A GIS-based gray-box approach for the estimation of heat demand at the urban scale

Anahi Molar-Cruz

Technical University of Munich
Faculty of Electrical and Computer Engineering
Chair of Renewable and Sustainable Energy Systems

38th International Energy Workshop 2019
Paris, 05.06.2019
Motivation

- Building sector: 40% of total energy consumption
- Low-carbon energy policy
- Urban energy planning: Flexible and transparent modeling tools
- Data intensive models

European/national policy not effectively transferred to local planning structures

- 36% of total CO₂ emissions

Poor data availability
Low-quality
Privacy concerns

Data availability
Low-quality
Privacy concerns
Content

1. Urban energy modeling approaches
 UrbanHeatPro in the urban energy modeling world

2. Building model
 Modeling space heating and domestic hot water demand

3. Synthetic city
 Overcoming data challenges

4. Study case
 Munich

5. Conclusion
Modeling approaches

UrbanHeatPro
Heat demand profiles for urban areas

https://github.com/tum-ens/urban-heat-pro

GNU General Public License v3.0

- Dynamic simulation of space heating and domestic hot water demand
- Simple building physics model allows the simulation of urban areas
- Building thermal properties and user behavior are explicitly modeled
- Variable spatial and temporal resolution
Building model

Grey-box building model: 1R1C

\[\frac{dQ}{dt} = L_t(\theta, t) + L_v(t) + G_i(t) + G_s(t) + P_{sh}(t) \]

\[\frac{dT}{dt} = \frac{1}{C} (L(\theta, t) + G(t)) \]

\[\frac{dT}{dt} = \frac{1}{R_{eq} \cdot C_{eq}} \cdot (\theta_a(t) - \theta_b(t)) + \frac{1}{C_{eq}} \cdot G(t) \]

Probabilistic activity model

\[\theta_w = 60°C \]

Adapted from Jordan and Vajen (2005)
Building input data

Geodata
- Building footprint
- Geographic location
- Orientation
- Ambient temperature
- Solar radiation

Envelope
- Thermal transmittance (U-value) per element: roof, wall, window, floor
- Surface area per element
- Thermal mass
- Infiltration and ventilation rate

Occupants
- Number of dwellings
- Number of occupants
- Share of heated area
- Activity profile
- Comfort temperature
- Night setback schedule

Use
- Size and efficiency of system
Overcoming poor data availability: synthetic city

- Simplified representation of the actual city by means of synthetically generated populations of buildings and occupants.
- Spatial microsimulation based on aggregated statistics.
- Better representation of the heterogeneity of the building stock and user-behavior while protecting the user’s privacy.
- **Probabilistic** approach: Every synthetic city is different

- Allows the **risk and uncertainty analysis** for a more effective energy planning:

![Diagram](attachment:diagram.png)

- Building stock
- Synthetic city
- Energy demand
- Synthetic region
- Synthetic building
- Uncertainty quantification
- Uncertainty propagation
- Decision & risk analysis

Anahi Molar-Cruz (TUM ENS) | IEW 2019 | 05.06.2019 Paris
Overcoming poor data availability: synthetic city

1. Initialization of the building stock
2. Characterization of buildings
4. Characterization of the occupants
1. Initialization of the building stock

- Geodatabase with basic **structural information** of the building stock
- Generalized regression estimator algorithm to match **aggregate building stock statistics**
- Enhanced with:
 - Inverse distance weighting using the **typical ground floor area**
 - Construction year **probability map** based on historical urban growth
2. Characterization of buildings

- Geodatabase with **building-related attributes** required for the heat demand model.

- Algorithm to select single characteristics from a **building typology** and to match aggregate dwelling statistics.

- Enhanced with **probability distributions** for continuous (e.g. U-values) and discrete attributes (e.g. number of dwellings).
3. Characterization of heat supply technologies

- Geodatabase with **heat supply-related attributes** required for the heat demand model.

- Algorithm to sample user-behavior attributes from defined **probability distributions or characteristic values**. Matching to **aggregate heat supply statistics** is also ensured.
4. Characterization of occupants

- Geodatabase with **occupant-related attributes** required for the heat demand model
- Algorithm to sample user-behavior attributes from defined **probability distributions** or **characteristic values**. Matching to **aggregate population statistics** is also ensured.
Study case: Munich

Building database

OpenStreetMap
Land use

Building use
- commercial
- industrial
- public
- residential

137,750 buildings
2,881 commercial
2,194 industrial
822 public
131,853 residential
Study case: Munich

Synthetic city

1. Initialization of the building stock

Residential building stock

<table>
<thead>
<tr>
<th>Const. year</th>
<th>SFH</th>
<th>TH</th>
<th>MFH</th>
<th>AB</th>
</tr>
</thead>
<tbody>
<tr>
<td><1859</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>1860-1918</td>
<td>1%</td>
<td>3%</td>
<td>3%</td>
<td>1%</td>
</tr>
<tr>
<td>1919-1948</td>
<td>2%</td>
<td>6%</td>
<td>6%</td>
<td>1%</td>
</tr>
<tr>
<td>1949-1957</td>
<td>2%</td>
<td>7%</td>
<td>5%</td>
<td>2%</td>
</tr>
<tr>
<td>1958-1968</td>
<td>2%</td>
<td>7%</td>
<td>5%</td>
<td>2%</td>
</tr>
<tr>
<td>1969-1978</td>
<td>2%</td>
<td>5%</td>
<td>3%</td>
<td>1%</td>
</tr>
<tr>
<td>1979-1983</td>
<td>2%</td>
<td>4%</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>1984-1994</td>
<td>1%</td>
<td>3%</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>1995-2001</td>
<td>1%</td>
<td>2%</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>2002-2009</td>
<td>2%</td>
<td>4%</td>
<td>3%</td>
<td>1%</td>
</tr>
<tr>
<td>>2009</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>0%</td>
</tr>
</tbody>
</table>

* SFH: Single-Family House, TH: Terraced House, MFH: Multi-Family House, AB: Apartment Block

Typical ground floor area in m²

<table>
<thead>
<tr>
<th>Const. year</th>
<th>SFH</th>
<th>TH</th>
<th>MFH</th>
<th>AB</th>
</tr>
</thead>
<tbody>
<tr>
<td><1859</td>
<td>86</td>
<td>0</td>
<td>174</td>
<td>0</td>
</tr>
<tr>
<td>1860-1918</td>
<td>78</td>
<td>60</td>
<td>103</td>
<td>164</td>
</tr>
<tr>
<td>1919-1948</td>
<td>145</td>
<td>50</td>
<td>159</td>
<td>396</td>
</tr>
<tr>
<td>1949-1957</td>
<td>80</td>
<td>81</td>
<td>355</td>
<td>354</td>
</tr>
<tr>
<td>1958-1968</td>
<td>116</td>
<td>46</td>
<td>471</td>
<td>459</td>
</tr>
<tr>
<td>1969-1978</td>
<td>152</td>
<td>61</td>
<td>423</td>
<td>540</td>
</tr>
<tr>
<td>1979-1983</td>
<td>83</td>
<td>73</td>
<td>248</td>
<td>0</td>
</tr>
<tr>
<td>1984-1994</td>
<td>75</td>
<td>56</td>
<td>249</td>
<td>0</td>
</tr>
<tr>
<td>1995-2001</td>
<td>84</td>
<td>52</td>
<td>284</td>
<td>0</td>
</tr>
<tr>
<td>2002-2009</td>
<td>80</td>
<td>71</td>
<td>320</td>
<td>0</td>
</tr>
<tr>
<td>>2009</td>
<td>108</td>
<td>68</td>
<td>321</td>
<td>0</td>
</tr>
</tbody>
</table>

Historical urban growth

From European Environment Agency (2009)
Study case: Munich

Synthetic city

2. Characterization of buildings using TABULA (Typology Approach for Building Stock Energy Assessment)

<table>
<thead>
<tr>
<th>Const. Year</th>
<th>SFH</th>
<th>TH</th>
<th>MFH</th>
<th>AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>... 1859</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1860 ... 1918</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1919 ... 1948</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1949 ... 1957</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1958 ... 1968</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1969 ... 1978</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1979 ... 1983</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1984 ... 1994</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995 ... 2001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002 ... 2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Study case: Munich

Synthetic city
3. and 4. Characterization of heat supply technologies and occupants

- Space heating supply: $+1^\circ C/h$, 90%
- Hot water tank size: Daily hot water demand (m³/occupant * no. occupants)

- Set temperature [$^\circ C$]

<table>
<thead>
<tr>
<th>Building type</th>
<th>Tset</th>
<th>dT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial</td>
<td>19</td>
<td>2</td>
</tr>
<tr>
<td>Industrial</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>Public</td>
<td>19</td>
<td>2</td>
</tr>
<tr>
<td>Residential</td>
<td>21</td>
<td>2</td>
</tr>
</tbody>
</table>

- Share of buildings with night setback: 50%
- Night setback temperature: $T_{set} - 3^\circ C$
- Night setback schedule: According to activity profile
- Occupancy and activity profile from German Time Use Survey
Study case: Munich

Results

Status Quo
Current refurbishment statistics

Ambitious Scenario
Buildings with advanced refurbishment
-51% heat demand
Study case: Munich

Results

Annual space heating demand (TWh)

Frequency

12.0 12.5 13.0 13.5 14.0 14.5

Space heating demand in 2014

Heat demand [MW]

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

mean

5%perc

95%perc

Anahi Molar-Cruz (TUM ENS) | IEW 2019 | 05.06.2019 Paris
Key messages

1. **Transparent and flexible tools** for the simulation of energy systems at variable spatial scales are needed for an effective urban energy planning.

2. **Gray-box modeling** is a suitable approach for modeling heating demand as it considers the **building physics** as well as the **user behavior**.

3. Analyses with **synthetic cities**…
 i. overcome challenges of poor **data availability** and low-quality datasets as well as data **privacy concerns**.
 ii. represent the **heterogeneity** of the building stock and use behavior.
 iii. allow the inclusion of **risk and uncertainty analysis** in the simulation of energy systems.

4. **GIS data** enhances the characterization of cities
A bottom-up model for the simulation of heat demand profiles of urban areas

Anahi Molar-Cruz
Technical University of Munich
Chair of Renewable and Sustainable Energy Systems
anahi.molar-cruz@tum.de