Integral Sliding-Mode Observer-Based Disturbance Estimation for Euler–Lagrangian Systems

Zengjie Zhang, Marion Leibold, and Dirk Wollherr, Senior Member, IEEE

Abstract—In this article, a novel integral sliding-mode observer is proposed to estimate the external disturbance and velocity of Euler–Lagrangian systems. This method provides high bandwidth and precise estimation with only commanded input and position measurement. A system velocity measurement is not required to construct the sliding-mode manifold. The convergence of the estimation error to zero is theoretically in finite time, which is proven by a direct Lyapunov method utilizing the passivity property of Euler–Lagrangian systems. An integral sliding manifold is designed to reduce the reaching phase, such that the robustness of the estimation is enhanced. The method has been applied to a robot manipulator to estimate the joint velocity and external contact forces in a physical human–robot task. Simulations and experiments reveal that this novel method provides fast, precise, and robust estimation results and can be used to replace the measurement of an external force sensor. The successful application of this observer to a force-sensor-less admittance controller for a manipulator contributes to the implementation of a sensor-free safety framework for human–robot collaboration (HRC).

Index Terms—Disturbance estimation, fault detection and isolation (FDI), human–robot interaction (HRI), robust control, sliding-mode observer.

I. INTRODUCTION

This article is concerned with disturbance estimation and fault detection and isolation (FDI) of mechatronic systems using analytical redundancy-based methods. Specifically, it focuses on the online estimation of system actuator faults [1]–[3], external disturbances or forces [4], [5], parametric perturbations [6], and unmodeled system dynamics [7], [8] of a class of Euler–Lagrangian systems, which usually share similar mathematical formulations [9]. It is well known that the analysis and diagnosis of fault signals or disturbances are critical techniques of FDI technology. For example, in human–robot interaction (HRI), it is important to detect and classify collisions and contacts to guarantee safety in collaborative tasks [10], [11], such that robots and humans are allowed to share the same workspace and physical injuries are avoided [12]–[14]. More generally, disturbance estimation is also popularly studied for feed-forward disturbance compensation control [8], [15], robust control [16], [17], or fault-tolerant control [18], [19] strategies for various mechatronic systems.

Disturbances like contact forces between robots and the environment can be measured by extrinsic force sensors [11], [20]. However, most other types of disturbances mentioned above are not directly measurable and thus need to be estimated to achieve effective fault diagnosis or compensative control strategies. As a popular approach, the disturbance estimation methods, based on the observer theory also referred to as analytic redundancy-based methods, are frequently used to solve FDI problems [21], especially the collision detection problem of robotic systems [5], [22]. Since no extrinsic force sensors are needed, these methods are expected to replace real force sensors in HRI tasks to achieve a sensor-less safety framework, thus bring down the cost of the robot system.

Previous work on disturbance estimation of linear systems and Euler–Lagrangian systems is vast, such as unknown input–output observer [23], nonlinear disturbance observer [24], [25], Luenberger observer [26], [27], sliding-mode observers [28]–[31], high-gain observer [32], filter-based observer [33], and general momentum observers [9]. However, several problems or challenges still exist in these methods. First of all, the Lipschitz condition, which is a basic assumption for some previous methods [32], does not hold for practical mechatronic systems due to the existence of discontinuous friction. Second, the assumption that the derivative of the disturbance is equal to zero, which has been used in [3] and [34], is not general enough to cover high-bandwidth disturbance. Third, since the position is usually the only available measurement in practice, a disturbance estimation method should not rely on velocity measurements. Instead, the velocity of the system should be estimated at the same time [35]–[37]. A precise velocity estimation is important to reconstruct the disturbance estimation [29].

Among the methods above, sliding-mode observers solved these three problems, since they do not require the Lipschitz condition nor the disturbance derivative assumption, and they provide robust and exact estimation of the velocity (opposite to asymptotic). Specifically, during the sliding motion of a sliding-mode observer, the state estimation is invariant from external disturbances (known as invariance), and the convergence of the estimation error is in finite time (known as exact observation) [35], [36]. Thus, the robust precision of state and
disturbance estimation is guaranteed [29]. However, the invariance does not hold during the reaching phase to the sliding manifold, which means that the traditional sliding-mode observers are not always robust. This problem can be solved by the integral sliding mode, which can theoretically eliminate the reaching phase, such that the invariance holds from the initial time instance and robustness is enhanced [38]. Even though integral sliding-mode controllers are widely studied [39], [40], there has not been related work on the integral sliding-mode observer for the disturbance estimation of Euler–Lagrangian systems to our knowledge, whereas this enhanced robustness is worthwhile to be investigated in the fields of FDI of HRI.

The contribution of this article is to propose a novel integral sliding-mode observer for velocity and disturbance estimation of Euler–Lagrangian systems. Different from the conventional integral sliding-mode-based methods applied to disturbance resistance problems [41]–[43], the construction of the switching manifold in this article does not require the system velocity, which is usually not directly measurable in practice. On the contrary, the observer provides fast and precise estimations of the velocity and disturbance of the system simultaneously using only position measurements. There are four advantages to this method: 1) chattering is reduced since the noisy velocity measurement is not used in the sliding manifold design; 2) a smooth velocity estimation is obtained simultaneously with the disturbance estimation; 3) by applying the idea of integral sliding-mode control [38], the reaching phase to the integral sliding manifold is reduced, such that the robustness is enhanced compared to other sliding-mode observers; and 4) there are no assumptions on the derivative of the system disturbance, which allows the method to be generalizable to a wider range of systems.

This article is organized as follows. Section II briefly introduces the basic idea of integral sliding-mode control and the disturbance estimation problem. The design of the integral sliding-mode-based observer is discussed in Section III along with a finite-time stability proof. In Section IV, a simulation is presented to show the feasibility of the integral sliding-mode observer, and experiments are conducted in Section V to demonstrate its performance in practical applications. Finally, Section VI concludes this article.

II. PRELIMINARIES

A. Integral Sliding-Mode Control

This section gives a short introduction of the theory of integral sliding mode [38]. Consider a multiple-input multiple-output (MIMO) control affine system

\[\dot{x} = f(x) + G(x)(u + d(x, t)) \]

where \(x(t) \in \mathbb{R}^n \) is the state vector of the system, \(f(x) \in \mathbb{R}^n \) is a smooth vector field, \(G(x) \in \mathbb{R}^{n \times m} \) is an \(m \)-rank smooth matrix, \(u(t) = [u_1, u_2, \ldots, u_m]^T \) is the \(m \)-dimensional input vector, and \(d(x, t) \in \mathbb{R}^m \) is the state and time-dependent system disturbance, which is assumed to be bounded by

\[||d(x, t)|| \leq \delta_d, \quad \delta_d \in \mathbb{R}^+ \]

Note that all norms \(|| \cdot || \) in this article denote 2-norms. For system (1), an integral sliding-mode controller that guarantees the asymptotic stability of the of the equilibrium \(x = 0 \) is designed as

\[u(t) = u_n + u_s \]

where \(u_n \) is a controller that stabilizes the nominal system and \(u_s \) is the discontinuous control input that compensates for the disturbance \(d(x, t) \)

\[u_s = -M_s \frac{s(x, t)}{||s(x, t)||} \]

where \(M_s \in \mathbb{R}^+ \) is a properly selected input gain and the switching function, and

\[s(x, t) = s^*(x) + z(t) \]

is the sum of a conventional sliding manifold \(s^*(x) \in \mathbb{R}^n \) and an additional integral term \(z(t) \in \mathbb{R}^n \), where \(s^*(x) \) and \(z(t) \), respectively, satisfy

\[\text{rank} \left(\frac{\partial s^*(x)}{\partial x} \right) = m \]

and

\[\dot{z} = -\frac{\partial s^*(x)}{\partial x}(f(x) + G(x)u_n), \quad z(0) = -s^*(x(0)) \]

where \(x(0) \) is the initial condition of the system state. Note that the control in (3) is referred to as unit vector control [35] and guarantees the following sliding-mode condition:

\[s(x, t) = 0, \quad \forall t \geq 0. \]

As a result, the system state \(x \) is confined to the sliding manifold (4), and the equivalent sliding-mode dynamics is

\[\dot{x} = f(x) + G(x)u_n \]

which does not depend on the system disturbance \(d(x, t) \), if \(d(x, t) \) is matched [44] as in (1). This feature has been called invariance in sliding-mode control, since the system behavior is invariant to \(d(x, t) \). Different from the conventional sliding-mode control, integral sliding-mode control can theoretically eliminate the reaching phase to the sliding manifold of the system. As a result, the invariance of integral sliding-mode control holds for all times.

B. Problem Formulation

The disturbance estimation problem investigated in this article is formulated as follows. Consider an \(n \)-degree-of-freedom (DOF) Euler–Lagrangian system

\[M(q)\ddot{q} + C(q, \dot{q})\dot{q} + G(q) + F(\dot{q}) = \tau + d_{\text{ext}}(q, t) \]

where \(q(t) \in \mathbb{R}^n \) is the vector of the generalized coordinates, \(M(q) \in \mathbb{R}^{n \times n} \), \(C(q, \dot{q}) \in \mathbb{R}^{n \times n} \), \(G(q) \in \mathbb{R}^n \), and \(F(\dot{q}) \in \mathbb{R}^n \) are, respectively, the inertia matrix, Coriolis and centrifugal matrix, gravitational, and frictional vectors. Note that \(F(\dot{q}) \) usually has a complicated form and contains kinematic discontinuities. \(\tau \in \mathbb{R}^n \) is the commanded input, and \(d_{\text{ext}}(q, t) \) is the external disturbance to the system. In the case of HRI, \(d_{\text{ext}}(q, t) \) represents the effect of an external contact force in the joint space of a robot manipulator, which is also referred as the external torque [45]. In practice, \(d_{\text{ext}} \) can
be measured by shaft torque sensors installed on the robot joints. In this article, the integral sliding-mode techniques are applied to estimate d_{ext} without any extrinsic force sensors.

By defining state variables as
\[x_1 = q, \quad x_2 = \dot{q} \]
the second-order system (6) can be written in state-space form
\[
\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= M^{-1}(x_1)(\tau - C(x_1, x_2)x_2 - G(x_1) - F(x_2)) + d(x_1, t)
\end{align*}
\]
where
\[
d(x_1, t) = M^{-1}(x_1)d_{\text{ext}}(x_1, t)
\]
is the disturbance of the system to be estimated. Note that, in general, the system position x_1 is directly measurable by intrinsic sensors like encoders, whereas the system velocity x_2 is not. In practice, x_2 is usually obtained by taking the derivative of x_1 and noise is involved. Therefore, the target of this article is to design an observer for the system (8) to simultaneously estimate the velocity \hat{x}_2 and the disturbance $\hat{d}(x_1, t)$ only using the position measurement x_1.

\section*{C. Properties and Assumptions}
For the Euler–Lagrangian system (6), it is well known that the following properties hold.

\textbf{Property 1} [46]: The inertia matrix $M(x_1)$ is positive definite and its eigenvalues are bounded by
\[
m_o \leq \lambda_i^+(x_1) \leq m_O, \quad m_o, m_O \in \mathbb{R}^+
\]
where $\lambda_i^+(x_1)$, $i = 1, 2, \ldots, n$, is the ith eigenvalue of the inertia matrix $M(x_1)$, and m_o and m_O are, respectively, the minimal and maximal eigenvalues of $M(x_1)$ over all possible configurations x_1, that is,
\[
m_o = \inf_{x_1 \in \mathbb{R}^n} \min_{1 \leq i \leq n} \lambda_i^+(x_1), \quad m_O = \sup_{x_1 \in \mathbb{R}^n} \max_{1 \leq i \leq n} \lambda_i^+(x_1).
\]

\textbf{Property 2} [46]: The Coriolis and centrifugal matrix $C(x_1, x_2)$ is bounded by
\[
\|C(x_1, x_2)\| \leq c_O\|x_2\|, \quad c_O \in \mathbb{R}^+.
\]

\textbf{Property 3} [46]: The gravity vector is bounded by
\[
\|G(x_1)\| \leq g_o, \quad g_o \in \mathbb{R}^+.
\]

\textbf{Property 4} [46]: The matrix $\tilde{M}(x_1)-2C(x_1, x_2)$ is skew-symmetric, that is,
\[
z^T(\tilde{M}(x_1)-2C(x_1, x_2))z = 0 \quad \forall z \in \mathbb{R}^n
\]
where $\tilde{M}(x_1) = \frac{dM(x_1)}{dt}$ denotes the time derivative of $M(x_1)$.

\textbf{Property 5} [28]: The Coriolis and centrifugal matrix $C(x_1, \cdot)$ satisfies
\[
C(x_1, \alpha)\beta = C(x_1, \beta)\alpha \quad \forall \alpha, \beta \in \mathbb{R}^n.
\]

\textbf{Assumption 1}: The kinetic energy of the system is bounded, that is,
\[
K(x_1, x_2) = x_2^T M(x_1)x_2 \leq K_O, \quad K_O \in \mathbb{R}^+.
\]

\textbf{Corollary 1}: Using Assumption 1, the system velocity x_2 is bounded by
\[
\|x_2\| \leq \sqrt{K_O/m_o}.
\]

\textbf{Proof}: Define $L_M(x_1)$ as the Cholesky decomposition of $M(x_1)$
\[
L_M^T(x_1)L_M(x_1) = M(x_1).
\]
Applying Assumption 1, we have
\[
(L_M(x_1)x_2)^T L_M(x_1)x_2 = x_2^T M(x_1)x_2 \leq K_O
\]
which leads to $\|L_M(x_1)x_2\| \leq \sqrt{K_O}$. Thus,
\[
\|x_2\| \leq \sqrt{K_O}/\sqrt{m_o} \quad \text{is the minimal singular value of } L_M(x_1) \text{ among all } x_1. \quad \square
\]

\textbf{Assumption 2}: The system disturbance $d(x_1, t)$ is bounded by
\[
\|d(x_1, t)\| \leq d_O, \quad d_O \in \mathbb{R}^+.
\]

\textbf{Remark 1}: Assumptions 1 and 2 are based on the widely accepted assumptions that the kinetic energy and environmental stiffness are finite in practice. Note that in this article, there are no assumptions on the derivative of $d(x_1, t)$, which allows the work in this article to be applied to a wider class of systems compared to previous methods in [3], [32], and [34].

\section*{III. OBSERVER DESIGN}
\subsection*{A. Observer Formulation}
The integral sliding-mode observer proposed in this article for disturbance estimation of system (8) is designed as
\[
\begin{align*}
\hat{x}_1 &= \hat{x}_2 - \Gamma_1(\hat{x}_1 - x_1) + u_1 \\
\hat{x}_2 &= \hat{M}^{-1}(x_1)(\tau - \hat{C}(x_1, \hat{x}_2)\hat{x}_2 - \hat{G}(x_1) - \hat{F}(\hat{x}_2)) + \Gamma_2 u_1 + u_2
\end{align*}
\]
where \hat{x}_1 and \hat{x}_2 are the estimated system states, $\hat{M}(x_1)$, $\hat{C}(x_1, \hat{x}_2)$, and $\hat{G}(x_1)$ are, respectively, the identified system parameters, $\Gamma_1 \in \mathbb{R}^{n \times n}$ and $\Gamma_2 \in \mathbb{R}^{n \times n}$ are positive definite matrices to be determined, and u_1 and u_2 are the observer inputs, respectively, defined as
\[
\begin{align*}
u_1(t) &= -\alpha_s \frac{e_1(t)}{\|e_1(t)\|} - (\beta_s + \|\hat{x}_2(t)\|) \frac{s(t)}{\|s(t)\|} \\
u_2(t) &= \varepsilon_s \frac{u_1(t)}{\|u_1(t)\|}
\end{align*}
\]
where α_s, β_s, and $\varepsilon_s \in \mathbb{R}^+$ are constants to be determined, e_1 denotes the estimation error defined as $e_1 = \hat{x}_1 - x_1$, and the switching function $s(t)$ is defined as
\[
s(t) = e_1(t) + \int_0^t (\alpha_s e_1(\tau) + \Gamma_1 e_1(\tau))d\tau - e_1(0)
\]
where $e_1(0) = \hat{x}_1(0) - x_1(0)$ is the initial value of the estimation error. In this sense, the nominal control and the
discontinuous control terms \(u_n \) and \(u_s \) of the observer in (16) corresponding to (2) are, respectively,
\[
\begin{align*}
 u_n &= -\Gamma_1 e_1 \\
 u_s &= \begin{bmatrix} u_1 \\ \Gamma_2 u_1 + u_2 \end{bmatrix}
\end{align*}
\]
(19)
where \(u_n \) is the nominal continuous feedback input and \(u_s \) is the discontinuous input.

For convenience, we also define the state estimation error \(e_2 = \hat{x}_2 - x_2 \), where \(\hat{x}_2 \) is the observed velocity. Combining the dynamics of the system (8) and the observer (16), we obtain the dynamics of the estimation errors \(e_1 \) and \(e_2 \) as
\[
\begin{align*}
 \dot{e}_1 &= -\Gamma_1 e_1 + e_2 + u_1 \\
 \dot{e}_2 &= -M^{-1}(x_1)(C(x_1, x_2) + C(x_1, \hat{x}_2))e_2 \\
 &+ \Gamma_2 u_1 + u_2 - d(x_1, t) - h(x_1, \hat{x}_2)
\end{align*}
\]
(20)
where \(h(x_1, \hat{x}_2) \) is the system uncertainty caused by an inaccurate system identification (see the Appendix). Note that the solution of \(e_1 \) and \(e_2 \) is in the sense of Filippov but not Lipschitz [35], since (20) contains discontinuous inputs.

Assumption 3: The system uncertainty \(h(x_1, \hat{x}_2) \) is bounded by
\[
\|h(x_1, \hat{x}_2)\| \leq h_O \ll d_O, \quad h_O \in \mathbb{R}^+.
\]
(21)

Remark 2: If the system uncertainty is far smaller than the system disturbance, then \(h(x_1, \hat{x}_2) \) can be ignored. This can be achieved by precise system identification.

According to the sliding-mode equivalent control theory in [29] and [35], if the disturbance observer (16) is designed in a way that the state estimation errors \(e_1 \) and \(e_2 \) in (20) converge to zero equilibrium in finite time, that is,
\[
\begin{align*}
 e_1 &= 0, \quad \dot{e}_1 = 0 \quad \forall \ t \geq t_1 \\
 e_2 &= 0, \quad \dot{e}_2 = 0 \quad \forall \ t \geq t_2
\end{align*}
\]
(22a)
(22b)
where \(t_1, t_2 \in \mathbb{R}, \ 0 < t_1, \ t_2 < +\infty \), then it is not difficult to obtain
\[
u_{2eq}(t) = d(x_1, t) + h(x_1, \hat{x}_2)\]
(23)
by substituting (22a) and (22b) into (20), where \(u_{2eq}(t) \) is the equivalent control of observer (16), which denotes the continuous effect of the discontinuously switching control \(u_2 \) in the Filippov sense. Conditions (22a) and (22b) are also referred to as the dynamics collapse or exact convergence [35]. Therefore, if Assumption 3 holds, the disturbance can be approximately estimated by
\[
\tilde{d}(x_1, t) \approx u_{2eq}(t).
\]
(24)
It will be discussed in Sections III-B and C, that the integral sliding-mode observer, proposed in this article, ensures the exact convergence of both \(e_1 \) and \(e_2 \) in finite time.

Note that \(u_{2eq}(t) \) cannot be computed explicitly but can be approximated by extracting the low-frequency component of \(u_2(t) \) using the following low-pass filter, that is,
\[
F(s) = \frac{1}{\tau s + 1}
\]
(25)
which is frequently used in previous work [30], [35]. Due to the approximation in (24) and the filtering in (25), the obtained \(\tilde{d}(x_1, t) \) is no longer a precise estimation of the disturbance \(d(x_1, t) \), and the larger \(\tau \) is, the more spectral component is lost. Therefore, a proper \(\tau \) should be determined according to the practical requirements to guarantee an acceptable precision for the estimation result \(\tilde{d}(x_1, t) \).

B. Existence of the Sliding-Mode Condition

In this section, we investigate the sliding-mode condition of the sliding manifold defined as in (5). It will be shown in Section III-C that this is a sufficient condition for the finite time stability of the closed-loop system as in (20) at the zero equilibrium.

Theorem 1: If the sliding manifold in (16) is designed as (18) and the parameter \(\varrho_s \) in (17) is selected such that
\[
\varrho_s \geq \sqrt{K_O/m_o} + \varrho_0, \quad \varrho_0 \in \mathbb{R}^+
\]
(26)
where \(K_O \) and \(m_o \) are, respectively, defined as in (12) and (10), then the following sliding-mode condition holds:
\[
s(t) = 0 \quad \dot{s}(t) = 0 \quad \forall \ t > 0.
\]
(27)

Proof: By defining a Lyapunov function
\[
V_s(t) = \frac{1}{2} s(t)^T s(t)
\]
(28)
and calculating the derivative of \(s(t) \) from (18)
\[
\dot{s}(t) = \dot{e}_1(t) + \alpha_s \frac{e_1(t)}{\|e_1(t)\|} + \Gamma_1 e_1(t)
\]
(29)
we obtain the derivative of \(V_s(t) \) as
\[
\dot{V}_s = s^T \dot{s} = s^T \left(\dot{e}_1 + \alpha_s \frac{e_1(t)}{\|e_1(t)\|} + \Gamma_1 e_1(t) \right).
\]
(30)
For \(\dot{e}_1 \) from (20) and \(u_1 \) from (17), it follows that:
\[
\dot{V}_s = s^T \left(e_2 - (\varrho_s + \|\hat{x}_2\|) \frac{s}{\|s\|} \right)
\]
(31)
\[
\leq \|s\| \|e_2\| - (\varrho_s + \|\hat{x}_2\|) \|s\|
\]
(32)
Since we have
\[
\|e_2\| = \|\hat{x}_2 - x_2\| \leq \|\hat{x}_2\| + \|x_2\| < \varrho_s + \|x_2\|
\]
(33)
(30) leads to
\[
\dot{V}_s \leq \|s\| \|\hat{x}_2\| + \|s\| \|x_2\| - \varrho_s \|s\| - \|\hat{x}_2\| \|s\|
\]
(34)
\[
= - (\varrho_s - \|x_2\|) \sqrt{2V_s}.
\]
(35)
Considering Corollary 1 and substituting (26), we have
\[
\dot{V}_s \leq -\varrho_0 \sqrt{2V_s}.
\]
(36)
Thus, \(V_s \) is bounded by
\[
0 \leq V_s(t) \leq V_s^*(t)
\]
(37)
where
\[
V_s^*(t) = \begin{cases}
\frac{1}{2}(\|s(0)\| - \varrho_0 t)^2, & 0 \leq t < \frac{1}{\varrho_s} \|s(0)\|, \\
0, & t \geq \frac{1}{\varrho_s} \|s(0)\|.
\end{cases}
\]
(38)
Using (18), we conclude that
\[V_s^*(0) = \frac{1}{2} s^T(0)s(0) = 0 \]
and finally get
\[V_s(t) = V_s^*(t) = 0 \quad \forall t \geq 0. \tag{33} \]

Note that from (32) to (33), the comparison lemma [47] is applied, and \(V_s(t) \) and \(V_s^*(t) \) are continuous in the Filippov sense. Therefore, referring to (28), (33) leads to
\[s(t) = 0 \quad \forall t \geq 0 \tag{34} \]
which indicates a sliding mode of the dynamics (20) from the initial time instant \(t = 0 \) and the collapsed dynamics of \(s(t) \) as in (27) [35]. Note that \(\dot{s}(t) \) is also continuous in the sense of Filippov. □

Remark 3: By designing the switching function (18) in integral form, the reaching phase is theoretically eliminated and the sliding mode exits for all \(t \geq 0 \). Note that due to the measurement uncertainties, (5) does not strictly hold in practice, and the reaching phase is not eliminated but reduced to a minimum compared to the conventional sliding-mode methods.

C. Stability Analysis

In this section, the finite-time convergence of the estimation errors \(e_1 \) and \(e_2 \) in (20) to the zero equilibrium is given by the following theorem based on the sliding-mode condition (27) ensured by Theorem 1.

Theorem 2: If the parameters \(\Gamma_1, \Gamma_2, \alpha_s, \) and \(\epsilon_s \) in (16) and (17) are determined such that
\[\alpha_s > 0, \quad \epsilon_s > \epsilon_0 + h_O + d_O, \quad \Gamma_1 > 0, \quad \Gamma_2 > \frac{c_O}{m_o} \|\hat{x}_2\|I_n \tag{35} \]
where \(\epsilon_0 \in \mathbb{R}^+ \), the boundary scalars \(m_o, c_O, d_O, \) and \(h_O \) are, respectively, defined in (10), (11), (15), and (21), and \(I_n \) is the \(n \)-dimensional identity matrix, then \(e_1(t) \) and \(e_2(t) \) converge to the zero equilibria as in (22a) and (22b), respectively, in finite time \(t_1 \) and \(t_2 \), where \(t_1, t_2 < +\infty \) are bounded by
\[t_1 < \frac{1}{\alpha_s} \|e_1(0)\|, \quad t_2 < t_1 + \frac{1}{\epsilon_s \sqrt{m_o}} \|\hat{e}_2(t_1)\| \tag{36} \]
where \(m_o \) is the minimal eigenvalue of \(M(x_1) \) as in (10), and \(\hat{e}_2(t) \) is defined as
\[\hat{e}_2(t) = L_M(x_1(t))e_2(t) \tag{37} \]
where \(L_M \) is the Cholesky matrix of \(M(x_1) \) as in (13).

Proof: We define the following Lyapunov function:
\[V_s(t) = V_1(t) + V_2(t) \]
where
\[V_1(t) = \frac{1}{2} e_1^T e_1, \quad V_2(t) = \frac{1}{2} e_2^T M(x_1) e_2. \]

Considering (27), by differentiating \(e_1 \) in (20), we obtain
\[\dot{e}_1 = -\alpha_s \frac{e_1}{\|e_1\|} - \Gamma_1 e_1 \tag{38} \]
and the derivative of \(V_1 \) reads
\[\dot{V}_1 = e_1^T \dot{e}_1 = -\alpha_s \|e_1\| - e_1^T \Gamma_1 e_1 < -\alpha_s \sqrt{2V_1}. \tag{39} \]
The solution of inequality (39) results in \(0 \leq V_1(t) \leq V_1^*(t), \forall t \geq 0 \), where
\[V_1^*(t) = \begin{cases} \frac{1}{2} \|e_1(0)\|^2 - \alpha_s \|e_1\| t, & 0 \leq t < \frac{1}{\alpha_s} \|e_1(0)\| \\ 0, & t \geq \frac{1}{\alpha_s} \|e_1(0)\| \end{cases} \]
which leads to
\[V_1(t) = 0, \quad t \geq t_1 \tag{40} \]
where \(t_1 \) is confined by
\[t_1 < \frac{1}{\alpha_s} \|e_1(0)\| < +\infty. \tag{41} \]

Similar to the proof of Theorem 1, it can be concluded from (40) that the dynamics of \(e_1(t) \) is governed by the algebraic equations (22a), which indicates that the estimation error \(e_1(t) \) converges to zero in finite time, and the dynamics collapse occurs afterward. Note that \(V_1(t), \dot{V}_1(t) \) and \(\dot{e}_1(t) \) are continuous in the sense of Filippov.

Now, we consider the convergence of the velocity estimation error \(e_2(t) \). Substituting (20), the time derivative of \(V_2(t) \) reads
\[V_2 = e_2^T M(x_1) \dot{e}_2 + \frac{1}{2} e_2^T \dot{M}(x_1) e_2 \]
\[= -e_2^T \left(C(x_1, x_2) + C(x_1, \hat{x}_2)\right) e_2 + e_2^T M(x_1) \Gamma_2 u_1 \]
\[\times e_2^T M(x_1)(u_2 - d - h) + \frac{1}{2} e_2^T \dot{M}(x_1) e_2 \]
\[= e_2^T \left(\frac{1}{2} \dot{M}(x_1) - C(x_1, x_2)\right) e_2 + e_2^T M(x_1) \Gamma_2 u_1 \]
\[\times e_2^T M(x_1)(u_2 - d - h) - \frac{1}{2} e_2^T C(x_1, \hat{x}_2) e_2 \tag{42} \]
According to Property 4, we have
\[e_2^T \left(\frac{1}{2} \dot{M}(x_1) - C(x_1, x_2)\right) e_2 = 0 \tag{43} \]

Therefore, substituting (17) and (43) into (42), we obtain
\[V_2 = e_2^T M(x_1) \Gamma_2 u_1 - \frac{1}{2} e_2^T C(x_1, \hat{x}_2) + C(x_1, \hat{x}_2) e_2 \]
\[+ \epsilon_s \frac{e_2^T M(x_1) u_1}{\|u_1\|} - e_2^T \dot{M}(x_1)(d + h). \tag{44} \]

Substituting the collapsed dynamics of \(e_1 \) in (22a) to \(\dot{e}_1 \) in (20), we have
\[0 = u_1 + e_2, \quad t \geq t_1 \tag{45} \]
which holds in the sense of Filippov. Thus, substituting (45) into (44), we have
\[V_2 = -e_2^T \left(2M(x_1) + \frac{1}{2} C(x_1, \hat{x}_2) + \frac{1}{2} C(x_1, \hat{x}_2)\right) e_2 \]
\[- \epsilon_s \frac{e_2^T M(x_1) e_2}{\|e_2\|} - e_2^T \dot{M}(x_1)(d + h). \tag{46} \]
Considering the selection of Γ_2 and γ_s in (35), we have
\[
\Gamma_2 M(x_1) + \frac{1}{2} C^{\eta}(x_1, \hat{x}_2) + \frac{1}{2} C(x_1, \hat{x}_2) > \frac{c_0 \| \hat{x}_2 \|}{m_o} M(x_1) + \frac{1}{2} C^{\eta}(x_1, \hat{x}_2) + \frac{1}{2} C(x_1, \hat{x}_2) \geq 0 \tag{47}
\]
where Properties 1 and 2 are applied. Therefore, (46) leads to
\[
\dot{V}_2 < -\epsilon_s \frac{e_2^T M(x_1) e_2}{\| e_2 \|} - e_2^T M(x_1)(d + h). \tag{48}
\]
Substituting (13), we have
\[
\dot{V}_2 < -\epsilon_s \frac{\| L_M e_2 \| e_2^T M(x_1) e_2}{\| e_2 \|} - (L_M e_2)^T L_M (d + h) \\
\leq -\epsilon_s \sigma_{\min}(L_M) \| L_M e_2 \| + \| L_M e_2 \| \| L_M (d + h) \| \\
\leq (-\epsilon_s + \| d + h \|) \sigma_{\min}(L_M) \| L_M e_2 \| \\
\leq (-\epsilon_s + d_0 + h_0) \sqrt{m_o} \| L_M e_2 \|.
\]
Considering (35), we obtain
\[
\dot{V}_2 < -\epsilon_0 \sqrt{\frac{2}{m_o}} \| e_2 \|. \tag{49}
\]
Thus, $V_2(t)$ is bounded by $0 \leq V_2(t) \leq V_2^*(t)$, $t \geq t_1$, where $V_2^*(t) = \frac{1}{2}(\| e_2(t) \|^2) + \epsilon_0 \sqrt{m_o}(t_1 - t)^2$ for $t \leq t < t_1 + \frac{1}{\epsilon_0 \sqrt{m_o}} \| e_2(t_1) \|$, and $V_2^*(t) = 0$ for $t \geq t_1 + \frac{1}{\epsilon_0 \sqrt{m_o}} \| e_2(t_1) \|$, which leads to
\[
V_2(t) = 0, \quad t \geq t_2
\]
where t_2 is confined by
\[
t_2 < t_1 + \frac{1}{\epsilon_0 \sqrt{m_o}} \| e_2(t_1) \| < \infty.
\]
Therefore, $e_2(t)$ achieves dynamics collapse within finite time t_2. Note that $V_2(t)$, $V_2^*(t)$ and $\dot{e}_2(t)$ are also continuous in the sense of Filippov.

Theorem 2 holds.

Remark 4: In the proof of Theorem 2, it is noted that the dynamics collapse of $e_1(t)$ is a necessary condition of the finite-time convergence of $e_2(t)$. Therefore, the sliding mode of e_2 is achieved only after the convergence of e_1. By constructing such successive sliding modes of s, e_1, and e_2, the proposed observer (16) ensures a theoretically precise estimation of the disturbance d without the velocity measurement \dot{x}_2.

Different from the conventional integral sliding mode, which merely ensures the asymptotic convergence of system states, the proposed observer in (16) guarantees the finite-time convergence of both $s(t)$ and the estimation errors $e_1(t)$ and $e_2(t)$ to zero. Nevertheless, we still name the method as an integral sliding-mode observer, since it possesses the advantage of conventional integral sliding mode, i.e., the sliding mode is achieved since the initial time instant.

D. Chattering Reduction and Filtering

Similar to the conventional sliding-mode controller, chattering is a major issue for this integral sliding-mode observer. The main reason for chattering is the finite switching frequency, which is confined by the sampling rate of the system. To reduce the chattering and obtain a smooth disturbance estimation, the boundary layer method is applied in this article.

\[
\begin{array}{|c|c|c|}
\hline
\text{Var} & \text{Expression} & \text{Var} & \text{Expression} \\
\hline
m_{11} & \alpha_1 + 2\beta_1 c_{23} + 2\beta_2 c_{23} + 2\beta_3 c_{33} & m_{22} & \alpha_2 + \beta_2 c_{33} \\
m_{12} & \alpha_2 + \beta_1 c_{23} + 2\beta_2 c_{23} + 2\beta_3 c_{33} & m_{23} & \alpha_3 + \beta_3 c_{33} \\
m_{13} & \alpha_3 + \beta_1 c_{23} + 2\beta_2 c_{23} & m_{33} & \alpha_3 \\
\hline
\end{array}
\]

We change the unit control switching function in (17) into the following modified form:
\[
\begin{align*}
\dot{u}_1 &= -\frac{\alpha_s e_1}{\| e_1 \| + \delta_e} (\| x_2(t) \|) s \tag{50} \\
\dot{u}_2 &= \frac{u_1}{\| u_1 \| + \delta_u}
\end{align*}
\]
and the sliding manifold s from (18) is also modified to
\[
s = e_1 + \int_{t_0}^{t} \left(\frac{\alpha_s e_1}{\| e_1 \| + \delta_e} + \Gamma_1 e_1 \right) d\tau - e_1(0)
\]
where δ_e, δ_s, and $\delta_u \in \mathbb{R}^+\{0\}$ are scalars that determine the width of the boundary layers.

Note that after applying this modification, the finite-time convergence of $s(t)$, $e_1(t)$, and $e_2(t)$ does not strictly hold with respect to the equilibria as in (27), (22a), and (22b), but only with respect to the boundary layers $\| s(t) \| \leq \delta_s$, $\| e_1(t) \| \leq \delta_e$, and $\| e_2(t) \| \leq \delta_u$ instead. The consequence is inferior estimation precision and robustness. Therefore, a compromise has to be found between estimation performance and the chattering level, and the boundary layer parameters δ_e, δ_s, and δ_u should be carefully determined according to the specific requirements of practical applications.

IV. SIMULATION

The proposed integral sliding-mode observer has been evaluated by a simulation of a 3-DOF robot manipulator described in (6). In this simulation, we run the robot with a given desired trajectory and a potential difference (PD) tracking controller. A predefined disturbance torque d_{ext} is exerted on the joints during the motion of the robot. Meanwhile, the integral sliding-mode observer is implemented to obtain the online estimation \hat{d}_{ext}. Then, the observer is evaluated based on the comparison between d_{ext} and \hat{d}_{ext}. The dynamic parameters of the simulated manipulator model are shown in Tables I and II, where m_{ij}, $i, j = 1, 2, 3$ are the corresponding elements in the inertia matrix $\mathbf{M}(\mathbf{q})$ and n_k, $k = 1, 2, 3$ are the elements of the Coriolis and centrifugal vector $\mathbf{C}(\mathbf{q}, \dot{\mathbf{q}})\dot{\mathbf{q}}$. For brevity, the gravity and friction terms are omitted to simulate a friction-less robot confined in the horizontal plane. The values of the parameters are listed in Tables III and IV, where q_i, and $\dot{q}_i \in \mathbb{R}$, respectively, denote the angular position and velocity of the ith joint. The simulation is implemented using a first-order Euler solver with sampling rate 1 kHz and runs for 6 s.

In the simulation, a sinusoidal desired trajectory $\mathbf{q}_d(t) \in \mathbb{R}^3$ in joint space is defined as (see Fig. 1)
\[
\mathbf{q}_d(t) = \left(1 + \sin\left(\frac{\pi}{3}t - \frac{\pi}{6}\right)\right) k_{pos}, \quad 0 \leq t \leq 6
\]
where \(\mathbf{k}_{\text{pos}} = [0.5 \ 0.8 \ 0.2]^T \) is the coefficient vector to distribute different amplitudes to each joint. The manipulator is configured with nonzero initial conditions, i.e., \(\mathbf{q}(0) = [0.625 \ 0.40 \ 0.7318]^T \) and \(\dot{\mathbf{q}}(0) = [0.45 \ 0.73 \ 0.18]^T \). A PD controller is designed for the robot to track the given trajectory \(\mathbf{q}_d(t) \)

\[
\mathbf{r} = M(q)(\dot{q}_d + \mathbf{K}_D \ddot{q}_d + \mathbf{K}_P e_q) + C(q, \dot{q})\ddot{q}
\]

(51)

where \(e_q = \mathbf{q}_d - \mathbf{q} \) and \(\dot{e}_q = \dot{\mathbf{q}}_d - \dot{\mathbf{q}} \) are the tracking errors, \(\mathbf{K}_P = 200 \mathbf{I}_3 \) and \(\mathbf{K}_D = 36 \mathbf{I}_3 \) are the diagonal proportional and derivative gain matrices, and \(\mathbf{I}_3 \) is a \(3 \times 3 \) unit diagonal matrix.

Sinusoidal disturbance torques \(\mathbf{d}_{\text{ext}}(t) \) are added to the commanded input \(\mathbf{r} \) on the three joints of the robot in the simulation, which are

\[
\mathbf{d}_{\text{ext}}(t) = \begin{cases}
0, & 0 \leq t \leq 2.5 \\
\sin(\frac{\pi}{2} (t - 0.5)) \mathbf{k}_{\text{dist}}, & 0.5 < t \leq 2.5 \\
\sin(\frac{\pi}{2} (t - 4)) \mathbf{k}_{\text{dist}}, & 4 < t \leq 6
\end{cases}
\]

(52)

where \(\mathbf{k}_{\text{dist}} = [15 \ 18 \ 12]^T \) is the coefficient vector. Similar disturbances are also used in related work, such as in [3], since they resemble the waveform of contact forces in practice.

An integral sliding-mode observer in (16) is implemented to estimate the disturbance \(\hat{\mathbf{d}}_{\text{ext}}(t) \) in (52). The parameters of the observer are listed in Table V. The initial states of the observer are set to \(\hat{x}_1(0) = 0 \) and \(\hat{\mathbf{x}}_2(0) = 0 \). The evaluation of the simulation results is as follows. For brevity, only the results of the first joint are displayed, since the results on the three joints are similar.

In Fig. 2(a), the original disturbance \(\mathbf{d}_{\text{ext}}(t) \) and its estimation \(\hat{\mathbf{d}}_{\text{ext}}(t) \) are compared. It is noted that, even though the nonzero initial conditions are given, the estimation \(\hat{\mathbf{d}}_{\text{ext}}(t) \) precisely tracks \(\mathbf{d}_{\text{ext}}(t) \) after a short transient stage (approx. 0.0625 s), even at the time instants where
sharp changes emerge in the disturbance (e.g., 0.5, 2.5, and 4 s). This confirms the high-bandwidth feature of the integral sliding-mode observer. Fig. 2(b) shows the comparison between the measured velocity \(\dot{q}(t) \) and its estimation \(\dot{\hat{q}}(t) \) by the observer. Note that the measured velocity comes from the direct derivative of measured position \(q(t) \). Similar to the estimation of the disturbance, \(\dot{\hat{q}}(t) \) converges to \(\dot{q}(t) \) after a short transient stage (also approx 0.0625 s). Fig. 2(c) shows that the switching function \(s(t) \) is kept within the range \(\| s(t) \| < 4 \times 10^{-3} \) despite the nonzero initial condition \(e_1(0) = [-0.25 -0.4 -0.1]^T \). This result reveals the effectiveness of the proposed integral sliding-mode observer that the velocity estimation \(\dot{\hat{q}}(t) \) is always invariant from disturbance \(d_{\text{ext}}(t) \). Thus, the enhanced robustness of this novel observer is confirmed.

V. EXPERIMENT

In this section, the proposed observer has been applied to a robot platform (see Fig. 3) to evaluate its estimation performance in practice. Similar to the simulation, in this experiment, the robot is actuated by a PD controller tracking the given desired trajectory. Different types of disturbance are added to the joint actuators, and the experimental performance of the integral sliding-mode observer is evaluated by comparing the predefined disturbance \(d_{\text{ext}} \) and its estimation \(\hat{d}_{\text{ext}} \).

The experiment configurations are as follows. The manipulator platform is actuated by three Maxon torque motors on the joints with a turn ratio of 1:100. The actuators are installed in parallel along the axes, such that the robot moves in the horizontal plane and gravity is ignored. The incremental encoders offer the joint position measurement with a resolution of 2000. The sensors and actuators are connected with the computer using a peripheral component interconnect (PCI) communication card. The Maxon driver is used to communicate between the executable and the robot. The executable of the algorithm is created by MATLAB 2017a in Ubuntu 14.04 LTS, with the first-order Euler solver at the sampling rate of 1 kHz, and runs for 70 s. The dynamic model of the robot is well identified.

A. Estimation of Predefined Disturbances

In the first experiment, a trajectory tracking task is implemented on the robot platform. The desired trajectory \(q_d(t) \) is designed as

\[
q_d(t) = \left(1 - \cos \left(\frac{2\pi}{5} t \right) \right) k_{\text{pos}}, \quad 5 < t \leq 65. \tag{53}
\]

which is shown in Fig. 4. The PD controller in (51) is implemented to track the given trajectory (53).

During the motion of the manipulator, three different kinds of predefined disturbances \(d_{\text{ext}}(t) \) are inserted to the robot joint command inputs to simulate the external force, such that the comparison can be made between the estimated contact force \(\hat{d}_{\text{ext}}(t) \) and the original disturbance \(d_{\text{ext}}(t) \). Respectively, the sinusoidal disturbance (also used in [3]), the square form disturbance (also used in [4], [30], and [34]), and the triangle form disturbance (also used in [29]) are used in this experiment, since they all resemble the waveform of contact force in practice, which is featured with large amplitudes, short time periods, and summit-shape waveform. The specific formulations are as follows.

Disturbance 1: Sinusoidal waveform

\[
d_{\text{sin}}(t) = \begin{cases}
\sin \left(\frac{\pi}{2} (t - 12.5) \right) k_{\text{dst}}, & 12.5 < t \leq 14.5 \\
0, & \text{else}
\end{cases} \tag{54}
\]

Disturbance 2: Square waveform

\[
d_{\text{sqr}}(t) = \begin{cases}
k_{\text{dst}}, & 12.5 < t \leq 14.5 \\
0, & \text{else}
\end{cases} \tag{55}
\]

Disturbance 3: Triangle waveform

\[
d_{\text{trg}}(t) = \begin{cases}
(t - 12.5) k_{\text{dst}}, & 12.5 < t \leq 13.5 \\
(-t + 14.5) k_{\text{dst}}, & 13.5 < t \leq 14.5 \\
0, & \text{else}
\end{cases} \tag{56}
\]

An integral sliding-mode observer in (16) is implemented on the robot platform with the same parameter selection as in Table V. The evaluation of the estimation results is as follows.

Fig. 5 shows the estimation results of the first robot joint with the sinusoidal disturbance from (54). Similar to the simulation results, the precise estimation \(\hat{d}_{\text{ext}}(t) \) and \(\dot{\hat{q}}(t) \) of the disturbance \(d_{\text{ext}}(t) \) and velocity \(\dot{q}(t) \) of the system can be, respectively, seen in Fig. 5(a) and (b). In Fig. 5(c), it is obvious that the switching function remains in the region \(\| s(t) \| < 2 \times 10^{-4} \). These results have confirmed the robustness of the integral sliding-mode observer.
The estimation results of the square form disturbance and the triangle form disturbance are shown in Figs. 6 and 7. Apart from the similar arguments to the above, Fig. 6(b) especially shows the precise tracking of joint velocity even with high-bandwidth signal perturbations (e.g., in 12.5 and 14.5 s), which are caused by the jumps on the system disturbance. Thus, again, the high-bandwidth and robustness of this observer are confirmed.

B. Estimation of Contact Force

In this experiment, we investigate the performance of the integral sliding-mode observer, which estimates the contact forces between the robot and the environment. To make a comparison, a JR3 force sensor [see Fig. 8(a)] is installed to the end-effector of the manipulator to measure the contact forces, which provides the measurement as a wrench form in Cartesian space. A plastic attachment is fixed with the JR3 force sensor with a spherical appendix [see Fig. 8(b)] to guarantee a firm and steady contact. A sponge fixed to a stick holder [see Fig. 8(b)] is used to make contacts with the spherical appendix instead of human hands. The desired trajectory is given as (53) and the PD controller in (51) is used. The configuration of the integral sliding-mode observer is the same as the previous experiment.

During the motion of the manipulator, several contacts are made to the spherical appendix on the end-effector using the sponge to simulate the robot-environment contacts in a robot task. The occurrence time instances of the manual contacts are approximately 37, 42, 47, 52, 57, and 62 s. At the same time, the contact force is measured and recorded. Note that the measurement of JR3 is in the form of a wrench \(F_m \in \mathbb{R}^6 \) in the task coordinate, whereas the estimated torque \(\hat{d}_{\text{ext}} \) is in the joint coordinate. Therefore, we transform the measured contact wrench into the joint space coordinate by \(\tau_m = J^T(q)T(q)F_m \), where the measured external torque \(\tau_m \) denotes the reflection of \(F_m \) in the joint coordinate, \(J(q) \) is the Jacobian matrix and \(T(q) \) is the coordinate transformation from the task coordinate to the base coordinate. The comparison between the measured external torque \(\tau_m \) and the estimated external torque \(\hat{d}_{\text{ext}} \) is shown in Fig. (9).

The results have shown that the estimation \(\hat{d}_{\text{ext}} \) by the observer is very close to the measured external torque \(\tau_m \) by JR3 torque sensor. Note that the waveform of the external
torques possess similar features to the predefined disturbances in (54)–(56). This confirms the estimation precision and bandwidth of the integral sliding-mode observer in practical applications.

C. Application Example: Sensorless Admittance Control

The precise, high-bandwidth, and robust estimation performance of the integral sliding-mode observer confirmed by the above simulation and experiments reveals its potential application to safe human–robot collaborations (HRCs), which is investigated in this section by implementing a force-sensorless admittance controller as an example. An admittance controller is an important component in the HRI safety framework. By modifying the reference trajectory according to the external force feedback, the robot can compliantly react to the interactive forces, such that an admittance featured motion is achieved. Generally, an external force sensor, such as the JR3 torque sensor, is needed to implement an admittance controller, whereas here we use the estimated external torque \(\hat{d}_{\text{ext}} \) instead of the measured torque \(\tau_m \). Thus, the admittance controller in this experiment is designed as follows:

\[
\tau = \dot{M}(q)(\dot{q}_r + K_D \dot{e}_r + K_P e_r) + \dot{C}(q, \dot{q})\ddot{q} + \dot{F}(\dot{q})
\]

where \(q_r \) and \(\dot{q}_r \) are, respectively, the reference position and velocity of the robot in the joint space, \(e_r = q_r - q \) is the deviation between the reference position and the current position, and \(K_D \) and \(K_P \) are the same as in (51). The reference trajectory \(q_r \) is defined by

\[
\dot{q}_r = \dot{q}_d + K^{-1}_d (K_P (q_d - q_r) + \hat{d}_{\text{ext}})
\]

where \(K_P = 50I_3 \) and \(K_d = 50I_3 \), respectively, define the stiffness and damp of the admittance behavior. Note that different from the simulation and the experiments above, the estimated disturbance \(\hat{d}_{\text{ext}} \) is applied to the closed-loop control, see (57). The motion of the robot with this force-sensor-less admittance controller is shown in Fig. 10. Initially, the robot stays in a static position [see Fig. 10(a)]. When an object makes a contact with the end-effector [see Fig. 10(b)], an admittance reaction behavior is achieved [see Fig. 10(c)]. After the contact vanishes, the robot returns to the original configuration. Note that due to the approximation from (24), the filter (25), and the boundary layer techniques (50), \(\hat{d}_{\text{ext}} \) is not exactly equal to \(d_{\text{ext}} \). As a result, the closed-loop stability of the admittance controller does not hold for all possible values of \(K_d \) and \(K_p \) as in (57). Large values of \(\tau \) and the boundary layers may lead to small feasible sets of control parameters \(K_d \) and \(K_p \).

As shown in the example demonstration above, the force-sensor-less admittance controller reveals an expected compliance behavior when physical contact is exerted on the
end-effector, which justifies the applicability of the integral sliding-mode observer to practical HRC scenarios. Thus, a safe compliance controller can be designed without expensive force sensory devices. The disadvantage is, however, that the resulting control precision is inferior to the control schemes using force sensors due to applying the filter and boundary layer techniques. Therefore, this force-sensor-less application is suitable to the low-cost robot platforms, which do not have strict requirements on the force control precision.

VI. CONCLUSION

A novel integral sliding-mode observer is proposed for Euler–Lagrangian systems and applied to a robot platform. From the mathematical point of view, this observer requires fewer assumptions. An integral sliding mode is applied to achieve enhanced invariance. Thus, robust velocity and disturbance estimations are obtained by this observer at the same time. Numerical simulation and experiments have shown the high precision, bandwidth, and robustness of this novel method. The experimental comparison with sensory measurements reveals its possibility to replace a real force sensor in practice. The implementation of a force-sensor-less admittance controller lights up the ambition to achieve a sensor-free and low-cost safety framework for human-friendly collaborative robots. Considering the insufficiency of the rigid robot models, future work will be dedicated to improve the performance of this disturbance observer with joint elastics.

APPENDIX

This appendix provides the derivation of the error dynamics (20) of the proposed observer (16) and estimates the boundary of the system uncertainty h_O in Assumption 3. By combining the observer dynamics (16) and the original system (8), we have

$$\begin{align*}
\dot{e}_2 &= M^{-1}C(x_1, x_2)\dot{x}_2 - \dot{\hat{M}}^{-1}\hat{C}(x_1, \hat{x}_2)\hat{x}_2 \\
&\quad + M^{-1}G - \hat{\hat{M}}^{-1}\hat{G} + M^{-1}F(x_2) - \hat{\hat{M}}^{-1}\hat{\hat{F}}(\hat{x}_2) \\
&\quad - M^{-1}\tau + \hat{\hat{M}}^{-1}\tau - d(x_1, t) + \Gamma_2 u_1 + u_2
\end{align*}$$

(58)

where x_1 is omitted in the inertia matrices M and \hat{M} and the gravity matrices G and $\hat{\hat{G}}$. Here, we define the model deviations as

$$\begin{align*}
\hat{C}(x_1, \hat{x}_2) &= C(x_1, \hat{x}_2) - C(x_1, x_2) \\
\hat{G} &= G - \hat{\hat{G}}, \quad \hat{F} = F(x_2) - \hat{\hat{F}}(\hat{x}_2).
\end{align*}$$

Therefore, (58) results in

$$\begin{align*}
\dot{e}_2 &= (M^{-1} - \hat{\hat{M}}^{-1})(\hat{\hat{C}}(x_1, \hat{x}_2)\hat{x}_2 + \hat{\hat{G}} + \hat{\hat{F}}(\hat{x}_2) - \tau) \\
&\quad - M^{-1}(\hat{C}(x_1, \hat{x}_2)\hat{x}_2 - C(x_1, x_2)\hat{x}_2 + \hat{G} + \hat{F}) \\
&\quad - d + \Gamma_2 u_1 + u_2.
\end{align*}$$

(59)

Considering

$$\begin{align*}
\hat{\hat{C}}(x_1, \hat{x}_2)\hat{x}_2 &= C(x_1, x_2)\hat{x}_2 \\
&= C(x_1, \hat{x}_2)\hat{x}_2 - C(x_1, x_2)\hat{x}_2 - C(x_1, \hat{x}_2)\hat{x}_2 \\
&= C(x_1, \hat{x}_2)\hat{x}_2 - C(x_1, x_2)\hat{x}_2 + \hat{C}(x_1, \hat{x}_2)\hat{x}_2 \\
&\quad + C(x_1, \hat{x}_2)\hat{x}_2 - C(x_1, x_2)\hat{x}_2
\end{align*}$$

(60)

and by substituting $C(x_1, \hat{x}_2)\hat{x}_2 = C(x_1, x_2)\hat{x}_2$, which is supported by Property 5, to (60), we have

$$\begin{align*}
\hat{\hat{C}}(x_1, \hat{x}_2)\hat{x}_2 &= C(x_1, x_2)\hat{x}_2 \\
&= C(x_1, \hat{x}_2)\hat{x}_2 - C(x_1, x_2)\hat{x}_2 + \hat{C}(x_1, \hat{x}_2)\hat{x}_2 \\
&\quad + C(x_1, \hat{x}_2)\hat{x}_2 - C(x_1, x_2)\hat{x}_2
\end{align*}$$

(61)

Therefore, substituting (61) into (59) and compared with (20), we figure out the expression of $h(x_1, \hat{x}_2)$ as

$$h(x_1, \hat{x}_2) = M^{-1}(\hat{\hat{C}}(x_1, \hat{x}_2)\hat{x}_2 + \hat{\hat{G}} + \hat{\hat{F}}) + (M^{-1} - \hat{\hat{M}}^{-1}) \times (\hat{\hat{C}}(x_1, \hat{x}_2)\hat{x}_2 + \hat{G} + \hat{F}(\hat{x}_2) - \tau).$$

(62)

Note that the identified parametric matrices $\hat{\hat{M}}$, $\hat{\hat{C}}(x_1, \hat{x}_2)$, $\hat{\hat{G}}(x_1)$, and $\hat{\hat{F}}(\hat{x}_2)$ do not depend on the modeling deviations. Therefore, (62) indicates that the system uncertainty $h(x_1, \hat{x}_2)$ is linearly dependent on the deviations $\hat{\hat{C}}(x_1, \hat{x}_2)$, $\hat{\hat{G}}$, and $\hat{\hat{F}}$. By applying precise system identification procedures, the uncertainty boundary $\|h(x_1, \hat{x}_2)\|$ can be reduced.

REFERENCES

Marion Leibold received the Diploma degree in applied mathematics and the Ph.D. degree in electrical engineering from the Technical University of Munich, Munich, Germany, in 2002 and 2007, respectively.

She is currently a Lecturer with the Chair of Automatic Control Engineering, Technical University of Munich. Her current research interests include hybrid dynamical systems, optimal control, and legged robots.

Dirk Wollherr (S’01–M’11–SM’11) received the Dr.-Ing and Ph.D. (Eng.) degrees in electrical engineering and the Habilitation degree from the Technical University of Munich, Munich, Germany, in 2000, 2005, and 2013, respectively.

From 2001 to 2004, he was a Research Assistant with the Control Systems Group, Technische Universität Berlin, Berlin, Germany. In 2004, he was with the Yoshihiko Nakamura Laboratory, The University of Tokyo, Tokyo, Japan. Since 2014, he has been a Professor with the Chair of Automatic Control Engineering, Department of Electrical and Computer Engineering, Technical University of Munich. His current research interests include automatic control, robotics, autonomous mobile robots, human–robot interaction, and humanoid walking.