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Summary

We prove that the Bayesian information criterion (BIC) approximates the Bayes factor for

the multivariate logistic regression model to order Op(1) for arbitrary prior distributions and

Op(n
− 1

2 ) for the unit information prior distribution. Thereby, we show the construction of

null-orthogonal parametrizations. Further, we provide a framework in R for the Bayesian

multivariate logistic regression with different covariates for different multivariate outcomes.

Using univariate and multivariate logistic regression models we develop a risk prediction

model for five adverse pathological outcomes after prostatectomy based on electronic

medical records data.

Zusammenfassung

Wir beweisen für die multivariate logistische Regression, dass für beliebige A-priori-Verteil-

ungen das Schwarz-Bayes-Informationskriterium den Bayes Faktor mit einer Ordnung von

Op(1) approximiert und für die unit information A-priori-Verteilung mit einer Ordnung von

Op(n
− 1

2 ). Dabei zeigen wir, wie eine Null-orthogonale Parametrisierung konstruiert werden

kann. Eine Implementierung der Bayes’schen multivariaten logistischen Regression mit

unterschiedlichen unabhängige Variablen für die Modellierung verschiedener abhängiger

Größen wird für R zur Verfügung gestellt. Basierend auf elektronischen Patientendaten,

erstellen wir mit univariaten und multivariaten logistischen Regressionmodellen ein Risiko-

prognosemodell für fünf negative pathologische Befunde.
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1 Motivation and outline

The use and availability of electronic medical records (EMR) data for clinical research have

been rising over the last years [1]. EMR data can be used to develop risk prediction models

for a variety of outcomes, such as hospital readmission, mortality, and heart failure, to name

just a few [2–12].

We develop a prediction model for five adverse pathological outcomes after prostatectomy

based on EMR data. Given that 17,227 patients underwent a prostatectomy in Germany in

2017 this is highly relevant from a medical perspective [13]. Inspired from the data setting we

take two different, but related approaches to modelling. We use separate univariate logistic

regression and compare the results to a multivariate logistic regression that accounts for

correlations among the outcomes. We prefer logistic regression models in this setting over

other machine learning approaches as the odds ratios (OR) are easy to interpret.

Unfortunately, in the medical literature multivariable models are often misspecified as multi-

variate models [14]. We refer to multivariate models as those with several outcomes and

univariate models as those with only one outcome. We sometimes refer to univariate models

as multivariable models to indicate multiple predictors.

We are specifically concerned with model selection to develop the prediction models. Often

automatic step-wise Bayesian information criterion (BIC) methods are used and one might

forget that the BIC is an approximation to the Bayes factor (BF) and provides a consistent

model selection procedure for the case of nested models. Kass and Vaidyanathan (1992)

showed the approximation of the BF for testing the equality of two binomial distributions,

stating the extension to univariate logistic regression models without proof [15]. We provide a

proof for this approximation for specific and arbitrary prior distributions for univariate logistic

regression and extend it to the multivariate setting.

Separate risk prediction models for adverse pathological outcomes following prostatectomy

have been developed over time [16–45]. However, to our knowledge, none of them account

for the correlation among all outcomes with a multivariate model. Many of the prediction

models are based on retrospective data or clinical studies, and although EMR data are

already used for risk models regarding diagnosis of prostate cancer or long-term outcomes,

they are comparably rare for predicting adverse pathological outcomes [19, 46–49].
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1 Motivation and outline

We present more information about the medical context and describe the EMR data provided

by the Martini Klinik, Hamburg, Germany in the next chapter. After setting the mathemat-

ical foundations in Chapter 3, we get to the heart of the thesis. In Chapter 4 we prove

the approximation of the BF for arbitrary prior distributions and the unit information prior

distribution. Thereby, we show and prove how we can construct a null-orthogonalization

of a set of parameters. In simulation studies we show the results and finally, we apply the

theory to the EMR data, where we develop univariate logistic regression models for the

prediction of adverse pathological outcomes. After that, we extend the theory developed for

the univariate logistic regression model to the multivariate case in Chapter 5. We discuss

shortly the technicalities of the implementation of the Bayesian multivariate model and then

apply it to the EMR data. Finally, we compare the results of the univariate and multivariate

approach for predicting outcomes in a separate validation set.
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2 Medical context and description of electronic

medical records data

In the following, we give some background on the medical setting and describe the electronic

medical records (EMR) data set used for analysis. Further, we discuss how missing values

are addressed and how the data are split for training and evaluation of the models.

2.1 Medical context and relevance

Prostate cancer is the most frequently diagnosed cancer for males in western Europe, North

and South America, Australia, and large parts of Africa [50]. The detection of prostate cancer

was highly influenced by the introduction of prostate-specific antigen (PSA) screening in the

late 1980s [50]. PSA is a protein that is produced by the prostate gland and measured in the

blood [51]. Increased levels of PSA might indicate the presence of prostate cancer, but other

benign prostate conditions, such as prostatitis or benign prostatic hyperplasia (BPH), can

cause a rise in PSA levels as well [51].

Figure 2.1 Schematic display of
Gleason grading [52].

Most patients suspected of having prostate cancer un-

dergo a biopsy, where several probes, so-called cores,

of tissue are sampled from the prostate and then ex-

amined by a pathologist [51]. Cores that show signs of

cancer are classified using Gleason grading, a grading

system introduced by Donald F. Gleason in 1966 [52].

This scheme was updated over the years, aiming at a

reproducible classification [52, 53]. A Gleason score

consists of the sum of primary and secondary Gleason

grades representing the most common classification

and the highest classification among the remaining pat-

terns [54, 55]. Figure 2.1 displays the five different Glea-

son patterns defined at the 2005 International Society

of Urological Pathology (ISUP) consensus conference

on Gleason grading of prostatic carcinoma [52]. There,

pathologists agreed that a Gleason score of 4 should

rarely, if ever, be diagnosed at biopsy [52]. Albertsen
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2 Medical context and description of electronic medical records data

et al. (2005) compared Gleason grading over a decade and found that there has been an

upward shift leading to higher classified biopsy samples [56].

Recent advances encourage the use of a different grading system, which includes five

distinct grade groups based on the Gleason score [57]. However, we base the analysis

separately on the primary and secondary Gleason grade, since most of the EMR data for

this thesis was collected before the introduction of that grading scheme, and the results can

be translated to fit into the five grading groups.

After diagnosis of prostate cancer, several treatment options depending on the severeness

of the tumor are available [54]. The most common are radical prostatectomy, which is the

removal of the prostate gland, radiation or radiopharmaceutical therapy, hormonal therapy,

and watchful waiting or active surveillance (AS). However, the last two options are strategies

that do not immediately employ a therapy [54]. Unfortunately, the distinction between watchful

waiting and AS is not always clear in the literature [54]. While with watchful waiting, curative

therapy is not attempted at any point and the focus lies on palliative care, AS is a strategy

to avoid or delay therapy, while regularly following patients and attempting curative therapy

once tumor progression is indicated [54, 58]. Protocols for surveillance and criteria for

interventions vary across institutions [54, 59].

After treatment, patients are monitored to detect biochemical recurrence (BCR), which

denotes an increase of PSA level in the blood [60]. After prostatectomy, the PSA level should

be very low or undetectable and BCR might indicate recurrence of cancer, but not all patients

experience clinical symptoms of relapse after BCR [54, 60].

The focus of this thesis is on patients that underwent prostatectomy at the Martini Klinik,

Hamburg. We aim to predict five adverse pathological outcomes that are used to describe

disease severeness or aggressiveness of the patient’s tumor. Knowledge of these outcomes

aids in the decision on further treatments after surgery, such as radiation or hormonal therapy.

In the following, we describe the five pathological outcomes in detail and their prognostic or

therapeutic relevance.

Extracapsular extension or extraprostatic extension (ECE) is defined by tumor growth

beyond the normal boundaries of the prostate gland [61]. In the presence of ECE,

patients have a higher chance of BCR and thus a poorer prognosis for survival after

radical prostatectomy compared to patients without ECE [62–68]. Several models and

nomograms have been developed to predict ECE before prostatectomy using patient

characteristics, information available through biopsy, as well as magnetic resonance

imaging (MRI) [16–26, 45].
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2.1 Medical context and relevance

Seminal vesicle invasion (SVI) is the infiltration of the muscular wall of the seminal vesi-

cles by the tumor [62, 69–71]. SVI can occur as a special case of ECE, by distant

metastases, or by infiltration of the ejaculatory duct followed by an invasion of the muscular

wall of the seminal vesicles [72]. In our analysis, we only consider the most common route

of invasion, which is a special case of ECE [72]. It has been shown that patients with SVI

have a poorer prognosis after radical prostatectomy [62, 66, 73, 74]. However, Sapre et al.

(2012) suggested that SVI is a surrogate marker for more aggressive tumors [70]. Seminal

vesicles are commonly removed during a radical prostatectomy, which has adverse effects

on urinary and erectile function [29]. Thus, there is a great interest in predicting SVI before

prostatectomy, leading to several models considering pre-surgery patient characteristics,

biopsy information and MRI data [26–31, 45].

Lymph node involvement (LNI) is defined as the metastasis of the tumor to the lymph

nodes [75]. Diagnosis of LNI highly depends on the extent of pelvic lymph node dissection

performed at radical prostatectomy [76]. Patients with LNI have an increased estimated

risk for cancer-specific mortality [66, 77]. Careful pelvic lymph node dissection requires

skilled surgeons and is time-consuming. Not all patients have the same risk of LNI, thus

several nomograms have been developed for prediction [26, 32–38, 45, 76].

Lymphovascular invasion (LVI) is the presence of tumor cells within the lymphatic vessels

[78]. It has been reported that patients with LVI have a poorer prognosis, although

not all studies found LVI to be a significant predictor in a multivariable analysis [79–86].

Nevertheless, there are indications that LVI significantly increases the risk of LNI and

distant metastasis [86, 87]. Risk prediction models for LVI are not as common as for the

other adverse pathological outcomes.

Primary Gleason grade higher than 3 (PGG) is an indicator of whether the most preva-

lent pathological Gleason grade is greater than 3. There is a positive correlation between

the Gleason score at biopsy and the Gleason score determined after prostatectomy.

However, at biopsy, only a small sample of the prostate is examined, whereas after

prostatectomy a more precise and complete grading can be performed. Therefore, cases

of so-called Gleason upgrading or downgrading are not uncommon, meaning that the

pathological Gleason score after surgery is higher or lower than the one determined

after biopsy [39–43]. Studies have shown that patients with a primary Gleason grade

higher than 3 after prostatectomy have a higher risk of BCR and worse patient survival

[45, 88–93]. Thus, to improve informed decision making there have been several articles

investigating Gleason score up- and down-grading and aiming to predict the pathological

primary Gleason grade [39–44, 94].
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2 Medical context and description of electronic medical records data

Although separate risk prediction models for the five adverse pathological outcomes are

available, they do not account for the correlation among them and, to our knowledge,

there exists no multivariate model. We develop a multivariate risk prediction model for the

five adverse pathological outcomes after prostatectomy and compare the performance to

univariate models that do not account for correlation among outcomes.

2.2 Data cleaning and description

The data that we use throughout this thesis are provided by the Martini Klinik, Hamburg. The

original data are three different data sets that were extracted from the EMR database and

contain records for patients from 1992 to 2016. Figure 2.2 provides an overview over the

different data sets and the data cleaning process. The three data sets are Pathological data,

PSA data, and Biopsy data.

Pathological data contains prostatectomy information on 24,335 patients. We exclude 5

records as they either contain duplicated information or are missing the date of prosta-

tectomy. We extract the pathological outcomes ECE, SVI, LVI, LNI, and PGG from the

pathological diagnosis and additional columns. This data set only contains information

available after the surgery, thus everything apart from the outcomes, the date of surgery

and the patient ID is discarded.

PSA data stores PSA measurements with the corresponding dates as well as the date

of surgery and the patient ID of 48,507 patients. Those without a date of surgery are

excluded, as we are only interested in patients who underwent a prostatectomy. Further,

records with invalid or missing PSA values are discarded as well as duplicated ones.

Although additional information on specific PSA measurements, such as the percentage of

free PSA, is available for some patients, overall the number of missing values is very large

for these specific variables in accordance with the lack of routine use of these markers in

the clinic. Thus, they are not considered further. After cleaning the data we obtain 84,177

PSA values from 24,242 patients. We join the PSA data with the Pathological data using

the date of surgery and the patient ID to identify matching records.

Biopsy data contains information about biopsies for 24,335 patients and accompanying

values, such as primary and secondary Gleason grades, number of cores, number of

positive cores, prostate volume, patient’s height and weight, PSA value at biopsy and

family history of prostate cancer. Records with missing date of biopsy are excluded, as

well as duplicated information. For 3,152 patients we have more than one biopsy in the

data set, but we use only the most recent one. We join the Biopsy data to the other data

sets using the patient ID to identify matching records.
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2.2 Data cleaning and description

Pathological data

ECE

SVI

LVI
LNI

PGG

Date of
surgery

Patient ID

PSA data

PSA value

Date of
PSA value Date of

surgery

Patient ID

Biopsy data

PSA value
at biopsy

Gleason
grading

Biopsy cores

Weight Height Prostate
volume

Family
history

Date of
biopsy

Patient ID

Patient data

# records: 24,338
# patients: 24,335

# records: 24,333
# patients: 24,333

# records: 219,267
# patients: 48,507

# records: 84,177
# patients: 24,242

# records: 28,609
# patients: 24,335

# records: 27,334
# patients: 24,182

# patients: 24,345

# patients: 24,122

Data cleaning
Data cleaning

Data cleaning

Join data sets

Patients with at least one
pathological outcome and
one PSA value before surgery

Figure 2.2 Overview of Pathology, PSA, and Biopsy data sets combined for analysis.

After we join the three data sets, we exclude 223 patients without at least one PSA value

before surgery or without any pathological outcome information. In the following, we provide

more detail about the final data set and additional features that are extracted from the

available data.

N (%) ECE SVI LVI LNI PGG

No 15,868 (65.8) 20,861 (86.5) 15,425 (63.9) 15,114 (62.7) 18,393 (76.2)

Yes 8,235 (34.1) 3,219 (13.3) 2,619 (10.9) 2,083 (8.6) 5,650 (23.4)

Missing 19 (0.1) 42 (0.2) 6,078 (25.2) 6,925 (28.7) 79 (0.3)

Table 2.1 Distribution of pathological outcomes with number of missing values for 24,122
patients.
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2 Medical context and description of electronic medical records data

ECE with an overall prevalence of 34.1% is the most common adverse pathological outcome

among 24,122 prostatectomy patients that are available after initial data processing. The

second most prevalent pathological outcome is PGG with 23.4%, followed by SVI with 13.3%.

The lowest prevalence outcomes are LVI and LNI with 10.9% and 8.6%, respectively (Table

2.1).

Figure 2.3 shows that information on LVI is only available for patients with a date of prosta-

tectomy after 2001. Before 2005 the available information about LVI is very sparse with

4 non-missing cases and thus the prevalence for the non-missing cases jumps from an

unrealistic 0% to 100% from 1 non-missing case each, before leveling to more realistic rates.

Overall we can see that the prevalence of ECE, SVI, and PGG decreases from 1992 to 2003

and then increases again. Prevalence rises more for PGG compared to ECE and SVI. This

could be due to upward migration in Gleason grading discussed in Section 2.1.
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Figure 2.3 Prevalence of each pathological outcome per year of prostatectomy considering
non-missing cases and total number of prostatectomies per year.

The number of prostatectomies in the data set is low from 1992 to 2000 but steadily rises to

approximately 2,000 per year by 2011. The data were exported in August 2016 thus less

data are available for that year.

Despite the risk of including data that are not reflective of today’s practice, we use all available

patient records and pool the data over years. Thus, the initial missingness of LVI information
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2.2 Data cleaning and description

does not have such a huge impact as well as prostatectomies with a higher prevalence of

ECE. In practice, for example, implementation in a live database, a moving window approach

that only considers the most recent years would be more appropriate [95, 96]. However, this

is not the focus of this thesis.

Figure 2.4 Indicator matrix for whether a pathological outcome is missing ordered by year of
prostatectomy for 24,122 patients.

As the overall number of prostatectomies in the data increases, the percentage of missing

data decreases over the years, which can be seen in Figure 2.4. Especially the number of

missing values for LVI decreases tremendously after 2007, whereas for LNI the decrease

is not as strong and the missing values are spread over the different years. For the other

pathological outcomes ECE, SVI, and PGG, the number of missing values overall is less

than or equal to 0.3% and thus negligible (Table 2.1).

We now take a closer look at the available patient characteristics and medical information of

the patients in the data set. First, we consider the continuous variables, which we summarize

in Table 2.2 and visualize in Figure 2.5.

Patients are between 32 and 81 years old at prostatectomy, with a median age of 64. We

use the patient’s height and weight to calculate the body mass index (BMI) that is given

by BMI =
weight [kg]

(height [m])2
. The BMI aids in classification of patients into categories from

underweight to obese according to the World Health Organization (WHO) [97]. In the

data, the BMI values range from 15.4 kg/m2 to 51.2 kg/m2 and the most common category is

overweight. We use the classification of BMI for visualization, but include the values as a

continuous covariate in the modeling process.
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2 Medical context and description of electronic medical records data
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Figure 2.5 Histograms of continuous patient characteristics along with medical information
on 24,122 prostatectomy patients. 18 patients (0.1%) with a prostate volume larger than 200
ml are not displayed.

From the number of cores and number of positive cores at the last biopsy, we calculate the

percentage of positive cores and use this as a continuous covariate for the analysis. 33.3% is

the median percentage of positive cores retrieved at biopsy and the median prostate volume

is 40 ml. For 18 patients (0.1%) a prostate volume of 200ml or higher was reported and,

again, we do not exclude these possible outliers. As the distribution of prostate volume is

right-skewed, we additionally consider the log-transformation of prostate volume for modeling,

which also mitigates the impact of outliers.

The median PSA value before prostatectomy is 7.1 ng/ml and the values range from 0.01 ng/ml
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2.2 Data cleaning and description

Median Range Missing (%)

Age at prostatectomy [years] 64.0 32 - 81 2 (0)

BMI at last biopsy [kg/m2] 26.2 15.4 - 51.2 5,039 (20.9)

Last PSA value before prostatectomy [ng/ml] 7.1 0.01 - 3,022 0 (0)

Percentage of positive cores at last biopsy [%] 33.3 0 - 100 3,778 (15.7)

Prostate volume at last biopsy [ml] 40.0 3.4 - 420 1,054 (4.4)

Table 2.2 Summary of continuous patient characteristics and medical information on 24,122
prostatectomy patients.

to 3,022 ng/ml. This illustrates one issue we encounter with EMR data: suspicious records

that cannot be retrospectively checked and corrected. A PSA value of 0.01 ng/ml before

prostatectomy is very unlikely. After prostatectomy, PSA typically drops to this level so it

seems likely the incorrect PSA was entered. PSA could also be influenced by factors not

available in the data, such as hormonal or radiation therapy before prostatectomy. Urologists

can not provide a lower cut-off for a plausible PSA value. Overall there are 195 patients

(0.8%) in the data with a PSA value less than 0.5 ng/ml. As we cannot investigate these cases

further and the percentage is small, we decide not to exclude them. Similarly, we do not

exclude 7 patients with a PSA value above 1000 ng/ml. For the data analysis, we transform

the PSA value using the natural logarithm and obtain a Gaussian-like distribution (Figure

2.5).

As discrete and categorical covariates we mainly consider information available after biopsy,

such as primary and secondary Gleason grade, and the corresponding Gleason score. For

123 patients (0.5%) we do not have information about a biopsy and for 2,601 patients more

than one biopsy in the data set is available. Among patients with multiple biopsies, the

maximum Gleason score differed from the Gleason score of the last biopsy before prosta-

tectomy for only 57 patients (2.2%). The database manager from Martini Klinik, Hamburg

confirmed that we can assume that data entered for the last biopsy are more complete and

correct, therefore we use the latest biopsy (Dirk Pehrke, Martini Klinik, Hamburg, personal

conversation, February 24, 2017). Results for the 24,122 prostatectomy patients included in

the analysis are summarized in Table 2.3.

For 293 patients the result of the last biopsy is missing or negative. While this may seem

impossible, it can happen, since the data contain patients that were under AS. AS patients

sometimes receive several biopsies and even when they have already been diagnosed with

prostate cancer, a biopsy can be negative when the biopsy needle hits an area without cancer

cells [98]. It is also possible that a mistake was made during data entry, but unfortunately,

we cannot retrieve information about this.
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2 Medical context and description of electronic medical records data

Biopsy result

Missing negative positive

256 37 23,829

(1.1%) (0.2%) (98.8%)

Number of cores taken

Missing ≤ 5 6 - 7 8 - 9 10 - 11 12 - 13 ≥ 14

3,030 634 5,687 3,021 5,886 4,111 1,753

(12.6%) (2.6%) (23.6%) (12.5%) (24.4%) (17.0%) (7.3%)

Number of positive cores

Missing 0 1 2 3 4 5 6 7 ≥ 8

2,743 37 4,428 4,289 3,686 2,831 1,987 1,542 796 1,783

(11.4%) (0.2%) (18.4%) (17.8%) (15.3%) (11.7%) (8.2%) (6.4%) (3.3%) (7.4%)

Primary Gleason grade Secondary Gleason grade

Missing 1 - 2 3 4 5 Missing 1 - 2 3 4 5

484 305 17,206 5,602 525 484 366 13,177 8,811 1,284

(2.0%) (1.3%) (71.3%) (23.2%) (2.2%) (2.0%) (1.5%) (54.6%) (36.5%) (5.3%)

Gleason score

Missing ≤ 4 5 6 7 8 9 10

481 92 481 9,889 9,888 1,911 1,206 174

(2.0%) (0.4%) (2.0%) (41.0%) (41.0%) (7.9%) (5.0%) (0.7%)

Table 2.3 Summary of discrete and categorical covariates of the last biopsy before
prostatectomy for 24,122 prostatectomy patients.

The number of cores that were taken at biopsy follows an expected pattern. Six, eight, ten

and twelve are the most common numbers of cores. Sometimes physicians decide to take

an additional core and thus there are a few biopsies with seven, nine, eleven or thirteen

cores. As the number of positive cores also depends on the number of cores that were taken,

we focus on the percentage of positive cores already discussed.

The most common primary and secondary Gleason grades are three and the most common

total Gleason scores are six and seven, with 3 + 4 the most prevalent combination. There

are few cases with a Gleason grade lower than three, but these occur less often in the more

recent years and not after 2013, which might be due to the change in Gleason grading after

the 2005 ISUP consensus conference on Gleason grading of prostatic carcinoma (Section

2.1)[52].
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2.2 Data cleaning and description

Family history is missing for 69.3% of the patients. We see in Table 2.4 that the Martini Klinik

started collecting the family history for patients in 2012, as it is missing with few exceptions

before that year. We have no clear information about the degree of family history, which

means the degree of relationship to the family member that was diagnosed with prostate

cancer. In the following, we do not further consider family history as a covariate, due to two

reasons. First, we would like to split the data into training, validation, and test set as we

describe in Section 2.5 using the year of prostatectomy as a split variable. This results in

training data that contain only a few patients with information about family history. Although

we deal with missing data in Section 2.6, the lack of information is too large in this case.

Second, in the literature, family history does not seem to be a significant factor for prostate

cancer progression [99].

Family history of prostate cancer

Year of prostatectomy No Yes Missing

≤ 2011 4 ( 0.0%) 2 ( 0.0%) 14,281 (100.0%)

2012 235 (11.0%) 68 ( 3.2%) 1,837 (85.8%)

2013 1,373 (66.0%) 345 (16.6%) 363 (17.4%)

2014 1,583 (75.4%) 366 (17.4%) 150 ( 7.1%)

2015 1,716 (78.4%) 412 (18.8%) 62 ( 2.8%)

2016 1,021 (77.1%) 276 (20.8%) 28 ( 2.1%)

Table 2.4 Summary of family history of prostate cancer for 24,122 prostatectomy patients.

Similar to Figure 2.4 we consider missing values of continuous and discrete covariates in

Figure 2.6. The completeness of data increases over time and especially BMI values at last

biopsy are increasingly available for patients who underwent a prostatectomy after 2004, as

well as the number and percentage of positive cores for prostatectomy patients after 2007.
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2 Medical context and description of electronic medical records data

Figure 2.6 Indicator matrix for whether a covariate is missing ordered by year of
prostatectomy for 24,122 prostatectomy patients.

2.3 Feature engineering

In the previous section, we discussed covariates that are readily available in the data with

commonly used transformations, such as log-transformed PSA (log(PSA)) and BMI to

summarize patient’s height and weight. In the following, we extract additional covariates

using the longitudinal measurements of PSA values. The extraction and transformation of

covariates is called feature engineering and is an important part of machine learning. It often

requires domain knowledge to create useful features that optimize learning [100]. We use

transformations of the longitudinal PSA values that have been proposed in the literature and

extend these further.

1 2 3 4 5 6 ≥ 7

3,357 9,618 4,178 2,092 1,325 867 2,685

(13.9%) (39.9%) (17.3%) (8.7%) (5.5%) (3.6%) (11.1%)

Table 2.5 Distribution of the number of PSA values before prostatectomy for 24,122
prostatectomy patients.
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2.3 Feature engineering

For 20,765 patients (86.1%) more than one PSA value prior to prostatectomy is available

and for 11,147 patients (46.2%) more than two PSA values are available (Table 2.5). PSA

measurements are irregularly spaced and the number of PSA values differs for each patient

(Table 2.5, Figure 2.7).
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Figure 2.7 PSA trajectories on a log-scale for a random subset of 15 patients with at least 4
PSA measurements within 3 years before prostatectomy.

PSA velocity (PSAV) and doubling time (PSADT) have been widely used in the literature to

predict prostate cancer-specific mortality, prostatectomy outcome, biochemical recurrence

after prostatectomy, and disease progression in untreated patients [101–104]. However, the

independent prognostic contribution of these so-called PSA dynamics to the standard static

clinical risk factors is in dispute [105–110]. We use definitions of PSAV and PSADT that

were reviewed by O’Brien et al. (2009), summarized in Table 2.6, and apply them to PSA

measurements before prostatectomy [105].

For calculating PSAV and PSADT we use a linear regression of PSA or log(PSA) on time.

The model using log(PSA) is

log(PSA) = β0 + β1 · time.

PSAV is then the slope β1 of this model or the equivalent model for PSA, when time is

measured in years. For PSADT we calculate time in months it takes for the PSA level to

double given by

log (2 · PSA)− log (PSA) = β0 + β1 · t1 − (β0 + β1 · t2) = β1 · (t1 − t2)

log

(
2 · PSA

PSA

)
= β1 · PSADT ⇒ PSADT =

log(2)

β1

.
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2 Medical context and description of electronic medical records data

This calculation is straightforward for the log slope method that is used by Egawa et al.

(2000), the Memorial Sloan-Kettering Cancer Center (MSKCC), and Sengupta et al. (2005),

but for the PSADT proposed by Stephenson et al. (2002) the doubling time depends on the

PSA value [102–104, 111]. Stephenson et al. (2002) do not provide a thorough description

of their definition and thus we use the untransformed slope for the Stephenson PSADT [104].

Following O’Brien et al. (2009) we truncated the doubling time at ±240 months.

Definition Method a Restrictions on PSA measurements

Velocities

D’Amico [112] slope within 1 year before prostatectomy

Thompson [107] log slope within 3 years before prostatectomy

MSKCC [111] slope all available values

Sengupta [103] slope within 2 years before prostatectomy, at least 90
days apart

Doubling times

Egawa [102] log slope all available values, spanning at least 6 months

MSKCC [111] log slope all available values

Sengupta [103] log slope within 2 years before prostatectomy, at least 90
days apart

Stephenson [104] slope at least 3 measurements, with one at least 1 year
before prostatectomy b

Discretized velocity

D’Amico [112] cutoff value 2.0 ng/ml/year

aslope - slope of a linear regression of PSA on time
log slope - slope of a linear regression of log-transformed PSA on time

boriginally before diagnosis

Table 2.6 PSA dynamics definitions reviewed by O’Brien et al. (2009) and adapted to PSA
measurements before prostatectomy [105].

In addition to the PSA dynamics in Table 2.6, we use univariate summary statistics such as

the mean, minimum, and maximum, as well as regression models with several variations to

summarize the longitudinal PSA measurements. We consider different subsets of the PSA

values and use either all values, values within three years, two years or one year before

prostatectomy for feature calculation. Furthermore, we consider the log-transformation of

PSA measurements as one additional modification. Table 2.7 summarizes the considered

PSA statistics.

Altogether we obtain 34 univariate summaries, 96 regression summaries, 9 PSAV definitions,
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2.3 Feature engineering

and 4 PSADT definitions as candidate features. However, not all of them apply to all patients.

PSA dynamics require a minimum of two PSA values and apart from the intercept, regression

coefficients cannot be calculated for patients with only one PSA measurement. Figure 2.8

visualizes the number of missing values for each predefined method, where again, the

number of missing values diminish for prostatectomies performed in more recent years.

Nevertheless, PSA dynamics developed by Egawa et al. (2000), Sengupta et al. (2005),

and Stephenson et al. (2002) are applicable to less than half of the patients with no visible

improvement in recent years [102–104].

Method Description

Summary statistics

Last Last PSA value before prostatectomy

Maximum Maximum PSA value before prostatectomy

Mean Average PSA value before prostatectomy

Minimum Minimum PSA value before prostatectomy

Standard deviation Estimated standard deviation of PSA values before
prostatectomy

Regression models

Linear PSA = β0 + β1 · time

Polynomial degree 2 PSA = β0 + β1 · time + β2 · time2

Polynomial degree 3 PSA = β0 + β1 · time + β2 · time2 + β3 · time3

Table 2.7 Engineered PSA features for consideration in the analyses.

While the simple summary PSA statistics are applicable to all patients in the data, standard

deviation and simple linear regression features are not available for all as Figure 2.9 shows.

Features using a higher degree polynomial regression are only available for a small subset

of the patients with no clear improvement in more recent years in contrast to the other

features.

An extensive list of variables used for analysis with their respective names in the data sets is

given in Appendix A.1.
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2 Medical context and description of electronic medical records data

Figure 2.8 Indicator matrix for whether a predefined PSA dynamic is missing ordered by
year of prostatectomy for 24,122 patients.

Figure 2.9 Indicator matrix for whether a PSA feature is missing ordered by year of
prostatectomy for 24,122 patients.
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2.4 Exploratory data analysis

2.4 Exploratory data analysis

In the following, we visualize and analyze the correlation between the adverse pathological

outcomes, between different covariates as well as the relationship of single covariates with

the pathological outcomes.

Y2

Y1 0 1

0 n00 n01

1 n10 n11

Table 2.8 2× 2 table two binary
outcomes Y1 and Y2.

We asses the correlation between the adverse outcomes

pairwise. Therefore we consider the contingency table for

two binary outcomes as provided in Table 2.8, where 1

indicates that the adverse pathological outcome is present

and 0 is not. We exclude missing values pairwise for testing

the independence and quantifying the association between

the outcomes. The number of complete cases for each

pairwise combination is displayed in Table 2.9

We test the pairwise independence of pathological outcomes using Pearson’s χ2 - test. The

test statistic is given by

U =
1∑
i=0

1∑
j=0

(nij − Eij)2

Eij
with Eij =

(ni0 + ni1) · (n0j + n1j)

n00 + n10 + n01 + n11

,

and under the null hypothesis of independence U ∼ χ2
1 [113]. All 10 tests for pairwise

independence return a p-value smaller than 0.001 after adjusting the p-values for multiple

testing using the Bonferroni method [113].

We quantify the pairwise association between the five pathological outcomes with the Φ-

coefficient, Yule’s Q and Yule’s Y [114]. These correlations are defined for binary outcomes

in the following way

Φ =
n11n00 − n01n10√

(n00 + n01)(n00 + n10)(n11 + n01)(n11 + n10)

Yule’s Q =
n11n00 − n01n10

n11n00 + n01n10

Yule’s Y =

√
n11n00 −

√
n01n10√

n11n00 +
√
n01n10

and range from −1 to 1, where 0 denotes no association [114]. If one of the entries in the

contingency table, Table 2.8, of two binary variables is equal to 0, both Yule’s Q and Yule’s Y

are equal to 1 or −1, whereas for |Φ| = 1 both entries on one diagonal have to be 0 [114].

For the contingency table of ECE and SVI, we obtain n01 = 0, as any case of SVI is also

classified as ECE. Thus, Yule’s Q = 1 and Yule’s Y = 1 for ECE and SVI.
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2 Medical context and description of electronic medical records data

Y1 ECE SVI LVI LNI

Y2 SVI LVI LNI PGG LVI LNI PGG LNI PGG PGG

n 24,080 18,037 17,187 24,035 18,025 17,166 24,012 14,235 18,033 17,140

Table 2.9 Number of patients with complete information on pairs of adverse pathological
outcomes.

The pairwise association measures for the pathological outcomes are provided in Figure 2.10.

All outcomes are pairwise positive associated as none of the coefficients is negative. The

association between ECE and SVI is the strongest and ECE and LVI are least associated in

terms of all association measures that we consider.

0.55 0.36 0.36 0.44

0.44 0.49 0.45

0.44 0.39

0.4

ECE

SVI

LVI

LNI

PGG

1 0.78 0.88 0.79

0.85 0.9 0.87

0.85 0.8

0.86

ECE

SVI

LVI

LNI

PGG

1 0.48 0.6 0.49

0.55 0.62 0.58

0.56 0.5

0.57

ECE

SVI

LVI

LNI

PGG

Φ Yule’s Q Yule’s Y

-1.0 -0.5 0.0 0.5 1.0

Figure 2.10 Associations between pathological outcomes measured by the Φ-coefficient,
Yule’s Q and Yules Y based on pairwise complete information with the sample sizes
between 14,235 and 24,080 as provided in Table 2.9.

Figure 2.11 displays the distribution of different combinations of adverse pathological out-

comes. Among the 14,219 patients with complete information about the pathological out-

comes, 46.6% had no adverse outcome, 22.1% had one and 11.5% had two adverse

pathological outcomes. The prevalence of individual combinations varies greatly, from 0.2%

for LVI and LNI to 12.6% for ECE only.

We assess the correlation between covariates with the Spearman rank correlation using the

approximate Student’s t distribution for assessing significance. In addition, we consider the

Pearson correlation coefficient to assess linear correlation and use the approximate Normal

distribution to test for significance. We delete missing values in each pairwise comparison

and adjust for 8,385 multiple comparisons among possible pairs of 130 features with the

Bonferroni method.
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2.4 Exploratory data analysis
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Figure 2.11 Distribution of combinations of adverse pathological outcomes for 14,219
patients with complete information on the pathological outcomes.

Figure 2.12 visualizes Spearman rank correlation for a selection of variables related to

patient characteristics, biopsy, PSA statistics and dynamics defined in Section 2.3. Figure

A.1 in Appendix A.2 displays Pearson correlation coefficients for the same variables with

similar results, but less correlation coefficients were significant.

While correlation among age, BMI and biopsy related covariates was rather low apart from

the number of positive biopsy cores and the percentage of positive cores, we detect a

stronger correlation within the PSA related covariates. PSADTs defined by Egawa et al. and

MSKCC were strongly positively correlated, but negatively correlated with PSADT defined by

Stephenson et al. As we do not calculate the actual doubling time and take the slope for the

latter PSADT definition, this negative correlation is not surprising. The PSAV definitions we

consider showed strong a positive correlation with each other. For the summary statistics for

PSA and log(PSA), Figure 2.12 shows a strong positive correlation between the minimum,

maximum and average values and a negative correlation between the minimum and the

standard deviation of log(PSA).

In Figure 2.13 we focus on these PSA related summary statistics, considering different

time frames before prostatectomy. Thereby, we do not display minimum and maximum
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2 Medical context and description of electronic medical records data
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Figure 2.12 Spearman correlation coefficients for continuous covariates. (all) indicates all
PSA values before prostatectomy were used, ∗∗∗ indicates a p-value < 0.001, ∗∗ < 0.01,
and ∗ < 0.05 after adjusting for 8,385 multiple comparisons with the Bonferroni method.
White color indicates no significant correlation, � correlation coefficients with an absolute
value < 0.05.

PSA in addition to the log(PSA) versions, as the Spearman correlation is rank based

and thus the correlations are identical. In Figure A.2 we provide the Pearson correlation

coefficients including both minimum and maximum of PSA and log(PSA) since this coefficient

is influenced by log-transformation.

The dark blue squares next to the diagonal in Figure 2.13 show that regardless of the specific

time frame considered for the calculation of summary statistics, the correlation of the different

parameters for the same summary statistics is close to 1. Besides correlations involving

the standard deviation of log(PSA), the minimum of log(PSA), and the number of PSA
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2.4 Exploratory data analysis
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Figure 2.13 Spearman correlation coefficient of PSA related covariates for different time
periods. (all), (1y), (2y), or (3y) indicate all PSA values or those within one, two or three
years of prostatectomy are used. ∗∗∗ indicates a p-value < 0.001 after adjusting for 8,385
multiple comparisons with the Bonferroni method. White color indicates no significant
correlation, � correlation coefficients with an absolute value < 0.05.

values, correlations are generally positive as would be expected. The positive correlation of

standard deviation of PSA with the minimum and maximum log(PSA) shows that patients

with larger PSA values have larger variation. An increase of the variance with the mean

is often observed in chemical experiments, where values can span orders of magnitude.

The log is a well-known variance stabilizing transform that corrects this phenomenon [115].

Correlations involving the log(PSA) are more likely to be negative in Figure 2.13.

We also assess the relationship between the pathological outcomes and some selected

variables. Figure 2.14 shows split violin plots for age at prostatectomy, BMI, and the average
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2 Medical context and description of electronic medical records data

log(PSA) value within one year of prostatectomy. For age at prostatectomy we can see

a slight shift in the distribution for patients with the specific pathological outcome, as the

median values and quartiles are higher. For BMI no clear differences are visible across all

outcomes. The mean log(PSA) value within one year of prostatectomy varies considerably

between patients with and without each pathological outcome.
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Figure 2.14 Distributions for age, BMI and average log(PSA) within one year before
prostatectomy split by pathological outcome with not present in dark blue versus outcome
present in light blue. Median, 25% and 75% quantiles are superimposed with solid and
dashed lines. Percentages indicate the distribution of pathological outcomes. Sample sizes
of patients with non-missing values for both the outcome and the variable of interest are
provided at the bottom.

We analyze the primary and secondary Gleason grade using a back-to-back barplot. Here,
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2.5 Splitting data into train and test sets

again we detect a shift in distribution as for higher Gleason grade values the prevalence of

each pathological outcome increases. Looking, for example, at the primary Gleason grade

at last biopsy and ECE (top left plot), we see an increase in percentage of ECE cases from

25.0% among patients with primary Gleason grade 3 to 58.5% for those with primary Gleason

grade 4.
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Figure 2.15 Distributions of primary and secondary Gleason grades split by pathological
outcome with not present in dark blue versus outcome present in light blue. Percentages
indicate the distribution for each outcome per Gleason grade value on the y-axis. Sample
sizes of patients with non-missing values for both the outcome and Gleason grade is given
at the top left.

2.5 Splitting data into train and test sets

In this thesis, we fit multiple models to the prostatectomy data, both univariate and multivari-

ate. We want to select the best one and asses its performance. One risk of this procedure is

overfitting, meaning that we select a model that fits the data too well and therefore models

random noise of the data. We would like to generate a model that not only fits well to the

data but also provides a good generalization to the underlying problem that is predicting the
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2 Medical context and description of electronic medical records data

prostatectomy outcomes. This is a common issue in machine learning and using a hold-out

test set is one possible approach to detect overfitting [100, 116].

We use the year of prostatectomy to split the data into three parts, a training, validation, and

testing set. Patient records with a date of prostatectomy before 2013 are regarded as the

training set, records of patients with a prostatectomy in 2013 or 2014 comprise the validation

set, and the remaining records for patients that underwent prostatectomy in 2015 or 2016

are used as a hold-out test set (Figure 2.16).
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Figure 2.16 EMR data are split into training (n = 16, 427), validation (n = 4, 180), and
hold-out test set (n = 3, 515) using year of prostatectomy.

The hold-out test set is not used in the modeling process. With this procedure, the final model

accuracy can be independently calculated and we prevent results that are too optimistic due

to overfitting. Furthermore, as we use the year of prostatectomy as a splitting variable, we

simulate an implementation in a real database, where predictions of future outcomes are

performed based on past results. Nevertheless, there is one bias that we cannot eliminate

with the data at hand. As we validate the results on a data set created in the same clinic and

by the same physicians, we are unable to detect a study site-specific bias.

We use the validation set to asses model performance of intermediate models and then

choose the final model. This is part of the training process and we fit the final model using

the complete training data, which is the training set and validation set combined.
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2.6 Imputation of missing data

2.6 Imputation of missing data

In Sections 2.2 and 2.3 we have seen that various characteristics and features are missing

for many patients and the outcomes of interest ECE, SVI, LVI, LNI, PGG are not observed

for all patients as well. Overall only 841 patients have information on all outcomes and

features and all those patients underwent a prostatectomy in or after 2012. Thus over 96.5%

of the observations have at least one missing outcome or covariate and simply excluding

incomplete records is not a viable solution. Moreover, premature exclusion of records can

lead to biased results and loss of statistical power [117, 118].

One common approach to dealing with missing values is imputation. We assume that values

are missing at random (MAR), which means that missingness of the values depends on the

observed values and does not depend on the underlying value that is missing [119, 120].

Then, we use multiple imputation by chained equations (MICE) with 10 multiple imputations

with 10 iterations each. We apply predictive mean matching for continuous features, logistic

regression for binary features, and polytomous logistic regression for categorical features

and use the R-function mice of the mice package for imputation [120–122]

As described in Section 2.5, we develop the models on the training data, assess the model

performance on the validation set to choose the model, and test the final performance on

a hold-out test set. We apply the imputation on the training and validation set together,

but separately to the hold-out test set, to avoid that we accidentally use information of the

hold-out test set for modeling. We include the outcome variables in the imputation for the

training and validation set as it is recommended in the literature [120, 123]. Including the

outcome in the imputation for the hold-out test set, might lead to overly optimistic model

performance, thus we only use the covariates in the imputation and do not include the

pathological outcomes of interest [124]. In the test set information about LNI is missing for

318 patients (9.0%) and information about ECE, SVI, LVI, and PGG is missing for 4, 9, 2,

and 4 patients (< 0.5%), respectively. For the missing pathological outcomes, we use a

second set of imputations and assume an adverse pathological outcome to be present when

at least 50% of the imputed values are positive.

By default mice automatically removes constant and nearly collinear variables before im-

putation [125]. These are then not imputed at all and remain as missing variables in the

imputation sets. Overwriting this default behavior leads to numerical issues and is not a

feasible option. Table 2.10 lists the variables for the training data that would be removed by

mice and the proportions of missing values. The list is dominated by covariates related to

polynomial regression of PSA and log(PSA) with degree 2 or 3 and restricted to different time

frames before prostatectomy. Figure 2.17 shows that these coefficients are highly correlated
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2 Medical context and description of electronic medical records data

Variable Number of missing values (%)

PSA poly degree 3, coef 4 (2y) 16806 (81.6%)
log(PSA) poly degree 3, coef 4 (2y) 16806 (81.6%)
PSA poly degree 3, coef 4 (3y) 16261 (78.9%)
Stephenson (PSADT) 15808 (76.7%)
PSA poly degree 3, coef 4 (all) 15633 (75.9%)
Egawa (PSADT) 14479 (70.3%)
PSA poly degree 2, coef 3 (1y) 14455 (70.1%)
log(PSA) poly degree 2, coef 3 (1y) 14455 (70.1%)
PSA poly degree 2, coef 3 (2y) 13549 (65.7%)
log(PSA) poly degree 2, coef 3 (2y) 13549 (65.7%)
PSA poly degree 3, coef 3 (2y) 13549 (65.7%)
log(PSA) poly degree 3, coef 3 (2y) 13549 (65.7%)
PSA poly degree 2, coef 3 (3y) 13232 (64.2%)
log(PSA) poly degree 2, coef 3 (3y) 13232 (64.2%)
PSA poly degree 3, coef 3 (3y) 13232 (64.2%)
log(PSA) poly degree 3, coef 3 (3y) 13232 (64.2%)
PSA reg, coef 2 (1y) 6253 (30.3%)
PSA poly degree 2, coef 2 (1y) 6253 (30.3%)
log(PSA) reg, coef 2 (2y) 6013 (29.2%)
PSA poly degree 2, coef 2 (2y) 6013 (29.2%)
PSA poly degree 3, coef 2 (2y) 6013 (29.2%)
log(PSA) reg, coef 2 (3y) 5925 (28.8%)
PSA poly degree 3, coef 2 (3y) 5925 (28.8%)
PSA reg, coef 2 (all) 5822 (28.3%)
standard deviation PSA (2y) 3439 (16.7%)
maximum PSA (1y) 9 (0%)
maximum PSA (2y) 5 (0%)
log(PSA) reg, coef 1 (2y) 5 (0%)
log(PSA) reg, coef 1 (3y) 3 (0%)
log(PSA) poly degree 2, coef 1 (3y) 3 (0%)

Table 2.10 Features nearly collinear with other variables in the training data (n = 20, 607).
reg stands for linear and poly for polynomial regression with the corresponding degree and
coefficients (coef). (all), (1y), (2y), or (3y) indicate all PSA values or those within one, two or
three years of prostatectomy are used.

and thus to avoid collinearity issues in the imputation we only consider the covariates related

to the polynomial regression based on all PSA or log(PSA) values before prostatectomy and

discard variables restricted to other time frames.

The two PSADT definitions of Egawa et al. (2000) and Stephenson et al. (2002) also might
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2.6 Imputation of missing data

cause collinearity issues. In Figure 2.12 and Figure A.1 we see that these are perfectly

correlated with the PSADT by MSKCC and the PSAV by MSKCC, respectively. When we

compare the definitions of the PSA dynamics in Table 2.6, we see that although Egawa et al.

(2000) and Stephenson et al. (2002) use more restrictive criteria for when the respective

definition is applicable, the calculated values are then identical to those defined by MSKCC.

Thus, again, to avoid collinearity issues in the imputation we remove the PSADTs of Egawa

et al. (2000) and Stephenson et al. (2002) as covariates.
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Figure 2.17 Pearson correlation coefficients for covariates related to polynomial regression
of PSA for different time periods. (all), (1y), (2y), or (3y) indicate all PSA values or those
within one, two or three years of prostatectomy are used. ∗∗∗ indicates a p-value < 0.001,
∗∗ < 0.01, and ∗ < 0.05 after adjusting for 8,385 multiple comparisons with the Bonferroni
method. White color indicates no significant correlation, � correlation coefficients with an
absolute value smaller than 0.05.

Finally, some direct transformations are contained in Table 2.10. The slope coefficients of

linear regression models of all PSA values and values within one year of prostatectomy are
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2 Medical context and description of electronic medical records data

identical to the PSAVs defined by MSKCC and D’Amico et al. (2004) divided by 365.25 [111,

112]. Similarly, the slope of the linear regression model of log(PSA) values within three

years before prostatectomy is identical to the PSAV proposed by Thompson et al. (2006)

divided by 365.25 Thompson et al. (2006). We manually exclude these slope coefficients

and calculate them using the imputed PSAV values after imputation. We further calculate

the D’Amico’s PSAV cut-off at 2.0 ng/ml/year after imputation to ensure consistent values.

The remaining nearly collinear variables that are included for the imputations do not cause

numerical issues.

For the test set, we exclude the same covariates as for the training set. Further, the result

of the last biopsy is missing for 12 patients (0.3%) in the test set and is positive otherwise.

Thus, we impute the last biopsy value for these missing patients with ”positive”.

After imputation, we obtain 10 training sets with 16,427 patients, 10 validation set with 4,180

patients, and 10 test sets with 3,515 patients. Each set contains 5 pathological outcomes

and 87 features.
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3 Mathematical foundations

In this chapter, we introduce the mathematical background with the notation used throughout

this thesis. After defining the univariate and multivariate logistic regression model, we

introduce the Bayes factor (BF) and the order of stochastic approximation for random

sequences with the proof for several properties. Further, we discuss metrics for evaluating

prediction performance of models with binary outcomes.

3.1 Logistic regression

Logistic regression is a common method for modeling binary responses in biostatistical

applications [116]. We consider the following univariate multiple logistic regression problem,

where Yi ∈ {0, 1} follows the Bernoulli distribution with success probability πi, written

Yi ∼ Ber(πi), independently for i = 1, . . . , n. Assigning 1 as the outcome to predict,

this means P (Yi = 1) = πi and P (Yi = 0) = 1 − πi for i = 1, . . . , n. The mean of

Yi is E [Yi] = 1 · P (Yi = 1) + 0 · P (Yi = 0) = πi and similar calculations show that

Var (Yi) = πi(1− πi). With the corresponding m-dimensional vector of covariates Xi ∈ Rm,

i = 1, . . . , n including 1 for the intercept, the standard logistic model is given by

logit(πi) = log

(
πi

1− πi

)
= X ′iβ,

where β ∈ Rm is the coefficient vector to be estimated [126]. We define G : R→ [0, 1] as

G(z) =
exp(z)

1 + exp(z)
and thus,

πi = G(X ′iβ) =
exp (X ′iβ)

1 + exp (X ′iβ)
. (3.1)

The vector β represents log odds ratios (OR) for the respective covariates, as illustrated in

Example 3.1 [126].
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3 Mathematical foundations

Example 3.1

Suppose we have n observations of Y ∈ {0, 1}, where 1 indicates presence of ECE and 0

no ECE. Consider one binary variable X , which represents high primary Gleason grade with

X =

0 primary Gleason grade ≤ 3

1 primary Gleason grade > 3.

Then the univariate logistic regression model with an intercept and a single covariate X

specifies

logit (P (Y = 1|X)) =
(

1 X
)
β = β0 +Xβ1,

where β = (β0, β1)′. The odds of having ECE for a patient with primary Gleason grade ≤ 3

are

P (Y = 1|X = 0)

P (Y = 0|X = 0)
=

exp(β0)

1 + exp(β0)

1
1 + exp(β0)

= exp(β0),

while for a patient with a primary Gleason grade > 3 the odds are

P (Y = 1|X = 1)

P (Y = 0|X = 1)
= exp(β0 + β1).

Thus the OR for ECE by primary Gleason grade is

P (Y = 1|X = 1)

P (Y = 0|X = 1)

P (Y = 1|X = 0)

P (Y = 0|X = 0)

=
exp(β0 + β1)

exp(β0)
= exp(β1)

and the log OR is β1. With only a single binary covariate we can estimate the odds and OR

with counts for each Y and X combination as shown in Table 3.1.

X

Y
0 1

0 n00 n01

1 n10 n11

Table 3.1 2× 2 table for a binary outcome Y and binary covariate X . The total sample size
is n = n00 + n01 + n10 + n11.
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3.1 Logistic regression

The odds are empirically estimated by

P (Y = 1|X = 0)

P (Y = 0|X = 0)
=

n01

n00 + n01

n00

n00 + n01

=
n01

n00

if n00 > 0

P (Y = 1|X = 1)

P (Y = 0|X = 1)
=

n11

n11 + n10

n10

n11 + n10

=
n11

n10

if n10 > 0,

and the OR with
P (Y = 1|X = 1)

P (Y = 0|X = 1)

P (Y = 1|X = 0)

P (Y = 0|X = 0)

=

n11

n10

n01

n00

=
n11n00

n10n01

,

if n10, n01 > 0.
ECE

No Yes

Primary Gleason grade ≤ 3 13,142 4,359

Primary Gleason grade > 3 2,411 3,708

Table 3.2 2× 2 table for ECE by primary Gleason grade among 23,620 patients. 502
patients are excluded due to missing values in either one of the variables.

Table 3.2 displays the 2× 2 table of ECE by primary Gleason grade among 23,620 patients

of Chapter 2 without missing information in either of the two variables. Table 3.2 yields

OR =
3708
2411

4359
13142

= 4.64

and this means that the odds of ECE were increased 4.64 fold.

For a single continuous covariate X, odds and OR correspond to a unit increase in X. For

multiple covariates odds and OR correspond to holding all other covariates fixed.

Consider next a sample of n observation pairs (yi, Xi), where yi ∈ {0, 1} are independent

and Xi are fixed covariates for i = 1, . . . , n. Under logistic regression the likelihood of β is

given by

L(β) =
n∏
i=1

G (X ′iβ)
yi (1−G (X ′iβ))

1−yi

=
n∏
i=1

(
exp (X ′iβ)

1 + exp (X ′iβ)

)yi ( 1

1 + exp (X ′iβ)

)1−yi
=

exp (
∑n

i=1 yiX
′
iβ)∏n

i=1 (1 + exp (X ′iβ))
.
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3 Mathematical foundations

The log-likelihood is

`(β) = log (L(β)) =
n∑
i=1

[yi log (G (X ′iβ)) + (1− yi) log (1−G (X ′iβ))]

=
n∑
i=1

[yiX
′
iβ − log (1 + exp (X ′iβ))] [127].

With E0 = {i ∈ {1, . . . , n} : yi = 0} denoting all indices that correspond to outcome 0 and

E1 = {i ∈ {1, . . . , n} : yi = 1} all indices that correspond to outcome 1 the log-likelihood

can be compartmentalized as

`(β) =
∑
i∈E1

log (G (X ′iβ)) +
∑
i∈E0

log (1−G (X ′iβ)) [128]. (3.2)

We show that for logistic regression, 0 < G(z) < 1, G(z) is strictly increasing, − log(G(z))

and − log(1 − G(z)) are convex functions, and thus the negative log-likelihood is convex.

First, G(z) =
exp(z)

1 + exp(z)
> 0 since exp(z) > 0 for all z ∈ R and G(z) < 1 since exp(z) <

1 + exp(z) for all z ∈ R. Further, the first derivative of G(z) is given by

∂

∂z
G(z) =

(1 + exp(z)) exp(z)− exp(z) exp(z)

(1 + exp(z))2
=

exp(z)

(1 + exp(z))2
> 0,

for all z ∈ R and thus G(z) is a strictly increasing function. With

∂2

∂z2
(− log (G(z))) =

∂

∂z

(
− 1

G(z)
·
(
∂

∂z
G(z)

))
=

∂

∂z

(
−1 + exp(z)

exp(z)
· exp(z)

(1 + exp(z))2

)
=

∂

∂z

(
− 1

(1 + exp(z))

)
=

∂

∂z
(G(z)− 1) =

exp(z)

(1 + exp(z))2
> 0

and

∂2

∂z2
(− log (1−G(z))) =

∂

∂z

(
− 1

1−G(z)
·
(
∂

∂z
(1−G(z))

))
=

∂

∂z

(
−(1 + exp(z)) ·

(
− exp(z)

(1 + exp(z))2

))
=

∂

∂z

exp(z)

(1 + exp(z))
=

∂

∂z
G(z) =

exp(z)

(1 + exp(z))2
> 0

it follows that − log (G(z)) and − log(1−G(z)) are convex functions, as the second deriva-
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3.1 Logistic regression

tives are larger than 0. Thus the negative log-likelihood

−`(β) = −
∑
i∈E1

log (G (X ′iβ))−
∑
i∈E0

log (1−G (X ′iβ))

is convex as a sum of convex functions.

Silvapulle (1981) used this and showed with (3.2) that the maximum likelihood estimator

(MLE) β̂ exists and is uniquely defined if Assumption 3.1 holds [128].

Assumption 3.1 (Existence and uniqueness of the MLE)

1) For Xi ∈ Rm, i = 1, . . . , n the design matrix X = (X1, . . . , Xn)′ has full rank m.

2) Xi1 = 1 for each i = 1, . . . , n or the design matrix includes one constant term for all

samples.

3) S ∩ F 6= ∅, where S and F are the relative interiors of the convex cones generated by

{Xi : i ∈ E0} and {Xi : i ∈ E1}, respectively. Thus

S =

{∑
i∈E0

kiXi : ki > 0

}
and F =

{∑
i∈E1

kiXi : ki > 0

}

with E0 = {i ∈ {1, . . . , n} : yi = 0} and E1 = {i ∈ {1, . . . , n} : yi = 1}.

Suppose, independent observations yi have been collected with covariate vectors Xi satisfy-

ing Assumption 3.1. Without loss of generality we can assume for Assumption 3.1 2) that

Xi1 = 1 for each i = 1, . . . , n as otherwise Xi can be reordered and rescaled to fulfill this

assumption. Assumption 3.1 3) is defined as overlap by Albert and Anderson (1984) and

implies that there exists no β ∈ Rm\{0} such that

X ′iβ ≥ 0 ∀i ∈ E1 and X ′iβ ≤ 0 ∀i ∈ E0 [129, 130]. (3.3)

When there exists a β ∈ Rm such that (3.3) holds with strict inequalities the data is completely

separated. When (3.3) holds and for at least one i = 1, . . . , n holds with equality the data is

quasicompletely separated [129, 130]. The MLE β̂ exists only in case of overlap [128–130].

To better understand when Assumption 3.1 fails, we illustrate it in the context of the single

binary covariate example of Table 3.1. We include an intercept in the logistic regression

model to fulfill Assumption 3.1 2) and consider different values for n00, n01, n10, and n11.

If n00 = n01 = 0 then all individuals in the data set have the same covariate value X = 1.

The design matrix (1 X) has rank 1 and thus Assumption 3.1 1) is not fulfilled. The same
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3 Mathematical foundations

failure of Assumption 3.1 1) holds for n10 = n11 = 0, where all individuals have the same

covariate X = 0. So it is not possible to estimate the OR. For n00 = n10 = 0 we have the

problem that all individuals in the data set have the same Y = 1 outcome. The odds are

estimated to be infinity since P (Y = 0) is estimated zero. Assumption 3.1 3) fails because

S = ∅ and thus S ∩ F = ∅. For n01 = n11 = 0 all individuals have the same Y = 0 outcome

and S ∩ F = ∅ since F = ∅, violating Assumption 3.1 3).

Figure 3.1 displays the remaining scenarios for the values of n00, n01, n10, and n11 with the

corresponding S, F , and S ∩ F and we discuss in which cases Assumption 3.1 is fulfilled.

0

∞

0 ∞
Intercept

X

n01 = n10 = 0

0

∞

0 ∞
Intercept

X

n11 = n00 = 0

0

∞

0 ∞
Intercept

X

n01 = 0

0

∞

0 ∞
Intercept

X

n10 = 0

0

∞

0 ∞
Intercept

X

n00 = 0

0

∞

0 ∞
Intercept

X

n11 = 0

0

∞

0 ∞
Intercept

X

n00, n01, n10, n11 6= 0

F S S ∩ F

Figure 3.1 S, F , and S ∩ F for different values of n00, n01, n10, and n11 in Table 3.1,
summarizing n samples of Y ∈ {0, 1} and a binary covariate X. The top row shows
completely separated, the mid row quasicompletely separated and the bottom row
overlapping data. Assumption 3.1 is only fulfilled for the bottom row.
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3.1 Logistic regression

The top row shows S and F for n01 = n10 = 0 and n11 = n00 = 0. When n01 = n10 = 0 all

individuals with X = 1 have the same outcome Y = 1 and all individuals with X = 0 have the

same outcome Y = 0. Thus the data is completely separated as for any β = (β0, β1) ∈ R2

with β0 < 0 and β1 > |β0| it holds that for all i ∈ E1 X
′
iβ = (1 1)β = β0 + β1 > 0 and

for all i ∈ E0 X
′
iβ = (1 0)β = β0 < 0. S and F are straight lines that do not intersect,

since (0, 0) /∈ S and (0, 0) /∈ F . Thus S ∩ F = ∅ and Assumption 3.1 3) is not fulfilled.

Similar arguments show that the data is completely separated for n11 = n00 = 0 and again

Assumption 3.1 3) is violated.

The mid row of Figure 3.1 displays S and F when one of n00, n01, n10, and n11 is equal

to 0. When n00 = 0 (n10 = 0) all individuals with X = 0 (X = 1) have the same

outcome Y = 1 and for n01 = 0 (n11 = 0) all individuals with X = 0 (X = 1) have the

same outcome Y = 0. The data is quasicompletely separated and we illustrate this for

n00 = 0. For any β = (β0, β1) ∈ R2 with β0 > 0 and β1 = −β0 it holds that for all i ∈ E0

X ′iβ = (1 1)β = β0 − β0 = 0 and for all i ∈ E1

X ′iβ =

(1 0)β = β0 > 0 for X = 0

(1 1)β = 0 for X = 1.

For one of n00, n01, n10, and n11 equal to 0 either S or F is a straight line and the other one

the open set {(a, b) : a, b ∈ (0,∞) ∩ b < a}. Again, S ∩ F = ∅ and Assumption 3.1 3) is

violated.

If n00, n01, n10, n11 6= 0 as in the bottom row of Figure 3.1, Assumption 3.1 is fulfilled and the

MLE for the logistic regression model exists and is uniquely defined.

The simple example shows that all 2 · 2 = 4 cells need to be non-empty. With a single

categorical variable with k levels, 2 · k cells must be filled and it becomes more difficult to

satisfy Assumption 3.1 as the curse of dimension kicks in. The problem becomes exasperated

with multiple categorical covariates and lack of convergence for logistic regression modeling

is a more common experience than for normal regression.

For continuous covariates modeled by a single linear parameter or reduced smoother,

Assumption 3.1 is likely to hold as long as at least some individuals of both groups have

overlapping covariate values. Here, complete separation occurs if all individuals with one

outcome have lower values for the continuous covariate than all individuals with the other

outcome.

We now assume Assumption 3.1 holds. Although several algorithms exist, we obtain the

MLE β̂ for β using the Newton-Raphson algorithm [116, 131]. The score vector, or first
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derivative of the log-likelihood function, is denoted by

u(β) = ∇β`(β) =
n∑
i=1

[
yiXi −

exp (X ′iβ)

1 + exp (X ′iβ)
·Xi

]
=

n∑
i=1

(yi −G(X ′iβ))Xi = X ′(Y − p) ,

where Y = (y1, . . . , yn)′ ∈ {0, 1}n, p = (π1, . . . , πn)′ ∈ [0, 1]n and X = (X1, . . . Xn)′ ∈
Rn×m. We want to solve the resulting m equations

u(β) = 0.

For the Newton-Raphson algorithm we obtain the Hessian matrix, which is the matrix of

second derivatives of the log-likelihood. The log-likelihood is twice differentiable for the

logistic regression model under Assumption 3.1.

D2`(β) =

(
∂2`(β)

∂βr∂βs

)
=

(
∂`(β)

∂βr

n∑
i=1

[yi −G(X ′iβ)]Xis

)

=

(
n∑
i=1

−Xir
exp (X ′iβ)

(1 + exp (X ′iβ))2Xis

)

=

(
n∑
i=1

−XirG(X ′iβ) (1−G(X ′iβ))Xis

)
= −X ′WX,

where W is a n × n diagonal matrix with elements G(X ′iβ) (1−G(X ′iβ)) on the diagonal

[116, 127]. Then the MLE β̂ can be determined iteratively. At each step

β(k+1) = β(k) −D2`(β(k))u(β(k))

= β(k) + (X ′WX)
−1
X ′(Y − p)

= (X ′WX)
−1
X ′W

(
Xβ(k) +W−1(Y − p)

)
= (X ′WX)

−1
X ′Wz(k),

where z(k) = Xβ(k) +W−1(Y − p) is the adjusted n× 1 response vector in a weighted least

squares problem [116].
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3.2 Multivariate logistic regression

3.2 Multivariate logistic regression

While logistic regression has been established as a standard approach for modeling univari-

ate binary responses, there is no equivalent in the multivariate case for correlated binary

outcomes. In the following, we provide a short overview of approaches that generalize

univariate logistic regression to the multivariate setting. Then, following O’Brien and Dunson

(2004), we introduce multivariate logistic regression using latent variables [132].

Adapting the notation from Bel et al. (2016), we consider Yi = (Yi1, . . . , Yiq) with Yij ∈ {0, 1},
j = 1, . . . , q, the vector of q ∈ N binary outcomes for patient i with i = 1, . . . , n [133].

Further, let Xij = (xij1, . . . , xijmj)
′ ∈ Rmj be the corresponding mj-dimensional vector of

covariates and βj ∈ Rmj the coefficient vector to be estimated for outcome j. We assume

that Yi, i = 1, . . . , n are independent, but consider correlation among Yij , j = 1, . . . q. We let

yij denote a realization of the random variable Yij .

For a q - dimensional binary vector Yi, we have 2q possible observations that can be obtained.

Thus, by transforming the q-dimensional vector to a categorical variable with 2q categories,

we can use a multinomial logistic regression model [133, 134]. However, with an increasing

number of binary outcomes, the number of categories grows exponentially, thus requiring an

ever increasing sample size n to obtain a sufficient number of observations for each category

[133, 134]. For example, the 5 binary outcomes of interest result in 25 = 32 categories.

Although we have a large sample size, we see in Figure 2.11 that the number of patients

per class varies greatly and is rather low for some classes, which might lead to identifiability

problems.

Bahadur (1961) suggested a representation of the multinomial model, which was later ex-

tended by Fitzmaurice et al. (1993) [135, 136]. McCullagh and Nelder (1999), Glonek and

McCullagh (1995), Ekholm et al. (1995), and Russell and Petersen (2000) proposed modifi-

cations and transformations of the parameters used for the multinominal logistic regression

model to improve modeling of the dependence between outcomes [127, 133, 137–139].

Ekholm et al. (1995) described how the number of parameters can be reduced by explicitly

setting higher-order interactions between outcomes to zero or assuming homogeneity, for

example, that the dependence between outcomes is equal for equal-sized subsets [138].

Bel et al. (2016) proposed alternative estimation methods, including stratified importance

sampling, composite conditional likelihood and a generalized method of moments, and

compared these to maximum likelihood [133]. While these approaches resolved some

computational issues, they only provided an approximation to the likelihood.

Dai (2012) and Dai et al. (2013) extended the Bernoulli distribution to the multivariate case

and proposed multivariate Bernoulli logistic regression models [140, 141]. Their models
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required estimation of m × (2q − 1) parameters, similar to other models containing all

higher-order interactions [140, 141].

Log-linear models have been commonly used for analysis of correlated categorical variables

because they have convenient theoretical properties and straightforward specification and

solution of the maximum likelihood [137, 142, 143]. However, Liang et al. (1992) and Glonek

and McCullagh (1995) showed that these models are not reproducible in the sense that

the marginal models of individual outcomes given the covariates depend on the number

of outcomes, and in general are not on the logistic scale [137, 144]. Further, estimated

parameters represent logits conditional on the other observed outcomes, thus providing an

insufficient generalization of univariate to multivariate logistic regression [137].

Building upon Glonek and McCullagh (1995), Glonek (1996) proposed a mixture of multivari-

ate logistic and log-linear regression models to improve computational feasibility [137, 145].

While providing a flexible class, the proposed model provided only weak reproducibility, with

the log-linear component presenting the same issues pertinent to these models discussed

previously [145].

Bonney (1987) discussed regressive logistic models, assuming a natural or sensible ordering

of the binary outcomes [146]. This is a useful technique for multivariate binary outcomes with

a natural ordering, but not applicable in this setting. Joe and Liu (1996) proposed a model

for multivariate binary responses where the conditional distribution of one outcome given

the other outcomes and covariates is logistic [147]. This model does not provide logistic

marginals and thus we do not consider it further.

Liang et al. (1992) used generalized estimating equations (GEE) for modeling multivariate

binary data, treating dependence between outcomes as a nuisance parameter and con-

centrating interest on the marginal means [144, 148]. Second-order generalized estimating

equations (GEE2) were presented for modeling pairwise associations between outcomes

[144, 148]. The GEE approach for inference concerning the mean is robust to misspecifica-

tion of the ”working” correlation structure, which is in general not the true correlation [149,

150]. The approach is not likelihood-based, so not amenable to the Bayesian methodology

used here [150].

Bonat and Jørgensen (2016) extended univariate generalized linear models (GLM) to the

multivariate case with correlated responses and covariates, and proposed multivariate

covariance generalized linear models (MCGLM) [151]. The models are implemented in

the R package mcglm using a Newton scoring algorithm based on quasi-likelihood and

Pearson estimating functions [151, 152]. Similar to the GEE approach, the MCGLM is a

quasi-likelihood approach and thus not suitable for Bayesian analysis.
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While direct extension from univariate to multivariate logistic regression might be desirable

and most intuitive, the lack of computationally feasible and stable solutions has led to different

approaches using latent variables. Hereby, we consider the univariate latent variable model

with random variable Zi, such that

Yi = 1(Zi > 0) =

1 for Zi > 0

0 for Zi ≤ 0.

Assuming different probability distributions for Zi leads to different approaches.

For probit models we assume an underlying normal distribution with Zi ∼ N (X ′iβ, 1), and

thus P (Yi = 1) = P (Zi > 0) = Φ(X ′iβ), where Φ denotes the cumulative density function

(cdf) of the standard normal distribution [153, 154]. Ashford and Sowden (1970) proposed a

comparably easy extension to the multivariate case, where the dependency structure could

be described by correlation coefficients in the multivariate normal distribution [132, 154,

155]. Chen and Dey (1998) provided scale mixtures of multivariate normal distributions

as a generalization to the underlying normal structure [132, 156]. Although probit models

offer a parsimonious description of the correlation structure and appealing computation,

interpretation of parameters for the univariate probit model is less intuitive than for the logistic

model, which extends to the multivariate case [132]. We aim to extend the logistic model

with the interpretation of ORs to the multivariate case. Thus, we do not further consider

probit models as they lack this interpretability.

We parametrize the standard logistic regression model as given in (3.1) using a latent

variable with underlying logistic distribution Zi ∼ L(X ′iβ,
π2

3
) [132, 157]. L(µ, σ2) denotes

the logistic distribution with density

l(z|µ, σ) =
π

σ
√

3

exp

(
− π

σ
√

3
(z − µ)

)
[
1 + exp

(
− π

σ
√

3
(z − µ)

)]2 ,

for z ∈ R, where µ ∈ R is the location parameter and σ > 0 the scale parameter [157].

In the following we omit the scale parameter σ and set L(·) = L(· , π2

3
), with density

l(z|µ) =
exp (−(z − µ))

[1 + exp (−(z − µ))]2
. (3.4)
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For univariate Yi = 1(Zi > 0) with Zi ∼ L(X ′iβ), we obtain

P (Yi = 1) = P (Zi > 0) =

∫ ∞
0

l(z|X ′iβ)dz =

[
1

1 + exp (−(z −X ′iβ))

]∞
0

= 1− 1

1 + exp (X ′iβ)
=

exp (X ′iβ)

1 + exp (X ′iβ)
,

and thus the probability for Yi = 1 is equivalent to (3.1), the inverse logit of πi in Section

3.1.

For the multivariate extension to Yi = (Yi1, . . . , Yiq), we have Yij = 1(Zij > 0), where

Zi = (Zi1, . . . , Ziq) are joint distributed with univariate logistic marginals, Zij ∼ L(X ′ijβj),

with Xij, βj ∈ Rmj for j = 1, . . . , q [132]. We assume that Zi, i = 1, . . . , n are independent,

but consider correlation among Zij , j = 1, . . . q.

Before considering the extension of the univariate to multivariate logistic distribution, we

discuss the existence of the MLE for the multivariate latent variable model. Lesaffre and

Kaufmann (1992) provided a proof for existence and uniqueness of the MLE for the multivari-

ate probit model [158]. Todem and Kim (2007) extended this proof to arbitrary underlying

distributions with strictly increasing cdf [159].

Analogous to Albert and Anderson (1984) for univariate logistic regression, Todem and Kim

(2007) defined complete separation, quasi-complete separation, and overlap for correlated

Bernoulli random variables [129, 159]. They considered

Uj = {(−1)yijXij : i ∈ {1, . . . , n}} , j = 1, . . . , q,

and defined complete separation for outcome j if there exists a vector βj ∈ Rmj\{0}
such that u′βj < 0 for all u ∈ Uj. Uj is quasi-complete separable if there exists a vector

βj ∈ Rmj\{0} such that u′βj ≤ 0 for all u ∈ Uj. Uj is overlapped if there exists a vector

βj ∈ Rmj\{0} such that u′βj > 0 for some u ∈ Uj [159]. In addition to Uj, j = 1, . . . , q

they considered the polychoric correlation coefficient ρ ∈ [−1, 1]q(q−1)/2. Pearson (1900)

introduced the polychoric correlation coefficient for ordered categorical variables [160, 161].

In the case of two binary variables, it is also referred to as the tetrachoric correlation

coefficient and defined as the solution ρjk to the integral equation

pjk =

∫ ∞
Φ−1(1−pj)

∫ ∞
Φ−1(1−pk)

Φ2(x1, x2, ρjk)dx1dx2,

where Φ denotes the cdf of the standard normal distribution, Φ2 the cdf of the bivariate

standard normal distribution, pj , pk the marginal probabilities of Yj , Yk, respectively, and pjk
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the joint probability of Yj and Yk [162]. Todem and Kim (2007) showed that the MLE for the

multivariate latent variable model exists when ρ is not on the boundary of the parameter

space, that is |ρjk| 6= 1, and Uj is overlapped for all j = 1, . . . , q [159].

The requirements imply that the data have to fulfill the conditions for the existence of the MLE

for univariate logistic regression on each outcome separately in addition to the restriction

of not being perfectly correlated in terms of the polychoric correlation. We assume that

the conditions for the existence of the MLE are fulfilled and continue with the extension of

the univariate latent variable model to the multivariate latent variable model with logistic

marginals.

Extending the logistic distribution to a multivariate logistic distribution with logistic marginals

has been a challenge. Arnold (1992) and Kotz et al. (2005) provided an overview of the

development of a multivariate logistic distribution starting from the initial proposal of three

bivariate extensions by Gumbel (1961) [163–165]. Arnold (1992) and Kotz et al. (2005)

discussed limitations of the different approaches including inflexible or restrictive modeling of

the correlation and lack of closed-form representation of the joint density [163, 164]. Li and

Wong (2011) proposed a generalization of the Gumbel distribution [166]. Nikoloulopoulos

(2012) corrected their assumptions and pointed out that only under specific restrictive

constraints on the parameters and for weakly dependent responses, the approach by Li and

Wong (2011) could be used [166, 167].

Molenberghs and Lesaffre (1994) proposed the multivariate Plackett distribution for multi-

variate ordered responses [168]. While it provides interpretation using log odds and ORs,

the complexity of parameters is high and higher-order interactions between outcomes are

set to zero to ensure computational feasibility [168, 169]. Forcina and Dardanoni (2008)

provided a detailed discussion and linked the distribution to the model proposed by Glonek

and McCullagh (1995) [137, 169]. The multivariate Plackett distribution as well as some

others discussed by Arnold (1992) and Kotz et al. (2005) can be constructed using copulas

[148, 170]. Panagiotelis et al. (2012) proposed a pair copula construction for multivariate

discrete responses and Stöber et al. (2015) provided an extension to multivariate mixed

responses [171, 172]. We follow the approach of O’Brien and Dunson (2004) that can also

be described as a t-copula [170, 173].

O’Brien and Dunson (2004) used transformations of conventional multivariate distributions,

such as multivariate normal or t-distributions, to obtain logistic marginals [132]. They make

use of the fact that for any continuous random variable V with cdf F , F (V ) ∼ U(0, 1), and it

follows that µ+ log

(
F (V )

1− F (V )

)
is logistic distributed with location parameter µ.
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To show this, let U ∼ U(0, 1) and Z = µ+ log

(
U

1− U

)
. Then

U =
exp(Z − µ)

1 + exp(Z − µ)
with

dU

dZ
=

exp(Z − µ)

[1 + exp(Z − µ)]2
,

and using the transformation theorem for probability distributions,

fZ(z) = 1

(
exp(z − µ)

1 + exp(z − µ)
∈ [0, 1]

)
·
∣∣∣∣ exp(z − µ)

[1 + exp(z − µ)]2

∣∣∣∣
=

exp(z − µ)

[1 + exp(z − µ)]2
=

exp(z − µ)

[exp(−(z − µ)) + 1]2 [exp(z − µ)]2

=
exp(−(z − µ))

[1 + exp(−(z − µ))]2
= l(z|µ).

O’Brien and Dunson (2004) implicitly defined the q-dimensional logistic distribution Lq,ν(µ,R)

using a multivariate t-distribution Tq,ν(0, R) [132]. The general density of Tq,ν(µ,Σ) is

tq,ν(v|µ,Σ) =
Γ
(
ν+q

2

)
Γ
(
ν
2

)
(νπ)

q
2 |Σ| 12

·
(

1 +
1

ν
(v − µ)′Σ−1(v − µ)

)− ν+q
2

, (3.5)

where Γ(u) is the gamma function

Γ(u) =

∫ ∞
0

xu−1 exp(−x)dx [174].

Let Fν denote the cdf of the univariate t-distribution with ν degrees of freedom. Suppose

v = (v1, . . . , vq)
′ ∈ Rq, v ∼ Tq,ν(0, R), then z = (z1, . . . , zq)

′ with zj = µj+log

(
Fν(vj)

1− Fν(vj)

)
follows a q-dimensional multivariate logistic distribution Lq,ν(µ,R). The explicit density of

Lq,ν(µ,R) for a scale matrix R with 1’s on the diagonal is

lq,ν(z|µ,R) = tq,ν (gν(z1 − µ1), . . . , gν(zq − µq)|0, R)

·
q∏
j=1

l(zj|µj)
t1,ν(gν(zj − µj)|0, 1)

,
(3.6)

where gν(x) = F−1
ν

(
exp(x)

1 + exp(x)

)
is the inverse of log

(
Fν(x)

1− Fν(x)

)
and l(zj|µj) the uni-

variate logistic density as defined in (3.4). Equation (3.6) reduces to the univariate logistic

distribution function for q = 1 and the marginals are univariate logistic distributions for q > 1

[132].

Albert and Chib (1993) noted that the univariate t-distribution with 8 degrees of freedom
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closely resembles the univariate logistic distribution [175]. O’Brien and Dunson (2004)

extended this to the multivariate case and approximated lq,ν(·|µ,R) with tq,ν(·|µ, σ2R) using

ν = ν̃ = 7.3 and σ2 = σ̃2 =
π2 · (ν − 2)

3ν
[132]. They chose these parameters to minimize

the squared distance between the two univariate densities and to have equal univariate

variances [132]. They then used the approximation to construct an importance sampling

algorithm for estimation of the posterior distribution [132]. Following O’Brien and Dunson

(2004), we drop ν from the notation, assuming it is fixed at 7.3 if not stated otherwise, and

denote by Lq(µ,R) the q-variate logistic distribution [132].

We consider the multivariate latent variable model

Yij = 1(Zij > 0) with Zi ∼ Lq(µi, R) and µi = (X ′i1β1, . . . , X
′
iqβq), (3.7)

where Xij = (xij1, . . . , xijmj)
′ ∈ Rmj and βj ∈ Rmj for j = 1, . . . , q. Hereby, we explicitly

allow for different covariates to be used for different outcomes, while O’Brien and Dunson

(2004) assumed equal dimension for all coefficients and thus mj = mk for all j = 1, . . . , q

[132]. The probability of a multivariate binary outcome yi under (3.7) is

P (Yi = yi|µi, R) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

lq(zi|µi, R) ·
q∏
j=1

1(zij > 0)yij1(zij ≤ 0)1−yijdzi

=

∫
Ai1

· · ·
∫
Aiq

lq(zi|µi, R)dzi,

where

Aij =

(0,∞) for yij = 1

(−∞, 0] for yij = 0.

Then the likelihood of (3.7) for a random sample y of size n is given by

L(β,R) =
n∏
i=1

∫
Ai1

· · ·
∫
Aiq

lq(zi|µi, R)dzi, (3.8)

with β =
(
β11, . . . , β1m1 , . . . , βq1, . . . , βqmq

)′ ∈ Rm, m =
∑q

j=1 mj .

O’Brien and Dunson (2004) proposed a Bayesian approach for estimation and inference

[132]. The joint posterior density of β and R given the data y is

p(β,R|y) ∝ f(β,R)L(β,R), (3.9)

where f(β,R) denotes the joint prior density of β and R [132].
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Assuming for simplicity that f(β,R) = f(β)f(R), O’Brien and Dunson (2004) specified

a normal prior distribution f(β) ∼ Nm(µβ,Σβ) or an improper uniform prior distribution

f(β) ∝ 1 for β and a uniform prior distribution with support on the space of correlation

matrices for R. They stated conditions required so that the improper uniform prior results in

a proper posterior distribution [132].

Calculating the posterior density (3.9) is difficult as the likelihood function is complex. There-

fore, O’Brien and Dunson (2004) proposed using the multivariate t-distribution tq,ν̃(zi|µi, σ̃2R)

instead of the multivariate logistic distribution in (3.8), yielding

L∗(β,R) =
n∏
i=1

∫
Ai1

· · ·
∫
Aiq

tq,ν̃(zi|µi, σ̃2R)dzi, (3.10)

with ν̃ = 7.3 and σ̃2 =
π · (ν̃ − 2)

3ν̃
. The corresponding posterior distribution is

p∗(β,R|y) ∝ f(β,R) · L∗(β,R), (3.11)

and the exact posterior distribution p(β,R|y) is obtained by assigning appropriate importance

weights [132].

We adapt the Markov Chain Monte Carlo (MCMC) algorithm proposed by O’Brien and

Dunson (2004) based on Albert and Chib (1993) to explicitly include different numbers of

covariates for different outcomes [132, 175]. We specify the likelihood (3.10) alternatively

with

yij = 1(zij > 0)

zi|β,R, φi ∼ Nq(µi, σ̃2φ−1
i R)

φi|β,R ∼ Γ

(
ν̃

2
,
ν̃

2

)
,

where Γ(a, b) denotes the gamma distribution with shape parameter a and rate parameter

b.

Then the joint posterior distribution of the parameters and latent variables is

p∗(β,R, φ, z|y) ∝ f(β) f(R) f(φ) f ∗(z|β,R, φ) f(y|β,R, φ, z), (3.12)

with
f(β) = fNm(β|µβ,Σβ)

f(R) = any distribution with support on the
space of correlation matrices
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f(φ) =

q∏
j=1

fΓ

(
φi

∣∣∣ ν̃
2
,
ν̃

2

)

f ∗(z|β,R, φ) =
n∏
i=1

fNq(zi|µi, σ̃2φ−1
i R)

f(y|β,R, φ, z) =
n∏
i=1

q∏
j=1

1(zij > 0)yij1(zij ≤ 0)1−yij ,

where fN and fΓ denote the multivariate normal and gamma distributions, respectively. An

improper uniform prior distribution for β uses the normal prior, but sets Σ−1
β = 0 [132].

The MCMC algorithm in Algorithm 3.1 alternates between sampling from the full conditional

distributions of z, φ and β and a Metropolis step for updating R. For the algorithm, we denote

the q∗ = q(q−1)
2

unique elements of R by r1, . . . , rq∗ . Besides initial values for φ, β, and R,

we experimentally choose Ω, the variance-covariance matrix in the normal proposal density

for the elements of R, for a desired acceptance probability in the Metropolis step [132].

Algorithm 3.1 samples from the approximate full posterior distribution (3.12) and p∗(β,R|y)

defined in (3.11) is obtained as the marginal. For inference of the desired posterior p(β,R|y)

based on the multivariate logistic distribution, we need to correct the approximation by

Algorithm 3.1. We use the appropriate sampling weights

ω(t) ∝ p(β(t), R(t), z(t)|y)

p∗(β(t), R(t), z(t)|y)
,

which we compute with

ω(t) =
f(z(t)|β(t), R(t))

f ∗(z(t)|β(t), R(t))
=

n∏
i=1

lq

(
z

(t)
i |µ(t)

i , R
(t)
)

tq,ν̃

(
z

(t)
i |µ(t)

i , R
(t)
) .

With the weights we estimate the posterior expectation of functionals h(β,R), such as the

mean or quantile of parameters, given by

E [h(β,R)|y] =

∫ ∞
−∞
· · ·
∫ ∞
−∞

h(β,R)p(β,R|y)dβdR

with
Ê [h(β,R)|y] =

∑T
t=B+1 ω

(t)h(β(t), R(t))∑T
t=B+1 ω

(t)
,

where T denotes the total number of iterations and B the burn-in of the MCMC algorithm

[132].
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Algorithm 3.1: Markov Chain Monte Carlo algorithm [132]

Input: y ∈ Rn×q, X = (X1, . . . , Xn) with Xi ∈ Rq×m, β(0) ∈ Rm, R(0) ∈ Rq×q,
φ(0) ∈ Rn, µβ ∈ Rm, Σβ ∈ Rm×m, Ω ∈ Rq∗×q∗ , T number of iterations

for t = 1, . . . , T do
for i = 1, . . . , n do

Sample z(t)
i ∼ Nq

(
µ

(t−1)
i ,

σ̃2

φ
(t−1)
i

R(t−1)

)
,

with zij truncated to > 0 (< 0) for yij = 1 (yij = 0)
end
for i = 1, . . . , n do

Sample φ(t)
i ∼ Γ

 ν̃ + q

2
,
ν̃ + σ̃−2

(
z

(t)
i − µ(t−1)

i

)′ (
R(t−1)

)−1
(
z

(t)
i − µ(t−1)

i

)
2


end

Σ̃β ←
(

Σ−1
β + σ̃−2

n∑
i=1

φ
(t)
i X

′
i

(
R(t−1)

)−1
Xi

)−1

µ̃β ← Σ̃β

(
Σ−1
β µβ + σ̃−2

n∑
i=1

φ
(t)
i X

′
i

(
R(t−1)

)−1
z

(t)
i

)
Sample β(t) ∼ Nm

(
µ̃β, Σ̃β

)
for i = 1, . . . , n do

µ
(t)
i ←= Xiβ

(t)

end

Sample r̃1, . . . , r̃q∗ ∼ Nq∗
((

r
(t−1)
1 , . . . , r

(t−1)
q∗

)′
,Ω

)
if R̃ is positive definite then

Sample u ∼ U(0, 1)

ρ(t) ←
p(R̃)

n∏
i=1

Nq

(
z

(t)
i

∣∣∣µ(t)
i ,

σ̃2

φ
(t)
i

R̃

)

p(R(t−1))
n∏
i=1

Nq

(
z

(t)
i

∣∣∣µ(t)
i ,

σ̃2

φ
(t)
i

R(t−1)

)
if u < min(1, ρ(t)) then

R(t) ← R̃
else

R(t) ← R(t−1)

end
else

R(t) ← R(t−1)

end
end
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Nooraee et al. (2016) extended model (3.7) by implementing covariates in the covariance

structure [173]. Using the approximation of the multivariate logistic distribution by the

multivariate t-distribution, they proposed approximate maximum likelihood estimation with

a quasi-Newton method, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [173].

Thereby, Nooraee et al. (2016) used an alternative representation of the t-distribution that is

equivalent to (3.5) [173].

Hirk et al. (2018) applied composite likelihood methods for estimation of the MLE that is

implemented in the R package mvord [176, 177]. Like GEEs, composite likelihood methods

are pseudo-likelihood approaches that do not specify the full joint distribution. For a review

of the method see Varin (2008) and Varin et al. (2011) [178, 179]. Gao and Song (2010)

proposed a Bayesian information criterion (BIC) using the composite likelihood [180].

Caubet Fernandez et al. (2019) praised the high interpretability of model (3.7) using log

odds and pointed out that dependencies are accounted for in an unrestricted fashion [181].

They implemented Algorithm 3.1 to sample from the posterior distribution, but without using

importance weights for exact inference based on the multivariate logistic distribution [181].

We build on R and C++ code provided by Caubet Fernandez et al. (2019) to fit the multivariate

logistic regression model [181].

3.3 Bayes factors

In the following we are interested in comparing two nested models M0 and M1 [182]. Let

β = (θ, ψ) ∈ Θ × Ψ, with dim(Θ) = m0 and dim(Ψ) = m − m0. We compare M0 with

β0 = (θ, ψ0), where ψ0 is fixed, to M1 with β1 = (θ, ψ). Thus we test the hypotheses

H0 : ψ = ψ0 versus the alternative H1 : ψ 6= ψ0.

Following a Bayesian paradigm, we assume prior model probabilities p(M0) and p(M1) =

1 − p(M0) and prior distributions f(β0|M0) and f(β1|M1) for the parameters under the

respective models. Probability densities of Y under the models, denoted by p(Y |M0) and

p(Y |M1), are obtained by integrating over the respective parameter spaces

p(Y |Mk) =

∫
p(Y |βk,Mk)f(βk|Mk)dβk, for k = 0, 1, (3.13)

where p(Y |βk,Mk) is the probability density of Y given βk under model Mk, and is also the

likelihood that can be denoted by L(βk) [182]. Posterior probabilities of each model given

the data Y are p(Mk|Y ) for k = 0, 1, which by Bayes’ theorem can be expressed as

p(Mk|Y ) =
p(Y |Mk)p(Mk)

P (Y )
=

p(Y |Mk)p(Mk)

p(Y |M0)p(M0) + p(Y |M1)p(M1)
.

49



3 Mathematical foundations

Thus the posterior odds comparing M0 to M1 are given by

p(M0|Y )

p(M1|Y )
=

p(Y |M0)p(M0)

p(Y |M0)p(M0) + p(Y |M1)p(M1)

p(Y |M1)p(M1)

p(Y |M0)p(M0) + p(Y |M1)p(M1)

=
p(Y |M0)

p(Y |M1)

p(M0)

p(M1)
,

and reduce to the prior odds
p(M0)

p(M1)
multiplied by

p(Y |M0)

p(Y |M1)
. This last fraction is called the

Bayes factor (BF) and can be interpreted as the ratio of posterior odds to prior odds [182].

From (3.13)

BF =

∫
p(Y |β0,M0)f(β0|M0)dβ0∫
p(Y |β1,M1)f(β1|M1)dβ1

=

∫
L(β0)f(β0|M0)dβ0∫
L(β1)f(β1|M1)dβ1

[182].

We simplify the notation as ψ0 is fixed and write f0(θ) = f(β0|M0) and f(θ, ψ) = f(β1|M1)

to yield

BF =

∫
L(θ, ψ0)f0(θ)dθ∫∫
L(θ, ψ)f(θ, ψ)dθdψ

.

In general f0(θ) and f(θ, ψ) do not have to be logically related, but it might be desirable to

connect them [15]. As an example f0(θ) can be chosen to be the marginal distribution

f0(θ) =

∫
f(θ, ψ)dψ = fθ(θ) (3.14)

or the conditional distribution

f0(θ) = f(θ|ψ0) =
f(θ, ψ0)∫
f(θ, ψ0)dθ

=
f(θ, ψ0)

fψ(ψ0)
. (3.15)

If θ and ψ are a priori independent under M1 (3.14) and (3.15) define the same prior

density

f0(θ) =
f(θ, ψ0)

fψ(ψ0)
=
fθ(θ)fψ(ψ0)

fψ(ψ0)
= fθ(θ) ,

but they do not have to be equal in general [15].

Jeffreys introduced rules for the BF to judge the evidence against the null hypothesis [183].

Jeffreys’ rule was adapted by Kass and Raftery (1995) as shown in Table 3.3 [182]. The

BF is considered on a negative log10-scale for easier comparison. An interpretation of a

BF of 10−1 is that the posterior probability for model M1 is 10 times higher compared to the

posterior probability of M0 under the assumption that their prior probabilities are equal.
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− log10(BF) BF Evidence against H0

< 0 > 1 Null hypothesis supported

0 to 1
2

10−1/2 to 1 Not worth more than a bare mention
1
2

to 1 10−1 to 10−1/2 substantial

1 to 2 10−2 to 10−1 strong

> 2 < 10−2 decisive

Table 3.3 Jeffreys’ rule for the BF as adapted by Kass and Raftery (1995) [182].

3.4 Order of approximation for stochastic sequences

Following Bishop et al. (2007) we introduce the op and Op notation, which were unified by

Wald and Mann (1943) [114, 184]. We recall the definitions of o and O for non-stochastic

real sequences and introduce their extension for vector sequences as covered by Bishop

et al. (2007) [114]. Matrices can be vectorized so follow the same definitions.

Definition 3.1 (O and o notation for non-stochastic sequences)

Let {an} and {bn} be two sequences of real numbers and {vn} a sequence of vectors with

the corresponding euclidean norm ||vn|| =
√∑

i v
2
ni . We define

(i) an = O(bn) if there exists a number K and an integer nK such that for all n ≥ nK we

have |an| < K|bn|,

(ii) an = o(bn) if for all ε > 0, there exists an integer nε such that for all n ≥ nε we have

|an| < ε|bn|,

(iii) vn = O(bn) if ||vn|| = O(bn), and vn = o(bn) if ||vn|| = o(bn).

Definition 3.2 (Op notation for stochastic sequences)

Let {Yn} be a sequence of real-valued random variables and {bn} sequence of real numbers.

We define Yn = Op(bn) if for every η > 0 there exists a constant Kη and an integer nη such

that for all n ≥ nη it holds

P

(∣∣∣∣Ynbn
∣∣∣∣ ≤ Kη

)
≥ 1− η

or equivalently, if
Yn
bn

is bounded in probability. For a sequence of random vectors {Xn} we

have Xn = Op(bn) if ||Xn|| = Op(bn).
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Definition 3.3 (op notation for stochastic sequences)

Let {Yn} be a sequence of real-valued random variables and {bn} a sequence of real

numbers. We define Yn = op(bn) if for all ε > 0,

lim
n→∞

P

(∣∣∣∣Ynbn
∣∣∣∣ ≤ ε

)
= 1 ,

or equivalently, if
Yn
bn

converges in probability to 0. For a sequence of random vectors {Xn}
we have Xn = op(bn) if ||Xn|| = op(bn).

In the following we prove some properties of Op, which we repeatedly use in proofs later on.

Proposition 3.1

Let {an} and {bn} be two sequences of real numbers and {Yn}, {Zn} be two sequences of

real-valued random variables with {Yn} = Op(an) and {Zn} = Op(bn). Then it follows

(i) YnZn = Op(an)Op(bn) = Op(anbn).

It further holds that if an = O(bn),

(ii) Yn = Op(an) = Op(bn) and

(iii) Yn + Zn = Op(an) +Op(bn) = Op(bn).

Suppose that bn = O(1) and an = O(bn), then

(iv)
1 + an
1 + bn

− 1 =
1 +O(an)

1 +O(bn)
− 1 = O(bn) and

(v)
1 + Yn
1 + Zn

− 1 =
1 +Op(an)

1 +Op(bn)
− 1 = Op(bn).

Proof.

(i) With {Yn} = Op(an) and {Zn} = Op(bn) it follows that for every ηa, ηb > 0 there exist

constants Kηa , Kηb and integers nηa , nηb such that for all na ≥ nηa , nb ≥ nηb it holds

P

(∣∣∣∣Ynaana

∣∣∣∣ ≤ Kηa

)
≥ 1− ηa and P

(∣∣∣∣Znbbnb

∣∣∣∣ ≤ Kηb

)
≥ 1− ηb.
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Let η > 0 be arbitrary. For n ≥ max(nηa , nηb) and Kη = KηaKηb we have

P

(∣∣∣∣YnZnanbn

∣∣∣∣ ≤ Kη

)
= P

(∣∣∣∣Ynan
∣∣∣∣ ∣∣∣∣Znbn

∣∣∣∣ ≤ KηaKηb

)
≥ P

(∣∣∣∣Ynan
∣∣∣∣ ∣∣∣∣Znbn

∣∣∣∣ ≤ KηaKηb ∩
∣∣∣∣Znbn

∣∣∣∣ ≤ Kηb

)
= P

(∣∣∣∣Ynan
∣∣∣∣ ∣∣∣∣Znbn

∣∣∣∣ ≤ KηaKηb

∣∣∣∣∣
∣∣∣∣Znbn

∣∣∣∣ ≤ Kηb

)
· P
(∣∣∣∣Znbn

∣∣∣∣ ≤ Kηb

)
≥ P

(∣∣∣∣Ynan
∣∣∣∣ ≤ Kηa

)
P

(∣∣∣∣Znbn
∣∣∣∣ ≤ Kηb

)
≥ (1− ηa)(1− ηb) = 1− ηa − ηb + ηaηb

≥ 1− η,

where we choose ηa, ηb > 0 such that ηa+ηb−ηaηb ≤ η. Thus YnZn = Op(an)Op(bn) =

Op(anbn).

(ii) With an = O(bn) it follows that there exists a constant Ka and an integer nKa such that

for all n ≥ nKa we have
|an|
|bn|

< Ka.

Further assume ηa, Kηa , nηa as defined in (i). Let η > 0 be arbitrary. For n ≥
max(nηa , nKa) and Kη = KaKηa we have

P

(∣∣∣∣Ynbn
∣∣∣∣ ≤ Kη

)
= P

(∣∣∣∣Ynan
∣∣∣∣ ∣∣∣∣anbn

∣∣∣∣ ≤ KaKηa

)
≥ P

(∣∣∣∣Ynan
∣∣∣∣Ka ≤ KaKηa

)
= P

(∣∣∣∣Ynan
∣∣∣∣ ≤ Kηa

)
≥ 1− ηa = 1− η,

where we choose ηa = η.

(iii) We have Zn = Op(bn) and from (ii) it follows that Yn = Op(bn). Thus for every

ηb > 0 there exist constants KηY , KηZ and integers nηY , nηZ such that for all n ≥
max(nηY , nηZ ) it holds

P

(∣∣∣∣Ynbn
∣∣∣∣ ≤ KηY

)
≥ 1− ηb and P

(∣∣∣∣Znbn
∣∣∣∣ ≤ KηZ

)
≥ 1− ηb.
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Let η > 0 be arbitrary. For n ≥ max(nηY , nηZ ) and Kη = KηY +KηZ we have

P

(∣∣∣∣Yn + Zn
bn

∣∣∣∣ ≤ Kη

)
= P

(∣∣∣∣Ynbn +
Zn
bn

∣∣∣∣ ≤ KηY +KηZ

)
≥ P

(∣∣∣∣Ynbn
∣∣∣∣+

∣∣∣∣Znbn
∣∣∣∣ ≤ KηY +KηZ

)
≥ P

(∣∣∣∣Ynbn
∣∣∣∣+

∣∣∣∣Znbn
∣∣∣∣ ≤ KηY +KηZ ∩

∣∣∣∣Znbn
∣∣∣∣ ≤ KηZ

)
= P

(∣∣∣∣Ynbn
∣∣∣∣+

∣∣∣∣Znbn
∣∣∣∣ ≤ KηY +KηZ

∣∣∣∣∣
∣∣∣∣Znbn

∣∣∣∣ ≤ KηZ

)
P

(∣∣∣∣Znbn
∣∣∣∣ ≤ KηZ

)
≥ P

(∣∣∣∣Ynbn
∣∣∣∣ ≤ KηY

)
P

(∣∣∣∣Znbn
∣∣∣∣ ≤ KηZ

)
≥ (1− ηb)(1− ηb) = 1− 2ηb + η2

b ≥ 1− η,

where we choose ηb > 0 such that η2
b − 2ηb ≤ η.

(iv) With bn = O(1) it follows that there exists a constant Kb and an integer nKb such that

for all n ≥ nKb we have
|bn|
|1| = |bn| < Kb.

Further we consider Ka, nKa as defined in (ii). For n ≥ max(nKa , nKb) and Kab =
1+Ka
|1−Kb|

we have∣∣∣∣∣ 1+an
1+bn
− 1

bn

∣∣∣∣∣ =

∣∣∣∣ an − bn
(1 + bn)bn

∣∣∣∣ ≤ 1

|1 + bn|

(∣∣∣∣anbn
∣∣∣∣+

∣∣∣∣bnbn
∣∣∣∣) <

1

|1 + bn|
(Ka + 1)

≤ 1 +Ka

|1− |bn||
≤ 1 +Ka

|1−Kb|
= Kab.

Here we used that |1 + x| ≥ |1− |x|| for x ∈ R, since

|1 + x| =

|1 + |x|| > |1− |x|| for x ≥ 0

|1− |x|| for x < 0
.

It follows
1

|1 + x| ≤
1

|1− |x|| .

(v) We consider again ηb, KηY , KηZ , nηY , nηZ as defined in (iii) and Kb, nKb as defined in

(iv). Let η > 0 be arbitrary. For n ≥ max(nηY , nηZ , nKb) and

Kη =
KηY +KηZ

|1−KηZKb|
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we have again with
1

|1 + x| ≤
1

|1− |x|| for x ∈ R

P

(∣∣∣∣∣ 1+Yn
1+Zn

− 1

bn

∣∣∣∣∣ ≤ Kη

)
= P

(∣∣∣∣ Yn − Znbn(1 + Zn)

∣∣∣∣ ≤ Kη

)
≥ P

(
1

|1 + Zn|

(∣∣∣∣Ynbn
∣∣∣∣+

∣∣∣∣Znbn
∣∣∣∣) ≤ Kη

)
≥ P

(
1

|1− |Zn||

(∣∣∣∣Ynbn
∣∣∣∣+

∣∣∣∣Znbn
∣∣∣∣) ≤ Kη

)

= P

 1∣∣∣1− |Zn||bn| |bn|∣∣∣
(∣∣∣∣Ynbn

∣∣∣∣+

∣∣∣∣Znbn
∣∣∣∣) ≤ Kη


≥ P

 1∣∣∣1− ∣∣∣Znbn ∣∣∣Kb

∣∣∣
(∣∣∣∣Ynbn

∣∣∣∣+

∣∣∣∣Znbn
∣∣∣∣) ≤ KηY +KηZ

|1−KηZKb|


≥ P

 1∣∣∣1− ∣∣∣Znbn ∣∣∣Kb

∣∣∣
(∣∣∣∣Ynbn

∣∣∣∣+

∣∣∣∣Znbn
∣∣∣∣) ≤ KηY +KηZ

|1−KηZKb|
∩
∣∣∣∣Znbn

∣∣∣∣ ≤ KηZ


= P

 1∣∣∣1− ∣∣∣Znbn ∣∣∣Kb

∣∣∣
(∣∣∣∣Ynbn

∣∣∣∣+

∣∣∣∣Znbn
∣∣∣∣) ≤ KηY +KηZ

|1−KηZKb|

∣∣∣∣∣
∣∣∣∣Znbn

∣∣∣∣ ≤ KηZ


· P
(∣∣∣∣Znbn

∣∣∣∣ ≤ KηZ

)
≥ P

(
1

|1−KηZKb|

(∣∣∣∣Ynbn
∣∣∣∣+KηZ

)
≤ KηY +KηZ

|1−KηZKb|

)
· P
(∣∣∣∣Znbn

∣∣∣∣ ≤ KηZ

)
≥ P

(∣∣∣∣Ynbn
∣∣∣∣+KηZ ≤ KηY +KηZ

)
· P
(∣∣∣∣Znbn

∣∣∣∣ ≤ KηZ

)
≥ P

(∣∣∣∣Ynan
∣∣∣∣ ≤ KηY

)
· P
(∣∣∣∣Znbn

∣∣∣∣ ≤ KηZ

)
= (1− ηb)(1− ηb) = 1− 2ηb + η2

b ≥ 1− η,

where we choose ηb > 0 such that η2
b − 2ηb ≤ η.
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Remark

Similar to the proofs in Proposition 3.1 it can be shown that

• O(an)O(bn) = O(anbn),

• Op(an)O(bn) = Op(anbn),

• O(an) +O(bn) =

O(an) if bn = O(an)

O(bn) if an = O(bn),

• Op(an) +O(bn) =

Op(an) if bn = O(an)

Op(bn) if an = O(bn),

•
1 +O(an)

1 +O(bn)
=

1 +O(an) if an = O(1) and bn = O(an)

1 +O(bn) if bn = O(1) and an = O(bn), and

•
1 +Op(an)

1 +Op(bn)
=

1 +Op(an) if an = O(1) and bn = O(an)

1 +Op(bn) if bn = O(1) and an = O(bn).

Proposition 3.2

Let {an} be a sequence of real numbers and {Yn} be a sequence of real-valued random

variables with {Yn} = Op(an). Then it follows

(i) log(1 + Yn) = log(1 +Op(an)) = Op(an), if 1 + Yn > 0.

(ii) (1 + Yn)
1
2 − 1 = (1 +Op(an))

1
2 − 1 = Op(an), if 1 + Yn > 0.

Suppose that an = O(1), then

(iii) exp(Yn) = exp (Op(an)) = 1 +Op(an).

Proof.

(i) With {Yn} = Op(an) it follows that for every ηa > 0 there exist a constant Kηa and an

integer nηa such that for all n ≥ nηa it holds P
(∣∣∣∣Ynan

∣∣∣∣ ≤ Kηa

)
≥ 1− ηa. Let η > 0 be

arbitrary. For n ≥ nηa and Kη = Kηa we have

P

(∣∣∣∣ log(1 + Yn)

an

∣∣∣∣ ≤ Kη

)
≥ P

(∣∣∣∣Ynan
∣∣∣∣ ≤ Kηa

)
≥ 1− ηa = 1− η,

where we used that log(x) ≤ x− 1 for x ∈ (0,∞) and chose ηa = η.
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(ii) Let Kηa and nηa be defined as in (i) and suppose η > 0 is arbitrary. For n ≥ nηa and

Kη = Kηa we have

P

(∣∣∣∣∣(1 + Yn)
1
2 − 1

an

∣∣∣∣∣ ≤ Kη

)
≥ P

(∣∣∣∣1 + |Yn| − 1

an

∣∣∣∣ ≤ Kη

)
= P

(∣∣∣∣Ynan
∣∣∣∣ ≤ Kη

)
≥ 1− ηa = 1− η,

where we used that
√

1 + x ≤ 1 + |x| for x ∈ [−1,∞) and chose ηa = η.

(iii) Let Kηa and nηa be defined as in (i) and with an = O(1) it follows that there exists a

constant Ka and an integer nKa such that for all n ≥ nKa we have

|an|
|1| = |an| < Ka.

Let η > 0 be arbitrary. For n ≥ max(nηa , nKa) and

Kη =
exp(KηaKa)− 1

Ka

we obtain with exp(x) =
∞∑
k=0

xk

k!

P

(∣∣∣∣exp(Yn)− 1

an

∣∣∣∣ ≤ Kη

)
≥ P

(∣∣∣∣exp(|Yn|)− 1

an

∣∣∣∣ ≤ exp(KηaKa)− 1

Ka

)
= P

(
1

|an|

∣∣∣∣∣
∞∑
k=0

|Yn|k
k!
− 1

∣∣∣∣∣ ≤ exp(KηaKa)− 1

Ka

)

= P

(
1

|an|

∣∣∣∣∣1 +
∞∑
k=1

|Yn|k
k!
− 1

∣∣∣∣∣ ≤ exp(KηaKa)− 1

Ka

)

= P

(
1

|an|
∞∑
k=1

|Yn|k
k!
≤ exp(KηaKa)− 1

Ka

)

= P

(
∞∑
k=1

|Yn|k
|an|k

|an|k
|an|

1

k!
≤ exp(KηaKa)− 1

Ka

)

= P

(
∞∑
k=1

|Yn|k
|an|k

|an|k−1 1

k!
≤ exp(KηaKa)− 1

Ka

)

≥ P

(
∞∑
k=1

( |Yn|
|an|

)k
Kk−1
a

1

k!
≤ exp(KηaKa)− 1

Ka

)
,
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using |an|k−1 ≤ Kk−1
a for k ≥ 1. It follows

P

(∣∣∣∣exp(Yn)− 1

an

∣∣∣∣ ≤ Kη

)
≥ P

(
∞∑
k=0

( |Yn|
|an|

)k
Kk
a

k!
− 1 ≤ exp(KηaKa)− 1

)

= P

(
exp

( |Yn|
|an|

Ka

)
≤ exp(KηaKa)

)
= P

( |Yn|
|an|

Ka ≤ KηaKa

)
= P

(∣∣∣∣Ynan
∣∣∣∣ ≤ Kηa

)
≥ 1− ηa = 1− η,

where we chose ηa = η.

3.5 Evaluation metrics for binary classification

We have two main goals in the modeling process. First, we are interested in statistical

inference that provides insight into potential factors correlated with a higher risk of an

adverse pathological outcome. The interpretation of ORs as described in Section 3.1 aids

in understanding these associations. Second, we want to predict the risk of an adverse

pathological outcome for a new patient. Thus, we are interested in the predictive performance

of the model on new data not used during the modeling process. In the following, we describe

several evaluation metrics for this purpose.

We assume that a general binary classification model has been fit to a training data set

and is to be evaluated on an independent test set. Each patient in the test set receives a

model based probability of the outcome of interest, obtained by substituting his individual

characteristics into the model probability function based on coefficients estimated from

the training set. A patient is classified as positive if the probability exceeds a specified

cut-off value c. The potential errors are summarized by the confusion matrix, also commonly

referred to as a contingency table in Table 3.4.

True class

P N

Predicted class
P True positives (tp) False positives (fp)

N False negatives (fn) True negatives (tn)

Table 3.4 Confusion matrix for true versus predicted class; P: positive, N: negative.

Based on Table 3.4 we define several evaluation metrics [185–187].
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Accuracy is the number of correctly predicted patients divided by the total number of patients

Accuracy =
tp+ tn

tp+ fn+ fp+ tn
.

Precision or positive predictive value (PPV) is the number of correctly predicted positive

patients divided by the number of positive predicted patients

Precision =
tp

tp+ fp
.

Sensitivity, recall, or true positive rate is the number of correctly predicted positive patients

divided by the number of positive patients

Sensitivity =
tp

tp+ fn
.

Specificity is the number of correctly predicted negative patients divided by the number of

negative patients

Specificity =
tn

fp+ tn
.

We use these evaluation metrics to assess the performance of each model during the

modeling process. Although it might be tempting to only use accuracy for assessment, we

also consider the other measures as they distinguish specific types of errors [185, 188].

As noted earlier, the metrics depend on choice of cut-off for which patients with probability

above are classified as positive. It is common practice, therefore, to evaluate models

independent of the cut-off value c. The receiver operating characteristic (ROC) curve

plots the sensitivity against 1− specificity for all possible cut-off values c [189]. The area

underneath the receiver operating characteristic curve (AUC) defined by the integral of the

ROC curve is equivalent to the probability that the model will rank a randomly chosen true

positive case higher than a randomly chosen true negative case, in the sense that the former

will have a higher probability of the outcome [189]. The AUC falls between 0.5, corresponding

to random prediction and 1.0, corresponding to perfect prediction [189].

We extend the evaluation metrics defined above to summarize the classification performance

on all pathological outcomes simultaneously by defining a multi-label classification problem.

We set

Yij =

1 if patient i has the corresponding adverse pathological outcome j

0 otherwise,
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for j = 1, . . . , q, i = 1, . . . , n and let Ŷij denote the predicted value of Yij. We define

evaluation metrics adapting the approach of Yang (1999) and Kazawa et al. (2004), which

Tsoumakas et al. (2010) discussed in more detail [190–192].

Exact match ratio is the proportion of correctly classified patients

Exact match ratio =
1

n

n∑
i=1

q∏
j=1

1(Ŷij = Yij),

where 1 denotes the indicator function. The product within the sum evaluates to 1 if and

only if all five outcomes are correctly classified for the patient.

The exact match ratio does not distinguish between partially correct and incorrect classifica-

tion and thus is a strict evaluation measure [192]. We therefore additionally consider macro-

and micro-averaged approaches that can be applied to any binary evaluation measure B,

such as precision, sensitivity, and specificity, and take partially correct classification of multi-

ple outcomes into account [192]. We consider the binary evaluation metric B(tp, tn, fp, fn)

and let tpj, tnj, fpj, fnj denote the corresponding number of true positives, true negatives,

false positives and false negatives for outcome j [192]. Then the macro- and micro-averaged

versions of B are given by

Bmacro =
1

q

q∑
j=1

B(tpj, tnj, fpj, fnj),

Bmicro = B

(
q∑
j=1

tpj,

q∑
j=1

tnj,

q∑
j=1

fpj,

q∑
j=1

fnj

)
.

While the macro- and micro-averaged accuracies are equal, the averages differ for other

measures [192]. Summary measures, such as the ROC and AUC, can be calculated using

the Bmacro or the Bmicro values for each cut-off.
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4 Approximation of the Bayes Factor for nested

logistic regression models

4.1 Mathematical derivation

Kass and Vaidyanathan (1992) showed that under certain regularity conditions, parametriza-

tions and prior distributions, the Schwarz criterion approximates the BF up to order Op(n
− 1

2 )

for the problem of testing the equality of two binomial proportions [15]. They mentioned

the extension to multiple logistic regression without proof. Raftery (1995) outlined a proof

for general statistical models for independent and identically distributed (iid) observations

and Kass and Wasserman (1995) applied the results to a larger variety of models and

prior distributions without proof [193, 194]. Raftery (1996) outlined a proof for generalized

linear models based on the Laplace approximation without providing a proof for the order

of approximation [195]. Cavanaugh and Neath (1999) provided a more general derivation

of the BIC based on regularity conditions similar to the ones we use in the following [196].

However, they did not provide an order of approximation. In this section we give the theory

for approximation of the Schwarz criterion to the BF for multiple logistic regression, providing

approximations of greater order and for arbitrary prior distributions along the way. Finally, we

show the extension to the BIC using a base null model for comparison.

In the following, we first consider the univariate logistic regression model introduced in

Section 3.1, logit(πi) = X ′iβ, with independent observations Yi ∼ Ber(πi), i = 1, . . . , n,

corresponding covariatesXi ∈ Rm including 1 as the intercept, and β ∈ Rm as the coefficient

vector. Let β = (θ, ψ) ∈ Θ×Ψ, with dim(Θ) = m0, dim(Ψ) = m−m0, and suppose we are

interested in testing the hypotheses

H0 : ψ = ψ0 versus HA : ψ 6= ψ0.

We specify prior densities f0(θ) and f(θ, ψ) under H0 and HA, respectively. With the

likelihood function L(β) based on the observed data, the BF is given by

BF =

∫
L(θ, ψ0)f0(θ)dθ∫∫
L(θ, ψ)f(θ, ψ)dθdψ

. (4.1)
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4 Approximation of the Bayes Factor for nested logistic regression models

In order to provide an approximation to the BF, following regularity conditions are required to

apply Laplace’s method to both the numerator and denominator of (4.1) [15, 197].

Definition 4.1 (Laplace regularity)

Assume that Ω ⊆ Rm is an open subset and {`n = log (Ln) : n = 1, 2, . . .} a sequence of

log-likelihood functions on Ω. Let −nhn = `n define a sequence of real functions having

local minima {β̂n : n = 1, 2, . . .} and assume hn ∈ C6 (Ω), which means hn is six times

continuously differentiable on Ω. Denote by Bδ(β) the open ball of radius δ centered at β

and the Hessian matrix of hn at β by D2hn(β). The sequence of log-likelihood functions

`n = −nhn is Laplace regular if there exist ε,M, η > 0 and n0 ∈ N such that n ≥ n0 implies

(i) ∀β ∈ Bε(β̂n), ∀d ∈ {0, . . . , 6}, ∀j1, . . . jd ∈ {1, . . .m}: |∂j1···jdhn(β)| < M ;

(ii) det
(
D2hn(β̂n)

)
> η;

(iii) ∀δ ∈ (0, ε) : Bδ(β̂n) ⊆ Ω and lim sup
n→∞

sup
β

{
hn(β̂n)− hn(β) : β ∈ Ω\Bδ(β̂n)

}
< 0.

Part (i) of Definition 4.1 implies that the log-likelihood is six times partially differentiable with

derivatives bounded for β in the area of the MLE β̂n. We assume the log-likelihood function

is smooth and bounded near the MLE, and thus in our case of logistic regression, that the log

ORs β are bounded as well. In medicine, ORs are bounded except for extreme imbalanced

cases where the MLE does not exist, as it was discussed in Section 3.1. We assume a

sufficiently balanced data set without complete separation so Definition 4.1 (i) holds.

Part (ii) ensures that the determinant of the negative Hessian matrix of `n is bounded away

from zero and thus that the matrix is non-singular. In Section 3.1 we show that the negative

log-likelihood is convex and thus the Hessian matrix is positive semidefinite. With Part (ii) of

the definition we assume that at the MLE the Hessian matrix is positive definite.

With (iii) we ensure that β̂n does not lie on the boundary of Ω and approximates the global

maximum of `n asymptotically.

Thus, assuming Laplace regularity for log-likelihoods overlaps with the restrictions on MLE

existence and uniqueness required for estimation in Section 3.1.

Assumption 4.1 (Validity of Laplace approximation)

Assume that Ω ⊆ Rm is an open subset.

1) The observations Y = (Y1 · · ·Yn)′ are embedded in an infinite sequence of data

vectors with the resulting sequences of log-likelihoods {`n} on Ω Laplace regular.

2) b ∈ C4(Ω), which implies b is a four times continuously differentiable function on Ω.
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4.1 Mathematical derivation

Under the Laplace regularity conditions and Assumption 4.1, the Laplace’s approximation

with h(β) = −n−1`n(β), Ω ⊆ Rm is given by

∫
b(β) exp(−nh(β))dβ =

(
2π

n

)m
2

det(Σ)
1
2 exp(−nh(β̂))b(β̂)(1 +O(n−1)), (4.2)

for n→∞, where β̂ maximizes −h and Σ = (−D2h(β̂))−1 defines the negative inverse of

the Hessian matrix D2h(β) evaluated at β̂ [197].

Let b0(θ) and b(θ, ψ) be positive functions on Θ and Θ×Ψ, respectively, and set

˜̀
0(θ) = log

(
L(θ, ψ0) · f0(θ)

b0(θ)

)
and

˜̀(θ, ψ) = log

(
L(θ, ψ) · f(θ, ψ)

b(θ, ψ)

)
.

The BF (4.1) can be rewritten as

BF =

∫
exp(˜̀0(θ))b0(θ)dθ∫∫

exp(˜̀(θ, ψ))b(θ, ψ)dθdψ
, (4.3)

which leads to the following proposition.

Proposition 4.1

Suppose Assumption 4.1 holds for the sequences {˜̀0,n}, {˜̀n}, and the positive functions

b0(θ), and b(θ, ψ) on Θ and Θ×Ψ, respectively. Further assume that θ̃0 and (θ̃, ψ̃) are the

maxima of ˜̀0 and ˜̀, respectively, and the integrals in (4.3) exist and are finite. Then

BF = (2π)
m0−m

2
det(Σ̃0)

1
2 exp(˜̀0(θ̃0))b0(θ̃0)

det(Σ̃)
1
2 exp(˜̀(θ̃, ψ̃))b(θ̃, ψ̃)

(1 +O(n−1)) ,

where Σ̃0 = (−D2˜̀
0(θ̃0))−1 and Σ̃ = (−D2˜̀(θ̃, ψ̃))−1.

Proof. Under Assumption 4.1 we can apply the Laplace approximation (4.2) to the numerator

and denominator of (4.3) [15, 197]. Recall that m0 = dim(Θ) and m = dim(Θ×Ψ). With

det

((
− 1

n
D2˜̀

0(θ̃0)

)−1
) 1

2

= det

(
n ·
(
−D2˜̀

0(θ̃0)
)−1
) 1

2

= n
m0
2 det

((
−D2˜̀

0(θ̃0)
)−1
) 1

2
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4 Approximation of the Bayes Factor for nested logistic regression models

and

det

((
− 1

n
D2˜̀(θ̃, ψ̃)

)−1
) 1

2

= n
m
2 det

((
−D2˜̀(θ̃, ψ̃)

)−1
) 1

2

we obtain the approximation

BF =

(
2π

n

)m0
2

det

((
− 1
n
D2˜̀

0(θ̃0)
)−1
) 1

2

exp
(˜̀

0(θ̃0)
)
b0(θ̃0) (1 +O(n−1))(

2π

n

)m
2

det

((
− 1
n
D2˜̀(θ̃, ψ̃)

)−1
) 1

2

exp
(˜̀(θ̃, ψ̃)

)
b(θ̃, ψ̃) (1 +O(n−1))

=

(2π)
m0
2 det

((
−D2˜̀

0(θ̃0)
)−1
) 1

2

exp
(˜̀

0(θ̃0)
)
b0(θ̃0) (1 +O(n−1))

(2π)
m
2 det

((
−D2˜̀(θ̃, ψ̃)

)−1
) 1

2

exp
(˜̀(θ̃, ψ̃)

)
b(θ̃, ψ̃) (1 +O(n−1))

.

Applying
1 +O(n−1)

1 +O(n−1)
= 1 +O(n−1), shown in Proposition 3.1, we obtain

BF = (2π)
m0−m

2

det

((
−D2˜̀

0(θ̃0)
)−1
) 1

2

exp
(˜̀

0(θ̃0)
)
b0(θ̃0)

det

((
−D2˜̀(θ̃, ψ̃)

)−1
) 1

2

exp
(˜̀(θ̃, ψ̃)

)
b(θ̃, ψ̃)

(
1 +O(n−1)

)
.

Thus a first approximation to the BF is

B̂F = (2π)
m0−m

2
det(Σ̃0)

1
2 exp(˜̀0(θ̃0))b0(θ̃0)

det(Σ̃)
1
2 exp(˜̀(θ̃, ψ̃))b(θ̃, ψ̃)

, (4.4)

where Σ̃0 =
(
−D2˜̀

0(θ̃0)
)−1

and Σ̃ =
(
−D2˜̀(θ̃, ψ̃)

)−1

[15].

For prior densities b0(θ) = f0(θ) and b(θ, ψ) = f(θ, ψ) the approximation converts to the

expression to be used here

B̂F = (2π)
m0−m

2
det(Σ̂0)

1
2 exp(`0(θ̂0))f0(θ̂0)

det(Σ̂)
1
2 exp(`(θ̂, ψ̂))f(θ̂, ψ̂)

, (4.5)

where θ̂0 and (θ̂, ψ̂) are the maxima of `0(·) = log (L(·, ψ0)) and ` = log (L), respectively,

and Σ̂0 =
(
−D2`0(θ̂0)

)−1

and Σ̂ =
(
−D2`(θ̂, ψ̂)

)−1

.
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4.1 Mathematical derivation

To move towards the Schwarz approximation, we define null orthogonality and add further

structural and regularity assumptions following Kass and Vaidyanathan (1992), Kass and

Wasserman (1995), and Pauler (1998) [15, 194, 198].

Consider the expected value of the negative Hessian matrix in a sample of size one that is

denoted as the expected Fisher information matrix

I(θ, ψ) = E
[
−D2`(θ, ψ)

]
= E [X ′WX] ,

where X ∈ R1×m and W = G(Xβ) (1−G(Xβ)) is the one-dimensional diagonal matrix

analogously defined to Section 3.1. We partition the Fisher information matrix

I(θ, ψ) =

Iθθ(θ, ψ) Iψθ(θ, ψ)

Iθψ(θ, ψ) Iψψ(θ, ψ)

 =

E
[
−`(θ, ψ)

∂θ∂θ′

]
E
[
−`(θ, ψ)

∂θ∂ψ′

]
E
[
−`(θ, ψ)

∂ψ∂θ′

]
E
[
−`(θ, ψ)

∂ψ∂ψ′

]
, (4.6)

where Iψψ(θ, ψ), Iθθ(θ, ψ) denote the blocks for ψ and θ, respectively. With the symmetry of

the Hessian matrix it follows that I(θ, ψ) is symmetric and thus Iψθ(θ, ψ) = Iθψ(θ, ψ). Null

orthogonality was defined by Kass and Vaidyanathan (1992) as orthogonality of the expected

Fisher information under the null hypothesis [15].

Definition 4.2 (Null orthogonality)

Parameters θ and ψ are said to be null orthogonal if Iθψ(θ, ψ0) = 0 for all θ ∈ Θ.

Proposition 4.2

Given a non-null orthogonal parametrization (ξ, ψ), we can construct a transformation

(ξ, ψ)→ (θ, ψ) such that θ and ψ are null orthogonal with

θ = Φ(ξ, ψ) = ξ + Iξξ(ξ, ψ0)−1Iξψ(ξ, ψ0)(ψ − ψ0), (4.7)

where Iξξ and Iξψ correspond to respective blocks of the expected Fisher information matrix

[15].

Proof. We follow and extend the argumentation by Cox and Reid (1987) and Huzurbazar

and Jeffreys (1950) [199, 200].

With (4.7) we can rewrite the log-likelihood as follows

`(ξ, ψ) = `∗(Φ(ξ, ψ), ψ) = `∗(θ, ψ). (4.8)
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4 Approximation of the Bayes Factor for nested logistic regression models

For the first and second order partial derivatives with respect to ξ and ψ, we consider their

single entries. Then,

∂`(ξ, ψ)

∂ψj︸ ︷︷ ︸
1×1

=
∂`∗(Φ(ξ, ψ), ψ)

∂ψj︸ ︷︷ ︸
1×1

+
∂Φ(ξ, ψ)

∂ψj︸ ︷︷ ︸
1×m0

· ∂`
∗(Φ(ξ, ψ), ψ)

∂Φ︸ ︷︷ ︸
m0×1

,

using partial derivatives of functions and the chain rule. Thus, first derivative with respect to

ψ is a m−m0 dimensional vector.

The mixed second order partial derivatives are

∂2`(ξ, ψ)

∂ξk∂ψj︸ ︷︷ ︸
1×1

=
∂Φ(ξ, ψ)

∂ξk︸ ︷︷ ︸
1×m0

· ∂
2`∗(Φ(ξ, ψ), ψ)

∂Φ∂ψj︸ ︷︷ ︸
m0×1

+
∂

∂ξk

[
∂Φ(ξ, ψ)

∂ψj︸ ︷︷ ︸
1×m0

· ∂`
∗(Φ(ξ, ψ), ψ)

∂Φ︸ ︷︷ ︸
m0×1

]

=
∂Φ(ξ, ψ)

∂ξk
· ∂

2`∗(Φ(ξ, ψ), ψ)

∂Φ∂ψj
+

[
∂

∂ξk

∂`∗(Φ(ξ, ψ), ψ)

∂Φ

]
·
(
∂Φ(ξ, ψ)

∂ψj

)′
+

[
∂

∂ξk

(
∂Φ(ξ, ψ)

∂ψj

)′ ]
· ∂`

∗(Φ(ξ, ψ), ψ)

∂Φ

=
∂Φ(ξ, ψ)

∂ξk
· ∂

2`∗(Φ(ξ, ψ), ψ)

∂Φ∂ψj

+
∂Φ(ξ, ψ)

∂ξk︸ ︷︷ ︸
1×m0

· ∂
2`∗(Φ(ξ, ψ), ψ)

∂Φ∂Φ′︸ ︷︷ ︸
m0×m0

·
(
∂Φ(ξ, ψ)

∂ψj

)′
︸ ︷︷ ︸

m0×1

+
∂2Φ(ξ, ψ)′

∂ξk∂ψj︸ ︷︷ ︸
1×m0

· ∂`
∗(Φ(ξ, ψ), ψ)

∂Φ︸ ︷︷ ︸
m0×1

,

(4.9)

using partial derivatives of functions, the chain rule, and product derivative rules.
∂2`(ξ, ψ)

∂ξ∂ψ′

is a m0 × (m−m0) - matrix with second order partial derivatives.

For the expectation of the last part of the sum in (4.9) it holds that

E
[
∂2Φ(ξ, ψ)′

∂ξk∂ψj
· ∂`

∗(Φ(ξ, ψ), ψ)

∂Φ

]
=
∂2Φ(ξ, ψ)′

∂ξk∂ψj
· E
[
∂`∗(Φ(ξ, ψ), ψ)

∂Φ

]
as Φ(ξ, ψ) is constant with respect to X.
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4.1 Mathematical derivation

Further,

E
[
∂`∗(Φ(ξ, ψ), ψ)

∂Φ

]
=

∫
∂ log (P (x|Φ(ξ, ψ), ψ))

∂Φ
P (x|Φ(ξ, ψ), ψ)dx

=

∫
1

P (x|Φ(ξ, ψ), ψ)
P (x|Φ(ξ, ψ), ψ)

∂P (x|Φ(ξ, ψ), ψ)

∂Φ
dx

=
∂

∂Φ

∫
P (x|Φ(ξ, ψ), ψ)dx =

∂

∂Φ
1 = 0,

where we could exchange the order of differentiation and integration since for each

(Φ(ξ, ψ), ψ) P (x|Φ(ξ, ψ), ψ) is integrable of x. Thus, for Iξψ(ξ, ψ) = E
[
−∂

2`(ξ, ψ)

∂ξ∂ψ′

]
, similar

to (4.6), we have with (4.9)

Iξψ(ξ, ψ) =
∂Φ(ξ, ψ)

∂ξ
· I∗Φψ(Φ(ξ, ψ), ψ)

+
∂Φ(ξ, ψ)

∂ξ
· I∗ΦΦ(Φ(ξ, ψ), ψ) ·

(
∂Φ(ξ, ψ)

∂ψ

)′
,

(4.10)

where we denote by I∗ the expected Fisher information matrix for `∗.

We are interested in whether I∗Φψ(Φ(ξ, ψ0), ψ0) = 0 for all ξ and thus we evaluate (4.10) at

ψ = ψ0. First note by taking the partial derivative with respect to ξ of (4.7) we obtain

∂Φ(ξ, ψ)

∂ξ
= Idm0 +

(
∂

∂ξ
Iξξ(ξ, ψ0)−1

)
Iξψ(ξ, ψ0)(ψ − ψ0)

+ Iξξ(ξ, ψ0)−1

(
∂

∂ξ
Iξψ(ξ, ψ0)

)
(ψ − ψ0),

where Idm0 is the m0 ×m0 identity matrix. This implies

∂Φ(ξ, ψ)

∂ξ

∣∣∣∣
ψ=ψ0

= Idm0 . (4.11)

Similarly, by taking the partial derivative with respect to ψ of (4.7)

∂Φ(ξ, ψ)

∂ψ
=
(
Iξξ(ξ, ψ0)−1Iξψ(ξ, ψ0)

)′
so that (4.10) evaluated at ψ = ψ0 yields

Iξψ(ξ, ψ0) = Idm0 · I∗Φψ(Φ(ξ, ψ0), ψ0)

+ Idm0 · I∗ΦΦ(Φ(ξ, ψ0), ψ0)Iξξ(ξ, ψ0)−1Iξψ(ξ, ψ0).
(4.12)
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4 Approximation of the Bayes Factor for nested logistic regression models

Next we note that

∂2Φ(ξ, ψ)

∂ξk∂ξj

=
∂

∂ξk

[(
∂

∂ξj
Iξξ(ξ, ψ0)−1

)
Iξψ(ξ, ψ0) + Iξξ(ξ, ψ0)−1

(
∂

∂ξj
Iξψ(ξ, ψ0)

)]
(ψ − ψ0)

and this implies
∂2Φ(ξ, ψ)

∂ξk∂ξj

∣∣∣∣
ψ=ψ0

= 0. (4.13)

With (4.8) it follows that

∂2`(ξ, ψ)

∂ξk∂ξj
=
∂2`∗(Φ(ξ, ψ), ψ)

∂ξk∂ξj
=

∂

∂ξk

(
∂Φ(ξ, ψ)

∂ξj
· ∂`

∗(Φ(ξ, ψ), ψ)

∂Φ

)
=
∂Φ(ξ, ψ)

∂ξk
· ∂

2`∗(Φ(ξ, ψ), ψ)

∂Φ∂Φ′
·
(
∂Φ(ξ, ψ)

∂ξj

)′
+
∂2Φ(ξ, ψ)′

∂ξk∂ξj
· ∂`

∗(Φ(ξ, ψ), ψ)

∂Φ
,

using partial derivatives of functions, the chain rule and product derivatives rules. With (4.11)

and (4.13) we obtain

∂2`(ξ, ψ)

∂ξk∂ξj

∣∣∣∣
ψ=ψ0

= ek ·
∂2`∗(Φ(ξ, ψ0), ψ0)

∂Φ∂Φ′
· e′j =

∂2`∗(Φ(ξ, ψ0), ψ0)

∂Φk∂Φj

,

where ek, ej denote the unit vectors with one at entry k, j respectively, and zero otherwise.

It follows

Iξξ(ξ, ψ0) = E
[
−∂

2`(ξ, ψ0)

∂ξ∂ξ′

]
= E

[
−∂

2`∗(Φ(ξ, ψ0), ψ0)

∂Φ∂Φ′

]
= I∗ΦΦ(Φ(ξ, ψ0), ψ0).

Solving (4.12) for I∗Φψ(Φ(ξ, ψ0), ψ0) yields

I∗Φψ(Φ(ξ, ψ0), ψ0) = Iξψ(ξ, ψ0)− I∗ΦΦ(Φ(ξ, ψ0), ψ0)Iξξ(ξ, ψ0)−1Iξψ(ξ, ψ0)

= Iξψ(ξ, ψ0)− Iξξ(ξ, ψ0)Iξξ(ξ, ψ0)−1Iξψ(ξ, ψ0)

= Iξψ(ξ, ψ0)− Iξψ(ξ, ψ0) = 0.

Thus, θ and ψ are null orthogonal.
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4.1 Mathematical derivation

The following structural and regularity assumptions are necessary in addition to Assumption

4.1 for further approximation of the BF [15, 194, 198].

Assumption 4.2

Let θ̂0 and (θ̂, ψ̂) be the MLEs of `0(θ) = `(θ, ψ0) and `(θ, ψ), respectively.

1) θ and ψ are null orthogonal.

2) The marginal prior distribution for θ is the same under both hypotheses

f0(θ) = fθ(θ) =

∫
f(θ, ψ)dψ.

3) The matrix of second derivatives converges asymptotically to the Fisher information

matrix

− 1

n
D2`(θ̂, ψ̂)− I(θ, ψ) = Op(n

−1/2).

4) The MLE ψ̂ under the alternative hypothesis satisfies

ψ̂ − ψ0 = Op

(
n−

1
2

)
.

This implies that the true value of ψ is ψ0 or a neighboring alternative ψn with ψn−ψ0 =

O(n−
1
2 ).

Assumption 4.2 1) implies that the expected Fisher information matrix I(θ, ψ) is block

diagonal under the null hypothesis. We have shown in Proposition 4.2 that for a given

non-null orthogonal parametrization (ξ, ψ) we can construct a transformation (θ, ψ) that is

null orthogonal. Under invariance of the likelihood we have that

max
ξ,ψ

`(ξ, ψ) = max
θ,ψ

`∗(θ, ψ)

and thus (ξ̂, ψ̂)→ (θ̂, ψ̂) [201]. This implies, that reparametrization of ξ does not influence

interpretation of the MLEs. Therefore, we can without loss of generality assume that θ and ψ

are null orthogonal.

Assumption 4.2 2) implies that the conditional prior distribution for ψ under the alternative

hypothesis is

fψ|θ(ψ|θ) =
f(θ, ψ)

fθ(θ)
=
f(θ, ψ)

f0(θ)
,

and under Assumption 4.2 1) of null orthogonality, does not impose a substantial additional

restriction on the model.
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4 Approximation of the Bayes Factor for nested logistic regression models

Assumption 4.2 3) of asymptotic convergence to the Fisher information matrix is intuitive for

iid outcomes Yi’s as it can be shown using the law of large numbers [113]. We do not assume

identical distributions, but independence of the Yi’s. Thus we assume that asymptotically and

for a finite parameter space of X, the expected Fisher information is approximated by the

sample average of the negative second derivative of the log-likelihood. For the covariates,

this does not impose additional restrictions on model assumptions to those required for

existence of the MLE.

The BF is exponentially small for large samples when Assumption 4.2 4) does not hold and

thus an approximation is no longer meaningful [15, 182, 198].

Proposition 4.3

Suppose Assumption 4.1 holds for {`0,n}, {`n}, and the prior densities f0, and f on Θ and

Θ × Ψ, respectively. Let dim(Θ) = m0 and dim(Ψ) = m − m0 and θ̂0 and (θ̂, ψ̂) be the

maxima of `0 and `, respectively. Assume the prior density f0(θ) and its first derivative are

bounded for θ ∈ Bδ(θ̂0), δ > 0. Suppose that the integrals in (4.1) are finite and Assumption

4.2 holds. Then

BF =

(
2π

n

)m0−m
2

det
(
Iψψ(θ̂, ψ0)

)1
2 exp(`0(θ̂0))

exp(`(θ̂, ψ̂))

1

fψ|θ(ψ̂|θ̂)

(
1 +Op

(
n−

1
2

))
.

Proof. Substituting (4.5) into Proposition 4.1 yields

BF = B̂F
(
1 +O(n−1)

)
= (2π)

m0−m
2

det((−D2`0(θ̂0))−1)
1
2 exp(`0(θ̂0))f0(θ̂0)

det((−D2`(θ̂, ψ̂))−1)
1
2 exp(`(θ̂, ψ̂))f(θ̂, ψ̂)

(
1 +O(n−1)

)
=

(
2π

n

)m0−m
2 det(− 1

n
D2`0(θ̂0))−

1
2

det(− 1
n
D2`(θ̂, ψ̂))−

1
2

exp(`0(θ̂0))

exp(`(θ̂, ψ̂))

f0(θ̂0)

f(θ̂, ψ̂)

(
1 +O(n−1)

)
. (4.14)

First, we show that θ̂0 − θ̂ = Op

(
n−

1
2

)
. Since θ̂0 is the MLE of `0(θ) we have

∂`0(θ̂0)

∂θ
=
∂`(θ̂0, ψ0)

∂θ
=


∂`(θ̂0, ψ0)

∂θ1
...

∂`(θ̂0, ψ0)

∂θm0

 = 0.
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4.1 Mathematical derivation

We expand each component of
∂`0(θ̂0)

∂θ
around (θ̂, ψ̂) using a Taylor approximation and

obtain for k = 1, . . . ,m0 [202],

0 =
∂`(θ̂0, ψ0)

∂θk

=
∂`(θ̂, ψ̂)

∂θk
+

m0∑
j=1

(θ̂0j − θ̂j)
∂2`(θ̂, ψ̂)

∂θk∂θj
+

m−m0∑
j=1

(ψ̂0j − ψj)
∂2`(θ̂, ψ̂)

∂θk∂ψj

+ op

(∣∣∣∣∣∣∣∣( θ̂0

ψ0

)
−
(
θ̂

ψ̂

)∣∣∣∣∣∣∣∣) .
(4.15)

With Definition 3.3 and Assumption 4.2 4) we note that

op

(∣∣∣∣∣∣∣∣( θ̂0

ψ0

)
−
(
θ̂

ψ̂

)∣∣∣∣∣∣∣∣) = op

((
θ̂0

ψ0

)
−
(
θ̂

ψ̂

))
= Op

((
θ̂0

0

)
−
(
θ̂
0

)
+

(
0
ψ0

)
−
(

0

ψ̂

))
= Op

(
θ̂0 − θ̂

)
+Op(n

− 1
2 ).

We divide (4.15) by n and with
∂`(θ̂, ψ̂)

∂θk
= 0, since (θ̂, ψ̂) is the MLE of `(θ, ψ), we obtain

0 =
1

n

m0∑
j=1

(θ̂0j − θ̂j)
∂2`(θ̂, ψ̂)

∂θk∂θj
+

1

n

m−m0∑
j=1

(ψ̂0j − ψj)
∂2`(θ̂, ψ̂)

∂θk∂ψj

+
1

n
Op

(
θ̂0 − θ̂

)
+

1

n
Op(n

− 1
2 )

=
1

n

m0∑
j=1

(θ̂0j − θ̂j)
∂2`(θ̂, ψ̂)

∂θk∂θj
+

1

n

m−m0∑
j=1

Op

(
n−

1
2

) ∂2`(θ̂, ψ̂)

∂θk∂ψj

+
1

n
Op

(
θ̂0 − θ̂

)
+Op

(
n−

3
2

)
,

(4.16)

where we use Assumption 4.2 4) in the last step. Recall from Section 3.1 that

D2`(θ, ψ) = −X ′W (θ, ψ)X,

where W (θ, ψ) is a diagonal matrix with elements

0 ≤ Wii(θ, ψ) = G

(
X ′i

(
θ
ψ

))(
1−G

(
X ′i

(
θ
ψ

)))
≤ 1

71
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with G(z) =
exp(z)

1 + exp(z)
. Therefore, for any entry of dkj = (D2`(θ, ψ))kj we obtain

|dkj| =
∣∣∣∣∣
n∑
i=1

XikWii(θ, ψ)Xij

∣∣∣∣∣ ≤ n

∣∣∣∣ max
i=1,...,n

(XikWiiXij)

∣∣∣∣ ≤ n

∣∣∣∣ max
i=1,...,n

(XikXij)

∣∣∣∣
and it follows dkj = Op(n). We apply this result to the entries

∂2`(θ̂, ψ̂)

∂θk∂θj
and

∂2`(θ̂, ψ̂)

∂θk∂ψj
in

(4.16) and use the multiplicative and additive properties of Op

0 =
1

n

m0∑
j=1

(θ̂0j − θ̂j)Op(n) +
1

n

m−m0∑
j=1

Op

(
n−

1
2

)
Op(n) +

1

n
Op

(
θ̂0 − θ̂

)
+Op

(
n−

3
2

)
=

m0∑
j=1

(θ̂0j − θ̂j)Op(1) + (m−m0)Op

(
n−

1
2

)
+

1

n
Op

(
θ̂0 − θ̂

)
+Op

(
n−

3
2

)
=

m0∑
j=1

(θ̂0j − θ̂j)Op(1) +
1

n
Op

(
θ̂0 − θ̂

)
+Op

(
n−

1
2

)
.

Thus, we obtain
m0∑
j=1

(θ̂0j − θ̂j)Op(1) +
1

n
Op

(
θ̂0 − θ̂

)
= Op

(
n−

1
2

)
and it follows that

θ̂ − θ̂0 = Op

(
n−

1
2

)
. (4.17)

Next, we show that D2`0(θ̂0) = D2
θθ`(θ̂, ψ0)

(
1 +Op

(
n−

1
2

))
, where D2

θθ denotes the part

of the Hessian matrix of ` corresponding to θ. With (4.17), Assumption 4.2 4), and the

properties of Op we obtain

exp

(
X ′i

(
θ̂0

ψ0

))
= exp

(
m0∑
j=1

Xij θ̂0j +

m−m0∑
j=1

Xim0+jψ0j

)

= exp

(
m0∑
j=1

Xij

(
θ̂j +Op

(
n−

1
2

))
+

m−m0∑
j=1

Xim0+jψ0j

)

= exp

(
m0∑
j=1

Xij θ̂j +

m−m0∑
j=1

Xim0+jψ0j +

m0∑
j=1

XijOp

(
n−

1
2

))

= exp

(
X ′i

(
θ̂
ψ0

)
+m0 ·O(1)Op

(
n−

1
2

))
= exp

(
X ′i

(
θ̂
ψ0

)
+Op

(
n−

1
2

))
= exp

(
X ′i

(
θ̂
ψ0

))
exp

(
Op

(
n−

1
2

))
.
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4.1 Mathematical derivation

With exp
(
Op

(
n−

1
2

))
= 1 +Op

(
n−

1
2

)
as shown in Proposition 3.2 this yields

exp

(
X ′i

(
θ̂0

ψ0

))
= exp

(
X ′i

(
θ̂
ψ0

))(
1 +Op

(
n−

1
2

))
.

We note that with the additive properties of Op it follows that

1+ exp

(
X ′i

(
θ̂0

ψ0

))
= 1 + exp

(
X ′i

(
θ̂
ψ0

))(
1 +Op

(
n−

1
2

))
= 1 + exp

(
X ′i

(
θ̂
ψ0

))
+ exp

(
X ′i

(
θ̂
ψ0

))
Op

(
n−

1
2

)
= 1 + exp

(
X ′i

(
θ̂
ψ0

))
+ exp

(
X ′i

(
θ̂
ψ0

))
Op

(
n−

1
2

)
+Op

(
n−

1
2

)
=

[
1 + exp

(
X ′i

(
θ̂
ψ0

))](
1 +Op

(
n−

1
2

))
.

Thus, with Proposition 3.1 we obtain

G

(
X ′i

(
θ̂0

ψ0

))
=

exp

(
X ′i

(
θ̂0

ψ0

))
1 + exp

(
X ′i

(
θ̂0

ψ0

)) =

exp

(
X ′i

(
θ̂
ψ0

))(
1 +Op

(
n−

1
2

))
[
1 + exp

(
X ′i

(
θ̂
ψ0

))](
1 +Op

(
n−

1
2

))
= G

(
X ′i

(
θ̂
ψ0

))(
1 +Op

(
n−

1
2

))
. (4.18)

Using (
1 +Op

(
n−

1
2

))2

= 1 + 2Op

(
n−

1
2

)
+Op

(
n−1
)

= 1 +Op

(
n−

1
2

)
and (4.18), we approximate the diagonal elements of W

(
θ̂0, ψ0

)
by

Wii

(
θ̂0, ψ0

)
= G

(
X ′i

(
θ̂0

ψ0

))(
1−G

(
X ′i

(
θ̂0

ψ0

)))
= G

(
X ′i

(
θ̂
ψ0

))(
1 +Op

(
n−

1
2

))(
1−G

(
X ′i

(
θ̂
ψ0

))(
1 +Op

(
n−

1
2

)))
= G

(
X ′i

(
θ̂
ψ0

))((
1 +Op

(
n−

1
2

))
−G

(
X ′i

(
θ̂
ψ0

))(
1 +Op

(
n−

1
2

))2
)

= G

(
X ′i

(
θ̂
ψ0

))((
1 +Op

(
n−

1
2

))
−G

(
X ′i

(
θ̂
ψ0

))(
1 +Op

(
n−

1
2

)))
= G

(
X ′i

(
θ̂
ψ0

))(
1−G

(
X ′i

(
θ̂
ψ0

)))(
1 +Op

(
n−

1
2

))
= Wii

(
θ̂, ψ0

)(
1 +Op

(
n−

1
2

))
.
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We obtain for any entry d(0)
kj =

(
D2`0(θ̂0)

)
kj

d
(0)
kj = −

n∑
i=1

XikWii

(
θ̂0, ψ0

)
Xij

= −
n∑
i=1

XikWii

(
θ̂, ψ0

)(
1 +Op

(
n−

1
2

))
Xij

= −
[

n∑
i=1

XikWii

(
θ̂, ψ0

)
Xij

](
1 +Op

(
n−

1
2

))
= dkj

(
1 +Op

(
n−

1
2

))
=
(
D2
θθ`(θ̂, ψ0)

)
kj

(
1 +Op

(
n−

1
2

))
.

We note that the indices k and j only index the part of D2
θθ`(θ̂, ψ0) corresponding to θ. We

obtain with Assumption 4.2 3)

− 1

n
D2`0(θ̂0) = − 1

n
D2
θθ`(θ̂, ψ0)

(
Idm0 +Op

(
n−

1
2

))
=
(
Iθθ(θ̂, ψ0) +Op

(
n−

1
2

))(
Idm0 +Op

(
n−

1
2

))
.

I(θ, ψ) is the expected Fisher information matrix for a single observation X and thus

I(θ, ψ) = E [X ′ ·G(X ′β)(1−G(X ′β)) ·X] ≤ E [X ′X] = Op(1), (4.19)

where we assume finite second moments for the distribution of data X. We obtain with

I(θ, ψ) = Op(1)

I(θ, ψ) +Op

(
n−

1
2

)
= I(θ, ψ)

(
Idm +Op

(
n−

1
2

))
(4.20)

and it follows

− 1

n
D2`0(θ̂0) = Iθθ(θ̂, ψ0)

(
Idm0 +Op

(
n−

1
2

))(
Idm0 +Op

(
n−

1
2

))
= Iθθ(θ̂, ψ0)

(
Idm0 + 2Op

(
n−

1
2

)
+Op

(
n−1
))

= Iθθ(θ̂, ψ0)
(
Idm0 +Op

(
n−

1
2

))
(4.21)

Analogously to above, we can show

exp

(
X ′i

(
θ̂

ψ̂

))
= exp

(
X ′i

(
θ̂
ψ0

))(
1 +Op

(
n−

1
2

))
and

G

(
X ′i

(
θ̂

ψ̂

))
= G

(
X ′i

(
θ̂
ψ0

))(
1 +Op

(
n−

1
2

))
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4.1 Mathematical derivation

which yields

Wii

(
θ̂, ψ̂

)
= Wii

(
θ̂, ψ0

)(
1 +Op

(
n−

1
2

))
and thus

D2`(θ̂, ψ̂) = D2`(θ̂, ψ0)
(
Idm +Op

(
n−

1
2

))
.

With Assumption 4.2 3) and (4.20) we obtain

− 1

n
D2`(θ̂, ψ̂) =

(
I(θ̂, ψ0) +Op

(
n−

1
2

))(
Idm +Op

(
n−

1
2

))
= I(θ̂, ψ0)

(
Idm +Op

(
n−

1
2

))(
Idm +Op

(
n−

1
2

))
= I(θ̂, ψ0)

(
Idm +Op

(
n−

1
2

))
. (4.22)

Under Assumption 4.2 1) and with the determinant product rule it follows

det
(
I(θ̂, ψ0)

)
= det

(
Iθθ(θ̂, ψ0)

)
det
(
Iψψ(θ̂, ψ0)

)
.

With the determinant product rule, (4.21), and (4.22) this yields

det
(
− 1
n
D2`0(θ̂0)

)
det
(
− 1
n
D2`(θ̂, ψ̂)

) =
det
(
Iθθ(θ̂, ψ0)

(
Idm0 +Op

(
n−

1
2

)))
det
(
I(θ̂, ψ0)

(
Idm +Op

(
n−

1
2

)))
=

det
(
Iθθ(θ̂, ψ0)

)
det
(
Idm0 +Op

(
n−

1
2

))
det
(
Iθθ(θ̂, ψ0)

)
det
(
Iψψ(θ̂, ψ0)

)
det
(
Idm +Op

(
n−

1
2

))
=

det
(
Idm0 +Op

(
n−

1
2

))
det
(
Iψψ(θ̂, ψ0)

)
det
(
Idm +Op

(
n−

1
2

)) . (4.23)

We obtain with Hadamard’s inequality and the multiplicative and additive properties of Op

[203]

det
(
Idm0 +Op

(
n−

1
2

))
≤
(

1 +Op

(
n−

1
2

))m0

= 1 +Op

(
n−

1
2

)
,

det
(
Idm +Op

(
n−

1
2

))
≤
(

1 +Op

(
n−

1
2

))m
= 1 +Op

(
n−

1
2

)
.

(4.24)

−D2`(θ̂, ψ̂) is positive semidefinite since ` is convex as shown in Section 3.1. Thus

Iθθ(θ̂, ψ0) = E
[
−D2

θθ`(θ̂, ψ0)
]

and I(θ̂, ψ0) = E
[
−D2`(θ̂, ψ0)

]
are positive semidefinite

and it follows Idm + Op

(
n−

1
2

)
and Idm0 + Op

(
n−

1
2

)
are positive semidefinite. Let µi ≥ 0

denote the eigenvalues of the random matrix Yn = Op(n
− 1

2 ).
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Then

det (Idm + Yn) =
m∏
i=1

(1 + µi) ≥ 1 +
m∏
i=1

µi = 1 + det (Yn) ≥ 1 +Op

(
n−

1
2

)

and analogously det (Idm0 + Yn) ≥ 1 +Op

(
n−

1
2

)
. It follows with (4.24)

det
(
Idm +Op

(
n−

1
2

))
= 1 +Op

(
n−

1
2

)
.

Substituting this into (4.23) yields with Proposition 3.1

det
(
− 1
n
D2`0(θ̂0)

)
det
(
− 1
n
D2`(θ̂, ψ̂)

) =
1 +Op

(
n−

1
2

)
det
(
Iψψ(θ̂, ψ0)

)(
1 +Op

(
n−

1
2

))
= det

(
Iψψ(θ̂, ψ0)

)−1 (
1 +Op

(
n−

1
2

))
.

and using
(

1 +Op

(
n−

1
2

)) 1
2

= 1 +Op

(
n−

1
2

)
, shown in Proposition 3.2, we obtain

det
(
− 1
n
D2`0(θ̂0)

)− 1
2

det
(
− 1
n
D2`(θ̂, ψ̂)

)− 1
2

=

 det
(
− 1
n
D2`0(θ̂0)

)
det
(
− 1
n
D2`(θ̂, ψ̂)

)
−

1
2

= det
(
Iψψ(θ̂, ψ0)

)1
2
(

1 +Op

(
n−

1
2

)) 1
2

= det(Iψψ(θ̂, ψ0))
1
2

(
1 +Op

(
n−

1
2

))
. (4.25)

It is left to show that
f0(θ̂0)

f(θ̂, ψ̂)
is approximated by

1

fψ|θ(ψ̂|θ̂)
. Using a Taylor expansion of

f0 around θ̂ we show with (4.17), Definition 3.3, and under the assumption that f0 and its

derivative is bounded in an area around θ̂ that

f0(θ̂0) = f0(θ̂) +

m0∑
j=1

(
θ̂j − θ̂0j

)
∂θjf0(θ̂) + o

(
||θ̂ − θ̂0||

)
= f0(θ̂) +

m0∑
j=1

Op

(
n−

1
2

)
∂θjf0(θ̂) + o

(
Op

(
n−

1
2

))
= f0(θ̂) +Op

(
n−

1
2

)
= f0(θ̂)(1 +Op

(
n−1
)
).
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4.1 Mathematical derivation

Thus, with Assumption 4.2 2) it follows

f0(θ̂0)

f(θ̂, ψ̂)
=

f0(θ̂0)

fψ|θ(ψ̂|θ̂)f0(θ̂)
=
f0(θ̂)(1 +Op (n−1))

fψ|θ(ψ̂|θ̂)f0(θ̂)
=

1 +Op (n−1)

fψ|θ(ψ̂|θ̂)
. (4.26)

Substituting (4.25) and (4.26) into (4.14) yields with the additive and multiplicative properties

of Op following approximation for the BF

BF =

(
2π

n

)m0−m
2

det(Iψψ(θ̂, ψ0))
1
2

(
1 +Op

(
n−

1
2

)) exp(`0(θ̂0))

exp(`(θ̂, ψ̂))

1 +Op (n−1)

fψ|θ(ψ̂|θ̂)

=

(
2π

n

)m0−m
2

det(Iψψ(θ̂, ψ0))
1
2

exp(`0(θ̂0))

exp(`(θ̂, ψ̂))

1

fψ|θ(ψ̂|θ̂)

(
1 +Op

(
n−

1
2

))
.

We define the Schwarz criterion, which was first introduced by Schwarz (1978) and relate

this to the result obtained in Proposition 4.3 [15, 204].

Definition 4.3 (Schwarz criterion)

The Schwarz criterion for the multiple logistic regression model is given by

S = `0(θ̂)− `(θ̂, ψ̂) +
m−m0

2
log(n). (4.27)

Corollary 4.1

Under the assumptions of Proposition 4.3 and if the conditional prior density fψ|θ(ψ|θ) is

bounded for (θ, ψ) ∈ Bδ(θ̂, ψ̂), δ > 0 it holds that

log(BF) = S +Op(1).

Proof. We take the logarithm on both sides of the result from Proposition 4.3 and obtain

log (BF) =
m0 −m

2
log

(
2π

n

)
+

1

2
log
(

det
(
Iψψ(θ̂, ψ0)

))
+ `0(θ̂0)− `(θ̂, ψ̂)

− log
(
fψ|θ(ψ̂|θ̂)

)
+ log

(
1 +Op

(
n−

1
2

))
= `0(θ̂0)− `(θ̂, ψ̂) +

m−m0

2
log(n) +

m0 −m
2

log(2π)

+
1

2
log
(

det
(
Iψψ(θ̂, ψ0)

))
− log

(
fψ|θ(ψ̂|θ̂)

)
+Op

(
n−

1
2

)
,
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where we use log
(

1 +Op

(
n−

1
2

))
= Op

(
n−

1
2

)
shown in Proposition 3.2. Thus we have

log (BF) = S +
m0 −m

2
log(2π) +

1

2
log
(

det
(
Iψψ(θ̂, ψ0)

))
− log

(
fψ|θ(ψ̂|θ̂)

)
+Op

(
n−

1
2

)
.

(4.28)

Using (4.19) we obtain

log
(

det
(
Iψψ(θ̂, ψ0)

))
= log (det (Op(1))) = Op(1).

With
m0 −m

2
log(2π) = O(1) and log

(
fψ|θ(ψ̂|θ̂)

)
= Op(1) this yields

log(BF) = S +Op(1).

Theorem 4.1

Suppose the assumptions of Proposition 4.3 hold and let the prior density fψ|θ(ψ|θ) for ψ

under the alternative hypothesis have the form

ψ|θ ∼ Nm−m0(ψ0, Iψψ(θ, ψ0)−1).

Then we have

log(BF) = S +Op

(
n−

1
2

)
.

Proof. The multivariate normal density of ψ|θ at ψ̂|θ̂ is given by

fψ|θ(ψ̂|θ̂) = (2π)
m0−m

2 det(Iψψ(θ̂, ψ0))
1
2 exp

(
−1

2
(ψ̂ − ψ0)′Iψψ(θ̂, ψ0)(ψ̂ − ψ0)

)
= (2π)

m0−m
2 det(Iψψ(θ̂, ψ0))

1
2 exp

(
Op

(
n−

1
2

)
Op(1)Op

(
n−

1
2

))
= (2π)

m0−m
2 det(Iψψ(θ̂, ψ0))

1
2 +Op

(
n−1
)
,

where we use (4.19) and exp(Op (n−1)) = 1 +Op (n−1) shown in Proposition 3.2. Next, note

that

log
(
fψ|θ(ψ̂|θ̂)

)
= log

(
(2π)

m−m0
2 det(Iψψ(θ̂, ψ0))

1
2

(
1 +Op

(
n−1
)))

=
m−m0

2
log(2π) +

1

2
log
(

det(Iψψ(θ̂, ψ0))
)

+ log
(
1 +Op

(
n−1
))

=
m−m0

2
log(2π) +

1

2
log
(

det(Iψψ(θ̂, ψ0))
)

+Op

(
n−1
)
,
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since log (1 +Op (n−1)) = Op (n−1) as shown in Proposition 3.2. Substitution into (4.28)

yields

log (BF) = S +Op

(
n−

1
2

)
−Op

(
n−1
)

= S +Op

(
n−

1
2

)
.

The prior distribution used in Theorem 4.1 is called a unit information prior distribution as

it contains the amount of information of one observation [194, 205, 206]. It sometimes is

classified as a reference prior in the sense that the prior distribution is specified by a formal

rule [205].

Jeffreys used a unit information prior distribution in terms of a Cauchy distribution with the

Fisher information as scale parameter for normal location testing problems [183, 194]. Kass

and Wasserman (1995) used a normal unit information prior for testing iid variables and

Raftery (1996) for stating an approximation to the BIC [194, 195]. Pauler (1998) approximated

the Schwarz criterion for normal linear models with a normal unit information prior distribution

[198].

The unit information prior contains the information of one observation and thus we expect

the variance Iψψ(θ, ψ0)−1 to be large. For illustration, we consider random samples of size

n = 10, 100, and 1000 from the data described in Chapter 2. We fit a logistic regression model

for the pathological outcome ECE with an intercept and log(PSA) as the only covariate. We

are interested in testing whether the coefficient ψ corresponding to the log OR for log(PSA)

is equal to zero.
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Figure 4.1 Unit information prior distribution for testing whether the coefficient ψ of
log(PSA) is equal to zero in a logistic regression model for ECE on random samples of the
EMR data using different sample sizes n.

Figure 4.1 displays the observed normal unit information prior distribution from random

samples of the EMR data corresponding to the different sample sizes. The variance of the
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4 Approximation of the Bayes Factor for nested logistic regression models

prior distribution stays relatively constant with increasing sample size and thus the observed

unit information prior contains a similar amount of information.

In Figure 4.2 we see the likelihood functions for ψ, assuming the coefficient for the intercept

is fixed. In contrast to the unit information prior distribution the variance of the likelihood

function decreases with increasing sample size.
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Figure 4.2 Likelihood function for the coefficient ψ of log(PSA) in a logistic regression
model for ECE containing an intercept and log(PSA) as covariate fitted to random samples
of the EMR data using different sample sizes.

The Schwarz criterion provides a good approximation to the Bayes factor for a specific

parametrization, certain assumptions, and a choice of unit information prior. Its approximation

is restricted to the comparison of two nested models, whereas it is often desirable to compare

multiple models. A possible approach is to compare each model with a reference model,

for example the null or intercept model M0 with no independent variables, or the saturated

model MS with an exact fit for each data point [193].

Let `i and `j denote the log-likelihood and mi and mj the number of parameters for Mi and

Mj , respectively. The approximate log(BFij) for comparing models Mi and Mj is given by

log (BFij) ≈ `i − `j +
mj −mi

2
log(n).
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4.1 Mathematical derivation

For two models M1 and M2 each nested within the saturated model MS, we have

log (BF1S)− log (BF2S) ≈ `1 − `S +
mS −m1

2
log(n)− `2 + `S −

mS −m2

2
log(n)

= `1 − `2 +
m2 −m1

2
log(n) ≈ log (BF12) .

Thus, by comparing each model to the same saturated model we can construct an approxi-

mation for comparing the two models directly [193]. Analogously, using the null model M0

that is nested within all models we have that

log (BF02)− log (BF01) ≈ `0 − `2 +
m2 −m0

2
log(n)− `0 + `1 −

m1 −m0

2
log(n)

= `1 − `2 +
m2 −m1

2
log(n) ≈ log (BF12) .

Although the choice of the comparison model M0 or MS results in a numerical difference in

absolute values, both can be used to reconstruct log (BF12). We use the null model M0 and

follow convention to define the Bayesian information criterion (BIC) [193, 204, 207].

Definition 4.4 (Bayesian information criterion (BIC))

The BIC for a multiple logistic regression model Mm with m the dimension of β is given by

BIC = −2`(β̂) +m log(n).

Let BIC1 and BIC2 be the BIC for M1 and M2, respectively. Then,

1

2
BIC2 −

1

2
BIC1 = −`2 +

m2

2
log(n)−

(
−`1 +

m1

2
log(n)

)
= `1 − `2 +

m2 −m1

2
log(n)

≈ log (BF12) .

Thus, we can use the BIC to reconstruct the approximation to log (BF12).

Here we did not explicitly specify that the two modelsM1 andM2 need to be nested, although

we used that assumption throughout Section 4.1. While the approximation holds specifically

for nested models, using a single comparison model M0 or MS provides a possibility to

compare more general specified models [193].

We have shown how the Schwarz criterion approximates the BF for a specific unit information

prior distribution for logistic regression models. Similar results have been shown for other
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4 Approximation of the Bayes Factor for nested logistic regression models

regression models such as normal linear models, linear mixed models, and censored survival

models [15, 195, 198, 208, 209].

The BIC is now commonly used for model selection, as well as in Bayesian model averaging

(BMA) to account for model uncertainty. Here the BIC approximation to the BF provides

computationally simple and conservative weights for different models under consideration

[210–213].

It has been extended to numerous complex modeling situations, including to account for

large model spaces and small-n-large-p model selection problems, for sparse GLM or for

singular model selection problems [214–218]. Further extensions have been proposed

including Gaussian graphical models and high-dimensional Ising models, non-linear models

estimated by penalized likelihood methods, to account for longitudinal and clustered data, for

mixture models, quantile regression, for selection of tuning parameters in bridge regression

models, or for the Cox model with a high-dimensional feature space [219–226]. Recently,

Bayarri et al. (2019) proposed a modification to incorporate prior information [227].

Besides modifications for multiple change-point models, to locate multiple interacting quan-

titative trait loci, or for genome-wide association studies (GWAS), the BIC is adapted for

peptide identification or source enumeration in array processing [228–235]. In applications

for speech recognition, the BIC has been modified to identify the number of clusters for

clustering, for decision tree state tying or for speaker diarization [236–241]. Furthermore,

the BIC has many applications in medical use cases. A query for the exact term ”Bayesian

information criterion” yielded 773 results in PubMed, a free search engine containing more

than 30 million citations and abstracts primarily from biomedicine and health-related fields

(September 13, 2019 [242]).

The BIC is implemented in R via the BIC function as well as a special case of the extractAIC-

function provided by the MASS package [243]. This package includes also the stepAIC-

function for implementation of a step-wise model selection procedure with the Akaike’s

information criterion (AIC) and BIC [243]. We describe this procedure in more detail in

Section 4.3.

4.2 Simulation studies

We validate the results derived in Section 4.1 with simulation studies. We consider two nested

models with a unit information prior distribution and compare the approximate BF (BFapprox)

with the calculated BF (BFcalc) obtained with numerical integration using the integrate-function

in R [244]. Table 4.1 summarizes the simulation specifications for two scenarios that use

different covariates and are similar otherwise.
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4.2 Simulation studies

Covariates

Scenario 1: Intercept X0 = 1 and one binary covariate
X1 ∼ Ber(0.5), re-scaled to mean 0

Scenario 2: Intercept X0 = 1 and one continuous covariate X1

sampled from log(PSA) values in the EMR data, re-
scaled to mean 0

β-values β0 = 1; β1 = 0, 0.01, 0.1, 0.5, 1, 3

Hypotheses H0: β1 = 0 vs. HA: β1 6= 0

Sample
sizes

n = 10, 100, 1000

Samples yi ∼ Ber(pi) with pi = G(X ′β) = exp(X′β)
1+exp(X′β)

Evaluation

- Calculate the ’exact’ BFcalc using numeric integration with prior
densities f0(β0) ∼ 1 and fβ1|β0(β1|β0) ∼ N(0, Iβ1β1(β0, 0)−1)

- Compare BFcalc with BFapprox = exp(S)
- Compare the BF decision according to Jeffreys’ scale with
p - values obtained from the Wald test

Number of
repetitions

k = 1000

Total
number of
simulations

18,000 for each scenario

Table 4.1 Specifications of the simulation study for the BF approximation for nested logistic
regression models.

In the following, we discuss the results for Scenario 1. Results for Scenario 2 are provided in

Appendix B.1. Overall the two scenarios returned similar results and we discuss differences

where they occurred.

Figure 4.3 shows that for an increasing sample size the difference between BFapprox and

BFcalc decreases. For a sample size of n = 100 the absolute difference is less than 0.31 and

for n = 1000 less than 0.11. With a small sample size of n = 10, we detect some outlying

values for BFcalc − BFapprox, which we now discuss.

In 6,000 simulation runs for Scenario 1 with n = 10 and different β1-values the absolute

difference between BFapprox and BFcalc is greater than 2 for 228 cases (3.8%). These outliers

occur in those cases where either Yi = 1 for all i ∈ {1, . . . , 10}, Xi = 1 for all i ∈ {1, . . . , 10},
or Xi = 0 for all i ∈ {1, . . . , 10}. In the latter two cases BFcalc is infinite and in all these cases

the ORs for either β0 or β1 are unbounded, since n00 = 0 or n11 = 0, where n00, n01, n10, n11

are the counts of different combinations for X1 and Y as defined in Table 3.1. Therefore, the

sequence of log-likelihoods is not Laplace regular and Assumption 4.1 is not fulfilled. The
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Figure 4.3 Difference between BFcalc and BFapprox for the first scenario of the simulation
study for logistic regression models with sample sizes n = 10, n = 100, and n = 1000 based
on 6,000 simulations for each sample size.

228 outliers are excluded in Figure 4.4 as well as in the following analysis. In Figure 4.4 we

see that in general the absolute difference between BFapprox and BFcalc is smaller than 0.5,

but there are outlying values up to 1.5 for all cases of β1.
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Figure 4.4 Difference between BFcalc and BFapprox for the first scenario of the simulation
study for logistic regression models with a sample size n = 10 excluding 228 outlying cases
out of 6,000.

In simulations with a continuous covariate (Scenario 2) we detect 202 outliers for n = 10

(3.4%) with an absolute difference between BFapprox and BFcalc larger than 2 and all those

occur if Yi = 1 for all i ∈ {1, . . . , 10} (Fig. B.1). Thus, again the definition of Laplace

regularity is not fulfilled for the sequence of log-likelihoods and these cases are excluded

from additional analyses in Appendix B.1. After removing the outliers for n = 10 the absolute
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difference between BFapprox and BFcalc is smaller than 0.5 in general and the distribution is

more symmetric around 0 than for the first scenario (Fig. 4.4, Fig. B.2). For n = 100 and

n = 1000 the maximum absolute differences are 1.32 and 0.61 and thus larger compared to

Scenario 1 (Fig. 4.3, Fig. B.1).
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Figure 4.5 Comparison of BFapprox to BFcalc on a negative log10 - scale using Jeffreys’ rule
for the first scenario. On the left side all simulation runs are shown, whereas on the right
side the focus is on the range between -1.5 and 5 on a negative log10-scale.

For a better judgment of the difference between BFapprox and BFcalc, we plot them on a

negative log10-scale and classify the evidence against the null hypothesis according to

Jeffreys’ rule as introduced in Section 3.3 into substantial, strong, and decisive. Figure 4.5

shows that in general − log10(BFapprox) and − log10(BFcalc) agree well, but the classification

differs in 525 of 17,772 cases (3.0%) located in the gray areas. Stratified by sample size the

misclassification rates are 8.6% (499/5,772) for n = 10, 0.4% (23/6,000) for n = 100, and

0.1% (3/6,000) for n = 1000.

When investigating the 499 misclassified cases for n = 10 in more detail, we find that at

least one of n00, n01, n10, or n11 is equal to 0 and thus the underlying data is completely

or quasicompletely separated as defined in Section 3.1. Therefore, the assumptions for

Laplace regularity are not fulfilled and the approximation fails. With an increasing sample

size no such outliers occur in the simulations. In medical applications, statistical analysis

would not proceed in the presence of small samples with unstable effects, justifying exclusion

of the 499 outlying cases.

On closer inspection misclassification of 26 cases for n = 100 and n = 1000 occurs on
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the boundaries of Jeffreys’ rule, where − log10(BFapprox) and − log10(BFcalc) do not differ to

a large extent. The median, minimum, and maximum difference between − log10(BFapprox)

and − log10(BFcalc) for these cases are -0.03, -0.17, and 0.02, respectively. Thus, BFapprox

rather underestimates BFcalc and in all but 2 misclassified cases the BFapprox gave a more

conservative classification according to the Jeffreys’ rule. We do not exclude these 26

misclassified cases.

In Scenario 2 simulating with a continuous covariate we detect 633 misclassified cases out

of 17,798 (3.6%) (Fig. B.3). Stratified by sample size the misclassification rate are 8.3%

(484/5,798) for n = 10, 2.4% (146/6,000) for n = 100, and 0.1% (3/6,000) for n = 1000. For

n = 10 misclassification in 200 cases occurs when the minimum log(PSA) value of one group

is larger than the maximum log(PSA) value of the other group and the data is completely

separated. For 192 misclassified cases for n = 10 we observe a quasicomplete separation

in the data in the sense that the two groups barely overlap and only one observation of

one group has a log(PSA)-value within the range of the other group. The assumptions for

Laplace regularity are not fulfilled and the approximation fails in these cases and similar to

the Scenario 1, we exclude these 392 misclassified cases for the further analysis in Appendix

B.1. With an increasing sample size no such separation occurs in the simulations. For the

remaining cases and the misclassified cases for n = 100 and n = 1000 misclassification

occurs on the boundaries of the Jeffreys’ rule, similar to Scenario 1. The difference between

BFapprox and BFcalc is slightly larger with the continuous covariate in Scenario 2 than for the

binary covariate in Scenario 1 and this leads to more misclassifications on the boundaries of

Jeffreys’ rule.

In addition to the difference between BFapprox and BFcalc, we evaluate BFapprox in comparison

to the p-value obtained from the Wald test for the coefficient β1. Again, we use a negative

log10-scale and classify − log10(BFapprox) according to Jeffreys’ rule. We consider 3 different

significance levels for the p-value, 0.05, 0.01, and 0.001, which correspond to ≈ 1.3, 2, and

3 on the negative log10-scale.

On the left side in Figure 4.6, we see for a large sample size and large β1-value both the

p-value and BFapprox are highly significant (p < 0.001) and decisive, respectively. However,

for n = 100, we detect 33 cases (0.6%), located in the lower gray area, where the p-value

is large and low on the log10-scale, but Jeffreys’ rule classifies these as decisive. These

cases occur for β1 = 3 and we detect that n10 = 0. Thus, the calculation of the p - value fails

and results in values close to 1, whereas the BFapprox yields a correct decision as we expect

decisive evidence against the null hypothesis β1 = 0 for a true value β1 = 3.

On the right side in Figure 4.6, we see similar cases for n = 10, where the p-value is

large, but the BFapprox provides substantial, strong or decisive evidence against the null-
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Figure 4.6 Comparison of BFapprox and the p-value on a negative log10 - scale for the first
scenario. On the left side all simulation runs are shown, whereas on the right side the focus
is on the range between -1.5 and 5 on a negative log10-scale.

hypothesis. Those 485 cases out of 5,273 remaining simulations for n = 10 (9.2 %) occur

when least one of n00, n01, n10, or n11 is equal to 0. We note that only a comparably few

combinations of − log10(BFapprox) and p-values are obtained for n = 10 and thus in Figure

4.6 many points overlap and are not visible. As already mentioned, in medical applications,

statistical analysis would not proceed in the presence of small samples with unstable effects.

However, the BFapprox seems to yield more stable results compared to the p-value, although

the assumptions for Laplace regularity are not fully satisfied.

For n = 100 and n = 1000 we split the right side in Figure 4.6 and display the results

separated by samples size and β1-value in Figure 4.7 for better visibility.

For n = 1000 and β1 = 1 only very few p-values and BFapprox-values are smaller than 5 on a

negative log10-scale and for β1 = 3 no values fall within the displayed range (Fig.4.7, bottom

row). For n = 100 and β1 = 3 all p-values are less than 0.01 and BFapprox-values indicate at

least strong evidence against the null hypothesis. These results are not surprising as we

expect evidence against the null hypothesis for these parameter settings.

For β1 ≤ 0.5 we can see a shift of the p-values for a sample size of n = 1000 compared

to n = 100, where for a similar − log10(BFapprox)-value the p-value tends to be smaller, and

thus larger on a negative log10-scale for the larger sample size. Therefore, for comparable

evidence against the null hypothesis based on BFapprox, the p-value yields more significant

results for a larger sample size. Moreover, we detect several cases, where BFapprox does not
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Figure 4.7 Comparison of BFapprox and the p-value on a negative log10 - scale for the first
scenario for n = 100 and n = 1000 with focus is on the range between -1.5 and 5 on a
negative log10-scale.

provide evidence against the null hypothesis with − log10(BFapprox) < 0.5, but the Wald test

yields p-values at least smaller than 0.05. These disagreeing cases are located in the upper

gray areas. Stratified by sample size the disagreement proportions are 7.7% (460/6,000) for

n = 100 and 8.1% (485/6,000) for n = 1000. There are no cases, where BFapprox indicates

evidence against the null hypothesis and the p-value is larger than 0.05.

For Scenario 2 we observe a similar shift in p-values and the disagreement proportions are

7.3% (441/6,000) for n = 100 and 4.7% (281/6,000) for n = 1000. In 415 cases out of 4,525

(9.2%) for n = 10, BFapprox indicates evidence against the null hypothesis, but the p-value is

larger than 0.05. However, for larger sample sizes we do not detect such cases. Overall we

can consider the BFapprox to be more conservative.
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4.3 Separate logistic regression models for pathological

outcomes after prostatectomy

In the following, we consider data from Chapter 2 and fit logistic regression models to each

of the 5 pathological outcomes after prostatectomy separately. We use the BIC derived in

Section 4.1 as a selection criteria in a step-wise variable selection procedure described

in Algorithm 4.1 starting with a model containing only an intercept [245]. The aim of the

algorithm is to find an optimal model in terms of minimizing the BIC. Thus, at each step we

either include or exclude a variable from the set of all available variables without interactions

and repeat until the BIC cannot be further minimized.

Algorithm 4.1: Stepwise variable selection procedure
Input: Initial model M , e.g. model containing only the intercept, available variables

Mnew ←M

vars_in← model variables contained in M

vars_out← model variables available for selection and not contained in M

repeat

M∗ ←Mnew

if vars_out is not empty then

v(1) ← argmin
v ∈ vars_out

BIC(M∗ with v)

M (1) ←M∗ with v(1)

end

if vars_in is not empty then

v(2) ← argmin
v ∈ vars_in

BIC(M∗ without v)

M (2) ←M∗ without v(2)

end

if BIC(M (1)) < BIC(M (2)) then

vars_in← vars_in ∪ v(1)

vars_out← vars_out \ v(1)

Mnew ←M (1)

else

vars_in← vars_in \ v(2)

vars_out← vars_out ∪ v(2)

Mnew ←M (2)

end

until BIC(Mnew) ≥ BIC(M∗)
return M∗
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4 Approximation of the Bayes Factor for nested logistic regression models

There are many other model selection procedures available and we choose two most

commonly used for comparison [246]. First, we consider the AIC defined by

AIC = −2`(β̂) + 2 dim(β̂),

as a selection criteria in the step-wise approach described in Algorithm 4.1 [247]. Second,

we use the least absolute shrinkage and selection operator (LASSO) estimate defined by

β̂LASSO = argmin
β

{
1

n

n∑
i=1

(yi log (G(X ′iβ)) + (1− yi) log (1−G(X ′iβ)) + λ||β||1)

}
,

with sample size n, G(X ′iβ) =
exp(X ′iβ)

1 + exp(X ′iβ)
, the L1-norm || · ||1 and λ as penalization

parameter [248, 249]. We determine λ using a 10-fold cross validation on the training set with

16,427 observations resulting in folds with 1,643 observations. Thereby we consider those

models that are selected using λ at maximum AUC (LASSOmax) or λ within one standard

error of the maximum AUC (LASSO1se), where the AUC defined in Section 3.5 is evaluated

on the remaining fold of the cross validation in each step. Using the selected variables we

refit the models without shrinkage parameter to avoid bias for the coefficients towards 0

[116].

As described in Section 2.6, we use 10 imputation sets to account for the missing data. We

apply the different model selection algorithms to each imputation of the training set with

16,427 observations and evaluate those models on the corresponding imputation of the

validation set with 4,180 observations using the AUC. Figure 4.8 visualizes the AUC with

95%-confidence interval (CI) as proposed by DeLong et al. (1988) for each imputation set

and each model selection procedure [250]. Across the different selection algorithms the

AUC does not vary substantially for each outcome suggesting choice of which procedure to

use is not relevant. The ranking of the outcomes in terms of highest discriminative power of

the selected models was LNI, PGG, and SVI (AUC = 0.85) followed by ECE (AUC = 0.80)

and LVI (AUC = 0.77).

Figure 4.9 provides an overview of the variables that were selected by the BIC and LASSO1se.

AIC and LASSOmax selected a greater variety and more variables without visibly improvement

regarding the AUC (Fig. 4.8). Therefore, we focus on BIC and LASSO1se, but for reference

Figure B.7 in Appendix B.2 displays covariates included in at least 4 out of 10 imputation

sets using AIC and LASSOmax.

Overall, BIC and LASSO1se selected similar variables. The methods agreed in selecting

primary and secondary biopsy Gleason grade for all outcomes in all imputation sets and per-
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Figure 4.8 AUCs and 95%-CIs for selected models by each model selection algorithm for
each imputation set (n = 16, 427) validated on the corresponding imputation set of the
validation data (n = 4, 180).

centage of positive biopsy cores in the majority of all imputation sets for all outcomes. Further,

both selection algorithms chose age, BMI, prostate volume, minimum log-transformed PSA

(log(PSA)) within on year of prostatectomy, and the D’Amico PSAV cut-off in the majority

of the imputation sets for the same outcomes. BIC and LASSO1se included mean log(PSA)

within the last year before prostatectomy and the number of positive cores for almost all

pathological outcomes, but BIC did not select the first one for LVI and the latter one not for

PGG in the majority of the imputation sets.

Both methods included the number biopsies for SVI in the majority of the imputation sets,

and BIC selected it also for PGG, whereas LASSO1se chose it for ECE. BIC and LASSO1se

selected the number of psa values within three years of prostatectomy for ECE and the

last log(PSA) value for LVI. LASSO1se included these covariates also for SVI and PGG,

respectively.

BIC selected the standard deviation of all log(PSA) values for SVI, standard deviation of all

log(PSA) values within three years of prostatectomy for PGG, and minimum log(PSA) value

within three years of prostatectomy for LNI. LASSO1se included the maximum log(PSA) of
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Figure 4.9 Variables selected in at least one of the 10 imputation sets (n = 16, 427) using
BIC or the LASSO1se method. Size and color indicate the number of imputation sets on
which the specific variable was selected. Grey backgrounds indicate variables selected in at
least 50% of the imputed sets. poly stands for polynomial and reg for linear regression with
the corresponding degree and coefficients (coef), (1y), (2y), (3y), and (all) for the time frame
in years before prostatectomy used for the calculation of the PSA related features.

all PSA values in the models for SVI and PGG in the majority of the imputation sets and the

maximum log(PSA) within two years before prostatectomy for LNI.

BIC included the number of biopsy cores and the intercept of a linear regression model

on all log(PSA) values within one year of prostatectomy for ECE in the models on the

majority of the imputation sets, and LASSO1se included the mean of all log(PSA) values
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4.3 Separate logistic regression models for pathological outcomes after prostatectomy

and of those within three years before prostatectomy for this outcome. LASSO1se chose the

log-transformed prostate volume and the intercept of a polynomial regression on all log(PSA)

values before prostatectomy for LVI as covariates.

We use the majority rule as described by Wood et al. (2008) to select those variables that

should be included in the final models for each selection procedure [251]. This implies

that we select those variables that were included in at least 50% of the models on the

imputation sets. Additionally we perform the likelihood ratio test for multiple imputed data

sets introduced by Meng and Rubin (1992) to test whether variables selected in 4 of the 10

imputations should be included as well [251, 252]. This procedure yields one set of variables

per selection algorithm for each pathological outcome and with those variables we fit models

on each imputation set and pool the coefficients according to Rubin’s rules to give

β̄ =
1

10

10∑
k=1

β̂(k), (4.29)

with β̂(k) the estimated coefficient vector of imputation set k [253, 254].

We evaluate the model performance for each model selection algorithm and each outcome

on the 10 imputations of the validation set with 4,180 observations [251]. We calculate the

AUC as well as the accuracy, precision, sensitivity, and specificity for a cut-off value of 0.5

as defined in Section 3.5 [255]. Then we use the average values to compare the different

models in Figure 4.10 [124]. This pooled performance approach as described by Wood et al.

(2015) assumes an ideal clinical setting in the future, where no variables are missing [124].

At this step, we evaluate the model selection algorithm and not the final model performance

and thus the assumption of non-missing values is not very restrictive. For the final model

evaluation we use a less optimistic model performance evaluation based on the hold-out test

set [124].

We see no large differences between the model selection algorithms for each outcome,

only that model performance varies between outcomes. While the AUC and accuracy at a

cut-off of 0.5 range between 0.75 and 0.85, the precision, sensitivity and specificity have

a larger range across outcomes. For SVI, LVI, and LNI the models have a high specificity

above 0.95, lower sensitivity with less than 0.30, and a precision between 0.70 and 0.77.

One explanation for the poorer performance might be the lower prevalence of SVI, LVI, and

LNI as indicated by the dotted black lines in Figure 4.10. For ECE and PGG the specificity

is lower, but this is accompanied by a higher precision and higher sensitivity. Thus these

models can better predict true positive values, while the trade off is that more false positive

values occur at the cut-off of 0.5.
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4 Approximation of the Bayes Factor for nested logistic regression models

In the above analysis, we used 0.5 as a cut-off value for accuracy, precision, sensitivity and

specificity, whereas there might be more optimal and different values for each pathological

outcome. Comparison between model selection algorithms is the main purpose of choosing

a cut-off for these evaluation metrics in Figure 4.10. However, as we cannot detect a large

difference between the algorithms and also for the cut-off independent AUC-value, we do

not explore different values of for the cut-off.

We have seen that all models perform similarly and thus we proceed with the simpler models

selected by the BIC and LASSO1se as the additional variables in models selected by the AIC

and LASSOmax did not provide a benefit in predictions (Fig. 4.10). For the simple models

Figure 4.11 visualizes ORs and their significance at a 0.05-level for multiple imputed data as

introduced by Rubin (1987) [253]. Figure B.8 similarly visualizes the AIC and LASSOmax

models and the non-significance of many covariates support the choice to proceed with the

simpler models.

Overall, ORs for variables included by both selection algorithms are similar, but we detect

some issues and variation that might be due to multicollinearity. In the following we remove

those features and discuss the final model selection for each pathological outcome.
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Figure 4.10 AUC and accuracy, precision, sensitivity, and specificity at a cut-off of 0.5 for
pooled logistic regression models evaluated on the imputed validation sets (n = 4, 180). The
dashed lines indicate the maximum values for each evaluation metric and the dotted black
lines the prevalances of each outcome in the validation set.
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Figure 4.11 Odds ratios for models selected by the BIC and LASSO1se, with magnitude
greater than 1 indicated by dark blue and significance at the 0.05 level, by circles. poly
stands for polynomial and reg for linear regression with the corresponding degree and
coefficients (coef), (1y), (2y), (3y), and (all) for the time frame in years before prostatectomy
used for the calculation of the PSA related features.

For all outcomes, the ORs for the primary and secondary Gleason grade are taken with

respect to the reverence level 3. The coefficients for grades 1 and 2 are not significant. As

we discussed in Section 2.2, these grades are not present in the data set after 2013, which

is probably due to the change in the Gleason grading scheme in 2005 [52, 256]. In the

following, we exclude patients with a primary or secondary Gleason grade less than 3 in

the modeling to better reflect modern practice. Primary and secondary Gleason grade are

included in the model for each pathological outcome.

For ECE we additionally include age, BMI, prostate volume, the number of PSA values within
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4 Approximation of the Bayes Factor for nested logistic regression models

three years, and the mean log(PSA) within on year before prostatectomy as covariates in

the model as these were selected by both methods. In addition, we include the number

of biopsies, selected by LASSO1se. LASSO1se included also the average log(PSA) value

for all values and those within three years before prostatectomy, however, the coefficients

are not significant at a 0.05 level. For patients with one PSA measurement, these values

are equal to the average log(PSA) value within one year of prostatectomy and for patients

with more than one value these variables are highly correlated as shown in Figures 2.12

and A.1. When included in a model these might cause multicollinearity issues as OR for

one variable is smaller than one, whereas ORs for the other two are greater than one. We

include only the mean log(PSA) within one year of prostatectomy in the model for ECE. BIC

selected the intercept of a linear regression model on all log(PSA) values within one year of

prostatectomy. Since this coefficient is not significant, not selected by the LASSO1se and

does not provide a sensible correlation with the outcome, we do not choose it as a covariate.

The covariates related to the number of positive biopsy cores are not significant. This is

probably due to the high correlation among them as it is shown in Figures 2.12 and A.1.

The percentage of positive cores summarizes the number of positive cores divided by the

number of cores taken, thus we chose only this covariate and do not include the other in the

model.

In the models for SVI, we detect similar issues as described for ECE regarding the number

and percentage of positive cores. Again, we include the percentage of positive cores. Further,

we include age, the number of biopsies, prostate volume, the mean log(PSA) value within

one year of prostatectomy, and PSAV cut off proposed by D’Amico et al. (2004) as covariates.

The overall number of PSA values and those within three years before prostatectomy do not

differ by a large extent, thus we chose the latter one as covariate. We include the standard

deviation of all log(PSA) values, but not the standard deviation of all PSA values as these

two covariates are positively correlated and one OR is greater than one whereas the other

one is smaller. This, again, hints at multicollinearity issues, which we aim to avoid. The

maximum log(PSA) and the mean log(PSA) are highly correlated and therefore, we only

include the first one as covariate in the model for SVI.

For LVI we include the percentage of positive cores in the model, for the same reasons as

described above. For the other covariates, we choose those selected by the BIC, as Figure

4.10 shows that this is comparable to the model selected by the LASSO1se, but the latter

one includes more correlated variables, such as the log-transformed prostate volume in

addition to the prostate volume and the mean log(PSA) within one year of prostatectomy in

addition to the last log(PSA) value. Thus, the covariates included in the model for the LVI

are the last log(PSA) value before prostatectomy, the minimum PSA value within one year of
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prostatectomy and the D’Amico PSAV cut-off in addition to the percentage of positive cores

and the primary and secondary Gleason grade.

For LNI and PGG we select the BIC models as all variables are significant, apart from the

primary and secondary Gleason grade 1 and 2. Models selected by the LASSO1se have

similar issues with correlated variables that are not significant or yield different directions for

the OR values as we already described for ECE, SVI, and LVI.

We fit the selected models to the combined imputation sets of the training and validation

data but exclude patients with a primary or secondary Gleason grade less than 3. Thus, we

can use a total of 19,967 to 19,989 samples. The variation is due to the different imputations

for some patients. We pool the regression coefficients according to Rubin’s rules (4.29) and

calculate 95% CI as well as the significance level for multiple imputed data sets [253]. Table

4.2 summarizes the results for each pathological outcome.

Across all outcomes, a higher percentage of positive cores and a higher primary and higher

secondary Gleason grade at biopsy were associated with an increased risk of an adverse

pathological outcome after prostatectomy. A higher number of positive cores at biopsy was

correlated with a higher risk of LNI.

Increased risk of ECE, SVI, and PGG was correlated with higher age at prostatectomy

and for ECE with higher BMI. For ECE, SVI, LNI, and PGG a higher mean log(PSA) within

the last year before prostatectomy was correlated with a higher risk of these outcomes,

whereas for LVI the last log(PSA) before prostatectomy was selected for the model and

also associated with a higher risk. It is important to note that this mean log(PSA) and the

last log(PSA) are identical for patients with only one PSA measurement within the last year

before prostatectomy. However, for patients with more than one PSA-value, the mean within

the last year of prostatectomy might be a good summary statistic. Increased risk of SVI and

PGG was associated with a higher standard deviation of log(PSA), where all measurements

before prostatectomy were used for SVI and only the measurements within the last 3 years

before prostatectomy for PGG. Further, for these pathological outcomes and LVI a PSAV

above the discrete cut-off of 2 ng/ml/yr as proposed by D’Amico et al. (2004) was associated

with a higher risk.

Increased risk of LVI was associated with a higher minimum log(PSA) within 1 year of

prostatectomy. For patients with only one PSA measurement this value is identical to the

last log(PSA) and thus these two features result in a total OR of 1.80 for a unit increase in

the single log(PSA) value. However, for patients with multiple PSA measurements, a decline

for log(PSA) within the last year before prostatectomy was associated with a higher risk of

LVI compared to patients with an increase in log(PSA), given that they had the same last
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ECE SVI LVI LNI PGG

Age [years]
1.04∗∗∗ 1.02∗∗∗ 1.03∗∗∗

1.03 - 1.04 1.02 - 1.03 1.02 - 1.03

BMI [kg/m2]
1.02∗∗∗

1.01 - 1.04

Number of
biopsies

0.85∗∗∗ 0.78∗∗ 0.82∗∗∗

0.77 - 0.93 0.67 - 0.91 0.74 - 0.92

Perc. positive
cores [10%]

1.19∗∗ 1.24∗∗∗ 1.10∗∗∗ 1.14∗ 1.06∗∗∗

1.08 - 1.31 1.12 - 1.36 1.05 - 1.16 1.03 - 1.27 1.03 - 1.09

Number of
positive cores

1.11∗

1.02 - 1.21

Prim. Gleason
grade 4 [ref. 3]

2.76∗∗∗ 3.13∗∗∗ 3.19∗∗∗ 3.79∗∗∗ 8.94∗∗∗

2.36 - 3.24 2.58 - 3.80 2.78 - 3.66 3.31 - 4.35 8.10 - 9.86

Prim. Gleason
grade 5 [ref. 3]

4.89∗∗∗ 6.48∗∗∗ 5.05∗∗∗ 7.52∗∗∗ 19.40∗∗∗

3.54 - 6.75 4.97 - 8.44 4.00 - 6.37 5.80 - 9.73 13.70 - 27.48

Sec. Gleason
grade 4 [ref. 3]

1.82∗∗∗ 1.72∗∗∗ 1.62∗∗∗ 1.48∗∗∗ 2.33∗∗∗

1.55 - 2.14 1.43 - 2.06 1.40 - 1.86 1.28 - 1.71 2.12 - 2.57

Sec. Gleason
grade 5 [ref. 3]

2.41∗∗∗ 2.50∗∗∗ 2.33∗∗∗ 2.42∗∗∗ 4.24∗∗∗

1.92 - 3.03 2.02 - 3.10 1.93 - 2.81 2.00 - 2.92 3.50 - 5.14

Prostate volume
[10ml]

0.87∗∗∗ 0.96∗ 0.93∗∗∗ 0.94∗∗∗

0.85 - 0.90 0.92 - 1.00 0.90 - 0.96 0.91 - 0.96

Number of PSA
values (3y)

0.96∗∗ 0.95∗∗

0.93 - 0.99 0.91 - 0.99

last log(PSA)
1.46∗∗∗

1.26 - 1.70

mean log(PSA)
(1y)

2.47∗∗∗ 2.31∗∗∗ 3.04∗∗∗ 2.07∗∗∗

2.29 - 2.66 2.10 - 2.55 2.60 - 3.56 1.94 - 2.20

s.d. log(PSA)
(all)

1.57∗∗∗

1.38 - 1.78

s.d. log(PSA)
(3y)

1.52∗∗∗

1.35 - 1.72

min. log(PSA)
(3y)

0.70∗∗∗

0.62 - 0.79

min. log(PSA)
(1y)

1.23∗∗

1.07 - 1.42

D’Amico (PSAV
cut off)

1.25∗∗ 1.24∗∗∗ 1.36∗∗∗

1.10 - 1.42 1.11 - 1.39 1.24 - 1.49

Table 4.2 Odds ratios with 95% confidence intervals of selected final multivariable models
fitted on complete training data, excluding patients with primary or secondary Gleason grade
< 3 (n = 19, 967 to 19, 989). ∗∗∗ indicates a p-value < 0.001, ∗∗ < 0.01, and ∗ < 0.05. (1y),
(3y), and (all) denote the time frame in years before prostatectomy for calculating PSA
related features.
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log(PSA) before prostatectomy. This association might be due to patients who underwent

a treatment such as chemotherapy or radiation before prostatectomy that can lead to a

decrease in PSA. Such treatments are probably more likely described for patients with higher

aggressive prostate cancer and thus might be an important factor that should be included

in the models. Unfortunately, information about treatments before prostatectomy were not

available.

Variables associated with a decreased risk of an adverse pathological outcome were an

increased prostate volume at biopsy for ECE, SVI, LVI and PGG and higher minimum

log(PSA) within 3 years of prostatectomy for LNI. Similar to LVI, including the minimum

log(PSA) within 3 years before prostatectomy in the model for LNI is relevant for patients

with more than one PSA measurement.

A higher total number of biopsies for ECE, SVI, and PGG, or a higher number of PSA

measurements within 3 years before prostatectomy for ECE and SVI were associated with

a decreased risk for the outcomes. These two variables might serve as an indication for

patients on AS or patients who undergo more prevention procedures. Here we assume that

the design of the models would highly benefit from the additional information of when the

patients were diagnosed with prostate cancer and whether they were under AS. Unfortunately,

this information was not available in the EMR data.

In the PGG model, the primary Gleason grade dominates the potential risk for those patients

with a grade higher than 3. This is not particularly surprising, as one would expect that in

general when a primary Gleason score higher than 3 is detected during biopsy it is very likely

that this is confirmed after prostatectomy. Although there are some cases of downgrading

for Gleason grades, the risk for PGG is expected to be high in such cases. Apart from these

trivial insights, the model for PGG might provide interesting associations for patients with a

primary Gleason grade of 3.

The final model performance is assessed using the hold-out test set. For evaluation, we use

the pooled performance following Wood et al. (2015), where we calculate the predictions

for each pathological outcome on each imputation set and then average the probabilities to

obtain one prediction for each outcome [124]. In Figure 4.12 we evaluate the predictions

using ROC-curves with AUC values and 95% CIs. On the hold-out test set, predictions of

PGG and SVI yield the highest AUC with 0.86 and thus a higher value than on the validation

set (AUC = 0.85). For LNI we obtain an AUC of 0.83 and slightly lower compared to the AUC

on the validation set (AUC = 0.85). Predictions for ECE yield the same AUC value as on the

validation set with 0.80 and for LVI a slightly higher value with 0.78 (AUC = 0.77).
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Figure 4.12 Receiver operating characteristic curves with AUC values and 95% confidence
intervals for predictions on the hold-out test set n = 3, 515 for each pathological outcome.

In addition to the ROC curves and AUC values, we use calibration plots to more precisely

identify areas where the models do not fit well. For each pathological outcome, we divide the

predicted risk into groups by decile and compare the mean predicted risk with the percentage

of observed outcomes [257]. For further illustration, we add the distribution of predicted risk

to the calibration plots.

Figure 4.13 shows the models for the pathological outcomes are well-calibrated overall as

the slope of the calibration graphs is close to one. For ECE the model slightly underestimates

the risk for patients at higher risk with a predicted risk between 60% and 80%. The models

for LVI and LNI could benefit from recalibration as they overestimate the risk of an adverse

pathological outcome for patients around 20% predicted risk and they underestimate risk

for high-risk patients around 70% predicted risk. However, for both pathological outcomes

comparably few patients have a high predicted risk and overall the prevalence of these

outcomes is low.

We see in Table 4.2 that the number of positive cores and the percentage of positive cores

are borderline significant for LNI. To test whether we should only include the percentage

of positive cores in the model we use the theory developed in Section 4.1 to compare two
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Figure 4.13 Calibration curves for predictions on the hold-out test set n = 3, 515 for each
pathological outcome. The gray bars visualize the distribution of patients across the range of
predicted risk.

nested models for LNI, one including the number of positive cores as a variable (M1) and

one without it (M0). For illustration, we only consider patients with no missing value for LNI

or in any of the covariates included in M1 from the complete training data, which is train and

validation set combined. We can use 11,955 out of 20,607 patients (58.0%).

A summary of M0 and M1 is given in Table 4.3. The Schwarz criterion is given by

S = `M0 − `M1 +
1

2
log(11, 955) = −8.86

and this yields an approximation to BF of

BFapprox = exp(S) = 1.42× 10−4,

which evaluates to 3.85 on a negative log 10-scale. According to Jeffreys’ rule this provides

decisive evidence against M0 for M1.

An ’exact’ numeric integration of the likelihood for M0 and M1 is infeasible, as the dimensions

8 and 9 of the respective parameter spaces are too large for standard methods. Therefore,
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M0 M1

OR p-value OR p-value

(Intercept) 0.002 < 0.001 0.002 < 0.001

Perc. positive cores [10%] 1.274 < 0.001 1.186 < 0.001

Prim. Gleason grade 4 [ref. 3] 3.924 < 0.001 3.833 < 0.001

Prim. Gleason grade 5 [ref. 3] 8.616 < 0.001 8.282 < 0.001

Sec. Gleason grade 4 [ref. 3] 1.501 < 0.001 1.472 < 0.001

Sec. Gleason grade 5 [ref. 3] 2.337 < 0.001 2.262 < 0.001

mean log(PSA) (1y) 2.816 < 0.001 2.795 < 0.001

min. log(PSA) (3y) 0.706 < 0.001 0.713 < 0.001

Num. positive cores - - 1.090 < 0.001

Table 4.3 M0 and M1 for LNI based on 11,955 patients of the training and validation set with
no missing values for LNI or any of the listed variables.

we use Stan for MCMC sampling to obtain samples from the posterior distributions [258].

Stan provides Hamiltonian Monte Carlo (HMC) sampling, an efficient adaptive MCMC method

introduced by Duane et al. (1987) and Neal (1994) and the No-U-Turn sampler (NUTS)

developed by Hoffman and Gelman (2014) [258–262]. With bridge sampling we obtain the

marginal likelihood needed for the BF calculation [262, 263]. For implementation in R we use

the rstan package and the bridgesampling package [264, 265].

As the sampling procedure is computationally intense, we use RStudio Server with the R

version 3.6.0 running on a Linux distribution. We can use 8 cores in parallel and therefore

choose to estimate 8 chains for each model with 250, 500, 1000, and 2000 iterations. A

smaller number of iterations resulted in convergence issues. For the warm-up, we use

half of the number of iterations and thus retrieve 1000, 2000, 4000, and 8000 samples

respectively.

The Stan model specification for M0 and M1 are given in Appendix B.3. We use independent

flat normal prior distributions N (0, σ2), with σ = 100 for the parameters shared by M0 and

M1 and the unit information prior ψNum pos cores|θ ∼ N (0, Iψψ(θ, 0)−1) on the coefficient for

the number of positive cores.

The results for the BF estimation with different number of iterations are summarized in Table

4.4. 250 iterations seem to be sufficient in this case as we do not detect changes in the

estimation with a larger number of iterations. The resulting BF is 2.03 × 10−5 and lower

compared to the BFapprox with 1.42× 10−4, agreeing with the observation in the simulation

study in Section 4.2 that the approximation is more conservative. On a negative log 10-scale

102



4.3 Separate logistic regression models for pathological outcomes after prostatectomy

both BFs yield the same conclusion according to Jeffreys’ rule with decisive evidence against

M0.

The results are comparable, but while the calculation of BFapprox is immediately possible

using standard output of R the HMC takes significantly longer.

Chains Iterations Samples Time BF − log 10(BF) Jeffrey’s rule

8 250 1000 4 min 35 sec 2.03× 10−5 4.69 decisive

8 500 2000 8 min 21 sec 2.00× 10−5 4.70 decisive

8 1000 4000 10 min 55 sec 2.03× 10−5 4.69 decisive

8 2000 8000 21 min 17 sec 2.03× 10−5 4.69 decisive

Table 4.4 BF results for M0 versus M1 using HMC and bridge sampling on 8 parallel cores
on RStudio Server with different number of iterations.
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5 Extension to multivariate logistic regression

models

In the previous chapter, we modeled the adverse pathological outcomes separately with

independent univariate logistic regression models. Thereby, we ignored the correlation

among the outcomes that we detected in Section 2.2. In this chapter, we extend the

approximation to the BF to the multivariate case.

5.1 Mathematical derivation

We consider n independent observations Yi ∈ Rq, i = 1, . . . , n of q potentially corre-

lated binary outcomes. The multivariate logistic regression model introduced in Section

3.2 is given by Yij = 1(Zij > 0) and Zi ∼ Lq(µi, R) with the scale matrix R hav-

ing 1’s on the diagonal, mean vectors µi = (X ′i1β1, . . . , X
′
iqβq), corresponding covari-

ates Xij ∈ Rmj , and coefficient vectors βj ∈ Rmj for j = 1, . . . , q. The likelihood for

β =
(
β11, . . . , β1m1 , . . . , βq1, . . . , βqmq

)′ ∈ Rm, m =
∑q

j=1mj , is given by

L(β,R) =
n∏
i=1

∫
Ai1

· · ·
∫
Aiq

lq(zi|µi, R)dzi,

where lq denotes the multivariate logistic density as defined in (3.6) and

Aij =

(0,∞) for yij = 1

(−∞, 0] for yij = 0.

Then the log-likelihood is

`(β,R) =
n∑
i=1

log

(∫
Ai1

· · ·
∫
Aiq

lq(zi|µi, R)dzi

)
.

Analogous to Section 4.1 we consider β = (θ, ψ) ∈ Θ × Ψ with dim(Θ) = m0 and

dim(Ψ) = m−m0, and are interested in testing the hypotheses

H0 : ψ = ψ0 versus HA : ψ 6= ψ0.
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5 Extension to multivariate logistic regression models

We might need to reorder vector β such that it matches the desired hypothesis in practice.

Note that we are able to test several coefficients for different outcomes simultaneously with

the appropriate reordering of β. Further, we consider prior distributions f0(θ) and f(θ, ψ)

under H0 and HA, respectively. Analogous to the univariate logistic regression, the BF is

given by

BF =

∫
L(θ, ψ0)f0(θ)dθ∫∫
L(θ, ψ)f(θ, ψ)dθdψ

. (5.1)

Definition 4.1 for the Laplace regularity of a sequence of log-likelihood functions can be

applied to the multivariate logistic regression model as well. Part (i) is fulfilled since the

log-likelihood is a sum of the composition of smooth functions and thus sufficiently smooth,

and analogous to the univariate case, we assume that the ORs are bounded in case the

MLE exists.

Further, we assume that the Hessian matrix of the negative log-likelihood at the MLE is

positive definite and thus the determinant bounded away from zero. With the existence of

the MLE we can assume that the Hessian matrix is positive semidefinite, but we ensure the

positive definiteness with Part (ii) of Definition 4.1.

Again, we would like to ensure that the MLE does not lie on the boundary of the parameter

space and that it approximates the global maximum of the log-likelihood, which is fulfilled

with part (iii) of Definition 4.1.

Let `0(θ) = log(L(θ, ψ0)) and `(θ, ψ) = log(L(θ, ψ)) denote the log-likelihoods for the null

and alternative hypotheses. Suppose that Assumption 4.1 holds for `0 and ` as well as

the prior distributions f0(θ) and f(θ, ψ) under H0 and HA, respectively. Assume that the

integrals in (5.1) are finite. Then, Proposition 4.1 can be applied in the multivariate case and

we can approximate the BF with

BF = (2π)
m0−m

2
det((−D2`0(θ̂0))−1)

1
2 exp(`0(θ̂0))f0(θ̂0)

det((−D2`(θ̂, ψ̂))−1)
1
2 exp(`(θ̂, ψ̂))f(θ̂, ψ̂)

(
1 +O(n−1)

)
.

We apply the same concept of null orthogonality as defined in Definition 4.2 to the expected

Fisher information matrix of the multivariate log-likelihood. In Proposition 4.2 we proved that

we can construct null orthogonal parameters from a non-null orthogonal parametrization.

The proof does not depend on the explicit form of the Fisher information matrix and holds for

the multivariate log-likelihood as well.

We suppose that Assumption 4.2 holds for θ, ψ, ψ0, the prior densities f0(θ) and f(θ, ψ),

and the log-likelihood. Thus, we assume that θ and ψ are null orthogonal, the marginal
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5.1 Mathematical derivation

prior for θ is the same under both hypotheses, the matrix of second derivatives converges

asymptotically to the Fisher information matrix, and the MLE ψ̂ approximates ψ0 with an

order of Op(n
− 1

2 ). Analogous to the univariate logistic regression models, Assumption 4.2

does not imply an extensive restriction for the likelihood and parameters.

Under the assumptions of Proposition 4.3 the approximation to the BF is

BF =

(
2π

n

)m0−m
2

det
(
Iψψ(θ̂, ψ0)

)1
2 exp(`0(θ̂0))

exp(`(θ̂, ψ̂))

1

fψ|θ(ψ̂|θ̂)

(
1 +Op

(
n−

1
2

))
.

The proof extends from the univariate case, but we need to show that D2`(θ̂, ψ̂) = Op(n),

D2`0(θ̂0) = Op(n), I(θ, ψ) = Op(1), 1
n
D2`0(θ̂0) = 1

n
D2
θθ`(θ̂, ψ0) + Op

(
n−

1
2

)
, and

1
n
D2`(θ̂, ψ̂) = 1

n
D2`(θ̂, ψ0) + Op

(
n−

1
2

)
, without using the explicit form of the Hessian

matrix as in Section 4.1.

The first two expressions follow from the assumptions of Laplace regularity for ` and `0. This

implies that any partial derivative up to the 6th derivative of − 1
n
` and − 1

n
`0 in an open ball

around the MLE is bounded and thus these second derivatives are Op(1), which shows

that D2`(θ̂, ψ̂) = Op(n) and D2`0(θ̂0) = Op(n). Then, we can show θ̂ − θ̂0 = Op

(
n−

1
2

)
analogous to the univariate case. The Fisher information matrix I(θ, ψ) is the expected value

of the negative Hessian matrix for a single observation. Thus, I(θ, ψ) = Op(1).

Using a Taylor expansion for d(0)
kj =

(
D2`0(θ̂0)

)
kj

around θ̂ we obtain with θ̂− θ̂0 = Op

(
n−

1
2

)
and the assumptions of Laplace regularity for the partial derivatives of `

d
(0)
kj =

∂2`(θ̂0, ψ0)

∂θk∂θj
=
∂2`(θ̂, ψ0)

∂θk∂θj
+

m0∑
i=1

(θ̂0i − θ̂i)
∂3`(θ̂, ψ0)

∂θk∂θj∂θi
+ op

(
||θ̂0 − θ̂||

)
=
∂2`(θ̂, ψ0)

∂θk∂θj
+m0Op

(
n−

1
2

)
Op(n) +Op

(
n−

1
2

)
=
∂2`(θ̂, ψ0)

∂θk∂θj
+Op

(
n

1
2

)
.

Thus, 1
n
D2`0(θ̂0) = 1

n
D2
θθ`(θ̂, ψ0) + Op

(
n−

1
2

)
. Arguing similarly with a Taylor expansion

for dkj =
(
D2`(θ̂, ψ̂)

)
kj

around ψ0 and using ψ̂ − ψ0 = Op

(
n−

1
2

)
, we have 1

n
D2`(θ̂, ψ̂) =

1
n
D2`(θ̂, ψ0) +Op

(
n−

1
2

)
. With this, the remaining proof follows analogous to the one given

for Proposition 4.3 in Section 4.1.

Without additional restrictions we can use the Schwarz criterion defined in Definition 4.3 as

approximation to the log(BF) with

log(BF) = S +Op(1),
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5 Extension to multivariate logistic regression models

where again the proof extends from the univariate to the multivariate case. Analogous to

Theorem 4.1 we obtain with a unit information prior distribution

ψ|θ ∼ Nm−m0(ψ0, Iψψ(θ, ψ0)−1)

the approximation

log(BF) = S +Op

(
n−

1
2

)
.

We note that for the Schwarz criterion we need the difference in the number of parameters

between the model for the null hypothesis versus the model for the alternative hypothesis.

This is again the dimension of ψ, however, thereby we assume that we model the same

number of outcomes, thus the dimension of the scale matrix is q × q for both models.

5.2 Implementation in R and C++

In the following, we discuss details of the implementation of the MCMC Algorithm 3.1 for

the Bayesian multivariate logistic regression model in R. We implement main parts of the

algorithm in C++ using the Armadillo library for linear algebra as this tremendously decreases

the time of computation [266]. Thereby, we rely on the Rcpp and RcppArmadillo packages

to make functions available in R [267, 268].

For the implementation of Algorithm 3.1, we need to sample from the truncated multivariate

normal distribution denoted by T N q(µ,Σ, D, a, b) with mean vector µ ∈ Rq, covariance

matrix Σ ∈ Rq×q, linear transformation matrix D ∈ Rk×q with rank k ≤ q, lower bound

vector a ∈ Rk, and upper bound vector b ∈ Rk [269]. A q-dimensional random vector

X ∼ T N q(µ,Σ, D, a, b) has the probability density function (pdf)

f(x) =
exp

(
−1

2
(x− µ)′Σ−1(x− µ)

)∫
a≤Dx≤b exp

(
−1

2
(x− µ)′Σ−1(x− µ)

)
dx
· 1 (a ≤ Dx ≤ b) ,

where the inequality a ≤ Dx ≤ b holds element-wise, ai ≤ (Dx)i ≤ bi, i = 1, . . . , q [269].

In the following, we compare four algorithms for sampling from the truncated multivariate

normal distribution. Thereby, we restrict the comparison to the relevant cases for Algorithm

3.1, where D = Idq and a, b ∈ {−∞, 0,∞}.

The first sampling algorithm uses the multivariate normal distribution Nq(µ,Σ) as proposal

density in an acceptance-rejection algorithm. While, the acceptance-rejection algorithm

performs well for Dµ ∈ (a, b) or Dµ close to (a, b), it has a low acceptance rate otherwise.

This algorithm is easy to implement in R or C++ as sampling from the multivariate normal
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5.2 Implementation in R and C++

distribution is available in the R package mvtnorm and the C++ library Armadillo [270]. The

tmvnorm package provides the implementation in R and we translate it to C++ [271].

Geweke (1991) proposed a Gibbs sampler using the property that the conditional distribution

of Xi|X1, . . . , Xi−1, Xi+1, . . . , Xq is truncated univariate normal distributed [272]. For the

sampling from a truncated univariate normal distribution, he used a mixed rejection algorithm

based on normal, half-normal, uniform and exponential rejection sampling where the choice

of algorithm depends on the values for the lower and upper bound [272]. Li and Ghosh (2015)

criticized the poor mixing properties of the Gibbs sampler for different sampling parameters

and regions [269]. They proposed an improvement of the mixed rejection sampling algorithm

for the truncated univariate distribution that incorporates an approach by Robert (1995),

while using the same rejection samplers as Geweke (1991) [269, 273]. Further, with an

alternative transformation for the truncated multivariate normal distribution, the algorithm

presented better mixing properties even for difficult sampling regions [269]. The tmvmixnorm

package provides the R implementation of the Gibbs sampler proposed by Li and Ghosh

(2015) and the tmvn package available on GitHub offers an implementation in C++ using the

Rcpp and RcppArmadillo packages for the connection to R [274, 275]. We adapt the latter

approach for our implementation.

Botev (2017) proposed a modified acceptance-rejection algorithm using minimax tilting

[276]. A central step of this algorithm solves a system of non-linear equations to find

the optimal tilting parameter. The sampler does not rely on a MCMC approach and thus

does not need to converge to a stationary distribution and therefore no burn-in samples

as for the Gibbs sampler are required. While the algorithm is available in R through the

TruncatedNormal package that uses the non-linear equation solver provided in nleqslv,

there exists no equivalent implementation in C++ [277, 278]. Parts of the TruncatedNormal

package already rely on C++ and Rcpp, but the implementation of the solver for the system

of non-linear equations is non-trivial in C++. The package also provides an estimation of the

acceptance probability for the basic acceptance-rejection sampler.

Koch and Bopp (2019) proposed in a preprint available on ArXiv a direct sampling algorithm

for sampling from the truncated multivariate normal distribution under box constraints [279].

Unlike the other approaches, this algorithm requires D = Idq, which is fulfilled in Algorithm

3.1. The algorithm exploits the structure of the Cholesky decomposition Σ = LL′, where L

is a lower triangular matrix. A C++ implementation with Rcpp is available on GitHub [280].

Before we compare the time each algorithm takes for sampling from the truncated normal
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5 Extension to multivariate logistic regression models

distribution, we assess whether their results are similar. We sample 10,000 times from a

T N 3

 1
−5
2

 ,

 1 0.3 −0.6
0.3 1 −0.1
0.6 −0.1 1

 , Idq,

 0
0
−∞

 ,

∞∞
0

− distribution

using the described algorithms. Unfortunately, the basic acceptance-rejection algorithm

using Nq(µ,Σ) as proposal density has a very low acceptance probability with approximately

2×10−8 for this example. Thus, we compare the results of the three remaining algorithms, the

Gibbs sampler proposed by Li and Ghosh (2015) with 100 burn-in samples, the acceptance-

rejection algorithm with minimax tilting by Botev (2017) and the direct sampling method by

Koch and Bopp (2019). Figure 5.1 displays the combination of different dimensions with a

two dimensional density estimate superimposed.
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Direct sampling
(Koch 2019)

Gibbs sampler
(Li and Ghosh 2015)

Accept−reject with
minimax tilting
(Botev 2017)

0 2 4 6 0 2 4 6 0 2 4 6
0.0

0.5

1.0

1.5

X1

X
2

●
●

●

● ●
●

●●

●
●

●●

●

●●●
●

●

●

●

●●

● ●

● ●●
● ●

●
●

●●
●

● ●●●

●

●●

●

●

●

●
●

●

●●
● ●●

● ●
●●

● ●
●●

●

●
● ●●

●●
●

●
●

●
●

●

●●●● ●
●

● ●●

●●

●

●

●●
●

●
●

●
●●

●
●●

●
● ●● ●

●

●

●
●

● ●
●

●

●●

●● ●● ●●

●

● ●
●●

●● ●

●

●

●

●
●

● ●

●
●

●

●● ●●
●

●
●

●

●
● ●● ●●

●● ●

●
●●

●
●

●●●● ●
●

●

● ●
● ●

●●

●
●

●
● ●

●
●

●●●

●
●●

●
● ●●

●
●

●
●

●
●●

●

●

●
●

●

●

●
●

●
●●●●

●

●
●● ●
●

●
●

●

●

●●

●●
●
●

●

●

●

●

●
●

●
●●

●
●

● ●

●
●

●

●
● ●

●
●● ●●

●

●
●

●

●● ●

●
●

●● ● ●●
●

●●●●
●●
●●●●

●

●

●

●

●● ●●
●

●●
●●

● ●●
●

●

●●

● ●
●

●
● ●

●●
● ●●

●
●

●

●

●

● ●
●

●
●

●

●
●●

●
●
●

●

●

●

●●●●
●●

● ●●
● ●●

●

●●●●
● ●

●

●● ● ●
●

●
●

●●

●

●

●

●

●
●

●

●
●
●

● ●

●

●

●

●
●

●

●
●

●●
●

●

●
●

●

●● ●●

●
●

● ●

● ●
●

●●

●●● ●●
●●

●
●●

●●
●

●

●

●●

●

●

●

●
●●

●
●

●

●●
● ●

●●
●●

●
●

●

●

●

●

●
● ●

●

●●

●
●

●

●

●
●

●

● ●

●

● ●● ●●
●●

●

●
●

●
● ●●

●

●

●●
●

●●

●
●

●
●

●

●

●
●

●● ●

●

●

●
●● ●●● ●

●
● ●●
●

●
●● ●●

● ●●

●

●
●

●●
●

●
●

●●●

●

●●
●

● ● ●● ●

●

●●

●
●

● ●

● ●

●

●

●●

●

●

●

●● ●●
● ●●

●
●

●

●●
●

●

●

● ●

●

●●● ●● ●● ●●
●

●●
●

● ●
● ●● ●

●

●
●

●

● ●
● ●●

●●

●
●●●

●
● ●

●●
●

●

●●

●

●
●

●
●

●
●

●

●

●

● ●●
●

●
●

●

●●
●

●

●

●
●

●

●

●

●
●●

●●● ●

●

●
● ●

●
●

● ●
● ●
●● ●

●

● ●

●
●

●
● ● ● ●● ●

●
●

●

●
●

●●
●●●

●

●●

●
●

●
●

●●
●

●

●

●

● ●

●●● ●
●

●● ●
●

●

●
●●

● ●
●

●
●

●●
● ●

●●

●●
●
●

●

●

● ●
●

●

●

● ●
●●

●●
●

●
● ●

●

●●
●

●

●
● ● ●●

●●

●
●

●

●

●● ●
●

● ●●
●

●

●

●

●
●

●

●

●
●●
●

●●●

●

●

●

●

●

●

● ●
● ●

●
● ●

●

●

●
● ●●

● ●●
●

● ●

●

●
●● ●●●

●●●● ●
●

●

● ●
●
●

●

● ●

●●●
● ●●●●

● ●●

●

●
●●

●
●

●●
●
●●

●
●

●

●

●

●

●
●
●● ●

●

●●
●

●
●

●
●

●
●

●

● ●
●

●

●

● ●

●

●
●

● ●
● ●● ●

● ●

●● ●●●

●

●
●●

●
●

●

●●

●

●
●

●● ●
●

●

●

●

● ●

●

●

●
●

●
● ●●● ●

●
●

●

●

●

●
●
●●

●
●

●

●
●
●

●
●

●

●
●

●

●
●

●

●
●

●

● ●

●

●

●
●

● ●● ●● ●
●

●

●●
●

●
●

● ●● ●● ●
● ●●●●

●

●

●

●

● ●

●

●
● ●●● ●●

●● ●
●

●●
●

●
●

●
●

●

●●
● ●

●
● ●

●●
●●

●
●

●
●

● ●●
●

●●
●

● ●●

●

●

● ●
●●

●●

●
●

●●

●
●

●●●
●

●

●
●

●

●

●
●●

● ●

●
●● ●

●

●
●

●

●

● ● ●
●

●
●

●●● ●

●

●
●

●●
●

●● ●●●

●

●●
●
●

●

●
●

●
●

●
●●
●

●● ●
●

●

●

●● ●
●

●

●

●●

●
●

●

●
●

●
●●

●

●
●

●

●

●
●

● ●●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●
●

●

●

●

● ●

●
●

●●

●
● ●

●
●

●

●

●

●

●
●●

●
●

●

●

●

● ●● ●●

● ●
●

● ●

●
●● ●

●

●

●●

●

●

●
●

●

●

●

●
●

●
● ●●

●
●●

●●
●

●

●●
●●●

●

● ●

●

●●
●

● ●

●● ●

●

●
●

●

●●

●

●
●

●

●● ●
●●

●

●●
●

●
●●

●

●● ●
●

●

●

●
●

● ●
●●

●
●

● ●
●
●

● ● ●●● ●
● ●

●
●

●
●

●

●

●●
● ●

● ●
●●●●

●

●

● ●

●

●

●

●● ●

●

●
●

●

●

●
●

● ●●●

●

●
●●●●

●
●

●

● ●

●●

●

●

●

●

●

●●
●

●

●●●

●

●
● ●
● ●

●
●●

●

●

● ● ●● ●
●
●●

●

●

●
●

●
●

●
●

●

●

●●●

●
●

●●
●

●●
●

●

●● ● ●●●● ●●●

●
●

● ●
●

●

●
●

● ●
●
●

●

●

●
●

●

●
●

●
●

●●
●

●

●● ●

●

●

●

●
●

●
●● ●●

●
●

●
●

●

● ● ●●

●

●

●

● ●●
●●● ●

●
●●

●●

●

● ●

●●
●

●●

●

●

●

●●

●●●

●

●

●

●

●

● ●

●
●

●●●●
●

●
●●

● ●●

●

●● ●●
●

●

● ●
●

● ●

●
●● ●

●●

●

●●
●

●● ● ●
●

●

●

● ●● ●
●

●

● ●

● ●●● ●●●

●

●●
●●

●

●● ● ●●
●

●●
●

●

●

●

●
●

●

●

●
●

● ●
●●

●
●

●
●

●

●

●
●

●

●●

●

●
●●●● ●

●

●

● ●
●

●

●

●

●●
●

●

●

●
●●

●
●
●

●●
●

●●
●
●●●
●

●

●

●

●

●

●

● ●
●

●
●● ●● ●

●

● ●
●

●
●

●

●● ●

●

●
●

●
●●

●

●
●
●●

●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●● ●●●
●

●●

●● ●●

●
●●

●

●
●

●

● ●

●

●

●

●● ●

●

●

●

●

●● ●
●

●
● ● ●●● ●●● ●●● ●

● ●
●●

●

●● ●● ●
● ●

●
●● ●

●
●

● ●●

●●

●

●

●● ●

●

●
●● ●

●● ●
●

●

●●

●● ●
●●

●

●

●

●

●● ●● ●
●● ●●●

● ●
●

●

●

●

●

●

●
●

●
● ●

●
●

●

●

●
●

●●●
●●

●

●

●●●
●
●

● ●●
●

●

●

●

● ●
●

●●● ●

●

●
● ●

●●

●

●

●●
●
●

● ●

●
●

●

●

●
●

●
●

●
●

●
●●

●

●●

● ●

●

●

●● ●
●●

●
●

●●
●

●

●
●

●

●

●

●●●●

●

● ●
●

●

●●
●

●

●
●

●●● ● ●

●

●

●●

●
●
●

●
●● ●

●●●●
● ●

●

●

●
●

●
●

● ●

●
●

● ●

●●
●

●

●

●

●● ●

●

●
●●●
●

●

●

●
●●●

●

●

●

●

●
●

●● ●● ●●●

●●

●

●

●

● ●●●●

●
●

●●

●
●

●
●

●

●

●

●

●
●●

●

●
●

●●

●

●●●
●●

●

●

●● ●
●

●
●

●
●

●●
●
●

●
●

● ●●
● ●●

● ●
●

●
●

●●
●

●

●

●

●

●

●●●
●

●●
●

●
●

●

●

●

● ●●

●●

●●●● ●
●

●

● ●

●

●
●●

●
●●

●

● ● ●
●

●●
● ●

●
●

●●
●●

●

●

●●
●●●

●

●

●●
●

●
●

● ●
● ●●
● ●

●

●

●

●●
●

●●● ●

●

●
●

●●
●●

●
●

●

●

●

●

●

● ●
●

●
●

●

● ●

●

●

●●●
●

●●

●

●

●●●

●

●

●

●

●●●
●●

●● ●●●●
●

●● ●
●

●●● ●
●

●●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●●●
●

●
●●

● ●
●

●
● ●

●●
●●

●●●

●
●●●●

●

●
●

●

●

● ●

●
●

●

● ●
●●

● ●

●
●●

●

●
●
●

●

● ●

●●
●

●

●

●

●●● ●●●●

●●

●● ●●●

●

● ●●●

●

●
●

●
●

●
●

●

●●
●●

●
●●

●● ●

●

●
● ●
● ●

●

●

● ●

●

● ●●
●

●

●

●●

●
●

●

●
●

● ●
●

●
● ●
● ●

●
●

● ●●

●●
●

●
●

●

●●●●

●

●

●
●

●
●●
●

●
● ●

●

●

●● ●
●

●
●

●
●

●
●

●●

●
●

● ●

●
● ●

●
●

●

●

●

●●
●

●●

●

●
●●

●●

● ●●
● ●●

●
● ●

●
●

●

●●

●
●

●●●● ●

●
●

●

●

●

●
●●

●

●

●

●
●●

●
●●

●
● ●

●

●
●

●

●
●
●● ●

●

●

●
●

●● ●
●●

●

●

● ●● ●

●

●●
●

●

●

●

●●

● ●

●●●
●●

●●

●

●
●

●●

● ●●
●

●
●

● ●●

●

●●● ●●●● ●

●
●

●

● ●

●
●

●
●

●
● ●

●
●●

●
●●●●

●
●

●
●

●
●

●●●

●

●
●

●
●

●
●● ●●

●● ●●
●

●

●

● ●
●

●● ●●
●

●

●

●

●

● ●●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●●
●

●
●

●●● ●●

● ●
●

●

●●● ●

●
●●

●
●

●

●

●
●●

●

● ●●

●

●●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●● ●

●
●

●
●● ●●

● ●●
●

●

●

●

● ●●

●●
●

●●

●

●
●

●●
●

● ●●

●
●

●

● ●
●

●
●● ●

●● ●● ●
●● ● ●

● ●
●

●

●● ●

● ●

●● ● ●
●

●

● ●
●●

●

●

●

●●

●

●

●

●

●● ●
●

●

●

●
● ●● ●

●

●● ●
●● ●●●●

●

●
●

●
●

●
●●

●
●

● ●
●

●
●
●

●
●

●●●● ● ●
●

●
●

●

●
●

● ●
●

●
●●

●
●

●

●
●

●

●

●
●●

●
●●

●
●
●●●

●
●
●●

●

●

●

●●
●
●

●

●
●
●

●●

●

●

●
●

●

●

●

●●

●

● ●
●

● ●●

●

● ●
● ● ●

●
●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●●
●●

● ●

●
●

●
●

●

●

●●

●

●

●
●

●

●
●

●

●

●●

●

●

● ●●

●

● ●

●

●
●

●
●

●

●

●
● ●●

●

●●

●

●

●

●
●

●●●
●

●
●

●

●
● ●

●● ●

●

●

●●
●

●●

●

● ●

●
●●●

●●
●

●

● ●●

●

●
●

● ●●●

●

●

●

●●
●

●

●
●

●
●
● ●

●

●
● ●

●

●

●
●

●

● ●● ●

●

●

●

● ●
●

●
●

●

●●
●● ●●
●

●

●●

●
●

●
●

●

●

●
●

●●
●

●●
●

●
●

●
●●●

● ●

●● ●
●

●

●
●

●
●

●
● ●

●●
●● ●

●
●●

●
●

●●
●● ●

●

●
●

●

●

● ●
●●● ●

●●

●

●

●

●

●●

●

●●
●

●
●

●
●

●●
●●

●
●

●
●

● ●
●●

●● ●●
● ●

● ●●

●●

●

●

●
●

●
●

● ●●●

●

●●
●●● ●

●
● ●

●

●

● ●

●

●

●

●

●●
●●

● ●●

●
●● ●

●
● ●

●● ●● ● ●●
● ●

●
●

●●

●●
●●

●

●
●

●
●

● ●

●

●
●●

●● ●
●●●
●●

●●
●

●

●●
●

●

● ●

●

●

●
● ●

●

●

●

●

●

● ●●●●
●

● ●
● ●

●
●

●
●●

●●●
●● ●

●
●●●●●

●

●
●

●

●● ●

● ●

●

● ●●

●

●
●

●●●

●

●

●●
●● ●

●● ● ●

●

●

●●

●

●
●

●

●

●
●

●●

●

●

●
●

●
● ●

●

●●
●

●
●●●

●
●

●

●●
● ●

●

● ●
●

●

●

●

●

●

●

●●

●

● ●● ●●●

●

● ●

●

●
●●

●
●

●

●

●●

●

●●●
●

●
● ●●

●●
●

● ●

●

●
●

●
●●

●●●

●

●

●

●

●

●
●

● ●●
● ●● ●●

●
● ●

●

●
●

●
●

●
●

●

●

●
● ●●●

●
● ●●

●
●

● ●

●

●
● ● ●●
●

●●
●

●

● ●
●

●

●●

●

● ●●
●

●

●●● ●●●● ●
●

●

●

● ●

●
● ●●●● ●●●

●

●

●● ●

●

●

●
●

●

● ●

●

● ●
●

●

●

● ●● ●

●

● ● ●
●

●

●

●
●●

●
●

●●
●●

●
●●

●
●

●
●
●●

●

● ●
●

●
● ●●

●●●

●●

●

●
●

● ●

●

● ●

●

●● ●

●

●●

●●●

●

●
●

●●
●●

●●

●
●

● ●

●●

●

●

●

●●● ●
● ●

●
● ●

● ●

●

●●●

●●

●
●

●●
● ●●●

●● ●●

●
●

●
●

● ●●

●
●

●

●

●

●
●●

●

●●
● ●●●

●

●

●

●●
● ●

●
●

●
● ●

●
●●

●

●●
● ●

●
● ●

●

●
●

●

● ●

●
●

● ●●

●

● ●
●● ●
● ●

●
●●

●
●●

●
●●

● ●
● ●●

●
●

●

● ●
●

●

●

●
● ●

● ●●

●
● ●● ●

●

●
●

●

●
● ●●

●●
●

●
● ●● ●●

●

●

●

●
●●

●

● ●
●●

● ●

● ●
●

●

●●
●

●

●
●

●

●

● ●

●

●

● ●
● ●

●● ●

●

●
●

●
●

●●

●
●●

●
●

●

●

●●

●●
●●

●

●●

●

●
● ●

●
●
● ● ●

●

●●

●

● ●

●●
●

●
● ●
●

●

● ●

●

●

●
●●

●

● ●
●

●

●

●

●
●●

●

●

●
●●

● ●

●●
●●●

●
●●

● ●

● ●●
●
● ●

●

●
●

●

●

●
●●

● ●●
●●

●●
●●

●

● ●●
●

●

●

● ●

●

●
● ●

●●

● ●

●

●

●
●●

●

●
●

●

●

● ●

●

● ●
●

●●
● ●● ●

●

●
●

●●
● ●

● ●●
●

●●●

●

●
●●●●●

●
●●●

● ●
●

●

●●

●
●●

●●
●

●●

●

●
●
●

●● ●●● ●
●

●

●

●●● ● ●●

●

● ●●
●

●

●
●

●●
●

●
●

●● ●

●

●
●

●
● ●

●

●
●● ●●● ●

●
●

●

●

●
●

●

●
●●●

● ●●
●

●

●●

●

●

●●
●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●
●

●●● ● ●
●●

●
●

●●●●● ●●
●

●●
● ●

●
●●●●
●

●●
●●●

●
●

● ●●

●

●
●

●●● ●

●
●

●
●

●
●

●

●

●●
●●

●

●●

●

●
●

●

●

●●●

●

●
●

●

●

●

●
●

●●
●

●
●

●

●
●

●●

●
●●

●●

●

●

●

●● ●●
●

●

●
●● ●● ●
●

●●
●

● ●●
●

●

●
●

●

●

●
●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●
●

● ●●

●
●●

●
●

●
●●

● ●

●
●

●
●

●
●

●●●
●

●●

●●

●●

●

●●
●

●

●

●● ●
●

●●●

●
●

●

●●

●

●
●● ●

●

●
●

●

●● ● ●
●●

●●

●
●●●●●● ● ●●

●
●●

●
●

● ●●●
●

●
●● ●

●●● ●● ●●●
●

●

●

●●

●
●●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

● ●
●

●

●
● ●●

●

●

●

●
●● ●● ●

●

●

●
●

●●
● ●●

●
●

●

●

●
●●●●

●

●● ●

●

● ●●
●

●
● ●

●

●

●
●●

●●● ●
●

●
●●

●

●

●

●

●●

● ●●
●

●● ●● ●●●
●

●
●●

●

● ●

●

●
●

● ● ●●
●●●

● ●

●
●

●
●●●●

●
● ●

●

●

●●

●

●

●● ●

●

●
●

●● ● ●
●

● ●

●

●● ●●
●● ●●

●
●

●
● ●

●●●

●

●●●

●

● ●●

●

●

●
● ●

●
●

●●

●
●

●●●●

●

●● ●
●

●
●

●●
●●

●●

●

●●●●●
●

●

●

●

●

● ●● ●
●

●●●●

●

● ●
● ●

●

●
●

● ●
●

●
● ●

●
●●

●●●
● ●

●

●

●
●

● ●

●

●●
●

●

●

●● ●●●
●●

●
●

●
● ●

●
●

●
●●

●●
●●

●

●
●

●

●

● ●
●

●

●

●
●

●

●●●

●

● ●●
●

●

●

●●●
●

●
●
●●●●

●

●●
●

●● ●

●

●
●

●
●●●

●
●●

●

●
●

●

●

●

●

●

● ●
●

●●
●

●

●
●
●

●

●● ● ●

●
●● ●●●●

●
● ● ●

●

● ●● ●

●

●

● ●
●
●

●
●

●

●
●●

●

●

●

●

●

●

●●●
●

●

●

●● ●●●

●
●

●

●

● ●●
●●

●
●

●

●
●● ●

●

●●● ●●

● ●
●●

●●●

●
●

●

●

●

●

●●●
●● ● ●● ●
●● ●

●
●

●●

●
●

●

●
●

●
●

●
●

●
●

●●
●

●

●● ●

●
●●

●

●●●●●●
●

●

●
●

●
●

●● ●

●

● ●
●

●

● ●

●
●

●●
●
●●

●● ●
●

●●

●
●

●

●

●
● ●●

●

●
●

●

●●
● ●●●

●
●

●
●

●

●
●

●

●

●
●●

●
●

●
● ●● ●

●

●
●

●

●

●●

●
●

●
●

● ● ●
●

●
●

●
●●● ●●

●
●

●

●

●

●●●
●

●
●

●

●

●

●

●

● ●

● ●
●

●●●●
●●●● ●

●
●

●
●

●● ● ●

●

●

●

●●

●

● ●●

●

●
●

●●●●
●

●
●

●●

●
●●

●

●●
●

● ●● ●●
●
●

● ●
●

●

●

●
●

●
●

●
●

●

●

●

●●
●

●

●

●
●

● ●
●
●

●

●

●

●
●● ●

●
●

●●
●●
●

●

●
● ●

●
●

●

●
●

●
●

●
●●●

●
●●

●
●

●

●

●●
●

● ●
●●

●●

●

●●
●●

●

●●●●
●

●●

●

●
●●

●
●

●
●

●●

●

●
●

●
●

● ●

●

●

●
●

●
● ●● ●● ●

●

● ● ●●
●

●
● ●●● ●●

●

● ●●

●

●
●

● ●

●

●

● ●●
●

●
● ●●

●
●

●

●

●
●

●

●●
●
●●

● ●

●

●
●

●●● ●
●

●

●

● ●●● ●●
●

●

●

●
●

●
●

●●
●

●
●

●
●

● ●
●●●

●●
●

●

●

● ●
●

●
●

●

●

●●
●

●

●
●●
●

●●
● ●

●
●●

●●

●

●

●
●

●●
●

● ●
●

●

● ●
●●

● ●
●● ●

●●

●

●
●

●
●

●

●

●●
●

●●
●

●●

●

●
●

●
● ●● ●

●

● ●●

●

●

●
●● ●

●

●
●

●

●●● ●● ●●

●●

●
●

●
●

●

●

●
●

●●
●

●

●

●

●●
●

●
●●

●●
● ●

●
●

●
● ●

●

●

●

● ●

●

● ●●●

●● ●
●●
●

● ●

●

●

●
●

●
● ●●● ●

●

●●

●

● ●
●

●
●

●

●

●●

●● ●●
●

●

●
● ● ●●

●
●●

●●
● ●

●

●

●

● ●●
●

●●●
●
●

●

●
●

●

●

●
●

●
●●

●●
●

● ●

●

●

●
●

●● ●

●

● ●
● ●

●

●
●

●

●

●

●

●
●

● ●●●
●● ●

●●●

●

●●●● ● ●
●

●
●●

● ● ●
●

●

●

●

●
●

●

●

●●

●

●

●
●

●●
●

●

●

●

●●●

●
●

●
●
●

●
● ●

● ●
●

●

●
●●

●

●
●

●
●

● ●

●●
● ●●

● ●●

●

●
●

● ●●
●● ●

● ●● ●
●

●●

●

●
●● ●

●
●

●
●●● ●

●●
●

●

●● ●

●

●● ●

● ●

●● ●
●●●

●

●
●

●

●

●

●
● ●

● ● ●
●

● ●

●
●

●●
●

●

●
●

●
●

●

●

●
●●

● ●
●

●

●
●

●●
●

●

●

●

●
●●

●

●

●

●

● ●●

●
●

●●
●

● ●

●
●

● ●
●

●●●

●●

●

●●

●

●●

●● ●●

●
●

●

●

●
●

●

●● ●

●

● ●

●

●
●

●●
●

●
●●

●●
●

●

●●

●

●
●

●

● ●

● ●
●●●● ●●●

●

●

●
●

●
●

● ●
●

●

●

●

●
●

●

●

●
●●

●

●●
●

● ●● ●●

●

●●
●

●
●

●
● ● ●

●
●

● ●●●
● ●
●

●

●

● ●●●
●

●
●

●●
●

● ●
●● ●

● ●
●

●

●● ●

●

●
●

●
●

●● ●● ●
● ● ●

●●● ●
●

●
●

●
●●

● ●●

●

●

●

●
●●●

●

●

●●
●

●
● ●●● ●

●
●

● ●
●

● ●
●

●

●

●● ● ●
●

● ●● ● ●
●● ●

●

●●

●

●
●

●● ●●● ●●●

●

●

●

●
●

● ●
●

●●
●

●

●

●

●
● ●

●
●

●●

●

●
●
●
●●

● ●
●

●

●

● ●●●

●●

● ●

●

●
●

●
●

●
●

●

●●

●

●

●
●

●
●●

●

●
●

●

● ●
●●●● ●

●

●● ●●

●

●
●

●
●

●
●

●
●

●●
●

●●●

●

● ●
●

●

●
●

●

● ●●

●

●

● ●●●
●

●
●●

●

●
● ●

●

●
●●

●
●

●● ●

●

●● ●

●
●

●

●●●
●

●

●

●● ●
●

●●
●●

●
●

●
●●●

●

●

●

●

●
●

●●

●

● ●
●●● ●

● ●
●●●● ●● ●

●

●
●● ●●

●

●

●

●

●●
●

●

●
●

●
●

●●
●

●

● ●
●

●

● ●

●
●

●●
●

●

●

●
●

●● ●
●

●

●

●

●
●●

●

●

●● ●●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
● ● ●

●

●
●●●● ●● ●

●

●

●● ●● ●
●

●
●

●

●

●●

●

●
●
● ●

●

●

●
●●● ●

●●

●

● ●●
● ●

●
●

● ●
●

●

●

●

●

●
●●

●●
●
●

●
●●

●

●
●
●
●

●

●
●

●●
●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

● ●●

●

●●●
●

●

●●
● ●

●
●

●●
●

●
●● ● ●●

●

●

●
●●

●●●
●● ●●

●

●●●

●

●

●
●●

●

●

●

● ●● ●
●

●
● ●●●

●●
● ●

●

●● ●
●●

●

●
●

●
●

●● ●
●

●
●● ●

●
●●

●

●
●

●

●

● ●● ●
●
●

●●

●●
●

●
●

●

●

●●●
●

●●
●

● ●●● ●
●

●

●

● ●●

●

●

●
●

●
●

● ● ●●
●

● ●
●● ● ●

●
●

●

●

●
●●

●●● ●●
●●

●
●

● ● ●
●

●●
●

●●
●

●
●●

●
●

●

●

●

●

●

●

●

●

● ●
●● ●

●●

●● ●●

●

●● ●

●

●

●

●
●

●●

●

●

●
●

●

●●

● ●
●●●

● ●● ● ●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●●
●

●

●
●

●

●

●●
●●
●●●

●●●
●

●

●

●●

●

●

●
●●●●●●

●

●
●●●

●

●

●
●

●
●

●
● ●

● ●

●

●●
●

●

● ●
●

●
●

●●●

●

●
●

●

●

●

●
●● ● ●●●●

●
●

●
●●

●
●●●

●

●●

●
●

●
●

● ●

●

●
●

●

●
●

●●

●

●
●

●
●

●
●

●

●

●
●●

●
●● ●●

●
●

●

●
●●●

● ●
●●

●
● ●

●

●

●

●● ●
●

●

●
●●

●● ●
●

●
●

●

●

●
●

●
●●●

● ●
●● ●

●●
●
●

●

●

●

●●
●

●●
●

●

● ●

●●

●

●
● ●
●

● ●
●●

●
● ● ●

●
●●

●●
●

●●●●

●

●
●

●●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●●●

●

●

●●

●

●●●
●●

●

●●
●●●●●

●

● ●
● ●●
●

● ●● ●●

●

●
●

●●●
●●
●●

●

●

● ●●

●

●
●

●

●●

●

●

● ●●
●● ●

●

●
● ● ●●●●

●
●●
●

●
● ●● ●
●

●
●

●

●
●

●●
●

●

●
●

●●
●
●●

●
●●

●

●
●

●
●

●
●

●
●

●

●●● ● ●●
● ●●

●

●

●

●
●

●

●●

●

●

●

●●

●

●
●

●

●
●

●

●

● ●
● ●●

●

●

●
●

●
●

●

●

●
●

● ● ●

●

● ●● ●●

●

●●

●

●
●

●

●
●

● ●
●

● ●
● ●●●

●

●●

●

●●
●

●

●

●
● ● ●

● ●●
●

● ●
●

● ●
●

●●

●●

●
●●

●

●
●

●
● ●●

●
●

●

●

● ●
●●

●

●

●

●
●● ● ●

●
●

●
●●

● ●

●

●

● ●
●

●

●●
●● ●●●

●

●
●

●
●
●●●

●
●●

●

●

●

●
●

●
●

●

●

●
● ●

●

●●●

●

●●

●
●

●
●●

●
●

●●

●

● ●

●

●●●
● ●●

●●

●

●●

●● ●
● ●

●● ●● ●

●

●
●

●

● ●
●

●

●

●

●

●
●

● ●
●●

● ●

●

●
●

●●
●

●
●

●

●

●

●

●
●

●
● ●
● ●● ●●●

●

●
●

● ●●●
●

●
● ●●

●

●●
●
●● ●

●
●

● ●

●

●● ●●●
●

●
●

●●
●

●

●

●●

●
●●

●
●

●●
●

●

●

●

●
●

●
●

●●●●●

●
●

● ●
●

●

● ●

●● ●
●

●●●

●
●

● ●

●

●●
●

●

●
●

●● ●
● ●

●

●●
●

● ●
●●

●
●● ●

●

●●

●

● ●●
● ●

●
●

●

●
●

●

● ●

●

● ●
●

●

●

●●

●

●
●

●
●

●

● ●
●●●

●

●● ●
●

● ●

●

●

● ●
●●●●●

●
●●●

●

●

●
●

●
●

●
●●● ●●●●

●

●●
●●●

●

●
●
● ●●

●● ●

●
● ●

●

●

●
● ●

●

● ● ●

●

●
●●

●

●
●

●

●●●
● ●

●

●
●

●

●● ●●●
●

● ●●
●

●●●

●
● ●●

●

● ●
●

●

●

●

●● ●●
●

●●
●●●

●
●

●●

●

●

●
●

●

●

●●
●

●

●

●

●

●●

●●

●
●

●
●

● ●●
●●●

●
●

●
●●

●
●●●

●

●

●
●

●

●

●●

●

●

●● ●
●

●

● ●●
●

●
●

●

●
● ● ●

●
●

●
● ●

●

●● ●
●

●

●
●

●●

●

●
●

●

●

●

● ●● ●● ●●

●

●

●●

●

●
●

●

●

●
●

● ●

●● ●
●●

●
●

● ●

●
● ●

● ●●
● ●

● ●●
●●

●

● ●

●
●●

●● ●

●

●●
● ●●

●

●

●●
●●●●●

●

●
●

●

●

●

●

● ●

●

●

●

● ●

●

●● ● ●

●

●

●

● ●
●●

●
●

●

●● ●

●

●●● ● ●●●

●●●

●●●●

●
●

● ●●●

●
●

●

●

●

●
●
●

●

●

●●
●● ●

●
●

●

●

● ●
●●●

●●
●

●
●

●

●
●●●

● ●●

●

●
●●●

●

● ●

●●
●

●
●

●
●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●●

●

● ●● ●

●

●●● ●

●

●

●
● ●
●
●

●

●●
●● ●

●●
●

●●
●

●●

●

● ●

●

●●

●

●●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●
●●●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●
●

●

● ●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
● ●●● ●●●

●
●●

●

●
●●●

●

●
●●
●

●●
●

●

●

●

●

●
●●

●
●

●
●

●

●

● ●

●

●

●
●

●

●●

●
●

●
●●

●●

●

●●
●

●

●●

●
●

●

●●

●

●

●

●

●

●●●

●
●

●
●● ●

●

●●
●

●
●● ●

●

●
●
●

●
●

●●

●

● ●●
●

●
●● ●

●●

●● ●●

●

●

●●

●
●
●
●

●
●●
●●

●
●

●●
●

●●
● ●

● ●●

●
● ●

●

●
●

●●
●

●●●
●

●

●

●
● ●●●●●●●

● ●
●

●

● ●

●

●

●

●

●
●

●
●

●
●●

●

●●
●

●

●

●●
●●

● ●

●
●

●
●

●

●

●
●

●●
●●

●● ● ●
●
●

●●●

●

●●

●

● ●
●●●

● ●
●

●●
●● ●●● ●
●●

●●●●●●

●
●

● ●● ●
● ●●

●

●
●
● ●●●
●

● ●
●

●

●●

●

●●
●

●●
●

●
●

●

●

●

●●

● ●

●

● ● ●
●●

●
●

● ●
●

●

●●● ●
● ●

●

●
●

●

●

●

●● ●● ●●●

●
●

●

●

●●

●

●
●

● ●

●
●

● ●●
●

●

●
●

●

●
●

●

●
●

●

●●
●●●

●● ●
●●

●

●
●

● ●

● ●
● ●

● ●
●

●
● ●●●

●●
●

●
●

●
●

●●
●

●

●

●
●● ●

●●
●

●
●

●●
●●

●
●

●
●

●
●●●●

●

●

●●

●

●

●

●●
●

●
●
●

●●

● ●● ●
●

●●
●

●●

●● ●● ●●●
●

●●
●● ●

●
●

●

●

●

●
●

●
● ●●

●

●●●

●

● ●●●
●

●●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●●

●
●●

●

●

●●

●
●
●

●

●
●

●

●

●●
●●

● ● ●●

●

● ●
●

●

●
●

●●

●

●●●

●

●

●
●

●●●
● ●

●
●

●

●

●

●

●
●

●
●

●

●
●●

●●

●

●
●● ●●●

●
●

● ●●●●●
●

●

●

●

●

●
●

●

●

●●
●●

●●
● ●●
●

●●
●● ●

●●

●
●

●
●●

●
●

●

●
● ●

●

●● ● ●
●

●

●
●

●

●

●●

● ●
●

●
●

●●
●

●●

●●
●

●
●

● ●

●

●
●●

●
●

●
●

●
●●●●
●

● ●
● ●● ●

●
●

●
●

●●●●●
● ●

●
●

●

●
●

●

●

●●

●
● ●

●
●

●
●

●
●

●
●●

●
●

●
●

●

●
●

●
●●

●●
● ●●

●
●●

●
●

●
●● ●

●
●●●

●
●

●●●
●●

●●

●●
●

●
●

●●●

●

●●

●

●
●●●

●
●

● ●
●●

●
●● ●●

●● ●

●

●

●●
●

●

●

●
●

●
●

●●

●

●
●●● ●●

●

●
●●

●

●
●

●

●●
●

●
●

●
● ●

●

●

● ●

●

●

●
●

●

●

●
●

●
●

●●

● ●
●

●
●

●●
●●

●
● ●●

●●
●

●● ● ●● ● ●
●●●

●●

●
●

●

●●

●

●
● ●

●

●

●

●

●
●

●
●

●

●●● ●●● ●
● ●

●
●

●
●

●
●●

●

●

● ●
●

●

●

●
●

●
●

●●●

●
●●

●
●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●
●

●

●

●●
●

●
●

● ●●●

●

●●

●

●
● ●

●●● ●
●

●

●

●
●

●

●
●

●
●● ●
● ●● ● ●●

●

●
●

●● ●
● ●

●●●

●

●

●

●

●
●●●

●

●●

●●

●

● ●

●

●● ●●
●

●
●

●

●

●●●
●●

●● ●
● ●●● ●

● ●

●
●●●

●
●●●

● ●●●

●

●
● ●

●

●

●

●

●
●

●●
●● ●

●

●

● ●

●●

●

●
●●

●● ●●●

● ●

●

●

●●●●

●
●

●●●
●

● ●

●●●
●●

●

●●●
●

●
●
● ●●

●

●● ●
●

● ●

●

● ●

●

●●
● ●●

●

●

●
●

● ●

●
●

●

●
●

●
●

●
●

●●

● ● ●
●●● ●

●
●

●
●

●

●●● ●

●
●

●

●
●

●
●

● ●

●
●●

●
●

●● ●● ●
● ●

●●
●●

●
●●
●

●●●●●

●
●

●●●

●●

●

●
●

●

●
●

●
●●

● ●
●

●

●
●
●●
●

●

●●
●

●
●●●

● ●●● ●●

●

●●

●
●

●

●

●

●
●

● ●● ● ●●●

●
●

●

●

●
●

●

●

●

●● ●

●
●

●
●

●
●

●
●● ●

●

● ●●
●

●
●

●

●

●

●
● ●

● ●
● ●

●
●●● ●

●
●

●

●●
●

●

●

●

●

●●●
●

● ●

●

●●●
●

●
●

●

●
●

●
●●

●● ● ●
●

●
●●

●

● ●●●
●
● ● ●

●
●

●●

●

●
●

●●
●

●

●

●

●●
●

●● ●
●

● ●

●
●●

●● ●●
● ● ●

●

●

●
●

●●

●
● ●

●

● ●●
●

●

●

●●●
●●●

●●●
●

●

●

● ●

●

●

●

●● ●●

●

●

●

●

● ●●

●

● ●
●

●

●

●

● ●

●

●

●

●● ●●
●

●

●●

●

●
●

●
●● ●

●

●

●● ● ●

●

●
●

●
●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●● ●
●●●● ●●

●
●●

●

●

●●
●

●

●

●
●

●

●
●●

●
● ●

●●
●

●

●

●

●
●

●

●●

●● ● ●●●
● ●

●

●
●

●●
● ●

●
●

●●
● ●

●

●
●

●

●●
●

●
●●●●●

●

●

●

●
●

●

●●

●
●

● ●
●

●
●

●●
●

●
● ●●

●

●

●●

●● ●

● ●
●

●
●

●

●

●
● ●

●

●

●●

●

●
●

● ●●

●●

●

●
● ●● ●●● ●

●
●

●

●●
●
●●

●

●●

●●
● ●●

●

●

●
● ●●
●●●

●

●

●
●

●
●●●● ●

●
●

●

●

●●
●●

●

●

● ●

●

●●
●

●

● ●●●

●

●●● ●●

●

●

●●● ●
●

●
●

●

● ●●● ●●
● ●

●

●●

●

●

●

●

●● ●

●

●●
●

●

●
●
●

●
●

●

●
●●

● ●
●
●
●●

●

●●
● ●●●● ●

●

●
●
●● ●

●

●

●

●

●
●

●
●

●●●

●

● ●

●

●●●●
●

●

●

●● ●
●●

●

●●
●●

●

●
●●

●

●

●

●●
●

● ●
●● ●
●

●

●● ●
● ● ●

●

●
● ●

●
●

●
● ●● ●

●
●

● ●
●

●

●
●

●

●
●

●

●
●

● ●
●

●

●
●

●

●

●

●

● ●
●

●
●●

●

●

●●
● ●● ●

●
●

●● ●●
●

●

●
● ●
●●
● ●

●

●
●
● ●●

●
●

●

●
●

●
●●

●
●● ●

●

●●
●

●

●

●

●

●
●

●
●

● ●

●
●

●

● ●

●
●

●

● ●
●

●● ●
●

●

●

●

●
● ●

●

●

●● ●
●

●
●●

●●●
●

●
●

●

● ● ●● ● ●
● ●●

●

●●
●

●
●

●
●

●
●●

●

● ●●●
●

●
●

●● ●
● ●

●●
●●

●
●

●
● ●

●
●● ●● ●●●● ●

● ●
●

● ● ●

●
●

● ●

●
●

●

● ●

●
● ●● ●●

●
●

● ●

●
●●● ●●

●●
●

●●

●●

●
●

●
●

●

●
●

● ●● ●

●

●●● ●

●

●
●
● ●

●●

●

● ●

●

● ●

●

●●

●
●

●
● ●●

●

●

●
●

●

●
●●● ●●

●
●● ●● ●● ●

●
●

●
●

●

●
●●

●

●

●

●

●
●●

●● ●●

●

●● ●●●

●

●

●

●
●

● ●

●

●
●

●●
●●

●●

●●●
●●
●●

●
●

●

●

● ●

●●●

●

●

●

●●

●

●
●

●
●

●●●●
●●

●

●
●

●
● ●

●

● ●●

●

●
●

●

●
●●

●●● ●●●●
●
●●

●
●

●

●

●
●
● ●

●

●

● ● ●●

●

●

●

●

●

●
●

● ●
●

●●
●

●
● ●

●
●

●●●
● ●●

● ●●
●

●
●

●
●●
●

●
●

● ●

●
●

●●

●
●

●
●

●

●
●

●

●
●

●
●

●

●

●
●

●

●
●
●●

●● ●
●

● ●

●

●●
●

●
●●●

●●
●

●

●

●
●

●

●

●● ●
● ●●

●

●● ●
●

●
●●

●

●

●
●
●●

● ●

●●●
●

●
●●

●

●

●

● ●

●

●●● ●● ●●

●

●
●

●

●●

● ●

●

●

●

●

●●●●●
● ●
●

●
●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●●● ●

●

●
●●

●

●

●
● ●

●
●●

●●

●● ● ●
●

●

●

●
●

●
●
●

●●
●

●
●●● ●●●

●

●●●
●

●
●

●
● ●

●
●
●

●

●

●
●

●

●●
●●

●

●● ●●

●

●

●
●

●●
● ●

●

●

●
● ●●

●

●
●

●

●

●

●

●

●●

● ●●●

● ●●

●

●

●
● ●

●●●

●●
●

●● ●

●

●●

●

●
●

●

●

●

●● ●

●
●

●
● ●
●

●
●

●
●● ●

●

●

●● ●
●

●● ●
●● ●

●

●

●

●

●
●

●

● ●●
●

●

●● ●

●

●

●●
●
●

●

●

●● ●●●
●

●●
●

●

●

●

●

●
●

●
●

● ●●

●
●

●

●
● ●●●●●●

●
●

●
●●

●●
●

●
●

●
●● ●●

●

●

●
● ●

● ●

●

●●●
●

●
●

●

●

●

●

●
● ●

●

●

●
●●

●

●● ●

●

●
●

●●●
●

●

●●●

●

●●●

●

● ●
●●

●

●●●

●

●
●
●

● ●
●●

●●●

●●●
●

● ●

●●

●

● ●

●

● ●
●

●

●●

●

● ●
●

●●●
●

●
●● ●

●
●

●●

●

●

●●

●

●

●

●

●●
●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●●

●●

●

●
●●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●●
●

●

●

●●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●●
●●

●

●

●
●

●
●

●
●

● ●
●●

●

●
●

●●
●

●

●
●

●
●

●
●

●
●

●●
●

●
●

●●
●

●
●

●●

●

●
●●

●

●
●

●
●

●
●

●
●●

●●

●

●

●

●

●

●
●

●
●

●

●●
●

●
●

●●

●

●

●●
●
●●

●

●

●

●

●●
●
●

●●●
●

●
●

●

●

●

●

● ●

●

●
●

●●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●
●
●
●

●●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●
●
●

●
●

●

●

● ● ●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●●
●

●

●●

●

●
●●

●

●●
●

●●

●
●●

●
●

● ●

●

●

●

●●
●

●●●

●
●

●
●

●●●●

●

●

●

●

● ●

●

●●

●

●

●●
●
●

●

●

●

●●●●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●
●●

●
●

●
●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●
●●

●●
●●

●

●

●

●

●●

●

●
●
●

●

●
●

●●
●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●●
●●

●●● ●

●

●
● ●●●

●

●

●

●

●

● ●●

●

●

●●

●

●

●

●
●

●

●

●●

●
●

●

●

●●

●

●

●●
●

●
●

●
●

●

●

●

●

●●
●

●
●●●
●

●●●
●

●

●

●

●●

●

● ●

●

●● ●● ●
●

●●

●

●

●

●
●

●
●

●

●

●
●

●●●

●
●

●●●

●

●●

●
●

●

●

●

●

●●
●

●

●

●
●●
●

●
●
●

●●

●

●

●●

●

●

●

●

●

●

●
● ● ●

●

●
●●●

●●

●

●

●

●●
●

●

●

●
● ●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●
●●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●●

●
●●● ●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●
●
●●

●● ●

●
● ●

●

●
●●
●

●●●
●

●
●

●●

●

●

●
●

●

● ●
●●● ●●

●●

●

●

●

●

●

●
●●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●
● ●

●●

● ●

●

●

●

●●

●

●●
●

●

●
●

●
●
●

●

●

●

●
● ● ●

●
●

●

●
●

●

●

●

●
●●●

●
●
●

●●

●

●
●
●

●

●●
●

●
●

●
●

●
●

●●

●
●

●

●

●●
●

●●

●

●

●●
●

●

●

●●

●●
●
●

●

●
●

●
●

● ●

●

●

●
●

● ●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●●
●●

●

●

●
●
●

●
●

●

●

●●
●●●●

●
●●

●

●
●●

●

●●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●●

●●●

●
●

●●

●

●●●

●
●

●

●

●

●

●●
●

● ●
●
●●

●

●
●
●

●

●
●

●
●

●

●

●

●

●●

●●
●●

●

●

●

●

●

●

●

●
●

●●●●
●

●
●

●
●

●

●●

●
●

●

●

●

●●
●

●

●●●●●
●
●

●

● ●

●

●

●

●

●
●

●●

●

●●

●●

●
●

●

● ●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
● ●
●

●●

●

●

●
●

●
●
●

●

●●
●

●

●
●●●●

●●

●

●●

●

●
●

●
●

● ●●

●

●

●●
●

●●●

●

●
●
●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●●

●
●

●

●●●●

●●●
●●

●
●
● ●

●●

●●

●
●

●

● ●●

●

●

●

●

●

●

●
●
●

●●

●
●

●
●

●

●

●

● ●
●

●●

●
●
●

●

●

●

●

●
●●●

●
●● ●

●

●

●

●

●

● ●

●
● ●●

●

●

●●

●
●●

●●

●

●

●
●

●●

●
●

●
●

●

●
●

●

●

● ●

●

●

●

●

●●
●●
●
●

●
● ●●

●

●

●

●●

●●

●
●

● ●

●

●

● ●

●

●●

●
●

●
●

●

●

●

●

●
● ●

●
●
●

●
●
●

●

●

●

● ●

●

●

●

●

●

●

●
●●
●

●
●●

●

●
●

●

●
●

●●
●●●
●

●

●

●

● ●
●

●

●

●

●●●
●●
●

●

●

●

●

●
●●
●

●

●

●● ●
●●

●

●

●

●
● ●●

●
●

●

●

●

●●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●
●
●

●

●

●

●●
●
●

●
●

●
●

●
● ●●

●

●

●

●
●●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●●●

●

● ●●●
●● ●●

●
●

●●

●●

●

●
●
●

●

●

●

●

●

●

●
●

●
●

●
●

●●
●

●

●

●
●

●
●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
● ●
●●

● ●

● ●

●

●

●

● ●

●
●●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●
●

●

● ●

●●
●

●

●

●
●

●
●

●
● ●

●

●

●●●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●●
●
●

●●●

●

●●●

●
●

●

●

●

●

●
●

●

●●●
●

●
●

●●

●

●

●

● ●
●
●

●
●

●

●

●

●

●

●

●●

●

●

●●

●●

●
●

●

●

●
●● ●●●●

●

●

●

●

●
●

●●

●

● ●

●
●

●

●

●
●

●
●

●

●
●● ●●

●

●●

●
●

●

●
●
●●●

●

●

●●
●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●●●

●

●

●●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●
●

●
●

●

●●

●

● ●

●
●

●
●

●
●

●

●●
●●

●
●

●

●

●
●●

●

●

●

●
●

●

●
●● ●

●

●●

●

●●
●

●

●●

●

● ●

●

●
●●●

●●

●

●

●

●

●●
●●●
●

●

●

●

●●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

● ●●

●

●●●●

●

●
●

●●

●
●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●
●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●● ●

● ●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●
●●

●

●●●

●

●

●
●
●

●

●

● ●●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●
●

●

●●

●

●

●

●

●

●
●

●
●

●●

●

●
●

●●
●●

●

●

●
● ●●

●

●

●

●

●
●

● ●

●
●

●

●

●
●

● ●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●●●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●

●

●

●
●

●

●●
●

●

●

●
●
●

●

●

●
●
●
●

●

●

●●●
●

●

●

●●●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●●
●●

● ●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

● ●

●

●●

●

●

●
●

●●

●
●

●

●

●●

●

●

●
●
●

●

●

●

●●
●●●

●

●●●

●

●

●

●
●

●

● ●

●
●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●
●

●●

●● ●
● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●●

●
●●

●

●

●

●●

●

●
●
●

●

●●

●

●

●
●

●
●

●
●

●

●

●
●●

●

●

●●

●●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

● ●

●

●

●●
●●●

● ●

●

●
●

●●
●

●

●●
●●

●

●

●

● ●

●

●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●●

●

●

●
●
●

●
●

●● ●

●
●

●●●
●
●●

●

●

●

●

●

●●

●
●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●●● ●
●●

●

●
●

●

●
●

●

●● ●

●

●

●
●

●
●●●

● ●

●

●

●

●
●

●

●●
●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●●

●
●

●
●

●

●

●

●●●

●

●

●

●

●●

●
●

●

●

●
●●

●

●●●

●

●

●

●
●

●●

●

●●

●

●
●

●

●●

● ●

●●●●

●

●

●

●

●
●

●

●●●●

●
●

●
●

●

●
●

●
●

●

●

●

● ●
●●

●

●

●
●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●

●

●
●

●

●●●

●
●

●

●
●●●

●

●

●

●

● ●

●

●

●●

●

●

●
●

●
●
●●

●
●

●

●

●●●

●
●●

●

●

●
●●

●

●●

●
●●●

●

●

●●
●

●

●●

●

● ●

●
●

●

●
●
●●
●

●

●●

●

●
●●●
●●
● ● ●

●
● ●

●

●

●

●

●

●

●

●

●
●
● ●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●●
●

●

●
● ●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●● ●

●

●

●

●

●

●
●

●

●●●

●

●
●●

●

●

● ●
●

●

●●
●

●
●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●●
●

●

●
●
●

●

●

●
●●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●
●

●
●

●
●

●
●●

●
●●

●●

●
●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

● ● ●

●

●● ●

●●

●
●●

●
●

●
●

●
●

●
●
●

●
●●●
●

●● ●

●

●●

●
●

●

●●

●

●●
●

●
●

●●
●●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●●
●●

●

●

●

●

●

●●

●

●
●

●

●

● ●
●

●●●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●
●●
●
●

●

●

●

●

●

●●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

●●

●

●

●

●
●●

●

●

●
●● ●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●
●●

●

●

●●

●

●
●●

●

●●

●

●

●
● ●

●

●●●

●

●

●

●
●

●

●
● ●●

●

●

●

●

●
●

●
●

●

●

●
●●●

●

●

●

●●
●

●

●●● ●
●

●
●

●
●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●●

● ●

●●

●
●

●

●

●
●
●

●

●

●

●

●

●●
●
●●

●

●

●

●
●● ●●

●

●●●
●

●
●

●
●●

●

●●

●
●●

●

●

●●

●
●
●●

●

●
●

●

●●
●

●
●

●

●

●●●

●

●

●

●
●
●

●

●

●
●● ●

●

●

●
●

● ●●
●

●
●

●

●

●

●

●

●
●

●● ●●

●

●
●

● ●

●

●

●
●

●

●

●

●

● ●
●

●

●

● ● ●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

●
●

●
● ●

●

● ●
●● ●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●
●

●

● ●

●
●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●
●
●

●
●●

●
●

●

●

●
●●

●
●

● ●

●

●

●

●

●
●●●

●

●

●●

●

●

●
●
●●

●

●
●
●●●

●

●
●

●
●

●
●

●

●●

●●●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
● ●

●

●
●

●
●●●

● ●●

●
●● ●

●

●
●

●

●

●
●●

●

●
●

●
●

●●

●

●

●
●

●
● ●

●

●

●●

●●

●

●

●

●●

●

●

●●

●

● ●

●

●●

●

●

●
●

●

●●
●
●

●
●

●

●

●
●
●●

●

●
●

●●
● ●
●●

●●
●

●

●

●

●

●●
●

●

●
●

● ●

●

●

●

●●●●
●●●

●
●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●
●

●●

●●
●

●●

●

●

●

●

●

●
●

●
●●

●

●

●

●●

●
●

●

●●●

●
●●

●

●

●

●
● ●●●●●●

●●

●

●

●●

●

●

●

●

● ●●

●

●

●

●●

●
●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●●

●

● ●

●

●●

●

●

●
●

● ●
●
●●

●

●
●

●●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●●
●

●

●

●

●
●

●

●
● ● ●

●

●
●

●

●

●

●

●
●

●
●

●●
●

●
●

●●
●
●

●

●

●
●●

●
●

●
●

●

●

●

●

●●

●

●
●

●●

●

●

●●
●

●
●

●

●
●

●
●
●●

●
●

●●●
●

●

●

●

●

●

●

●●●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●●
●

●●●
●

●

●●

●
● ●

●

●
●

●

●

●
●●●● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

● ●
●●●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●●

● ●

●
●●

●

●●

●

●

●

●●
●

●
● ●

●

●●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

● ●

●
●

●
●●
●

●

●

●

●●
●

● ●

●

●
● ●● ●

●
●

● ●
●
●
●

●●
●

●●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●●

●
●

● ●

●

●

●

●● ●
●

●

●

●

●

●
●

●
●

●

●

●
●
●

●
●

●●

●

●

●

●

●●
●

● ●●
●

●

●

●●

●

●
●

●

●

●

●

●
●

● ●

●●
●

● ●

●

●●

●
●
●●

●

●●
●●●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●

● ●
●

●

●
● ●●

●

●

●
●● ●

●

●●●
●

●
●

●

● ●

●

●

●
●
●

●

●

●
●

●

● ●●
●
●
●

●

●
●

●●

●

●
●

●
●

●●

●●
●●

●
●●●

●
●

●●

●
●●
●●

●

●●●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●●

●
●

●

●●

●
●

●
●

●

●
●
●

●

●

● ●

●

●

●●

●

●●●

●

●

●

●

●

●
●
●

●

●

●
●●

●

● ●
●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●●●● ●

●

●
●●●●
●

●

●●

●●

●

●

●
●

● ●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●●
●

●

●

●
●

●
●

●●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●●●

●
●

●
●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●
●

●

●

●●
●

●
●●

●

●
● ●●●●

●

●
●●●

●
●

●

●●●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●●

●

●

●●

●

●

●● ●

●●
●

●
●●●

●

●●

●

●

●

● ●
●

●

●
●
● ●

●

● ●
●

●

●

●●

●
●●

●●
●

●

●

●
●●

●

●

●

●
●
●

●

●
●●

●
●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●●
● ●

●
●●
●●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
● ●

●
●

●

●

●●
●

●●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●
●

●●
●
●

●

●

●

●
●

●
●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●
●
●

●

● ●

●

●
●

●●

●●
●

●

●
●

●

●

●
●
●●●

●
●●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●
●

●

●

●
●●●

●

●●●

●
●●
●●

●

●

●

●

●
●

●

●

●

●
●●

●

●●
●●

● ●

●

●●

●
●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●
● ●

●

●

●
●

●●

●

●

●
●●

●
●
●
●

●
●
●

●
●

●
●

●

●

●

●
●
●

●
●

●

●
●

●

●

●

●●●
●●

●●
●

●
●

●●
●

●

●

●●●●●

●

●

●

●●●
●

●

●
● ●

●
●●●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●●

●

●

●●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●●
●

●●

●

●●●● ●
●

●●

●

●● ●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●
●●

●

● ●●

● ●
●
●●

●

●

●

●

●●
●

●●

●

●
●

●

●
●●

●●
●

●

● ●
●

●

●

●

● ●

●

●

●●

●

●●
●

●

●
●

●

●
●
●

●●

●

●

●

●

●●
●
●
●

●
●

●

●
●

●

●●
●

●
●
●

● ●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●●

●

●●
●

●

●●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●●

●
●

●

●
●
●●

●
●

●

●

●
●●●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●
●

●●

●

●●●
●

●

●●●
●

●

●

●
●●

●

●

● ●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●
●
●

●

● ● ●●
●

●

●●
● ●

●●●

●

●

●● ●●
●

●●

●

●

●

●
●●

●

●

●
●

●

●●
●

●

●
●

●

●●

●

●

●
●●●● ●
●● ●

●

●

●
●

●●

●

●
●

●

●

●
●

●
●

●

●

●
●
●

●

●●

●
●

●
●

● ●
●
●

●

●

●

●

●

●

●
●

●●
●●

●
●

●
●

●

●●●●
●

●

●
●●
●
●

●
●

●●

●

●●
●

●

● ●

●

●

●

●
●

●

●

●●

●

●●
●
●

●

●
●

●
●

●
●
●

●

● ●●

●●

●

●●

●

●●
●

●
●

●●
●●

●

●

●●

●
●
●

●
●

●

●

●
●

●

●

●

●

●●

●●
●●

● ●
●

●
●

●

●
●

●

●

●

●
●

●

● ●

●
●

●

●●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●●
●

●
● ●●

●

●

●

●

●●

●
●
●
●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●●●

●
●

●

●●

●

●
●●

●
●

●
●● ●

●

●

●
●●

●

●●

●

●

●

●

● ●

●
●

●
● ●●

●
●

●

●

●

●

●

●

●●

●

●
●●

●

●
●●

●

●
●●

● ●

●
●

●

●
●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●
●●
●●

●

●

●

●●
●

●

● ●

●●

●
●
●

●●

●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●
●
●

●
●

●

●

●

●

●

●
●

●
●

●

●●

● ●

●

●

●● ●

●

●
●

●

●

●

●
●●

●●

●
●

●

●●

●

●
● ●

●

● ●

●

●

●

●
● ●

●

●

●
●●●

●

●

●

●

●

●
●

●
●
●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●●●

●

●●

●●

●

●

●

●

●

●

●

●
●
●

●

●●

●●
●●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●●●
●

●
●

●
●

●

●

●●

●
●

●

●
●

●●

●

●

●

●

●
●

●●

●

●

●●●●

●

●

●●

●

●

●

●

● ●●
●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●
●
●

●
●
●●

●

●

●
●
● ●

●

●●

●
●

●

●

●
●●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●●

●

●
●

●

●
●●

●●

●
●

●

●

●

●●
●●

●

●
●

●

●

●

●
●

●

●

●

●●

●
●●

●

●●
●

●

●
●
●
●

●●● ●● ●

●
●

●

●
●

●

●●

●

●
●
●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●●

●
●

●
●

●

●●●
●● ●●

●
●

●●●●●

●●
●

●

●●●
●

●●
●
●

●
●●●●

●

●

●

●

●

●

● ● ●

●

●
●
● ●●

●●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●
●●

●

●●●

●
●
●●

●

●
●
●

●

●

●

●

●

●●

●
●

●

●

●●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●●●●

●

●

●
●

●●

●

●
●

●●

●●

●
●●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

●
●
●

●

●

● ●

●

●

●
● ●

●
●

●●

●

●

●

●

●

●●

●

●
●

●●
●
● ●●

●●
●

●

●

●

●

●
●

●

● ●●●
●
●

●
●●

●

●

●

●
●

●

●

● ●●

●

●

●●

●
●

●●

●

●

●

●

●

● ●

●●

●
●●

●

●

●●

●

●● ●

●
●

●

●

●●

●

●

●
●

●●

● ●

●

●

●

● ●●

●

●●
●●
● ●

●●

●

●

●

●

●●●
●

●

●

●

●

●

●

●●
●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●● ●

●

●●

●

●

●●
●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●●

●
●

●
●

●

●●

●

●
●●
●

●
●

●
●

●
●●

●
●

●●

●

●

●
●

●●

●
●

●

●
●●

● ●●

●

●

●

●

●
●

●

●●
●

●●

●

●
●●

●●●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●●

●●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●●●

●●

●

●

●
●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●
●●

●●

●

●
●

●

●

● ●●
●

●

●

●

● ●

●

●●

●●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●●
●
●●

●

●
●

●●
●

●●●● ●

●

●
●

●
●

●

●

●
●

●●
●

●

●
●

●●

●
●
●●

●
●●

●

●

● ●

●

●●
●●

●
●
●●

●●●
●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●
●

●

●
●

●
●

●
●

●●

●●

●

●

●●

●

●
●●

●●

●

●
●

●

●
●

●
●
●●●

●

●

●

●

●●

●

●
●

●

●●

●
● ●

●

●

●
●

●

●

●●●

●

●

●

●

●
●

● ●●●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●●
●

●
●
●●

●
●

● ●●

●

●

●

●

●
●

●

●

●●
●●

●

●

●
●

●●
●●

●
●
●

●

●
●●

●●

●
●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●●●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●●

●
●
●
●

● ●●
●●●

●

● ●●●

●
●

●

●

● ●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●●

●
●

●
●

●●
●

●

●●
●

●

●
●
●

●
● ●

●
●

●
●

●
●
●

●
●

●

●● ●●
●

●

●

●
●
●● ●

●

●●●

●
●
●●

● ●

●

●

●

●
● ●

●

●
●

●

●

●●
●

●
●

●

●

●
●●

●●

●

●

●

●

●●

●●●
●

●●
●

●

● ●● ●
●

●
●

●

● ●
●

●

●
●
●●●

● ●●●
●

●
●

●

●
●
●

●

●

●

●

●

●
●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

● ●

●
●

●
●

●

● ●●
●

●

●

●
● ●

●

●

●

●
●

●

●●
●

●

●
●

●●

●

●

●
●
●
●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●
●

●

●

●
● ●

●

● ●

●

●

●

●

●

●●
●●

●

●
●

●

●●

●
● ●

●

●

●

●

●

●

●

●

●●

●
● ●

●

●●

●

●

●

●
●

●

●●● ●●

●

●

●●

● ●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●
●

●
●
● ●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

● ●
●

●

●
●●●

● ●

●●

●

●

●

● ●●●
●

●
●

●
●●

●

●

●
●

●●
●●

●● ●

●●

●●

●●

●●

●

●

●●
●

●

●

● ●

●
●

●

●

●

● ●

●

●
●●●

●
●
●
●

●
●

●
●●●●

●

●

●

●●●

●

●

●
●

●

●
● ●

●
●●

●

●

●

●
●●

●

●
●●

●
●

●●

●

●● ●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●
●

●●

●
●

●●
●

●●
●

●

●

●●

●

●

●

●
● ●

●

●

●
●

●
●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●●

●

●
●

●●

●
●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●●

●●●
● ●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●●
●

●
●

●
●

●

●
●●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●
●

●

●

●
●

●

●●●

●
●

●

●

●
●

●

●

●●

●

●●●
●

●

●

●●●●

●

●

●●
●
●

●

●
● ●●

●

●

●

●
●

●

●●

●

●

●● ●●

●●

●●

●

●

●

●

●
●

●

●

●

●
●●

●
●

●●
●
●●

●
●

●

● ●

●

●
●

●
●
●

●

●

●

●
●

● ●

●● ●
●●●
●●

●

●●
●

●

●
●

●

●

●
●●

● ●
●●●

●

●

●
●●●

●● ●
●

●

●●
●
●

●
●

●

●

●●
●

●
●

●

●

● ●●

●

●

●

●

●

●

●● ●

●

● ●
●

●●
●

●●
●●

●

●

●

●

●

●

●

●●

●

●
●
●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●●
● ●

●

●
●

●●

●
●

●

●

● ● ●

●●●
●●

●
●

●

●

●
●

●

●●

●

●

●

●●

●
●

●
●

●

●

●
●

●
●

●
●
●

●●●

●

●
●

●●
●●●● ●

●●

●

●

●

●●

●

●

●

●

●

●

●

● ● ●●●

●

●

●

●

●

● ●

●

●
●

●●

●●●
●
●●

●
● ●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

● ●
●

●

● ●

●●
●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
● ●

●
● ●

●

●●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
● ●
●

●
●●

●

●

●
●●

●

●
●

●

●
●

●●
●●●●

●

●●●
●

●
●● ●●

●
●

●

●●
●

●

●
●

●●

●●

●
●●
● ●●

●

●

●

● ●

●

●

●

●

●●

●●
●●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●●

●
●

●

●●
●

●

●
●

●

●
●
●

●

●

●

●
●●

●

●

●●

●
●

●
●

●

●●

●
●

●

●

●

●

●
●

●
●

●

●
●

●●
●
●

●
●
●

●

●●●
●
●●●●

●●

●

●

●●●

●●
●
●●

●
● ●

●

●

●

●
●

●

●● ●
●
●●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●●●
●

●
●

●

●●
●

●
●

●

●
●

●
●●

●

●

●

●
●
●

●●

●●

●

●
●

●

●

●●

●

●

●●
●●
●

●

●●

●
●

●
●
●

●
●

●
●

●●●
●
●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

● ●

●

●●

●

●

●
●●

●
●●

●

●

●

●
●

●

●

● ●

●●● ●

●

●
●

●
●

●

●

●

●

●●

● ●

●

●
●

● ●
●
●

●
●●●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●●

●
●●

●

●
●

●
●

●●

●●

●
●●

●

●

●

●
●

●

●

●
●

●●

●●●

●

●
●●
●
●
●
●

●

●

●●

●●

●●●
●

●

●
●

●●●

●

●

●

●

●
●

●

● ●

●●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●●

●

●

●●

●

●

●

●

●

●
●●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●
●

●

●●

●

●
●

●

●

●●

●

●

●

● ●
●
●

●
●

●

●

●

●●

●

●

●●

●

●
●

●

●

●●●

●

●

●
●

●
●●

●

●

●

●
●

●
●

●● ●
●●

●

●
●
●●

●●●

●
●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●●●●

●

●●
●

●

●

●

●●●

● ●
●●

●●

●

●

●

●
●

●●
●

●
●●

●

● ●

●

●

●

●

●
●

● ●●

●

●

●

●

●●

●
●

●

●

●
●

●
●

●

●
●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●●
●

●

●

●●●●

●

●●

●
●

●

●●●
●●
●

●

●

● ●
●
●●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●●
●

● ●
●

●

●●

●

●

●

●
●

●

●
●

●

●
●

●●

●

●
●
●

●●

●

●●

●

●

●

●
●●

●●●
●

●

●

●

●

●●
●

●●
●

●

●
●

●
●●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●●
●

●
●

● ●

●●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

● ●

●

●●

●

●

●
●

●

●
●
●

●●

●

●

●
●

●

●
●

●

●

●
●
●●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●●
●
●

●
●

●

●

●
●

● ●●●

●

●
●

●
●

●●
●

●

●
●

●

●

●
●

●

●●●

●

●

●

●

●

●

●
● ●

●

● ●

●
●

●

●●●
●●●

●● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●
●

●
●

●

●●

●

●
●

●●

●

●

●●

●

●●●●

●

●
●

●

●
●

●
●●

●

●
●

●

●

● ●

●

● ●

●

●
●

●
●

● ●●

●●

●
●

●

●

●
●●

●
●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●●●●

●

●
●

●

●●
●●●

●●
●

●

●

●
●
●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●●●● ●
●●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●
●

●

●●●

●

●

●●

●

●

●

●

●

●

● ●

●
●

●
●
●

●

●

●

●

●

●●

●

●●

●
●
●
●

●

●●

●

●

●●
● ●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●
●●

●

●

●●●
●

●

●

●
●

●
●●

●
●

●

● ●●

●
●

●●

●

●

● ●

●● ●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●
●

●
●

●

●

●

●
●

●●
●

●

●
●●●

●

●
●

●

●
●
●
●

●

●

● ●

●

●●

●

●

●

●

●

●
●

●
●

●

●●● ●
●●

● ●

●
●

●

●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●●●

●
●

●

●

●

●

●
●

●
●

●

●●

●
●

●

●
●

●
●

●
●

●
●●

●
●●
●

●

●●
●

●

●●
●

●

●●

●
●

●

●
●●

●
●

●
●

●●
●●

●
●

●

●

●●
●

●
●
●●●

●

●

● ●

●

●●
●

●

●●

●

●●

●
●

●

●

●

●
●

●

●

● ●

●

●●●●

●●●●
●

●

●
●● ●

●

●
●

●

●
●●

●

●
●

● ●
●

● ●
●

●

●

●

●
●

●

● ●

●

●

●

●
● ●● ●●

●
●

●

●●

● ●

●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●●●

●●

●
●

●

●

●

●

●

●

●

●

●●
●

●●
● ●

●

●

● ●●

●

●

●

●

●

●
●

● ●●

●

●

●

●●

●

●

●

●

●

●●
●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●●

●

●
●●●

●

●
●

●● ●●
●

●

●
●

●
●

●

●

●●●

●

●●

●

●●
●

●

●

●

● ●

●
●

●

●●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●●

●
●●

●● ●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●
●

●

●

●
●

●●●

●

●

● ●

●

●●

●●●
●

●

●
●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●
●●

●
●

●

●

●
●

●

●●
●●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●●

●

●
●
●

●

●

●●● ●

●●

●

●
●
●

●

●

●

●
●
●

●

●●

●●
●

●

●

●

● ●

●

●

●
●

●
●

●

●

●●●
●

●
●●
●

●

●
●●

●●

●

●●

●

●●

●

●

●

●

●

●●
●●●

●
●

●

●

●

●

●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●
●

●●

●●

●●

●●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●●●
●

●

●
●

●

●●

●
●

●

●●

●●
●

●●

●

●●

●

●

●
●

●

●●

●

●

●

●●
●
●

●
●

●
●

●
●

●
●

●
●

●
●●●
●

●
●

●
●
●●●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●●●

●

●

●

●●

●

● ●
●
●●

●

●
●●

●

●

●

●

● ● ●

●

●
●

●●

●

●

●

●●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●●

●

●

●

●
● ●●

●

●

●

●

●
●

●

●

●
●●●

●

●

●

●
●
●

●

●

●
●
●

● ●●
●

●

●

●
●

●

●

● ●

●

●
●

●

●

●●

●●

●

●

●

●●

●
●

●
●

●

● ●
●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●
●
●

●●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

● ● ●●

●●

●●

●

●
●

●

●

●
●

●

●
●●

●

●

●●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●●● ●

● ●●
●●●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●
●

●

●

●

●
●

●
●

●

●

●●

●

●

● ●●
● ●

●

●

●

●
●

●
●●

●

● ●

● ●● ●

●

● ●

●●

●
●

●

●

●

●
●

●

●●

● ● ●

●

● ●

●

●

●

●
●

●●

●
●

●

● ●●

●

●

●
●

●●

●

●
●

●

●

●

●

● ●

●

●●●

●
●

●

● ●

●

● ●

●

●

●

●

●

●
●● ●

●
●

●

●

●

●

●

●
●

●
●

● ●

●

●

●●
●

●

● ●
●

●
●●

●

●

●
●
●

●●●

●

●

●

●

● ●

●
●

●

●
●

●

●
●

●

● ● ●
●

●

●
●

●
●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●

●●

●

●
●

● ●
●

● ●

●

●

●
●

●●

●●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●

●

●
●●●●

●

●

●
●● ●

●

●

●

●

●
●
●

●
●

●

●

●

● ●●
●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●
●

● ●●

●
●

●
●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

● ●●
●

●

●

●
●

● ●

●

●

●

●●
●

●

●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●●
●

●●

●

●

●
●

●
●

●

●

●
●

●
●
●

● ●

●
●●

● ●
●

● ●●
●●

●●

●
●

●

● ●
● ●

● ●

●
●

●●

●

●

●● ●●

●
●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●●

●

● ●
●

●

●

●

● ●
●●

●●

●
●

●

●●

●●

●
●

●

● ●

●

●

●
●●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●
●● ●

●

●

●

●
●

●

●●

●●
●

●

●

●

●
●

●

●

●● ●●
● ●

● ●

●
●●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●●
●
●●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●● ●

●

●

●
●

●

●

●

●
●

●

●
●

●
●●

●
●

●
●● ●● ●

●●●
●

●●

●

●

●
●

●

●
●

●

● ●

●

●

●●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●
●

●
● ●

●

●

●
● ●

●
●●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●
●

●

●

●

●● ●

●

● ●

● ●●
●

●

●

●
●

●
●

●●
●

●● ●● ●

●
●

●

●
●

●

●

●

●●
●● ●

●●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●●

●

●

●
●

●

●●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

●●

●●

●

●

●

●

●
●

●

●

●●

●

●

●●
●●

●

●
●●

●
● ●
●

●

●

●

●

●

●
● ●

●

●●

●

●

●

● ●
● ●

●● ●●

● ●

●●

●

●

● ●

●

●

● ●
●

●●●

●

●
●

●

●
●● ●●

●

●

●● ●

●
●

●

●

● ●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●●

● ●
●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

● ●

●● ●

●

●

●

●●
●● ●

●

●
●●
●

● ●●

●

●
●

●

●
●●

●●

●
● ●

●

●
● ●

●

●●

●● ●●
●

●

●●

●

●●
●●

●●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●●
●

●

●

●

●

●●

● ●
●

●●
●

●

●
● ●

●●

●

●

●

●

●●

●

●●

● ●

●

●

●

●●●

●●

●

●

●

●●

● ●

●

●

●

●

●●●

●

●
●● ●

●●
●● ●●●

●

●

●

●

●● ●●

●
●

●
● ●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●● ●

●

●

●

●

● ●

●

●

●● ●

● ●

●

●

●

●
●

●

●
●

●

●●●

●

●●●

●

●

●

●
●

●

● ●

●

●
●

●

● ●●
●●

●
●

●

●

●
●
●

●

●

●

●
●●

●
●

●●

●
●

●

●

●●
●

●●●

●

●

●

●
●

●

●
●

●
●

●

●●

●

●

●

●
●●●

● ● ●

●
●

●

●

●

●●●

●

●

●●●●

●

●
●

●
●
●

●● ●

●

● ●

●

●

●

●

●

●
●

● ●

●

●

●●
●●

●
●

●●

●
●●●

●

●

●●●

●
●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●● ●●
●

●

●●

●

●

●

●

●
●

●

●

●●

● ●

●
●

●

●●

●

●

●
●●

●

●

● ●●

● ●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●●

●

●● ●

●

● ●

● ●

● ●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●
● ●

●●

●

●
●●

●
●

●

● ●

●

●

● ●

●

●●● ●

●

●
●

●
●●

●
●

●●

●

●
●

●
●

●

●
●

● ●

●

●

● ●

●
●
●

●

●
●

● ●

●
●

●
●

●
●

●

●

●

●●

● ●

●

●

●

●

●

●
●

●

● ● ● ●
●●

●

●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●
●

● ●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

● ●

●
●

●●
●

●
● ●●

●

●
●

●

● ● ●
●

●
●

●
●

●
●

●
●●●

●
●

● ●
●● ● ●●

●

●

●

●

●
●

●
● ●●

●●

●
● ●

●●

●

● ● ●
●

●
●

●

● ●

●
●

●

● ●

●

●

●

●
●

● ●

●

●

●

●
● ●●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●●

●

●

●
●

●
●●

●

●

●
●

●
●

●
●

●
●

●

●
●●

●

●
●

●

●●
●

●
●●

●
● ●

●

●

●

●

●
●

●
● ●●●●

● ●●●
● ●●

●
●

●●
●

●

●
●

●
●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●
●

●
●

●
●
● ●

●
●

●●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●● ●
●

●

●
●

●

● ●●
●

●

●●

●

●

●●

●
●

●

●
●

●

●

●
●

●
●●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
● ● ●●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●●

●

●

● ●
●

●

●●

●●

●

●●

●
●

●

● ●

●●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●●

●
● ●

●
●

●
●

●

●●

●

● ●●●

●
●

●

●

●

●

●

●

●

●● ●●
●

●

●
●

●
●

●

●●
●

●
●●

●

●
●●●

●

●

●
●

●
●

●●
●

●
●

●
●

● ●●
●

●

●● ●

●●

●

●
●

●

●

●
●

●

●●
●

●

●

●
●
●

●

● ●

●

●
●
●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
● ●

●

●

●

●●
●

●

●
●

●

●

●
●

●

● ●

●
●

●

●

●
●

●●●
● ●

●
●

●
●

●

● ●

●

●

●

●

●●

●

●
●

●
●

●
●

● ●

●

●
●●

●

●●●

●

●

●●

●

●●
●

● ●

●

●●

●●●
●

●

●

●

●●
●

●

●

●●
●●

●

●
●

●
●

●

●
●

●
●

● ●

●

●

●

●
●

● ●
●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

● ●

●

●

● ●

●

●

●

●

● ● ●

●
●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●● ●●
●●

●

● ●

● ●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●
●

●
● ●●

●

● ●

●

●

●

●
●

●● ●
● ●

● ●

●

●

●

●●

●

●●●●

●

●
●

● ●

●●

●

●

●
●

●
●●●

●

●

●

● ●

●

●

●
●

●

●
● ●●

●
●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

● ●
●

● ●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

● ●

●

●

●

●
●

●

● ●● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●
●

●
●

●
● ●

●

●●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●●
●

●

●
●

●

●●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●
●

●
●

●●●
●

●

● ●

●●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●

● ●

●

●

●

●

●

●
●
●

●● ●

●

●

●

●

●
●

● ●● ●

●

●
●

●

●
●

●●
●

●

●

●

●

●
●

●

● ●
● ●

●

● ●
●

●

●

● ●

●●

●
●

●●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●
● ●

●●
●
●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

● ●

●

● ●

●

●
●●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●
●●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●● ●

●

●
●

●

●
● ●

●●

●

●

●

●

●

●

●●

● ●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●
●
●

● ●

●

●

●
●

●

●●

●

● ●

●

●

●●
●

●
●

●●

●
●

●

●
●

●

●

●

●

●●
●

●
●

●
●

●

●
●

●

●

●

●

●
●●●

●

●●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●●●

●●
●

●

●

●● ●●●
●

●●

● ●

●
●

●
●●●

●

●

●

●

●

●
●

●

●

●●
●

●

●
● ●

●
●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●
●

●

●
● ●●

●
●

●
●

● ●●

●

●

●●

●

●
●

●

●

●
●

●
●

●

●

●
● ●●

●
●●●

●
●

●
●

●

●

●

●

●
●

●

● ●●
●

●●

●

●

●
●

●

● ●

●

●

●

●

●

●

● ● ●

●

●

●● ●

●

●

●●

●
● ●

●

●

●
●●

●

●

●
●

●

● ●

●

●
●

●●

●

●● ●

●

●●

●

●
●● ●● ●

●●● ●

●

●

●

●

● ●●

●

●●
●

●

●●

●

●●

●
●

●

●
●●● ●

●

●

●●
●

●

●●

●
●
● ●●

●
●

●
●

●●

●●

●

●

●
● ●

●

●
●

●

●
●

●

●

●

●

●
●●

● ●

●

●●
●

●

●
●

●
●●

●
●

●
●

● ●

●
● ●

●

●

● ●

●

●

●

●● ●

●
● ●

●

●

●

●

●

●
●

● ●

●●

●
●

●
●

●●
●

●

●

●
●

●● ●

● ●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
● ●

● ●
●

●

●

●

●

●

●

●●

●
●
● ●

●

●

●

●
● ●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●
●●●

●

●●

●

●

●

●

●

●●
●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●● ●●

●

●

●
●

●

●

●

●
●●

●

●

●●
●

●
●● ●

●

●

●●

●

●

●

●

●

●
●●

●

●

●
●

●
●●

●●
● ●
● ●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
● ●

●

●

●

●
●

●

● ●●
●● ●

●

●

●

●
●

●
●● ●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●

● ●
●

●
●

●
●
●

●
●● ●

● ●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●
●

●●

●
●

●

●
●

●●

●

●
●●

●

●●

●
●

●

●

●

●●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●
●
●

●
●

●

●

● ●●
●

● ●
●

●

●

●
●

●

●●
●

●

●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

●

● ●

●

● ●●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●●●

●

●
●

●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●●

●

●●

●

● ●●

●
●

●

●
●

●
●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●●●
●

●

●

●

●●
●

●

●

●● ●
●

●

●

●

●

●

●

●

●●
●●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●●

●

●
●

●

●

●
● ●

●

●

●

● ●

●
●

●

●● ●
●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●●
●

●

●

●

●●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

● ●
● ●

●
●

●
●

●●

●
●

●
●

●
● ●

● ●
●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●●
●

●
●

●

● ●● ●●

●
●

●
●●

● ●● ●
● ●●

●●

●
●

● ●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●● ●●

●●
●

●

●

●●
●

●●

●
●●

●

●●
●

●

●

●

●
●

●

●●
● ●

●

●

●
●

●
● ●●

● ●

●

●

●●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●●
●

●

●

●

●
●
●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●
●

●

●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

● ●

●
●

●

●

●

●

● ●

●
●●

●

●

●

●

●

●

●
●

●
●

●

● ●●● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

● ●
●● ●●

●

●
●● ●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

● ●●
●

●●

●●

●

●

●

●

●
●●●

●

●
●
●●

●

●
●

●

●

●

●

●
●

●●
●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●●

●
●

●

●
●●

● ●

●

●
●●

●

●

●●●
●

●

●

●

●
●

●

●

● ●
●

●●
●

●

●●
●

● ●●
●

●
●

●
●●

●
●

●

●

●

●

●

●

●
●

●
●● ●

●

●

●

●

●

●

● ●

●

● ●● ●

●
●

●●

●

●

●
●

●

●

●

●

●
●

●●

●●

● ●

●

●

●
●●● ●●

●

●

●

●

●

●
●

●
●

●
●

●●
●

●
●

●

●

●

●

●

●

●●●
●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●
●
●

●

●

●

●

●
●

●

●

●
●
●

●

●

●
●

●
●● ●●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●
●

●
● ●

●● ●
●

● ●

●

●
●●

●

●

●
● ●● ●

●

●

●
●

●

● ●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●

● ●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●
●●

●

●

● ●

●

●

●
●

●
●

●

●
●
●

●

●

●

●
●

●

●●● ●

●

●

●

●

●
●

●●
●

●

●
●

●
●

●

●

●

●
●

●
●

●

●● ●●

●

●

●
●●

●

●●

●

●

●●

●

●

●
●

●●●

● ●
●

●

●

●
●

●

●

●
●

● ●

●

●

●
●

●●
●●

●●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

● ●
●

●

●

●
●

●

●
●

●●

● ●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●●●
●

●

●

●

● ●●
●

●
●●

●

● ●

●
●
●

●

●
●
●

●

●

●

●

●

●

●●

●●

●

●
●

●

● ●
●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●● ●

●

●●

●

●
●

● ●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●●

●
●

●

●
●

●

● ●●

●
●●

●

●

●
●●

●

●
●

●
●●

●

●
● ●●

●

●

●
●●

●

●

●

●

●

●●

●
●

●
● ●●

●

●
●

●

●

●

●

●

●

● ●●

●

● ● ●●

●

●
●

●

●

● ●

●
●

●
●

●

●
●

● ●

●
●

●

●

●
●

●
●

●
●

●

●
●

●●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●●

●
●

●

●

● ●

● ●●●

●
●

●

●
●

●
●●

●

●

●
●

●● ●

●

●

●

●

●
●● ●

● ● ●

●

●

●

●

●

●

●

●●●● ●

●

●

●
●

●

●

●
●

● ●●

●

●
●

●

●

●

●
●

●
●●
●●●

●

●

●
●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●
●●

●
●●

●
●●●

●

●

●
●
●

●

●

●●

●

●

●

●
●

●

● ●
●

●

●

●

●

●
●

●●

●

●

●
●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●●●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●
●

●

●

●●

● ●
●

●
●

●
●

●
●

●
●

●

●

●●●

●

●
●

●● ●

●

●

●●

●

●

●

●

●

●
●●

●
●

●
●

●

● ●
●●

●
●

●

●

●
● ● ● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●●

●●

●

●

●

●
●

●

●

●●
●

●
●

●
●●

●●
●

● ●

●

●

●● ●

●

●● ●● ●● ●●

●
●

●

●●

●
●●

●

●

●

● ●●
●

●
●●

●
● ●●

●

●

●

●

●

●

●

●

● ●

●●
●

● ●

●

●●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●● ●

●

● ●

● ● ●

●
●

●●
●

●

●
●

●

● ● ●

●

●
●●

●

●

●●

●

●

●

●

●
●●●●

●

●●

●
●

●
●

●

●●
●

●
●

●

●
●

●
●

●
● ●●

●

●

●

●
●

●

●

●

●●●

●

●
●

●

●
●

●

●
●

●
● ●

●●●

●●

●

●

●

●

● ●

●

●
●

●

●

● ●●

●

●

●
●

●

●● ●●

●

● ●
●

●

●

●●

● ●

●

●
● ●

●
●

●●
●

●

●

●

●

●
●●

●

●
●

●

●● ●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

● ●

●

●
●

●

●●

●

●

●

●
●

●
●

●●
●

●

●

●

●
●●

●

●

●

●

●
●

●●
●

●●
●
● ●●

●
●

●

●

● ●
●

●
●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●
●●

●

●
●

●

●

●
●

●

●
●

●●

●

●

●

●

●●

●●
●

●

●
●

● ●
●

●
●

●

●
●

●
●

●●

●

●

● ●
●

●

●

●
●

●● ●
●

●
●

●
●

●
●

●
●●

●

●
●

●●
●

●●

●

●
●●

●
●

●

●

●

●
●

●

●

●

●
●

●

● ●●
● ●

●●

●

● ●

●

●●

●

●

●

●●

●●
●

●
●

●
●

●
●

●

●

●● ● ●
●●

●

●
●

●

●

●

●

●

●
●

● ●

●●
●

●

●

● ●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●●

●● ●

●
●● ● ●

●

●

●
●

●

●

●
●●

●
●

●

● ●

●
●

●●
●

●

●●

● ●
●

●

●

●

●
●●

●●
●

●

●

●
●
● ● ●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●●●
●

●
●

●

●●

●

● ●

●

●
●

●

●● ●
●

●

●● ●

●

●

●

●
●

● ●
●

●

●

●

●
●

● ●
●●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●●
●

●●
●

●
●●●●●●

●●
●

●

●
●

●●●

●
● ●

●

●
●

●

●

●
●

●
● ●

●

●

●
●

●

●

●
●

●●●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●● ●

●

●

●●
●

●

●
●● ●

●

●●

●

●

●
●

●● ●
●

●
●

●● ●

●
●

●

● ●

●

●

●

●

●

●
●●

●●
●

●

●

● ●

●

●

● ●

●

●
●

●
●

●
●

●

●
● ●●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●
●●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

● ●

●
●

●
●

●

●

●

●
●

●●

●

● ●

●●

●

●

● ●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●
●

●
●
●

●
●

● ●● ●

●

●
●

●

●
●

●
●

●
●

●

● ●

●

●●

●

●
● ●

●

● ●

●

●
●●

●●

●

●●
● ●

●

●

●
●

●

●
●

●

●
●

●●

●

●

●

●●

●

●

●

●

● ●●
●

●

●●

●

●
●

●●
● ●

●

●

●

●

●
●

●
● ●
●

●

●

●

● ●

●●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●● ●
●

●
●

●
●

●●●●

●
●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●●
●

●

●

●

●

●
●●

●
●

●
●

●

●

●
●

●

●
●

●
●

●

●
●●

●

●●
●
●●

●
●

●

●

●●
●

●
●

●●●

●
●

●
●●

●

●
●

● ●●

●

●
● ●●

●

●●

●

●

●●

●

●
●

●●
●

●
●

●

●

●●

●

●

●●

●

●

●
●

●●● ●

●

●

●
●

● ●
●

●●
●

●

●

●

●

● ●

●

●
●
●

● ●

●

●

●
●

●

●
● ●

●

●
● ●

●

●
●

●
●

●

●

●
●

●

● ●●
●

●

●
●●

●●●
●

●● ●

● ●
●

●
●

●
●

●●

●

●

●

● ●

●
●● ●

●

●●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●
●

●

●●

●

●
●

●

●

●●

●

●

●

●

●● ●

●
●

●

●●
●

●

●

●

●● ● ●

●
●

●

●
●

●

●

●
●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●

●

●

●

●
●
●

●

●
●

●
●

●
●

●
● ●●

●

●

●

●
●

●
●

●

●

●
●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●
●●

●
●

●

●●

●

●
●

●
● ●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●
●●

●

● ●

●

●
●

●
●

●
●

●

● ●

●

●

●

●
●

●

●●
●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●●●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●●
●●

●

●●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●
●

● ●

●

●
●

●

●
●

●
●

●
●●

●

●
●
●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

● ●●
● ●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
● ●● ●

●
●

●

●

●

●

●

●

●●

●

● ●
●

●
●

●
●

● ●●
●

● ●●

●
●●●

●

●

●

● ●

●

●● ●

●

●

●●

●●

●

●●
●

● ●

●
●

●

● ● ●
●
●

●

●

●

●

●
●

●
● ●

●

●● ●

●

●

●

●

● ●●
●

●●
●

●

●

● ●●●

●

●

●
●

●

●

● ●

●●
●
●

●

●

●

●
●

●● ●

●
●

●
●

●
●

●●

●
●

●

● ●

●

● ● ●

●

●

●

●

●●
●

●

●

● ●●

●

●

●

●● ●
●●

●
●

●●●

●

●●
●

●

●

●
●

●

●

●

● ●

●

●
●

●

●● ●●

●

●

●

●

● ●
●

●

● ●
●

●

●
●

●
●

●
●

● ●
●●

●

●●
●

●
●

● ●
●

●
●

●

● ●

●
●

●

●
●

●
●

●
●

●

●●

●● ●
●

●●
●

●

●

●

●

●

●

●

●

●
●
●
●●

●

●
●

●

●

●

●
●

●

●
●

●

●
●●● ●

●
●

●
●

●
●●●●

●

●
●

●
●●

● ●

●

●
●

●

●

●●

●

●●

●
●●

●
●

●

●

●●

●

●

● ●●
●

● ●
●

●
●

●
●

●

●

●
●

●

●
●

● ● ●

●
●
●●
●

●

●
●

●● ●●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●●

●

●

●●●
●

●

●

●

●●

●
● ● ●

●

●

● ●

●

●●
●

●

●

●●

●
●●

●

●

●

●

●●

● ●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●
●

●

●

●
●

●

●

●
●●

●

●

●
●

●
●●

●

●
●

●

●

●
●

●

●
●

●
●

●

●
●

●

●
● ●

●
●

● ●

●

●

●

●

●

●●●

●

●
●

●

●
●

●
●● ●

●●

●

●

●

●
●

●

●

●
● ●

●

●

●

●●

●

●

●
●

●
●

●

●●

●

●●● ●
●●

●

●

● ●

●

● ●

●

●
●

●
●

●

●

● ●

●

●
●

●
●

●
●

● ●●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●● ●

●

●●● ●

●

●●●●

●

●

●

●●

● ●

●

●
●●

●

●

●

●
●

●

●

●
●
●

●
●

● ●
●

●

● ●
●

●
●

●

●
●

●

●

●●● ●
●

● ●

●
●

●●
●

●

●

●

●
●

●
● ●

●
●

●●

●
●●

●

● ●

●

●
●

●

●

●
●

● ●
●●

●

●●●

●

●

●●

●

●
●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●
●

●

●
●●

●
●

●

●
● ●

●

●●
● ●

●

●●●

●

●● ●

●

●

●

●

● ●
●

●● ●
●

● ●
●
●

●

●

●

●

●

● ●
●

●

●
●

●

●●

●

●

●●

●

● ●
●●

●
●

●

●
●

●
●

●

●

●●

●

●●●

●
●

●●

●

●

●

●

●

●

●●

●
●

●

●
●

●

● ●

●
●

●
●

●
●

●

●

●
●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●●

●
●

●

●●

●

●

●
●

●

●

● ●

●

●
●

● ●
●

●●

●

●●●

●

●
●

●

●
●

●

● ●

●

●●

●

●●

●

●

●

●

●

●●

● ●

●

●●
●● ●

●
●

●

●

● ●
●

●

● ● ●●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●●●

●

●
●

●
● ●

●
●

●

●

●
●

●
●●

●

●

●●

●
●

●

●

● ●

●
●

●
●

●

●

●

●

●

●
●●

●

●
●

●
●●

●
●

●●
●

●

●● ●

●

●

●

●

●
●

●●

●

●●●
●

●

●
●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●●●

●
●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

● ●
●

●

●

●
●

● ● ●

●
●

●

●

●

●

●

●

●

●

●
●●●

● ●●

●

●

●

●
●

●

●
●●

●
●

● ●

●

●
●●

●

●

●●●

●●

●

● ● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●

●●●

●●●

●

●●● ●●● ●

●

●●

●

●●● ●
●

●

●

●

●●
●

●
●

●

●
●

●

●
●

●

●●
●

●●

●

●

●

●

●

● ●●

●

●●
●

●

●

●
●

●●

●

●
●

● ●●

●

●
●

●

●

●

●

●
●

●● ●● ●●
●

●

●
●

●

●

●

●

● ●
●●

●

●●

●
●

●

●

●
●

●
●●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●●
●

● ●

●

●

● ●

●

●

●

●
● ●

●

●

●●

●● ●

●
●

●

●●

●

●
●●

●

●● ●

●

●●
●

● ●
●

●

●
● ●●●

●

●
●

●
●

●

●●

●●
●

●

●

●

●
●● ●

●

●

●

●●

●
●

●

●

●
●

● ●●

●

●

● ● ●

●

●
●

●

●
●

●

●
●●

●

●● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●●

●
●

●

●●●

●

●
●

●

●

●●●

●

●

●●

● ●

●●

●

●●
●

●

●

●

●
●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●
●
●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

● ●

●
●

●

●

●

●
●

●
●●●

●

●
● ●

●

●

●
●

●●
●

●

●

●
●

●
●

●

●

●
●

● ● ●
●

●
●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●
●

● ●
●

● ●

● ●
●

●●

●

●
●

●
●

●● ●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●●

●●

●
●

●

●●● ●

● ●
●

●

●
●●

●
●

● ●

●

●

●
●

●
●

●
●

●●
●

●

●

●

●
●

●

●

●

●
●

●
●

●●

●

●

●●●
● ●

●

●
●●
●

●

●

●
●●

●

●

●
●

●

●

●

●
●

● ●
●

●●

●
●

●
●

●
●●

●

●●●

●

●

●

●

●●
●

●

●

●

●

●

●

●●
● ●

●

●
●

●

●

●

●

●
●

● ●●
●●

●●

●

●

●

●● ●

●

● ●●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●
● ●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●
● ●

●

●
●●
●

●

●

●

●

● ●●
●

●

●

●

●●
●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

● ●
●

●●
●

●

●

●

●

●

●●●

●

●
●

●

●

●

● ●

●●
●

●

●
● ●

●

●

●

●

●

● ●
●

●
●

●
●

●
●

● ●

●

●●

●
●

● ●
●

●

● ●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●●●

●

●

●

●●●

●
●● ●●

●
●● ●

●
●

●

●

●

●

●●

●
●
●

●
●

●

●

● ●
●

●

●

●
●

●

●

●
●

●

●●

●
● ●

●

●● ●
●

●

●

●

●

●●
●

●

●●

●
●

●
●

●

●

●
●

●

●

●●

●

●
● ●

●

●

●

●

●● ●● ●
●

●

●
●
●

● ●

●

●

●

●
●

●
●

●

● ●

●

●

●

●
●

●●

●●●
●

●

● ●●

●
●

●

●

●

●

●●

●
●

●

●
●

●

●●●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●

●
●●

●

●●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●
●

●

●●

●

●

●● ●
●

●

●

●
●●●

●

●

●

● ●●

●

●
●

●● ●
●

●
●

●

●

●

●
●

●

●

●●

●

●

●
●

●
●

●●

●
●

● ●●

●

●

●
●

●
●●
●

●

●

●
●

●● ●●

●

●

●
●●

●
●●

●

●

●●
●

●

●

●
●●

●

● ●
●

●

●

●
●

●

● ●
●●

●
●

●

● ●●
●

●

●

●

●

●●
●

● ●
●

●
●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

● ●

● ●

●

●

●

●

●● ●
●

●

●

● ●●
●●

●

●●

●

●

● ●

● ●

●

●
●

●

●

●

●

●
●

● ●
●

●

●

●

●
●

●

●
● ●

●●

●

●

●

●

● ●●
●

●

●
●●

●●●

●

●
●

●

●●

●

●

●●

●

● ●
●

●

●
●●

●

●

●

●

● ●

● ●
●

●

●

●

●
●

● ●
●

●

● ●
●●

●
●

●

●● ●●●

●

●●
●●
●

●
●
●

●●

●
●●

●
● ●

●

●

●

●

●

●

●

● ●●

●
●

●
●

●

●

●● ●

●

●●

●●●
●

●

●
●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●
●
● ● ●●●
●

●● ●
●

●

● ●

●

●
●

●
●

●
●

●

●

●

●
●●

●
●

●● ●

●

●

●
●

●
●

●

●

●

●●
●

●

●
●

●
● ●

● ●

●

●

●

●

●
●
●

●●

●
● ● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●
●

●● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

● ●

●
●

●
●

●

●

●
●

● ●

●

●

●●

●

● ●●
● ●

●

●

●
●

●

●

●
● ●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●
●

●
●
●

●
●

●

●

●
●

●
●

●●

●

● ● ●

●

●
●

●

●

●

●
●

●

●
●

● ●

●●
●

● ●●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●
●

●●

●

●

●
●●

●
●

●● ● ●●

●●
●

●

●

●
●

●●

● ●

●

●●
●

●

●
●

●

●●
●

●

●
●

●

●
● ●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●
●

●

● ●
●

●
●

●

●
●

●
●

●
●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●●
●
●

●
●

● ●

●

●
●

●

●
●

●●
●

●
●

●

●
●

●

● ●
●

●

●

●

●
●

●

●●
●

●

●●●

●

●

●
●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●●

●
● ●

●

●

●
●

●

●
● ●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●
●

● ●

●

●

●

●●

●●●●

●

●
●●● ●

●
●

●
●

●

●

●●

● ●●

●●

●

●

●
●

●

●●
●●

●

●

●

●
●

●
●
●

●●

●

●

●

●
●

●

●

●

●
●

●

●

● ●
● ●

●●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

● ● ●●

●

●

●●●

●

●

● ●●

●

●

●
●

●

●
●

● ●

●●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●
●● ●●

●

●●
●

●
●

●

●
●

●
●

●

●

●
●●

●

●

●

●
●●●

●

●
●
●

●

●

● ● ●
●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●
●●

● ●

●

●●

●

●
●●

●
●

●

●

●

●
●●

●

●●

●

●

●

●●
●

●

●●

●

●

●

●

●●

●

●● ●

●●
● ●

●

●

●

●

●
●●
● ●●● ●

●

● ●
●

●

●

●●

●
●

●

●

●
●

●
●

●

●
●●

●

●
●

●

●●

●

● ●●

●

●

●

●
● ●

●

●
●

●
●

●

● ●●●● ●

●

●

●
●

●

●

●

●
●●

●
●

●
●

●
●●
● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●●
●

●

●

● ●

●
●

●

●

●●

●
●

● ●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●
●●●

●
●

●
●

● ●
●

●●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

● ●

●

●● ● ●

●●

●●

●
● ●

●

●

●

●●
●

●

●●
●●

● ●
●

●

●

●

●

●

●● ●●

●
●

● ●

●
●

●

●

● ●●

●

●

●

● ●
●

●
●

●

●

●●
●

●

●

●

●●
●

●

●
●

●

●
●

●●
● ●

●

●

●
●

●
●

●

●

●

●
●

● ●

●
●

●

●

●●● ●

●

●
●

●●
●

●

●●●

●
●

●● ●

●

●●●
●

●

●

●
● ●

●

●

●

●

●

●

●

●●
●

●

●

●● ●

●
●

●
●

●

●
●

●

●

●
●

●●●
●
●

●

●● ●●

●

●●

●
●

●

●●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●
● ●

●
●
●●

●

●
● ●

● ●●
●

●

●
●

●

●

●

●
●
●

●
●

●

●

●●
● ●

●

●

●
●

●

●

●
●

●

●
●

● ●

●

●

● ●

●

●

●

●●

●

●

● ●

●

● ●● ●

●
●

●

●

●

●

●
●●

●

●

●

●

0 2 4 6 0 2 4 6 0 2 4 6

−3

−2

−1

0

X1

X
3

●
●

●

●●
●

●●

●
●

●●

●

● ●●
●

●

●

●

●●

● ●

●● ●
●●

●
●

●●
●

● ●● ●

●

● ●

●

●

●

●
●

●

●●
●●●

●●
●●

● ●
●●
●

●
●●

●
●●

●
●
●

●
●

●

●● ●●●
●

●● ●

● ●

●

●

● ●
●

●
●

●
●●
●

●●
●

●● ●●
●

●

●
●

● ●
●

●

●●

● ●●●●●

●

●●
●●

●●●

●

●

●

●
●

● ●

●
●

●

● ● ●●
●

●
●

●

●
●● ●● ●
● ●●

●
●●

●
●

●● ●● ●
●

●

●●
● ●

● ●

●
●

●
●●

●
●

● ●●

●
●●

●
●●●

●
●

●
●

●
●●

●

●

●
●

●

●

●
●

●
●●●●

●

●
●●●

●

●
●

●

●

●●

●●
●

●

●

●

●

●

●
●

●
●●

●
●

●●

●
●

●

●
● ●

●
● ●● ●

●

●
●

●

●●●

●
●

●●●●●
●

● ●●●
●●

●●●●

●

●

●

●

● ●●●
●

●●
● ●

●●●
●

●

● ●

● ●
●

●
● ●

●●
●●●

●
●

●

●

●

● ●
●

●
●

●

●
●●

●
●

●

●

●

●

● ●●●
●●

●●●
● ●●

●

●● ●●● ●

●

●● ●●
●

●
●
●●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●
●

●

●
●

●●
●

●

●
●

●

●●● ●

●
●

● ●

●●
●

●●

●●
●● ●
● ●

●
●●

●●
●

●

●

● ●

●

●

●

●
●●

●
●

●

●●
●●

●●
● ●
●

●

●

●

●

●

●
● ●

●

●●

●
●

●

●

●
●

●

● ●

●

● ●● ●●
●●

●

●
●

●
●● ●

●

●

●●
●

● ●

●
●

●
●

●

●

●
●

● ●●

●

●

●
●● ●●●●

●
●● ●

●
●

● ●● ●
●●●

●

●
●

● ●
●

●
●

●● ●

●

● ●
●
●●● ●

●

●

●●

●
●

●●

●●

●

●

● ●

●

●

●

● ●●●
●●●

●
●

●

●●
●

●

●

● ●

●

●●● ● ●●●●●
●
● ●

●

●●
●●●●

●

●
●
●

●●
●●●

●●

●
●● ●

●
●●

● ●
●

●

● ●

●

●
●
●

●

●
●

●

●

●

●●●
●

●
●

●

● ●
●
●

●

●
●

●

●

●

●
●●

●●●●

●

●
●●

●
●

●●
●●

●●●
●

●●

●
●

●
●● ●●●●
●

●

●

●
●

●●
●●●

●

● ●

●
●

●
●

●●
●

●

●

●

● ●

●● ●●
●

●● ●
●

●

●
●●

●●
●

●
●

●●
●●

● ●

●●
●

●
●

●

●●
●

●

●

● ●
●●

●●
●
●

●●

●

●●
●

●

●
●●●●

● ●

●
●

●

●

●● ●
●

●● ●
●

●

●

●

●
●

●

●

●
●●
●
●● ●

●

●

●

●

●

●

●●
● ●

●
●●

●

●

●
●● ●

●●●
●
● ●

●

●
●● ●● ●●●● ● ●

●

●

●●
●

●

●

● ●

● ●●
● ●● ●●
●●●

●

●
●●

●
●

●●
●

●●
●

●

●

●

●

●

●
●
●● ●

●

●●
●

●
●

●
●

●
●

●

●●
●

●

●

● ●

●

●
●

●●
●●●●

●●

● ●●● ●

●

●
●●

●
●

●

● ●

●

●
●

●● ●
●

●

●

●

●●

●

●

●
●

●
● ●●● ●

●
●

●

●

●

●
●

● ●
●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●
●

● ●● ● ●●
●

●

● ●
●
●

●
● ●● ●●●

● ● ●● ●

●

●

●

●

● ●

●

●
●●●● ● ●

●● ●
●

●●
●

●
●

●
●

●

● ●
●●
●

●●
●●

●●
●

●

●
●

● ●●
●

● ●
●

●● ●

●

●

● ●
●●

●●

●
●

● ●

●
●

●● ●
●

●

●
●

●

●

●
●●
●●

●
●●●

●

●
●

●

●

● ●●
●

●
●

●●●●

●

●
●
●●
●

● ●● ●●

●

●●
●

●

●

●
●
●

●

●
●●

●

●● ●
●

●

●

●●●
●

●

●

● ●

●
●

●

●
●

●
● ●

●

●
●
●

●

●
●

●●●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●
●

●

●

●

● ●

●
●

●●

●
●●

●
●

●

●

●

●

●
● ●

●
●

●

●

●

●●● ● ●

●●
●

●●

●
●●●

●

●

● ●

●

●

●
●

●

●

●

●
●

●
●●●

●
●●

●●
●

●

●●
● ●●

●

●●

●

●●
●

●●

●●●

●

●
●

●

●●

●

●
●

●

●● ●
●●

●

●●
●

●
●●

●

●●●
●

●

●

●
●
●●
● ●

●
●

●●
●

●
●●● ● ● ●

● ●

●
●
●

●
●

●

● ●
● ●

● ●
●●●●

●

●

● ●

●

●

●

●●●

●

●
●

●

●

●
●

● ● ●●

●

●
●●●●

●
●

●

●●

●●

●

●

●

●

●

● ●
●

●

●● ●

●

●
● ●

●●

●
● ●

●

●

●● ●●●
●

●●
●

●

●
●

●
●

●
●

●

●

●●
●

●
●

● ●
●

●●
●

●

● ●●● ●●● ●●●

●
●

●●
●

●

●
●

●●
●
●

●

●

●
●

●

●
●

●
●

●●
●

●

●● ●

●

●

●

●
●

●
●● ●●

●
●

●
●

●

●● ● ●

●

●

●

●● ●
● ●● ●

●
●●

● ●

●

● ●

●●
●
●●

●

●

●

● ●

●●●

●

●

●

●

●

● ●

●
●

●●●●
●

●
●●
● ●●

●

●● ●●
●

●

●●
●

●●

●
●●●

● ●

●

● ●
●

● ●●●
●

●

●

●● ●●
●

●

● ●

● ●● ●●●●

●

● ●
● ●

●

●●● ●●
●

●●
●

●

●

●

●
●

●

●

●
●
●●

●●

●
●
●
●

●

●

●
●

●

● ●

●

●
● ●●●●

●

●

●●
●

●

●

●

● ●
●

●

●

●
● ●●
●

●
●●

●

●●
●

●● ●
●

●

●

●

●

●

●

●●
●

●
● ● ●●●

●

●●
●
●
●

●

● ●●

●

●
●
●

●●

●

●
●
● ●

●

●
●●
●

●

●

●

●

●

●

●
●

●
●

●●
● ●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●●

●●●
●

●●

●●●●

●
●●

●

●
●

●

● ●

●

●

●

● ●●

●

●

●

●

●●●
●

●
●●● ● ●● ●●●●● ●

●●
●●

●

●● ●● ●
● ●

●
●● ●
●

●

●●●

● ●

●

●

●● ●

●

●
● ●●
●●●

●

●

●●

●●●
● ●

●

●

●

●

● ●●●●
●●●

● ●
●●

●

●

●

●

●

●

●
●

●
● ●

●
●

●

●

●
●

● ●●
●●

●

●

●● ●
●

●

●●●
●

●

●

●

●●
●

●● ●●

●

●
●●

●●

●

●

● ●
●
●

●●

●
●

●

●

●
●

●
●

●
●

●
●●

●

●●

● ●

●

●

●●●
●●

●
●

●●
●

●

●
●

●

●

●

●●●●

●

● ●
●

●

● ●
●

●

●
●

● ●●●●

●

●

●●

●
●

●

●
●●●

● ●● ●
● ●

●

●

●
●

●
●
● ●

●
●

●●

●●
●

●

●

●

●●●

●

●
●●
●
●

●

●

●
●● ●

●

●

●

●

●
●

●●●● ●● ●

●●

●

●

●

●●●●●

●
●

●●

●
●

●
●

●

●

●

●

●
●●

●

●
●

●●

●

●●●
●●

●

●

●●●
●

●
●

●
●

●●
●
●

●
●

●●●
●● ●

●●
●

●
●

● ●
●

●

●

●

●

●

●● ●
●

●●
●

●
●

●

●

●

●● ●

●●

●●● ●●
●

●

● ●

●

●
●●

●
●●

●

●● ●
●

●●
● ●

●
●

●●
●●

●

●

●●
●● ●

●

●

● ●
●

●
●

● ●
●●●

● ●

●

●

●

● ●
●
● ●● ●

●

●
●

●●
●●
●

●

●

●

●

●

●

● ●
●

●
●

●

●●

●

●

●●●
●

● ●

●

●

●●●

●

●

●

●

● ●●
●●

●● ●●● ●
●

●●●
●

● ●●●
●

● ●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

● ●●
●

●
●●

●●
●

●
●●

●● ●●
●●

●

●
●●● ●

●

●
●

●

●

●●

●
●

●

●●
● ●
●●

●
●●

●

●
●

●
●

● ●

●●
●

●

●

●

● ●●● ●●●

●●

● ●● ●●

●

●●● ●

●

●
●

●
●
●
●

●

● ●
● ●

●
●●

●● ●

●

●
● ●
● ●
●

●

●●

●

● ●●
●

●

●

●●

●
●

●

●
●

●●
●

●
● ●

● ●
●

●
● ●●

● ●
●

●
●

●

●●●●

●

●

●
●
●

●●
●

●
●●

●

●

●● ●
●

●
●

●
●
●
●
● ●

●
●

●●

●
● ●
●

●
●

●

●

●●
●

●●

●

●
● ●

●●

●●●
● ●●

●
● ●

●
●

●

●●

●
●

●●●● ●

●
●

●

●

●

●
● ●

●

●

●

●
●●
●

●●
●
●●

●

●
●

●

●
●

●●●

●

●

●
●

●●●
●●
●

●

● ● ●●

●

●●
●

●

●

●

● ●

● ●

● ● ●
●●

● ●

●

●
●

●●

● ●●
●

●
●

●●●

●

●● ●●● ●● ●

●
●

●

●●

●
●

●
●

●
● ●

●
● ●

●
●● ● ●
●

●
●

●

●
●

●●●

●

●
●

●
●

●
● ●● ●

●● ●●
●

●

●

●●
●

● ●●●
●

●

●

●

●

●●●
●

●●

●

●

●
●

●

●
●

●

●

●

●

● ●
●
●

●
● ●●●●

●●
●

●

●●●●

●
●●

●
●

●

●

●
●●

●

● ●●

●

● ●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●● ●

●
●

●
●●●●

●● ●
●

●

●

●

● ●●

● ●
●

● ●

●

●
●

●●
●

●●●

●
●

●

●●
●

●
● ●●
●● ●●●
●● ●●

●●
●

●

●●●

● ●

● ●●●●

●

●●
● ●

●

●

●

● ●

●

●

●

●

●● ●
●

●

●

●
●●●
●

●

●●●
● ●●● ●●

●

●
●

●
●

●
●●

●
●
● ●

●
●

●
●

●
●

●● ●●● ●
●
●

●
●

●
●
●●

●
●

●●
●
●

●

●
●

●

●

●
●●

●
●●

●
●

●●●
●

●
●●

●

●

●

● ●
●

●

●

●
●
●
●●

●

●

●
●

●

●

●

●●

●

● ●
●

● ●●

●

●●
●● ●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●
●●

● ●

●
●

●
●

●

●

●●

●

●

●
●

●

●
●

●

●

●●

●

●

●●●

●

● ●

●

●
●

●
●

●

●

●
●● ●

●

● ●

●

●

●

●
●

●● ●
●

●
●

●

●
●●

● ●●

●

●

● ●
●

● ●

●

●●

●
●●

●
● ●

●

●

● ●●

●

●
●

● ●●●

●

●

●

●●
●

●

●
●

●
●

●●

●

●
●●

●

●

●
●

●

●●●●

●

●

●

● ●
●

●
●

●

●●
● ●●●

●

●

●●

●
●

●
●

●

●

●
●

● ●
●

●●
●

●
●

●
●●●

●●

●● ●
●

●

●
●
●

●
●

● ●
● ●
● ●●

●
●●

●
●
●●
●● ●

●

●
●

●

●

●●
●●● ●

● ●

●

●

●

●

●●

●

●●
●

●
●

●
●

●●
●●
●

●

●
●

● ●
●●

●● ● ●
●●

● ●●

●●

●

●

●
●

●
●

●●●●

●

● ●
●●●●

●
●●

●

●

● ●

●

●

●

●

● ●
● ●

● ●●

●
● ●●

●
● ●
●●● ●● ●●

●●
●

●

● ●

●●
● ●

●

●
●

●
●

● ●

●

●
●●

●● ●
● ●●
● ●
●●

●

●

● ●
●

●

●●

●

●

●
●●

●

●

●

●

●

●●●●●
●

●●
●●

●
●

●
●●

●●●
● ●●
●

●●● ●●
●

●
●

●

● ●●

●●

●

●● ●

●

●
●

● ●●

●

●

●●
● ●●

●●●●

●

●

● ●

●

●
●

●

●

●
●

● ●

●

●

●
●

●
●●

●

● ●
●

●
● ●●

●
●

●

● ●
● ●

●

● ●
●

●

●

●

●

●

●

●●

●

●● ● ●●●

●

●●

●

●
●●

●
●

●

●

●●

●

●●●●
●

● ●●
●●

●
● ●

●

●
●

●
●●

●●●

●

●

●

●

●

●
●
●●●

● ●●● ●
●

●●

●

●
●

●
●

●
●

●

●

●
●●●●

●
● ●●
●

●

●●

●

●
●●● ●

●
● ●

●

●

●●
●

●

● ●

●

●●●
●

●

● ●●● ●●●●
●

●

●

●●

●
●● ●●●●

●●
●

●

● ●●

●

●

●
●

●

● ●

●

●●
●

●

●

● ●●●

●

●●●
●

●

●

●
●●

●
●

●●
●●

●
● ●
●
●

●
●

● ●
●

● ●
●

●
● ● ●
●●●

●●

●

●
●

● ●

●

●●

●

● ●●

●

● ●

●●●

●

●
●

●●
●●

● ●

●
●

●●

● ●

●

●

●

● ●●●
●●

●
●●
●●

●

●●●

● ●

●
●

●●
●● ●

●
●●●●

●
●

●
●

●● ●

●
●

●

●

●

●
●●

●

●●
●●●●

●

●

●

● ●
● ●
●

●

●
●●

●
● ●

●

●●
●●
●
●●

●

●
●

●

●●

●
●
● ●●

●

●●
●●●

●●

●
●●

●
●●

●
●●

●●
●●●

●
●

●

●●
●

●

●

●
●●

●● ●

●
●●● ●

●

●
●

●

●
●● ●

●●●
●

●● ●● ●

●

●

●

●
●●
●

●●
●●

●●

●●
●

●

●●
●
●

●
●

●

●

●●

●

●

● ●
●●

●● ●

●

●
●

●
●

● ●

●
● ●

●
●

●

●

●●

●●
●●

●

●●

●

●
●●

●
●

● ●●

●

● ●

●

● ●

●●
●

●
● ●

●

●

●●

●

●

●
●●

●

● ●
●

●

●

●

●
●●

●

●

●
●●
●●

●●
● ● ●

●
●●

● ●

●● ●
●

● ●

●

●
●

●

●

●
●●

● ●●
● ●

●●
● ●

●

●●●
●

●

●

●●

●

●
● ●

●●

●●

●

●

●
●●

●

●
●

●

●

● ●

●

●●
●

●●
● ●● ●

●

●
●

●●
● ●

●● ●
●

●●●

●

●
●●●● ●

●
●●●

● ●
●

●

●●

●
● ●

● ●
●

● ●

●

●
●

●

●●●●●●
●

●

●

● ●● ●● ●

●

●● ●
●
●

●
●

●●
●

●
●

●● ●

●

●
●
●

● ●

●

●
● ●●● ●●

●
●

●

●

●
●

●

●
● ●●

●● ●●
●

●●

●

●

●●
●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●●●
●●

●●
●

●
● ●●● ●●●

●
●●
● ●

●
●●● ●
●

●●
●●●

●
●
● ●●

●

●
●

● ●● ●

●
●

●
●

●
●

●

●

●●
● ●

●

● ●

●

●
●

●

●

● ●●

●

●
●

●

●

●

●
●

● ●
●

●
●

●

●
●

● ●

●
● ●

●●

●

●

●

●●● ●
●

●

●
●●

● ●●
●

●●
●

●● ●
●

●

●
●

●

●

●
●
●

●
●●

●
●

●
●

●

●

●

●

●

●

●
●

● ●●

●
●●●

●
●
●●
● ●

●
●

●
●

●
●
●● ●

●
● ●

●●

●●

●

●●
●

●

●

●● ●
●

●● ●

●
●
●

●●

●

●
● ●●

●

●
●

●

●●●●
●●

● ●

●
●●●●● ●●●●

●
●●

●
●

●●●●
●

●
●● ●

●●● ●●●●● ●

●

●

●●

●
●●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●
●●●

●

●

●

●
● ●● ●●

●

●

●
●

●●
●●●

●
●

●

●

●
●● ●●

●

●●●

●

●● ●
●

●
●●

●

●

●
●●

● ●● ●
●

●
●●

●

●

●

●

●●

● ●●
●

●● ●●●● ●
●

●
●●

●

●●

●

●
●
●● ●●

●● ●

●●

●
●

●
●● ●●

●
●●

●

●

●●

●

●

●● ●

●

●
●

●●●●
●

● ●

●

●●● ●
●●

●●
●

●
●

●●

● ●●

●

● ●●

●

●●●

●

●

●
●●

●
●

●●

●
●

●● ●●

●

●● ●
●

●
●

●●
● ●

●●

●

● ●●●●
●

●

●

●

●

●●● ●
●

●● ●●

●

●●
●●

●

●
●

● ●
●

●
● ●

●
●●

●●●
●●

●

●

●
●

●●

●

●●
●

●

●

●● ●●●
●●

●
●
●

● ●
●

●
●

●●

●●
●●

●

●
●

●

●

● ●
●

●

●

●
●

●

●● ●

●

●● ●
●

●

●

●● ●
●

●
●
● ●●●

●

● ●
●

●●●

●

●
●

●
●●●
●

● ●

●

●
●

●

●

●

●

●

● ●
●

●●
●

●

●
●
●

●

●● ●●

●
●●● ●●●

●
●●●

●

●●● ●

●

●

● ●
●

●

●
●

●

●
● ●

●

●

●

●

●

●

● ● ●
●

●

●

●●●●●

●
●

●

●

● ●●
●●

●
●

●

●
●● ●

●

●●●●●

●●
●●
● ●
●

●
●

●

●

●

●

●● ●
●●●●●● ●● ●
●

●
●●

●
●

●

●
●

●
●
●

●
●

●
● ●

●

●

●● ●

●
●●

●

●● ●●●●
●

●

●
●

●
●

● ●●

●

●●
●

●

●●

●
●

● ●
●

● ●
● ●●

●
● ●

●
●

●

●

●
●● ●

●

●
●

●

● ●
●●● ●

●
●

●
●

●

●
●

●

●

●
●●
●

●

●
●● ●●

●

●
●
●

●

● ●

●
●

●
●

●● ●
●

●
●

●
●●●●●

●
●

●

●

●

●●●
●

●
●

●

●

●

●

●

●●

●●
●

●● ● ●
● ●●●●

●
●

●
●

●●●●

●

●

●

●●

●

● ● ●

●

●
●

●●●●
●

●
●

●●

●
●●

●

●●
●

●●●●●
●

●

●●
●

●

●

●
●

●
●

●
●
●

●

●

●●
●

●

●

●
●
● ●

●
●

●

●

●

●
● ●●

●
●

●●
●●

●
●

●
●●

●
●

●

●
●

●
●

●
●●

●
●

●●
●
●

●

●

● ●
●
●●

● ●

●●

●

● ●
● ●

●

●●●●
●

●●

●

●
●●

●
●

●
●

● ●

●

●
●

●
●

●●

●

●

●
●

●
● ●● ●● ●

●

●● ●●
●

●
●● ●●●●

●

●●●

●

●
●

●●

●

●

●● ●
●

●
● ●●
●

●
●

●

●
●

●

●●
●

●●
●●

●

●
●

● ●● ●
●

●

●

●● ●● ●●
●

●

●

●
●
●

●
●●

●
●

●
●
●

● ●
●● ●

●●
●

●

●

●●
●
●
●

●

●

● ●
●

●

●
●●

●

●●
●●

●
●●
●●

●

●

●
●

●●
●

●●
●

●

●●
● ●

●●
● ●●

● ●

●

●
●

●
●

●

●

● ●●
● ●

●

● ●

●

●
●

●
●●●●

●

● ●●

●

●

●
● ●●

●

●
●

●

●●●● ●●●

●●

●
●
●

●
●

●

●
●

● ●
●

●

●

●

● ●
●

●
●●

●●
●●

●
●

●
●●

●

●

●

●●

●

● ●●●

●● ●
●● ●

●●

●

●

●
●

●
●●●●●

●

●●

●

●●
●

●
●

●

●

● ●

● ●●●
●

●

●
●●● ●

●
●●

●●
●●

●

●

●

●●●
●

● ●●
●

●
●

●
●

●

●

●
●
●

●●

●●
●

●●

●

●

●
●

●●●

●

●●
●●

●

●
●

●

●

●

●

●
●

● ●●●
● ●●

●●●

●

●● ● ●● ●
●

●
●●

● ●●
●
●

●

●

●
●

●

●

●●

●

●

●
●

●●
●

●

●

●

●●●

●
●

●
●

●
●

●●
●●

●

●

●
● ●

●

●
●
●

●

● ●

● ●
●● ●

●●●

●

●
●

● ●●
● ●●

●●●●
●

● ●

●

●
●●●

●
●

●
● ●● ●

●●
●

●

● ●●

●

●● ●

●●

●●●
● ●●
●

●
●

●

●

●

●
●●

●●
●
●

● ●

●
●

●●
●

●

●
●

●
●

●

●

●
●●

●●
●

●

●
●

●●
●

●

●

●

●
●●

●

●

●

●

●●●

●
●

● ●
●

●●

●
●

● ●
●

●●●

●●

●

●●

●

●●

●● ●●

●
●

●

●

●
●

●

●●●

●

●●

●

●
●

●●
●

●
●●

● ●
●

●

●●

●

●
●

●

● ●

●●
●● ●●●●●

●

●

●
●

●
●

● ●
●

●

●

●

●
●

●

●

●
●●

●

●●
●

●●● ● ●

●

●●
●

●
●

●
●●●

●
●

● ●●●
●●

●
●

●

●●● ●
●

●
●

●●
●

● ●
●●●

● ●
●

●

●●●

●

●
●

●
●

●● ●● ●
● ●●

●●●
●

●
●

●

●
●●

● ●●

●

●

●

●
●●●●

●

●●
●

●
●●● ●●

●
●

●●
●

●●
●

●

●

●●● ●
●

● ●●●●
●● ●

●

●●

●

●
●

● ●● ● ●● ●●

●

●

●

●
●
●●

●
●●

●

●

●

●

●
●●

●
●
● ●

●

●
●
●

●●

●●
●

●

●

●● ● ●

● ●

●●

●

●
●

●
●

●
●

●

●●

●

●

●
●

●
●●

●

●
●

●

●●
● ●●●●

●

●● ●●

●

●
●

●
●

●
●

●
●

●●
●

●●●

●

● ●
●

●

●
●

●

● ●●

●

●

●●●●
●
●
●●

●

●
●●

●

●
● ●

●
●

● ●●

●

●● ●

●
●

●

●● ●
●

●

●

● ●●
●

●●
●●

●
●

●
●● ●

●

●

●

●

●
●

●●

●

● ●
● ●●●

●●
●● ●●● ●●

●

●
●● ●●

●

●

●

●

●●
●

●

●
●

●
●

●●
●

●

● ●
●

●

●●

●
●

●●
●

●

●

●
●

●● ●
●

●

●

●

●
● ●

●

●

● ●●●
●

●
●

●
●

●

●
●
●

●

●
●

●

●
● ●●

●

●
●●●● ●●●

●

●

● ●● ● ●
●

●
●

●

●

●●

●

●
●

● ●

●

●

●
● ●●●

●●

●

●● ●
●●

●
●

● ●
●

●

●

●

●

●
● ●

●●
●
●

●
●●

●

●
●
●

●

●

●
●

● ●
●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●●
●

●

●●●●

●

● ●
●●

●
●

● ●
●

●
●●●● ●

●

●

●
●●

●●●
● ●●●
●

● ●●

●

●

●
●●

●

●

●

● ●●●
●

●
●●●●
● ●

●●
●

● ●●
● ●
●

●
●

●
●
● ●●

●
●
●● ●

●
● ●

●

●
●

●

●

●●●● ●
●

●●

●●
●

●
●

●

●

●●●
●

●●
●

●● ●●●
●

●

●

●● ●

●

●

●
●

●
●

●●● ●
●
● ●

●● ●●

●
●

●

●

●
●●

● ●● ●●
● ●

●
●

●● ●
●

●●
●

● ●
●

●
● ●

●
●

●

●

●

●

●

●

●

●

● ●
●● ●

●●

● ●●●

●

●● ●

●

●

●

●
●

●●

●

●

●
●

●

● ●

●●
● ●●

● ●●●●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●

● ●
●

●

●
●

●

●

●●
● ●

●● ●
●●●

●

●

●

●●

●

●

●
● ●●●● ●

●

●
● ●●

●

●

●
●

●
●
●

●●
●●

●

●●
●

●

●●
●

●
●

●●●

●

●
●

●

●

●

●
●● ●● ●● ●

●
●

●
● ●
●
●●●
●

●●

●
●

●
●
● ●

●

●
●

●

●
●

●●

●

●
●
●

●
●

●
●

●

●
●●

●
●● ●●

●
●

●

●
● ●●

●●
●●

●
●●

●

●

●

●●
●
●

●

●
●●

●● ●
●

●
●

●

●

●
●

●
●●●

● ●
●● ●

● ●
●
●

●

●

●

● ●
●

● ●
●

●

●●

●●

●

●
●●

●
●●

● ●
●

● ●●
●

● ●
●●

●

●● ● ●

●

●
●

●●
●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●● ●

●

●

●●

●

●●●
● ●

●

● ●●●● ●●

●

●●
●●●

●

●●● ● ●

●

●
●

●● ●
●●●●

●

●

●●●

●

●
●

●

●●

●

●

●●●
●●●

●

●
●● ● ●● ●

●
●●

●

●
● ●● ●

●
●

●
●

●
●

●●
●

●

●
●

● ●
●

● ●

●
●●

●

●
●

●
●
●
●

●
●

●

●● ●●●●
● ●●

●

●

●

●
●

●

●●

●

●

●

● ●

●

●
●

●

●
●

●

●

●●
●● ●

●

●

●
●

●
●

●

●

●
●

● ● ●

●

●●● ●●

●

● ●

●

●
●

●

●
●

●●
●

●●
● ●● ●

●

● ●

●

● ●
●

●

●

●
●● ●

●● ●
●

●●
●

●●
●

●●

● ●

●
●●

●

●
●

●
●●●

●
●
●

●

●● ●●
●

●

●

●
● ●●●

●
●

●
●●

●●

●

●

●●
●

●

● ●
● ●●● ●

●

●
●

●
●
● ●●

●
● ●

●

●

●

●
●

●
●

●

●

●
●●

●

●● ●

●

● ●

●
●

●
●●

●
●

●●

●

●●

●

● ●●
●●●
●●

●

● ●

● ●●
●●

●●●●●

●

●
●

●

●●
●

●

●

●

●

●
●

●●
●●

●●

●

●
●

●●
●

●
●

●

●

●

●

●
●
●

● ●
●● ●●●●

●

●
●

● ●●●
●

●
●●●

●

●● ●
●● ●

●
●

●●

●

●●● ●●
●

●
●

●●
●

●

●

●●

●
● ●

●
●

●●●

●

●

●

●
●

●
●

● ●● ●●

●
●

●●
●
●

●●

●●●
●
● ●●

●
●

● ●

●

●●
●

●

●
●
●●●
●●

●

●●
●

● ●
●●

●
●●●

●

●●

●

● ●●
●●

●
●

●

●
●

●

● ●

●

● ●
●

●

●

●●

●

●
●

●
●

●

●●
● ● ●

●

●●●
●

●●

●

●

● ●
●● ● ●● ●

●●
●

●

●

●
●

●
●

●
● ●● ●●● ●

●

●●
●●

●

●

●
●

●●●
● ● ●

●
●●

●

●

●
● ●

●

● ●●

●

●
●●

●

●
●

●

●●●
●●

●

●
●

●

● ● ●●
●

●
●●●
●

●●●

●
●●●

●

● ●
●

●

●

●

● ●● ●
●

●●
●● ●

●
●

●●

●

●

●
●

●

●

●●
●

●

●

●

●

● ●

● ●

●
●

●
●

●●●
● ●●

●
●

●
● ●

●
●● ●

●

●

●
●

●

●

●●

●

●

● ●●
●

●

●●●
●

●
●

●

●
●●●

●
●

●
● ●

●

●● ●
●

●

●
●

● ●

●

●
●

●

●

●

●●●● ● ●●

●

●

●●

●

●
●

●

●

●
●

●●

● ●●
●●

●
●

● ●

●
● ●

●● ●
● ●

●● ●
●●

●

● ●

●
● ●

●●●

●

●●
●● ●

●

●

● ●
●●●● ●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

● ●●●

●

●

●

● ●
● ●

●
●

●

●●●

●

●● ●● ● ●●

●● ●

● ● ●●

●
●

●● ●●

●
●

●

●

●

●
●
●

●

●

●●
●●●

●
●

●

●

●●
●● ●

● ●
●

●
●

●

●
●●●

●● ●

●

●
● ●●

●

●●

●●
●

●
●

●
●

●

●

● ●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

● ●

●

● ●● ●

●

● ●●●

●

●

●
●●

●
●

●

● ●
●●

●
●●
●

●●
●

●●

●

●●

●

● ●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●
● ●●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●
●

●

●●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●● ● ●● ●●

● ●

●

●
●●

●

●

●
● ●

●
●●

●

●

●

●

●

●
●●

●
●

●
●

●

●

●●

●

●

●
●
●

● ●

●
●

●
●●

●●

●

●●
●

●

● ●

●
●

●

● ●

●

●

●

●

●

●● ●

●
●

●
● ●●

●

●●
●

●
●●●

●

●
●

●

●
●

● ●

●

●●●
●

●
● ●●
● ●

●● ●●

●

●

●●

●
●

●
●
●

●●
● ●

●
●
● ●
●
● ●
● ●

●● ●

●
●●

●

●
●

● ●
●

● ●●
●

●

●

●
● ●●● ● ● ●●

● ●
●

●

●●

●

●

●

●

●
●

●
●

●
●●●

●●
●

●

●

●●
●●

●●

●
●

●
●

●

●

●
●

● ●
● ●

●●● ●
●
●

● ● ●

●

●●

●

●●
●●●

●●
●

●●
●●● ● ●●

● ●
●●● ● ●●

●
●

● ●●●
● ●●

●

●
●

●● ●●
●

●●
●

●

● ●

●

● ●
●

● ●
●

●
●

●

●

●

● ●

●●

●

●●●
● ●

●
●

● ●
●

●

●● ●●
●●
●

●
●

●

●

●

●● ●●● ●●

●
●

●

●

●●

●

●
●

●●

●
●

● ●●
●

●

●
●

●

●
●

●

●
●

●

● ●
● ●●
● ●●
●●

●

●
●

● ●

● ●
●●

●●
●

●
●●

●●
● ●
●

●
●

●
●

●●
●

●

●

●
●● ●

●●
●
●

●

● ●
●●

●
●

●
●

●
●●●

●

●

●

● ●

●

●

●

●●
●

●
●

●
●●

● ●● ●
●

●●
●

● ●

●● ●● ●● ●
●
●●● ●●

●
●

●

●

●

●
●
●

●●●

●

● ●●

●

● ●● ●
●

● ●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●

● ●

●
●●

●

●

●●

●
●

●

●

●
●

●

●

● ●
●●

● ●●●

●

● ●
●

●

●
●

●●

●

●●●

●

●

●
●

●●●
● ●

●
●

●

●

●

●

●
●

●
●

●

●
●●

●●

●

●
●● ●● ●

●
●

●● ●● ● ●
●

●

●

●

●

●
●

●

●

●●
●●

●●
● ●●
●

●●
●● ●
●●

●
●

●
●●

●
●

●

●
●●

●

●● ●●
●

●

●
●

●

●

●●

● ●
●

●
●
●●

●

●●

●●
●

●
●

● ●

●

●
●●

●
●

●
●

●
●● ●●
●

● ●
●●● ●

●
●

●
●
●●● ●●

●●
●

●

●

●
●

●

●

● ●

●
●●●

●

●
●

●
●

●
●●

●
●

●
●

●

●
●

●
● ●
● ●

●● ●
●

●●
●

●
●

● ●●
●

● ●●

●
●

●●●
●●

● ●

●●
●

●
●

●●●

●

● ●

●

●
●● ●

●
●

●●
● ●

●
●●●●

● ●●

●

●

● ●
●

●

●

●
●

●
●

● ●

●

●
● ●● ●●

●

●
●●

●

●
●

●

● ●●
●
●

●
●●

●

●

●●

●

●

●
●

●

●

●
●

●
●

●●

●●
●

●
●

●●
●●

●
●●●
●●

●
● ●●● ●●●
●●●

● ●

●
●

●

● ●

●

●
●●

●

●

●

●

●
●

●
●

●

●● ●●● ●●
● ●

●
●

●
●
●

●●●

●

●● ●
●

●

●
●

●
●

●● ●

●
●●

●
●

●

●

●

●

●

●

●●●
●

●

●

●

●

●
●

●

●

●●
●

●
●

●●●
●

●

●●

●

●
●●

● ● ●●
●

●

●

●
●

●

●
●

●
●●●

● ● ●● ●●

●

●
●

●●●
● ●

●●●

●

●

●

●

●
●● ●

●

●●

●●

●

●●

●

● ●●●
●

●
●

●

●

● ●●
●●

●●●
●●●●●

● ●

●
●●●

●
● ●●

● ●● ●

●

●
● ●

●

●

●

●

●
●

●●
● ●●

●

●

● ●

● ●

●

●
●●

●● ●●●

●●

●

●

●●● ●

●
●

● ●●
●

●●

●● ●
●●

●

●●
●
●

●
●

● ●●●

●● ●
●

●●

●

● ●

●

● ●
●● ●

●

●

●
●

●●

●
●

●

●
●
●
●

●
●

● ●

● ●●
●● ● ●

●
●

●
●

●

●●●●

●
●

●

●
●

●
●

●●

●
● ●

●
●
● ●● ●●
●●
● ●
● ●

●
●●

●
●●● ● ●

●
●

● ●●

●●

●

●
●

●

●
●
●

●●
●●

●
●

●
●

●●
●

●

●●
●
●

●● ●

●● ●●● ●

●

●●

●
●

●

●

●

●
●

●● ●● ● ●●

●
●

●

●

●
●

●

●

●

●●●

●
●

●
●

●
●

●
●●●

●

●●●
●

●
●

●

●

●

●
● ●
● ●

●●
●

● ● ●●
●

●

●

●●
●

●

●

●

●

●●● ●
● ●

●

● ●●
●

●
●

●

●
●
●

●●

● ●●●
●

●
●●

●

● ● ●●
●

●●●
●

●
●●

●

●
●

● ●
●

●

●

●

●●
●

●●●
●

●●

●
●●

●●
● ●

● ●●
●

●

●
●

●●

●
●●

●

●●●
●

●

●

●● ●
●●●

●● ●
●

●

●

●●

●

●

●

●●● ●

●

●

●

●

● ●●

●

●●
●

●

●

●

● ●

●

●

●

●● ● ●
●

●

● ●

●

●
●
●

●● ●
●

●

●● ● ●

●

●
●

●
●

●

●

●

●

●

●
●

●
●●

●
●
●

●

●● ●
●● ●●●●

●
●●

●

●

● ●
●

●

●

●
●

●

●
● ●

●
●●

●●
●

●

●

●

●
●
●

●●

●● ●●● ●
●●

●

●
●

●●
●●

●
●

●●
● ●

●

●
●

●

●●
●

●
●●●●●

●

●

●

●
●

●

●●

●
●
●●

●
●

●
●●
●

●
●●●

●

●

● ●

● ●●

●●
●

●
●

●

●

●
●●

●

●

●●

●

●
●

●● ●

●●

●

●
●● ●●● ●●

●
●

●

● ●
●
● ●

●

●●

● ●
● ● ●

●

●

●
●●●
●● ●
●

●

●
●

●
●●● ●●

●
●

●

●

●●
●●

●

●

● ●

●

● ●
●

●

●●
●●

●

● ● ●● ●

●

●

●●●●
●

●
●

●

●● ●●●●
●●

●

●●

●

●

●

●

●●●

●

●●
●

●

●
●

●
●

●

●

●
● ●

●●
●

●
●●

●

●●
● ●●● ●●

●

●
●

●●●
●

●

●

●

●
●

●
●

●●●

●

●●

●

●●●●
●

●

●

●● ●
●●

●

● ●
● ●

●

●
● ●

●

●

●

●●
●

●●
●● ●

●

●

●● ●
●●●

●

●
●●

●
●
●

●●●●
●

●
●●

●

●

●
●

●

●
●

●

●
●

●●
●

●

●
●

●

●

●

●

●●
●

●
●●

●

●

● ●
●● ●●

●
●

●● ●●
●

●

●
●●

●●
● ●

●

●
●
●●●
●

●

●

●
●
●

●●
●

● ●●

●

● ●
●
●

●

●

●

●
●

●
●
● ●

●
●

●

●●

●
●

●

● ●
●

●●●
●

●

●

●

●
● ●
●

●

●●●
●
●
● ● ●●●
●

●
●

●

●●●● ●●
●● ●

●

●●
●

●
●
●

●

●
●●

●

●●●●
●

●
●

● ●●
●●

●●
●●

●
●

●
●●

●
●● ●●●● ●● ●

● ●
●

●● ●

●
●

●●

●
●
●

● ●

●
●● ●● ●

●
●

●●

●
●●● ●●

●● ●
●●

● ●

●
●
●

●

●

●
●

●●● ●

●

● ●● ●

●

●
●

●●
●●

●

●●

●

● ●

●

●●

●
●

●
● ●●

●

●

●
●

●

●
●●●●●

●
● ●●●● ●●

●
●

●
●

●

●
●●

●

●

●

●

●
● ●

● ●●●

●

●● ●● ●

●

●

●

●
●
●●

●

●
●

● ●
●●

●●

●●●
●●

●●
●
●
●

●

●●

●● ●

●

●

●

●●

●

●
●
●

●
●●●●
●●

●

●
●

●
●●

●

●●●

●

●
●

●

●
●●

●● ●●●● ●
●

●●

●
●

●

●

●
●

●●

●

●

● ●●●

●

●

●

●

●

●
●

●●
●

● ●
●
●
● ●

●
●

●●●
●●●

●●
●

●

●
●

●
●●

●

●
●

●●

●
●
● ●

●
●

●
●

●

●
●
●

●
●
●

●
●

●

●
●

●

●
●

●●
● ● ●

●

●●

●

●●
●
●

●●●

● ●
●

●

●

●
●

●

●

● ●●
●●●

●

●●●
●

●
●●

●

●

●
●

● ●

●●

● ●●
●

●
●●

●

●

●

● ●

●

●● ●●● ● ●

●

●
●

●

● ●

● ●

●

●

●

●

● ●●● ●
●●

●

●
●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●● ●●

●

●
●●

●

●

●
●●

●
● ●

●●

● ●● ●
●

●

●

●
●

●
●

●

●●
●

●
●● ●● ● ●

●

●● ●
●

●
●

●
●●

●
●

●

●

●

●
●

●

●●
●●

●

●●●●

●

●

●
●

● ●
●●

●

●

●
●● ●

●

●
●

●

●

●

●

●

●●

●●●●

●● ●

●

●

●
●●

●●●

●●
●

●●●

●

●●

●

●
●

●

●

●

●● ●

●
●

●
●●

●

●
●

●
●● ●

●

●

●● ●
●
● ●●

●● ●

●

●

●

●

●
●

●

●●●
●
●

●● ●

●

●

●●
●

●

●

●

●● ●● ●
●

● ●
●
●

●

●

●

●
●

●
●

● ●●

●
●

●

●
● ●●

●●● ●
●

●
●
●●

●●
●

●
●

●
● ●●●

●

●

●
● ●

● ●

●

●●●
●

●
●

●

●

●

●

●
●●

●

●

●
● ●

●

●● ●

●

●
●
● ● ●

●

●

●● ●

●

●●●

●

● ●
● ●

●

●●●

●

●
●

●
●●
●●

●●●

● ●●
●
●●

● ●

●

●●

●

●●
●

●

●●

●

●●
●

●● ●
●

●
● ●●

●
●

● ●

●

●

● ●

●

●

●

●

●●
●

●

●

● ●

●

●

●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●

● ●

●●

●

●
● ●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●
●

●

●

●●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

● ●
● ●

●

●

●
●

●
●

●
●

●●
●●

●

●
●

●●
●

●

●
●

●
●

●
●

●
●

●●
●

●
●

● ●
●
●

●
● ●

●

●
●●

●

●
●

●
●

●
●

●
●●

●●

●

●

●

●

●

●
●

●
●

●

●●
●

●
●

●●

●

●

●●
●
●●

●

●

●

●

● ●
●

●

●●●
●

●
●

●

●

●

●

● ●

●

●
●

●●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●
●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

● ●

●
●

●

●
●

●

●

● ●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

● ●
●

●

●●

●

●
●●

●

●●
●

●●

●
●●

●
●

● ●

●

●

●

●●
●

● ●●

●
●

●
●

●● ●●

●

●

●

●

●●

●

●●

●

●

● ●
●
●

●

●

●

● ●●●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●
●●

●
●
●

●

●

●●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●●

●

●

●

●

● ●

●

●
●
●

●

●
●

●●
●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●●
● ●

●●● ●

●

●
●

●●●

●

●

●

●

●

● ●●

●

●

●●

●

●

●

●
●

●

●

●●

●
●

●

●

●●

●

●

● ●
●

●
●

●
●

●

●

●

●

●●
●

●
●●●

●

● ●●
●

●

●

●

●●

●

● ●

●

●● ●●●
●

●●

●

●

●

●
●

●
●

●

●

●
●

● ●●

●
●

●●●

●

●●

●
●

●

●

●

●

●●
●

●

●

●
●●●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●
●●●

●

●
● ●●

● ●

●

●

●

●●
●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●
● ●

●
●

●

●●
●

●

●
●

●

●

●

●

●

● ●

●
●●●●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●
●

● ●
● ●●

●
●●

●

●
●● ●

● ●●
●
●

●

●●

●

●

●
●

●

● ●
●●● ●●

●●

●

●

●

●

●

●
● ●

●

●
●

●●

●

●
●
●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●
●●

● ●

●●

●

●

●

●●

●

●●
●

●

●
●

●
●
●

●

●

●

●
●● ●

●
●

●

●
●

●

●

●

●
●●●

●
●

●

● ●

●

●
●

●

●

●●
●

●
●

●
●

●
●

●●

●
●

●

●

●●
●

●●

●

●

● ●
●

●

●

● ●

●●
●

●

●

●
●

●
●

●●

●

●

●
●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●● ●
●●
●

●

●
●

●

●
●

●

●

● ●
●●● ●

●
● ●

●

●
●●

●

●●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●●

●● ●

●
●

● ●

●

●●●

●
●

●

●

●

●

● ●
●

●●
●
●●

●

●
●
●

●

●
●

●
●

●

●

●

●

●●

● ●
● ●●

●

●

●

●

●

●

●
●

●●
●●

●

●
●

●
●

●

● ●

●
●

●

●

●

●●
●

●

●● ●●●
●

●

●

● ●

●

●

●

●

●
●

●●

●

●●

●●

●
●

●

● ●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
● ●

●
●●

●

●

●
●

●
●

●

●

● ●
●

●

●
● ●● ●

● ●

●

● ●

●

●
●

●
●

● ●●

●

●

●●
●

●●●

●

●
●

●

●

●

●

●

● ●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

● ●

●
●

●

●● ●●

●●●
● ●

●
●

●●

●●

● ●

●
●

●

●●●

●

●

●

●

●

●

●
●

●

●●

●
●

●
●

●

●

●

●●
●

● ●

●
●

●
●

●

●

●

●
●●●

●
●● ●

●

●

●

●

●

●●

●
● ●●

●

●

●●

●
●●

●●

●

●

●
●

● ●

●
●

●
●

●

●
●

●

●

● ●

●

●

●

●

● ●
●●

●
●

●
●● ●

●

●

●

●●

● ●

●
●

●●

●

●

●●

●

●●

●
●

●
●
●

●

●

●

●
●●

●
●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●
●●

●
●

● ●

●

●
●

●

●
●

● ●
● ●●

●

●

●

●

●●
●

●

●

●

● ● ●
●●

●

●

●

●

●

●
●●

●

●

●

● ● ●
● ●

●

●

●

●
●●●

●
●

●

●

●

●●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●●●
●

●
●

●
●

●
● ●●●

●

●

●
● ●

●

● ●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●●●

●

● ●● ● ●● ●●
●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
● ●

●●

●●

●●

●

●

●

● ●

●
●●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●
●

●

● ●

●●
●

●

●

●
●

●
●

●
●●

●

●

●●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●●
●

● ●●

●

●●●

●
●

●

●

●

●

●
●

●

●● ●
●

●
●

● ●

●

●

●

●●●
●

●
●

●

●

●

●

●

●

● ●

●

●

●●

●●

●
●

●

●

●
●● ●● ●●

●

●

●

●

●
●

●●

●

●●

●
●

●

●

●
●

●
●

●

●
●● ●●

●

●●

●
●

●

●
●

●●●

●

●

●●
●

●
●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●●●

●

●

● ●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●
●

●●

●

●●

●
●

●
●

●
●

●

●●
● ●

●
●
●

●

●
●●

●

●

●

●
●

●

●
●● ●

●

●●

●

●●
●

●

● ●

●

● ●

●

●
● ●●

● ●

●

●

●

●

● ●
●●●
●

●

●

●

● ●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●● ●

●

●●●●

●

●
●

● ●

●
● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

● ●
●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●● ●

●●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●
●●

●

●●●

●

●

●
●
●

●

●

● ●●
●

●

●

●

●
●

●
●
●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●
●

●
●

● ●

●

●
●

●●
●●

●

●

●
●● ●

●

●

●

●

●
●

●●

●
●

●

●

●
●

● ●

●

●

●
● ●
●

●

●

●
●

●

●

●

●

●
●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●

●

●

●
●

●

● ●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●●●
●

●

●

●● ●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●●
●●

● ●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

● ●

●

● ●

●

●

●
●

●●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●●
●●●

●

● ●●

●

●

●

●
●
●

●●

●
●

●

● ●
●
●

●

●

●

●

●

●

●
●

●

●

●
●●

●

● ●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●
●

●●

●● ●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●
●

●

●

●

●

●●

●
● ●

●

●

●

●●

●

●
●

●

●

●●

●

●

●
●

●
●

●
●

●

●

●
●●

●

●

● ●

● ●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

● ●

●

●

● ●
●● ●

● ●

●

●
●

● ●
●

●

● ●
●●

●

●

●

●●

●

●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●● ●

●

●

●
●

●

●
●

●● ●

●
●

●●●
●

●●
●

●

●

●

●

●●

●
●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

● ● ●
● ●●

●

●
●

●

●
●

●

●●●

●

●

●
●

●
● ●●

● ●

●

●

●

●
●

●

●●
●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

● ●

●
●

●
●

●

●

●

●●●

●

●

●

●

● ●

●
●

●

●

●
●●

●

●●●

●

●

●

●
●

●●

●

●●

●

●
●

●

● ●

●●

● ●● ●

●

●

●

●

●
●

●

● ● ●●

●
●

●
●

●

●
●

●
●

●

●

●

● ●
● ●
●

●

●
●
●

● ●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●

●

●
●

●

●●●

●
●

●

●
● ●●

●

●

●

●

●●

●

●

● ●

●

●

●
●

●
●

●●

●
●

●

●

● ●●

●
●●

●

●

●
●●

●

● ●

●
●●●

●

●

●●
●

●

● ●

●

● ●

●
●

●

●
●

● ●
●

●

● ●

●

●
● ● ●

● ●
● ● ●

●
●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●
●

●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●
● ●●

●

●

●

●

●

●
●

●

● ●●

●

●
●●

●

●

●●
●

●

● ●
●

●
●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

● ●
●

●

●
●

●
●

●

●
●●

●

●

● ●

●

●

●●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●
●●

●
●●

● ●

●
●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●● ●

●

●● ●

●●

●
● ●

●
●

●
●

●
●

●
●

●

●
●●●

●
●● ●

●

●●

●
●

●

●●

●

● ●
●

●
●

●●
●●

●

●

●

●

●

●

●

● ●

●
●

●

●●

●

●

●●
● ●

●

●

●

●

●

●●

●

●
●

●

●

●●
●

●●●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●
●●
●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

●●

●

●

●

●
●●

●

●

●
●●●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●
●●

●

●

●●

●

●
● ●

●

●●

●

●

●
● ●

●

●● ●

●

●

●

●
●

●

●
●●●

●

●

●

●

●
●

●
●

●

●

●
● ●●

●

●

●

● ●
●

●

●●●●
●

●
●

●
●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

● ●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●●

●●

●●

●
●

●

●

●
●

●
●

●

●

●

●

● ●
●

●●

●

●

●

●
●● ●●

●

● ●●
●

●
●

●
● ●

●

●●

●
● ●

●

●

●●

●
●

● ●

●

●
●

●

●●
●

●
●

●

●

●●●

●

●

●

●
●

●

●

●

●
● ●●

●

●

●
●

● ●●
●

●
●

●

●

●

●

●

●
●

●● ●●

●

●
●

●●

●

●

●
●

●

●

●

●

●●
●

●

●

●● ●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

●
●

●
●●
●

● ●
● ●●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●
●

●

●●

●
●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●
●

●
●
● ●

●
●

●

●

●
●●

●
●

●●

●

●

●

●

●
● ●●

●

●

●●

●

●

●
●

● ●
●

●
●

● ●●
●

●
●

●
●

●
●

●

●●

●●●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
● ●

●

●
●

●
●●●

● ●●

●
●● ●

●

●
●

●

●

●
●●

●

●
●

●
●

● ●

●

●

●
●

●
●●

●

●

●●

● ●

●

●

●

●●

●

●

● ●

●

●●

●

●●

●

●

●
●

●

●●
●

●
●

●

●

●

●
●

●●

●

●
●

●●
● ●

●●

●●
●

●

●

●

●

● ●
●

●

●
●

● ●

●

●

●

● ●●●
● ●●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

● ●

●
●

●●

●●
●

● ●

●

●

●

●

●

●
●

●
●●

●

●

●

● ●

●
●

●

● ●●

●
●●

●

●

●

●
●● ●●●●●

●●

●

●

●●

●

●

●

●

● ●●

●

●

●

●●

●
●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●●

●

● ●

●

●●

●

●

●
●
● ●

●
● ●

●

●
●
●●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ● ●
●

●

●

●

●
●

●

●
● ● ●

●

●
●

●

●

●

●

●
●

●
●

●●
●

●
●

● ●
●

●

●

●

●
● ●

●
●

●
●

●

●

●

●

●●

●

●
●

●●

●

●

● ●
●

●
●

●

●
●

●
●

●●

●
●

● ●●
●
●

●

●

●

●

●

● ● ●

●

●
●

●
●

● ●

●

●
●

●

●

●

●

●
●●

●

● ● ●
●

●

● ●

●
● ●

●

●
●

●

●

●
● ●●● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●
●●●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

● ●

●

●

●●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●●

● ●

●
●●

●

●●

●

●

●

●●
●

●
●●

●

●●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

● ●

●
●

●
●●

●

●

●

●

●●
●

●●

●

●
●● ●●

●
●

● ●
●

●
●

●●
●

●●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

● ●

●
●

● ●

●

●

●

●● ●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●●

●

●

●

●

●●
●

●● ●
●

●

●

●●

●

●
●

●

●

●

●

●
●

●●

● ●
●

●●

●

● ●

●
●

●●

●

●●
●● ●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●
●

●

●
●

●

●

●

● ●
●

●

●
●●●

●

●

●
●●●

●

●●●
●

●
●

●

●●

●

●

●
●

●

●

●

●
●

●

●●
●

●
●

●

●

●
●

●●

●

●
●

●
●

● ●

●●
● ●
●

● ●●

●
●

●●

●
●●

●●

●

●●●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●●

●
●

●

● ●

●
●

●
●

●

●
●

●

●

●

●●

●

●

●●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

● ●
●

●
●

●
●

●

●

●

●

●

●●

●

●

●

● ●● ● ●

●

●
● ●●●

●

●

● ●

● ●

●

●

●
●

● ●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●● ●
●

●

●

●
●

●
●

● ●

●

●

●

● ●
●

●

●

●
●

●
●

●

●

● ●●

●
●

●
●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●
●

●

●

●●
●

●
●●

●

●
●●●●●

●

●
●● ●

●
●

●

●● ●

●

●

●

●

●

●
●

●

●
●

●

●

●
● ●●

●

●

●●

●

●

●●●

●●
●

●
● ●●

●

● ●

●

●

●

●●
●

●

●
●

● ●

●

●●
●

●

●

●●

●
●●

● ●
●

●

●

●
●●

●

●

●

●
●
●

●

●
● ●

●
●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●●
●●

●
●●

●●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
● ●

●
●

●

●

●●
●

●●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●●

●● ●

●

●
●

●

●

●
●

● ●
●
●

●●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●
●

●

●

●
●● ●

●

●●●

●
● ●

●●

●

●

●

●

●
●

●

●

●

●
● ●

●

● ●
●●
● ●

●

●●

●
●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●
● ●

●

●

●
●

● ●

●

●

●
●●

●
●

●
●

●
●

●
●

●
●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

● ●●
● ●
●●
●

●
●

●●
●

●

●

●●●● ●

●

●

●

● ●●
●

●

●
● ●

●
●● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●●
●

● ●

●

●●●● ●
●

● ●

●

●● ●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●
●●

●

● ●●

●●
●

● ●

●

●

●

●

● ●
●

● ●

●

●
●

●

●
● ●

●●
●

●

●●
●

●

●

●

●●

●

●

●●

●

●●
●

●

●
●

●

●
●

●
●●

●

●

●

●

● ●
●

●
●

●
●

●

●
●

●

● ●
●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

● ●

●

● ●
●

●

●●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

● ●
●

●

●

●●

●
●

●

●
●

●●

●
●
●

●

●
● ●●
●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
● ●

●

●● ●
●

●

●●
●

●
●

●

●
●●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●

● ●
●

●

●

●●●
●

●

●

●●
●●

●●●

●

●

●● ●●
●

● ●

●

●

●

●
●●

●

●

●
●

●

● ●
●

●

●
●

●

●●

●

●

●
●● ●●

●
●●●

●

●

●
●

●●

●

●
●

●

●

●
●

●
●

●

●

●
●
●

●

● ●

●
●

●
●

● ●
●

●

●

●

●

●

●

●

●
●

● ●
●●

●
●

●
●

●

●●● ●
●

●

●
● ●
●

●

●
●

●●

●

●●
●

●

●●

●

●

●

●
●

●

●

●●

●

●●
●

●
●

●
●

●
●

●
●

●

●

● ●●

●●

●

●●

●

●●
●

●
●

●●
●●

●

●

●●

●
●
●

●
●

●

●

●
●

●

●

●

●

●●

●●
●●

● ●
●

●
●

●

●
●

●

●

●

●
●

●

● ●

●
●

●

●●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●●
●

●
●●●

●

●

●

●

●●

●
●
●
●

●

●● ●

●

●

●

●●

●

●

●

●

●

●

● ●
●

●

●●●

●
●

●

● ●

●

●
●●

●
●

●
● ●

●
●

●

●
●●

●

●●

●

●

●

●

●●

●
●

●
● ● ●

●
●

●

●

●

●

●

●

● ●

●

●
●●

●

●
●●

●

●
●●

● ●

●
●

●

●
●

●

●●●

●

●

●

●

●

●

●

●
●
●

●

●
●●

●●

●

●

●

● ●
●

●

●●

● ●

●
●
●

●●

●

●
●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●
●
●

●

●

● ●

●●

●

●

● ●●

●

●
●

●

●

●

●
●●

●●

●
●

●

●●

●

●
● ●

●

●●

●

●

●

●
●●

●

●

●
●●●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●
●

● ●

●
●

●●●

●

●●

●●

●

●

●

●

●

●

●

●
●
●

●

● ●

● ●
●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●
●

●
●

●

● ●●
●
●

●

●
●

●

●

●●

●
●

●

●
●

● ●

●

●

●

●

●
●

● ●

●

●

●●● ●

●

●

●●

●

●

●

●

● ●●
●

●

●
●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

● ●

●●
●

●

●

●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●
●

●

●
●
●●

●

●

●
●

● ●

●

● ●

●
●

●

●

●
●●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●
●

●

●
● ●

●●

●
●

●

●

●

● ●
● ●

●

●
●

●

●

●

●
●

●

●

●

● ●

●
●●

●

●●
●

●

●
●

●
●

●●● ●●●

●
●

●

●
●

●

● ●

●

●
●

●

●

●

●
●●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

● ●

●
●

●
●

●

● ●●
● ●●●

●
●

●● ●● ●

●●
●

●

●●●
●

● ●
●

●
●

● ● ●●
●

●

●

●

●

●

●●●

●

●
●
●● ●

●●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●
●●

●

●●●

●
●

●●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

● ●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

● ● ● ●

●

●

●
●

●●

●

●
●
● ●

●●

●
●●

●
●●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

● ●

●

●

●
● ●

●
●
●●

●

●

●

●

●

●●

●

●
●

●●
●

● ●●
● ●

●
●

●

●

●

●
●

●

● ●●●
●

●

●
● ●

●

●

●

●
●

●

●

●● ●

●

●

● ●

●
●

●●

●

●

●

●

●

●●

●●

●
●●

●

●

● ●

●

●●●

●
●

●

●

●●

●

●

●
●

●●

●●

●

●

●

● ●●

●

●●
●●

●●

●●

●

●

●

●

●● ●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●● ●

●

●●

●

●

● ●
●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●●

●
●

●
●

●

●●

●

●
●●

●

●
●

●
●

●
● ●

●
●

●●

●

●

●
●

●●

●
●

●

●
●●

● ●●

●

●

●

●

●
●

●

● ●
●

● ●

●

●
● ●

● ●●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●●

●●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●●●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●● ●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●
●●

● ●

●

●
●

●

●

●●●
●

●

●

●

● ●

●

● ●

●●
●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●● ●
●

● ●

●

●
●

●●
●

● ●●● ●

●

●
●

●
●

●

●

●
●

● ●
●

●

●
●

●●

●
●

● ●

●
● ●

●

●

●●

●

●●
●●

●
●

● ●
●●●

●
●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●●
●

●

●

●

●
●

●

●
●

●
●

●
●

●●

● ●

●

●

● ●

●

●
●●

●●

●

●
●
●

●
●

●
●
●● ●

●

●

●

●

●●

●

●
●

●

●●

●
●●

●

●

●
●

●

●

● ●●

●

●

●

●

●
●

●●●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

● ●●●
●

●
●●

●
●

● ●●

●

●

●

●

●
●

●

●

●●
● ●

●

●

●
●

● ●
●●
●

●
●

●

●
●●

●●

●
●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●● ●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●
●
●

●

● ●●● ●●

●

●● ●●

●
●

●

●

●●

●
●

●

●

●

●

●

●
●

●●

●

●

●

● ●

●
●

●
●

●●
●

●

●●
●

●

●
●

●

●
● ●

●
●

●
●

●
●

●
●

●

●

●●● ●
●

●

●

●
●

● ●●
●

● ●
●

●
●

●●

●●

●

●

●

●
● ●

●

●
●

●

●

●●
●

●
●

●

●

●
●●

●●

●

●

●

●

●●

●●●
●

● ●●

●

● ●● ●
●

●
●

●

● ●
●

●

●
●

●● ●

● ●●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●●

●
●

●
●

●

●● ●
●

●

●

●
● ●

●

●

●

●
●

●

● ●
●

●

●
●

● ●

●

●

●
●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●
●

●

●

●
● ●

●

●●

●

●

●

●

●

●●
●●

●

●
●

●

●●

●
●●

●

●

●

●

●

●

●

●

●●

●
●●

●

● ●

●

●

●

●
●

●

●● ● ●●

●

●

● ●

● ●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●●

●●
●

●

●
●● ●

● ●

● ●

●

●

●

● ●●●
●

●
●
●

● ●

●

●

●
●

●●
●●

●● ●

●●

●●

● ●

● ●

●

●

● ●
●
●

●

●●

●
●

●

●

●

●●

●

●
● ●●

●
●

●
●

●
●
●

●●● ●

●

●

●

● ●●

●

●

●
●

●

●
● ●

●
● ●

●

●

●

●
● ●

●

●
● ●

●
●

●●

●

●●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●●

●
●

● ●

●
●

● ●
●

●●
●

●

●

● ●

●

●

●

●
● ●

●

●

●
●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

● ●

●

●
●

● ●

●
●

●

●

●

●
●

● ●

●
●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

● ●

●●●
● ●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●●
●

●
●

●
●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●● ●

●
●

●

●

●
●

●

●

●●

●

●● ●
●

●

●

●●●●

●

●

●●
●

●

●

●
●●●

●

●

●

●
●

●

●●

●

●

●● ● ●

● ●

●●

●

●

●

●

●
●

●

●

●

●
● ●

●
●

● ●
●

●●

●
●

●

●●

●

●
●

●
●

●

●

●

●

●
●

●●

●● ●
●●●

● ●

●

●●
●

●

●
●

●

●

●
●●

●●
●● ●

●

●

●
● ● ●

●●●
●

●

●●
●
●

●
●

●

●

● ●
●

●
●

●

●

●●●

●

●

●

●

●

●

●●●

●

●●
●

● ●
●

●●
●●

●

●

●

●

●

●

●

●●

●

●
●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●
● ●●

●
●

●

●

●

●

●

● ●
● ●

●

●
●

● ●

●
●

●

●

●●
●

● ●●
● ●

●
●

●

●

●
●

●

● ●

●

●

●

● ●

●
●

●
●

●

●

●
●

●
●

●
●

●

● ●●

●

●
●

● ●
● ●● ●●

●●

●

●

●

●●

●

●

●

●

●

●

●

● ●●●●

●

●

●

●

●

● ●

●

●
●

●●

● ●●
●
●●

●
●●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●●
●

●

●●

●● ●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
● ●

●
●●

●

● ●

●

●

●

●

●

●

●

●
●

●
●●●

●

●

●

●

●

●

●

●
●●

●
●

●●●

●

●
● ●
●

●
●

●

●
●
●●

●●●
●

●

● ●●
●

●
●●●

●

●
●

●

●●
●

●

●
●
● ●

●●

●
●●

● ● ●

●

●

●

● ●

●

●

●

●

● ●

● ●
●●

●

●

●

●

●●

●

●

●

● ●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●● ●

●

●

●

●

●

●

●
●

●
●

● ●

●
●

●

●

●●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●

●
● ●

●

●

●●

●
●

●
●

●

● ●

●
●
●

●

●

●

●
●

●
●

●

●
●

●●
●

●

●
●

●

●

● ●
●
●

●●●●
● ●

●

●

●●●

●●
●

● ●●
●●

●

●

●

●
●

●

●● ●
●

●● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

● ●●
●

●
●

●

● ●
●

●
●

●

●
●

●
● ●

●

●

●

●
●
●

● ●

● ●

●

●
●

●

●

●●

●

●

●●
●●

●
●

●●

●
●

●
●

●

●
●

●
●

●● ●
●

●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●●

●

● ●

●

●

●
●●

●
●●

●

●

●

●
●

●

●

●●

●●
● ●

●

●
●

●
●

●

●

●

●

● ●

●●

●

●
●

● ●
●

●
●

●● ●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

● ●

●
●●

●

●
●
●

●

● ●

●●

●
●●

●

●

●

●
●

●

●

●
●
●●

●● ●

●

●
● ●
●
●

●
●

●

●

● ●

●●

●●●
●

●

●
●

● ●●

●

●

●

●

●
●

●

●●

●●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
● ●
●

●

● ●

●

●

●

●

●

●
●●

●

●
● ●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●
●

●

●●

●

●
●

●

●

●●

●

●

●

●●
●

●
●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●●●

●

●

●
●

●
●●

●

●

●

●
●

●
●

● ●●
● ●

●

●
●

●●

●● ●

●
●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

● ●
●●

●

●●
●

●

●

●

●●●

● ●
● ●

●●

●

●

●

●
●

●●
●

●
●●

●

●●

●

●

●

●

●
●

●● ●

●

●

●

●

●●

●
●

●

●

●
●

●
●

●

●
●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●●
●

●

●

● ● ●●

●

● ●

●
●

●

● ●
●

● ●
●

●

●

●●
●
● ●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●●
●
● ●

●

●

●●

●

●

●

●
●

●

●
●

●

●
●

●●

●

●
●

●
● ●

●

●●

●

●

●

●
●●

●●●
●

●

●

●

●

●●
●

●●
●

●

●
●
●

●●

●

●

●
● ●

●

●

●

●

●

●
●

●
●
●●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●●
●

●
●
●●

●●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

● ●

●

●●

●

●

●
●

●

●
●

●
●●

●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●●
●

●

●
●

●

●

●
●
●●●●

●

●
●

●
●

●●
●

●

●
●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●
● ●

●

●●

●
●

●

●●
●

●● ●

● ●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●
●

●
●

●

●●

●

●
●

● ●

●

●

●●

●

●●● ●

●

●
●

●

●
●
●

●●
●

●
●

●

●

●●

●

●●

●

●
●

●
●

●●●

●●

●
●

●

●

●
●●

●
●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●●● ●

●

●
●

●

● ●●●●

●●
●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●●●●●
●●

●

●

●

● ●

●
● ●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●
●

●

●● ●

●

●

●●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

● ●

●

●●

●
●
●

●

●

● ●

●

●

●●
● ●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●●

●

●

● ●●
●

●

●

●
●

●
●●

●
●

●

● ● ●

●
●

● ●

●

●

● ●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●
●

●
●

●

●

●

●
●

●●
●

●

●
●● ●

●

●
●

●

●
●

●
●

●

●

● ●

●

●●

●

●

●

●

●

●
●

●
●

●

●● ●●
● ●

● ●

●
●

●

●

●
●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

● ● ●

●
●

●

●

●

●

●
●

●
●

●

●●

●
●

●

●
●

●
●

●
●

●
● ●

●
●●

●

●

●●
●

●

● ●
●

●

●●

●
●

●

●
● ●

●
●

●
●

●●
● ●

●
●

●

●

● ●
●

●
●

●● ●

●

●

●●

●

●●
●

●

●●

●

●●

●
●

●

●

●

●
●

●

●

●●

●

●● ●●

● ●● ●
●

●

●
●●●

●

●
●

●

●
●●

●

●
●

● ●
●

● ●
●

●

●

●

●
●

●

●●

●

●

●

●
● ●● ● ●

●
●

●

●●

● ●

●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●● ●

●●

●
●

●

●

●

●

●

●

●

●

● ●
●

●●
●●

●

●

● ● ●

●

●

●

●

●

●
●

●● ●

●

●

●

●●

●

●

●

●

●

●●
●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

● ●

●

●
●● ●

●

●
●

●● ●●
●

●

●
●

●
●

●

●

● ●●

●

●●

●

●●
●

●

●

●

●●

●
●

●

●●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●●

●
● ●

●● ●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●
●

●

●

●
●

●● ●

●

●

● ●

●

●●

●●●
●

●

●
●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●
●●

●
●

●

●

●
●

●

●●
●●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●●

●

●
●
●

●

●

● ●● ●

●●

●

●
●

●
●

●

●

●
●

●

●

● ●

●●
●

●

●

●

●●

●

●

●
●
●

●

●

●

●● ●
●

●
●●

●

●

●
●●

● ●

●

●●

●

●●

●

●

●

●

●

● ●
●●●

●
●

●

●

●

●

●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●
●

● ●

●●

● ●

●●

●
●

●

●

●

●

●

● ●

●
●

●

●
●

●

●
●

● ●●
●

●

●
●

●

●●

●
●

●

●●

● ●
●

●●

●

● ●

●

●

●
●

●

● ●

●

●

●

●●
●

●

●
●

●
●

●
●

●
●

●
●

●
● ●●●

●
●

●
●
●●●

●

●
●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

● ● ●

●

●

●

●●

●

●●
●
●●

●

●
●●

●

●

●

●

● ●●

●

●
●

●●

●

●

●

●●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●

●●

●

●

●

●
●●●

●

●

●

●

●
●

●

●

●
●● ●

●

●

●

●
●

●

●

●

●
●

●

● ●●
●

●

●

●
●

●

●

●●

●

●
●

●

●

● ●

●●

●

●

●

●●

●
●

●
●

●

● ●
●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●
● ●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●● ●●

● ●

●●

●

●
●

●

●

●
●

●

●
● ●

●

●

●●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

● ●●●

● ●●
● ●●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●●

●

●

●●
●

●●

●

●

●

●
●

●
●●

●

● ●

●●●
●

●

● ●

●●

●
●

●

●

●

●
●

●

● ●

●●●

●

●●

●

●

●

●
●

●●

●
●

●

● ●●

●

●

●
●

●●

●

●
●

●

●

●

●

● ●

●

●●●

●
●

●

●●

●

● ●

●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●
●

●
●

●●

●

●

●●
●

●

● ●
●

●
●●

●

●

●
●

●

● ●●

●

●

●

●

● ●

●
●

●

●
●

●

●
●
●

●● ●
●

●

●
●

●
●● ●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

● ●

● ●

●

●
●

●●
●

●●

●

●

●
●

●●

●●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●

●

●
●● ●●

●

●

●
● ●●

●

●

●

●

●
●

●
●
●

●

●

●

●● ●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●
● ●●

●
●

●
●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●● ●
●
●

●

●
●

●●

●

●

●

● ●
●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●●
●

● ●

●

●

●
●

●
●

●

●

●
●

●
●

●

●●

●
●●

●● ●
● ● ●

●●
●●

●
●

●

● ●
● ●

●●

●
●

● ●

●

●

●● ●●

●
●
●

●●
●
●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●●

●

●●
●

●

●

●

●●
● ●

●●

●
●

●

●●

●●

●
●

●

●●

●

●

●
●●

●
●

●

●
●
●

●

●

●

●●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●● ●

●

●

●

●
●

●

●●

● ●
●

●

●

●

●
●

●

●

●●●●
● ●

●●

●
● ●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●● ●

●

●

●
●

●

●

●

●
●

●

●
●

●
●●

●
●

●
● ●●● ●

● ●●
●

●●

●

●

●
●

●

●
●

●

● ●

●

●

● ●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●
●

●
●●

●

●

●
● ●

●
● ●

●

●

●

●

●

●
●

●

●

●●

●

●
●
●

●

●

●

●

● ●●

●

●●

●●●
●

●

●

●
●

●
●

●●
●

● ●●●●

●
●

●

●
●

●

●

●

●●
● ●●

●●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●
●

● ●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

● ●

●●

●

●

●

●

●
●
●

●

● ●

●

●

●●
●●

●

●
●●

●
●●

●

●

●

●

●

●

●
● ●

●

●●

●

●

●

●●●●

●●● ●

● ●

● ●

●

●

●●

●

●

●●
●

●●●

●

●
●

●

●
●●●●

●

●

●●●

●
●

●

●

●●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●●

●●
●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●●

●● ●

●

●

●

●● ●●●

●

●
● ●

●
●● ●

●

●
●

●

●
●● ● ●

●
● ●

●

●
●●

●

●●

● ●●●
●

●

●●

●

●●
● ●

●●●

●

●
●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●●
●

●

●

●

●

●●

● ●
●

● ●
●

●

●
●●

● ●

●

●

●

●

●●

●

● ●

● ●

●

●

●

●● ●

● ●

●

●

●

● ●

● ●

●

●

●

●

● ●●

●

●
●● ●

● ●
●●● ●●

●

●

●

●

●● ●●

●
●

●
●●●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●● ●

●

●

●

●

● ●

●

●

●●●

● ●

●

●

●

●
●

●

●
●

●

● ●●

●

● ●●

●

●

●

●
●

●

● ●

●

●
●

●

●● ●
● ●

●
●

●

●

●
●

●
●

●

●

●
●●

●
●

● ●

●
●

●

●

● ●
●

●●
●

●

●

●

●
●

●

●
●

●
●

●

●●

●

●

●

●
●●●

●●●

●
●
●

●

●

●●
●

●

●

●●● ●

●

●
●

●
●

●

●●●

●

● ●

●

●

●

●

●

●
●

●●

●

●

●●
● ●

●
●

●●

●
●●● ●

●

● ●●

●
●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

● ●●●
●
●

●●

●

●

●

●

●
●

●

●

●●

● ●

●
●

●

●●

●

●

●
● ●

●

●

●● ●

● ●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●●

●

●

●●

●

●● ●

●

●●

● ●

●●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
● ●

●

●

●

●

●
●●

●●

●

●
● ●

●
●

●

●●

●

●

●●

●

● ●●●

●

●
●

●
●●

●
●

●●

●

●
●

●
●

●

●
●
● ●

●

●

● ●

●
●

●

●

●
●

● ●

●
●
●

●

●
●

●

●

●

● ●

● ●

●

●

●

●

●

●
●

●

● ●●●
● ●

●

●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●
●

●●
●
●

●
●●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

● ●

●
●

● ●
●

●
●● ●

●

●
●

●

●● ●
●

●
●

●
●

●
●

●
● ●●

●
●

● ●
●● ●● ●

●

●

●

●

●
●

●
● ●●

●●

●
●●

●●

●

●● ●
●

●
●

●

●●

●
●

●

● ●

●

●

●

●
●

●●

●

●

●

●
●● ●

●

●●
● ●

●

●

●

●

●

●

●

●

●

● ●

● ●

●●

●

●

●

●

●

●●

●

●

●
●

●
●●

●

●

●
●

●
●

●
●

●
●

●

●
●●

●

●
●

●

●●
●

●
●●

●
●●

●

●

●

●

●
●
●

●●●● ●
● ●● ●

●● ●

●
●

●●
●

●

●
●

●
●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●
●

●
●

●●

●
●

●● ●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●●
●

●

●
●

●

● ●●
●

●

●●

●

●

●●

●
●

●

●
●

●

●

●
●

●
●●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
● ● ●●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●
●

●
●

●
●

●

● ●

●

●

●●
●

●

●●

●●

●

● ●

●
●

●

● ●

●●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●●

●
●●

●
●

●
●

●

● ●

●

●●●●

●
●

●

●

●

●

●

●

●

● ●●●
●

●

●
●
●
●

●

● ●
●

●
● ●

●

●
● ●●
●

●

●
●

●
●

●●
●

●
●

●
●

●●
●

●

●

●●●

● ●

●

●
●

●

●

●
●

●

●●
●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
● ●

●

●

●

● ●
●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●
●

●●●
●●

●
●

●
●

●

●●

●

●

●

●

● ●

●

●
●

●
●

●
●

●●

●

●
● ●

●

●●●

●

●

● ●

●

●●
●

●●

●

● ●

●● ●
●

●

●

●

●●
●

●

●

●●
●●

●

●
●

●
●

●

●
●

●
●
● ●

●

●

●

●
●

●●
●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

● ●●

●
●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ●●●
●●

●

●●

● ●●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●
●●
● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

● ●

●

●

●

●●

●

●

●

●
●

●

●

●

● ●

●
●

●
● ●●

●

●●

●

●

●

●
●

●●●
●●

●●

●

●

●

● ●

●

● ●●●

●

●
●

●●

●●

●

●

●
●

●
●●●

●

●

●

●●

●

●

●
●

●

●
●●●

●
●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●

●●
●

●●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●●

●

●

●

●
●

●

● ●●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●●

●

●●

●

●●
●●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●●
●

●

●
●

●

● ●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●
●
●

●
●●●
●

●

● ●

●●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●
●

●●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●
●

● ●●
●

●

●
●

●

●
●

●●
●

●

●

●

●

●
●

●

● ●
● ●

●

● ●
●

●

●

● ●

● ●

●
●

●●

●

●

●

●
●

●●

●

●

●

●

●

●
●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

● ●
●●

● ●
●

●
●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●

●

●
●●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

● ●

●
●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●

● ●
●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●●●

●

●
●

●

●
●●

● ●

●

●

●

●

●

●

●●

● ●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●
●

● ●

●

●

●
●

●

● ●

●

●●

●

●

● ●
●

●
●

● ●

●
●

●

●
●

●

●

●

●

●●
●

●
●

●
●

●

●
●

●

●

●

●

●
● ●●

●

●●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●●●

●●
●

●

●

●● ●●●
●
●●

●●

●
●

●
● ●●

●

●

●

●

●

●
●

●

●

●●
●

●

●
● ●

●
●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●
●

●

●
●● ●

●
●

●
●

●● ●

●

●

● ●

●

●
●

●

●

●
●

●
●

●

●

●
● ●●

●
●●●

●
●

●
●

●

●

●

●

●
●

●

● ●●
●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●● ●

●

●

● ●●

●

●

●●

●
● ●

●

●

●
● ●

●

●

●
●

●

●●

●

●
●

●●

●

●●
●

●

● ●

●

●
● ●● ●●

●●●●

●

●

●

●

●● ●

●

● ●
●

●

● ●

●

●●

●
●

●

●
●●● ●

●

●

●●
●

●

● ●

●
●

●●●

●
●

●
●

●●

●●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●
● ●

●●

●

●●
●

●

●
●

●
● ●

●
●

●
●

●●

●
●●

●

●

●●

●

●

●

● ●●

●
●●

●

●

●

●

●

●
●

● ●

●●

●
●

●
●

●●
●

●

●

●
●

●●●

●●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●●
●

●

●

●

●

●

●

● ●

●
●

●●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●
●●●

●

●●

●

●

●

●

●

● ●
●

● ●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●●● ●

●

●

●
●

●

●

●

●
●●

●

●

● ●
●

●
● ●●

●

●

●●

●

●

●

●

●

●
●●

●

●

●
●

●
● ●

●●
●●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●●

●

●

●

●
●

●

● ●●
● ●●

●

●

●

●
●

●
●●●

●

●

●●

●
●

●

●

●

●
●

●

●

●

● ●

●

●
●

●●
●

●
●

●
●

●
●
●● ●
● ●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●
●

● ●

●
●

●

●
●

● ●

●

●
●●

●

●●

●
●

●

●

●

● ●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

● ●●
●

● ●
●

●

●

●
●

●

● ●
●

●

●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

●

● ●

●

●● ●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●●●

●

●
●
●

●
●●

●
●

●
●

●
●

●
●

●
●
●

●

●

●

●

●

●

●●

●

●●

●

●● ●

●
●

●

●
●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

● ● ●
●

●

●

●

●●
●

●

●

●●●
●

●

●

●

●

●

●

●

● ●
●●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
● ●

●

●
●

●

●

●
● ●

●

●

●

●●

●
●

●

●● ●
●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●●
●

●

●

●

●●

●

● ●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●
●

●●
●●

●
●

●
●

● ●

●
●

●
●

●
●●
● ●
●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●●
●

●
●

●

●●●● ●

●
●

●
● ●

●●● ●
●●

●

● ●

●
●

● ●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●● ●●

● ●
●

●

●

●●
●

● ●

●
● ●

●

●●
●

●

●

●

●
●
●

●●
● ●

●

●

●
●

●
●● ●

● ●

●

●

●●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●
●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●
●

●

●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●
●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●●●● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

● ●
● ●●●

●

●
●●●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

●● ●
●

●●

●●

●

●

●

●

●
●●●

●

●
●

● ●

●

●
●

●

●

●

●

●
●

●●
●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●●

●
●

●

●
●●

● ●

●

●
●●

●

●

●●●
●

●

●

●

●
●

●

●

● ●
●

●●
●
●

● ●
●

●●●
●
●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●
● ●●

●

●

●

●

●

●

●●

●

●●● ●

●
●

●●

●

●

●
●

●

●

●

●

●
●

● ●

● ●

● ●

●

●

●
●● ●● ●

●

●

●

●

●

●
●

●
●
●

●

●●
●

●
●

●

●

●

●

●

●

● ●●
●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●●● ●

●
●

●

●

●

●

●

●
●

● ●

●

●
●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●●
●●

●

●

●
●

●
● ●

●●●
●

●●

●

●
●●

●

●

●
●●● ●

●

●

●
●

●

●●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●
●●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

● ●● ●

●

●

●

●

●
●

●●
●

●

●
●
●
●

●

●

●

●
●

●
●

●

●●● ●

●

●

●
●●

●

●●

●

●

●●

●

●

●
●

● ●●

●●
●

●

●

●
●

●

●

●
●

●●

●

●

●
●

● ●
●●

● ●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

● ●
●

●

●

●
●

●

●
●

● ●

● ●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●
●

●

●

●

●● ●
●

●
● ●
●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●●
●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●●●

●

●●

●

●
●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●●

●
●
● ●

●
●

●

●
●

●

●● ●

●
● ●

●

●

●
● ●

●

●
●

●
●●

●

●
● ●●

●

●

●
● ●

●

●

●

●

●

●●

●
●

●
● ● ●

●

●
●

●

●

●

●

●

●

●●●

●

● ●● ●

●

●
●

●

●

●●

●
●
●

●

●

●
●

●●

●
●

●

●

●
●

●
●

●
●

●

●
●

●●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●●

● ●● ●

●
●

●

●
●

●
●●

●

●

●
●

● ●●

●

●

●

●

●
● ●●

●● ●

●

●

●

●

●

●

●

●●●●●

●

●

●
●

●

●

●
●

●●●

●

●
●

●

●

●

●
●

●
●●

●● ●

●

●

●
●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●
●●

●
●●

●
●● ●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

● ●
●

●

●

●

●

●
●

● ●

●

●

●
●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●
●

●

●

●●

● ●
●

●
●

●
●

●
●

●
●

●

●

●● ●

●

●
●

●● ●

●

●

●●

●

●

●

●

●

●
●●

●
●

●
●

●

●●
●●

●
●

●

●

●
●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●●

●

●

●

●
●

●

●

● ●
●

●
●

●
●●

●●
●

●●

●

●

● ●●

●

● ● ●●●● ●●

●
●

●

● ●

●
●●

●

●

●

● ●●
●
●

●●

●
●●●

●

●

●

●

●

●

●

●

●●

●●
●

●●

●

● ●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●●●

●

●●

●●●

●
●

●●
●

●

●
●

●

●●●

●

●
●●

●

●

●●

●

●

●

●

●
● ●● ●

●

●●

●
●

●
●

●

●●
●

●
●

●

●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●●●

●

●
●

●

●
●

●

●
●
●

● ●

● ●●

●●

●

●

●

●

● ●

●

●
●

●

●

●●●

●

●

●
●

●

●● ●●

●

● ●
●

●

●

●●

●●

●

●
● ●

●
●

●●
●

●

●

●

●

●
●●

●

●
●

●

●●●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●
●

●

●

●
●

●

●

●●

●

●
●

●

● ●

●

●

●

●
●

●
●

●●
●

●

●

●

●
●●

●

●

●

●

●
●

●●
●

●●
●
●●●

●
●

●

●

● ●
●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●
●●

●

●
●

●

●

●
●

●

●
●

●●

●

●

●

●

● ●

●●
●

●

●
●

● ●
●

●
●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●
●

●● ●
●

●
●

●
●

●
●

●
● ●

●

●
●

●●
●

●●

●

●
●●

●
●
●

●

●

●
●

●

●

●

●
●

●

●●●
●●

●●

●

● ●

●

●●

●

●

●

●●

●●
●

●
●

●
●

●
●

●

●

● ●●●
●●

●

●
●

●

●

●

●

●

●
●

●●

●●
●

●

●

●●

●

●
●

●

●

●

●
●
●

●
●

●
●

●

●●

●● ●

●
●●● ●

●

●

●
●

●

●

●
●●

●
●

●

●●

●
●

● ●
●

●

●●

●●
●

●

●

●

●
● ●

●●
●

●

●

●
●

● ● ●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●● ●
●
●

●

●

●●

●

●●

●

●
●

●

●● ●
●

●

●● ●

●

●

●

●
●
●●

●
●

●

●

●
●

●●
●●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●
●

● ●
●

●
● ●●● ●●

●●
●

●

●
●

●●●

●
●●

●

●
●

●

●

●
●

●
● ●

●

●

●
●

●

●

●
●

●● ●
●

●

●

●

●

●

●

●
●

●

●
●●
●

●

●

●

●

●●●

●

●

● ●
●

●

●
● ●●

●

●●

●

●

●
●

●● ●
●

●
●

●● ●

●
●

●

● ●

●

●

●

●

●

●
●●

●●
●

●

●

●●

●

●

● ●

●

●
●

●
●

●
●

●

●
●●●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●
●●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

● ●

●
●
●

●

●

●

●

●
●

● ●

●

● ●

●●

●

●

● ●

●

●

●

●
●
●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●
●

● ●●●

●

●
●

●

●
●

●
●

●
●

●

● ●

●

●●

●

●
●●
●

●●

●

●
●●

● ●

●

●●
● ●

●

●

●
●

●

●
●
●

●
●

●●

●

●

●

●●

●

●

●

●

●●●
●

●

● ●

●

●
●

● ●
●●

●

●

●

●

●
●

●
● ●

●

●

●

●

● ●

●●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●● ●●
●

●
●

●
●

●●●●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●●
●

●

●

●

●

●
●●

●
●

●
●

●

●

●
●

●

●
●

●
●

●

●
●●

●

●●
●

● ●

●
●

●

●

● ●
●

●
●

● ●●

●
●

●
● ●

●

●
●

● ●●

●

●
● ●●

●

● ●

●

●

●●

●

●
●

●●
●

●
●

●

●

● ●

●

●

● ●

●

●

●
●

● ●● ●

●

●

●
●

●●
●

●●
●

●

●

●

●

● ●

●

●
●

●

● ●

●

●

●
●

●

●
●●

●

●
●●

●

●
●

●
●

●

●

●
●

●

● ●●
●

●

●
● ●

● ●●
●

●●●

●●
●

●
●

●
●

● ●

●

●

●

●●

●
●● ●

●

●●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●
●

●

● ●

●

●
●

●

●

●●

●

●

●

●

●●●

●
●

●

●●
●

●

●

●

●● ● ●

●
●

●

●
●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●● ●

●

●

●

●
●

●
●

●

●

●
●

●
●

● ●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●
●●

●
●

●

●●

●

●
●

●
● ●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●
●●

●

●●

●

●
●

●
●

●
●

●

●●

●

●

●

●
●

●

●●●

●

●
●

●
●

● ●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●● ●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

● ●
●●

●

●●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●
●
● ●

●

●
●

●

●
●

●
●

●
●●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●●●
●● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●●●●

●
●

●

●

●

●

●

●

●●

●

●●
●

●
●
●

●

● ●●
●

● ●●

●
● ●●

●

●

●

● ●

●

●●●

●

●

●●

● ●

●

● ●
●

●●

●
●

●

● ● ●
●

●

●

●

●

●

●
●

●
●●

●

●●●

●

●

●

●

● ●●
●

●●
●

●

●

●● ●●

●

●

●
●

●

●

●●

●●
●

●
●

●

●

●
●

●● ●

●
●

●
●

●
●

● ●

●
●

●

● ●

●

●●●

●

●

●

●

● ●
●

●

●

● ●●

●

●

●

● ●●
● ●

●
●

● ●●

●

●●
●

●

●

●
●

●

●

●

●●

●

●
●

●

● ●● ●

●

●

●

●

●●
●

●

● ●
●

●

●
●

●
●

●
●

● ●
●●

●

●●
●

●
●

●●
●

●
●

●

●●

●
●

●

●
●

●
●

●
●

●

● ●

● ●●
●

●●●

●

●

●

●

●

●

●

●

●
●

●
●●
●

●
●

●

●

●

●
●

●

●
●

●

●
●● ●●

●
●
●

●
●

●● ● ●

●

●
●

●
●●

●●

●

●
●

●

●

●●

●

●●

●
●●

●
●

●

●

● ●

●

●

● ●●
●

● ●
●

●
●

●
●

●

●

●
●

●

●
●

●●●

●
●

● ●
●

●

●
●

●●
●●

●

●

●
●
●

●

●

●

●
●●

●

●
●

●

●●

●

●

● ●●
●

●

●

●

●●

●
●●●

●

●

●●

●

● ●
●

●

●

●●

●
●●

●

●

●

●

●●

● ●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●
●

●

●

●
●

●

●

●
●●
●

●

●
●

●
● ●

●

●
●

●

●

●
●

●

●
●

●
●

●

●
●

●

●
●●

●
●

● ●

●

●

●

●

●

●●●

●

●
●

●

●
●

●
●● ●

● ●

●

●

●

●
●
●

●

●
● ●

●

●

●

●●

●

●

●
●

●
●

●

● ●

●

●●● ●
● ●

●

●

●●

●

●●

●

●
●

●
●

●

●

●●

●

●
●

●
●

●
●

●●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●●

●

●●●●

●

●●● ●

●

●

●

●●

● ●

●

●
●●

●

●

●

●
●

●

●

●
●

●
●

●

●●
●

●

● ●
●

●
●

●

●
●

●

●

●●● ●
●

●●

●
●

●●
●

●

●

●

●
●

●
●●

●
●

●●

●
●●

●

●●

●

●
●

●

●

●
●

●●
● ●

●

●● ●

●

●

●●

●

●
●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●
●

●

●
● ●

●
●

●

●
●●

●

●●
●●

●

●● ●

●

●●●

●

●

●

●

● ●
●

●●●
●

●●
●
●

●

●

●

●

●

● ●
●

●

●
●

●

●●

●

●

●●

●

● ●
● ●

●
●

●

●
●

●
●

●

●

●●

●

● ● ●

●
●

●●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●●

●
●

●
●

●
●

●

●

●
●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●●

●
●

●

●●

●

●

●
●

●

●

●●

●

●
●

●●
●

● ●

●

●●●

●

●
●

●

●
●

●

● ●

●

●●

●

● ●

●

●

●

●

●

● ●

●●

●

●●
●● ●

●
●

●

●

● ●
●

●

●● ●●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

● ● ●

●

●
●

●
●●

●
●

●

●

●
●

●
● ●

●

●

●●

●
●

●

●

●●

●
●

●
●

●

●

●

●

●

●
●●

●

●
●

●
●●

●
●

●●
●

●

●● ●

●

●

●

●

●
●

●●

●

●● ●
●

●

●
●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●
● ●●

●
●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

● ●
●

●

●

●
●

●● ●

●
●
●

●

●

●

●

●

●

●

●
●● ●
● ● ●

●

●

●

●
●

●

●
●●

●
●

●●

●

●
●●

●

●

●●●

● ●

●

●● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●

● ●●

●●●

●

●●●● ●●●

●

●●

●

● ●●●
●

●

●

●

●●
●

●
●

●

●
●

●

●
●

●

●●
●

●●

●

●

●

●

●

●●●

●

●●
●

●

●

●
●

●●

●

●
●

● ●●

●

●
●

●

●

●

●

●
●

●● ●●●●
●

●

●
●

●

●

●

●

●●
●●

●

● ●

●
●

●

●

●
●

●
● ●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

● ●
●
●

●
●●

●
●●

●

●

●●

●

●

●

●
●●

●

●

●●

●●●

●
●

●

●●

●

●
● ●

●

●● ●

●

●●
●

●●
●

●

●
●● ● ●

●

●
●

●
●

●

●●

● ●
●

●

●

●

●
●● ●

●

●

●

●●

●
●

●

●

●
●

● ● ●

●

●

●● ●

●

●
●
●

●
●

●

●
● ●

●

● ● ●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●●

●
●

●

●● ●

●

●
●

●

●

● ●●

●

●

●●

●●

● ●

●

●●
●

●

●

●

●
●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●●

●
●

●

●

●

●
●

●
● ●●

●

●
● ●

●

●

●
●

●●
●
●

●

●
●
●

●
●

●

●
●

●●●
●

●
●

●
●
●

●

●

●
●

●
●●

●

●

●

●

●

●
●

● ●
●

● ●

●●
●

●●

●

●
●

●
●

●●●●

●

●

●

●

●

● ●
●

●

●

●

●

●

● ●

●●

●
●

●

●●● ●

●●
●

●

●
●●

●
●

●●

●

●

●
●

●
●

●
●

●●
●

●

●

●

●
●

●

●

●

●
●

●
●

●●

●

●

●●●
●●

●

●
●●

●

●

●

●
● ●

●

●

●
●

●

●

●

●
●

● ●
●

●●

●
●

●
●

●
●●

●

● ●●

●

●

●

●

●●
●

●

●

●

●

●

●

●●
● ●

●

●
●

●

●

●

●

●
●

● ●●
●●

● ●

●

●

●

●● ●

●

●●●

●

●

●

●

● ●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●
●●

●

●
●

●
●

●

●

●

●
●
●●

●

●

●
● ●

●

●
● ●

●
●

●

●

●

●●●
●

●

●

●

●●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

● ●
●

●●
●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●●

● ●
●

●

●
● ●

●

●

●

●

●

● ●
●

●
●

●
●

●
●

● ●

●

●●

●
●

● ●
●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●●●

●

●

●

●●●

●
●● ● ●
●

●●●

●
●
●

●

●

●

●●

●
●

●
●
●

●

●

● ●
●

●

●

●
●

●

●

●
●

●

●●

●
● ●

●

●●●
●

●

●

●

●

●●
●

●

●●

●
●
●

●
●

●

●
●

●

●

● ●

●

●
● ●
●

●

●

●

●●
● ●●

●
●

●
●

●

●●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●●

●● ●
●

●

●● ●

●
●

●

●

●

●

●●

●
●

●

●
●

●

●●●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●

●
●●

●

● ●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●
●

●
●

●

●●

●

●

● ●●
●

●

●

●
●● ●

●

●

●

● ●●

●

●
●

●●●
●

●
●

●

●

●

●
●

●

●

●●

●

●

●
●

●
●

●●

●
●

●● ●

●

●

●
●

●
●●

●

●

●

●
●

●● ●●

●

●

●
● ●

●
●●

●

●

●●
●

●

●

●
●●

●

●●
●

●

●

●
●

●

●●
●●

●
●

●

●● ●●
●

●

●

●

●●
●

●●
●

●
●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●●

● ●

●

●

●

●

●●●
●

●

●

● ●●
● ●

●

●●

●

●

●●

●●

●

●
●

●

●

●

●

●
●

●●
●

●

●

●

●
●

●

●
●●

●●

●

●

●

●

● ●●
●

●

●
●●

●●●

●

●
●

●

● ●

●

●

●●

●

●●
●

●

●
● ●

●

●

●

●

●●

●●
●

●

●

●

●
●

● ●
●

●

●●
●●

●
●

●

●● ● ●●

●

●●
● ●
●

●
●
●

● ●

●
●●

●
●●

●

●

●

●

●

●

●

● ●●

●
●

●
●

●

●

●● ●

●

●●

● ●●
●

●

●
●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●
●

●●

●
●

●

●
●

●

●

●

●

●
●
●● ●●●
●

●●●
●

●

●●

●

●
●

●
●

●
●
●

●

●

●
● ●

●
●

● ●●

●

●

●
●

●
●

●

●

●

● ●
●

●

●
●

●
●●

●●

●

●

●

●

●
●
●

●●

●
●●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●
●

●●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●●

●
●

●
●

●

●

●
●

● ●

●

●

●●

●

● ●●
●●

●

●

●
●

●

●

●
●●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●
●
●

●
●●

●

● ●●

●

●
●

●

●

●

●
●

●

●
●

●●

● ●
●

●● ●● ●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●●
●

●

●
●

● ●

●

●

●
●●

●
●

● ●●● ●

● ●
●

●

●

●
●

●●

●●

●

●●
●

●

●
●

●

●●
●

●

●
●

●

●
●●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●
●

●

● ●
●

●
●

●

●
●

●
●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●
●

●
●

●

●●

●

●
●

●

●
●

● ●
●

●
●

●

●
●

●

●●
●

●

●

●

●
●

●

●●
●

●

● ● ●

●

●

●
●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

● ●

●
●●

●

●

●
●

●

●
●●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●
●

● ●

●

●

●

●●

● ● ●●

●

●
● ●● ●

●
●

●
●

●

●

●●

● ●●

●●

●

●

●
●

●

● ●
●●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●●
●●

●●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●● ●●

●

●

● ●●

●

●

●● ●

●

●

●
●

●

●
●

●●

●● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
● ●

●

●
●●● ●

●

● ●
●

●
●

●

●
●

●
●

●

●

●
●●

●

●

●

●
● ● ●

●

●
●
●

●

●

● ●●
●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●
●●

● ●

●

●●

●

●
●●

●
●

●

●

●

●
●●

●

●●

●

●

●

● ●●

●

● ●

●

●

●

●

●●

●

●●●

●●
●●

●

●

●

●

●
●●

●●●●●

●

●
●

●
●

●

●●

●
●

●

●

●
●
●

●

●

●
●●

●

●
●

●

●●

●

●● ●

●

●

●

●
● ●

●

●
●

●
●

●

●● ●●●●

●

●

●
●

●

●

●

●
● ●

●
●

●
●

●
●●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●●
●

●

●

● ●

●
●

●

●

● ●

●
●

●●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●
●● ●

●
●

●
●

●●
●

●●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●

● ●

●

●

●

●

● ●

●

● ●●●

●●

●●

●
● ●

●

●

●

● ●
●

●

●●
●●

●●
●

●

●

●

●

●

●●● ●

●
●

●●

●
●

●

●

●●●

●

●

●

●●
●

●
●
●

●

●●
●

●

●

●

●●
●

●

●
●

●

●
●
● ●

● ●

●

●

●
●
●

●
●

●

●

●
●

●●

●
●

●

●

●●
●

●

●

●
●

●●
●

●

●● ●

●
●

●●●

●

● ●●
●

●

●

●
●●

●

●

●

●

●

●

●

● ●
●

●

●

●● ●

●
●

●
●

●

●
●

●

●

●
●

●●●
●

●

●

● ●●●

●

●●

●
●

●

●●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●
● ●

●
●

●●

●

●
●●

● ● ●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●
●●

●

●

●
●
●

●

●
●

●

●
●

● ●

●

●

●●

●

●

●

● ●

●

●

● ●

●

● ●● ●

●
●

●

●

●

●

●
●●

●

●

●

●

0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5

−3

−2

−1

0

X2

X
3

Figure 5.1 Pairwise results for 10,000 samples from a three dimensional truncated
multivariate normal distribution for three different sampling algorithms.

With the plots, it becomes apparent that the direct sampling algorithm by Koch and Bopp
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(2019) yields different results than the other two sampling methods. We also compare the

results with the Gibbs sampler proposed by Geweke (1991) and the estimated densities are

similar to those of the samplers by Li and Ghosh (2015) and Botev (2017). Thus, we have

reasonable doubt that the direct sampling algorithm generates samples from the desired

distribution and we do not consider this approach further.

We compare the remaining three different sampling algorithms on various scenarios that are

outlined in Table 5.1 to assess their speed. For each scenario, we test the algorithms in two

ways. First, we generate 10,000 samples and second we generate 1 sample 1,000 times,

which implies that we call the sampling algorithm 1,000 times. In the MCMC Algorithm 3.1

we need one sample per observation in each iteration and thus the second timings are more

interesting.

µ Σ a b

Scenario 1
(

0
0

) (
1 0.5

0.5 1

) (
0
0

) (∞
∞
)

Scenario 2
(

0.25
1

) (
1 0.5

0.5 1

) (−∞
0

) (
0
∞
)

Scenario 3
(−5

5

) (
1 −0.5
−0.5 1

) (−∞
0

) (
0
∞
)

Scenario 4
(−5
−5

) (
1 0.5

0.5 1

) (
0
0

) (∞
∞
)

Table 5.1 Scenarios for comparing sampling algorithms for the truncate multivariate normal
distribution.

To compare the algorithms properly, we use the microbenchmark package and repeat the

sampling 100 times. For the Gibbs sampling algorithm, we use 100 burn-in samples. Figure

5.2 displays the minimum, mean, and maximum times for each scenario and sampling

algorithm. For the basic acceptance-rejection algorithm the acceptance probability for

scenario 4 is low with approximately 8 × 10−10, thus we exclude this algorithm for this

scenario.

The basic acceptance-rejection sampler is the fasted algorithm overall when the mean of

the normal distribution lies in or close to the truncated area as in Scenario 1 to 3. Although

the Gibbs sampler is slower than the basic acceptance-rejection algorithm in these cases,

the difference is relatively small and the times for Scenario 4 are comparable to the other

Scenarios. The acceptance-rejection algorithm with minimax tilting is considerably slower,

especially in generating one sample 1,000 times. While the algorithm, in general, might be

fast, repeatedly calling a R-function is slow in comparison to the C++ implementation of the

other two samplers. Thus, for the implementation of the MCMC Algorithm 3.1, we use the

Gibbs sampler proposed by Li and Ghosh (2015).
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Gibbs sampler
(Li and Ghosh 2015)

Accept-reject with minimax
tilting (Botev 2017)

Basic
accept-reject
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Figure 5.2 Sampling times for different scenarios and sampling algorithms. We use 100
burn-in samples for the Gibbs sampler and compare the times with the microbenchmark
package and 100 repetitions. The dots indicate the average time for the scenario and the
error bars the minimum and maximum values. Calculations are performed on a Dell Latitude
E7440 with Intel(R) Core(TM) i7-4600U CPU @ 2.10GHz.

Caubet Fernandez et al. (2019) used this algorithm for sampling from the truncated multi-

variate normal distribution as well, however without any burn-in samples and with a different

transformation for the variables [181]. We correct their approach to properly match the

algorithm by Li and Ghosh (2015) and add the number of burn-in samples for the sampler as

an input parameter for Algorithm 3.1 with a default value of 10.

With the sampling algorithm for the truncated multivariate normal distribution, we covered

the first step of Algorithm 3.1, updating the latent variables z. For updating φ, β, and the

scale matrix R, Rcpp and Armadillo provide samplers for the Gamma and multivariate normal

distribution. To evaluate the acceptance probability of R in the Metropolis step, we require

the calculation of the multivariate normal density. Further, for calculating the weights in

each step, we need the density for the multivariate t-distribution and the univariate logistic

distribution. The last one is, again, available in Rcpp and we discuss the calculation of the

multivariate densities in the following.

The density of the q-dimensional multivariate normal distribution Nq(µ,Σ) is given by

f(x) = (2π)−
q
2 |Σ|− 1

2 exp

(
−1

2
(x− µ)′Σ−1(x− µ)

)
[164].

Σ is symmetric and positive definite with the Cholesky decomposition Σ = Q′Q, where Q is
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an upper triangular matrix. With

Σ−1 = (Q′Q)
−1

= Q−1 (Q′)
−1

= Q−1
(
Q−1

)′
,

|Σ| = |Q′Q| = |Q′||Q| = |Q|2 =

(
q∏
i=1

Qii

)2

,

the log-transformed density of Nk(µ,Σ) is

log(f(x)) = −1

2
(x− µ)′Q−1

(
Q−1

)′
(x− µ)− q

2
log (2π) +

q∑
i=1

log
(
Q−1
ii

)
.

Similarly, for the multivariate t-distribution given by

tq,ν(x|µ,Σ) =
Γ
(
ν+q

2

)
Γ
(
ν
2

)
(νπ)

q
2 |Σ| 12

·
(

1 +
1

ν
(x− µ)′Σ−1(x− µ)

)− ν+q
2

,

we obtain the log-transformed density

log (tq,ν(x|µ,Σ)) = log

(
Γ

(
ν + q

2

))
− log

(
Γ
(ν

2

))
− q

2
log ((νπ)) +

q∑
i=1

log
(
Q−1
ii

)
− ν + q

2
log

(
1 +

1

ν
(x− µ)′Q−1

(
Q−1

)′
(x− µ)

)
.

By exploiting the structure of the Cholesky decomposition, we can decrease the computation

times compared to a direct calculation of the determinant and inverse of the covariance

matrix Σ [281]. Using the log-transformed density instead of the untransformed normal

density, allows us to calculate the quotient of the acceptance probability as the exponential

of the difference of the numerator and denominator.

Based on the multivariate t-distribution, we can calculate the multivariate logistic distribution

defined in (3.6).
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5 Extension to multivariate logistic regression models

5.3 Multivariate logistic regression models for pathological

outcome after prostatectomy

In the following, we fit the multivariate logistic regression model to the EMR data set

introduced in Chapter 2. As the method is computationally intense, we first use a subsample

of the training data to identify promising initial values for the parameters. Further, we use

this subset to compare the algorithm to other methods. In general, we only consider the first

imputation set and exclude patients with a primary or secondary Gleason grade smaller than

three, but we compare the results to the univariate models obtained in Section 4.3 based on

all 10 imputations sets.
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0.7 0.75 0.73

0.7 0.65

0.69
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SVI

LVI

LNI

PGG

-1.0 -0.5 0.0 0.5 1.0

Polychoric correlation

Figure 5.3 Pairwise polychoric corre-
lation for the adverse pathological
outcomes, based on the full data set
(n = 24, 122) with missing values pairwise
deleted.

As we discussed in Section 3.2, the MLE for

the multivariate latent variable model exists,

when there is overlap for all outcomes and

when the absolute value of the polychoric cor-

relation between the different outcomes is not

equal to one. Figure 5.3 displays the poly-

choric correlation for the five adverse patho-

logical outcomes, based on the complete data

set, where missing values are deleted pair-

wise. The correlation coefficient is equal to

one for ECE and SVI, thus when we include

both outcomes in the multivariate logistic re-

gression model the MLE might not exist. In

the following, we, therefore, exclude SVI from

modelling.

We generate a subsample of the first imputation set for the training data using stratified

subsampling to ensure that the proportions of adverse outcome combinations in the subset

match the data. We stratify the data by all combinations of ECE, LVI, LNI, and PGG and

sample 20% of each group. This yields a data set with 3,994 observations.

With this data, we try different values for Ω, the covariance of the proposal density for the

unique values of the scale matrix R in the random Metropolis step. For the proposal density

in the random Metropolis step we need to find a balance between the number of accepted

values, which should not be too small, and the movement in the Markov Chain, which should
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also not be too small. For the other input parameters and initial values we choose

β(0) = 0 ∈ Rm φ(0) = 1 ∈ Rn µβ = 0 ∈ Rm

R(0) =


1 0.5 0.5 0.5

0.5 1 0.5 0.5

0.5 0.5 1 0.5

0.5 0.5 0.5 1

 Σβ = (σij) ∈ Rm, with σij =


1000 i = j = 1

4 i = j 6= 1

0 i 6= j

,

where n = 3, 994 and m is the total number of coefficients. For sampling from the truncated

normal distribution, we use 10 burn-in samples in each iteration and for the overall sampling,

we use 1,000 burn-in samples.

We compare the chains for the unique values of R using following different values for Ω,

Ω1 = 5 · 10−4 · Id6, Ω2 = 10−5 · Id6,

Ω3 = 10−4 ·


10 5 5 5 5 5
5 10 5 5 5 5
5 5 10 5 5 5
5 5 5 10 5 5
5 5 5 5 10 5
5 5 5 5 5 10

 , Ω4 = 10−4 ·


5 1 1 1 1 1
1 2.5 1 1 1 1
1 1 2.5 1 1 1
1 1 1 5 1 1
1 1 1 1 2.5 1
1 1 1 1 1 2.5

 ,

Ω5 = 2.5 · 10−4 · Id6.

For Ω1 to Ω4 we use 25,000 iterations, where we use a thinning of 10 on the chain yielding

2,500 samples for each coefficient. For Ω5 we use a thinning of 20 instead of 10 and in total

50,000 iterations, which also yields 2,500 samples. In Figure 5.4 we compare the chains of

the unique values of R after thinning. The acceptance rate and movement of the chains are

low for Ω2 and Ω3 in comparison to the others. The extra thinning of the MCMC samples

seems to aid the mixing, especially for r31, r42, and r43. Thus, we use Ω5 with a thinning of

20.

Figure 5.5 displays the 5,000 sampling values for the coefficients of ECE using the initial

parameters describe above, Ω = 2.5 · 10−4 · Id6, 1,000 burn-in samples, and 100,000

iterations with a thinning of 20. The sampling values for the coefficients related to the other

pathological outcomes LVI, LNI, and PGG are given in Appendix C.1. The chains mixed well

for the coefficients.

In addition to the Bayesian multivariate logistic regression model, we fit separate univariate

logistic regression models to the subsample of the data. Further, we fit a GEE model, but

we have to use the full training set for this as otherwise, the sample size is to small for this
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Figure 5.4 MCMC samples for the unique values of the scale matrix R based on 2,500
samples using a 1,000 burn-in samples. For Ω1 to Ω4 a thinning of 10 was used and for Ω5 a
thinning of 20.

model. Thus, we use the first imputation set of the complete training data containing 19,977

observations for the GEE model. Finally, we also compare the results with the univariate

logistic regression models fit in Section 4.3 on all 10 imputation sets where the coefficients

are pooled using Rubin’s rules (4.29).

Table 5.2 summarizes the times it took to fit the four different models. The differences

between the univariate models and the GEE model are negligible, but fitting of the multivariate

logistic regression model takes tremendously longer, as expected.
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Sec. Gleason 5
[ref. 3]

Prostate
volume [10ml]

Num. PSA
values (3y)

mean log(PSA)
(1y)

Perc. positive
cores [10%]

Prim. Gleason 4
[ref. 3]

Prim. Gleason 5
[ref. 3]

Sec. Gleason 4
[ref. 3]

(Intercept) Age [years] BMI [kg/m²] Number of
biopsies

0 2500 5000 0 2500 5000 0 2500 5000 0 2500 5000

0 2500 5000 0 2500 5000 0 2500 5000 0 2500 5000

0 2500 5000 0 2500 5000 0 2500 5000 0 2500 5000

−0.2

0.0

0.2

0.4

0.4

0.6

0.8

1.0

0.7
0.8
0.9
1.0
1.1
1.2

0.00

0.02

0.04

0.06

0.0

0.5

1.0

1.5

2.0

−0.08

−0.04

0.00

0.04

0.01

0.02

0.03

0.04

0.8

1.0

1.2

1.4

−0.016

−0.012

−0.008

−7

−6

−5

−4

1.00

1.25

1.50

0.5

1.0

1.5

Iteration

Figure 5.5 MCMC samples for the log OR for ECE based on 5,000 samples after thinning of
20 and 1000 bun-in samples.

Model Data set size Times Comments

Univariate logistic
regressions

3,994 0.08 sec

Univariate logistic
regressions

10 imputation sets
19,967 to 19,989

5.81 sec includes pooling of the
coefficients

GEE 19,977 10.22 sec

Multivariate logistic
regression

3,994 5 h 11 min 100,000 iterations, 1000
burn-in, thinning of 20

Table 5.2 Computation times for different models with the corresponding data set sizes.
Parameter estimation was performed on an Dell Latitude E7440 with Intel(R) Core(TM)
i7-4600U CPU @ 2.10GHz for all models besides the multivariate logistic regression, which
was fit using RStudio Server.

Figure 5.6 displays the ORs with 95%-credibility intervals for the multivariate logistic regres-

sion in comparison to the OR with 95%-confidence intervals for the other models. The ORs

are in general very similar, but the length of the intervals differ. In general, the credibility

intervals for the multivariate logistic model are slightly smaller compared to the confidence

intervals univariate models on the same data set, and the confidence interval for the GEE
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Figure 5.6 ORs with 95%-confidence or credibility intervals for different models fit to the
stratified subsample of the training data (subsample, n = 3, 994), the first imputation of the
complete training data (first training set, n = 19, 977), or all 10 imputation sets of the
complete training data (all training sets). Gleason grade coefficients are shown on a
different scale on the right for better visibility.
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models are slightly smaller as well. However, we should note that apart from the univariate

models fit to all imputation sets, we did not adjust the confidence interval to account for the

imputed data. Fitting the multivariate models to several or all of the imputed data sets would

better reflect the uncertainty in the data due to the missing values and we can expect more

sensible estimates for the coefficients.
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Figure 5.7 Individual, micro- and macro-averaged ROC curves for the prediction of
pathological outcomes based on the first imputation set of the test data (n = 3, 515).
Different models are fit to the stratified subsample of the training data (subsample,
n = 3, 994), the first imputation of the complete training data (first training set, n = 19, 977),
or all 10 imputation sets of the complete training data (all training sets).

We assess the predictive value of the models on the first imputation set of the test data

with 3,515 observations. Figure 5.7 displays the individual ROC curves for the pathological

outcomes as well as the macro- and micro-averaged ROC curves. The ROC curves for

the models overlay and are very similar. Thus, regardless of the small differences in

the coefficients, there is a negligible difference in the predictive value for the pathological

outcomes.

There is little to no hope that fitting the multivariate model to the complete training set results

in a model with a higher predictive value than the once we already explored. Given that the

fit on the subsample required over 5 hours, we estimate the training time for the complete

data set at approximately 25 to 26 hours. While this training time is definitely manageable,

fitting this model would most probably be a great waste of resources. Therefore, we do not

fit the multivariate model to the complete training data.
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6 Discussion

This thesis provides the proof that the BIC approximates the BF for the multivariate logistic

regression model to order Op(1) for arbitrary prior distributions and Op(n
− 1

2 ) for the unit

information prior distribution. On the way, we show the construction of null-orthogonal

parametrizations for arbitrary models. Further, we provide a framework in R for the Bayesian

multivariate logistic regression with different covariates for different multivariate outcomes.

The code for the R package multlogreg is available on GitHub [282].

Only in the application to simulations studies and especially real-world problems, statistical

theory can show its potential and usefulness. However, the results in Section 5.3 are not as

promising and optimistic as we would have envisioned. Despite the higher complexity of the

model and tremendously longer training time, the predictive performance for the Bayesian

multivariate model is no much better than the separate univariate ones. We have a slight

improvement for the model inference as the credibility intervals are smaller compared to

univariate models on the same data set, but there we did not account for the fact that we

used imputed data, which in general leads to larger confidence/credibility intervals.

We did not include one pathological outcome for the multivariate modelling, due to a high

polychoric correlation with another outcome, but this could be addressed by using a mul-

tivariate multinomial model. The univariate models are scalable to an arbitrary number

of outcomes and given the speed of implementation are therefore preferred in this case.

Nevertheless, failing to improve the predictive performance in this particular case, does not

imply that in general separate univariate regression models are better. Simulation studies

could explore the type of models, where accounting for the correlation among outcomes is

beneficial. Models dealing with time-dependent data of the same or similar measurements

might be such a model type.

Working with EMR data is blessing and curse at the same time. The sheer amount of

data that is readily available without conducting an expensive study offers the opportunity to

explore different scientific questions. However, it is attributed to the lack of thorough design of

experiment that essential variables, such as an indicator for patients under AS, are missing,

and extensive data pre-processing is necessary. Further, as Wang et al. (2016) show, the

evaluation of the model performance might be biased when events are classified as non-

events [283]. Depending on whether the marker is positively or negatively associated with the
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event, this biases the performance measures in the respective way [283]. For the application

to the prostatectomy data, this can, for example, occur when lymph node involvement was

not assessed but then falsely entered as no involvement instead of missing. Again, the lack

of a pre-defined protocol leaves more room for such mistakes and misclassification.

With this thesis, we laid the foundation to further explore the EMR data and develop prediction

models for prostatectomy patients. The model performance can be used as a benchmark for

future machine learning models, but what inevitable needs to be done is to improve the data

quality and add more relevant predictors, such as image or genetic data.

The framework for Bayesian multivariate logistic regression model reduces the implementa-

tion time for future applications so that exploring the possible benefits of this model approach

has been made easier and is available to a broader community.
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Appendix

A Data description and exploratory data analysis

A.1 List of variables
Pathological outcome Variable name

ECE ece
SVI svi
LVI lvi
LNI lni
PGG pgg

Table A.1 Pathological outcomes and corresponding variable name in data.

Covariates Variable name

Age at prostatectomy age_at_surgery
BMI at last biopsy bx_last_bmi
Number of biopsies bx_count
Last biopsy result bx_last_result
Percentage positive cores at last biopsy bx_last_cores_pos_perc
Number of positive cores at last biopsy bx_last_num_cores_pos
Number of cores at last biopsy bx_last_num_cores_total_with_mm
Primary Gleason grade at last biopsy bx_last_gleason_max_prim
Secondary Gleason grade at last biopsy bx_last_gleason_max_sec
Prostate volume at last biopsy bx_last_volumen_prostate

Table A.2 Patient characteristics and biopsy related covariates with the corresponding
variable name in data.
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A Data description and exploratory data analysis

Covariates Variable name

Egawa (PSADT) dt_slope_egawa
MSKCC (PSADT) dt_slope_mskcc
Sengupta (PSADT) dt_slope_sengupta
Stephenson (PSADT) dt_slope_stephenson
D’Amico (PSAV) v_damico
MSKCC (PSAV) v_mskcc
Sengupta (PSAV) v_sengupta
Thompson (PSAV) v_thompson
D’Amico (PSAV cut off) damico_cut

Table A.3 PSA dynamics covariates with the corresponding variable name in data.

Covariates Variable name

Number of PSA values psa_count_∗
last log(PSA) psa_ln_pre_op
mean log(PSA) psa_ln_mean_∗
standard deviation log(PSA) psa_ln_sd_∗
minimum log(PSA) psa_ln_min_∗
maximum log(PSA) psa_ln_max_∗
last PSA psa_pre_op
mean PSA psa_mean_∗
standard deviation PSA psa_sd_∗
minimum PSA psa_min_∗
maximum PSA psa_max_∗

Table A.4 Simple summary statistics applied to PSA values available before prostatectomy
and the corresponding variable name in the data. ∗ can be replaced by all, 1y, 2y, 3y
indicating all, values within 1 year, 2 years or 3 years before prostatectomy are used for
calculation.
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A.1 List of variables

Covariates Variable name

log(PSA) linear regression, 1st coefficient psa_lm_ln_coeff1_∗
log(PSA) linear regression, 2nd coefficient psa_lm_ln_coeff2_∗
log(PSA) polynomial regression degree 2, 1st coefficient psa_lm_ln_time2_coeff1_∗
log(PSA) polynomial regression degree 2, 2nd coefficient psa_lm_ln_time2_coeff2_∗
log(PSA) polynomial regression degree 2, 3rd coefficient psa_lm_ln_time2_coeff3_∗
log(PSA) polynomial regression degree 3, 1st coefficient psa_lm_ln_time3_coeff1_∗
log(PSA) polynomial regression degree 3, 2nd coefficient psa_lm_ln_time3_coeff2_∗
log(PSA) polynomial regression degree 3, 3rd coefficient psa_lm_ln_time3_coeff3_∗
log(PSA) polynomial regression degree 3, 4th coefficient psa_lm_ln_time3_coeff4_∗
PSA linear regression, 1st coefficient psa_lm_coeff1_∗
PSA linear regression, 2nd coefficient psa_lm_coeff2_∗
PSA polynomial regression degree 2, 1st coefficient psa_lm_time2_coeff1_∗
PSA polynomial regression degree 2, 2nd coefficient psa_lm_time2_coeff2_∗
PSA polynomial regression degree 2, 3rd coefficient psa_lm_time2_coeff3_∗
PSA polynomial regression degree 3, 1st coefficient psa_lm_time3_coeff1_∗
PSA polynomial regression degree 3, 2nd coefficient psa_lm_time3_coeff2_∗
PSA polynomial regression degree 3, 3rd coefficient psa_lm_time3_coeff3_∗
PSA polynomial regression degree 3, 4th coefficient psa_lm_time3_coeff4_∗

Table A.5 Covariates extracted from regression models applied to PSA values available
before prostatectomy. ∗ can be replaced by all, 1y, 2y, 3y indicating all, values within 1 year,
2 years or 3 years before prostatectomy are used for calculation.
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A.2 Additional exploratory data analysis

*** *** ** *** *** *** *** *** *** ***
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Figure A.1 Pearson correlation coefficients for continuous covariates. (all) indicates all PSA
values before prostatectomy were used, ∗∗∗ indicates a p-value < 0.001, ∗∗ < 0.01, and ∗
< 0.05 after adjusting for 8,385 multiple comparisons with the Bonferroni method. White
color indicates no significant correlation, � correlation coefficients with an absolute value
smaller than 0.05.
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Figure A.2 Pearson correlation coefficient of PSA related covariates for different time
periods. (all), (1y), (2y), or (3y) indicate all PSA values or those within one, two or three
years of prostatectomy are used. ∗∗∗ indicates a p-value < 0.001, ∗∗ < 0.01, and ∗ < 0.05
after adjusting for 8,385 multiple comparisons with the Bonferroni method. White color
indicates no significant correlation, � correlation coefficients with an absolute value smaller
than 0.05.
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B Approximating the Bayes Factor for univariate

logistic regression models

B.1 Simulation study results for the second scenario

In this section, we discuss the results of the second scenario for the simulation studies

performed in Section 4.2. In Scenario 2 we use one covariate that is sampled from the

log(PSA)-values of the EMR data.

0

200

400

600

800

0 0.01 0.1 0.5 1 3
β1

B
F c

al
c

-B
F a

pp
ro

x

Sample size: n = 10

-1.0

-0.5

0.0

0.5

0 0.01 0.1 0.5 1 3
β1

B
F c

al
c

-B
F a

pp
ro

x
Sample size: n = 100

-0.50

-0.25

0.00

0.25

0 0.01 0.1 0.5 1 3
β1

B
F c

al
c

-B
F a

pp
ro

x

Sample size: n = 1000

Figure B.1 Differences between BFcalc and BFapprox for the second scenario of the
simulation study for logistic regression models with sample sizes n = 10, n = 100, and
n = 1000 based on 6,000 simulations each.

Similar to Scenario 1 we see in Figure B.1 that for an increasing sample size the difference

between the BFapprox and BFcalc decreases. Overall it is larger than for the discrete case

(Fig. 4.3). For a small sample size of n = 10, we detect 202 outlying values (3.4%) with an

absolute difference between BFapprox and BFcalc greater than 2. These outliers occur when

Yi = 1 for all i ∈ {1, . . . , 10} and we exclude them in Figure B.2 and the following analysis.
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B Approximating the Bayes Factor for univariate logistic regression models

Figure B.2 shows that in general the absolute difference between BFapprox and BFcalc is

smaller than 0.5, but there are several outlying values up to 1 for all cases of β1. The

distribution of the difference between BFapprox and BFcalc is symmetric, whereas in Scenario

1 it is left skewed
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Figure B.2 Difference between calculated BFapprox and BFcalc for the second scenario of the
simulation study for logistic regression models with a sample size of n = 10 excluding 202
outlying cases.
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Figure B.3 Comparison of BFapprox to BFcalc on a negative log10 - scale using Jeffreys’ rule
for the second scenario. On the left side all simulation runs are shown, whereas on the right
side the focus is on the range between -1.5 and 5 on a negative log10-scale.

We plot BFapprox against BFcalc, on a negative log10-scale and classify the evidence against

the null hypothesis according to Jeffreys’ rule into substantial, strong, and decisive (Fig. B.3).

Overall − log10(BFapprox) and − log10(BFcalc) agree well, but the classification differs in 633

cases located in one of the gray areas. Stratified by sample size the misclassification rates

are 8.3% (484/5,798) for n = 10, 2.4% (146/6,000) for n = 100, and 0.1% (3/6,000) for

n = 1000.
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B.1 Simulation study results for the second scenario

When investigating the 484 misclassified cases for n = 10 in more detail, we find that in 200

cases the minimum log(PSA)-value of one group is larger than the maximum log(PSA)-value

of the other group and the data are completely separated as defined in Section 3.1. For

192 misclassified cases for n = 10,we observe an quasicomplete separation in the data in

the sense that the two groups barely overlap and only one observation of one group has a

log(PSA)-value within the range of the other group. Figure B.4 displays this quasicomplete

separation exemplified for five simulations. The assumptions for Laplace regularity are not

fulfilled and the approximation fails in these cases. With an increasing sample size, no such

outliers occur in the simulations. Similar to Scenario 1, we exclude these 392 cases, as in

medical applications, statistical analysis would not proceed in the presence of small samples

with unstable effects.
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Figure B.4 Quasicomplete separation of the continuous data with a binary outcome, where
only one observation of on group falls within the range of the observations of the second
group. Five simulations of n = 10 are displayed.

For the remaining 92 misclassified cases for n = 10 as well as the 146 and 3 misclassified

cases for n = 100 and n = 1000, misclassification occurs on the boundaries of Jeffreys’

rule. The median, minimum, and maximum difference − log10(BFapprox)− (− log10(BFcalc))

for these cases are -0.12, -0.29, and -0.01 respectively. Thus, BFapprox underestimates BFcalc

in all misclassified cases for Scenario 2. We do not exclude these 241 misclassified cases.

We compare BFapprox to the p-value obtained from the Wald test for the coefficient of the

covariate on a negative log10-scale. Again, we use a negative log10-scale and classify

− log10(BFapprox) according to Jeffreys’ rule. We consider 3 different significance levels for

the p-value, 0.05, 0.01, and 0.001, which correspond to ≈ 1.3, 2, and 3 on the negative

log10-scale.

On the left side in Figure B.5, we see for a large sample size and large β1-value both

the p-value and BFapprox are highly significant (p < 0.001) and decisive, respectively. In
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Figure B.5 Comparison of BFapprox and the p-value on a negative log10 - scale for the
second scenario. On the left side all simulation runs are shown, whereas on the right side
the focus is on the range between -1.5 and 5 on a negative log10-scale.

contrast to Scenario 1 we do not detect outlying cases for n = 100, probably due to the

continuous covariate. On the right side in Figure B.5 we observe cases for n = 10, where

the p-value is large, but the BFapprox provides substantial, strong or decisive evidence against

the null-hypothesis. Those 334 cases out of 4,525 remaining simulations for n = 10 (7.4 %)

occur when complete separation of the data is possible as described above.

We detect that for larger sample sizes of n = 100 or n = 1000 the BF is more conservative

than the p-value, whereas for a sample size of n = 10 in some cases the BF provides

substantial or strong evidence against the null hypothesis, but the p-value is not significant

(lower right gray area).

For n = 100 and n = 1000 we split the right side in Figure B.5 and display the results

separated by samples size and β1-value in Figure B.6 for better visibility.

For n = 1000 and β1 = 1, 3 no values fall within the displayed range and for n = 100 and

β1 = 3 all p-values are less than 0.01 and BFapprox-values indicate at least strong evidence

against the null hypothesis (Fig.B.6, bottom row). We expect these results as for these

parameter setting evidence against the null hypothesis should be provided.

For β1 ≤ 0.5 we observe a similar shift in p-values as described for Scenario 1 in Section

4.2. For a sample size of n = 1000 compared to n = 100 for similar − log10(BFapprox)-values

the p-value tends to be smaller, and thus larger on a negative log10-scale for the larger

164



B.1 Simulation study results for the second scenario

p = 0.05

p = 0.01

p = 0.001su
bs

ta
nt

ia
l

st
ro

ng

de
ci

si
ve

p = 0.05

p = 0.01

p = 0.001su
bs

ta
nt

ia
l

st
ro

ng

de
ci

si
ve

p = 0.05

p = 0.01

p = 0.001su
bs

ta
nt

ia
l

st
ro

ng

de
ci

si
ve

p = 0.05

p = 0.01

p = 0.001su
bs

ta
nt

ia
l

st
ro

ng

de
ci

si
ve

p = 0.05

p = 0.01

p = 0.001su
bs

ta
nt

ia
l

st
ro

ng

de
ci

si
ve

p = 0.05

p = 0.01

p = 0.001su
bs

ta
nt

ia
l

st
ro

ng

de
ci

si
ve

β1 = 1 β1 = 3

β1 = 0.1 β1 = 0.5

β1 = 0 β1 = 0.01

-1 0 1 2 3 4 5 -1 0 1 2 3 4 5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

− log10(BFapprox)

−
lo
g
1
0
(p

-v
al

ue
)

Sample size 100 1000

Figure B.6 Comparison of BFapprox and the p-value on a negative log10 - scale for the
second scenario for n = 100 and n = 1000 with focus on the range between -1.5 and 5 on a
negative log10-scale.

sample size. Therefore, for comparable evidence against the null hypothesis based on

BFapprox, the p-value yields more significant results for a larger sample size. Moreover, we

detect several cases, where BFapprox does not provide evidence against the null hypothesis

with − log10(BFapprox) < 0.5, but the Wald test yields p-values at least smaller than 0.05.

These disagreeing cases are located in the upper gray areas. Stratified by sample size

the disagreement proportions are 7.3% (441/6,000) for n = 100 and 4.7% (281/6,000) for

n = 1000. For n = 10 in 81 cases out of 4,191 (1.9%) BFapprox indicates evidence against

the null hypothesis, but the p-value is larger than 0.05.
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B.2 Results for AIC and LASSOmax

ECE SVI LVI LNI PGG
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Figure B.7 Variables selected in at least 4 of the 10 imputation sets (n = 16, 427) using AIC
or the LASSOmax method. Size and color indicate the number of imputation sets on which
the specific variable was selected. Grey backgrounds indicate variables selected in at least
50% of the imputed sets.
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B.2 Results for AIC and LASSOmax

Figure B.7 displays the covariates selected by AIC and LASSOmax. Due to the large number

of variables selected, we only show those that were included in a model at least 4 times.

Overall the number of included covariates is much larger compared to the BIC and LASSO1se.
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Figure B.8 Odds ratios for models selected by the AIC and LASSOmax, with magnitude
greater than 1 indicated by dark blue and significance at a 0.05 level, by circles.
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B.3 Stan model specification

The exact specification in Stan for models M0 and M1 for LNI introduced Section 4.3 are

given below.

model0.stan

data {

/ / Number o f observat ions

i n t < lower=0> N;

/ / Number o f parameters

i n t < lower=0> K;

/ / Responses

i n t < lower =0 , upper=1> l n i [N ] ;

/ / Design mat r i x

mat r i x [N, K ] X ;

/ / P r i o r s on regress ion c o e f f i c i e n t s

vec to r [K ] scale_beta ;

}

parameters {

/ / C o e f f i c i e n t s

vec to r [K ] beta ;

}

model {

/ / p r i o r s

beta ~ normal ( 0 . , scale_beta ) ;

/ / l i k e l i h o o d

l n i ~ b e r n o u l l i _ l o g i t (X * beta ) ;

}
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B.3 Stan model specification

model1.stan

f u nc t i o ns {

/ / Ca lcu la te the inverse Hessian f o r

/ / the u n i t i n f o rma t i on p r i o r

r e a l inv_hes ( i n t N, vec to r W, vec to r dat_vec ) {

r e a l hess ian_inverse ;

hess ian_inverse = 0;

f o r ( n i n 1 :N) {

hess ian_inverse += − dat_vec [ n ] * W[ n ] * dat_vec [ n ] ;

}

r e t u r n s q r t ( − N * inv ( hess ian_inverse ) ) ;

}

}

data {

/ / Number o f observat ions

i n t < lower=0> N;

/ / Number o f parameters

i n t < lower=0> K;

/ / Responses

i n t < lower =0 , upper=1> l n i [N ] ;

/ / Design mat r i x

mat r i x [N, K ] X ;

/ / P r i o r s on regress ion c o e f f i c i e n t s

vec to r [K ] scale_beta ;

/ / Vector f o r number o f p o s i t i v e cores

vec to r [N] num_pos_cores ;

}

parameters {

/ / C o e f f i c i e n t s

vec to r [K ] beta ;

r e a l b_num_pos_cores ;

}
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model {

vec to r [N] xb ;

vec to r [N] W;

/ / p r i o r s

beta ~ normal ( 0 . , scale_beta ) ;

xb = X * beta ;

f o r ( n i n 1 :N) {

W[ n ] = i n v _ l o g i t ( xb [ n ] ) * (1 − i n v _ l o g i t ( xb [ n ] ) ) ;

}

b_num_pos_cores ~ normal (0 , inv_hes (N, W, num_pos_cores ) ) ;

/ / l i k e l i h o o d

l n i ~ b e r n o u l l i _ l o g i t (X * beta +

b_num_pos_cores * num_pos_cores ) ;

}
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C Bayesian multivariate logistic regression model

C.1 Sampling values for the coefficients related to LVI, LNI,

and PGG
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Figure C.1 MCMC samples for the log OR for LVI based on 5,000 samples after thinning of
20 and 1,000 bun-in samples.
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Figure C.2 MCMC samples for the log OR for LNI based on 5,000 samples after thinning of
20 and 1,000 bun-in samples.
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Figure C.3 MCMC samples for the log OR for PGG based on 5,000 samples after thinning
of 20 and 1,000 bun-in samples.
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