
1

Integral Sliding Mode Observer Based Disturbance

Estimation for Euler-Lagrangian Systems
Zengjie Zhang, Marion Leibold, and Dirk Wollherr, Senior Member, IEEE

Abstract—In this paper, a novel integral sliding mode observer
is proposed to estimate the external disturbance and velocity of
Euler-Lagrangian systems. This method provides high bandwidth
and precise estimation with only commanded input and position
measurement. A system velocity measurement is not required
to construct the sliding mode manifold. The convergence of
the estimation error to zero is theoretically in finite time,
which is proved by a direct Lyapunov method utilizing the
passivity property of Euler-Lagrangian systems. An integral
sliding manifold is designed to reduce the reaching phase, such
that the robustness of the estimation is enhanced. The method
has been applied to a robot manipulator to estimate the joint

velocity and external contact forces in a physical human-robot
task. Simulations and experiments reveal that this novel method
provides fast, precise and robust estimation results and can be
used to replace the measurement of an external force sensor.
The successful application of this observer to a force-sensor-
less admittance controller for a manipulator contributes to the
implementation of a sensor-free safety framework for human-
robot collaboration.

Index Terms—sliding mode observer, fault detection and iso-
lation, human robot interaction, robust control, disturbance
estimation.

I. INTRODUCTION

THIS paper is concerned with disturbance estimation

and fault detection and isolation (FDI) of mechatronic

systems using analytical redundancy based methods. Specif-

ically, it focuses on the online estimation of system actuator

faults [1]–[3], external disturbances or forces [4], [5], para-

metric perturbations [6] and unmodeled system dynamics [7],

[8] of a class of Euler-Lagrangian systems which usually share

similar mathematical formulations [9]. It is well known that

the analysis and diagnosis of fault signals or disturbances

are critical techniques of FDI technology. For example, in

human-robot interaction (HRI), it is important to detect and

classify collisions and contacts to guarantee safety in col-

laborative tasks [10], [11], such that robots and humans are

allowed to share the same workspace and physical injuries are

avoided [12]–[14]. More generally, disturbance estimation is

also popularly studied for feed-forward disturbance compensa-

tion control [8], [15], robust control [16], [17] or fault-tolerant

control [18], [19] strategies for various mechatronic systems.

Disturbances like contact forces between robots and the

environment can be measured by extrinsic force sensors [11],

[20]. However, most other types of disturbances mentioned
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above are not directly measurable and thus need to be es-

timated to achieve effective fault diagnosis or compensative

control strategies. As a popular approach, the disturbance

estimation methods based on the observer theory also referred

to as analytic redundancy based methods, are frequently used

to solve FDI problems [21], especially the collision detection

problem of robotic systems [5], [22]. Since no extrinsic force

sensors are needed, these methods are expected to replace

real force sensors in HRI tasks to achieve a sensor-less safety

framework, thus bring down the cost of the robot system.

Previous work on disturbance estimation of linear systems

and Euler-Lagrangian systems is vast, such as unknown input-

output observer [23], nonlinear disturbance observer [24], [25],

Luenberger observer [26], [27], sliding mode observers [28]–

[31], high gain observer [32], filter-based observer [33] and

general momentum observers [9]. However, several problems

or challenges still exist in these methods. First of all, the

Lipschitz condition, which is a basic assumption for some

previous methods [32], does not hold for practical mechatronic

systems due to the existence of discontinuous friction. Second,

the assumption that the derivative of the disturbance is equal to

zero, which has been used in previous literature [3], [34], is not

general enough to cover high-bandwidth disturbance. Third,

since the position is usually the only available measurement

in practice, a disturbance estimation method should not rely

on velocity measurements. Instead, the velocity of the system

should be estimated at the same time [35]–[37]. A precise

velocity estimation is important to reconstruct the disturbance

estimation [29].

Among the methods above, sliding mode observers solved

these three problems, since they do not require the Lipschitz

condition nor the disturbance derivative assumption, and they

provide robust and exact estimation of the velocity (opposite

to asymptotic). Specifically, during the sliding motion of

a sliding mode observer, the state estimation is invariant

from external disturbances (known as invariance), and the

convergence of the estimation error is in finite time (known

as exact observation) [35], [36]. Thus the robust precision of

state and disturbance estimation is guaranteed [29]. However,

the invariance does not hold during the reaching phase to the

sliding manifold, which means the traditional sliding mode

observers are not always robust. This problem can be solved by

the integral sliding mode which can theoretically eliminate the

reaching phase, such that the invariance holds from the initial

time instance and robustness is enhanced [38]. Even though

integral sliding mode controllers are widely studied [39],

[40], there has not been related work on the integral sliding

mode observer for disturbance estimation of Euler-Lagrangian
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systems to our knowledge, whereas this enhanced robustness

is worthwhile to be investigated in the fields of FDI of HRI.

The contribution of this paper is to propose a novel integral

sliding mode observer for velocity and disturbance estimation

of Euler-Lagrangian systems. Different from the conventional

integral sliding mode based methods applied to disturbance re-

sistance problems [41]–[43], the construction of the switching

manifold in this paper does not require the system velocity

which is usually not directly measurable in practice. On the

contrary, the observer provides fast and precise estimations

of the velocity and disturbance of the system simultaneously

using only position measurements. There are four advantages

to this method. 1) Chattering is reduced since the noisy ve-

locity measurement is not used in the sliding manifold design;

2). A smooth velocity estimation is obtained simultaneously

with the disturbance estimation; 3). By applying the idea of

integral sliding mode control [38], the reaching phase to the

integral sliding manifold is reduced, such that the robustness is

enhanced compared to other sliding mode observers; 4). There

are no assumptions on the derivative of the system disturbance,

which allows the method to be generalizable to a wider range

of systems.

The paper is organized as follows. Section II briefly in-

troduces the basic idea of integral sliding mode control and

the disturbance estimation problem. The design of the integral

sliding mode based observer is discussed in section III along

with a finite-time stability proof. In section IV, a simulation

is presented to show the feasibility of the integral sliding

mode observer, and experiments are conducted in section V to

demonstrate its performance in practical applications. Finally,

section VI concludes the paper.

II. PRELIMINARIES

A. Integral Sliding Mode Control

This section gives a short introduction of the theory of

integral sliding mode [38]. Consider a multi-input multi-output

(MIMO) control affine system

ẋ = f(x) +G(x) (u+ d(x, t)) , (1)

where x(t) ∈ R
n is the state vector of the system, f(x) ∈ R

n

is a smooth vector field, G(x) ∈ R
n×m is a m-rank smooth

matrix, u(t) = [u1, u2, · · · , um]
T

is the m-dimensional

input vector, and d(x, t) ∈ R
m is the state and time dependent

system disturbance which is assumed to be bounded by

‖d(x, t)‖ 6 δd, δd ∈ R
+.

Note that all norms ‖ · ‖ in this paper denote 2-norms. For

system (1), an integral sliding mode controller that guarantees

the asymptotic stability of the of the equilibrium x = 0 is

designed as

u(t) = un + us, (2)

where un is a controller that stabilizes the nominal system and

us is the discontinuous control input that compensates for the

disturbance d (x, t)

us = −Ms

s(x, t)

‖s(x, t)‖ , (3)

where Ms ∈ R
+ is a properly selected input gain and the

switching function, and

s(x, t) = s∗(x) + z(t) (4)

is the sum of a conventional sliding manifold s∗(x) ∈ R
n and

an additional integral term z(t) ∈ R
n, where s∗(x) and z(t)

respectively satisfy

rank

(

∂s∗(x)

∂x

)

= m

and

ż = −∂s∗(x)

∂x
(f(x) +G(x)un) , z(0) = −s∗(x(0)) ,

where x(0) is the initial condition of the system state. Note

that the control in (3) is referred to as unit vector control [35]

and guarantees the following sliding mode condition

s(x, t) = 0, ∀ t > 0. (5)

As a result, the system state x is confined to the sliding

manifold (4), and the equivalent sliding mode dynamics is

ẋ = f(x) +G(x)un

which does not depend on the system disturbance d(x, t), if

d(x, t) is matched [44] as in (1). This feature has been called

invariance in sliding mode control, since the system behavior

is invariant to d(x, t). Different from the conventional sliding

mode control, integral sliding mode control can theoretically

eliminate the reaching phase to the sliding manifold of the

system. As a result, the invariance of integral sliding mode

control holds for all times.

B. Problem Formulation

The disturbance estimation problem investigated in this

paper is formulated as follows. Consider an n-degree-of-

freedom (DOF) Euler-Lagrangian system

M(q)q̈ +C(q, q̇)q̇ +G(q) + F (q̇) = τ + dext(q, t), (6)

where q(t) ∈ R
n is the vector of the generalized coor-

dinates, M(q) ∈ R
n×n, C(q, q̇) ∈ R

n×n, G(q) ∈ R
n

and F (q̇) ∈ R
n are respectively the inertia matrix, Coriolis

and centrifugal matrix, gravitational and frictional vectors.

Note that F (q̇) usually has a complicated form and contains

kinematic discontinuities. τ ∈ R
n is the commanded input,

and dext(q, t) is the external disturbance to the system. In the

case of HRI, dext(q, t) represents the effect of an external

contact force in the joint space of a robot manipulator, which

is also referred as the external torque [45]. In practice, dext

can be measured by shaft torque sensors installed on the robot

joints. In this paper, the integral sliding mode techniques are

applied to estimate dext without any extrinsic force sensors.

By defining state variables as

x1 = q, x2 = q̇, (7)

the second order system (6) can be written in state-space form

ẋ1 =x2

ẋ2 =M−1(x1) (τ −C(x1,x2)x2 −G(x1)− F (x2))

+ d(x1, t),

(8)
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where

d(x1, t) = M−1(x1)dext(x1, t) (9)

is the disturbance of the system to be estimated. Note that

in general, the system position x1 is directly measurable by

intrinsic sensors like encoders whereas the system velocity

x2 is not. In practice, x2 is usually obtained by taking the

derivative of x1 and noise is involved. Therefore, the target

of this paper is to design an observer for the system (8) to

simultaneously estimate the velocity x̂2 and the disturbance

d̂(x1, t) only using the position measurement x1.

C. Properties and Assumptions

For the Euler-Lagrangian system (6), it is well known that

the following properties hold.

Property 1. [46]. The inertia matrix M(x1) is positive

definite and its eigenvalues are bounded by

mo 6 λi
M (x1) 6 mO, mo,mO ∈ R

+, (10)

where λi
M (x1), i = 1, 2, · · · , n, is the i-th eigenvalue of

the inertia matrix M(x1), and mo, mO are respectively the

minimal and maximal eigenvalues of M(x1) over all possible

configurations x1, i.e.,

mo = inf
x1

min
16i6n

λi
M (x1), mO = sup

x1

max
16i6n

λi
M (x1).

Property 2. [46]. The Coriolis and centrifugal matrix

C(x1,x2) is bounded by

‖C(x1,x2)‖ 6 cO‖x2‖ , cO ∈ R
+. (11)

Property 3. [46]. The gravity vector is bounded by

‖G(x1)‖ 6 gO, gO ∈ R
+.

Property 4. [46]. The matrix Ṁ(x1)−2C(x1,x2) is skew-

symmetric, i.e.,

zT
(

Ṁ(x1)− 2C(x1,x2)
)

z = 0, ∀z ∈ R
n,

where Ṁ (x1) = dM(x1)/dt denotes the time derivative of

M(x1).

Property 5. [28]. The Coriolis and centrifugal matrix

C(x1, ·) satisfies

C(x1,α)β = C(x1,β)α, ∀α,β ∈ R
n.

Assumption 1. The kinetic energy of the system is bounded,

i.e.,

K(x1,x2) = xT
2 M(x1)x2 6 KO, KO ∈ R

+. (12)

Corollary 1. Using Assumption 1, the system velocity x2 is

bounded by

‖x2‖ 6
√

KO/mo.

Proof. Define LM (x1) as the Cholesky decomposition of

M(x1),
LT

M (x1)LM (x1) = M(x1). (13)

Applying Assumption 1 we have

(LM (x1)x2)
T
LM (x1)x2 = xT

2 M(x1)x2 6 KO,

which leads to ‖LM (x1)x2‖ 6
√
KO. Thus,

‖x2‖ 6
√

KO/σmin(LM ) =
√

KO/mo, (14)

where σmin(LM ) =
√
mo is the minimal singular value of

LM (x1) among all x1.

Assumption 2. The system disturbance d(x1, t) is bounded

by

‖d(x1, t)‖ 6 dO, dO ∈ R
+. (15)

Remark 1. Assumption 1 and 2 are based on the widely ac-

cepted assumptions that the kinetic energy and environmental

stiffness are finite in practice. Note that in this paper, there are

no assumptions on the derivative of d(x1, t), which allows the

work in this paper to be applied to a wider class of systems

compared to previous methods in [3], [32], [34].

III. OBSERVER DESIGN

A. Observer Formulation

The integral sliding mode observer proposed in this paper

for disturbance estimation of system (8) is designed as

˙̂x1 =x̂2 − Γ1(x̂1 − x1) + u1,

˙̂x2 =M̂−1(x1)
(

τ−Ĉ(x1, x̂2)x̂2−Ĝ(x1)−F̂ (x̂2)
)

+ Γ2u1 + u2,

(16)

where x̂1, x̂2 are the estimated system states, M̂ (x1),
Ĉ(x1, x̂2), Ĝ(x1) are respectively the identified system pa-

rameters, Γ1 ∈ R
n×n and Γ2 ∈ R

n×n are positive definite

matrices to be determined, and u1 and u2 are the observer

inputs respectively defined as

u1(t) = −αs

e1(t)

‖e1(t)‖
− (̺s + ‖x̂2(t)‖)

s(t)

‖s(t)‖ ,

u2(t) = ǫs
u1(t)

‖u1(t)‖
,

(17)

where αs, ̺s, ǫs ∈ R
+ are constants to be determined, e1

denotes the estimation error defined as e1 = x̂1−x1, and the

switching function s(t) is defined as

s(t) = e1(t)+

∫ t

0

(

αs

e1(τ)

‖e1(τ)‖
+ Γ1e1(τ)

)

dτ−e1(0), (18)

where e1(0) = x̂1(0) − x1(0) is the initial value of the

estimation error. In this sense, the nominal control and the

discontinuous control terms un and us of the observer in (16)

corresponding to (2) are respectively

un =

[

−Γ1e1
0

]

, us =

[

u1

Γ2u1 + u2

]

, (19)

where un is the nominal continuous feedback input and us is

the discontinuous input.

For convenience we also define the state estimation error

e2 = x̂2 −x2, where x̂2 is the observed velocity. Combining

the dynamics of the system (8) and the observer (16), we

obtain the dynamics of the estimation errors e1 and e2 as

ė1 =− Γ1e1 + e2 + u1

ė2 =−M−1(x1) (C(x1,x2) +C(x1, x̂2)) e2

+ Γ2u1 + u2 − d(x1, t)− h(x1, x̂2),

(20)
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where h(x1, x̂2) is the system uncertainty caused by an

inaccurate system identification, see Appendix. Note that the

solution of e1 and e2 is in the sense of Filippov but not

Lipschitz [35], since (20) contains discontinuous inputs.

Assumption 3. The system uncertainty h(x1, x̂2) is bounded

by

‖h(x1, x̂2)‖ 6 hO ≪ dO, hO ∈ R
+. (21)

Remark 2. If the system uncertainty is far smaller than the

system disturbance, then h(x1, x̂2) can be ignored. This can

be achieved by precise system identification.

According to the sliding mode equivalent control theory

in [29], [35], if the disturbance observer (16) is designed in a

way that the state estimation errors e1 and e2 in (20) converge

to zero equilibrium in finite time, i.e.,

e1 = 0, ė1 = 0, ∀ t > t1, (22a)

e2 = 0, ė2 = 0, ∀ t > t2, (22b)

where t1, t2 ∈ R, 0 < t1, t2 < +∞, then it is not difficult

to obtain

u2eq(t) = d(x1, t) + h(x1, x̂2), (23)

by substituting (22a) and (22b) into (20), where u2eq(t) is

the equivalent control of observer (16) which denotes the

continuous effect of the discontinuously switching control u2

in the Filippov sense. Conditions (22a) and (22b) are also

referred to as the dynamics collapse or exact convergence [35].

Therefore, if Assumption 3 holds, the disturbance can be

approximately estimated by

d̂(x1, t) ≈ u2eq(t). (24)

It will be discussed in Sec. III-B and Sec. III-C, that the

integral sliding mode observer, proposed in this paper, ensures

the exact convergence of both e1 and e2 in finite time.

Note that u2eq(t) cannot be computed explicitly but can be

approximated by extracting the low-frequency component of

u2(t) using the following low pass filter, i.e.,

F (s) =
1

τs+ 1
(25)

which is frequently used in previous work [30], [35]. Due to

the approximation in (24) and the filtering in (25), the obtained

d̂(x1, t) is no longer a precise estimation of the disturbance

d(x1, t), and the larger τ is, the more spectral component is

lost. Therefore, a proper τ should be determined according to

the practical requirements to guarantee an acceptable precision

for the estimation result d̂(x1, t).

B. Existence of the Sliding Mode Condition

In this section, we investigate the sliding mode condition

of the sliding manifold defined as in (5). It will be shown

in Sec III-C, that this is a sufficient condition for the finite

time stability of the closed-loop system as in (20) at the zero

equilibrium.

Theorem 1. If the sliding manifold in (16) is designed as (18)

and the parameter ̺s in (17) is selected such that

̺s >
√

KO/mo + ̺0, ̺0 ∈ R
+, (26)

where KO and mo are respectively defined as in (12) and

(10), then the following sliding mode condition holds,

s(t) = 0, ṡ(t) = 0, ∀ t > 0. (27)

Proof. By defining a Lyapunov function

Vs(t) =
1

2
s(t)Ts(t) (28)

and calculating the derivative of s(t) from (18)

ṡ(t) = ė1(t) + αs

e1(t)

‖e1(t)‖
+ Γ1e1(t), (29)

we obtain the derivative of Vs(t) as

V̇s = sT ṡ = sT
(

ė1 + αs

e1

‖e1‖
+ Γ1e1

)

.

For ė1 from (20) and u1 from (17), it follows that

V̇s =sT
(

e2 − (̺s + ‖x̂2‖)
s

‖s‖

)

=sT e2 − (̺s + ‖x̂2‖) ‖s‖
6‖s‖‖e2‖ − (̺s + ‖x̂2‖) ‖s‖

. (30)

Since we have

‖e2‖ = ‖x̂2 − x2‖ 6 ‖x̂2‖+ ‖x2‖ < ̺s + ‖x2‖, (31)

(30) leads to

V̇s 6‖s‖‖x̂2‖+ ‖s‖‖x2‖ − ̺s‖s‖ − ‖x̂2‖‖s‖
=− (̺s − ‖x2‖)

√

2Vs.

Considering Corollary 1 and substituting (26), we have

V̇s 6 −̺0
√

2Vs.

Thus, Vs is bounded by

0 6 Vs(t) 6 V ∗
s (t), (32)

where

V ∗
s (t) =











1

2
(‖s(0)‖ − ̺0t)

2 , 0 6 t <
1

̺s
‖s(0)‖,

0, t >
1

̺s
‖s(0)‖.

Using (18), we conclude that

V ∗
s (0) =

1

2
sT (0)s(0) = 0,

and finally get

Vs(t) = V ∗
s (t) = 0, ∀ t > 0. (33)

Note that from (32) to (33), the comparison lemma [47] is

applied, and V̇s(t) and V̇ ∗
s (t) are continuous in the Filippov

sense. Therefore, referring to (28), (33) leads to

s(t) = 0, ∀ t > 0, (34)

which indicates a sliding mode of the dynamics (20) from the

initial time instant t = 0 and the collapsed dynamics of s(t)
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as in (27) [35]. Note that ṡ(t) is also continuous in the sense

of Filippov.

Remark 3. By designing the switching function (18) in

integral form, the reaching phase is theoretically eliminated

and the sliding mode exits for all t > 0. Thus, invariance with

respect to the disturbance d(x1, t) holds for all t > 0. Note

that due to the measurement uncertainties, (5) does not strictly

hold in practice and the reaching phase is not eliminated but

reduced to a minimum compared to the conventional sliding

mode methods.

C. Stability Analysis

In this section, the finite-time convergence of the estimation

errors e1 and e2 in (20) to the zero equilibrium is given by the

following theorem based on the sliding mode condition (27)

ensured by Theorem 1.

Theorem 2. If the parameters Γ1, Γ2, αs and ǫs in (16) and

(17) are determined such that

αs>0, ǫs>ǫ0 + hO + dO,Γ1>0, Γ2>
cO
mo

‖x̂2‖In, (35)

where ǫ0 ∈ R
+, the boundary scalars mo, cO, dO and hO are

respectively defined in (10), (11), (15) and (21), and In is the

n-dimensional identity matrix, then e1(t) and e2(t) converge

to the zero equilibria as in (22a) and (22b) respectively in

finite time t1 and t2, where t1, t2 < +∞ are bounded by

t1 <
1

αs

‖e1(0)‖, t2 < t1 +
1

ǫs
√
mo

‖ē2(t1)‖, (36)

where mo is the minimal eigenvalue of M(x1) as in (10), and

ē2(t) is defined as

ē2(t) = LM (x1(t))e2(t), (37)

where LM is the Cholesky matrix of M(x1) as in (13).

Proof. We define the following Lyapunov function

Ve(t) = V1(t) + V2(t),

where

V1(t) =
1

2
eT1 e1, V2(t) =

1

2
eT2 M(x1)e2.

Considering (27), by differentiating e1 in (20), we obtain

ė1 = −αs

e1

‖e1‖
− Γ1e1, (38)

and the derivative of V1 reads

V̇1 = eT1 ė1 = −αs‖e1‖ − eT1 Γ1e1 < −αs

√

2V1. (39)

The solution of the inequality (39) results in 0 6 V1(t) 6

V ∗
1 (t), ∀ t > 0, where

V ∗
1 (t) =











1

2
(‖e1(0)‖ − αst)

2
, 0 6 t <

1

αs

‖e1(0)‖,

0, t >
1

αs

‖e1(0)‖,

which leads to

V1(t) = 0, t > t1, (40)

where t1 is confined by

t1 <
1

αs

‖e1(0)‖ < +∞. (41)

Similar to the proof of Theorem 1, it can be concluded

from (40) that the dynamics of e1(t) is governed by the

algebraic equations (22a), which indicates that the estimation

error e1(t) converges to zero in finite time and the dynamics

collapse occurs afterwards. Note that V̇1(t), V̇
∗
1 (t) and ė1(t)

are continuous in the sense of Filippov.

Now we consider the convergence of the velocity estimation

error e2(t). Substituting (20), the time derivative of V2(t) reads

V̇2=eT2 M(x1)ė2 +
1

2
eT2 Ṁ (x1)e2

=− eT2 (C(x1,x2)+C(x1, x̂2))e2+eT2M(x1)Γ2u1

eT2 M(x1) (u2 − d − h) +
1

2
eT2 Ṁ (x1)e2

=eT2

(

1

2
Ṁ(x1)−C(x1,x2)

)

e2+eT2M(x1)Γ2u1

eT2 M(x1) (u2 − d− h)− 1

2
eT2 C(x1, x̂2)e2

(42)

According to Property 4, we have

eT2

(

1

2
Ṁ(x1)−C(x1,x2)

)

e2 = 0. (43)

Therefore, substituting (17) and (43) to (42), we obtain

V̇2=eT2 M(x1)Γ2u1−
1

2
eT2(C(x1, x̂2)+C(x1, x̂2))e2

+ ǫs
eT2 M(x1)u1

‖u1‖
− eT2 M(x1) (d+ h) .

(44)

Substituting the collapsed dynamics of e1 in (22a) to ė1 in

(20), we have

0 = u1 + e2, t > t1, (45)

which holds in the sense of Filippov. Thus, substituting (45)

to (44) we have

V̇2=−eT2

(

Γ2M(x1)+
1

2
CT(x1, x̂2)+

1

2
C(x1, x̂2)

)

e2

− ǫs
eT2 M(x1)e2

‖e2‖
− eT2 M(x1) (d+ h) .

(46)

Considering the selection of Γ2 and γs in (35), we have

Γ2M(x1) +
1

2
CT(x1, x̂2) +

1

2
C(x1, x̂2)

>
cO‖x̂2‖
mo

M(x1) +
1

2
CT(x1, x̂2) +

1

2
C(x1, x̂2) > 0,

(47)

where Property 1 and 2 are applied. Therefore, (46) leads to

V̇2 < −ǫs
eT2 M(x1)e2

‖e2‖
− eT2 M(x1) (d+ h) . (48)

Substituting (13), we have

V̇2<− ǫs
‖LMe2‖
‖e2‖

eT2 M(x1)e2
‖LMe2‖

−(LMe2)
TLM (d+ h)

6− ǫsσmin(LM ) ‖LMe2‖+ ‖LMe2‖‖LM (d+ h)‖
6 (−ǫs + ‖d+ h‖)σmin(LM ) ‖LMe2‖ ,
6 (−ǫs + dO + hO)

√
mo ‖LMe2‖ ,
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Considering (35), we obtain

V̇2 < −ǫ0
√

2moV2.

Thus, V2(t) is bounded by 0 6 V2(t) 6 V ∗
2 (t), t > t1, where

V ∗
2 (t) = 1

2

(

‖ē2(t1)‖+ ǫ0
√
mo (t1 − t)

)2
for t1 6 t < t1 +

1
ǫ0

√
mo

‖ē2(t1)‖, and V ∗
2 (t) = 0 for t > t1 +

1
ǫ0

√
mo

‖ē2(t1)‖,

which leads to

V2(t) = 0, t > t2, (49)

where t2 is confined by

t2 < t1 +
1

ǫ0
√
mo

‖ē2(t1)‖ < +∞.

Therefore, e2(t) achieves dynamics collapse within finite time

t2. Note that V̇2(t), V̇
∗
2 (t) and ė2(t) are also continuous in the

sense of Filippov.

Remark 4. In the proof of Theorem 2, it is noticed that the dy-

namics collapse of e1(t) is a necessary condition of the finite-

time convergence of e2(t). Therefore, the sliding mode of e2
is achieved only after the convergence of e1. By constructing

such successive sliding modes of s, e1 and e2, the proposed

observer (16) ensures a theoretically precise estimation of the

disturbance d without the velocity measurement x2.

Different from the conventional integral sliding mode which

merely ensures the asymptotic convergence of system states,

the proposed observer in (16) guarantees the finite-time con-

vergence of both s(t) and the estimation errors e1(t) and e2(t)
to zero. Nevertheless, we still name the method as an integral

sliding mode observer, since it possesses the advantage of

conventional integral sliding mode, i.e., the sliding mode is

achieved since the initial time instant.

D. Chattering Reduction and Filtering

Similar to the conventional sliding mode controller, chatter-

ing is a major issue for this integral sliding mode observer. The

main reason for chattering is the finite switching frequency,

which is confined by the sampling rate of the system. To

reduce the chattering and obtain a smooth disturbance esti-

mation, the boundary layer method is applied in this paper.

We change the unit control switching function in (17) into the

following modified form

u1 = − αse1

‖e1‖+ δe
− (̺s + ‖x̂2(t)‖)

s

‖s‖+ δs
,

u2 =
ǫsu1

‖u1‖+ δu
,

(50)

and the sliding manifold s from (18) is also modified to

s = e1 +

∫ t

t0

(

αse1

‖e1‖+ δe
+ Γ1e1

)

dτ − e1(0),

where δe, δs, δu ∈ R
+0 are scalars that determine the width

of the boundary layers.

Note that after applying this modification, the finite-time

convergence of s(t), e1(t) and e2(t) do not strictly hold

with respect to the equilibria as in (27), (22a) and (22b),

but only with respect to the boundary layers ‖s(t)‖ 6 δs,

‖e1(t)‖ 6 δe and ‖e2(t)‖ 6 δu instead. The consequence

is inferior estimation precision and robustness. Therefore, a

compromise has to be found between estimation performance

and the chattering level, and the boundary layer parameters

δe, δs and δu should be carefully determined according to the

specific requirements of practical applications.

IV. SIMULATION

The proposed integral sliding mode observer has been

evaluated by a simulation of a 3-DOF robot manipulator

described by (6). In this simulation, we run the robot with

a given desired trajectory and a PD tracking controller. A

predefined disturbance torque dext is exerted on the joints

during the motion of the robot. Meanwhile, the integral sliding

mode observer is implemented to obtain the online estimation

d̂ext. Then, the observer is evaluated based on the compari-

son between dext and d̂ext. The dynamic parameters of the

simulated manipulator model are shown in Tab. I and Tab. II,

where mij , i, j = 1, 2, 3 are the corresponding elements in the

inertia matrix M(q) and nk, k = 1, 2, 3 are the elements of

the Coriolis and centrifugal vector C(q, q̇)q̇. For brevity, the

gravity and friction terms are omitted to simulate a friction-

less robot confined in the horizontal plane. The values of the

parameters are listed in Tab. III and IV, where qi, q̇i ∈ R

respectively denote the angular position and velocity of the

i-th joint. The simulation is implemented using a first order

Euler solver with sampling rate 1 kHz and runs for 6 s.

TABLE I

ELEMENTS OF INERTIA MATRIX (’VAR’ FOR ’VARIABLE’)

Var Expression Var Expression

m11 α1 + 2β1c23 + 2β2c2 + 2β3c3 m22 α2 + β3c3

m12 α2 + β1c23 + β2c2 + 2β3c3 m23 α3 + β3c3

m13 α3 + β1c23 + β3c3 m33 α3

TABLE II

ELEMENTS OF CORIOLIS AND CENTRIFUGAL VECTOR

Var Expression

n1 γ1s2q̇
2

1
+ γ2s23q̇

2

1
+ γ3s2(q̇1 + q̇2)2 + γ4s3(q̇1 + q̇2)2

+γ5s23(q̇1 + q̇2 + q̇3)2 + γ6s3(q̇1 + q̇2 + q̇3)2

n2 γ1s2q̇
2

1
+ γ2s23q̇

2

1
+ γ4s3(q̇1 + q̇2)2

+γ6s3(q̇1 + q̇2 + q̇3)2

n3 γ2s23q̇
2

1
+ γ4s3(q̇1 + q̇2)2

TABLE III

TRIGONOMETRIC FUNCTIONS (’SYM’ FOR ’SYMBOL’)

Sym Expression Sym Expression Sym Expression

c2 cos(q2) c3 cos(q3) c23 cos(q2 + q3)

s2 sin(q2) s3 sin(q3) s23 sin(q2 + q3)

In the simulation, a sinusoidal desired trajectory qd(t) ∈ R
3

in joint space is defined as (see Fig. (1))

qd(t) =
(

1 + sin
(π

3
t− π

6

))

kpos, 0 6 t 6 6,

where kpos = [ 0.5 0.8 0.2 ]T is the coefficient vector to

distribute different amplitudes to each joint. The manipulator
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TABLE IV

SYSTEM PARAMETERS (’PAR’ FOR ’PARAMETER’)

Par Value Par Value Par Value Par Value

α1 1.0425 β1 0.0405 γ1 0.1742 γ4 0.0281

α2 0.4398 β2 0.1742 γ2 0.0405 γ5 −0.0405

α3 0.1788 β3 0.0281 γ3 −0.1742 γ6 −0.0281

0 1 2 3 4 5 6

0

0.5

1

1.5

2

Fig. 1. The desired robot trajectory qd(t) for simulation.

is configured with non-zero initial conditions, i.e. q(0) =
[ 0.25 0.4 0.1 ]T and q̇(0) = [ 0.45 0.73 0.18 ]T . A PD

controller is designed for the robot to track the given trajectory

qd(t),

τ = M(q) (q̈d +KDėq +KPeq) +C(q, q̇)q̇, (51)

where eq = qd − q and ėq = q̇d − q̇ are the tracking errors,

KP = 200I3, Kd = 36I3 are the diagonal proportional and

derivative gain matrices, and I3 is a 3×3 unit diagonal matrix.

Sinusoidal disturbance torques dext(t) are added to the

commanded input τ on the three joints of the robot in the

simulation which are

dext(t) =















0, 0 6 t 6 2.5

sin
(π

2
(t− 0.5)

)

kdst, 0.5 < t 6 2.5,

sin
(π

2
(t− 4)

)

kdst, 4 < t 6 6,

(52)

where kdst = [ 15 18 12 ]T is the coefficient vector. Similar

disturbances are also used in related work, such as in [3], since

they resembles the waveform of contact forces in practice.

An integral sliding mode observer in (16) is implemented to

estimate the disturbance d̂ext(t) in (52). The parameters of the

observer are listed in Tab. V. The initial states of the observer

are set to x̂1(0) = 0 and x̂2(0) = 0. The evaluation of the

simulation results are as follows. For brevity, only the results

of the first joint are displayed, since the results on the three

joints are similar.

TABLE V

OBSERVER PARAMETERS

Par Value Par Value Par Value Par Value

ǫs 190 ̺s 240 δa 0.2 Γ1 112I3
αs 10 δs 0.1 δu 0.3 Γ2 175I3

In Fig. 2a, the original disturbance dext(t) and its estimation

d̂ext(t) are compared. It is noticed that, even though the

0 1 2 3 4 5 6

0

5

10

15

20

(a) The disturbance dext(t) and its estimation d̂ext(t) of the first
joint.

0 1 2 3 4 5 6

-1

-0.5

0

0.5

1

(b) The joint velocity q̇1 and its estimation ˙̂q1 of the first joint.

0 1 2 3 4 5 6

-4

-2

0

2

4
10

-3

(c) The switching function s(t) indicates the enhanced robustness
of the integral sliding mode observer.

Fig. 2. The estimation results for sinusoidal disturbance shows the high
precision and bandwidth of the observer.

non-zero initial conditions are given, the estimation d̂ext(t)
precisely tracks dext(t) after a short transient stage (approx.

0.0625s), even at the time instants where sharp changes emerge

in the disturbance (e.g. 0.5s, 2.5s and 4s). This confirms the

high-bandwidth feature of the integral sliding mode observer.

Fig. (2b) shows the comparison between the measured velocity

q̇(t) and its estimation ˙̂q(t) by the observer. Note that the mea-

sured velocity comes from the direct derivative of measured

position q(t). Similar to the estimation of the disturbance, ˙̂q(t)
converges to q̇(t) after a short transient stage (also approx

0.0625s). Fig. (2c) shows that the switching function s(t) is

kept within the range ‖s(t)‖ < 4× 10−3 despite the non-zero

initial condition e1(0) = [−0.25 −0.4 −0.1]T . This result

reveals the effectiveness of the proposed integral sliding mode

observer that the velocity estimation ˙̂q(t) is always invariant

from disturbance dext(t). Thus, the enhanced robustness of

this novel observer is confirmed.

V. EXPERIMENT

In this section, the proposed observer has been applied

to a robot platform (see Fig. 3) to evaluate its estimation

performance in practice. Similar to the simulation, in this

experiment, the robot is actuated by a PD controller tracking
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Fig. 3. The 3-DOF robot platform in the experiment.

0 10 20 30 40 50 60 70

0

0.5

1

1.5

2

Fig. 4. The desired trajectory for the robot in the experiment.

the given desired trajectory. Different types of disturbance are

added to the joint actuators, and the experimental performance

of the integral sliding mode observer is evaluated by compar-

ing the predefined disturbance dext and its estimation d̂ext.

The experiment configurations are as follows. The manip-

ulator platform is actuated by 3 Maxon torque motors on the

joints with a turn ratio of 1:100. The actuators are installed

in parallel along the axes, such that the robot moves in

the horizontal plane and gravity is ignored. The incremental

encoders offer the joint position measurement with a resolution

of 2000. The sensors and actuators are connected with the

computer using a PCI communication card. The Maxon driver

is used to communicate between the executable and the robot.

The executable of the algorithm is created by MATLAB 2017a

in Ubuntu 14.04 LTS, with the first order Euler solver at the

sampling rate of 1 kHz, and runs for 70 s. The dynamic model

of the robot is well identified.

A. Estimation of Predefined Disturbances

In the first experiment, a trajectory tracking task is imple-

mented on the robot platform. The desired trajectory qd(t) is

designed as

qd(t) =

(

1− cos

(

2π

5
t

))

kpos, 5 < t 6 65. (53)

which is shown in Fig. (4). The PD controller in (51) is

implemented to track the given trajectory (53).

During the motion of the manipulator, three different kinds

of predefined disturbances dext(t) are inserted to the robot

joint command inputs to simulate the external force, such

that the comparison can be made between the estimated

contact force d̂ext(t) and the original disturbance dext(t).
Respectively, the sinusoidal disturbance (also used in [3]), the

square form disturbance (also used in [4], [30], [34]) and the

triangle form disturbance (also used in [29]) are used in this

experiment, since they all resemble the waveform of contact

force in practice which is featured with large amplitudes,

short time periods and summit-shape waveform. The specific

formulations are as follows:

Disturbance 1. Sinusoidal waveform

dsin(t)=

{

sin
(π

2
(t− 12.5)

)

kdst, 12.5 < t 6 14.5,

0, else.
(54)

Disturbance 2. Square waveform

dsqr(t) =

{

kdst, 12.5 < t 6 14.5,
0, else.

(55)

Disturbance 3. Triangle waveform

dtrg(t) =







(t− 12.5)kdst, 12.5 < t 6 13.5,
(−t+ 14.5)kdst, 13.5 < t 6 14.5,
0, else.

(56)

An integral sliding mode observer in (16) is implemented on

the robot platform with the same parameter selection as in Tab

V. The evaluation of the estimation results are as follows.

Fig. (5) shows the estimation results of the first robot

joint with the sinusoidal disturbance from (54). Similar to

the simulation results, the precise estimation d̂ext(t) and ˙̂q(t)
of the disturbance dext(t) and velocity q̇(t) of the system

can be respectively seen in Fig. (5a) and Fig. (5b). In Fig.

(5c), it is obvious that the switching function remains in the

region ‖s(t)‖ < 2 × 10−4. These results have confirmed the

robustness of the integral sliding mode observer.

The estimation results of the square form disturbance and

the triangle form disturbance are shown in Fig. (6) and Fig.

(7). Apart from the similar arguments to the above, Fig.

(6b) especially shows the precise tracking of joint velocity

even with high bandwidth signal perturbations (e.g. in 12.5 s

and 14.5 s) which are caused by the jumps on the system

disturbance. Thus again, the high-bandwidth and robustness

of this observer are confirmed.

B. Estimation of Contact Force

In this experiment, we investigate the performance of the

integral sliding mode observer which estimates the contact

forces between the robot and the environment. To make a

comparison, a JR3 force sensor (see Fig. (8a)) is installed

to the end-effector of the manipulator to measure the contact

forces, which provides the measurement as a wrench form

in Cartesian space. A plastic attachment is fixed with the

JR3 force sensor with a spherical appendix (see Fig. (8b))

to guarantee a firm and steady contact. A sponge fixed to

a stick holder (see Fig. (8b)) is used to make contacts with

the spherical appendix instead of human hands. The desired

trajectory is given as (53) and the PD controller in (51) is

used. The configuration of the integral sliding mode observer

is the same as the previous experiment.

During the motion of the manipulator, several contacts are

made to the spherical appendix on the end-effector using the
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(a) The disturbance d̂ext(t) and its estimation d̂ext(t) of the first
joint.
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(b) The velocity q̇1(t) and its estimation ˙̂q1(t) of the first joint.
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(c) The switching function s(t) of the observer.

Fig. 5. The results of observer for sinusoidal disturbance.

sponge to simulate the robot-environment contacts in a robot

task. The occurrence time instances of the manual contacts

are approximately 37 s, 42 s, 47 s, 52 s, 57 s, and 62 s. At

the same time, the contact force is measured and recorded.

Note that the measurement of JR3 is in the form of a wrench

Fm ∈ R
6 in the task coordinate, whereas the estimated torque

d̂ext is in the joint coordinate. Therefore, we transform the

measured contact wrench into the joint space coordinate by

τm = JT (q)T (q)Fm, where the measured external torque

τm denotes the reflection of Fm in the joint coordinate,

J(q) is the Jacobian matrix and T (q) is the coordinate

transformation from the task coordinate to the base coordinate.

The comparison between the measured external torque τm and

the estimated external torque d̂ext is shown in Fig. (9).

The results have shown that the estimation d̂ext by the

observer is very close to the measured external torque τm
by JR3 torque sensor. Note that the waveform of the external

torques possess similar features to the predefined disturbances

in (54), (55) and (56). This confirms the estimation precision

and bandwidth of the integral sliding mode observer in prac-

tical applications.

8 10 12 14 16 18
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(a) The disturbance d̂ext(t) and its estimation d̂ext(t) of the first
joint.

8 10 12 14 16 18

-1

-0.5

0

0.5

1

(b) The velocity q̇1 and its estimation ˙̂q1(t) of the first joint.
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(c) The switching function s(t) of the observer.

Fig. 6. The results of observer for square form disturbance

C. Application Example: Sensorless Admittance Control

The precise, high-bandwidth and robust estimation perfor-

mance of the integral sliding mode observer confirmed by

the above simulation and experiments reveals its potential

application to safe human robot collaborations, which is in-

vestigated in this section by implementing a force-sensor-less

admittance controller as an example. An admittance controller

is an important component in the HRI safety framework. By

modifying the reference trajectory according to the external

force feedback, the robot can compliantly react to the in-

teractive forces, such that an admittance featured motion is

achieved. Usually an external force sensor, such as the JR3

torque sensor, is needed to implement an admittance controller,

whereas here we use the estimated external torque d̂ext instead

of the measured torque τm. Thus the admittance controller in

this experiment is designed as follows

τ = M̂(q) (q̈r +KDėr +KPer) + Ĉ(q, q̇)q̇ + F̂ (q̇),

where qr and q̇r are respectively the reference position and

velocity of the robot in the joint space, er = qr − q is

the deviation between the reference position and the current
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(a) The disturbance d̂ext(t) and its estimation d̂ext(t) of the first joint.
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(b) The velocity q̇1 and its estimation ˙̂q1(t) of the first joint.
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(c) The switching function s(t) of the observer.

Fig. 7. The results of observer for triangle form disturbance

(a) (b)

Fig. 8. The contact devices and the JR3 force sensor

position, KD and KP are the same as in (51). The reference

trajectory qr is defined by

q̇r = q̇d +K−1
d

(

Kp(qd − qr) + d̂ext

)

, (57)

where Kp = 50I3 and Kd = 50I3 respectively define the

stiffness and damp of the admittance behavior. Note that

35 40 45 50 55 60 65
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Fig. 9. The comparison between the estimation of the observer and the
measurement by JR3 force sensor (on the first joint).

different from the simulation and the experiments above, the

estimated disturbance d̂ext is applied to the closed-loop con-

trol, see (57). The motion of the robot with this force-sensor-

less admittance controller is shown in Fig. (10). Initially, the

robot stays in a static position (see Fig. (10a)). When an object

makes a contact with the end-effector (see Fig. (10b)), an

admittance reaction behaviour is achieved (see Fig. (10c)).

After the contact vanishes, the robot returns to the original

configuration. Note that due to the approximation from (24),

the filter (25) and the boundary layer techniques (50), d̂ext is

not exactly equal to dext. As a result, the closed-loop stability

of the admittance controller does not hold for all possible

values of Kd and Kp as in (57). Large values of τ and the

boundary layers may lead to small feasible sets of control

parameters Kd and Kp.

(a) (b)

(c) (d)

Fig. 10. The reactive motion of force-sensor-less admittance controller

As shown in the example demonstration above, the force-

sensor-less admittance controller reveals an expected com-

pliance behavior when physical contact is exerted on the

end-effector, which justifies the applicability of the integral

sliding mode observer to practical HRC scenarios. Thus, a
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safe compliance controller can be designed without expensive

force sensory devices. The disadvantage is, however, the

resulting control precision is inferior to the control schemes

using force sensors due to applying the filter and boundary

layer techniques. Therefore, this force-sensor-less application

is suitable to the low-cost robot platforms which do not have

strict requirements on the force control precision.

VI. CONCLUSION

A novel integral sliding mode observer is proposed for

Euler-Lagrangian systems and applied to a robot platform. In

the mathematical point of view, this observer requires fewer

assumptions. An integral sliding mode is applied to achieve

enhanced invariance. Thus robust velocity and disturbance

estimations are obtained by this observer at the same time.

Numerical simulation and experiments have shown the high

precision, bandwidth, and robustness of this novel method. The

experimental comparison with sensory measurements reveals

its possibility to replace a real force sensor in practice. The

implementation of a force-sensor-less admittance controller

lights up the ambition to achieve a sensor-free and low-

cost safety framework for human-friendly collaborative robots.

Considering the insufficiency of the rigid robot models, future

work will be dedicated to improving the performance of this

disturbance observer with joint elastics.

APPENDIX A

This appendix provides the derivation of the error dynamics

(20) of the proposed observer (16) and estimate the boundary

of the system uncertainty hO in Assumption 3. By combining

the observer dynamics (16) and the original system (8), we

have

ė2 = M−1C(x1,x2)x2 − M̂−1Ĉ(x1, x̂2)x̂2

+M−1G− M̂−1Ĝ+M−1F (x2)− M̂−1F̂ (x̂2)

−M−1τ + M̂−1τ − d(x1, t) + Γ2u1 + u2,

(58)

where x1 is omitted in the inertia matrices M and M̂ and

the gravity matrices G and Ĝ. Here we define the model

deviations as

C̃(x1, x̂2) = C(x1, x̂2)− Ĉ(x1, x̂2),

G̃ = G− Ĝ, F̃ = F (x2)− F̂ (x̂2).

Therefore, (58) results in

ė2 =
(

M−1−M̂−1
)(

Ĉ(x1, x̂2)x̂2+Ĝ+F̂ (x̂2)− τ
)

−M−1
(

Ĉ(x1, x̂2)x̂2 −C(x1,x2)x2 + G̃ + F̃
)

− d+ Γ2u1 + u2.

(59)

Considering

Ĉ(x1, x̂2)x̂2 −C(x1,x2)x2 = C(x1, x̂2)x̂2

−C(x1,x2)x2 + Ĉ(x1, x̂2)x̂2 −C(x1, x̂2)x̂2

=C(x1, x̂2)x̂2 −C(x1,x2)x2 + C̃(x1, x̂2)x̂2

=C(x1, x̂2)x̂2 −C(x1, x̂2)x2 + C̃(x1, x̂2)x̂2,

+C(x1, x̂2)x2 −C(x1,x2)x2

(60)

and by substituting C(x1, x̂2)x2 = C(x1,x2)x̂2, which is

supported by Property 5, to (60), we have

Ĉ(x1, x̂2)x̂2 −C(x1,x2)x2

=C(x1, x̂2)x̂2 −C(x1, x̂2)x2 + C̃(x1, x̂2)x̂2,

+C(x1,x2)x̂2 −C(x1,x2)x2

=C(x1, x̂2)e2 + C̃(x1, x̂2)x̂2 +C(x1,x2)e2.

(61)

Therefore, substituting (61) to (59) and compare with (20), we

figure out the expression of h (x1, x̂2) as

h(x1, x̂2) = M−1
(

C̃(x1, x̂2)x̂2 + G̃+ F̃
)

+
(

M̂−1−M−1
)(

Ĉ(x1, x̂2)x̂2+Ĝ+F̂ (x̂2)− τ
)

.
(62)

Note that the identified parametric matrices M̂ , Ĉ(x1, x̂2),
Ĝ(x1) and F̂ (x̂2) do not depend on the modeling devia-

tions. Therefore, (62) indicates that the system uncertainty

h (x1, x̂2) is linearly dependent on the deviations C̃(x1, x̂2),
G̃ and F̃ . By applying precise system identification proce-

dures, the uncertainty boundary ‖h (x1, x̂2)‖ can be reduced.
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[10] S. Haddadin, A. Albu-Schäffer, and G. Hirzinger, “Safety evaluation of

physical human-robot interaction via crash-testing.” in Robotics: Science

and Systems, vol. 3, 2007, pp. 217–224.
[11] M. Geravand, F. Flacco, and A. De Luca, “Human-robot physical

interaction and collaboration using an industrial robot with a closed
control architecture,” in IEEE International Conference on Robotics and
Automation, 2013, pp. 4000–4007.

[12] M. A. Goodrich and A. C. Schultz, “Human-robot interaction: a survey,”
Foundations and trends in human-computer interaction, vol. 1, no. 3,
pp. 203–275, 2007.

[13] T. Fong, I. Nourbakhsh, and K. Dautenhahn, “A survey of socially
interactive robots,” Robotics and autonomous systems, vol. 42, no. 3-
4, pp. 143–166, 2003.

[14] A. Bauer, D. Wollherr, and M. Buss, “Human-robot collaboration: a
survey,” International Journal of Humanoid Robotics, vol. 5, no. 01,
pp. 47–66, 2008.



12

[15] M. Bohm, J. U. Pott, M. Kurster, O. Sawodny, D. Defrere, and
P. Hinz, “Delay Compensation for Real Time Disturbance Estimation
at Extremely Large Telescopes,” IEEE Transactions on Control Systems

Technology, vol. 25, no. 4, pp. 1384–1393, 2017.

[16] J. Qin, H. Gao, and W. X. Zheng, “Fault-tolerant cooperative tracking
control via integral sliding mode control technique,” IEEE/ASME Tans-

actions on Mechatronics, vol. 23, no. 1, pp. 342–351, 2018.

[17] S. Pigg and M. Bodson, “Adaptive algorithms for the rejection of
sinusoidal disturbances acting on unknown plants,” IEEE Transactions
on Control Systems Technology, vol. 18, no. 4, pp. 822–836, 2010.

[18] M. Van, “An Enhanced Robust Fault Tolerant Control Based on an
Adaptive Fuzzy PID- Nonsingular Fast Terminal Sliding Mode Control
for Uncertain Nonlinear Systems,” IEEE/ASME Transactions on Mecha-

tronics, vol. 23, no. 3, pp. 1362–1371, 2018.

[19] Y. Wan and T. Keviczky, “Real-Time Fault-Tolerant Moving Horizon Air
Data Estimation for the RECONFIGURE Benchmark,” IEEE Transac-

tions on Control Systems Technology, pp. 1–15, 2018.
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