the demand would still be satisfied, as long as the remaining two
workers do not both resign. Training three workers would create a temporary shortfall of
two workers at level 1 compared to the base-stock value, but the demand would still be
satisfied, as long as the remaining worker does not resign.

These options raise the question: “should a second and third worker be trained immedi-
ately or is it better to wait until newly-hired recruits become level 1 workers and create an
oversupply?” One extreme is to train as many workers as possible

(
xtl = min

{
za
tl, [nt,l+1]

+})
as done with the base-stock policy; the other extreme is to never violate the base-
stock value

(
xtl = [min {za

tl − Sl, nt,l+1}]+
)
. As any value between these bounds may be

suitable, I introduce a parameter vector M = (M1, . . . ,ML−1) of size l − 1, where Ml

denotes the minimum-stock for l ∈ {1, . . . , L− 1} that must be maintained when sending
workers to training from level l to l + 1.

Definition. The base/minimum-stock policy uses the decision rule A (S,M, zt) 7→ xt for
all t defined by

xtl = [min {nt,l+1, z
a
tl −Ml}]+ for l = L− 1, L− 2, . . . , 1 (2.14)

xt0 = [nt,1]
+ . (2.15)

Equation (2.14) determines the number of workers who are sent to training at all levels,
excluding the hiring decision. The employer tries to send as many workers to training
as necessary to compensate for the shortage at the next higher level, but a minimum of
Ml workers must remain at the current level

(
xtl ≤ [za

tl −Ml]
+). If that is not possible or

if nt,l+1 < 0, no workers are trained. Equation (2.15) determines the number of workers
to hire. In the previous example, if M1 = 2, two workers are trained from level 1 to 2

(nt2 = 4, za
tl −Ml = 2), leaving two workers at level 1, and three workers are hired.

As a variation of the above example, assume that each new trainee requires half-time
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supervision and does not add to capacity. Accordingly, ρt
0 = −1

2
. Given that three workers

are hired, the capacity at level 1 is temporarily reduced to K1 = 2 − 1.5 = 0.5 creating
a manpower shortage of 0.5. In such a situation, it may be better to train two workers
at a time. Then, if no level 1 worker resigns, the capacity remains at K1 = 2 − 1 = 1,
which is sufficient to cover the demand. To deal with this case, an additional parameter
is used for each level l where ρt

l < 0. Specifically, let Cl denote the maximum number of
level l workers who are allowed to be in training simultaneously for promotion to level
l + 1, for l ∈ {l ∈ L0 | ρt

l < 0} . Henceforth, C = (Cl)l∈
{
l∈L0|ρt

l<0
} is referred to as the

training-capacity.

Definition. The base/minimum-stock/training-capacity policy uses the decision rule
A (S,M,C, zt) 7→ xt for all t defined by

xtl =


[
min

{
nt,l+1, z

a
tl −Ml, Cl −

∑
t′∈Ttl z

t
tlt′

}]+ if ρt
l < 0

[min {nt,l+1, z
a
tl −Ml}]+ otherwise

for l = L− 1, L− 2, . . . , 1

(2.16)

xt0 =


[
min

{
nt,1, C0 −

∑
t′∈Tt0 z

t
t0t′

}]+ if ρt
0 < 0

[nt,1]
+ otherwise

. (2.17)

Equation (2.16) determines the number of workers to train at each level, excluding the
hiring decision. If the productivity rate at the target level is greater than or equal to
zero, the same logic as in the base/minimum-stock policy is used. Otherwise, the number
of workers who can be sent to training is limited, such that at most Cl workers can be
training concurrently from level l to l + 1. Equation (2.17) determines the number of
workers to hire. Again, if the productivity rate at the target level is negative, then there
can be at most C0 workers in training.

2.5.2. Policy search

The challenge is to find the optimal base-stock, minimum-stock and training-capacity val-
ues with respect to objective function (2.9). In the trivial case when there are no resig-
nations, i.e., pr

l = 0 for all l ∈ L, the base-stock values are equal to the demand at their
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respective level because the state with za
tl = Dl and all other variables equal to zero must

be reached once. Without further action the workforce would stay in that state forever
covering demand at minimum cost. A positive resignation rate requires having a sufficient
number of workers on the roster ready to fill in for the resigning workers until they can be
replaced. Accordingly, the base-stock values increase with both the probabilities pr

l and
the training durations at level l ∈ L.

As an example, Figure 2.3 illustrates how resignation probabilities may influence the
optimal base-stock values of the base-stock policy for an instance with two skill levels.
The gray line is the demand at each skill level (D1 = D2 = 5) . In the left graph, the
resignation probability at level 2 is fixed to pr

2 = 0.15, while pr
1 is varied from 0 to 0.2.

An increase of pr
1 is compensated for by increasing the base-stock value at level 1 (S1).

In the right graph, the resignation probability at level 1 is fixed to pr
1 = 0.15, while pr

2 is
varied. An increase of pr

2 is compensated for by increasing the base-stock value at both
levels. From pr

2 = 0 to pr
2 = 0.01, the sum of the base-stock values remains the same, but

the number of level 1 workers decreases by one and the number of level 2 workers, who
can cover some of the demand at level 1 due to the possibility of downgrading, increases
by one.
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Figure 2.3.: Base-stock values as a function of resignation probabilities

Policy evaluation. In the search for good parameter values it is necessary to evaluate
policies. If the state space is sufficiently small, it is possible to calculate the exact value
of a policy for each state as in the PI algorithm. However, for instances reflecting reality
in the targeted industries, even a finite state space would be much too large for the policy
evaluation step in PI to succeed. As an alternative, the value of a policy is statistically
estimated via simulation. There are two issues to consider. First, the objective function
value for a policy depends on the initial state. Since the policy function approximations
A (S, zt), A (S,M, zt), and A (S,M,C, zt) are not optimal, they may perform well in gen-
eral, but lead to inferior decisions in some states. Second, for infinite horizon problems
it is impossible to obtain an unbiased observation of the objective function value with a
finite number of measurements (Powell, 2007, Section 9.1.2).

To address the second issue, instead of directly simulating the objective function value,
which would introduce a bias, the expected one-period costs are estimated and then
projected out over an infinite horizon. The error in the objective function value is then
solely a result of the deviation between the true and the estimated expected one-period
costs.
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To address the first issue, observe that the aim is to determine a “good” policy, that
is, one that performs well for the states that are visited most often under that policy.
Therefore, the simulation initially starts in the state with za

0l = Sl and zt
0lt′ = 0, and all

subsequent simulation runs continue from the state where the previous simulation run
ended. Hence, the more periods are simulated, the smaller the effect of the initial state
gets, and the greater the accuracy of the average one-period costs under that policy gets.
In other words, the average costs are weighted according to the frequency in which states
are visited using that policy.

Simulating a single period given policy π and state zt at time t requires the following
operations: (i) determine the post decision state

(
zx
t ← SMx (zt, A

π (zt))
)
; (ii) compute

the one-period costs, which are denoted by Ĉπ
t ← C (zx

t ); (iii) obtain a sample of the
resignations, which is denoted by X̂r

t+1; and (iv) determine the next state that can be
used as input for simulating another period (see Algorithm 2). Let C̄π

n = 1
n

∑n−1
t=0 Ĉπ

t

denote the sample mean after n observations. Using the discount factor γ, the objective
function value (2.9) is estimated as C̄π

n/ (1− γ).

Algorithmus 2 : Policy evaluation simulation
Function sim

Input : Policy π specifying a decision rule Aπ : Z → X ,
State zt

Output : Computed one-period costs Ĉπ
t ,

Next state ẑt+1

zx
t ← SMx (zt, A

π (zt))
Ĉπ

t ← C (zx
t )

X̂r
t+1 ← sample Xr

t+1

ẑt+1 ← SMX
(
zx
t , X̂

r
t+1

)
return Ĉπ

t and ẑt+1

State of knowledge. For comparing two policies, the sample size, the sample mean and
the sample variance are required as described below. Let nπ, M2,π

n =
∑n

i=1

(
Ĉπ

i − C̄π
n

)2
,

S2,π
n = 1

n−1
M2,π

n , and Sπ
n =

√
S2,π
n denote the sample size, the sum of the squares of the

differences from the sample mean, the sample variance, and the sample standard deviation
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after n observations, respectively. These quantities can be updated recursively as follows
(see Welford, 1962).

C̄π
n =

(
1− 1

n

)
C̄π

n−1 +
1

n
Ĉπ

n (2.18)

M2,π
n = M2,π

n−1 +
n− 1

n

(
Ĉπ

n − C̄π
n−1

)2
(2.19)

To improve efficiency, the policy parameters and the triplets nπ, C̄π
n and M2,π

n are stored
in a hash map V for constant time access. Each time a policy π is evaluated for the first
time, its triplet is initialized with nπ = 1, C̄π

1 = Ĉπ
1 , M2,π

1 = 0 and placed in V . If a triplet
for π already exists in V , it is updated with the recursive equations (2.18) and (2.19).

Search strategy. Finding good policy parameters via simulation is challenging because
(i) the parameter vectors are integer points in a multi-dimensional space, and hence,
there are many candidate vectors to evaluate, and (ii) policy evaluation is based on noisy
measurements that are computationally expensive. Reducing the noise requires many
observations. A naive procedure would be to conduct a neighborhood search where each
policy is simulated for a sufficient number of periods. However, it is more efficient to avoid
excess computations on candidates with little promise, but instead invest in determining
the best candidate out of a few promising alternatives. Let N (π) denote the neighborhood
of policy π. The neighborhoods for the base-stock, the base/minimum-stock and the
base/minimum-stock/training-capacity policy are defined as follows.

N (S) =
{
S ′ | [Sl − 1]+ ≤ S ′

l ≤ Sl + 1, S ′
L ≥ DL

}
\ S

N (S,M) =
{
S ′ ×M ′ | S ′ ∈ N (S) , [Ml − 1]+ ≤M ′

l ≤Ml + 1,M ′
l ≤ S ′

l

}
\ (S,M)

N (S,M,C) =

{
S ′ ×M ′ × C ′ | (S ′,M ′) ∈ N (S,M) ,max {Cl − 1, 1} ≤ C ′

l ≤

min

{
Cl + 1,

L∑
k=l+1

S ′
k

}}
\ (S,M,C) ,

For the current policy π, the basic logic of the search is as follows:

1. terminate when there is no better neighbor as determined statistically, or
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2. move to a better neighbor when a better neighbor is found, or

3. perform additional measurements for either π or a promising φ ∈ N (π) to increase
the sample size, and then continue.

The search terminates at a local optimum π when all neighbors φ ∈ N (π) do not provide
a better objective function value than π. To statistically decide if policy π is better than
a policy φ, i.e., if C̄π

∞ < C̄φ
∞ we use Welch’s t-test (see e.g., Ruxton, 2006). The test

statistic normalizes the mean difference with the approximate standard deviation of the
mean difference:

T (π, φ) =
C̄π

nπ − C̄φ
nφ√

S2,π
nπ

nπ +
S2,φ

nφ

nφ

. (2.20)

The null hypothesis is C̄π
∞ ≥ C̄φ

∞ and the rejection region given the significance level α
is defined by {T (π, φ) | T (π, φ) < −t1−α;ν}, where t1−α;ν is the (1− α)-quantile with ν

degrees of freedom of the Student’s t-distribution, and ν is calculated as

ν ≈

(
S2,π
nπ

nπ +
S2,φ

nφ

nφ

)2

(
S
2,π
nπ
nπ

)
nπ−1

+

(
S
2,φ

nφ

nφ

)2

nφ−1

. (2.21)

The difficulty is that when C̄π
∞ and C̄φ

∞ are almost equal, a vast number of observations
is needed to reject the null hypothesis given a fixed significance level. To limit the com-
putation time, the number of observations that are collected per pair of policies π and φ

is limited with parameter obs. The significance level is

α (π, φ) = 0.0001 +
0.5− 0.0001

obs
·min

{
nπ, nφ

}
, (2.22)

which is gradually increased from 0.0001 to 0.5. When min
{
nπ, nφ

}
= obs, α (π, φ) = 0.5

and the Welch-test is satisfied when T (π, φ) < 0. Otherwise, if at any time T (π, φ) ≥ 0,
the search moves to policy φ. The search procedure is outlined in Algorithm 3.
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Algorithmus 3 : Policy search

Input : Initial policy π
Output : New policy π

obs← 12.5 · 106
Initialize hashmap V
mainloop: while true do

Observe π, update V (π)
for φ ∈ N (π) do

Observe φ, update V (φ)
innerloop: while true do

if T (π, φ) > 0 then π ← φ, continue mainloop
if T (π, φ) < −t1−α(π,φ);ν then break innerloop
if nπ < nφ then Observe π, update V (π) else Observe φ, update V (φ)

return π

Computational complexity. Simulating a single period (Algorithm 2) requires the fol-
lowing: evaluation of the decision rule, transition to the post-decision state

[
SMx (zt, xt)

]
,

calculation of the costs C (zx
t ), sampling to determine the number of resignations, and

transition to the next pre-decision state
[
SMX

(
zxt , X̂t+1

)]
. For simplicity, let N =

maxl∈L0 {∆l, L}. Evaluating the decision rule has a complexity O (N2) because it has
to loop over the training duration of each skill level to determine the number of workers
that will be at each level. The cost function has time complexity O (N2) because all state
variables may contribute to the costs and the capacities. The complexity of the transition
functions is in O (N2) because all state variables must be set. Therefore, simulating one
period has a complexity of O (N2).

When comparing two policies, at most 2 · obs simulation runs are needed to decide which
is better. In each iteration of the “mainloop” of Algorithm 3 the current policy π is
compared to at most |N (π)| neighbors. Because |N (S)| ::O

(
3L
)
, |N (S,M)| ::O

(
32L
)

and |N (S,M,C)| ::O
(
33L
)

the neighborhoods grow exponentially in L, and thus the
“mainloop” has exponential complexity that depends on the decision rule. The number
of iterations depends on where the search starts and the final policy parameters. For the
evaluated data sets, I found that less than 100 iterations were required.
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2.6. Computational Study

In the first set of experiments, I demonstrate the effectiveness of the base-stock and
base/minimum-stock policies in combination with the proposed search procedure to gen-
erate solutions for small to large instances. Whenever possible, the results of the presented
procedure are compared to the results obtained with the standard algorithms PI and VI
(see Powell, 2007; Puterman, 2014). To determine the value of downgrading, each instance
is solved another time with a modified cost function that does not allow for downgrading.
Next, I examine the performance of the base/minimum-stock/training-capacity policy
when on-the-job training requires significant supervision (significantly reduces capacity
at the target levels) and compare the results to the base/minimum-stock policy. The re-
sults show that the base/minimum-stock/training-capacity policy performs significantly
better than the base/minimum-stock policy, but the computational effort is high. Finally,
I show that short and intense training periods are superior to long training periods with
low intensity. In the experimental design, all costs are given in 1000 monetary units and
the discounting factor γ is set to 0.99. A 12-hour time limit was placed on the computa-
tions for each instance, which were conducted on a PC with a quad core Intel®Xeon®CPU
E3-1225 v3 running at a frequency of 3.20GHz, and with 16 GB of storage.

2.6.1. Base-stock and base/minimum-stock policies

In the first part of the analysis, the ability of the base-stock and base/minimum-stock poli-
cies in combination with the search procedure to solve instances of increasing size is
demonstrated. Extending the number of skill levels and training durations adds dimen-
sions to the state space. Higher demand and resignation rates require maintaining a larger
workforce. The number of skill levels L is limited to 2, 3 and 4. To make the number of
test instances manageable, specific model parameters are fixed based on steel and chemi-
cal industry norms and worst case assumptions. The productivity rates are non-negative
except for two instances. I increase the size on an instance by increasing the training
durations, the demand, and the resignation probabilities. The penalty cost per unit of
capacity shortage per period is set to c− = 1000 for all instances. Table 2.2 lists the 32
instances that were generated for demonstration purposes. While instances 1 to 30 have
been generated by systematically ranging the problem parameters, instances 31 and 32
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are based on real world data sets. Workforce demand, salaries, training durations and
costs, as well as productivity and resignation rates are stated per period.

The results for PI, VI, the base-stock and the base/minimum-stock policy are presented
in Table 2.3. Computation times (sec) and performance measures are given for each algo-
rithm. When an algorithm fails to solve an instance due to an out-of-memory error, it is
indicated by “OOM”; when an algorithm has not terminated within 12 hours, it is indi-
cated by “> 12h”. For PI and VI the table shows the average cost per period for an optimal
policy when the system starts in the best state C∗ = (1− γ) ·minzt∈Z V (zt), where V (zt)

is the value of the objective function (2.9). For the base-stock and the base/minimum-
stock policies the final policies are simulated another 107 periods to obtain a reliable
estimate for the average cost per period (column C̄π). The column “Gap to PI, VI” gives
the gap with respect to an optimal policy, if available, where Gap =

(
C̄π − C∗) /C∗. Fur-

thermore, in order to determine the value of downgrading, the instances have additionally
been solved with the base/minimum-stock policy and a modified cost function that does
not account for downgrading. More precisely, the original under-staffing penalty C− (zx

t )

as shown in Algorithm 1, is replaced by C− (zx
t ) = c− ·

∑
l∈L [Dl −Kl (z

x
t )]

+. Again, the
average costs are shown (column C̄π′), and the column “Gap to ASM” reports the gap
with respect to the base/minimum-stock policy with downgrading.

The results show that the standard algorithms are only capable of solving small instances.
For instances of reasonable size, PI runs out of memory (OOM) at the policy evaluation
step due to the required matrix inversion (see Powell, 2007, Section 3.3 Equation (3.20));
for VI the computation time becomes prohibitively long. In contrast, with the proposed
heuristic, solutions are found for all instances. The longest runtime of 223 minutes was
observed for the base/minimum-stock policy for instance 31. In terms of solution quality,
the base-stock policy exhibits large gaps of up to 18.5% and 19.6% with respect to the
available optimal results and the base/minimum-stock policy, respectively. The gaps in-
dicate that, in general, the base-stock policy performs better when workers are productive
during training, i.e., when ρc

l are comparatively high. For example, instances 1 and 2 are
identical, except for the productivity rate ρc

1, which is 0.3 for instance 1 and 0.0 for instance
2. The optimality gap for instance 2 (0.5) is larger than for instance 1 (0.3). This can be
observed for all such pairs [i.e., all instance pairs (1, 2) , (3, 4) , . . . , (29, 30)] where all prob-
lem parameters are identical except for the ρc

l values, by either looking at the optimality
gap (column “Gap to PI, VI”) if available or by looking at the gap with respect to the
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No. Min no. Salary Training Resignation

skill workers per Duration Costs Productivity Productivity probability

levels per level level per level per level starting level target level per level

L Dl cs
l ∆l ct

l per level, ρc
l per level, ρt

l pr
l

1

2

1, 1

10, 20

1, 1

5, 15

0.3

0, 0

0.02, 0.01

2 1, 1 1, 1 0.0 0.02, 0.01

3 2, 2 2, 2 0.3 0.04, 0.02

4 2, 2 2, 2 0.0 0.04, 0.02

5 3, 3 3, 3 0.3 0.05, 0.02

6 3, 3 3, 3 0.0 0.05, 0.02

7 7, 7 4, 4 0.3 0.06, 0.03

8 7, 7 4, 4 0.0 0.06, 0.03

9 15, 15 7, 7 0.3 0.08, 0.04

10 15, 15 7, 7 0.0 0.08, 0.04

11

3

1, 1, 1

20, 26, 32

1, 1, 1

6, 21, 26

0.3, 0.3

0, 0, 0

0.03, 0.02, 0.01

12 1, 1, 1 1, 1, 1 0.0, 0.0 0.03, 0.02, 0.01

13 2, 2, 2 2, 2, 2 0.3, 0.3 0.04, 0.03, 0.02

14 2, 2, 2 2, 2, 2 0.0, 0.0 0.04, 0.03, 0.02

15 3, 3, 3 3, 3, 3 0.3, 0.3 0.05, 0.04, 0.03

16 3, 3, 3 3, 3, 3 0.0, 0.0 0.05, 0.04, 0.03

17 7, 7, 7 4, 4, 4 0.3, 0.3 0.07, 0.04, 0.03

18 7, 7, 7 4, 4, 4 0.0, 0.0 0.07, 0.04, 0.03

19 15, 15, 15 7, 7, 7 0.3, 0.3 0.1, 0.07, 0.04

20 15, 15, 15 7, 7, 7 0.0, 0.0 0.1, 0.07, 0.04

21

4

1, 1, 1, 1

20, 30, 40, 50

1, 1, 1, 1

6, 20, 30, 40

0.3, 0.3, 0.3

0, 0, 0, 0

0.04, 0.03, 0.02, 0.01

22 1, 1, 1, 1 1, 1, 1, 1 0.0, 0.0, 0.0 0.04, 0.03, 0.02, 0.01

23 2, 2, 2, 2 2, 2, 2, 2 0.3, 0.3, 0.3 0.05, 0.04, 0.03, 0.02

24 2, 2, 2, 2 2, 2, 2, 2 0.0, 0.0, 0.0 0.05, 0.04, 0.03, 0.02

25 3, 3, 3, 3 3, 3, 3, 3 0.3, 0.3, 0.3 0.06, 0.05, 0.04, 0.03

26 3, 3, 3, 3 3, 3, 3, 3 0.0, 0.0, 0.0 0.06, 0.05, 0.04, 0.03

27 7, 7, 7, 7 4, 4, 4, 4 0.3, 0.3, 0.3 0.08, 0.06, 0.04, 0.03

28 7, 7, 7, 7 4, 4, 4, 4 0.0, 0.0, 0.0 0.08, 0.06, 0.04, 0.03

29 15, 15, 15, 15 7, 7, 7, 7 0.3, 0.3, 0.3 0.1, 0.06, 0.05, 0.04

30 15, 15, 15, 15 7, 7, 7, 7 0.0, 0.0, 0.0 0.1, 0.06, 0.05, 0.04

31 3 52, 8, 12 20, 26, 32 7, 6, 2 6, 21, 26 0.2, 0.68 0.0,−0.07, 0.2 0.1, 0.04, 0.01

32 4 4, 4, 8, 24 25, 40, 45, 55 7, 5, 4, 1 6, 25, 40, 45 0.2, 0.5, 0.0 0,−0.1,−0.1, 0 0.1, 0.05, 0.02, 0.01

Table 2.2.: Test instances
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Policy iter. (PI) Value iter. (VI) Base-stock policy Base/minimum-stock pol. Without downgr.

Run- Avg. Run- Avg. Run- Avg. Gap Gap Run- Avg. Gap Avg. Gap

time cost time cost time cost to PI, to time cost to PI, cost to

per per per per per

period period period VI ASM period VI period ASM

(sec) C∗ (sec) C∗ (sec) C̄π (%) (%) (sec) C̄π (%) C̄π′ (%)

1 < 1 50 5 50 < 1 50 0.3 0.1 4 50 0.2 50 0.0

2 < 1 50 4 50 < 1 50 0.5 0.2 6 50 0.3 50 0.0

3 24 98 172 98 1 104 6.6 6.0 1 98 0.5 104 5.7

4 19 99 112 99 < 1 106 6.8 6.4 1 99 0.4 104 4.9

5 OOM 16399 145 1 156 7.9 6.7 1 147 1.2 158 7.9

6 OOM 23852 146 4 161 10.3 8.2 1 149 1.9 159 7.1

7 OOM > 12 h 4 337 - 3.9 4 324 - 340 5.1

8 OOM > 12 h 3 348 - 5.5 10 330 - 344 4.4

9 OOM > 12 h 20 763 - 2.9 21 741 - 771 4.0

10 OOM > 12 h 19 804 - 4.9 30 767 - 792 3.4

11 15 111 981 111 1 122 9.9 9.1 2 112 0.7 134 19.2

12 2 112 498 112 1 125 11.7 10.9 2 112 0.7 134 19.1

13 OOM > 12 h 2 255 - 9.4 5 233 - 264 13.3

14 OOM > 12 h 2 269 - 13.9 6 236 - 266 12.5

15 OOM > 12 h 8 400 - 9.0 15 367 - 415 13.1

16 OOM > 12 h 7 435 - 16.4 19 374 - 425 13.7

17 OOM > 12 h 25 853 - 8.1 138 790 - 866 9.7

18 OOM > 12 h 36 926 - 12.9 93 820 - 892 8.8

19 OOM > 12 h 102 2021 - 7.2 1658 1885 - 2029 7.7

20 OOM > 12 h 177 2294 - 10.9 591 2069 - 2189 5.8

21 7845 196 > 12 h 4 227 15.6 13.8 21 199 1.6 228 14.4

22 2810 197 > 12 h 3 233 18.5 16.7 14 200 1.6 230 15.2

23 OOM > 12 h 30 479 - 14.3 51 419 - 473 12.7

24 OOM > 12 h 19 500 - 17.9 88 424 - 476 12.2

25 OOM > 12 h 65 756 - 13.7 201 665 - 744 12.0

26 OOM > 12 h 147 811 - 19.6 467 678 - 754 11.3

27 OOM > 12 h 342 1613 - 11.2 2448 1450 - 1581 9.0

28 OOM > 12 h 342 1725 - 14.7 723 1504 - 1624 8.0

29 OOM > 12 h 1039 3751 - 8.4 2421 3462 - 3631 4.9

30 OOM > 12 h 1639 4141 - 10.1 5122 3762 - 3857 2.5

31 OOM > 12 h 191 2271 - 1.3 13355 2243 - 2374 5.8

32 OOM > 12 h 117 2464 - 2.6 1940 2402 - 2576 7.2

Table 2.3.: Computational performance for proposed decision rules and standard algo-
rithms
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2. Workforce Capacity Planning with Downgrading, Training, and Resignations

base/minimum-stock policy (column “Gap to ASM“). For the base/minimum-stock policy
the largest optimality gap (column “Gap to PI, VI”) we observed is 1.9% for instance
6. The increase in cost without downgrading is on average 8.8% and at most 19.2% for
instance 11. These statistics highlight the value of downgrading.

2.6.2. Training productivities

The following experiment compares the solution qualities of the base/minimum-stock and
the base/minimum-stock/training-capacity policies when training productivities (ρc, ρt)
are incrementally varied between their extreme values. I use instances with two skill levels,
training durations ∆0 = ∆1 = 2, minimum number of workers D1 = D2 = 2, salaries and
training costs ct

0 = cs
1 = ct

1 = cs
2 = 1, penalty per unit of missing capacity per period

c− = 10, productivity at level 1 for an employee in initial training ρt
0 = 0, and resignation

probabilities per period pr
1 = pr

2 = 0.1.

In the experiment, the productivities of workers being trained from level 1 to 2 are
varied, and the problems are solved with the base/minimum-stock, the base/minimum-
stock/training-capacity policy, and PI. Then the optimality gaps between the results
provided by the heuristic policies and the optimal policies derived with PI are examined.
The productivity at the starting level ρc

1 is decreased in 5% steps from 100% to zero,
which corresponds to reducing the time a worker has left during training. Likewise, the
productivity at the target level ρt

1 is decreased in 5% steps from 100% to −100%, which
corresponds to less productivity and/or an increased need for supervision. All combina-
tions of ρc

1 and ρt
1 values are evaluated.

For ρt
1 ≥ 0 the base/minimum-stock and base/minimum-stock/training-capacity policies

are equivalent. Figure 2.4a illustrates the optimality gaps of the base/minimum-stock pol-
icy for non-negative ρt

1 ≥ 0. The largest gaps of up to 7.7% are observed when ρt
1 and

ρc
1 are both close to zero; the average gap is 3.0%. Figure 2.4b illustrates the optimal-

ity gaps for the base/minimum-stock policy when ρt
1 < 0. The first observation is that

there is only a weak dependence on the productivity at the starting level ρc
1; the second

observation is that the gap increases (solution quality decreases) as the target level pro-
ductivity decreases. Once ρt

1 is −0.35 or lower, optimality gaps of 10% and greater are
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2. Workforce Capacity Planning with Downgrading, Training, and Resignations

seen. Figure 2.4c shows the results with the base/minimum-stock/training-capacity pol-
icy for the same instances. The optimality gaps are below 7.8%, and 4.8% on average.
Consequently, when on-the-job training significantly reduces capacity, the base/minimum-
stock/training-capacity policy is superior to the base/minimum-stock policy.
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Figure 2.4.: Varying productivities during training
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2.6.3. Training schedules

In order to analyze the effects of different training schedules from a management perspec-
tive, the workload for training is fixed, while the training duration is varied. When the
workload is fixed and the training duration is stretched, the time spent in training per
period decreases, and thus an employee in training has more time left to be productive
at his current level. In addition, he spends less time on on-the-job training per period,
and hence, he contributes less capacity at the target level (when capacity is contributed)
and needs less supervision (when supervision is required). For example, assume that to
advance to level 2, a worker needs to complete one period of on-the-job training. There-
fore, the minimum possible training duration is one period if the training is conducted
full time. If the training duration is stretched to four periods, a worker spends only a
quarter of his time in training in each of the four periods. As a result, the productivity
rate at the current level becomes ρc

1 = 0.75 and the productivity rate at the target level
is quartered ρt

1 ← ρt
1/4.

In the experiments I use instances with two levels and stretch the training duration from
level 1 to 2 from the shortest possible time of one period up to 7 periods. To limit
the number of instances, demand is fixed such that D1 = D2 = 2 per level, salaries
are set to ct

0 = 5, cs
1 = 10, ct

1 = 10, cs
2 = 20, the resignation probabilities are fixed to

pr
1 = 0.1 and pr

2 = 0.08, and the penalty costs are set at c− = 200. Now assume that
one period of on-the-job training is required to advance from level 1 to 2. Therefore,
training can be completed in one period if conducted full time. Next, the productivity
rate at the target level ρt

1 given that training is full time (i.e., ∆1 = 1) is set to the
values−1,−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 1. By stretching the training duration from
∆1 = 1 to ∆1 = 7 for each value of these values, we obtain 9 sets of 7 instances each. For
example, Table 2.4 shows the training parameters for the set of instances where ρt

1 = −1
given that training is full time.

Instance 1 2 3 4 5 6 7
∆1 1 2 3 4 5 6 7

ρc
1 0 0.5 0.67 0.75 0.8 0.83 0.86

ρt
1 −1 −0.5 −0.33 −0.25 −0.2 −0.17 −0.14

Table 2.4.: Instance set for ρt
1 = −1 for ∆1 = 1
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Figure 2.5.: Stretching the training duration

Each instance examined is small enough to be solved optimally with VI. The results are
illustrated in Figure 2.5. Each line corresponds to one set of instances with identical
problem parameters, but training durations ∆1 varying from 1 to 7. The vertical axis
gives the gap as percent increase in the objective value compared to the best objective
value over all instances in the same set. Therefore, for each line, the training duration ∆1

with gap = 0 gives the training duration associated with the minimum cost for all other
parameters fixed.

The results show that for all sets of instances with non-negative contribution at the
target level (ρt

1 ≥ 0) (solid lines), the instance with the shortest possible training duration
(one period) yields the smallest objective function value. For some of the sets with
negative contribution at the target level (dashed lines), though, the minimum objective
function value is obtained when the duration is stretched to two periods. These are
the instances with the lowest contributions, i.e., ρt

1 = −1 and − 0.75 given ∆1 = 1.
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Hence, when training requires extensive supervision, employers should consider part-time
training; otherwise, it is best to fully release the workers from their regular duties to allow
them to complete training as quickly as possible.

2.7. Conclusions

In this chapter, an MDP model for workforce capacity planning with a hierarchically
skilled workforce and random resignations was presented. Solutions to the model provide
guidance on the number of employees to hire and train in light of this randomness. The
objective is to balance workforce costs with the costs resulting from staff shortages. The
model is novel in that employees are trained over a non-interruptible extended period of
time during which their productivity declines in proportion to the intensity of the training.

To find solutions, three heuristic decision rules are presented along with a search procedure
to determine the values of the accompanying parameters, i.e., desired number of workers,
minimum number of workers, and training capacity for each level, respectively. Using
this combined methodology I was able to solve considerably larger instances than with
the standard algorithms PI and VI, which failed on instances of moderate size. In com-
parison, with the base/minimum-stock policy it was possible to solve realistic instances
in less than four hours. Once the policy parameter values are known, decision-making is
straightforward – a critical benefit from a management perspective.

Furthermore, the computations indicate that making decisions solely based on the desired
number of workers per level while ignoring the short-term capacity reductions induced by
training, as in the case of a simple base-stock policy, yields very poor solutions. In con-
trast, it is sufficient to make decisions with a base/minimum-stock policy when the need
for on-the-job training supervision is moderate. If, however, there is a substantial need
for supervision significantly decreasing the capacity at the target level, it is best to limit
the number of workers who are simultaneously training, as done in the base/minimum-
stock/training-capacity policy.

The results further indicate that shorter training periods with lower productivity rates
are generally preferable to longer training periods with higher productivity rates. Only
when training requires extensive supervision, may it be beneficial to stretch the training
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duration so as to mitigate the capacity reductions that accompany it. Moreover, the
experiments confirmed that for the problem instances examined there is considerable value
in downgrading as demonstrated by an average cost decrease of 8.8%. These statistics are
consistent with the results reported by Bard (2004); Bard and Purnomo (2005).

With respect to future research, several opportunities exist for expanding the scope of
the problem. One example is to allow for dynamic productivity rates over the course
of training, where training is more intense in the initial stages and then transitions into
an on-the-job mode in the final stages. Furthermore, it is sometimes possible to provide
training over a much shortened time period. For example, there are companies that
offer to train a foreman in metallurgy in about half a year. If such an opportunity
exists, it may be beneficial to release the worker for that time and pay the associated fee.
Other extensions might include the incorporation of individual learning rates, learning and
forgetting, and individual retirement probabilities. As a word of caution, though, because
these extensions require an individual employee view, they are likely pose a tremendous
computational burden. From a modeling perspective, including the possibility of hiring
experienced workers at high costs would be another interesting aspect. Finally, enhancing
the methodology to deal with more complex skill structures is left for further research.
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3. A Data-driven Approach for
Baggage Handling Operations at
Airports

3.1. Introduction

Air passenger volume is continuing to increase, at an average rate of about 5.5% over the
last ten years (SITA, 2018). Since existing airport infrastructure can only be expanded
in the long-term and at high cost, existing resources need to be used efficiently. A major
airline hub requires well-functioning baggage handling (BH). If a bag fails to arrive at its
destination on time, this reduces customer satisfaction, and the cost of reuniting mishan-
dled bags with their owners is significant, at an average of US$101 and an industry total
in the order of US$2.3 billion in 2017 (SITA, 2018).

Central to BH is the baggage handling system (BHS), which transports and stores the
luggage at airports (see Figure 3.1). Arrival flights deliver inbound luggage that is directed
to the baggage claim, and transfer luggage that is directed to departing flights. Typically,
inbound luggage is unloaded at stations directly connected to the baggage claim, and the
BHS is only involved for transfer luggage or if bags are fed in via a station located remotely.
For departing flights, checked-in luggage and transfer luggage is either transferred to the
central storage or directly to one of several baggage sorting stations, which are called
carousels. A carousel has a circular conveyor belt, from which workers load the baggage
into unit load devices (ULD) placed on ULD dollies. Once loading is complete, trucks
tug the ULD dollies to the airplane, whose departure time determines the end of its BH
period.
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With several hundred flights per day, BH poses a challenging planning task. While the
BHS autonomously transports bags to their destinations, efficient planning is crucial for
the loading process (LP), i.e. flights have to be assigned to carousels (decision A in Figure
3.1), the loading process and the storage depletion (SD) have to be scheduled (decisions
B and C), and baggage handlers have to be assigned to load bags into ULDs (decision
E). The loading process is very labor intensive, and the high cost pressure for ground
handling requires an efficient assignment of the workforce. The goal is to ensure that all
bags can be loaded into ULDs in time, that is, before the end of the BH process of the
corresponding flight.

In practice, the BH process is typically planned and controlled by a dispatcher using up-
to-date information and a graphical user interface. However, without any sophisticated
decision support, the combinatorial nature and complexity of the planning task make
it impossible to derive good solutions manually. The challenge of the planning task is
exacerbated by the need to obtain updated solutions within minutes. Complicating things
further, BH is carried out in a dynamic environment with uncertainties about future flight
and baggage data. For example, in the year 2017, only 80% of all departures and only
79% of arrivals were on time worldwide (Bureau of Transportation Statistics (BTS), 2018).
These unexpected changes, as well as unforeseen arrival times of passengers at the check-in
counters, often render carefully conceived plans suboptimal or even infeasible, which can
lead to unloaded bags, poor utilization of workers and high costs. Hence, robust planning
and dynamic re-optimization are crucial for managing daily operations.

Literature. To date, related literature has primarily focused on managing disruption
to the flight schedule, aircraft rotations, crew schedule, passenger itineraries (e.g. Clausen
et al., 2010; Petersen et al., 2012; Jiang and Barnhart, 2013), and the gate assignments
problem (e.g. Yan and Tang, 2007; Bolat, 2000). Although it is one of an airport’s major
and most challenging tasks, to date little attention has been paid to the BH at airports.
While, to the best of my knowledge, no previous work has been performed on dynamic
BH planning, several studies consider a static planning of the baggage handling for deter-
ministic flight schedules. However, due to flight delays the resulting plans are very likely
to become infeasible during the day of operations. Abdelghany et al. (2006) propose a
greedy based sequential allocation heuristic for assigning prescheduled flights to baggage
sorting stations (decision A). Ascó et al. (2014) extend the former work and investigate
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Figure 3.1.: Baggage handling system

several greedy allocation heuristics and a genetic algorithm with respect to multiple ob-
jectives, such as minimizing the distance between the assigned baggage sorting station
and the aircraft’s parking position, called the stand, maximizing the buffer times between
two consecutive flights on the same baggage sorting station, and fairly distributing the
workload across sorting stations. However, neither of them consider the scheduling of the
loading process and storage (decisions B and C), which is a key element of a BHS. For
example, at Munich Airport, more than 32% of all bags are stored. Nor do they consider
efficient assignment of the limited workforce (decision E), which is an important factor
for ground handling, in attempts to decrease labor costs (see Barbot, 2012). Frey et al.
(2017) present a model that considers both the assignment of flights to carousels and the
scheduling of flights’ baggage handling (decisions A, B and C) based on point estimates
for the baggage arrival processes. While these plans are very unlikely to be feasible on the
day of operations, they make it possible to determine the required workforce for the next
day, which in turn is an input in the intra-day problem that we consider. A simplifying
assumption by Frey et al. (2017) that must be relaxed for the intra-day planning is that
the number of workers assigned to a flight must be constant for the complete duration of
the loading process. Loading may take up to several hours, and consequently, the number
of handlers loading bags may change throughout a flight’s loading process. Flexible as-
signments allow the loading capacity to be matched to fluctuating baggage arrivals more
efficiently, and hence a better utilization of the workforce.
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Data-driven re-planning. The purpose of this work is to control the baggage handling
processes on the day of operation, to avoid unloaded bags. To achieve smooth processing,
interrelated decisions need to be updated regularly, taking into account uncertainty and
adjusted data. I employ a data-driven approach, i.e. uncertainty is dealt with by directly
exploiting data in the optimization. This is in contrast to (i) deterministic optimization
based on point estimates, (ii) stochastic programming, where uncertainty is represented
by probability distributions, which are either assumed to be known or estimated in a first
step, and (iii) robust optimization, where uncertainty is characterized by set membership,
rather than distributions, and optimization is against a worst case in this set (Jaillet
and Wagner, 2014). Re-optimization is triggered whenever problem parameters change
and the computations are carried out while the actual processing of the BH continues.
Since decisions have long term consequences and baggage arrivals are uncertain, plans
need to be robust. In general, robustness refers to approaches that are immune to data
uncertainty (Bertsimas and Sim, 2004), and here robustness means that plans are designed
such that failures such as unloaded bags and backlogs in the BHS are unlikely to occur
in the presence of uncertain flight data. Robustness is achieved by generating a plan
that is feasible for multiple scenarios. The hope is that the actual flight data will not
deviate too much from the scenarios for which the generated plan is feasible. To solve
each optimization problem quickly, as required by the real-time environment, a column-
generation-based heuristic is employed. To obtain integral solutions, column generation
is embedded into a branch-and-price search, and a heuristic search strategy called limited
discrepancy search (see Harvey and Ginsberg, 1995) is used.

The BH problem is formulated as a mathematical model, which allows flexible work pro-
files and is designed to create robust solutions based on past flight data. The main con-
tributions in this chapter are: (i) a column-generation-based solution method to quickly
obtain high-quality solutions, and (ii) management insights regarding the benefits of flex-
ible work profiles based on real-world data. The empirical results, based on a real-world
data from Munich Airport, show that the developed procedure outperforms a greedy allo-
cation heuristic that mimics the behavior of a human dispatcher in terms of mishandled
bags and capacity violations. Furthermore, it is shown that flexible work profiles signif-
icantly improve the system performance. The highest degree of flexibility allows plans
to be generated using about half the resources available in reality, and almost entirely
without unloaded bags or capacity violations.

49



3. A Data-driven Approach for Baggage Handling Operations at Airports

The remainder of this chapter is structured as follows: Section 3.2 describes the dynamic
BH problem in detail. Section 3.3 presents the dynamic planning approach. The math-
ematical model is presented in Section 3.4, and the column-generation-based solution
procedure is developed in Section 3.5. The computational study in Section 3.6 demon-
strates the performance of the proposed procedure in comparison to a greedy approach,
and further elaborates the benefits of worker flexibility. Finally, I draw conclusions in
Section 3.7.

3.2. Problem Description

Planning the BH involves several interrelated decisions. For each departing flight, we need
to (i) assign a carousel, which may be used for several flights simultaneously providing
its capacities are not exceeded (decision A in Figure 3.1); (ii) determine the start of the
loading process, which is at earliest three hours before a flight’s departure (decision B);
(iii) set the start of the depletion of the central storage (decision C); and (iv) select a
work profile, i.e. determine how many workers should be loading bags at any time during
the loading process (decision E). The baggage handling ends about 15 minutes before
the estimated departure. While adjusting the start of the loading process and the start
of storage depletion influences the arrival of bags at the carousels, adjusting the number
of ground handlers influences the speed at which bags are moved from the carousel’s
conveyor belt into ULDs.

Controlling baggage flows. Before the loading process (LP) has started, all incoming
bags are sent to the central storage shared by all flights, which has a limited capacity that
cannot be exceeded (see Arc 0 in Figure 3.1). At Munich Airport, the storage capacity
is 6,000 bags, which is about 10% of the daily luggage. Once the LP has started, all
incoming bags are directly sent to the assigned carousel (Arc 1). Its capacity is defined
as the number of bags that can be placed on its conveyor belt at a time. The storage
depletion (SD) can begin, at the earliest, when the LP starts. Once the SD has started,
the stored bags are transferred to the assigned carousel at a constant rate until all bags
for that flight are depleted (Arc 2). Therefore, the arrival of bags at the assigned carousel
can be postponed by delaying the start of the LP and the start of the SD. If a carousel’s
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or the storage’s capacity is completely used up, bags can no longer be forwarded to the
carousel or storage, respectively, and instead arriving bags remain within the BHS until
capacity is freed. Such backlogs can hinder the baggage transport for other flights, and
such situations must, therefore, be avoided.

Controlling the loading process. Baggage is loaded from the carousels into ULDs
by ground handling workers, and since their shift schedules are fixed ahead of the planning
day, limited personnel is available. A carousel has up to six working stations supporting
baggage handlers to load bags into the correct ULDs. Each working station consists of
a screen showing which bag belongs in which ULD, and a hand-held scanner to capture
each bag’s tag and its ULD. For security reasons and to reduce the number of mishandled
bags, one worker exclusively uses one working station and handles one flight at a time.
A constant loading rate for each worker per period is assumed. The number of workers
assigned to a flight can change during the loading process, and planners often decide
to allocate a certain number of workers for the entire time the flight is processed and
additional workers during the peak periods. However, it is impractical to reassign workers
too often, because coordinating the workers would get too difficult. Therefore, I introduce
the minimum block length, which defines a timespan for which the number of assigned
workers must be constant. The minimum block length concept has been introduced for the
resource-constrained project scheduling problem with flexible work profiles in Fündeling
and Trautmann (2010). Additionally, I introduce the maximum number of changes, which
defines the maximum number of times the number of workers is allowed to change during
a flight’s loading process. This allows a constant number of workers to be enforced for
the entire duration of the loading process. Minimum block length and maximum number
of changes will allow to analyze the value of worker flexibility in detail.

Flight departures. BH ends 15 minutes before the flight’s estimated departure time,
but departures are often delayed. If delays are substantial and anticipated well in ad-
vance, the end of the BH is updated accordingly, which can be taken into account in the
dynamic planning procedure developed in this work. Delays that occur on short notice
due to unexpected problems, such as when refueling or cleaning takes too long, mechan-
ical breakdowns, or missing crew, do not delay the end of the BH. For simplicity, it is
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assumed that the end of the BH is not re-scheduled within the last 30 minutes before the
flight’s departure.

Flight arrivals. The on-block time (arrival time of airplane at its stand) of each
inbound flight may be ahead of plan or delayed, and the deviation depends on factors
such as airspace and airport capacity. Within this, the airport’s runway capacity, which
depends on weather conditions, is the most crucial factor (see Ball et al., 2007). Another
aspect influencing the on-block time is the aircraft landing sequence. While most airports
sequence landings according to the first-come, first-served discipline, some optimize the
sequence (e.g. Beasley et al., 2000; Balakrishnan and Chandran, 2010), which may cause
a deviation from the estimated on-block time on short notice. In general, the on-block
time can be predicted quite accurately, and for simplicity, it is assumed that the on-block
time becomes known 30 minutes ahead of time.

Check-in baggage arrival processes. The number of bags arriving over time is un-
certain — for both check-in baggage and transfer baggage. The arrival process of check-in
luggage is uncertain, since passengers’ arrival times at the check-in counters, the amount
of luggage they carry, and the processing times at check-in are all uncertain. However,
arrivals of passengers at the check-in counters show similar patterns for flights with identi-
cal flight numbers and destinations that depart on the same day of the week (see Stolletz,
2011), providing a set of observed check-in arrival processes for each departing flight.
Hence, for each departing flight, flights with the same flight number and destination, de-
parting on a different date with the same weekday are grouped to obtain multiple observed
check-in arrival processes, which will be exploited in the optimization.

Transfer baggage arrival process. The arrival process of transfer luggage is uncer-
tain, since for each inbound flight, the number of bags, on-block time and duration until
bags are fed into the BHS are uncertain. However, the quantity of baggage an inbound
flight carries becomes known once its BH is completed at the origin airport, which makes
the number of bags delivered to each outbound flight deterministic. For simplicity, it is
assumed that the quantity of baggage becomes known 15 minutes before the departure
at the origin airport. As soon as the inbound aircraft has reached its stand, its ULDs are
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unloaded and delivered to loading stations. The amount of time between the on-block
time and the point at which bags begin being fed into the BHS varies slightly depending
on the locations of the loading station used, and takes an average of 18 minutes, for ex-
ample, at Munich Airport. It is assumed that the point at which bags begin to be fed
into the BHS becomes known at the on-block time. At Munich Airport, it usually takes
less than 45 minutes for all bags to be fed into the BHS, and an average of about five
minutes for them to be transported through the BHS. The rate at which the bags are fed
into the BHS is assumed to be constant.

3.3. Rolling Horizon Approach

The overall aim of the airport is to plan the baggage loading process such that, over the
course of a day, the total number of unloaded bags, as well as capacity violations of the
carousels’ conveyor belts and the storage remain as low as possible. In order to reach this
goal, I introduce a rolling horizon approach that (i) exploits the information that becomes
known as time progresses, (ii) delivers an optimized plan in each re-optimization, even
when resources are insufficient, and (iii) increases the likelihood that plans are feasible
in the event of unexpected baggage flows, by exploiting arrival processes that have been
observed in the past.

Rolling planning. To profit from updated flight data, the planning is revised in the
course of the planning day in a rolling horizon fashion, leading to a sequence of optimiza-
tion problems. Since solving each optimization problem requires some time, a solution is
created for a future point in time. The state of the system at that time results from the
current state and the current plan. The state determines whether the LP of a flight is in
progress, and if so, at which carousel and whether the SD is in progress. In the meantime,
since the baggage flow from now until the time of the future state is uncertain, we do
not know exactly how many bags will be in the storage and on the conveyor belt. To
increase the tractability of each re-optimization problem, the planning horizon is limited.
The planning horizon needs to be chosen sufficiently large because decisions that are too
shortsighted may cause backlogs in the BHS and unloaded bags.
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Certain and uncertain bags. As decisions have long term consequences and baggage
flows are uncertain, re-optimization alone is insufficient. Instead, robust plans need to
be generated in each re-optimization. Simply discretizing time and planning based on
point estimates for the number of bags arriving per period leads to bad outcomes, since
(i) for given point estimates, say the 70%–quantiles, it is often not possible to generate a
feasible plan as unloaded bags and capacity violations may be inevitable when resources
are scarce, and (ii) minor deviations from the point estimates make the resource allocation
inappropriate. Stochastic optimization based on scenarios (e.g. maximizing the number
of observed arrival processes for which a solution is feasible) or robust optimization (e.g.
optimizing a worst case) is appealing, but makes the problem computationally intractable.
Instead, resource-feasible plans that are designed for as much baggage as possible are
generated. More precisely, baggage is classified into certain bags and uncertain baggage.
Certain bags are either already in the system or will arrive with certainty. However, the
exact arrival time may still be uncertain, i.e. transfer baggage is classified as certain once
baggage handling at the origin airport is finished, as it will arrive with certainty, even
though the exact time is unknown. Once a baggage tow truck is headed towards a loading
station to feed bags into the BHS, it is also known with certainty when those transfer bags
will be fed into the BHS. Uncertain baggage comprises baggage streams where the exact
amount is uncertain. Using lexicographic ordering, the presented planning approach will
strictly prioritize certain baggage over uncertain baggage, which leads to the optimization
being carried out in two phases.

Ensuring feasibility. In the first phase, the optimization seeks a feasible plan maxi-
mizing the fraction of the certain bags that can be considered for each flight. In order to
not discriminate individual flights, we use lexicographic preferences: maximize the small-
est fraction of all flights, then maximize the second smallest fraction of all flights, and so
on. At the end of the first phase, the certain bags that cannot be handled are disregarded.

Robustness against uncertainty. In the second phase, the uncertain baggage is also
included. Past observations are used to generate a set of ordered scenarios for each flight,
where for every period the number of incoming bags in a scenario is greater than or equal
to the corresponding number in the previous scenario. Note that the non-discarded cer-
tain bags from phase 1 are included in every scenario. The optimization seeks a plan
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that is feasible while maximizing the scenario indices of the flights, thereby increasing the
likelihood that unexpected baggage arrival streams will be absorbed. Intuitively, if for
example it turns out that a flight can be planned based on the scenario with the largest
values, it is likely that everything will work out well. However, it is unlikely that the
actual number of incoming bags will reach the maximum values in every period. Instead,
the actual values are above average in some periods, while falling below average in other
periods, which means that they tend to cancel each other out. Flights compete for re-
sources, and since resources are scarce, it cannot be guaranteed that all bags can be loaded
into ULDs for all flights. Therefore, I again use lexicographic preferences: maximize the
smallest scenario index used for all flights, then maximize the second smallest index of all
flights, and so on.

3.4. Mathematical Model

In this section, the mathematical model for the outbound baggage handling problem is
presented. All notation is summarized in Appendix B. Planning is based on a discrete
planning horizon T = {0, . . . , T} that consists of T +1 evenly spaced points in time or T
periods of equal length. Period t refers to the time interval [t, t+ 1). The period length is
set to 5 minutes in the experiments. Time 0 marks the actual start of the day of operation.
However, an algorithm may require some time to generate a solution, and the first solution
needs to be available at time 0. Therefore, an optimization problem is solved starting at
each t = −∆, . . . , T − 1 − ∆ with respect to the current state, planning, and updated
flight data, where ∆ denotes the time limit for optimization in numbers of time periods.
Let P t denote the problem that is solved starting at time t. P t has to return a solution
until t′t := t+∆, when the new planning takes effect. For example, the first problem P−∆

creates a plan starting from time 0 with the information that is available at time −∆.
To increase the tractability of the problem, the length of the planning horizon is limited
by parameter ∆h. The planning horizon of P t is denoted as Tt :=

{
t′t, . . . , t

′
t +∆h} with

∆h ≥ 1.

Flights. The set of departing flights of the complete planning day is denoted as F . The
end of flight i’s baggage handling is denoted as Ei. Each optimization problem P t has
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to consider the state of the system at time t′t, which depends on the state of the system
now and the plan from now until t′t. Therefore, flights are categorized into the following
subsets, of which only those needed in the model are formally defined. The flights that are
finished by t′t as well as the flights that can start at earliest at t′t +∆h do not need to be
considered and are excluded from the decision making. Let F t denote the subset of flights
of F that are included in P t. They are categorized into flights in progress, whose loading
process has or will be started by time t′t (SD may or may not have started), planned flights,
for which a plan is available from the previous optimization, but the loading process has
not been started, and new flights, which are considered for the first time in P t (i.e. they
were not considered in the previous optimization).

Carousels. Let C denote the set of carousels. A carousel c ∈ C is characterized by
the conveyor belt capacity measured in number of bags Kb

c and the number of working
stations Kw

c . Once a flight’s loading process has started at a carousel, it has to be finished
at the same carousel. Let Ci denote the set of carousels flight i can be assigned to.

Baggage arrival streams. For each flight, the model will use scenarios of baggage
arrival streams, where each scenario comprises two sub-streams, one for certain bags and
and one for uncertain baggage. Accordingly, a scenario is referenced by a pair of indices
(k, k′), where k refers to the certain bags and is from index set Kc := {1, . . . , Kc} and k′

refers to the uncertain baggage and is from index set Ku := {0, . . . , Ku}. Let At
iτ denote

the number of certain bags arriving in period τ = −1, . . . , Ei − 1 for flight i ∈ F at the
carousel or the storage as determined at time t. Period τ = −1 is reserved for bags that
have arrived ahead of the planning day and that are already in the central baggage storage
at the beginning of the planning horizon. The number of certain bags arriving at their
destination in scenario (k, k′) (for t, i, τ as previously) is calculated as

⌊
αkA

t
iτ +

1
2

⌋
, where

0 ≤ α1 < · · · < αKc = 1. The number of uncertain bags arriving at its destination in
scenario (k, k′) (for t, i, τ as previously) is denoted as Atk′

iτ . It consists of the qk′-quantile
of the empirical bag distribution of that period, where q1 < q2 < . . . < qKu = 100%. For
k′ = 0 we set Atk′

iτ = 0. The empirical bag distributions are obtained from a number of
observations of the same flight on the same weekday, e.g. eight observations of the United
flight from Munich to New York on Tuesday at 12:35 pm. Now the certain bags are
combined with the uncertain baggage: let Atkk′

iτ =
⌊
αkA

t
iτ +

1
2

⌋
+Atk′

iτ denote the number
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of bags arriving at its destination in scenario (k, k′) ∈ Kc ×Ku (for t, i, τ as previously).
Scenario (k, k′) of flight i at time t is defined as the vector

(
Atkk′

iτ

)
τ=−1,...,Ei−1

. By the
construction of the scenarios At,1,k′

iτ ≤ At,2,k′

iτ ≤ · · · ≤ AtKck′
iτ and At,k,1

iτ ≤ At,k,2
iτ ≤ · · · ≤

AtkKu
iτ hold. Let me give the following illustrative example where indices t, i and τ are

dropped. Let the number of certain bags be A = 5 and the empirical distribution of
the uncertain bags defined by all observations be (0, 1, 2, 2, 2, 3, 3, 5). With α2 = 0.5 and
q3 = 0.75 we obtain A2,3 =

⌊
0.5 · 5 + 1

2

⌋
+ 3 = 6 bags for scenario (2, 3).

Schedules and work profiles. The loading process of flight i can start, at the
earliest, at Si ∈ T , which is set to Si = Ei − 36 in the experiments, i.e. the LP can
start 3 hours before the end of the BH. The start of the LP and of the storage depletion
of flight i ∈ F are denoted as sslp

i ∈ T and sssd
i ∈ T (with sssd

i ≥ sslp
i ), respectively.

Additionally, the following indicators will be useful: slp
iτ ∈ {0, 1} and ssd

iτ ∈ {0, 1} for
τ = Si, . . . , Ei − 1 are equal to one if the LP and the SD of flight i are in progress in
period τ and zero otherwise, respectively. Let wiτ denote the number of assigned workers
for flight i in period τ = Si, . . . , Ei − 1, which is equal to the number of used working
stations of the corresponding carousel. Workers must not be assigned before the loading
process has started, and due to organizational regulations, at least one worker must be
assigned throughout the entire loading process.

The block length L defines a number of consecutive periods that must have a constant
number of workers, i.e. if wi,τ−1 6= wiτ , then wiτ = . . . = wi,τ+L−1, where it is assumed
that wi,Si−1 = 0 and wiEi

= 0. The maximum number of changes J limits how often the
number of workers assigned to a flight is allowed to change during its loading process. A
schedule and profile for flight i is denoted as

π =
(
sslp
π ,
(
slp
τπ

)
τ=Si,...,Ei−1

, (wτπ)τ=Si,...,Ei−1 , s
ssd
π ,
(
ssd
τπ

)
τ=Si,...,Ei−1

)
where index i at π indicating the flight is omitted, and it is referred to as schedule or
profile, depending on the context.

Storage. The central storage has a capacity of Ks bags. Stored bags are transferred
to the assigned carousel at a constant rate of rs bags per time period. The number of
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bags in storage for flight i and its scenario (k, k′) at time τ = 0, . . . , Ei, given profile π,
can be calculated recursively as follows.

φs,tkk′
iτπ =



Atkk′

i,−1 for τ = 0 (a)

φs,tkk′
i,τ−1,π + Atkk′

i,τ−1 for 0 < τ ≤ sslp
π (b)

φs,tkk′
i,τ−1,π for sslp

π < τ ≤ sssd
π (c)[

φs,tkk′
i,τ−1,π − rs

]+
for sssd

π < τ , (d)

(3.1)

where [x]+ is used as a short form for max {x, 0}. Equation (3.1) captures the baggage
flows affecting the storage. Bags arriving before the loading process starts are directed to
the storage (a and b). The bags remain in the storage until the depletion starts (c) and
are depleted at a constant rate once the depletion has started (d).

Carousel load. Let φs→b,tkk′
iτπ =

[
φs,tkk′
iτπ − rs

]+
= φs,tkk′

i,τ+1,π − φs,tkk′
iτπ denote the number

of bags of flight i that are transferred from the central storage to the carousel in period
τ = Si, . . . , Ei− 1 given schedule π and scenario (k, k′). The number of available workers
during period τ is denoted as Kwo

τ , and the loading rate per worker (and working station)
is rl bags per period, which is assumed to be constant. The number of bags on the
carousel’s conveyor belt for flight i and its scenario (k, k′) at time τ = Si, . . . , Ei, given
profile π, can be calculated recursively as follows.

φb,tkk′
iτπ =


0 for τ ≤ sslp

π (a)[
φb,tkk′
i,τ−1,π + Atkk′

i,τ−1 − wπ,τ−1r
l
]+

for sslp
π < τ ≤ sssd

π (b)[
φb,tkk′
i,τ−1,π + Atkk′

i,τ−1 − wπ,τ−1r
l + φs→b,tkk′

i,τ−1,π

]+
for sssd

π < τ . (c)

(3.2)

Equation (3.2) captures the baggage flows affecting the number of bags on the assigned
carousel’s conveyor belt. Before the loading process has started, there are no bags on the
carousel as they are directed to the storage instead (a). From the start of the loading
process, arriving bags are directed to the carousel, and the assigned workers load bags
from the carousel into containers (b). Once storage depletion has begun, the bags that
arrive from the storage are added as well (c).
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Feasible profiles. At time t, a profile π for flight i is feasible at carousel c ∈ Ci with
respect to scenario (k, k′) if the carousel capacity is not exceeded, i.e. if φb,tkk′

iτπ ≤ Kb
c for

all τ = Si, . . . , Ei − 1, and if there are no unloaded bags at time Ei, i.e. if both φs,tkk′
iEiπ

and φb,tkk′
iEiπ

are zero. Let Stkk′
ic denote the set of feasible profiles for i ∈ F , c ∈ Ci, k ∈ Kc,

k′ ∈ Ku and t ∈ T . Furthermore, set Stkk′
icτ :=

{
π ∈ Stkk′

ic | sslp
π ≤ τ < Ei

}
is the subset of

Stkk′
ic where flight i’s loading process is in progress during period τ .

Model formulation. Each optimization problem P t finds a resource-feasible solution
for the planning horizon Tt with the objective to consider as large as possible a number of
certain bags and the highest possible quantiles of uncertain baggage, thereby increasing
the robustness. The index t indicating the current time is dropped in the model. Binary
variable xkk′

icπ is one if the loading process of flight i ∈ F t is conducted at carousel c ∈ Ci
with profile π ∈ Stkk′

ic , and zero otherwise. Planning flight i with a profile π ∈ Skk′
ic

and hence with scenario (k, k′) incurs costs of pc
k + pu

k′ , which are set such that pu
Ku = 1,

|F t| pu
k ≤ pu

k−1 for k = Ku, . . . , 1, |F t| pu
0 ≤ pc

Kc and |F t| pc
k ≤ pc

k−1 for k = Kc, . . . , 2 holds.
The scenarios are, therefore, prioritized in the order (1, k′) , . . . , (Kc, k′′) independent of
k′ and k′′, and (k, 0) , . . . , (k,Ku) for a fix k. Hence, for example, improving from scenario
(1, 0) to (2, 0) for a single flight decreases the objective value more than improving from
scenario (2, 0) to (3, 0) for all other flights. Problem P t can be stated as follows:
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(
P t
)

min
∑
i∈F

∑
c∈Ci

∑
k∈Kc

∑
k′∈Ku

∑
π∈Skk′

ic

(pc
k + pu

k)x
kk′

icπ (3.3)

subject to∑
c∈Ci

∑
k∈Kc

∑
k′∈Ku

∑
π∈Stkk′

ic

xkk′

icπ = 1 ∀i ∈ F (3.4)

∑
i∈F

∑
k∈Kc

∑
k′∈Ku

∑
π∈Skk′

icτ

wπτx
kk′

icπ ≤ Kw
c ∀c ∈ C, τ ∈ T (3.5)

∑
i∈F

∑
k∈Kc

∑
k′∈Ku

∑
π∈Skk′

icτ

φb,tk
iτπ x

kk′

icπ ≤ Kb
c ∀c ∈ C, τ ∈ T (3.6)

∑
i∈F

∑
c∈Ci

∑
k∈Kc

∑
k′∈Ku

∑
π∈Skk′

ic

φs,tk
iτπx

kk′

icπ ≤ Ks ∀τ ∈ T (3.7)

∑
i∈F

∑
c∈Ci

∑
k∈Kc

∑
k′∈Ku

∑
π∈Skk′

icτ

wπτx
kk′

icπ ≤ Kwo
τ ∀τ ∈ T (3.8)

xkk′

icπ ∈ {0, 1} ∀i ∈ F , c ∈ Ci (3.9)
k ∈ Kc, k′ ∈ Ku,

π ∈ Skk′

ic

Objective function (3.3) penalizes the use of scenarios with low indices. Partitioning
constraints (3.4) require the assignment and scheduling of each flight that is included
in the current planning period. Constraints (3.5) limit the number of available working
stations. Carousels’ conveyor belt capacities are limited in constraints (3.6). The central
storage’s capacity is limited by constraints (3.7). Constraints (3.8) make sure that worker
capacities are not exceeded. Finally, constraints (3.9) define the variables to be binary.

3.5. Solution Methodology

Model (3.3) — (3.9) is NP–complete (NP–hard by reduction from the set partitioning
problem and in NP) and suffers from the defect that the variables, of which there are
an exponential number, should be enumerated. For each flight i ∈ F t, carousel c ∈
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Ci, and scenario (k, k′) ∈ Kc × Ku the number of profiles
∣∣Stkk′

ic

∣∣ is in O
(
(Kw

c )
Ei−Si

)
.

Since most of these variables will be zero in an optimal solution, promising variables,
i.e. new profiles, are generated as needed by means of column generation. The master
problem corresponds to problem P t and there are O (|F t| · |C| · |Kc| · |Ku|) subproblems
— one per flight, carousel, and scenario. The subproblems will be solved efficiently with
dynamic programming as shown below. To obtain integral solutions, column generation is
embedded into branch-and-price. Since reaching and proving optimality can take too long,
a heuristic search strategy is applied. The lexicographic objective (3.3) can be minimized
in stages, which avoids numerical problems that otherwise occur due to the large range of
objective coefficients [pu

Ku , pc
1] and reduces the number of variables that must be considered

simultaneously, which increases the tractability of the problem significantly.

3.5.1. Minimizing the lexicographic objective

The lexicographic objective (3.3) can be minimized in two phases consisting of Kc and Ku

stages, respectively. In the first phase, a solution is found for scenarios (1, 0) , . . . , (Kc, 0),
that is, ignoring the uncertain baggage. In the first stage of the first phase, a feasible
solution must be found for scenario (1, 0) of all flights. At each subsequent stage k =

2, . . . , Kc, there is a set of “open flights” and a set of “fixed flights”, in which each fixed
flight i is fixed to a scenario

(
k̂i, 0

)
with k̂i < k. Initially, all flights are open and the

set of fixed flights is empty. In stage k, the optimization attempts to use scenario (k, 0)

for the open flights subject to using scenario
(
k̂i, 0

)
for all fixed flights, and when the

optimization terminates with an integral solution, each open flight i that is not planned
with scenario (k, 0) is moved from the set of open flights to the set of fixed flights with
k̂i = k− 1. Afterwards, the procedure moves on to the next stage k ← k+1. Proceeding
this way, only the variables xk̂i0

icπ are needed for the fixed flights, and penalty costs are
unnecessary, and only the variables xk−1,0

icπ and xk,0
icπ are needed for the open flights, where

all xk−1,0
icπ are penalized. Note that the solution of the previous stage is always feasible for

the current stage. At the end of the first phase, k̂i is fixed to Kc for all flights that remain
open. In the second phase, the same procedure is applied for the uncertain baggage,
that is, the procedure iteratively tries to increase the scenarios of the open flights from(
k̂i, k

′ − 1
)

to
(
k̂i, k

′
)

for k′ = 1, . . . , Ku subject to using scenario
(
k̂i, k̂

′
i

)
for all fixed

flights.
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3.5.2. Column generation

Problem P t is the master problem (MP) of the column generation. Since there is an
exponential number of profiles, the sets of profiles are restricted to subsets S̃tkk′

ic ⊆ Stkk′
ic .

The MP containing only the columns in
⋃

i∈Ft,c∈C,k∈Kc,k′∈Ku S̃tkk′
ic is called the restricted

master problem (RMP). As the RMP does not necessarily yield an optimal solution to
the MP, the integrality requirements on the variables are relaxed and the continuous
relaxation of RMP is solved to optimality. Then, the optimal dual variable values are
used to identify new variables with negative reduced costs, which is done in subproblems
called oracles or pricing problems — one for each flight-carousel-scenario triplet. If a
column with negative reduced costs is found, it is added to the RMP and the process
repeats until no column with negative reduced costs can be found in any subproblem. As
then there is no candidate column that would improve the objective function value, the
solution is optimal for the linear relaxation of MP.

Pricing refers to any method of computing the reduced costs vector of the non-basic
variables. However, it is not necessary to compute the reduced costs of all non-basic
variables. Pricing out only a few candidates for entering the basis is known as partial
pricing (Chvátal, 1983). Column generation can be considered a (partial) pricing scheme
for large-scale linear programs (see Lübbecke and Desrosiers, 2005). When there are many
subproblems, as is the case here, it is often more efficient to consider only a few of them
in each iteration, which is called partial column generation. When choosing a pricing
scheme, it is important to balance the computational time spend for the subproblems and
the RMP. On the one extreme, when all subproblems are solved and only the best column
is added to the RMP, a lot of time is spent on solving the subproblems, but the RMP
receives relatively few high-quality columns. On the other hand, if more columns are
added to the RMP, it becomes harder to solve, but fewer iterations may be needed. Here,
it is best to solve all pricing problems and add the best column, as the pricing problems
can be solved efficiently. As every subproblem runs in a single threat, the pricing problems
can be solved concurrently, which speeds up each iteration further.

62



3. A Data-driven Approach for Baggage Handling Operations at Airports

Decision variables for PP tkk′
ic

slp
τ ∈ {0, 1} 1, if the loading process is in progress in period

τ = S̄i − 1, . . . , Ei − 1 and 0 otherwise
ssd
τ ∈ {0, 1} 1, if the storage depletion is in progress in period

τ = S̄i − 1, . . . , Ei − 1 and 0 otherwise
wτ ∈ {0, . . . , Kw

c } Number of workers (and working stations) in period
τ = S̄i − 1, . . . , Ei − 1

δτ ∈ {1, . . . , L} Number of periods with constant number of workers at
time τ = S̄i, . . . , Ei before a decision is made, i.e.
excluding a potential change at time τ

γτ ∈ {1, . . . , J} Number of times the number of workers has changed up
to time τ = S̄i, . . . , Ei before a decision is made

φs
τ ∈{
0, . . . ,

∑
τ A

tkk′
iτ

} Number of bags in the central storage at time
τ = S̄i, . . . , Ei

φb
τ ∈

{
0, . . . , Kb

c

}
Number of bags on the conveyor belt at time
τ = S̄i, . . . , Ei

Table 3.1.: Decision variables for pricing problem PP tkk′
ic

3.5.3. Subproblems

Assume the column generation procedure is at any iteration and the continuous relaxation
of RMP is solved. Let λa

i , λw
cτ , λb

cτ , λs
τ , and λwo

τ denote the dual variable values of the
assignment constraints (3.4), and the capacity constraints (3.5), (3.6), (3.7), and (3.8),
respectively. The most promising schedule for flight i ∈ F t, carousel c ∈ Ci, and scenario
(k, k′) ∈ Kc × Ku is the solution of the pricing problem PP tkk′

ic , which is a shortest path
problem from a source node to a destination node (one-to-one) on an acyclic network.
Hence, PP tkk′

ic can be solved efficiently with dynamic programming. Let S̄i := max {Si, t
′
t}

denote the first period of PP tkk′
ic . The decision variables are defined in Table 3.1. The

indices i, c, k, k′ and π are omitted.

System states. The state at time τ = S̄i, . . . , Ei is defined as

zτ =
(
slp
τ−1, wτ−1, δτ , γτ , s

sd
τ−1φ

s
τ , φ

b
τ

)
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and refers to time τ immediately before a decision is made. The initial state zS̄i
at time S̄i

depends on the current state of the flight, that is, if the flight’s LP and SD are in progress
and how many bags are in the storage and on the carousel’s belt at time S̄i, respectively.

Transitions. When making a decision aτ :=
(
slp
τ , s

sd
τ , wτ

)
at time τ = S̄i, . . . , Ei − 1

given state zτ =
(
slp
τ−1, wτ−1, δτ , γτ , s

sd
τ−1φ

s
τ , φ

b
τ

)
, the following constraints must hold.

slp
τ−1 ≤ slp

τ (3.10)
ssd
τ−1 ≤ ssd

τ (3.11)
ssd
τ ≤ slp

τ (3.12)
slp
τ ≤ wτ ≤ Kw

c s
lp
τ (3.13)

δτ < L⇒ wτ = wτ−1 (3.14)
wEi−L = . . . = wEi−1 (3.15)
γτ = J ⇒ wτ = wτ−1 (3.16)

Constraints (3.10) and (3.11) state that both the loading process and the storage deple-
tion cannot be interrupted once started. Constraint (3.12) makes sure that the storage
depletion does not start before the loading process. Constraint (3.13) requires at least
one worker to be assigned during the loading process, and at the most as many as the
carousel has working stations, and workers may not be assigned before the loading process
has started. Constraints (3.14) and (3.15) enforce the block length restriction, where the
latter affects the end of the loading process. Finally, constraint (3.16) limits the number
of times the number of workers can change.

The next state zτ+1 results from the current state zτ and the decision aτ . The state
variables slp

τ , ssd
τ , and wτ are part of decision aτ , variables δτ+1 and γτ+1 are set according
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to constraints (3.17) and (3.18),

δτ+1 =

δτ + 1 if wτ = wτ−1

1 otherwise
(3.17)

γτ+1 =

γτ if wτ = wτ−1

γτ + 1 otherwise
(3.18)

and variables φs
τ+1 and φb

τ+1 are set with Equations (3.1) and (3.2).

Reduced costs & optimality equation. The one-period cost for period τ = S̄i, . . . , Ei−
1 is a function of wτ , φb

τ+1, φs
τ+1 and the dual variable values, that is

c
(
wτ , φ

s
τ+1, φ

b
τ+1

)
=− λw

cτwτ − λwo
τ wτ − λb

c,τ+1φ
b
τ+1 − λs

τ+1φ
s
τ+1 (3.19)

The cost for being in state zτ can be defined via a Bellman recursion as

v (zτ ) =

minzτ−1∈Zτ−1(zτ )

{
v (zτ−1) + c

(
wτ−1, φ

s
τ , φ

b
τ

)}
for τ > S̄i

pc
k + pu

k′ − λa
i for τ = S̄i

(3.20)

where Zτ−1 (zτ ) denotes the set of all states for which a feasible decision aτ−1 exists that
leads to state zτ . Consider the set ZEi

of terminal states where all bags are loaded into
ULDs, i.e. zEi

with φb
Ei

= φs
Ei

= 0. Pricing problem PP tkk′
ic can be solved by finding a

state
z∗ = arg min

zEi
∈ZEi

{v (zEi
)} . (3.21)

The actual profile can be derived by tracking the sequence of transitions that transforms
the initial state zS̄i

into z∗.

State-space reduction. Next, I show how the state space that is actually searched
can be reduced by employing a dominance criterion. State zτ is said to dominate another
state z′τ (zτ � z′τ ), if the following conditions hold, where the variables annotated with
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“ ′ ” refer to state z′τ .

v (zτ ) ≤ v (z′τ ) (3.22)
φb
τ ≤

(
φb
τ

)′ (3.23)
φs
τ ≤ (φs

τ )
′ (3.24)

¬slp
τ ∨

(
slp
τ

)′ (3.25)
¬ssd

τ ∨
(
ssd
τ

)′ (3.26)
δτ ≥ δ′τ (3.27)
wτ−1 = w′

τ−1 (3.28)
γτ ≤ γ′

τ (3.29)

Proposition. zτ � z′τ implies that an optimal sequence of actions and states(
z′τ , a

′
τ , z

′
τ+1, a

′
τ+1, . . . , z

′
Ei

)
starting in state z′τ has an objective value that cannot be better than the objective value of
an optimal sequence

(zτ , aτ , zτ+1, aτ+1, . . . , zEi
)

starting in state zτ .

Proof. From (3.25) — (3.29) it follows that the set of all possible sequences (z′τ , a
′
τ , z

′
τ+1,

a′τ+1, . . . , z
′
Ei
) is a subset of the set of all possible sequences (zτ , aτ , zτ+1, aτ+1, . . . , zEi

).
Because of (3.22) — (3.24) we have

min(
zτ ,aτ ,zτ+1,...,zEi

)
{
v (zτ ) +

Ei−1∑
τ ′=τ

c
(
wτ ′ , φ

s
τ ′+1, φ

b
τ ′+1

)}

≤ min(
z′τ ,a

′
τ ,z

′
τ+1,...,z

′
Ei

)
{
v (z′τ ) +

Ei−1∑
τ ′=τ

c
(
w′

τ ,
(
φs
τ ′+1

)′
,
(
φb
τ ′+1

)′)}

which is the desired result.

A dominated state zτ can be removed from further consideration, that is, any transition
that starts in zτ can be excluded. Whenever a state zτ is reached, it is either kept, or
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discarded it if it is dominated by any other state that has already been evaluated. At the
same time, states z′τ that are dominated by zτ are discarded.

Complexity. There are n ≈ O
(
2 ·Kw

c · L · J · 2 ·
∑

τ A
tkk′
iτ ·Kb

c

)
states in each period

because of the variable domains (see Table (3.1)). Since there are only arcs from one
point in time to the next, the network has O

(
n2
(
Ei − S̄i

))
arcs. Theoretically, the time

complexity is O (m) with m as the number of arcs of the network, since each arc is
evaluated once at the most. However, due to the dominance criterion, much fewer arcs
need to be evaluated in practice.

3.5.4. Branch-and-price

The column generation procedure solves the linear relaxation of the MP. Hence, the solu-
tion does not necessarily satisfy the integrality conditions, and column generation must
be embedded into a branch-and-bound procedure to solve the original integer problem.
The overall procedure is then called branch-and-price. An overview can be found in Barn-
hart et al. (1998). Furthermore, Lübbecke and Desrosiers (2005) provide a list of research
successfully applying branch-and-price.

After branching, a column may exist that would price out favorably, but is not present
in the RMP. Therefore, it is necessary to continue column generation after branching
(Barnhart et al., 1998). Usually, standard branching on the RMP is not a good idea
because the columns that have been excluded in the RMP need to be prevented from
being regenerated in the subproblems. The additional constraints may destroy the struc-
ture of the subproblems that is exploited or make them too hard to be solved in a short
enough computational time. Furthermore, branching on the RMP leads to an unbalanced
branch-and-bound tree (Vanderbeck, 2000). Instead, I branch on the decisions of the
original integrated formulation of the problem, for which I have not presented a mathe-
matical model, but its content should be clear from Chapter 3.4. Assume that the column
generation has been solved to optimality at the current node of the branch-and-price tree
n, and that there exists a flight whose solution is fractional with respect to any aspect
of the decision-making: scenario, assignment to a carousel, number of workers in each
period, storage depletion, or the block length or number of changes.
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Assignment to carousel & scenario. If flight i is distributed to more than one
carousel, flight i must be assigned to one of the carousels or not allowed to be assigned
to that same carousel on the left and right branch, respectively, which partitions the
solution space into two sub-spaces and excludes the current fractional solution. If flight
i’s planning is based on two scenarios (at most two scenarios are considered for each
flight and in each stage, see Section 3.5.1), one scenario is enforced or excluded on the
left and right branch, respectively. The aforementioned two branching rules are enforced
by removing variables from the MP and by not solving the subproblems of the excluded
carousel or scenario.

Work profile. The number of workers assigned to flight i in period τ = Si, . . . , Ei − 1

is wiτ =
∑

c∈Ci

∑
k∈Kc

∑
k′∈Ku

∑
π∈Stkk′

ic
xkk′
icπwτπ. Let ŵn

iτ denote its value in the optimal
solution at the current node n. If ŵn

iτ is fractional, wiτ ≥ dŵn
iτe and wiτ ≤ bŵn

iτc is
required, at the left and right branch, respectively.

Storage depletion. The storage depletion of flight i in period τ = Si, . . . , Ei − 1 is
ssd
iτ =

∑
c∈Ci

∑
k∈Kc

∑
k′∈Ku

∑
π∈Stkk′

ic
xkk′
icπs

sd
τπ. Let ŝsd,n

iτ denote its value in the optimal
solution at the current node n. If 0 < ŝsd,n

iτ < 1, ssd
iτ = 1 and ssd

iτ = 0 is required, at the
left and right branch, respectively.

Block length & number of changes. Finally, the block length and number of changes
constraints need to be enforced via branching. For example, the profile πn in Table 3.2
results adding 2/3 of π1 and 1/3 of π2 . Both π1 and π2 satisfy a block length of L = 2

and a maximal number of changes of J = 1, but πn violates both. Assume variable ζiτ

indicates a change in the number of workers at time τ , which is fractional (given in the last
row of Table 3.2). Now, three branches are created, such that wiτ = wi,τ−1, wiτ < wi,τ−1

and wiτ > wi,τ−1 must hold, at each branch, respectively, which requires the variable ζiτ

to be integral. For the example, requiring wi,3 = wi,2 excludes profile π1 and requiring
wi,3 > w2,π excludes profile π2. Requiring wi,3 < wi,2 excludes both profiles. Hence, in
all cases the current fractional solution is excluded, and the three branches partition the
solution space into three sub-spaces. To enforce the three branching rules, all variables
xkk′
icπ violating the corresponding branching rule are removed from the RMP, and in the

subproblems decisions and states violating the rules are discarded.
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Time period 1 2 3 4 5

Profile π1

(
2
3

)
1 1 7 7 7

Profile π2

(
1
3

)
4 4 4 1 1

Profile πn 2 2 6 5 5

Indicator ζiτ 1 0 2
3

1
3 0

Table 3.2.: Combination of profiles

3.5.5. Search strategy

The branching rules presented are theoretically sufficient to obtain an optimal integral
solution. However, the search tree becomes very large for difficult problems. Obtaining
an optimal solution and proving optimality can take more than 24 hours. As the real-
time environment requires a solution to be available within, say 5 minutes, the goal is to
generate the best possible feasible solution within that time period. For that purpose,
(i) column generation is warm started so as to improve the dual information in the first
iterations and to have useful columns ready for obtaining incumbents; (ii) the branch-
and-price search is guided with a limited discrepancy search (LDS) as proposed in Harvey
and Ginsberg (1995); and (iii) incumbents are created repeatedly during the search to
obtain primal bounds and to have a solution ready in case the time limit for optimization
is reached.

Schedules generation. Intelligent initialization of the RMP offers speedup potential
(see Vanderbeck, 2005), but is a balancing act, since RMP becomes harder to solve as more
columns are added. A set of profiles is generated during preprocessing at the beginning of
each stage. All profiles subject to the following restrictions determined by the following
parameters are generated in a recursive algorithm, which is presented in Appendix C.1.
Parameters minDurLP ≥ L and minDurSD ≥ L define the minimum duration of the
loading process and the storage depletion, respectively. Parameter slpMod (“slp” for
start loading process and “mod” for modulo) restricts the options for the start of the LP
such that it may start at time

τ ∈
{
τ = Si, . . . , Ei −minDurLP | slpMod divides (Ei − τ)

}
.
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In the same way, parameter ssdMod restricts the options for the start of the SD. Param-
eter L′ ≥ L sets the block length for the profiles generated to a value at least as large
as the actual block length L. Similarly, parameter J ′ ≤ J sets the maximum number of
changes to a value at most as large as the actual limit J , and parameter Ḡ defines the
maximum allowed difference in numbers of workers between consecutive periods (“Ḡ” for
gap), i.e. |wτ − wτ−1| ≤ Ḡ. Of the generated profiles only those that are not dominated
by another one are kept. A schedule π dominates a different schedule π′ (π � π′) if

wτ ≤ w′
τ ∀τ = S̄i, . . . , Ei − 1, (3.30)

φs,tkk′
iτπ ≤

(
φs,tkk′
iτπ

)′
∀τ = S̄i, . . . , Ei, (3.31)

φb,tkk′
iτπ ≤

(
φb,tkk′
iτπ

)′
∀τ = 0, . . . , Ei. (3.32)

Limited discrepancy search. Assume that the search strategy is a depth first search
(DFS) in the branch-and-price tree. DFS sometimes leads directly to an optimal solution.
If not, the tree is pruned, and the algorithm backtracks. However, if the search tree is
deep and a node without a new incumbent in its subtree was chosen early on, a DFS
searches the complete subtree, which may potentially be large, until it moves to the other
branch. Limited discrepancy search (LDS) aims to overcome “wrong turns” at any depth
in the search tree by deviating only a few times from the initial search path (Harvey and
Ginsberg, 1995). This principle is illustrated in Figure 3.2, where the number of allowed
discrepancies is one, and the nodes are numbered in the order they are visited. After the
search returns from Node 6 to Node 5, it does not visit the branch to its right, as no
further right turns are allowed because the number of right turns on the path from the
root to Node 5 is equal to the number of allowed discrepancies. Therefore, the search gets
back to the root node more quickly, at the cost of possibly missing a solution at the right
branch below Node 5.

Solving the RMP as an integer program. Often it is possible to obtain incumbents
improving the current primal bound by solving the RMP as an integer program. Especially
in the first stages when Atkk′

iτ are comparably low, we often receive an optimal solution
directly for the current stage. Since solving the RMP as an IP may take a considerable
amount of time, the attempt is only made at the root and, from there, every 10 nodes of
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Figure 3.2.: Limited discrepancy search

the search tree, if at least 20 new columns have been generated since the last attempt.
This prevents many similar problems from being solved when long cascades of branching
decisions without many new columns occur. Additionally, a time limit of 100 seconds
is set for the computations in each attempt, and if the time limit is reached before an
optimal solution is found, an incumbent, if available, may still improve the current primal
bound.

3.6. Computational Study

This section reports the experimental results of the proposed solution procedure. In
order to evaluate and compare the performance of the proposed solution procedure, I
developed an event-based simulation, which tracks the state of the relevant entities (flights,
carousels, central storage, and ground handlers), updates the flight information, executes
the planning decisions, and simulates the baggage flows. However, since modeling the BHS
with its complex conveyor belt network would be too cumbersome, the BHS is treated
as a black box, and backlogs of bags in the BHS do not negatively influence baggage
transport. This must be kept in mind for solutions in which the carousel capacities are
exceeded. In these cases, the performance of the BHS could be noticeably reduced, and as
a consequence, a higher number of unloaded bags would be expected in reality. Section 3.5
laid out the proposed algorithm to solve the model in Section 3.4, and this methodology
will be referred to as the proposed procedure or the proposed algorithm. The period length
is set to five minutes in all experiments. The limit on the computational time is set to
∆ = 1 period corresponding to 5 minutes, and re-optimization is started when problem
parameters change. All experiments were executed on Haswell-based nodes of the Linux
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cluster of the Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and
Humanities. The storage has been limited to 24 GiB and the number of cores has been
limited to 14. Each core has a nominal frequency of 2.6 GHz. All of the algorithms are
implemented in Java. All linear and mixed integer programs were solved using Gurobi
version 8.1 and its Java API (Gurobi Optimization, 2018).

3.6.1. Instances and benchmark

The tests are based on 20 real-world problems encountered at Munich Airport. To compare
the proposed procedure with the practice prevalent at most airports, all instances are
solved with the greedy decision rule presented in Appendix C.2, which uses a simple logic
mimicking the way a dispatcher makes a decision at the beginning of each period. While
the computational times of the greedy heuristic are negligible, its performance is mediocre
given the existing infrastructure at Munich Airport with many resource violations and
nearly 20 mishandled bags. The proposed procedure generates feasible plans without
any unloaded bags or resource violations within seconds. Therefore, in order to study
challenging instances, the resource scarcity is increased. Note that resource scarcity at
Munich Airport is also expected to increase given the increasing number of passengers (the
number of annual passengers increased from 12 million in 1992 to more than 44 million
in 2017 (Flughafen München GmbH, 2017)), and since extending the infrastructure is
very costly. As the data-driven approach requires historical flight data, different degrees
of resource scarcity are created by reducing the number of carousels as well as worker
capacities. There are three types of carousels at Munich Airport as shown in Table 3.3.
The first column (“Type ID”) assigns an identifier to each type. The other columns give
the carousel characteristics. There are seven carousels of type 1, 14 of type 2, and one
of type 3 at Munich Airport. The layout for each set of instances is defined by a triplet,
where the first, second, and third integer give the numbers of carousels of type 1, 2, and
3, respectively.

Since identical weekdays show similar air traffic patterns, I have grouped the instances
by weekday, with each set of instances consisting of four instances of the same day of
the week. The instance sets are listed in Table 3.4. The “Flights” and “Bags” columns
show the minimum, mean, and maximum number of flights and bags, respectively. The
“Carousels” column shows the number of carousels of each type, and the “Worker” column
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Type Working Belt

ID stations capacity

(Kw
c )

(
Kb

c

)
1 4 20

2 4 25

3 6 40

Table 3.3.: Carousel types

ID
Flights Bags Carousels Worker

min avg max min avg max 1 2 3 (Kwo
τ )

Mon 86 89 92 5,715 6,270 7,012 6 7 1 70

Tue 85 97 105 4,264 5,380 6,929 5 7 1 42

Wed 91 95 98 4,464 5,048 5,527 5 6 1 38

Thu 98 102 107 5,160 5,706 6,525 5 5 1 36

Fri 414 425 436 20,509 21,324 22,138 5 5 1 40

Table 3.4.: Instances

shows the number of workers. In contrast to all other instances, the Friday instances cover
not only one peak period but the complete planning day, which generally has three peaks
during the day at Munich Airport. On average, a worker requires 30 seconds to load a
bag, which gives a loading rate of rl = 10 bags per period. The storage depletion rate is
set to rs = 19 bags per period, and the storage capacity is Ks = 6, 000 bags.

For each departing flight, there are on average 12 observed check-in arrival processes
available, that is, 12 times the same flight number and the same destination on the same
day of the week departing from Munich Airport. For a given day of the week, planning
days have been selected randomly, which provide the actual data used in the simulation,
while the remaining observations are used in the optimization. For the transfer arrival
processes, the quantity of baggage an inbound flight delivers for each outbound flight
becomes known when baggage handling at the origin airport is finished.
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Instances

Greedy Main

Left bags Belt vios Comp. time Left bags Belt vios

avg max avg max avg mins avg max avg max

Mon 816 989 117 132 0.5 0.3 1 0.3 1

Tue 426 786 73 103 0.4 0.5 2 0.0 0

Wed 432 586 52 58 0.5 3.0 10 0.0 0

Thu 687 927 76 101 0.8 74.7 201 10.7 36

Fri 1,805 1,992 183 203 1.9 4.0 5 6.0 7

Table 3.5.: Results for baseline setup

3.6.2. Baseline setup

At first, the parameters determining the worker flexibility are set to values reflecting
practice at Munich Airport. The block length is set to 30 minutes (L = 6), which also
means that the duration of the loading process must be at least 30 minutes. The number
of changes is restricted to J = 2, which means that apart from the start and end of a
flight’s LP, the number of assigned workers can be changed twice. Table 3.5 shows the
results. Each row corresponds to a set of instances for a weekday. The columns contain
performance measures for both the greedy heuristic and the proposed algorithm, and
the computation times (average minutes per re-optimization) for the proposed algorithm.
The "Left bags" columns report the number of bags that are not loaded into ULDs by the
end of the baggage handling process. The extent to which the conveyor belt capacity is
violated is measured as follows. One belt capacity violation of a carousel is one period in
which one or more bags must remain in the BHS because the carousel’s belt capacity is
completely used up. The total belt capacity violations are the sum of the belt capacity
violations over all carousels, which are reported in the “Belt vios” columns. No violations
of the storage capacity were observed in the simulation. The table shows that the greedy
heuristic is outperformed in all cases, with several hundred unloaded bags, on average,
compared to only few left bags and capacity violations with the proposed algorithm. The
results are worse for the Thursday instances, which have the lowest capacity with only 11

carousels in total and 36 workers. Therefore, the Thursday instances can be considered
a stress test and will be used in the subsequent experiment, in which I analyze worker
flexibility.
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Flexibility Greedy Main

Block Max. no. of Left Belt Comp. time Left Belt

length (L) changes (J) bags vios (avg mins) bags vios

3 ∞ 62 175 1.3 2 (1%) 0 (0%)

3 2 168 137 1.4 2 (1%) 1 (3%)

3 0 324 123 0.8 2 (1%) 1 (3%)

6 ∞ 441 164 0.8 133 (66%) 24 (67%)

6 2 479 146 0.8 201 (100%) 36 (100%)

6 0 729 117 0.8 250 (124%) 42 (117%)

12 ∞ 1250 109 0.8 1,812 (901%) 52 (144%)

12 2 1250 109 0.8 1,943 (967%) 55 (153%)

12 0 1478 101 0.5 2,176 (1083%) 50 (139%)

Table 3.6.: Computational results for a difficult instance

3.6.3. Evaluation of flexibility

Here, I will consider different degrees of worker flexibility to gain insights into the value
thereof. To that end, I vary the block length L and the number of times the number of
workers is allowed to change during a flight’s loading process J . All instances are solved
with (L, J) = (L,∞) , (L, 2) and (L, 0) for L = 3, 6, 12 periods corresponding to 15, 30 and
60 minutes, respectively. J = 0 requires the number of workers to be constant throughout
a flight’s loading process. The effects of flexibility are first illustrated by looking at the
results for the most difficult instance, in terms of the number of left bags. The results are
shown in Table 3.6, in which each row corresponds to an experiment with different values
for the parameters that determine the flexibility, and the first row is the most flexible
with a block length of 15 minutes and an arbitrary number of changes (L, J) = (3,∞),
and the last row is the least flexible with a block length of one hour and rectangular work
profiles (L, J) = (12, 0). The left bags and belt capacity violations of our algorithm are
also given as percentages of the baseline setup in parentheses behind the value.

The proposed procedure outperforms the greedy heuristic, except when the flexibility is
very low. When planning with the greedy heuristic, flexibility has a strong effect on the
number of mishandled bags, but there is no clear relationship between flexibility and the
capacity violations. When planning with the proposed procedure, flexibility positively
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effects both the number of mishandled bags and the capacity violations. With a block
length of 15 minutes and an arbitrary number of changes, there are only two mishandled
bags and no capacity violations. Keeping the block length at that value and reducing J

leads to two capacity violations. The good performance for J = 0 seems surprising at
first. Taking a closer look at the solutions, it is observed that in general there are three
types of profiles: (i) long loading process with relatively few workers and early storage
depletion, (ii) short loading process with late storage depletion with many workers, and
(iii) the same as (ii), but with only one worker. In the case of (i), bags are sent directly
to the carousel over a long period. In the case of (ii), bags are buffered in the storage
and then sent to the carousel to be loaded into ULDs by multiple workers in a short
period of time, and case (iii) occurs for flights with very little baggage, where a single
worker can load all bags within 15 minutes. If the block length was longer, a worker
would need to be assigned for at least that long, thereby wasting capacity that otherwise
could be used for other flights. This is precisely what happens when the block length is
set to 30 minutes (L = 6) or one hour (L = 12). With L = 6, the wasted capacity leads
to more than 100 unloaded bags. This shows that being able to change the number of
workers allows the loading processes to be matched to fluctuating baggage streams more
efficiently, and thus leads to a higher resource utilization. When the block length is set
to one hour (L = 12), the utilization of the workers assigned to the “small flights” is very
low on average, and the capacity that is left for the remaining flights is insufficient. As
a result, the procedure is forced to work with too low scenarios, and we obtain results
that are worse than the greedy heuristic. Hence, for functioning baggage handling under
scarce resources, flexibility is key.

Table C.1 of Appendix C.3 shows the aggregated results of all instances. With the most
flexible setting (L, J) = (3,∞) and the proposed procedure, the maximum number of
unloaded bags and capacity violations is 3 and 8, respectively. Hence, a high degree of
worker flexibility allows even the most difficult instances to be solved with good results. As
illustrated in Figure 3.3a, the block length has a strong effect on the number of unloaded
bags, as well as the belt capacity violations. With a block length of L = 12, more than 800

bags cannot be loaded on average. An explanation is that scarce resources are assigned to
small flights longer than necessary, and hence, are wasted. In the unlikely event that it is
impossible to assign workers and working stations to a flight for the minimum duration,
the baggage handling process of that flight cannot start, and all its bags must be delivered
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Figure 3.3.: Varying flexibility parameters

by a later airplane. The effect of the number of allowed changes J is illustrated in Figure
3.3b. The average number of unloaded bags decreases from 60.8 when only a constant
number of workers is allowed for each flight (J = 0) to 16.1 when the number of changes
is unrestricted (J =∞), which corresponds to a decrease of 74%.

3.7. Conclusions

In this chapter, I presented a new model for dynamic baggage handling with flexible
work profiles. A flight’s work profile determines how many workers should work over the
course of the baggage handling period. Solutions to the model provide the assignments
of flights to baggage carousels, the start of the baggage loading process, a work profile
as well as the start of the storage depletion for each flight. The objective is to generate
robust plans so as to make sure bags can be loaded in time, i.e. before the end of a
flight’s baggage handling process, and avoid backlogs in the baggage handling system. To
obtain solutions to the model in as close to real-time as possible, I developed a column-
generation-based heuristic. The hierarchic objective allows the problem to be solved in
stages. At the beginning of each stage, the restricted master problem is fed with a set
of predefined columns. To obtain integral solutions, column generation is embedded into
branch-and-price procedure. Incumbents are obtained by solving the master problem
as an integer program repeatedly during the search for an integral solution. Using this
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combined methodology, it is possible to solve real-world instances and generate high-
quality solutions even for problems with very scarce resources.

The modeling approach allows for the desired degree of worker flexibility to be adjusted,
and several managerial implications can be taken from the computational study. First,
the proposed procedure outperforms the greedy heuristic, which mimics manual decision-
making by a dispatcher. Second, the inflow of bags to the carousel can be controlled,
to some extent, by scheduling the start of the loading process and storage depletion.
However, to match the total loading rate to the flow of incoming bags more effectively,
flexible work profiles must be employed. It is crucial to not require the number of assigned
workers to be constant for a long time. For small flights, luggage can often be loaded by
a single worker within a short time, and in such cases assigning a worker for longer than
necessary is a waste of capacity that could be utilized for other flights. Additionally,
when capacity is scarce, planning with rectangular work profiles, i.e. constant numbers
of workers throughout the loading process for each flight, leads to poor solutions.

With respect to future research, several opportunities exist for expanding the scope of
the problem, for example by taking into account the shifts, breaks, and movements of
individual workers. Another possibility would be to integrate the personnel planning
of the ground handling companies. Furthermore, with regard to alternative solution
methodologies, heuristics with very short computational times may be worthwhile from a
practical point of view.
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4. Conclusion

In this dissertation two planning problems related to the field of workforce planning were
presented. While the workforce capacity planning problem of Chapter 2 belongs to the
class of strategic planning problems, the baggage handling problem of Chapter 3 belongs
to the class of operative planning problems. While the former establishes and maintains
a permanent workforce, the latter, assuming specific worker capacities, simultaneously
optimizes task schedules and worker assignments. These worker capacities result from
the rostering of the ground handling company contracted by the corresponding airline. In
both problems, uncertainty is explicitly considered in the models, but in different ways.
In the strategic workforce capacity planning, uncertainty is represented by resignation
probabilities, which need to be estimated based on historical data, and the problem is
modeled as a Markov decision problem. In the baggage handling problem, uncertainty
is dealt with by integrating historical flight data into the integer programming model
without the need to estimate a point estimate or a distribution. Both model formulations
are computationally intractable with standard algorithms, and therefore, it was necessary
to design customized solution procedures for both cases. To solve realistic instances
of the workforce capacity planning problem in Chapter 2, I developed three decision
rules. The first rule was inspired by inventory control literature, and I extended that
rule twice to obtain improved results. To determine the decision rule’s parameters, a
search procedure was developed. This combined methodology allows for solving realistic
problems, while the standard algorithms fail already for medium sized problems. To solve
realistic instances of the baggage handling problem in Chapter 3, I developed a column-
generation-based heuristic. Certain features of the procedure allow for solving the problem
in a limited period as required for the real-time environment: first, column generation is
warm started by adding promising work profiles generated during preprocessing; second,
the master problem is solved repeatedly during the search for an integral solution to
obtain incumbents; third, the search tree is truncated according to the limited discrepancy
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search methodology; and fourth, computational time is limited. Using this methodology,
high-quality solutions can be generated for real-world problems – even with very scarce
resources.

In summary, the research in this dissertation demonstrates how specific workforce plan-
ning problems incorporating uncertainty can be solved with highly customized solution
procedures. A relevant consideration from a practitioners point of view is to keep the
complexity as low as possible, so as to keep development cycles short, and to improve
maintainability and comprehensibility. The latter can contribute to the acceptance at the
management and the user level. However, at the moment, no general purpose algorithm
is powerful enough to solve such challenging optimization problems under uncertainty.
With respect to Chapter 2, a useful path for future research would be to extend the
scope of the model by allowing more complex skill structures. Another way to extend the
scope would be to allow limited hiring of skilled employees. Furthermore, it is sometimes
possible to conduct training in different modes, that is, either slowly while the trainee is
relatively productive, or quickly while the trainee is completely removed from the shop
floor. When such an opportunity exists, the question arises whether or not it is better
to release the worker for the shorter period. Another direction for further research would
be to modify the one-period cost function in order to integrate aspects of the lower level
planning, i.e. the rostering. With respect to Chapter 3, an interesting path for future re-
search would be to include worker movements between baggage handling facilities as well
as their shifts and breaks. Similarly, integrating the personnel scheduling of the ground
handling companies could reduce personnel costs by better matching the staffing levels to
the actual workload. The scope of the problem could further be extended to include gate
assignments, such that the distances between baggage carousels and the flights’ parking
positions are minimized. Furthermore, optimizing the baggage transport systems, would
be an approach to further improve the system performance. Whether in the manufactur-
ing or the service industries, including uncertainty increases the difficulties, yet produces
more realistic models and better planning results.
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Table A.1.: Notation used in the model
Sets, parameters, functions
T = {0, . . . ,∞} planning horizon
L number of proper skill levels
L = {1, 2, . . . , L} proper skill levels
0 dummy skill level representing an external location
L0 = {0, 1, . . . , L− 1} skill levels from which workers can start training
∆l duration for training from level l ∈ L0 to l + 1

Ttl =
{t−∆l + 1, . . . , t− 1}

training start times for training starting at level
l ∈ L0 relative to current time t ∈ T

Π set of policies
Aπ (zt) decision rule of policy π ∈ Π as a function of the

pre-decision state zt at time t ∈ T
γ discounting factor
C (zx

t ) = Cwf (zx
t ) +C - (zx

t ) one-period costs as a function of post-decision state
zx
t at time t ∈ T

Cwf (zx
t ) one-period workforce costs as a function of

post-decision state zx
t at time t ∈ T

C− (zx
t ) one-period under-staffing penalty costs as a function

of post-decision state zx
t at time t ∈ T

ct
l costs for a level l worker in training (l ∈ L0)
cs
l salary for a level l worker (l ∈ L)
Dl minimum number of required level l workers (l ∈ L)
c− penalty costs per unit of missing capacity per period
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ρc
l productivity of a worker in training on current level

l = 1, . . . , L− 1

ρt
l productivity of a level l worker in training on target

level l + 1 (l ∈ L0)
Kl (z

x
t ) capacity at level l ∈ L as a function of the

post-decision state zx
t at time t ∈ T

K incremental capacity (local variable in Algorithm 1)
Random variables and probabilities
pr
l probability that a level l worker resigns (l ∈ L)
Xr

tl ∼ B
(
zax
t−1,l, p

r
l

)
binomially distributed random variable for the
number of level l workers (l ∈ L) that hand in their
resignation in period (t− 1, t) to resign at time
t ∈ T \ {0}

Xr
t = (Xr

tl) all random variables for resignation at time
t ∈ T \ {0}

State variables
Z pre-decision state space
za
tl number of available workers at skill level l ∈ L at

time t ∈ T , before a decision is made
zt
tlt′ number of workers at skill level l ∈ L0 in training for

level l + 1 at time t ∈ T , before a decision is made,
that started their training at t′ ∈ Ttl

zt pre-decision state at time t ∈ T
zax
tl number of available workers at skill level l ∈ L at

time t ∈ T , after a decision has been made
ztx
tlt′ number of workers at skill level l ∈ L0 in training for

level l + 1, that started their training at
t′ ∈ {t−∆l + 1, . . . , t}, at time t ∈ T , after a
decision has been made

zx
t post-decision state at time t ∈ T
ztx
tl number of workers in training at skill level l ∈ L0 at

time t ∈ T post-decision
Decision variables
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xtl ∈ N0 Number of workers who start training at level l ∈ L0

at time t ∈ T
xt = (xtl)l∈L0

Decisions vector at time t ∈ T
System model
SMx (zt, xt) = zx

t transition from pre-decision state zt at time t ∈ T to
post-decision state zx

t

SMX (zx
t , X

r
t+1

)
= zt+1 transition from post-decision state zx

t at time t ∈ T
to next pre-decision state zt+1

SM (zt, xt, X
r
t+1

)
= zt+1 transition from pre-decision state zt at time t ∈ T to

pre-decision state zt+1

Table A.2.: Notation used in the solution methodology
Notation for defining policies
Sl base-stock for level l ∈ L
S = (S1, . . . , SL) base-stock vector
Ml minimum-stock for level l = 1, . . . , L− 1

M = (M1, . . . ,ML−1) minimum-stock vector
Cl training-capacity for level l ∈ L0

C = (Cl)l∈
{
l∈L0:ρt

l<0
} training-capacity vector

ztl number of workers that are at level l ∈ L or in training
to become level l at time t ∈ T

ntl =
∑L

k=l Sk − ztl ∈
Z

shortage (ntl > 0) or surplus (ntl < 0) at level l ∈ L at
time t ∈ T

[a]+ shorthand for max {0, a}
A (S, zt) 7→ xt base-stock decision rule that returns a decision vector xt

given base-stock vector S and pre-decision state zt at
time t ∈ T

A (S,M, zt) 7→ xt base/minimum-stock decision rule that returns a decision
vector xt given base-stock vector S,
minimum-stock vector M and pre-decision state zt at
time t ∈ T
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A (S,M,C, zt) 7→ xt base/minimum-stock/training-capacity decision rule that
returns a decision vector xt given base-stock vector S,
minimum-stock vector M , training-capacity vector C and
pre-decision state zt at time t ∈ T

Notation for policy search
Ĉπ

t observed one-period costs for policy π ∈ Π in period
(t, t+ 1) (t ∈ T )

X̂r
t observed resignations during period (t− 1, t)

(t ∈ T \ {0})
ẑt observed state at time t (t ∈ T \ {0})
C̄π

n sample mean of Ĉπ
t after n observations

nπ sample size for policy π ∈ Π

M2,π
n sum of squares of differences for policy π ∈ Π after n

observations
S2,π
n sample variance for policy π ∈ Π after n observations

Sπ
n sample standard deviation for policy π ∈ Π after n

observations
V hash map with policies as keys and triplets with sample

statistics
(
nπ, C̄

π
n ,M

2,π
n

)
as values

N (π) neighborhood of π ∈ Π

α (π, φ) dynamic significance level of test comparing π and φ ∈ Π

obs threshold on number of observations for policy
comparison
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Table B.1.: Notation
Notation
T = {0, . . . , T} Planning horizon of the complete day
∆ Time limit in number of periods for re-optimization
P t (Re-)optimization problem that is solved starting at

time t = −∆, . . . , T −∆− 1

t′t = t+∆ Time when the solution of optimization problem P t

takes effect for t = 0−∆, . . . , T − 1−∆

∆h Number of periods to limit the planning horizon
Tt =

{
t′t, . . . , t

′
t +∆h} Planning horizon of problem P t for t = 0, . . . , T − 1

Carousels
C Set of carousels
Kb

c Conveyor belt capacity in number of bags of carousel
c ∈ C

Kw
c Number of working stations of carousel c ∈ C
Ci Carousels that can be used for flight i ∈ F
Storage
Ks Storage capacity
rs Storage depletion rate per period
Workers
Kwo

τ Number of available workers at time τ ∈ T
rl Loading rate per worker (and working station) in

bags per period
Flights
F Set of flights
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F t Flights that are included in problem P t

Ei End of baggage handling of flight i ∈ F
Kc = {1, . . . , Kc} Index set for certain bags
Ku = {0, . . . , Ku} Index set for uncertain baggage
Kc ×Ku Set of scenarios
(k, k′) ∈ Kc ×Ku Scenario
Atkk′

iτ Number of bags arriving for flight i ∈ F in period
τ = −1, . . . , Ei − 1 according to scenario
(k, k′) ∈ Kc ×Ku and the information available at
time t = −∆, . . . , T −∆− 1

φb,tkk′
iτπ Number of bags on the conveyor belt for flight i ∈ F

at time τ = Si, . . . , Ei with work profile π ∈ Si
according to scenario (k, k′) ∈ Kc ×Ku and the
information available at time t = −∆, . . . , T −∆− 1

φs,tkk′
iτπ Number of bags in storage for flight i ∈ F at time

τ = 0, . . . , Ei with work profile π ∈ Si according to
scenario (k, k′) ∈ Kc ×Ku and the information
available at time t = −∆, . . . , T −∆− 1

LP / SD Loading process / Storage depletion
Si Earliest start of the LP of flight i ∈ F
sslp
i / sssd

i Start of the LP / SD of flight i ∈ F
slp
iτ / ssd

iτ = 1 if the LP / SD of flight i ∈ F is in progress in
period τ = Si, . . . , Ei − 1

wiτ Number of workers assigned to flight i ∈ F in period
τ = Si, . . . , Ei − 1

L Block length
J Number of times the number of workers is allowed to

change during a flight’s LP
π Schedule and work profile tuple
Stkk′
ic Set of profiles π for flight i ∈ F t and carousel c ∈ Ci

based on
(
Atkk′

iτ

)
τ=−1,...,Ei−1

Stkk′
icτ Subset of Stkk′

ic where the LP is in progress during
period τ = Si, . . . , Ei − 1
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S̃tkk′
ic Subset of Stkk′

ic of the restricted master problem
Decision variables
xkk′
icπ 1, if flight i ∈ F t is assigned to carousel c ∈ Ci with

scenario (k, k′) ∈ Kc ×Ku and profile π ∈ Stkk′
ic ; 0

otherwise
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Handling

C.1. Profile Generation

The schedules complying with the rules introduced in Section 3.5.5 are generated as
follows. For each duration of the loading process d that is allowed according to slpMod,
a set of work profiles is generated. For a given duration of the loading process d, the
work profiles are built recursively as shown in Algorithm 4. The recursion progresses
through the time periods until the numbers of workers have been set for all d periods.
Buffer (w0, . . . , wd−1) stores an incomplete work profile. Each time a work profile is
completed, it is added to the list of results P . Parameter c tracks the number of changes
of workers. At the start of each recursion, if values are set for all d periods, the profile in
the buffer is added to the results, and the recursion ends. Otherwise, if no more changes
are allowed because of parameter J ′ or further changes would violate the block length
L′, the remaining values are set equal to the previous period, and the profile is added
to the results. Otherwise, the algorithm loops over the values allowed according to the
maximum gap Ḡ. In each iteration, if the new value is equal to the previous value, the
new value is stored in the buffer, and the recursion continues with the next period without
incrementing the number of changes c. If the value differs from the previous one, the value
is set for the next L′ periods and the recursion continues L′ periods later with the number
of changes incremented by one.

Next, each work profile is combined with each allowed start of the storage depletion,
completing the schedule. The storage and load on the carousel are determined with
equations (3.1) and (3.2). If both storage and belt are empty at the end of the LP, the
schedule π is a candidate to be added to S̃tkk′

ic .
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Algorithmus 4 : Profile generation
Function generateProfiles

Input : current period t,
profile buffer (0, w0, . . . , wd−1),
changes c,
set of profiles P

if t = d then P ← P ∪ {(w0, . . . , wd−1)}, return
if c ≥ J ′ ∨ d− t < L′ then

while t < d do wt ← wt−1, t← t+ 1
P ← P ∪ {(w0, . . . , wd−1)}, return

for w = max
{
1, wt−1 − Ḡ

}
, . . . ,min

{
maxc∈Ci K

w
c , wt−1 + Ḡ

}
do

if w = wt−1 then
wt ← w, generateProfiles(t+ 1, c, (w0, . . . , wd−1))

else
for t′ = t, . . . ,min {t+ L′, d} − 1 do wt′ ← wt−1

generateProfiles(t′ + 1, c+ 1, (w0, . . . , wd−1))

C.2. Greedy Decision Rule

The greedy heuristic mimicking the decision-making of a human dispatcher is outlined
as follows. In general, a human dispatcher distributes the available resources (workers
and working stations) to flights to ensure that “big flights” with a lot of baggage receive
more resources than “small flights”. Therefore, to automatize this process, (i) a measure
for the size of a flight or the resources needed and (ii) a way to distribute resources
depending on that measure are required, so that both (i) and (ii) correspond to the logic
a dispatcher uses. At each decision, the flights that cannot be changed due to the block
length restriction or due to the limit on the number of changes receive the same number
of workers and thus working stations as previously. The remaining flights are added to a
candidate list and sorted in decreasing order by the expected number of workers required
per period. More precisely, by

WSi :=
1

(Ei − t) rl

((
φs
t + φb

t

)
+

Ei−1∑
τ=t

Āiτ

)
,

where φs
t + φb

t are the bags already in the system (on the carousel or in the storage)
at time t, and Āiτ denotes the expected number of bags arriving for flight i in period
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τ = t, . . . , Ei−1, which is derived from past observations. Note that WSi is not rounded,
which leads to very few ties. Next, the following steps are executed iteratively, where
WSi will be decremented each time flight i receives a worker and working station.

Step 0 If the candidate list is empty or if there are no resources left, stop and return
the solution.

Step 1 Take the first flight from the list. Let this flight be i∗.

Step 2 If flight i∗ is in progress, check whether the number of workers at the assigned
carousel can be increased by one. If that is impossible because there are
no workers left or because the carousel has no additional carousels, remove
the flight from the candidate list, and go to Step 0. Otherwise, increase the
number of workers of flight i∗ by one and decrease WSi∗ by one because the
flight has just received a worker. Sort the candidate list in decreasing order
by WSi, and go to Step 0.

Step 3 If flight i∗ is not in progress, check whether resources are available to start the
loading process with one worker. If not, remove the flight from the candidate
list and go to Step 0. Otherwise, start the LP with one worker at the carousel
with the most free working stations and start the SD, decrease WSi∗ by one,
set the flight to be in progress, sort the candidate list in decreasing order by
WSi, and go to Step 0.

C.3. Aggregated Results

Table C.1 shows the aggregated results of all 20 instances. Each row corresponds to
different values for the parameters that determine the flexibility.
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Flexibility Greedy Main

Block Max. no. of Left bags Belt vios Comp. time Left bags Belt vios

length (L) changes (J) avg max avg max avg secs avg max avg max

3 ∞ 55 274 95 201 41 0 3 0 8

3 2 102 300 94 174 39 1 19 1 7

3 0 308 727 102 223 33 1 10 1 15

6 ∞ 277 994 93 168 39 16 173 3 30

6 2 298 1,035 89 169 42 23 211 4 45

6 0 1,010 2,122 90 190 33 61 659 6 76

12 ∞ 800 2,675 73 149 31 818 6,296 38 295

12 2 800 2,675 73 149 34 830 5,970 36 281

12 0 1,467 2,969 82 180 35 851 6,418 46 323

Table C.1.: Aggregated computational results
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