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Abstract 

Obesity is a worldwide health problem with an increasing incidence over the last decades. 

Treatments include a reduction of energy intake and an increase in energy expenditure, 

which require a precise knowledge about the daily energy expenditure and its components. 

Resting metabolic rate (RMR) is with 60 - 80% the biggest component of daily energy 

expenditure and therefore of special interest. RMR is characterized by a high inter-individual 

variation. Variables taken into consideration when predicting RMR are sex, age, race, fat 

mass and fat free mass (FFM). However, even after adjusting RMR for these influencing 

variables, a residual variation of approximately 30% remains unexplained. In the present 

work the impact of liver metabolism, gut microbiota composition and the respiratory capacity 

of peripheral blood mononuclear cells (PBMCs) on RMR variation is analyzed.  

 

To analyze the residual variation of RMR, a general linear regression model was designed, 

based on the four enable cohorts with 488 subjects ranging from 3 to 85 years. At first a 

mixed effect model was generated with the variables sex, age, fat mass, FFM and body 

temperature, resulting in a correlation coefficient of R2 = 0.80. This equation was cross-

validated in an independent cohort with a high precision of R2 = 0.79. The mixed effect 

model was applied to analyze the influence of clinical blood parameters and blood pressure 

on RMR variation. Thereby, free triiodothyronine, leukocytes, creatinine, MCHC, systolic 

blood pressure and heart rate were identified to be significant predictors of RMR. Based on 

all these variables, a second and more complex statistical model was generated to elucidate 

the residual variation regarding the influence of liver metabolism, gut microbiota 

composition and respiratory capacity of PBMCs. 

A pilot study with 30 subjects was conducted to analyze the influence of liver fat, as a 

parameter of liver activity, on RMR variation. Liver fat content was not associated with RMR 

and did not explain the residual variation of RMR. Gut microbiota composition was 

determined by 16S rRNA gene sequencing and analyzed in 442 subjects. The analysis of 

gut microbiota composition on RMR variation was performed by correlation analysis, linear 

regression analysis, principle component analysis and artificial neural networks. Gut 

bacterial composition and diversity did not correlate with RMR variation until the level of 

Operational Taxonomic Units. However, an indirect correlation of bacteria on the family level 

and RMR was found. This correlation was based on an association with FFM, which is the 

main predictor of RMR. Mitochondrial activity of PBMCs was determined in 179 subjects by 

high resolution respirometry. Though, the respiratory capacity of PBMCs was not 

associated with RMR and therefore did not contribute to the residual variation of RMR. 
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In summary, the results of the present thesis provide new insights into the involvement of 

liver metabolism, gut microbiota composition and respiratory capacity of PBMCs on RMR 

variation. Additionally, an equation with high precision to predict RMR is presented.  
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Zusammenfassung 

Übergewicht und Adipositas sind ein weltweites Gesundheitsproblem, das in den letzten 

Jahrzehnten immer bedeutender wurde. Die Adipositastherapie basiert auf einer 

Reduzierung der Energiezufuhr und einer Erhöhung des Energieverbrauchs, welche 

Kenntnisse über den täglichen Energieverbrauch und seine Komponenten erfordert. Der 

Ruheumsatz ist mit 60 - 80% der größte Anteil des täglichen Energieverbrauchs und ist 

gekennzeichnet durch eine hohe inter-individuelle Variabilität. Bei der Berechnung des 

Ruheumsatzes werden Faktoren wie Alter, Geschlecht, Ethnie, Fettmasse und fettfreie 

Masse berücksichtigt. Jedoch bleibt nach Adjustierung auf die genannten Einflussfaktoren 

eine Restvariabilität von 30% bestehen. Im Rahmen der vorliegenden Arbeit wurde der 

Einfluss der Darmmikrobiota-Zusammensetzung, des Lebermetabolismus und der 

respiratorischen Kapazität von peripheren mononuklearen Zellen des Blutes (PBMCs) auf 

die Variabilität des Ruheumsatzes analysiert. 

 

Zur Bestimmung der verbleibenden Variation im Ruheumsatz wurde ein allgemeines 

Regressionsmodell erstellt, das auf den vier enable Kohorten mit 488 Probanden zwischen 

3 - 85 Jahren basiert. Zunächst wurde ein gemischtes Modell mit den Variablen Geschlecht, 

Alter, Fettmasse, fettfreie Masse und Körpertemperatur mit einem Korrelationskoeffizienten 

von R2 = 0.8 erstellt. Diese Gleichung wurde an einer unabhängigen Studienkohorte mit 

einem Korrelationskoeffizienten von R2 = 0.79 validiert. Das gemischte Model wurde 

verwendet, um den Einfluss klinischer Blutparameter und des Blutdrucks auf die Variation 

im Ruheumsatz zu analysieren. Dabei wurden das Schilddrüsenhormon (fT3), Leukozyten, 

Kreatinin, MCHC, systolischer Blutdruck und Herzfrequenz als signifikante Einflussfaktoren 

des Ruheumsatzes identifiziert. Basierend auf diesen Variablen wurde ein zweites 

komplexeres Regressionsmodell erstellt, um den Einfluss der Leber, der Darmmikrobiota-

Zusammensetzung und der respiratorischen Kapazität von PBMCs auf den Ruheumsatz zu 

analysieren. 

Im Rahmen einer Pilotstudie mit 30 Probanden wurde der Einfluss des Leberfettgehalts, 

der als Parameter für die Leberaktivität diente, analysiert. Der Leberfettgehalt korrelierte 

dabei nicht mit dem Ruheumsatz und erklärt somit nicht die Restvariabilität im Ruheumsatz. 

Die Darmmikrobiota-Zusammensetzung wurde anhand einer 16S rRNA Gensequenzierung 

bei 442 Probanden bestimmt. Der Einfluss der Darmmikrobiota auf den Ruheumsatz wurde 

mittels Korrelationsanalysen, linearer Regressionsanalysen, Hauptkomponentenanalysen 

und artifizieller neuronaler Netzwerkanalyse analysiert. Die Diversität und 

Zusammensetzung der Darmbakterien war bis zur Ebene der Operational Taxonomic Units 

nicht mit der Variation im Ruheumsatz assoziiert. Jedoch wurde eine indirekte Korrelation 
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einiger Bakterienfamilien mit dem Ruheumsatz festgestellt. Diese Korrelation beruhte auf 

einer Assoziation mit der fettfreien Masse, die ein Haupteinflussfaktor des Ruheumsatzes 

ist. Die mitochondriale Aktivität von PBMCs wurde anhand von Respirationsmessungen an 

179 Probanden bestimmt. Dabei korrelierte die respiratorische Kapazität von PBMCs nicht 

mit dem Ruheumsatz und trug somit nicht zur Restvariabilität bei. 

Zusammenfassend lässt sich sagen, dass die Ergebnisse dieser Dissertation neue 

Einblicke über den Einfluss der Darmmikrobiota-Zusammensetzung, des Leber-

metabolismus und der respiratorischen Kapazität von PBMCs auf den Ruheumsatz des 

Menschen geben. Außerdem wird eine neue Gleichung mit hoher Präzision zur Berechnung 

des Ruheumsatzes vorgestellt. 
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1 Introduction 

1.1 Resting metabolic rate as the main variable of daily energy expenditure 

The occurrence and development of obesity has dramatically increased in the last decades, 

almost triplicated over 40 years (WHO 2018). A cause for obesity is an imbalance of energy 

intake and energy expenditure, favored by a chronic positive energy intake. A precise 

knowledge about the total daily energy expenditure (TDEE) and its components is 

fundamental to understand the underlying pathology of obesity and implement appropriate 

therapeutic interventions (Lam and Ravussin 2017). 

 

The major component of TDEE is resting metabolic rate (RMR), accounting for 60 - 80%, 

followed by physical activity with 10 - 30% and adaptive thermogenesis with 10% 

(Landsberg 2012). Adaptive thermogenesis stands for metabolic responses like cold (van 

Marken Lichtenbelt et al. 2009) or diet induced thermogenesis. As RMR is the major 

component of TDEE, there is a particular interest in the basic principles and how RMR is 

composed. RMR reflects the metabolic rate necessary to maintain all vital function without 

any physical activity or additional energy expenses. Therefore, RMR is defined to be 

determined at rest, in a lying position, in a thermoneutral environment, awake and in a post-

absorptive state (10 - 12h after the last meal).  

Energy expenditure is determined by measuring heat production, respectively heat loss, 

either by direct or indirect calorimetry. Early on Atwater described that heat production can 

be predicted by assessing the consumed oxygen (O2) and the produced carbon dioxide 

(CO2) (Atwater 1905). Today, the measurement of RMR is performed by indirect 

calorimetry, a real time measurement of O2 consumption and CO2 production. Heat 

production is then calculated by Weir’s equation by calculating the ‘heat output’ 

(kcal) = 3.9 ´ O2 (L) + 1.11 ´ CO2 (L) (Weir 1949). Indirect calorimetry has become the most 

common and widely used method to measure and calculate energy expenditure. It is an 

important tool to understand the components of energy expenditure and to accurately 

predict RMR for obesity intervention (Lam and Ravussin 2017).  

RMR can also be predicted by mathematical equations. Several equations haven been 

generated, since measuring RMR is a complex and time-consuming method, which requires 

strictly standardized conditions. However, there is a high inter-individual variation in RMR, 

and the precision of the recommended equations varies. Well-established and commonly 

used equations are those from Harris-Benedict (Harris and Benedict 1918) and World 

Health Organization (WHO) (WHO 1985). The Harris-Benedict equation uses the factors 

weight, height and age, whereas the WHO equation solely uses weight to predict RMR. 
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However, in current research variables like sex, age, weight, height, fat mass and fat free 

mass (FFM) are taken into consideration when predicting RMR. 

 

Inter-individual variation of RMR is caused by several factors. The major component 

contributing to RMR is FFM (Gallagher et al. 1998, Muller et al. 2004, Johnstone et al. 2005, 

Ravussin et al. 1986, Cunningham 1991). Other factors are age, fat mass and sex (Muller 

et al. 2004, Javed et al. 2010). Even after adjusting RMR for sex, age, fat mass and FFM a 

residual variation of approximately 30% remains unexplained (Muller et al. 2004, Javed et 

al. 2010). Great efforts have been undertaken to elucidate factors contributing to the 

residual variation in RMR. In terms of obesity research, factors like insulin levels and blood 

pressure were found to contribute to the inter-individual variation of RMR (Bosy-Westphal 

et al. 2008). The role of thyroid hormones on energy expenditure was studied in depth, and 

it is well known that hypo- and hyperthyroidism have an effect on RMR. However, there is 

no consent about the impact of thyroid hormones on RMR in euthyroid subjects (Bosy-

Westphal et al. 2008, Svendsen, Hassager and Christiansen 1993, Spadafranca et al. 

2015). Factors like blood pressure, insulin levels and thyroid hormones have been analyzed 

regarding their influence on RMR, but mostly in the context of obesity or specific diseases 

and not in healthy individuals. 

 

Understanding the physiological processes determining energy expenditure is important to 

accurately determine the individual energy requirement and execute weight related 

interventions. In this context, RMR plays an important role as it is the major component of 

daily energy expenditure (Landsberg 2012). So far 75% of the inter-individual variation in 

RMR can be explained (Javed et al. 2010, Muller et al. 2004), leaving the remaining 

variation unexplained. 

 

1.2 Mitochondria – the energy source of our cells 

Mitochondria are the ‘powerhouse’ of our cells and found in almost every eukaryotic cell. In 

response to acute or chronic energy demands, energy is provided in form of adenosine 

triphosphate (ATP). Mitochondria generate ATP under the process of oxidative 

phosphorylation (Figure 1), oxidizing substrates and phosphorylating adenosine 

diphosphate (ADP). Under the process of substrate oxidation, electrons are accepted by 

complex I and II and transported along the electron transport chain, consisting of four 

complexes (complex I - IV). The transport of electrons enables to pump protons from the 

matrix into the intermembrane space, generating a proton gradient across the inner 

mitochondrial membrane. This proton gradient is used by the fifth complex, the 
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ATP-synthase, to produce ATP by ADP phosphorylation. By the process of substrate 

oxidation, electron transport and proton translocation, oxygen is reduced to water at 

complex IV. As thereby oxygen is required to produce ATP, this process is called 

mitochondrial respiration. Oxidative phosphorylation requires approximately 90% of the 

daily consumed oxygen.  

Mitochondrial respiration can be assessed by respiration measurements, assessing the 

oxygen consumption of cells or isolated mitochondria. A possibility to determine the capacity 

and efficiency of ATP production in response to energy demands is by measuring the 

respiratory control ration (RCR) (Brand and Nicholls 2011). RCR describes the increase in 

respiration in response to ADP and consequently ATP production by ADP phosphorylation. 

In addition, substrates and inhibitors targeting the individual complexes of the respiratory 

chain can further elucidate mitochondrial function and dysfunction. 

 

Mitochondria have an essential role in energy supply and therefore are thought to play an 

important role in metabolic diseases. A reduced capacity of oxidative phosphorylation is 

observed in metabolic diseases such as fatty liver disease and diabetes (Rontoyanni et al. 

2017, Suomalainen and Battersby 2018). Mitochondrial function was mostly analyzed in 

tissue samples like skeletal muscle or adipose tissue (Jheng et al. 2015, Liesa and Shirihai 

2013). Obtaining muscle cells or adipocytes requires the invasive procedure of a biopsy, 

whereas peripheral blood mononuclear cells (PBMCs) are accessible by a minimal invasive 

procedure of a venipuncture (Ost et al. 2018). PBMCs are peripheral cells of the blood, 

characterized by a single round nucleus and mitochondria. PBMCs are a mixed population 

of immune cells resembled by lymphocytes, monocytes, natural killer cells and dendritic 

cells (Kleiveland 2015), having important functions during inflammatory processes, 

thrombosis and immune reactions (Kramer et al. 2014). Diabetes and sepsis lead to 

inflammatory processes like the activation of lymphocytes and monocytes (Srinivasan et al. 

2003), and are associated with changes in the respiratory capacity of PBMCs (Hartman et 

al. 2014, Belikova et al. 2007). As PBMCs are immune cells, the systemic inflammation of 

diabetes and sepsis are reflected in the respiratory capacity of PBMCs. PBMCs are 

circulating cells of the blood and are directly affected by metabolic stress, responding to 

systemic changes and signals, like the inflammatory processes. Consequently, 

mitochondria of blood cells have a potential as biomarker for clinical diagnostics and 

biomedical research to detect early on systemic changes. However, mitochondrial activity 

of PBMCs in healthy subjects has not deeply been analyzed. 
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Figure 1: Mitochondrial respiratory chain. Depicted are the four complexes (I - IV) of the electron transport 

chain and ATP-synthase. Electrons from NADH+H+ and succinate are accepted by complex I, respectively 

complex II. The flow of electrons along the electron transport chain are presented in dark blue. Protons are 

pumped into the intermembrane space by complex I, II and IV, generating a proton gradient, which is used by 

the ATP-synthase to phosphorylate ADP. Protons and their respective flow are depicted in red. 

 

1.3 Gut microbiota in the context of energy metabolism 

The human gut is colonized by almost 38 billion bacteria, just as many cells as the human 

body possesses (Sender, Fuchs and Milo 2016). This is a complex ecosystem with various 

tasks and functions like protection against pathogens, synthesis of vitamins, stimulation of 

the immune system and supporting the digestion of hard-to-digestible food components 

such as fibers. The four largest bacterial strains are Firmicutes, Bacteroidetes, 

Proteobacteria and Actinobacteria, presenting 99% of gut bacteria (Eckburg and Relman 

2007). 

 

Gut microbiota composition is highly variable between individuals. The development of the 

gut microbiome starts already with the mode of delivery and is further influenced by nutrition, 

antibiotic treatments, drugs, stress and sleeping rhythm (Rodriguez et al. 2015, Tilg and 

Kaser 2011, Milani et al. 2017). A highly diverse gut microbiome indicates a healthy 

colonization of the gut, which describes the variety of microorganisms. A diverse 

microbiome is important to react and adapt to changing environmental conditions. Recently, 

gut microbiota diversity was found to be reduced in patients with chronic diseases (Gong et 

al. 2016, Li et al. 2019, Bajaj et al. 2019) and obese people (Mosca, Leclerc and Hugot 

2016, Lozupone et al. 2012), suggesting a gut microbiome of diseased subjects cannot as 

easily adapt to environmental changes as a healthy microbiome. 

Besides a reduced diversity, gut microbiota composition is associated with obesity. 

Transplantation of germ-free mice with an obese microbiome resulted in weight gain 



Introduction 

5 
  
 

whereas transplantation of a lean microbiome did not result in weight gain (Turnbaugh et 

al. 2008, Turnbaugh et al. 2006), suggesting the transplanted gut bacteria to be responsible 

for weight gain in the host. Moreover, obesity is associated with a different gut microbiota 

composition with an increased ratio of Firmicutes to Bacteroidetes, compared to lean 

subjects (Ley et al. 2005, Abdallah Ismail et al. 2011, Castaner et al. 2018). Firmicutes are 

involved in the digestion of plant-based carbohydrates and fermentable fibers, are able to 

convert them into short chain fatty acids (Shen, Gaskins and McIntosh 2014, Robert and 

Bernalier-Donadille 2003) and produce enzymes to split even indigestible carbohydrates 

such as cellulose (Robert and Bernalier-Donadille 2003), thereby additional energy from the 

diet is extracted.  

Gut microbiota is described to be an important factor affecting energy absorption from the 

diet and also affecting energy storage (Backhed et al. 2004), having an impact on energy 

metabolism (Karlsson et al. 2013, Tremaroli and Backhed 2012) and body mass 

development (Backhed et al. 2004, Turnbaugh et al. 2006). Different proportions of different 

bacterial strains can alter the efficiency of digestion and absorption of food, like an increased 

abundance of Firmicutes. However, the distinct role of gut microbiota in the context of 

energy homeostasis, respectively RMR, has not been elucidated so far. 

 

1.4 High and low metabolic rate organs as predictors of resting metabolic rate 

Inter-individual variation of RMR is caused by sex, age, race, FFM and fat mass. It is well 

accepted that RMR decreases by 1 - 2% per decade with advancing age (Keys, Taylor and 

Grande 1973), which is thought to be due to loss of FFM, respectively muscle mass 

(Tzankoff and Norris 1977). FFM is the major variable contributing to RMR, due to its large 

size and high metabolic rate between 54 - 1841 kJ/kg, compared to adipose tissue with a 

metabolic rate of 11.3 - 14.3 kJ/day (Hallgren et al. 1989). Despite its low metabolic rate, 

adipose tissue is still an independent predictor of RMR (Johnstone et al. 2005), due to its 

large size, varying more than any other tissue. The contribution of fat mass to RMR 

increases with increasing fat mass (Bosy-Westphal et al. 2009b), explaining the increased 

RMR of obese subjects. However, at great adiposity with more than 40% of fat mass the 

contribution of fat mass to RMR is reduced, supposable due to a reduced specific metabolic 

rate of fat mass (Bosy-Westphal et al. 2009b). 

FFM accounts for 30 - 60% of RMR variation and was therefore analyzed in several studies 

regarding its influence on RMR (Gallagher et al. 2006, Javed et al. 2010, Bosy-Westphal et 

al. 2004). FFM is positively associated with RMR stating an increasing FFM being 

associated with an increasing RMR. Nonetheless, the correlation of FFM and RMR is not 

constant, as RMR decreases with increasing body weight, in case of a disproportional 
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increase in muscle mass (Weinsier, Schutz and Bracco 1992). However, FFM is not a 

homogenous tissue and is resembled by high and low metabolic rate organs (Muller et al. 

2002). High metabolic rate organs (HMRO) are heart, liver, kidneys, spleen and brain, 

characterized by a high metabolic rate like heart and kidneys having a metabolic rate of 

1841 kJ/kg (Elia 1992, Muller et al. 2002, Weinsier et al. 1992). HMRO account for 

approximately 6% of FFM but contribute about 60 -70% to RMR (Figure 2) (Gallagher et al. 

1998). In contrast, skeletal muscle as a low metabolic rate organ (LMRO), has a metabolic 

rate of 54 kJ/kg (Weinsier et al. 1992), represents more than 50% of FFM, but contributes 

only 22% to RMR (Gallagher et al. 1998). The decline in RMR associated with age is not 

just due to the decline in muscle mass, but also due to the decline of heart mass, 

respectively metabolic rate of the heart (Bosy-Westphal et al. 2003). Determining the size 

and calculating the respective metabolic rate of HMRO can explain additionally 5% of the 

inter-individual variation of RMR (Javed et al. 2010). However, measuring only organ size 

ignores the fact that the organ metabolic rate decreases with increasing organ mass (Wang 

et al. 2001). In addition, fat infiltration in non-adipose tissue might affect the specific organ 

metabolic rate (Perseghin et al. 2002, Bosy-Westphal et al. 2004), but the distinct 

consequences are not fully understood. 

Commonly, high and low metabolic rate organs are combined in FFM and are not further 

differentiated. Measuring and adjusting RMR for organ sizes and specific metabolic rates 

of high and low metabolic rate organs can further elucidate the intra-individual variation of 

RMR. 

 
Figure 2: Contribution of organs and tissues to fat free mass and resting metabolic rate. The major 

component of fat free mass is skeletal muscle with 50.4 ± 4.1%, followed by adipose tissue with 5.2 ± 2.0%. 

Kidneys, liver, brain and heart constitute 6.7 ± 1.1% of fat free mass. The high metabolic rate organs kidneys, 

liver, brain and heart account together for 58.0 ± 4.8% of resting metabolic rate (kidneys ~ 10%, liver ~ 20%, 

brain ~ 22%, heart ~ 5%). Skeletal muscle contributes with 22.5 ± 3.4% and adipose tissue with 3.9 ± 1.3% to 

resting metabolic rate. Graph and values are adapted from Gallagher et al. (1998).  
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1.5 Objective of the present work 

Obesity and its associated diseases are a global health problem with an increasing 

incidence. Obesity is usually the consequence of a chronic positive energy balance and 

treatment strategies include a reduction in energy intake and energy expenditure. Resting 

metabolic rate (RMR) is the major component of daily energy expenditure and therefore of 

special interest. However, RMR is characterized by a high inter-individual variation which 

cannot completely be explained by the variables sex, age, race, fat mass and fat free mass, 

leaving a residual variation unexplained. 

 

The aim of this PhD thesis is to analyze the residual variation of RMR, regarding the 

influence of gut microbiota composition, liver metabolism and respiratory capacity of 

peripheral blood mononuclear cells (PBMCs). 

 

A basis of this work was to generate a statistical model to obtain the residual variation of 

RMR. Anthropometric data and all raised clinical parameters from the cross-sectional 

enable study, consisting of 488 subjects, are used for model generation. Linear regression 

analysis is performed by stepwise including the variables to identify predictors and generate 

a model to predict RMR. This general model to predict RMR allows the examination of 

further parameters contributing to RMR, by adjusting RMR for the influencing variables and 

calculating the residual variation. First, the respiratory capacity of PBMCs is analyzed 

regarding their influence on the residual variation of RMR. Respiratory capacity of PBMCs 

is assessed by high-resolution respirometry of freshly isolated PBMCs from 179 subjects, 

a subsample of the enable cohort. Substrates, inhibitors and uncoupler can assess different 

respiratory states and determine mitochondrial activity of PBMCs. Second, the influence of 

gut microbiota composition on RMR variation is analyzed. Gut microbiota composition is 

determined in fecal samples by 16S rRNA gene sequencing of the whole enable cohort 

(488 subjects). For the analysis of gut microbiota composition on RMR variation, different 

statistical approaches will be applied like correlation analysis, linear regression analysis, 

principal component analysis and artificial neural networks. Third, liver activity will be 

analyzed regarding its influence on RMR variation. A pilot study with 30 subjects was 

conducted to determine liver activity by measuring liver fat content. Liver fat is measured by 

a combination of magnetic resonance imaging and magnetic resonance spectroscopy and 

analyzed regarding the influence on RMR variation by linear regression analysis. 
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2 Material and Methods 

2.1 The Enable Cohort 

Data was obtained from the cross-sectional enable study, consisting of healthy Caucasian 

subjects recruited at two study centers in Germany, Freising and Nuremberg between April 

2016 and March 2018. Subjects were recruited in four age cohorts, aiming 100 children 

between 3 and 5 years, 100 adolescents and young adults between 18 and 25, 200 middle-

aged adults between 40 and 65 years out of whom 100 subjects should be free of any 

chronic diseases, whereas the other half should be at risk for metabolic syndrome, defined 

by a waist circumference of > 102 cm in males and > 88 cm in females. For the fourth cohort 

the aim was to recruit 160 elderlies between 75 and 85 years, 100 subjects from Nuremberg 

and 60 from Freising. In all age cohorts the aim was to recruit an equal proportion of male 

and female. Exclusion criteria were: Body mass index (BMI) less than 18.5 kg/m2 or greater 

than 35 kg/m2, smoking, pregnancy and severe diseases. Elderly participants were included 

when they were free from severe chronic diseases, cognitive impairment and mobile. 

Anthropometric parameters, body composition, resting metabolic rate and clinical 

parameters like blood pressure and blood parameters were measured according to 

standardized procedures. Gut microbiota composition was determined in fecal samples by 

16S rRNA gene sequencing. Sequencing of 16S ribosomal RNA allows to determine and 

quantify the abundance of bacterial species in a given sample (Claesson, Clooney and 

O'Toole 2017). Processing and analysis of gut microbiota was performed at the Microbiome 

Core Facility, ZIEL - Institute for Food and Health, Technical University Munich. Further 

details about the study procedures and guidelines can be obtained from the local Clinical 

Trial Register (DRKS-ID: DRKS00009797).  

The enable study was conducted according to the guidelines laid down by the Declaration 

of Helsinki. The ethics committees from the Technical University of Munich (number: 

452/15) and the Friedrich-Alexander-University Erlangen-Nürnberg (number: 291_15 B) 

approved all the procedures.  

 

2.2 Peripheral blood mononuclear cells 

2.2.1 Isolation of peripheral blood mononuclear cells 

The isolation of peripheral blood mononuclear cells (PBMCs) was conducted by density 

gradient centrifugation by using biocoll (Biochrom, L6115) for separation. The biocoll 

medium is a gradient medium denser than lymphocytes, monocytes and platelets but less 

dense than red blood cells and granulocytes. Accordingly, red blood cells will resemble on 
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the bottom of the tube, PBMCs in the interface between biocoll and diluted plasma and 

platelets in the top layer of diluted plasma.  

Blood samples were taken in 9 ml lithium-heparine monovettes (Nümbrecht, Sarstedt) from 

an antecubital vein, in a fasted state of the subject. Isolation procedure was conducted 

directly after taking the blood sample. Blood was diluted with 8 ml PBS (1:1 ratio) and 

carefully transferred on top of 16 ml biocoll. To reduce the surface tension, first 2 drops of 

diluted blood were carefully run down the wall of the falcon tube than the residual diluted 

blood was gently transferred. The tubes were centrifuged for 25 min (400´g, accel 1, 

break 0). The thin PBMC layer between diluted plasma and biocoll was transferred by a 

sterile Pasteur-pipette (3 ml) to another tube, diluted in 50 ml PBS and centrifuged for 10 

min (300´g, accel 5, break 9). This washing step was repeated with 30 ml PBS. Counting 

and assessing the viability of PBMCs was performed by trypan blue staining using an 

automated cell counter (CountessTM, Invitrogen). 

 

2.2.2 Chamber based respirometry to determine mitochondrial activity of PBMCs 

Mitochondrial respiration of PBMCs was determined by high resolution respirometry at the 

Oxygraph-2k (Oroboros Instruments, Innsbruck, Austria). In preparation, respiration 

chambers were washed five times with demineralized water and calibrated with MiR05 

buffer (Table 1) until oxygen concentration and oxygen consumption was stable for at least 

30 min. 

 
Table 1: Compounds and preparation of MiR05 buffer 

Compound Final 
concentration 

Molecular 
weight g/mol Volume for 1L 

 
Source 

 
EGTA 0.5 mM 340.4 0.190 g Sigma E 4378 

MgCl2×6H2O 3 mM 203.3 0.610 g Scharlau MA 0036 

Lactobionic acid 60 mM 358.3 120 ml of 0.5 M Aldrich 153516 

Taurine 20 mM 125.1 2.502 g Sigma T 0625 

KH2PO4 10 mM 136.1 1.361 g Merck 104873 

HEPES 20 mM 238.3 4.77 g Sigma H 7523 

D-Sucrose 110 mM 342.3 37.65 g Roth 4621.1 

BSA 1 g/l  1 g Sigma A 6003 
fraction V 

 

All listed compounds (except for lactobionic acid) were dissolved in 800 ml H2O with a magnetic 

stirrer at 30°C. After adding 120 ml of K-lactobionic stock solution, pH was adjusted with 5 M KOH 

(Sigma, P 1767) to 7.1, at 30°C. At the end, the final volume was adjusted with H2O to 1 L. 
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K-lactobionate stock solution was prepared by dissolving 35.83 g lactobionic acid in 100 ml H2O, 

adjusting pH to 7.0 with KOH and adjusting to the final volume of 1 L with H2O. 

 

After Mir05 buffer was calibrated to oxygen concentration of air, 6 million cells in 100 µl 

MiR05 were transferred into each of the chambers. At first a stable basal respiration was 

obtained, approximately 5 - 10 min after applying the cells. Cells were permeabilized by 

digitonin, followed by a stepwise application of substrates, inhibitors and uncouplers (Table 

2). To determine different respiratory states, two different protocols were established with a 

different order of substrates, inhibitors and uncouplers (Figure 14, Figure 15). At the end, 

non-mitochondrial respiration was determined by inhibiting complex III with antimycin A. 

Non-mitochondrial respiration was afterwards subtracted from all other values of the 

respiration measurement.  

 
Table 2: Substrates, inhibitors and uncoupler of the respiration measurement 

Chemical Final concentration Source 

Digitonin 2 µM Sigma-Aldrich D5628 

Pyruvate 5 mM Sigma-Aldrich P2256 

Malate 5 mM Sigma-Aldrich M9138 

Succinate 5 mM Sigma-Aldrich 398055 

ADP 5 mM Sigma-Aldrich A2754 

Oligomycin 2.5 µg/ml Sigma-Aldrich O4876 

FCCP 0.5 µM Sigma-Aldrich C2920 

Rotenone 1 µM Sigma-Aldrich R8875 

Antimycin A 2.5 µM Sigma-Aldrich A8674 

 

 

2.3 Liver spectroscopy - Pilot study 

2.3.1 Study design 

The influence of liver fat on RMR variation was analyzed in a pilot study with 32 subjects. 

Proton density fat fraction (PDFF) was measured by using a proton coil to determine liver 

fat content. Subjects for this pilot study were recruited based on the phenotyping data from 

the enable platform Z, to obtain as far as possible a high amount of liver fat content. The 

primary selection criterium was visceral fat content, determined by body composition 

analysis, based on the hypothesis, that liver fat content correlates with the amount of 

visceral fat. 
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The examination of the subjects took place at two institutes of the Technical University of 

Munich. At the study center in Freising, the physical examination of height, weight, body 

composition, waist and hip circumference, blood sampling, blood pressure and body 

temperature was conducted. Additionally, RMR was measured by indirect calorimetry. 

These physical examinations were performed in addition to the phenotyping process of 

enable, since some subjects were phenotyped one year before. Liver fat content was 

assessed by magnetic resonance imaging (MRI) and magnetic resonance spectroscopy 

(MRS) at the Klinikum rechts der Isar, Department of Diagnostic and Interventional 

Radiology. 

 

 
Figure 3: Flow chart of the pilot study to investigate liver fat on RMR variation. Depicted are the different 
time points for taking the stool sample (yellow), anthropometric measurement (bright green), indirect calorimetry 

(blue) and blood sampling (red). The MRT scan took place on another day, within two weeks bevor or after the 

physical examination at the study center in Freising. 

 

2.3.2 Study population 

Subjects for the pilot study were recruited from the middle-aged adults (40 - 65 years). For 

this pilot study 33 subjects were recruited, aiming an equal proportion of male and female. 

As subjects were recruited from the enable cohort, the same inclusion and exclusion criteria 

were applied, and some additional exclusion criteria due to contraindication of MRT 

analysis. 

 

Exclusion criteria due to contraindication for the MRT scan: 

• Implanted defibrillator 
• Artificial heart valve 
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• Cardio seal 
• Non safety MR-compatible aneurysm-clips 
• Implanted magnetic metal part (screw, plaque from operations) 
• Cochlear implant 
• Metal splint or garnet splint 
• Acupuncture needle 
• Insulin pump 
• Tattoos and permanent make-up 
• Non removable piercings 
• Lung diseases (e.g. asthma) 
• Diseases of central nervous system (e.g. cerebrovascular insufficiency, multiple 

sclerosis, craniocerebral injury) 
• Claustrophobia 

 

2.3.3 Ethics 

This pilot study was conducted according to the guidelines laid down by the Declaration of 

Helsinki. All procedures were approved by the ethics committee of the Technical University 

of Munich (number: 197/17 S). The study was registered at the German Clinical Trial 

Register (DRKS-ID: DRKS00013549). Subjects were included after written consent was 

obtained. 

 

2.3.4 Phenotyping and body composition 

Physical examination of the subjects was performed at the study center in Freising, after an 

overnight fast. Body weight and body composition, including fat mass and fat free mass 

(FFM), were measured by Bioelectrical Impedance Analysis (BIA), using a Seca medical 

Body Composition Analyzer 515 (Seca, Hamburg, Germany). Body composition by BIA is 

measured by an alternating current of 800 mA and 50 kHz, running through the body for 

70 sec. Body composition can be determined by measuring resistance and reactance of the 

current, as the electrical current can flow through muscle tissue, but fat tissue creates a 

resistance. Body height (in cm, to the nearest of 0.1 cm) was measured without shoes using 

a stadiometer (Seca, Hamburg, Germany). Body temperature was measured with an ear 

thermometer by the nearest of 0.1°C (Braun Thermoscan, IRT 4020). 

 

2.3.5 Indirect calorimetry to measure resting metabolic rate 

Resting metabolic rate (RMR) was measured by indirect calorimetry using a face mask 

(Metalyzer 3B, Cortex Biophysik GmbH). To avoid any interactions with digestions or 

muscle activity, subjects were asked to avoid any physical activity on the day before the 
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examination. Subjects were asked to fast overnight (at least 8 - 10 hours) and not to 

consume any caffeinated products or any other drinks except for water. Subjects were 

accommodated in a quiet room, in a supine position for 10 min before the indirect 

calorimetry measurement was conducted for 20 min. During the measurement subjects 

were instructed not to move or fall asleep. RMR was determined by measuring O2 (ml/min) 

consumption and CO2 (ml/min) production rates every 5 -10 sec and converted to RMR by 

using the abbreviated Weir equation (Weir 1949):  

RMR (kJ/day) = ((3.9 ´ (VO2) + 1.1 ´ (VCO2)) ´ 1.44) ´ 1.48 ´ 4.184 

 

2.3.6 Blood sampling 

Blood sampling was performed after indirect calorimetry measurement to avoid the 

excitement from blood sampling on RMR. Samples were taken from an antecubital vein by 

using a butterfly valve and were analyzed by the clinical laboratory service Synlab in 

Munich. 

 
Table 3: Clinical blood parameters of the pilot study 

* Erythrocytes, hemoglobin, MCV, hematocrit, MCHC, RDW, platelets, leukocytes 

 

2.3.7 Liver fat determined by magnetic resonance spectroscopy 

To determine liver fat, visceral (VAT) and subcutaneous (SAT) adipose tissue, the 

abdominal region of subjects was scanned on a 3.0 T whole-body scanner (Ingenie 3.0 T, 

Philips Healthcare, Best, Netherlands) with an anterior and posterior coil arrays, at the 

Klinikum rechts der Isar, Department for Diagnostic and Interventional Radiology.  

Measurement was performed by a set of axial two-point Dixon images with the imaging 

parameters: TR = 4.0 ms, T1/T2 = 1.32/2.6 ms, flip angle = 10°, bandwidth = 1004.0 

Parameter Sample Center of 
Analysis 

Fasted blood glucose 2.7 ml NaF 

Synlab, Munich 

Small blood analysis* 2.7 ml EDTA 
HDL, LDL 

 
7.5 ml serum 

Triglycerides 
Cholesterol 
Creatinine 
CRP sensitive 

Samples for possible additional analysis 
9 ml EDTA without gel 

Science Lab 7.5 ml serum 

Total blood volume 29.4 ml 
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Hz/pixel, acquisition voxel size = 1.5 ´ 2 ´ 5 mm3, 44 slices in 2 stacks. To minimize 

breathing artifacts, scans were performed in a single breath-hold. Analysis of SAT and VAT 

was performed by a semi-automated segmentation tool with Matlab (The MathWorks, Inc., 

Natick, Massachusetts, USA, 2016b), developed at the Department of Interventional 

Radiology. 

Liver fat was determined by PDFF at a single-voxel region of interest with 20 mm diameter, 

at nine liver segments. Presented is the mean PDFF of all nine liver segments. 

 

2.4 Statistical analysis 

Linear regression modeling was performed by stepwise inclusion of the variables based on 

increasing R2 and decreasing Akaike-Information Criterion (AIC), to determine best fitting 

model. AIC determines the quality of a statistical model by calculating the goodness of fit 

and the simplicity of the model, under- and overfitting are thereby taken into consideration. 

Analysis of linear regression and mixed effect models was performed by using RStudio 

(RStudio, Inc., Boston, MA, 2016b). Any other statistical analysis was performed by 

GraphPad Prism 6 (GraphPad Software, Inc., La Jolla, USA). Data are presented as 

means ± standard deviation (SD) and P-values < 0.05 were considered significant. Heat-

maps were generated in RStudio with level plot (lattice). All other graphs were created by 

GraphPad Prism 6. 

The Tanita-balance, scale to measure body composition, has embedded an equation to 

predict RMR with five constants, which are not specified in the corresponding patent 

(EP1195138). Since all other variables of the equation were known, the constants were 

mathematically determined with an independent cohort of 20 male individuals by using 

Matlab (The MathWorks, Inc., Natick, Massachusetts, USA, 2018b). 

Analysis of the gut microbiota profile was performed with RStudio using the Rhea script 

(Lagkouvardos et al. 2017). Heat-maps and principal component analysis were performed 

with RStudio. Neural network analysis was calculated with Matlab (The MathWorks, Inc., 

Natick, Massachusetts, USA, R2018b) by using the Levenberg-Marquardt algorithm with 

one hidden layer of 10 neurons (Figure 4). 
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Figure 4: Schematic overview of a neural network structure.The input layer presents alls variables used by 

the neural network to calculate the output layer. The neural network consisted of one hidden layer with ten 

neurons, ‘comunicating’ back and forth with the input layer to calculate the output layer, based on the Levenberg-

Marquardt algorithm. Each arrow presents the connection of the output and the input of the other layer. In this 

example, the output layer is the prediction of RMR by the anthropometric and clinical parameters. The presented 

variables of the input layer are only examples, as all variables cannot be depicted in this graph. For proof of 

principle of the neural network the variables accounting for the inter-individual variation of RMR, FFM, fat mass, 

body temperature, fT3, Leukocytes, Creatinine, MCHC, systolic blood pressure and heart rate, were mixed 

among all variables of the gut microbiota to predict RMR.  
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3 Results 

3.1 Linear regression models to predict resting metabolic rate 

Resting metabolic rate (RMR) is with 60 - 70% the major component of daily energy 

expenditure. Being the biggest component, RMR plays an important role in determining the 

energy requirement in obesity treatment and clinical studies. Measuring RMR is a complex 

and time-consuming method, which requires strictly standardized conditions. Therefore, 

several equations have been generated to predict RMR, like the equation from Harris-

Benedict (Harris and Benedict 1918) and World Health Organization (WHO) (WHO 1985). 

However, there is a high inter-individual variation in RMR, and the precision of these 

equations varies. 

Well-known factors contributing to the variation of RMR are sex, age, height, weight, fat 

mass, and fat free mass (FFM). Adjusting RMR for these influencing variables is a 

prerequisite to compare individuals independent from their physical characteristics and 

body composition. These predictors can be used to calculate RMR, if a measured RMR is 

not available. The aim of this thesis was to generate a new prediction equation, for general 

use in clinical studies. Aside from that, the prediction equation should serve as a basis for 

the analysis of liver metabolism, gut microbiota composition and respiratory capacity of 

peripheral blood mononuclear cells (PBMCs) on RMR variation. For the general linear 

regression model, the enable cohort was used, consisting of four different age groups 

between 3 and 85 years.  

 

3.1.1 Physical characteristics of the enable study cohort 

Overall 488 subjects (247 male, 241 female) of four age cohorts were recruited at two study 

centers, Freising and Nuremberg (Table 4). At the study center in Freising, 34 children 

consisting of 19 boys and 15 girls, 94 adolescents and young adults with 46 male and 48 

female subjects, 202 middle aged adults with an equal distribution of male and female 

subjects were recruited. Subjects of the elderly cohort were recruited in Freising and 

Nuremberg. Altogether, 157 elderly subjects were phenotyped (100 Nuremberg, 

57 Freising), consisting of 80 male and 77 female subjects. Subjects of the enable study 

were healthy, represented in a mean BMI of 25.24 kg/m2. In the cohort of middle-aged 

adults, the mean BMI with 27.49 kg/m² was slightly elevated due to the aim to recruit half of 

the middle-aged adults with the risk for metabolic syndrome. Nevertheless, these subjects 

did still meet the inclusion and exclusion criteria and were therefore free of any severe or 

chronic diseases.  
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Table 4: Physical characteristics of the enable cohort 

 

 

 

 

 

All 

 

(N=247 M, 241 F) 

Children 

3-5 years 

(N=19 M, 15 F) 

Adolescents 

18-25 years 

(N=46 M, 48 F) 

Adults 

40-65 years 

(N=101 M, 101 F) 

Elderly 

75-85 years 

(N=80 M, 77 F) 

 Mean  ± SD Mean ± SD Mean ± SD Mean ± SD Mean  ± SD 

Age (years) 51.5 ± 24.0 4.3 ± 0.9 22.2 ± 2.0 52.4 ± 6.9 78.2 ± 2.7 

Weight (kg) 72.4 ± 21.2 18.1 ± 3.9 68.2 ± 11.7 82.2 ± 16.5 74.0 ± 13.5 

Height (cm) 166.9 ± 18.5 109.4 ± 9.4 175.5 ± 9.7 172.6 ± 9.2 166.9 ± 9.0 

Fat mass (kg) 23.4 ± 11.7 3.4 ± 1.8 14.3 ± 6.2 28.1 ± 11.0 27.2 ± 8.2 

FFM (kg) 49.2 ± 14.5 14.7 ± 3.2 53.9 ± 11.9 54.1 ± 11.0 47.4 ± 10.1 

Body temperature (°C) 36.4 ± 0.4 36.8 ± 0.4 36.6 ± 0.3 36.3 ± 0.3 36.4 ± 0.4 

BMI (kg/m2) 25.2 ± 5.2 14.9 ± 1.6 22.1 ± 2.5 27.5 ± 4.5 26.5 ± 4.0 

RMR (kJ/day) 6577.0 ± 1353.6 4273.2 ± 727.4 7022.0 ± 1174.1 6969.5 ± 1222.6 6315.7 ± 1140.6 
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3.1.1.1 Comparison of body composition determined by different devices 

Fat free mass and fat mass are two variables contributing most to the variability of RMR. 

Determining body composition is therefore of great importance to analyze the variability in 

RMR. Body composition was determined with bioelectrical impedance analysis by two 

different devices. At the study center in Freising, the Seca balance and the BodPod device 

were used to measure body composition of the adolescents, middle aged adults and elderly, 

whereas for the children only the BodPod device was used. At the study center in 

Nuremberg subjects were only measured by the Seca balance. To analyze if there is a 

difference in measuring body composition, the cohorts of adolescents, middle aged adults 

and elderly (Freising) were compared in body weight and body composition determined by 

the two devices. Comparing the Seca and BodPod device, no significant differences were 

detected for the body weight (data not shown), fat mass and FFM (P < 0.001) (Figure 5). 

In conclusion, the two devices determine in equal manner fat mass and FFM since there 

were no significant differences in body weight and composition. In the following analysis, 

data about body composition was therefore not corrected for the different devices. 

 

 

 
Figure 5: Body composition determined by BodPod and Seca. Comparison of (A) fat mass and (B) FFM 

determined by Seca and BodPod, N = 353. No significant differences (P < 0.001) in fat mass and FFM measured 

by Seca and BodPod.  

A B 
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3.1.2 Mixed effect model to predict resting metabolic rate 

Resting metabolic rate can be calculated by mathematical models, based on the variables 

determining RMR. The Harris-Benedict (Harris and Benedict 1918) and WHO (WHO 1985) 

equation were developed decades ago and primarily focus on weight, height and age. 

Nowadays variables like sex, age, fat mass and FFM are taken into consideration when 

predicting RMR (Gallagher et al. 2006, Muller et al. 2004). The aim of this study was to 

generate a new equation to predict RMR. This equation should be applicable for the general 

use in clinical studies and a wide range of subjects.  

 

All enable cohorts, ranging in age from 3 - 85 years, were used to generate a prediction 

equation by linear regression analysis. By stepwise including parameters into the regression 

analysis, factors contributing to the variation in RMR were identified. Potential predictors 

contributing to RMR were body mass, height, sex, age, fat mass, FFM and body 

temperature. Regression analysis started with the strongest predictor of RMR the FFM, 

which accounted for 74% of the variation. By adding body temperature, R2 improved 

to 0.7556. In the next steps first sex than fat mass and age were added to the regression 

analysis, resulting in a R2 of 0.7942 (Table 5). Selection criteria for the improved model was 

an increasing R2 and decreasing Akaike information criterion (AIC). The AIC determines the 

quality of a statistical model by calculating the goodness of fit and the simplicity of the model, 

under- and overfitting are thereby taken into consideration.  

 

Table 5: Modeling of regression analysis to predict RMR 

Step Variable Multiple R² Adjusted R² AIC 

1 FFM (kg) 0.7443 0.7438 7730.675 
2 Body temperature (°C) 0.7566 0.7556 7708.790 
3 Sex 0.7613 0.7598 7701.284 
4 Fat mass (kg) 0.7763 0.7745 7671.671 
5 Age (years) 0.7963 0.7942 7628.091 
6 Random factor = Child 0.7994   7590.890 

Adjusted R² is adjusted for the number of predictors in the model.  

 

Having a differentiated look at the measured and predicted RMR of the four age cohorts, a 

difference in the slopes can be observed (Figure 6). The three adult cohorts, adolescents, 

middle-aged and elderly have almost the same slope, whereas children have a different 

slope (Figure 6). Including children as a random factor, improved the slope and brought it 

in the direction of the adult cohorts (Figure 6), resulting in a mixed effect model. The random 
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factor “child” was only referred to FFM. The mixed effect model explained 79.9% of variation 

in RMR by five variables (Table 6) with the following equation: 

 

RMR (kJ/day) = - 7540.6 - 263.3 ´ sex - 7.8 ´ age(years) + 25.8 ´ fat mass(kg) + 

   (79.2 + (child) ´ 34.4)) ´ FFM(kg) + 277.9 ´ body temperature(°C) 

 

Sex: male = 0, female = 1. Random factor child: Child (3-5 years) = 1, Adult (18-85) = 0, referred to FFM 
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Figure 6: Measured and predicted RMR of the four enable cohorts.  (A) Predicted RMR is calculated by 

linear regression analysis with the variables sex, age, fat mass, FFM and body temperature (N = 488). Each 

cohort is presented in a different color (B) Predicted RMR is calculated by a mixed effect model with the fixed 

factors sex (male = 0, female = 1), age, fat mass, FFM, body temperature and the random factor “child“, which 

is referred to FFM (N = 488). Cohorts are differentiated by colors. 

  

A 

B 



Results 

22 
 
 

A detailed look at the coefficients of the individual variables cooperated in the mixed effect 

model illustrates their positive or negative contribution to RMR (Table 6). Sex and age have 

a negative coefficient, meaning female have a lower RMR than male, respectively 

describing the decline of RMR with increasing age. Fat mass, FFM and body temperature 

have all positive coefficients, presenting an increase in fat mass, FFM and body 

temperature being associated with an increase in RMR. Different coefficients of FFM were 

determined for children and adults, since the random factor “child” was related to FFM. This 

means that in children FFM has a higher impact on RMR than in adults (Table 6).  

 

Table 6: Mixed effect model to predict RMR  

Model and variable Coefficient Std. Error P-value R² 

Model 1: RMR = sex
1
+ age + fat mass + 

                 FFM + body temperature 

   0.7994 

Intercept -7540.6 2968.0 0.011  

Sex -263.3 94.2 0.005  

Age (years) -7.8 1.7 0.000  

Fat mass (kg) 25.8 3.1 0.000  

FFM (kg)     

        Child2 113.6 21.2 0.000  

        Adult 79.2   

Body temperature (°C) 277.9 80.5 0.000  

N = 488, 
1
Male = 0, Female = 1, 

2
Child (3 - 5 years)  

Comparing predicted and measured RMR can visualize the precision of an equation. 

Predicting RMR with the new established equation (Table 6) and correlating it to the 

measured RMR resulted in a R2 of 0.7994, as calculated by the regression analysis with the 

mixed effect model (Figure 7). Presented is a simple statistical model for the general use to 

predict RMR of a wide range of age, based on five anthropometric and clinical parameters. 

Adjusting RMR for sex, age, fat mass, FFM and body temperature reduced the variation in 

RMR, remaining a variation about 20% unexplained (Figure 7). The residual variation of 

RMR was further elucidated in a more complex statistical model. 
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Figure 7: Measured, predicted and adjusted RMR with the new generated equation. (A) RMR is predicted 

by the mixed effect model with the variables sex, age, fat mass, FFM, body temperature and the random factor 

‘child’. Predicted RMR is correlated with measured RMR (N = 486). (B) Measured and adjusted RMR presenting 

the remaining variation in RMR after adjusting for the variables sex, age, fat mass, FFM and body temperature 

with the coefficients calculated by the mixed effect model, N = 486. 

 

3.1.3 Linear regression analysis to elucidate the influence of blood parameters on 

the inter-individual variation of resting metabolic rate  

Inter-individual variation of RMR is mainly determined by sex, age, fat mass, and body 

temperature. Even after adjusting RMR for these variables a variation of 20% remains 

unexplained.  

 

To further analyze the variation in RMR, beyond the previous explained factors (sex, age, 

fat mass, body temperature) a subpopulation of the enable cohort was used. RMR was 

analyzed regarding the influence of clinical blood parameters and blood pressure. Since no 

blood samples were taken from the children, a subpopulation was used for this analysis 

consisting of the three adult cohorts’ adolescents, middle-aged and elderly. In total 452 

subjects (225 male, 227 female) were analyzed. Physical characteristics of this 

subpopulation are described in Table 7. 

 

 

 

 

A B 
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Table 7: Physical characteristics of the enable subpopulation 

 
All 

(N=452) 

Female 

(N=227) 

Male 

(N=225) 

 Mean ± SD Mean ± SD Mean ± SD 

Age (years) 55.1  ± 20.8 54.3  ± 21.1 56.0 ± 20.6 
Height (cm) 171.1  ± 9.7 164.5 ± 6.9 177.7  ± 7.4 

Weight (kg) 76.4 ± 15.6 68.4 ± 13.1 84.5 ± 13.6 
Body temperature 
(°C) 36.4 ± 0.4 36.4 ± 0.3 36.4 ± 0.4 

Fat mass (kg) 24.5 ± 9.9 25.8 ± 10.2 23.1 ± 9.3 

FFM (kg) 52.2 ± 11.6 42.8 ± 6.0 61.7 ± 7.5 

RMR (kJ/day) 6748.9 ± 1229.6 5951.6 ± 803.7 7553.3 ± 1048.0 

Leukocytes (N/nl) 5.8 ± 1.5 6.0 ± 1.6 5.6 ± 1.3 

fT3 (pg/ml) 3.2 ± 0.4 3.1 ± 0.4 3.4 ± 0.4 

Creatinine (mg/dl) 0.8  ± 0.2 0.7 ± 0.1 0.9 ± 0.2 

MCHC (g/dl) 34.1  ± 0.6 33.8 ± 0.8 34.4 ± 0.9 
Systolic blood 
pressure (mmHg) 130.3 ± 19.2 126.4 ± 20.4 134.3 ± 17.2 

Diastolic blood 
pressure (mmHg) 83.0 ± 9.7 81.8 ± 9.8 84.1 ± 9.5 

Heart rate (bpm) 62.2 ± 9.9 63.8 ± 10.1 60.5 ± 9.4 

 

To analyze the effect of blood parameters and blood pressure on RMR the previous 

developed mixed effect model was used as a baseline to predict RMR (Table 6). The 

variables, from the mixed effect model, sex, age, fat mass, FFM and body temperature were 

used in a linear regression analysis to predict RMR of the subpopulation (Table 8). Thereby, 

non-significant predictors like sex (P = 0.057) were excluded, resulting in model 2. In this 

subpopulation the effect size of fat mass, FFM and body temperature was stronger than in 

the mixed effect model and therefore rendered sex to be a non-significant predictor of RMR. 

Non-significant variables in a linear regression model hold the risk of overfitting and are 

therefore excluded. The initial model (model 2), includes the variables, age, fat mass, FFM 

and body temperature, which explain 74.3% of the variability in RMR.  

The effect of blood parameters and blood pressure on RMR was analyzed with the residual 

variation after eliminating the effect of age, fat mass, and FFM and body temperature. The 

residual variation of RMR presents the remaining variation between the measured and 

predicted RMR, which cannot be explained by the variables age, fat mass, FFM and body 

temperature. Identifying possible candidates influencing RMR variation, a correlation 

analysis was performed with the residual variation and all available blood parameters, which 

were raised in the enable phenotyping process (Table 9). After correcting for multiple testing 

according to Benjamini-Hochberg the residuals correlated significantly with fT3 (P = 0.0002), 
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leukocytes (P = 0.011), creatinine (P = 0.01), MCHC (P = 0.002), systolic blood pressure 

(P = 0.0005), heart rate (P = 0.01) and diastolic blood pressure (P = 0.0018) (Table 9). 

Blood parameters and blood pressure significantly correlating with the residuals of RMR 

were additionally analyzed in an individual linear regression analysis to obtain a more 

detailed overview (Figure 8). To further analyze if blood parameters could improve the linear 

regression model and explain part of the residual variation in RMR, blood parameters were 

included in the linear regression model (Table 8). In this step, only blood parameters 

significantly correlating with the residuals of RMR were added to the regression analysis. 

The clinical blood parameters fT3 (P < 0.0001), leukocytes (P < 0.0001), creatinine 

(P = 0.009), MCHC (P = 0.017), systolic blood pressure (P < 0.001) and heart rate 

(P = 0.001) appeared to be significant predictors of RMR and accounted for additional 

3.5 percentage points of the variation in RMR. Whereas diastolic blood pressure was not a 

significant predictor of RMR (P = 0.42, data not shown) and was therefore excluded in the 

further analysis. By including the blood parameters and blood pressure in the linear 

regression model the coefficient of determination was improved from 0.7433 to 0.7777 and 

the AIC decreased from 6934.5 to 6876.7 (Table 10). 
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Table 8: Linear regression models and blood parameters. 

Model and variable Coefficient Std. Error P-value R² 

Model 1: RMR = sex+ age + fat mass + FFM +  

                body temperature 

   
0.745 

Intercept -7652.3 3218.5 0.018  
Sex -263.5 138.0 0.057  
Age (years) -7.4 2.1 0.000  
Fat mass (kg) 21.3 4.2 0.000  
FFM (kg) 77.2 6.1 0.000  
Body temperature (°C) 285.5 86.7 0.001  
Model 2: RMR = age + fat mass + FFM +  

                body temperature 

   0.743 

Intercept -8593.3 3176.1 0.007  
Age (years) -4.6 1.7 0.005  
Fat mass (kg) 16.4 3.4 0.000  
FFM (kg) 87.5 2.7 0.000  
Body temperature (°C) 292.1 86.4 0.000  
Model 3: RMR = fat mass + FFM +  

                body temperature + blood pressure +  

                blood parameter + heart rate 

   
0.777 

Intercept -11276.5 3349.8 0.000  
Age (years) -6.8 2.0 0.000  
Fat mass (kg) 13.1 3.3 0.000  
FFM (kg) 85.5 3.2 0.000  
Body temperature (°C) 217.6 84.0 0.009  
fT3 (pg/ml) 243.2 79.6 0.002  
Leukocytes (N/nl) 51.7 20.4 0.011  
Creatinine (mg/dl) -626.6 212.1 0.003  
MCHC (g/dl) 102.7 36.5 0.005  
Systolic blood pressure (mmHg) 7.9 1.8 0.000  
Heart rate (bpm) 9.6 3.0 0.001  
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Table 9: Correlation analysis of blood parameters and residuals of RMR 

Blood parameter R² P-value 

Free Triiodothyronine (fT3) 0.0302 0.0002* 
Mean Corpuscular Hemoglobin Concentration (MCHC) 0.0207 0.0022* 
Creatinine 0.0144 0.0108* 
Leukocytes 0.0143 0.0113* 
Red Cell Distribution Width (RDW) 0.0114 0.0234 
Hemoglobin 0.0098 0.0362 
Free Thyroxine (fT4) 0.0002 0.7250 
Thyroid-Stimulating Hormone (TSH) 0.0000 0.8929 
Insulin 0.0005 0.6356 
C-Reactive Protein 0.0006 0.5998 
Ferritin 0.0008 0.5465 
Iron 0.0068 0.0806 
Uric acid 0.0009 0.5132 
Urea 0.0035 0.2057 
Low-Density Lipoprotein (LDL) 0.0008 0.5369 
High-Density Lipoprotein (HDL) 0.0001 0.8289 
Triglycerides 0.0000 0.9795 
Cholesterol 0.0022 0.3140 
Fasted blood glucose 0.0010 0.4972 
Lactic Acid Dehydrogenase (LDH) 0.0026 0.2735 
Gamma-Glutamyl Transferase (GGT) 0.0018 0.3635 
Glutamate-Pyruvate Transaminase (GPT) 0.0000 0.9992 
Glutamate-Oxaloacetate Transaminase (GOT) 0.0035 0.2063 
Packed cell volume 0.0041 0.1746 
Mean corpuscular volume (MCV) 0.0000 0.8801 
Mean Hemoglobin concentration/ erythrocyte (HBE) 0.0012 0.4608 
Systolic blood pressure 0.0272 0.0005* 
Diastolic blood pressure 0.0216 0.0018* 
Heart rate 0.0276 0.0004* 

*significant according to Benjamini-Hochberg correction for multiple testing 
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Figure 8: Blood parameters and pressure correlating with the residuals of RMR. Presented are only blood 

parameters and blood pressure significantly correlating with the residuals of RMR, after correcting for multiple 

testing according to Benjamini-Hochberg. Residuals were calculated with the variables age, fat mass, FFM and 

body temperature and the coefficients of the linear model 2 (Table 8), N = 446-449. 
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Table 10: Linear regression modeling 

Model Variable Multiple R² Adjusted R² AIC 

     

2 RMR = age + fat mass + FFM + body temperature 0.7456 0.7433 6934.5 

3 RMR = age + fat mass + FFM + body temperature + 
fT3 + leukocytes + creatinine + MCHC + systolic blood 
pressure + heart rate 

0.7828 0.7777 6876.7 

 

The correlation analysis of clinical blood parameters, blood pressure and the residuals of 

RMR revealed new variables directly correlating with RMR. The impact of these variables 

on RMR was not only due to the interaction with other factors contributing to RMR, because 

their influence on RMR was analyzed after removing the effect of known influencing 

variables. 

 

RMR is highly variable between individual subjects and is influenced by several factors. In 

the regression analysis the contribution of the individual factors was determined by the 

coefficient, for example if a variable is contributing positively or negatively to RMR. Thus, 

the coefficient makes it difficult to visualize the relative contribution of the individual variable. 

Therefore, the relative contribution of the variables contributing to RMR was calculated.  

 

Part of the residual variation was set to be due to technical and biological variation. Intra-

individual variation was determined in a separate small cohort of 20 male subjects in the 

age between 18 and 40 years (Schicker 2017). Within three weeks, three repeated 

measurements were conducted to determine intra-individual variation. Across the three 

weeks the mean RMR of these 20 male subjects was 8994.07 kJ/day with a SD of 1061.97 

kJ/day, resulting in a mean CVintra of 4.6 ± 2.3%. The variation within one subject was used 

to calculate the overall mean variation within a subject. The mean within subject variation 

was used to calculate the contribution to the overall inter-individual variation by dividing the 

square of within subject variation by the SD of the inter-individual variation 

(219.15²)/(1061.97²) = 0.043. Meaning that 4.3% of the inter-individual variation was due to 

technical and biological intra-individual day-to-day variation. 

 

First, the contribution of the variables incorporated in the mixed effect model was calculated. 

In the mixed effect model FFM is the strongest predictor and the biggest contributor to RMR 

with 55.88%. The second strongest predictor is fat mass, contributing with 11.63% to RMR. 

Body temperature and age contribute almost equally to RMR with 5.27% and 5.07% (Figure 
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9). Including the intra-individual variation to the factors contributing to the variation of RMR, 

15.79% of RMR variation remained unexplained. 

In a second step the relative contribution of the variables from the linear regression model 

with blood parameters and blood pressure was calculated (model 3, Table 8). FFM was still 

the strongest predictor of RMR, followed by fat mass. However, the effect of both variables 

was reduced by including blood parameters and blood pressure to the regression analysis. 

Among the clinical parameters fT3 and creatinine are the strongest variables contributing to 

RMR, followed by systolic blood pressure. Creatinine, fT3 and systolic blood pressure are 

even stronger predictors as fat mass, age and body temperature. Considering 4.3% of the 

variation be due to technical and intra-individual variation, 18% of variation in RMR 

remained unexplained, presenting an improvement of the model by 3.4% (Figure 9), 

compared to the linear regression model without blood parameters and blood pressure 

Figure 10, B). 

The major part of RMR is determined by FFM and fat mass. Effect of both variables was 

reduced by including additional parameters to the regression model. This implies an 

interaction of FFM and fat mass with the included blood parameters and blood pressure 

and implies an indirect contribution of FFM and fat mass to RMR variation. 

FFM and fat mass are both heterogeneous tissues. The reduced effect size by including the 

clinical parameters demonstrates that the contribution of FFM and fat mass to RMR 

variation is not only due to the mass of these tissues, but rather due to the different 

components of these tissues. To analyze the interaction of the variables cooperated in the 

linear regression mode to predict RMR a correlation analysis was performed (Figure 10). 

This presented an interaction of FFM with MCHC, creatinine and fT3. Fat mass showed a 

positive correlation with systolic blood pressure, heart rate and leukocyte number. The 

correlation analysis demonstrated the interaction of the individual variables and explained 

the reduced effect size of FFM and fat mass by including additional variables to the linear 

regression model. 
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Figure 9: Relative contribution of the different variables influencing RMR variation.(A) Variables 

cooperated in the mixed effect model (model 1, Table 6). Contribution of the variables to RMR was calculated 

with the coefficient from the mixed effect model, N = 488. (B) Variables of the linear regression model 2 of the 

three adult cohorts N = 452. (C) Variables of the linear regression model 3 (Table 8). Particular contribution was 

calculated by the coefficient of the linear regression analysis, N = 452. (A-C) Intra-individual variation presents 

biological and technical variation, measured and calculated in a separate small study cohort of 20 male subjects. 

A 

B 

C 
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Figure 10: Correlation analysis of the variables from the linear regression model. Pearson’s coefficient of 

correlation of the variables cooperated in the linear regression model 3 (Table 8). 

  

R 
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3.1.4 Cross validation of the new prediction equation by an independent cohort 

Determining the quality of the newly developed equation required an application on an 

independent study cohort. Based on the new formula RMR was predicted of an independent 

cohort and compared with the measured RMR to verify the quality of the equation. 

To cross-validate the new developed equation a study cohort from Munich was used, 

consisting of 417 subjects. This validation cohort was defined by 268 female and 149 male 

subjects in the range of 19 to 73 years, a sub cohort of a previously described cohort 

(Drabsch et al. 2018). Subjects of the validation cohort were selected based on the inclusion 

and exclusion criteria set in the enable cohort, to have a comparable cohort without 

diseased subjects. RMR and all physical parameters, which are included in the equation to 

predict RMR, were differed significantly (P < 0.0001) from the enable cohort (Table 11). 

RMR was calculated with the variables sex, age, fat mass, FFM and body temperature from 

the mixed effect model (Table 6). To validate the precision of the equation, the predicted 

RMR was analyzed in a linear regression analysis with the measured RMR, which resulted 

in a high coefficient of determination of 0.7902 (Figure 11). The coefficient of determination 

of the validation cohort was as high as in the enable cohort with an R² of 0.7994 and not 

significantly different from the enable cohort. This demonstrates that the newly established 

equation of the mixed effect model has a high precision to calculate and thereby predict 

RMR in a widespread age cohort of 19 to 73 years. 

The equation was applied in an independent study cohort to compare measured and 

predicted RMR. Prediction of RMR was reproduced with the same precision as in the 

original cohort, presenting a high quality of the newly developed equation. 
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Figure 11: Cross validation of the newly developed equation by an independent cohort. Predicted RMR 

was calculated with the variables sex, age, fat mass, FFM and body temperature from the mixed effect model 

(Table 6). Measured RMR was determined by indirect calorimetry. Presented is the linear regression analysis 

of measured and predicted RMR calculated in the validation cohort, N = 417. Predicted RMR significantly 

correlated with measured RMR (P < 0.0001). 
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Table 11: Physical characteristics of the enable and validation cohort 

 
1All values are presented as means ± SDs 
2FFM = fat free mass 
3RMR = resting metabolic rate 
*significantly different from the ‘enable – all’ (unpaired t test) P < 0.0001

 
Enable – all  
 
(N=247 M, 241 F) 

Enable – Children 
3-5 years 

(N=19 M, 15 F) 

Enable – Adolescents 
18-25 years 

(N=46 M, 48 F) 

Enable – Adults 
40-65 years 

(N=101 M, 101 F) 

Enable – Elderly 
75-85 years 

(N=80 M, 77 F) 

Cross-validation 
Cohort 
19-73 years 

(N=149 M, 268 F) 

Age (years) 51.5 ± 24.0 4.3 ± 0.7 22.2 ± 2.0 52.4 ± 6.8 78.2 ± 2.7 31.1* ± 11.8 

Weight (kg) 72.4 ± 21.2 18.1 ± 3.9 68.2 ± 11.0 82.2 ± 16.5 74.0 ± 13.5 70.6 ± 13.0 

Height (cm) 166.7 ± 18.5 109.4 ± 9.4 175.5 ± 9.7 172.6 ± 9.1 166.9 ± 9.0 172.6* ± 9.9 

Fat mass (kg) 23.4 ± 11.7 3.4 ± 1.8 14.3 ± 6.2 28.1 ± 11.0 27.2 ± 8.2 16.6* ± 8.3 

FFM2 (kg) 49.2 ± 14.5 14.6 ± 3.2 53.9 ± 11.9 54.1 ± 11.0 47.4 ± 10.1 54.1* ± 11.7 

Body temperature (°C) 36.4 ± 0.4 36.8 ± 0.4 36.6 ± 0.3 36.3 ± 0.3 36.4 ± 0.4 36.5* ± 0.5 

RMR3 (kJ/day) 6577.0 ± 1353.6 4273.2 ± 727.4 7022.0 ± 1174.1 6969.5 ± 1222.6 6315.7 ± 1140.6 6193.2* ± 1066.8 
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3.1.5 Comparison of the new equation with common prediction equations 

Calculating RMR by a prediction equation is a common practice in clinical studies and 

research to estimate the energy requirement of the individual subject. For this purpose, 

several equations have been published like the equation from Harris-Benedict (Harris and 

Benedict 1918) and the Schofield equation, which is recommended by WHO (WHO 1985). 

However, these equations have been established decades ago with various subjects and 

ethnicities. These equations are also embedded in several bioelectrical impedance analysis 

(BIA) scales and indirect calorimetry devices to provide a reference value for the measured 

RMR.  

The newly established equation to predict RMR was compared with the commonly used 

equation from Harris-Benedict and WHO. Additionally, the well-known equation from Kleiber 

(Kleiber 1947) and the equation embedded in the Tanita scale (EP1195138) were analyzed 

regarding their accuracy to predict RMR (Table 12). The Tanita scale is a BIA scale to 

measure body composition. By using the enable data set measured and predicted RMR, 

calculated by the WHO equation, revealed a coefficient of determination of 0.75 (Figure 12). 

Among the well-established equations, the WHO equation predicted RMR with the highest 

accuracy, followed by the Tanita scale. Predicting RMR by Kleiber’s law resulted in a strong 

underestimation of RMR for children. However, Kleiber’s Law describes the correlation 

between body mass and metabolic rate of animals and was not designed to predict RMR of 

humans. In this setting Kleiber’s law was used out of curiosity, how well it can predict RMR 

of humans. Even though the prediction was not as precise as the other equations presented 

in this work, Kleiber’s law was able to predict RMR of humans. 

All reference equations were able to predict RMR with a high coefficient of determination 

between 0.6 and 0.75, whereas the newly developed equation presents a coefficient of 

determination of 0.80. However, the reference equations were developed on other data sets 

with various ethnicities, age and BMI groups and might therefore result in a better prediction 

in other study cohorts, respectively the data set they were established. 
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Table 12: Common equations to predict RMR 

Equation Sex Age RMR (kJ/day) 

Present  

work 

Male  

and female 
3-85 years 

= - 7540.6 - 263.3 * sex1 - 7.8 * age2 + 25.8 * fat mass3 + 

(79.2 + (child4) * 34.4)) * FFM5 + 277.9 * body temperature6 

Harris-

Benedict-

Equation 

Male 21-70 years = 66.47 + 13.7 * weight7 + 5 * height8– 6.8 * age2 * 4.184 

Female 21-70 years = 655.1 + 9.6 * weight + 1.8 * height – 4.7 * age * 4.184 

WHO 

Male 

3-10 years 

18-30 years 

30-60 years 

> 60 years 

= (22.7 * weight7 + 495) * 4.184 

= (15.3 * weight + 679) * 4.184 

= (11.6 * weight + 879) * 4.184 

= (13.5 * weight + 487) * 4.184 

Female 

3-10 years 

18-30 years 

30-60 years 

> 60 years 

= (22.5 * weight + 499) * 4.184 

= (14.7 * weight + 496) * 4.184 

= (8.7 * weight + 829) * 4.184 

= (10.5 * weight + 596) * 4.184 

Kleiber Male and female (Quelle) = 283 *weight0.75   

Tanita 

scale 
Male and female >9 years = (A*FFM*FFM + B*FFM + C*(1/age)  

+ D*weight + E9)*4.184 
1 male = 0, female = 1; 2age in years; 3fat mass in kg; 4children = 3 - 5 years, adults = 18 - 85 

years; 5FFM = fat free mass in kg; 6body temperature in °C; 7weight in kg, 8height in cm; 
9A = 0.08, B = 15.0, C = 2616.2, D = 3.8, E = 203.3, these constants were mathematically 

determined. 
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Figure 12: Common equations to predict RMR.Measured and predicted RMR of the enable cohort, calculated 

by different equation (N = 488). Detailed information about the individual equation are presented in Table 12. 

For all equations a significant correlation of measured and predicted RMR was observed (P < 0.0001). 
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3.2 Peripheral blood mononuclear cells and resting metabolic rate 

Mitochondria are the ‘powerhouse’ of our cells, where ATP as an energy source is 

generated. To study the effect of mitochondrial activity on inter-individual variation of RMR 

the respiratory capacity of peripheral blood mononuclear cells (PBMCs) was determined. 

PBMCs are peripheral cells of the blood with a single round nucleus and mitochondria and 

are easily accessible by a blood sample. As PBMCs are circulating cells of the blood they 

are directly affected by metabolic stress and respond to changes like inflammatory 

processes. PBMCs might reflect processes globally affecting RMR variation. Therefore, 

PBMCs were used as a biomarker to assess mitochondrial activity and its influence on RMR 

variation.  

 

3.2.1 Methodical approaches to determine respiratory capacity of PBMCs 

3.2.1.1 Protocols to measure mitochondrial respiration of PBMCs 

In the process of analyzing the mitochondrial activity of PBMCs, two different protocols were 

established to determine the different respiratory states of PBMCs in a chamber based 

respirometry. 

 
Figure 13: Mitochondrial respiratory chain with substrates inhibitors and uncouplers. Depicted are the 

four complexes of the electron transport chain (ETS) and ATP-synthase. Protons and their respective flow are 

depicted in red, the flow of electrons along the electron transport chain are presented in dark blue. Substrates, 

uncouplers and inhibitors and their access points at the respiratory chain are presented in bold. 

The first protocol is the so-called Substrate-Uncoupler-Inhibitor-Titration (SUIT) protocol 

(Figure 14). As the name implies in this protocol substrates, uncoupler and inhibitors are 

combined and titrated. The aim of this protocol was to determine as far as possible all 

respiratory states in one protocol by applying different substrates and inhibitors. Therefore, 

cells were permeabilized with digitonin to be accessible for substances like pyruvate, 
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malate, succinate and ADP. In a first step pyruvate and malate were applied to provide the 

substrate NADH+H+ for complex I, followed by succeeding injection of ADP to induce ADP 

phosphorylation, determining oxidative phosphorylation (OXPHOS) under complex I 

substrates. Next, succinate was applied to provide substrates in excess for complex II and 

thereby determining the OXPHOS capacity under all available substrates for the electron 

transport chain. Followed by leak respiration under oligomycin to inhibit the ATP-synthase. 

Leak respiration presents the minimal respiration, compensating for the proton leak across 

the inner mitochondrial membrane. The maximal uncoupled respiration was measured by 

titrating FCCP. Last, non-mitochondrial respiration was determined by applying antimycin 

A to inhibit complex III and thereby the electron flow. 

 

 
Figure 14: SUIT protocol to measure mitochondrial activity of permeabilized PBMCs. Respiration protocol 

to determine the different respiratory states under the combination of substrate, uncoupler and inhibitors in a 

chamber based respirometry. Basal respiration is determined with intact cells at the beginning of the 

measurement without the addition of any substrates or inhibitors (presented in grey). In dark green the state of 

the OXPHOS capacity under the substrates pyruvate, malate and ADP is presented, in light green the OXPHOS 

capacity under the addition of succinate. Leak respiration (depicted in red) was determined after inhibiting the 

ATP-synthase by oligomycin and the uncoupled respiration was determined by a titration of FCCP (blue). Non-

mitochondrial respiration was determined by inhibiting complex III with Antimycin A. The red slope presents the 

oxygen consumption [pmol/million cells] and the blue slope the oxygen concentration [nmol/ml] in the chamber. 

 

The second protocol was the so-called succinate-rotenone protocol (Figure 15). In this 

protocol, complex I is inhibited by rotenone and therefore the electrons can only enter the 

electron transport chain through complex II. After permeabilizing the cells by digitonin and 

inhibiting complex I by rotenone, succinate was applied as a substrate for complex II and 

following OXPHOS capacity was measured by supplying ADP for the ADP phosphorylation. 

Leak respiration was determined in the presence of oligomycin to inhibit the ATP-synthase, 

followed by an FCCP titration to determine maximal uncoupled respiration. In the last step, 

non-mitochondrial respiration was assessed by inhibiting complex III with antimycin A. 
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Figure 15: Succinate-rotenone protocol to measure mitochondrial activity of permeabilized PBMCs. The 

different respiratory states are determined under the substrate succinate and the inhibition of complex I through 

rotenone. Basal respiration is determined with intact cells at the beginning of the measurement without the 

addition of any substrates or inhibitors. After permeabilization of the cells by digitonin, rotenone was supplied to 

inhibit complex I, followed by succinate to provide electrons for complex II. OXPHOS (green) capacity was 

determined by supplying ADP to stimulate ADP phosphorylation. Leak (red) respiration was determined by 

inhibiting the ATP-synthase with oligomycin followed by a titration of FCCP to assess maximal uncoupled 

respiration (blue). Non-mitochondrial respiration was determined by inhibiting complex III with antimycin A. The 

red slope presents the oxygen consumption [pmol/million cells] and the blue slope the oxygen concentration 

[nmol/ml] in the chamber. 
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3.2.1.2 Respiratory states in the substrate uncoupler inhibitor titration protocol 

SUIT protocols are a combination of substrates, uncoupler and inhibitors to assess the 

different respiratory states like the OXPHOS and electron transfer system (ETS) and leak 

respiration. There are different possibilities how to assess leak, OXPHOS and ETS capacity 

in the SUIT protocol. In the following the effect and consequences of the different options 

to determine the respiratory states in the SUIT protocol are evaluated for PBMCs. 

 

Proton leak is defined as the oxygen consumption compensating for proton leak across the 

inner mitochondrial membrane. Proton leak contributes with 20 - 25% to the metabolic rate 

of liver cells and even up to 50% of skeletal muscle cells (Brand et al. 1999, Rolfe and Brand 

1996). Liver and skeletal muscle contribute as high metabolic rate organs to RMR variation, 

therefore also this proton leak contributes to RMR. A damaged inner-mitochondrial 

membrane would lead to an increased proton leak, which might affect RMR variation. 

The uncoupled respiration determines the respiratory capacity of the ETS independent from 

the capacity of the ATP-synthase to phosphorylate ADP. By measuring uncoupled 

respiration information about the coupling efficiency of substrate oxidation and ADP-

phosphorylation can be obtained. An increased uncoupled respiration above the OXPHOS 

capacity may indicate a limited ATP-synthase activity, resulting in a reduced ATP 

production. A reduced capacity to produce ATP might therefore affect energy homeostasis, 

respectively RMR. 

Leak respiration can either be determined by inhibiting the ATP-synthase with oligomycin 

(protocol 1) or by a prolonged waiting time after permeabilizing the cells with digitonin 

(protocol 2, Figure 16). A prolonged waiting time after permeabilization with digitonin 

resulted in a decreased OXPHOS capacity (Figure 16, protocol 2). By comparing the two 

respiratory states of leak respiration, oligomycin was found to induce a more stable leak 

respiration (Figure 16). However, oligomycin inhibited the effect of FCCP and therefore it 

was not possible to assess the real uncoupled respiration (Figure 17).  
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Figure 16: Effect of digitonin on leak and OXPHOS capacity in two different SUIT protocols. Respiratory 

states of two different SUIT protocols were assessed in fresh isolated PBMCs. (A) Two different SUIT protocols 

with the different steps to assess OXPHOS, leak and uncoupled respiration. Protocol 1 measured OXPHOS 

capacity directly after permeabilizing the cells with digitonin and therefore oligomycin was used to determine 

leak respiration. In protocol 2 leak respiration was determined after permeabilizing the cells by digitonin and 

providing the substrates pyruvate and malate. (B) Comparison of the OXPHOS capacity in the two different 

SUIT protocols, by protocol 1 and 2, N = 4. (C) Comparison of the leak respiration, either determined by 

permeabilizing with digitonin with a prolonged waiting time or by inhibiting the ATP-synthase with oligomycin, 

N  = 4 (D) Representative trace of a respiration measurement where the different states of leak respiration were 

determined. 

A 

B 

D 
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Figure 17: Effect of oligomycin on the uncoupled respiration induced by FCCP. Oxygen consumption rate 

of permeabilized PBMCs was assessed in a chamber based respirometry. Cells were permeabilized by 

digitonin. Uncoupled respiration was determined by titrating the uncoupler FCCP until the maximal uncoupled 

respiration was reached. Compared is the uncoupled respiration either in the presence (black) or in absence 

(grey) of oligomycin, N = 4. 

 
SUIT protocol determines the uncoupled respiration based on the activity of complex I and 

II (Figure 14). In the succinate-rotenone protocol complex I is inhibited by rotenone at the 

beginning of the measurement. Consequentially, the uncoupled respiration is measured 

without the activity of complex I (Figure 15).  

The aim of the following experiment was to include an uncoupled respiratory state in the 

SUIT protocol based on complex II activity. By inhibiting complex I with rotenone, after the 

cells were fully uncoupled by FCCP, the oxygen consumption decreased dramatically 

(Figure 18 A). The respiration was rescued by a high amount of succinate up to 25 mM, but 

did not reach the same oxygen consumption as before. The uncoupled respiration based 

on complex II in the SUIT protocol was compared with the uncoupled respiration in the 

succinate-rotenone protocol, as it should be the same respiratory state. The comparison 

revealed a significantly (P < 0.0001) reduced uncoupled respiration in the SUIT compared 

to the succinate-rotenone protocol (Figure 18 B). Therefore, it was not possible to include 

an uncoupled respiratory state based on complex II activity in the SUIT protocol. The results 
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of this experiment demonstrated that the order and combination of substrates and inhibitors 

are important to determine the same respiratory states in PBMCs. 

 
 
Figure 18: Effect of rotenone on the uncoupled respiration in the SUIT protocol. An additional uncoupled 

respiratory state, based on complex II activity was assessed in freshly isolated and permeabilized PBMCs. (A) 

Consecutive states of the respiration measurement in the SUIT protocol with the addition of rotenone and 

succinate at the end, N = 11. (B) Uncoupled respiration based on complex II activity was significantly lower in 

the SUIT protocol compared to the succinate-rotenone protocol (P < 0.0001), N = 15.  

 
Assessing mitochondrial activity of PBMCs by high-resolution respirometry is ideally 

performed on freshly isolated PBMCs. In human trials, blood samples of several subjects 

are not always taken at the same time and therefore the isolation of PBMCs cannot start 

immediately. The aim of the following experiment was to assess the effect of a delayed start 

of isolation from the blood sample on the mitochondrial activity of PBMCs. 

Determining the effect of a delayed start of isolation, all blood samples were taken in the 

morning at 8am. Half of the blood samples were used to directly isolate PBMCs, the other 

half was stored on a tube roller and isolation started six hours later. Comparison revealed 

no significant difference in the oxygen consumption rate (P > 0.05) between freshly isolated 

PBMCs and PBMCs isolated six hours later (Figure 19). This result illustrates the possibility 

to store a blood sample and start the isolation procedure time-delayed after taking the blood 

sample without having an effect on the mitochondrial activity. 

 

A B 
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Figure 19: Time effect of a delayed isolation on mitochondrial activity of PBMCs in the SUIT protocol. 
All blood samples were taken in the morning. Mitochondrial activity of freshly isolated PBMCs was compared 

with PBMCs isolated six hours after taking the blood sample. In the mean while blood samples were stored on 

a constant moving tube roller at room temperature to avoid separation of plasma and cellular components. 

Presented are three biological replicates consisting of four technical replicates, which were used to calculate 

the daily mean. 

 

3.2.2 Respiratory capacity of PBMCs as a biomarker for mitochondrial activity and 
their influence on resting metabolic rate variation 

Mitochondria are found in most eukaryotic cells and are the central organelle to produce 

energy in form of ATP. PBMCs are circulating cells of the blood and might reflect global 

processes affecting RMR variation. To study the influence of mitochondrial activity on the 

inter-individual variation of RMR, the respiratory capacity of PBMCs was assessed. 

 

Mitochondrial activity of PBMCs was assessed in 179 subjects from three enable cohorts 

adolescents, middle-aged adults and elderly (Table 13). These subjects were selected 

randomly based on the time schedule if it was possible to measure PBMCs, and if enough 

blood was available. Physical characteristics of the 179 subjects were not significant 

different from the physical characteristics of the overall enable cohort (Table 13). Looking 

into the distribution of the subjects from the PBMC cohort the 179 subjects were equally 
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distributed in the whole enable cohort (Figure 20). A correlation analysis confirmed no 

significant difference between measured and predicted RMR of the PBMC sub cohort and 

the overall enable cohort (Figure 20). As there are no differences in the physical 

characteristics and the distribution of the subjects from the PBMC sub cohort, this presents 

a good representative sample for the whole enable cohort to study the influence of 

mitochondrial activity on RMR variation. 

 
Table 13: Physical characteristics of the enable sub cohort for the PBMC analysis 

 
Enable All 

 
(N=247 M, 241 F) 

PBMC cohort 
 

(N=88 M, 91 F) 
 Mean ± SD Mean ± SD 
Age (years) 51.5 ± 24.0 49.1 ± 20.5 
Weight (kg) 72.4 ± 21.2 75.7 ± 16.1 
Height (cm) 166.9 ± 18.5 171.8 ± 9.9 
Fat mass (kg) 23.4 ± 11.7 23.2 ± 10.8 
FFM (kg) 49.2 ± 14.5 52.5 ± 11.7 
Body temperature (°C) 36.4 ± 0.4 36.4 ± 0.3 
BMI (kg/m2) 25.2 ± 5.2 25.5 ± 4.6 
RMR (kJ/day) 6577.0 ± 1353.6 6781.3 ± 1266.8 

All parameters of the ‘PBMC cohort’ are not significant different from the ‘enable all cohort’, two-tailed t-test 

(P >  0.05)  
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Figure 20: Measured and predicted RMR of the PBMC and enable cohort. Predicted RMR was calculated 

with the variables sex, age, fat mass, FFM and body temperature based on the mixed effect model, with the 

random variable ‘child’. Subjects were divided into the subjects with the additional assessment of the respiratory 

capacity of PBMCs (depicted in red) and the remaining subjects of the enable cohort (presented in black). Slopes 

and intercept of measured and predicted RMR were not significantly different between the enable and PBMC 

sub cohort (P = 0.25). Enable cohort: N = 309, PBMC cohort: N = 179. 

 

Analyzing the inter-individual variation of RMR, a residual variation remained, which was 

not explained by sex, age, fat mass, FFM and body temperature. To investigate if the 

respiratory capacity of PBMCs has an influence on the inter-individual variation of RMR, the 

analysis was performed with the residual variation after adjusting for the known influencing 

variables. The residuals of RMR were calculated based on the mixed effect model (Table 

6) with the variables sex, age, fat mass, FFM and body temperature and the random factor 

‘child’. In this case, not the complex linear regression model 3 with all the blood parameter 

was used, as some of the blood parameters might interfere with the respiratory capacity of 

PBMCs and therefore the influence of PBMC activity on inter-individual variation of RMR 

may possibly not been detectable. For example, leukocytes accounted for 3.17% of the 

inter-individual variation in RMR. Lymphocytes are part of leukocytes and belong to the 

PBMC fraction. By adjusting RMR for the leukocyte number, part of the influence of the 

respiratory capacity of PBMCs might already been taken away. 
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All different respiratory states of the SUIT protocol were analyzed individually whether they 

explain part of the residual variation of RMR (Figure 21). No respiratory state of the SUIT 

protocol correlated with the residuals of RMR (P > 0.05). The same analysis was performed 

for all respiratory states of the succinate-rotenone protocol, resulting in a non-significant 

correlation with the residuals of RMR (data not shown). Differences in the respiratory 

capacity of the different respiratory states like leak or maximal uncoupled respiration did not 

account for part of the inter-individual variation in RMR. The respiratory control ratio (RCR) 

is an indicator for mitochondrial inner membrane integrity and metabolic scope, as 

determined by monitoring the increase in respiration in response to ADP or a chemical 

uncoupler. In other words, the RCR describes the ability of the mitochondria to produce 

ATP depending on the demand of ATP or achieving maximal respiration to defend a proton 

leak. Differences in coupled and uncoupled respiratory control ratio could not explain part 

of the residual variation in RMR.  

Summing up, individual differences in the respiratory capacity of PBMCs were not 

associated with the residual variation of RMR. 
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Figure 21: Respiratory states of the SUIT protocol and residuals of RMR.  Residuals of RMR were 

calculated with the variables sex, age, fat mass, FFM, body temperature and the random factor ‘child’ from the 

mixed effect model 1 (Table 6). Presented are the different respiratory states of the SUIT protocol. Basal 

respiration was determined at the beginning without the addition of any substrates or inhibitors. OXPHOS(ADP) 

presents the OXPHOS capacity with the substrates pyruvate, malate and ADP. OXPHOS(succinate + ADP) presents 

the OXPHOS capacity with the substrates pyruvate, malate, succinate and ADP. Leak respiration was 

determined with oligomycin and uncoupled respiration by FCCP. The respiratory control ratio (RCR) were 

calculated with the leak respiration under oligomycin. RCRa stands for the RCR calculated with the 

OXPHOS(ADP), RCRs with the OXPHOS(succinate + ADP) and RCRu with the uncoupled respiration, N = 166.  
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3.2.3 Declining mitochondrial activity of PBMCs with increasing age 

In the process of aging, a general decline in physiological processes was associated with a 

decline and altered function in mitochondrial activity (Lopez et al. 2013, Ames, Shigenaga 

and Hagen 1995, Sebastian, Palacin and Zorzano 2017). 

The enable cohorts were used to study the behavior of mitochondrial activity of PBMCs over 

three age cohorts of young adults, middle-aged adults and elderly subjects. Mitochondrial 

respiration of PBMCs was determined in chamber-based respirometry and the different 

respiratory states of the succinate-rotenone protocol were compared between the three age 

cohorts (Figure 22). In the basal respiration, the OXPHOS capacity and the uncoupled 

respiration a trend towards a reduced oxygen consumption was observed for the cohort of 

elderly. Whereas in the leak respiration a significantly increased oxygen consumption was 

observed for the elderly compared to the middle-aged adults. The tendency of a decreased 

maximal uncoupled respiration and an increased leak respiration led to a significantly 

reduced uncoupled respiratory control ratio (RCRu) for the elderly compared to the middle-

aged adults. RCRu describes the ability of mitochondria to achieve maximal respiration by 

defending a chemically induced proton leak. A reduced respiratory capacity of PBMCs in 

elder subjects was observed, mainly possessed by an increased proton leak. 
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Figure 22: Respiratory states of PBMCs in the succinate-rotenone protocol, differentiated by age 
cohorts.  Oxygen consumption rate of freshly isolated PBMCs from the succinate-rotenone protocol (Figure 
15). Each respiratory state was differentiated by the age cohort to analyze the effect of aging in the context of 

mitochondrial function of PBMCs. Basal respiration was determined with intact cells, without any additional 

substrates. Leak respiration was significantly increased (P < 0.05) in the cohort of elderly compare to the middle-

aged adults. RCRu was significantly decreased (P < 0.05) in the cohort of elderly compared to the middle-aged 

adults, N = 11 - 54. 
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3.3 Gut microbiota composition and inter-individual variation of RMR 

The human gut is a complex ecosystem consisting of multiple bacteria. These bacteria have 

several functions like the digestion of hard-to-digestible food components such as fibers, 

activation of the immune defense and to displace pathogens. If it comes to changes of the 

gut microbiota composition, it can have different consequences. In the context of obesity 

research, a different composition of the two dominant gut bacteria Firmicutes and 

Bacteroidetes was found. Obese subjects have a higher amount of Firmicutes and a 

reduced amount of Bacteroidetes (Abdallah Ismail et al. 2011, Ley et al. 2005). Gut 

microbiota of obese subjects was found to be more effective in extracting energy from the 

diet than the microbiota from lean subjects (Turnbaugh et al. 2006). So far, there is no 

evidence-based knowledge about the impact of the gut microbiota on the energy 

metabolism in healthy lean subjects. In the process of identifying further parameters 

contributing to the inter-individual variation of RMR, the gut microbiota composition and 

diversity was analyzed in the enable cohort. 

 

To investigate the effect of gut microbiota composition on RMR variation, the three adult 

cohorts of enable were used, consisting of 442 subjects (220 male, 222 female, Table 7). 

Some of the subjects had to be excluded due to missing data on the gut microbiota. First 

the effect of gut microbiota composition, determined by 16S rRNA gene sequencing was 

analyzed with measured RMR, not adjusted for any influencing variable. The phylotype 

richness and Shannon index were analyzed in a linear regression analysis with RMR. The 

phylotype richness presents the number of observed species per sample and is not 

corrected for the different abundances of the individual species. The Shannon index stands 

for the diversity within the enable cohort and considers the different abundances of the 

individual species (Jost 2007). A negative correlation of RMR and species richness was 

observed (R2 = 0.02, P = 0.003). The Shannon index presented also a negative correlation 

with RMR (R2 = 0.013, P = 0.003, Figure 23). 

These results present a correlation of gut microbial composition to be associated with RMR. 

An increased diversity was associated with a decreased RMR. 
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Figure 23: Gut microbiota diversity and RMR in the enable cohort.  (A) Phylotype richness representing the 

number of observed species per sample, N = 442. (B) Shannon index describing the diversity of bacteria and 

thereby taking the differential abundances of the individual operational taxonomic units (OTUs) into account, 

N = 442. 

 

 
Figure 24: Heat-map of gut microbiota on phylum level and RMR.  Pearsons coefficient of correlation of gut 

microbiota on the phylum level and measured RMR [kJ/day], not adjusted for any influencing variables. Gut 

bacteria are presented as relative abundances, N = 442.  
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In the next step, a correlation analysis on the taxonomic levels of phylum, class, order, 

family, genus and species was performed to identify possible candidates of gut bacteria 

correlating with RMR. For this analysis the measured RMR was used, not adjusted for any 

influencing variables. For the bacteria a preselection was carried out, thereby all unknown 

bacteria were removed prior to the analysis and a threshold of presence in the enable cohort 

was set. Only bacteria being present in at least 60% of the subjects from the enable cohort 

were included in the analysis. To obtain an overview and identify possible candidates of gut 

bacteria having an influence on RMR heat-maps were generated based on the Pearson’s 

coefficient of correlation. Presented is the correlation analysis from the phylum and family 

level, which resulted in the highest values of coefficient of correlation compared to the other 

taxonomic levels.  

 
Figure 25: Heat-map of gut microbiota on family level and RMR.  Pearson’s coefficient of correlation of 

selected gut microbiota on family level. Bacteria were preselected based on a threshold of being present in at 

least 60% of the subjects of the enable cohort. Unknown bacteria were excluded from the analysis. Correlation 

analysis was calculated with the relative abundance of the bacteria and the measured RMR [kJ/day], N = 442. 
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On phylum level, no specific bacteria were identified to correlate with RMR. On the family 

level, three bacteria Porphyromondaceae, Rikenellaceae and Ruminococcaceae were 

identified as possible candidates with a coefficient of correlation of 0.2. These three 

candidates were analyzed more in detail regarding their influence on RMR and if they 

account for part of the residual variation in RMR, which cannot be explained by variables 

like sex, age, fat mass or FFM. 

Analyzing the relationship of Porphyromondaceae, Rikinellaceae and Ruminococcaceae on 

RMR variation, these three bacteria were analyzed individually in a linear regression 

analysis. The sequence abundance of all three bacteria showed a significant (P < 0.05) 

negative correlation with RMR. 

 
Figure 26: Representative gut microbiota on family level and RMR. Relative sequence abundance [%], in 

the enable cohort of (A) Porphyromondaceae, (B) Rikinellaceae and (C) Ruminococcaceae correlated 

significantly with measured RMR, based on a linear regression analysis, N = 442. 

In conclusion, the diversity of the gut microbiota and the three bacteria 

Porphyromondaceae, Rikinellaceae and Ruminococcaceae were negatively associated 

with the measured RMR in the enable cohort. A lower RMR was associated with an 

increased bacterial diversity and an increased abundance of the three bacteria from the 

family level. 
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3.3.1 Gut microbiota composition and the residual variation of resting metabolic 
rate 

Analyzing the influence of bacterial diversity and the effect of specific bacterial strains on 

the variation of RMR, the residual variation of RMR was calculated. Based on the previous 

established linear regression model the residual variation of RMR was calculated with the 

variables FFM, fat mass, age, body temperature, fT3, creatinine, leukocytes, MCHC, systolic 

blood pressure and heart rate (model 3, Table 8). 

 

The formerly identified parameters richness and Shannon index, describing the alpha-

diversity of the enable cohort, were analyzed regarding their influence on the residual 

variation of RMR. Additionally, the three identified bacteria from the family level 

Porphyromondaceae, Rikenellaceae and Ruminococcaceae were investigated in this 

context. 

The observed correlation of RMR and richness (R2 = 0.02, P = 0.003, Figure 23) was not 

observed by a linear regression analysis with the residuals of RMR and the species richness 

(P = 0.32, Figure 27). Furthermore, the Shannon index was not significantly associated with 

the residuals of RMR (P = 0.63). Both parameters describing the diversity of gut microbiota 

were not associated with RMR after adjusting RMR for the influencing variables FFM, fat 

mass, age, body temperature, fT3, creatinine, leukocytes, MCHC, systolic blood pressure 

and heart rate. The previously observed correlation of gut microbiota diversity and RMR 

was obviously due to correlations with other variables accounting for the variation in RMR. 
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Figure 27: Alpha-diversity of the gut microbiota and residuals of RMR (A) Phylotype richness, presenting 

the number of observed species in the enable cohort and (B) Shannon index effective describing the diversity 

of gut microbiota in the enable cohort by taken the individual abundances into account, N = 442. (A+B) Residuals 

of RMR were calculated with the variables FFM, fat mass, body temperature, fT3, leukocytes, creatinine, MCHC, 

systolic blood pressure and heart rate from the linear regression model 3 (Table 8). 
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Investigating the influence of the three bacterial candidates Porphyromondaceae, 

Rikenellaceae and Ruminococcaceae on RMR the relative abundance of these bacteria 

was analyzed regarding their influence on the residual variation of RMR in a linear 

regression analysis. Porphyromondaceae (P = 0.49), Rikenellaceae (P = 0.43) and 

Ruminococcaceae (P = 0.95) were not significantly associated with the residuals of RMR 

(Figure 28). The correlation of these three bacteria with RMR disappeared after adjusting 

RMR for the known influencing variables 

 
Figure 28: Specific gut microbiota on family level and residuals of RMR. Relative abundance of (A) 

Porphyromondaceae, (B) Rikenellaceae and (C) Ruminococcaceae in the enable cohort, N = 442. (A-C) 

Residuals were calculated based on the linear regression model 3 (Table 8), with the variables fat mass, FFM, 

body temperature, fT3, leukocytes, creatinine, MCHC, systolic blood pressure and heart rate. 

To identify parameters being associated with Porphyromondaceae, Rikenellaceae and 

Ruminococcaceae, a correlation analysis with these bacteria and all variables known to 

influence RMR was performed. Analyzing the interaction of Porphyromondaceae, 

Rikenellaceae and Ruminococcaceae with the variables age, fat mass, FFM, body 

temperature, MCHC, creatinine, leukocytes, fT3, systolic blood pressure and heart 
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rate  (Figure 29). This analysis indicated an association of Ruminococcaceae, 

Rikenellaceae and Porphyromondaceae with FFM (R = 0.2). Furthermore, Rikinellaceae 

and Porphyromondaceae seemed to be association with the systolic blood pressure and 

Rikenellaceae with the thyroid hormone fT3. 

 

 
 
Figure 29: Specific gut microbiota on the family level and physical characteristics of the linear 
regression model to predict RMR. Pearson’s coefficient of correlation of the variables cooperated in the linear 

regression model (model 3, Table 8) to predict RMR, N = 442. The bacteria Ruminococcaceae, Rikenellaceae 

and Porphyromondaceae are presented as relative abundances. The variables of the linear regression model 

are presented as follows: age (years), fat mass (kg), FFM (kg), body temperature (°C), MCHC (g/dl), creatinine 

(mg/dl), leukocytes (N/nl), fT3 (pg/ml), systolic blood pressure (mmHg) and heart rate (bpm). 

Individual linear regression analysis of Ruminococcaceae, Rikenellaceae and 

Porphyromondaceae with FFM and fat mass revealed a significant correlation of these three 

bacteria with FFM (P < 0.05), whereas Ruminococcaceae was not significantly associated 

with fat mass (P = 0.336) (Figure 30). Furthermore, Porphyromondaceae and Rikenellaceae 
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showed a significant correlation with fT3 (P < 0.001) and Porphyromondaceae was 

additionally significantly associated with the systolic blood pressure (P = 0.044) (Figure 31). 

 
 
Figure 30: Linear regression analysis of specific gut bacteria with FFM and fat mass. Relative abundance 

of (A) Rikenellaceae, (B) Porphyromondaceae and (C) Ruminococcaceae significantly correlate with FFM in a 

linear regression analysis, N = 442. (D) The relative abundance of Ruminococcaceae does not significantly 

correlate with fat mass, N = 442. 

All three bacterial candidates showed a significant correlation with measured RMR, which 

disappeared after adjusting RMR for all known influencing variables. Further analysis 

revealed that the initial correlation of gut microbiota and RMR was due to the variables FFM, 

thyroid hormone fT3 and systolic blood pressure, which account for part of the inter-

individual variation in RMR. Therefore, we can conclude that these gut bacteria have no 

direct influence on RMR, but they are associated with variables having an influence on RMR 

variation. 
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Figure 31: Linear regression analysis of specific gut bacteria with fT3 and systolic blood pressure. The 

relative abundance of (A) Porphyromondaceae and (B) Rikenellaceae significantly correlated with the amount 

of thyroid hormone fT3, N = 442. (D) The relative abundance of Porphyromondaceae significantly correlated 

with the systolic blood pressure, N = 442. 
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3.3.2 Principal component analysis, identifying bacterial cluster influencing resting 
metabolic rate variation 

Analyzing the effect of gut microbiota composition on the residual variation of RMR different 

statistical procedures were applied. Beside a correlation and linear regression analysis, a 

principal component analysis (PCA) was performed to simplify a multidimensional data set. 

A PCA analysis can identify possible cluster of variables, to explain as much variance as 

possible of the given data set. 

 

The PCA was performed on the taxonomic levels of phylum, class, order, family, genus and 

species. By analyzing the proportion of variance, the contribution of the individual principal 

component to the overall variance can be studied. Commonly the first two or three principal 

components together explain more than 95% of the variance in the data set, depending on 

the variables going into the analysis. This can also be depicted by the cumulative proportion. 

In this data set with the gut microbiota of the enable cohort, the cumulative proportion of 

50% was reached after 18 to 20 principal components. Meaning that these 20 principal 

components explain 50% of the total variance in the data set and thereby demonstrating a 

high variance of the data. The principal components explaining most of the variance in the 

data set were extracted from the PCA and individually analyzed in a linear regression 

analysis with the residuals of RMR. The residuals of RMR were calculated with the variables 

FFM, fat mass, body temperature, fT3, leukocytes, creatinine, MCHC, systolic blood 

pressure and heart rate, from the previously established linear regression model (model 

3,Table 8). By this approach, no principle component was identified to significantly correlate 

with the residual variation of RMR (P > 0.05). 

 

By applying a statistical method to discover possible cluster of variables and explaining as 

much variance as possible in the present data set, which cannot be detected by humans, 

no patterns of gut microbiota were identified to correlate with the residual variation of RMR. 

Concluding that there is on all taxonomic levels no cluster of bacteria detectably contributing 

to the inter-individual variation in RMR. 
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3.3.3 Artificial neural network analysis to identify cluster of gut microbiota 
influencing resting metabolic rate 

Further analysis of gut microbiota composition on RMR variation led to the method of 

artificial neural networks. Neural networks are successfully used in the fields of image and 

speech recognition or social network analysis. Neural networks have the possibility of 

learning and can be trained to recognize complex patterns. 

 

In this case, the question was if the neural network is able to identify and create a 

combination of parameters being able to predict the residual variation of RMR. For proof of 

principle, a neural network was trained with variables from the linear regression model 

known to very well predict RMR. The variables age, FFM, fat mass, body temperature, fT3, 

leukocytes, creatinine, MCHC, systolic blood pressure and heart rate were mixed among 

the 1485 OTUs from the gut microbiota to see if a neural network is able to identify important 

parameters accounting for the RMR variation. A neural network trained with 310 data sets 

was able to predict RMR in 66 new datasets not initially used for the training, which 

significantly correlated with measured RMR. The validation set was used to improve 

continually the generated equation of the training set by applying the generated equation 

on the validation set and then improving the equation in the training set. If the process of 

training, improving and verifying is completed the so called “test set” is used to apply the 

generated equation on an independent set of samples. In all three cases, the prediction 

significantly correlated with the measured RMR (P < 0.0001), which was significantly 

reproduced in ten individual applied neural network analysis. This result illustrated that a 

neural network is able to identify important parameters associated with RMR among almost 

1500 parameters. 

The neural network was then used to identify parameters or cluster of gut microbiota having 

a possible impact on RMR variation. Therefore, the neural network was applied on all 

taxonomic levels and until the level of OTUs to predict the residual variation of RMR. The 

residuals of RMR were calculated with the variable age, FFM, fat mass, body temperature, 

fT3, leukocytes, creatinine, MCHC, systolic blood pressure and heart rate from the previous 

established linear regression model 3 (Table 8). On the level of OTUs, the neural network 

was able to generate an equation with OTUs to predict the residual variation in RMR (Figure 

32). This prediction resulted in a highly significant correlation with the residuals of RMR (P 

< 0.05). However, the neural network was not able to apply this generated equation with 

OTUs in an independent test set to predict the residual variation in RMR. Not even the 

validation set was able to improve the training set and resulted therefore also in a non-

significant prediction of the residuals. In one out of ten cases a significant correlation of the 
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prediction and residuals of RMR was observed in the validation set. Since it was only 

present in one case, this demonstrates to be a random event. On all taxonomic levels the 

neural network was not able to predict the residuals of RMR, as described for the OTUs. 
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Figure 32: Neural network analysis of gut microbiota on the OTU level. (A) Training set, N = 310. (B) 

Validation set, N = 66. (C) Test set, N = 66. (D) All sets together, depicted by different colors, black = training 

set, blue = validation set, red = test set, N = 442. Subjects for the individual training, validation and test set were 

selected randomly by Matlab. (A-D) Residuals of RMR were calculated with the variables age, fat mass, FFM, 

body temperature, MCHC, creatinine, fT3, leukocytes, systolic blood pressure and heart rate from the linear 

regression model 3 (Table 8).  

Taken together, the neural network was able to identify important parameters among many 

other parameters and to predict the measured RMR by the anthropometric and clinical 

parameters hidden among more than a thousand other variables. Nevertheless, on all 

taxonomic levels and on the level of OTUs the neural network was not able to form an 
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arrangement to predict the residual variation of RMR. Together with the results of PCA, 

heat-maps and individual correlation analysis, this result illustrates that there is no 

combination of OTUs or gut bacteria which have an influence on RMR. This leads to the 

conclusion that gut microbiota composition does not have an influence on RMR variation. 

 

3.4 Liver fat content and inter-individual variation of resting metabolic rate 

Inter-individual variation of RMR is determined by variables like sex, age, fat mass and FFM 

but these variables cannot completely explain the inter-individual variation. High metabolic 

rate organs were shown to explain 5% of the inter-individual variation of RMR (Javed et al. 

2010), however only organ mass was measured and its respective metabolic rate was 

calculated and not the individual organ activity was measured. 

 

Analyzing the inter-individual variation and variables contributing to RMR variation, a pilot 

study with 32 subjects was designed to analyze the influence of liver fat content on RMR. 

The hypothesis was that liver activity may plausibly be associated with fat content and could 

therefore be used as a marker for liver activity and potentially explain part of the residual 

variation in RMR. Subjects were recruited based on the phenotyping data raised in the 

enable platform to obtain as far as possible an equal distribution of liver fat in the study 

cohort. Liver fat was determined by magnetic resonance tomography (MRT) with magnetic 

resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) scans. The 

influence of liver fat on RMR variation was analyzed based on the statistical linear 

regression model, established in the whole enable cohort. 

 

3.4.1 Descriptive analysis of the pilot study population 

For this pilot study 33 subjects were recruited. After a drop out of three subjects, due to 

claustrophobia, 30 subjects were left consisting of 17 male and 13 female (Table 14). The 

mean age of this cohort was 51.0 years in both male and female subjects. The subjects of 

this cohort are slightly obese, represented by a mean BMI of 27.9 kg/m2, which was in 

female slightly higher than in male. The trend of obesity was due to the recruiting criteria, 

aiming a possible high liver fat content to analyze the influence of liver fat on RMR. One of 

the selection criteria was the amount of visceral fat, which correlates with an increased body 

weight and increased abdominal fat.  
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Table 14: Physical characteristics of the pilot study cohort 

 All 
N = 30 

Male 
N = 17 

Female 
N = 13 

 Mean ± SD Mean ± SD Mean ± SD 
Age (years) 51.0 ± 6.5 50.7 ± 6.6 51.5 ± 6.6 
Height (cm) 174.4 ± 8.8 179.4 ± 6.5 167.6 ± 6.7 
Weight (kg) 84.9 ± 12.3 89.4 ± 10.5 79.1 ± 12.4 
Body temperature 
(°C) 

36.2 
± 

0.5 36.1 
± 

0.6 36.4 
± 

0.4 

Fat mass (kg) 29.6 ± 11.8 28.1 ± 13.3 31.6 ± 9.5 
FFM (kg) 55.3 ± 9.9 61.3 ± 8.6 47.5 ± 4.4 
RMR (kJ/day) 7134.4 ± 1272.7 7931.9 ± 1002.7 6091.6 ± 703.6 
Leukocytes (N/nl) 5.8 ± 1.7 5.9 ± 1.8 5.6 ± 1.7 
fT3 (pg/ml) 3.2 ± 0.4 3.4 ± 0.2 3.0 ± 0.5 
Creatinine (mg/dl) 0.8 ± 0.1 0.9 ± 0.1 0.7 ± 0.1 
MCHC (g/dl) 34.0 ± 0.8 34.4 ± 0.7 33.6 ± 0.5 
BMI (kg/m²) 27.9 ± 3.5 27.8 ± 2.9 28.1 ± 4.2 
PDFF (%) 7.6 ± 8.4 10.0 ± 10.5 4.6 ± 2.6 
SAT (L) 8.6 ± 3.6 7.3 ± 2.2 10.3 ± 4.4 
VAT (L) 3.7 ± 2.5 4.6 ± 2.6 2.5 ± 1.7 

PDFF, SAT and VAT were determined by MRI, all other variables were raised at the study center in Freising 

 

Figure 33: Representative MR images of liver fat content measured by PDFF. Differences in the liver fat 

content can be seen by appearing brighter with an increasing fat content. Presented are three male subjects 

with (A) a BMI of 29.20 kg/m², (B) BMI of 32.42 kg/m² and (C) BMI of 22.72 kg/m². 

 

Liver fat content was determined by proton density fat fraction (PDFF) at a defined voxel of 

30 x 30 x 20 mm³. The amount of liver fat ranged between 1.1% and 31.2% (Figure 33). By 

an increasing amount of liver fat, the liver gets brighter and therefore more visible on the 

MRI, whereas the liver is not visible with little fat content. In all subjects of the pilot study a 

mean liver fat content of 7.64% was measured, which was in average higher in male 

(4.64%) than in female subjects (2.50%) (Table 14). 

To studying the influence of liver fat on RMR, the aim was to have a study cohort with a 

wide range of liver fat content (Figure 34). Half of the subjects (N=17) had a low amount of 
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liver fat between 2 - 4%, eight subjects had elevated amounts of liver fat between 6  10% 

and five subjects had a fatty liver with 18 - 32% of fat. Besides liver fat, visceral adipose 

tissue (VAT) and subcutaneous adipose tissue (SAT) were measured during the MRT scans 

and quantitatively analyzed (Figure 35). The amount of VAT ranged between almost no 

visceral fat 0.1L and 11L VAT. Half of the subjects (N=17) had low amounts of VAT between 

0 - 3L (Figure 34). The other half of the study cohort had high amounts of VAT between 

4 - 11L. The VAT content was in female subjects with 2.50L lower than in male subjects 

with 4.64L, resulting in a mean VAT content of all subjects of 3.71L (Table 14). 

 

 
 
Figure 34: Distribution of liver fat and VAT in the pilot study cohort. (A) Frequency distribution of liver fat 

determined by PDFF at a defined voxel of 30 x 30 x 20 mm³. Presented is the mean liver fat content of 9 

segments, N = 30. (B) Frequency distribution of the mean visceral fat content (VAT), determined by MR images 

with a semiautomatic segmentation tool between the apex of the heart and the tip of the femur, N = 30. 
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Figure 35: Representative MR images of a 2-point Dixon water-fat image. (A) and (D) are fat images were 

fat is presented in white. (B) and (E) are water images were fat is presented in black. (C) and (F) are automatic 

segmentation images of SAT and VAT. SAT is presented in red, VAT in yellow, non-adipose tissue in dark blue 

and air/bone in cyan blue. (A – C) Obese subject with a BMI of 29.20 kg/m2, 8.1 L SAT and 6.6 L VAT. (D – F) 

Lean subject with a BMI of 23.23 kg/m2, 3.5 L SAT and 1.6 L VAT. 

To analyze the influence of liver fat on RMR a wide range of liver fat was aimed and 

achieved. This was accompanied by a wide range of VAT, as VAT was one of the selection 

criteria to obtain subjects with high liver fat content. Therefore, this small cohort presents a 

good basis to analyze the influence liver fat on RMR variation. 

 

3.4.2 Influence of liver fat content on the variation of resting metabolic rate 

To analyze the effect of liver fat content on RMR variation, the residuals of RMR were 

calculated. Based on the linear regression model, established in the whole enable cohort, 

the residuals of RMR were calculated for the subject of the pilot study cohort with the 

variables age, fat mass, FFM, body temperature, fT3, leukocytes, creatinine and MCHC. 

The variables systolic blood pressure and heart rate were not available for this pilot study 

cohort. Therefore, a linear regression model without data about blood pressure was used 

to calculate the residuals of RMR. 

In a linear regression analysis, the effect of liver fat content on the residual variation of RMR 

was analyzed. No significant correlation (P = 0.52, R² = 0.015) of liver fat content and the 

residuals of RMR was detected. Additionally, the amount of VAT was analyzed regarding 

its influence on the residual variation of RMR, which resulted in a non-significant correlation 
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of VAT and residuals of RMR (P = 0.107, R² = 0.089). The individual differences in liver fat 

did not contribute to the inter-individual variation in RMR, despite the high range of liver fat, 

and did not elucidate if the specific metabolic rate of liver accounts for the residual variation 

in RMR. The amount of VAT, which was used as a marker to identify subjects with a high 

liver fat content, was not associated with the residual variation in RMR and therefore not a 

variable explaining the inter-individual variation in RMR. 

Both variables, liver fat and VAT, are included in the variables used to calculate the 

residuals of RMR. Liver is a high metabolic rate organ and therefore part of FFM, which was 

used to calculate the residual variation of RMR. Thereby, the amount of liver fat, included 

in the liver, might already have been taken into account by calculating the residuals of RMR. 

The same applies for visceral fat, which is a part of fat mass, as well used to calculate the 

residuals of RMR.  

To analyze if the non-existing correlation of liver fat and VAT with the residuals of RMR is 

due to the adjustment of RMR by fat mass and FFM, liver fat and VAT were analyzed with 

the unadjusted, measured RMR. No significant correlation of liver fat and measured RMR 

was observed (P = 0.36) (Figure 37). This verifies the previous result, where liver fat does 

not explain part of the inter-individual variation of RMR, respectively has an influence on 

RMR variation.  

The linear regression analysis of VAT and measured RMR resulted in a significant 

correlation (P = 0.004) (Figure 37). This result is in line with the general linear regression 

model where fat mass is a predictor of RMR. The amount of VAT correlated with RMR, as 

it is a part of fat mass.  

To analyze if the amount of VAT could improve the linear regression model to predict RMR, 

fat mass was differentiated in general fat mass and visceral fat. Therefore, the amount of 

visceral fat was subtracted from the total fat mass. To see if the differentiation of the two fat 

depots can improve the prediction of RMR, both fat depots were included in the linear 

regression analysis. Thereby the amount of VAT was not an independent predictor of RMR 

(P > 0.05) and could not improve the linear regression model to predict RMR (data not 

shown). The total fat mass does influence RMR, but individual difference in the small 

separate VAT depot did not account for individual differences in RMR. 

 

In conclusion, the amount of liver fat does not contribute to the inter-individual variation of 

RMR. Despite the significant correlation of VAT and RMR, the amount of VAT could not 

improve the prediction of RMR as an independent predictor. 
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Figure 36: Linear regression analysis of liver fat, VAT and residuals of RMR. (A) PDFF was used to 

determine liver fat content, N = 30. (B) VAT presents the visceral fat content, determined by MRI and 

semiautomatic segmentation tool, N = 30. (A + B) Residuals were calculated with the variables age, fat mass, 

FFM, body temperature, fT3, leukocytes, creatinine and MCHC.  

 

 
Figure 37: Linear regression analysis of liver fat, VAT and RMR. (A) Measured RMR and liver fat 

represented by PDFF, N = 30. (B) Measured RMR and visceral fat content determined by MRI and 

semiautomatic segmentation, N = 30. 

 

3.4.3 Interaction of liver fat and other metabolic parameters 

Increasing liver fat can lead to hepatic steatosis, which has two different reasons. Either 

alcohol abuse, which leads to alcoholic fatty liver disease or other reasons than alcohol 

abuse like obesity, which is than termed as non-alcoholic fatty liver disease (NAFLD).  

Since an elevated liver fat content is a consequence of either alcohol abuse or unhealthy 

diet, it is accompanied by other elevated parameters. Therefore, liver fat content was not 

only analyzed as a variable influencing RMR, but also characterized regarding all other 
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physical and clinical parameters raised during the phenotyping process. Parameters coming 

along with obesity might additionally be associated with an increased liver fat content. 

Connection of abdominal fat distribution and liver fat was observed by a significant 

correlation (P < 0.05) of liver fat with waist-circumference, waist-to-hip ratio (WHR), VAT 

and a non-significant correlation with SAT (P = 0.42) (Figure 38). Fat distribution in the 

different fat depots, presented by SAT, VAT and WHR was accompanied by changes of the 

internal organs, in this case liver fat. In addition, liver fat correlated with BMI (P = 0.006) 

(Figure 39). However, some pre-obese subjects had very high liver fat content, whereas 

some highly obese subjects had only moderate liver fat content (Figure 39, A). Therefore, 

BMI alone was not the best parameter to predict liver fat, compared to WHR and VAT. 

Studying the relationship of clinical blood parameters and fatty liver, from all the raised blood 

parameters six were analyzed more in detail (Figure 40). A high insulin concentration was 

significantly associated with high amount of liver fat (P = 0.0006). More than half of the 

subjects (N = 21) had elevated cholesterol levels above the normal range of 200 mg/dl. The 

increased amount of cholesterol was significantly associated with liver fat (P = 0.026). 

Seven subjects had elevated blood triglyceride levels which also significantly correlated with 

the amount of liver fat (P = 0.018). Whereas the amount of LDL-cholesterol was not 

significantly associated with the amount liver fat, thus five subjects had elevated LDL-

cholesterol levels above 160 mg/dl.  

The progression of fatty liver was presented by the significant correlation of Gamma-

glutamyltransferase (GGT) and liver fat (P < 0.0001). GGT is an enzyme which is released 

into the blood when liver cells undergo apoptosis and is therefore a sign for damaged liver 

cells. The progression of fatty liver and liver damage was supported by the significant 

correlation of increasing amount of Glutamate-pyruvate-transaminase (GPT) and liver fat 

(P = 0.015). GPT is another enzyme released by liver cells when they are damaged. Even 

only a few subjects had elevated GGT (> 60U/I) or GPT (> 50 U/I) levels, a strong correlation 

of liver fat and these enzymes illustrated the progression of hepatic steatosis. 

In summary, these results present an increasing liver fat to be associated with several 

parameters standing for abdominal obesity. The progression of liver damage, caused by fat 

infiltration, was observed by elevated insulin levels, compensating a reduced glucose 

tolerance, and elevated enzymes, describing liver cell damage.  
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Figure 38: Liver fat and physical characteristics. Linear regression analysis of liver fat content, determined 

by PDFF and (A) waist circumference (B) waist to hip ratio (C) subcutaneous adipose tissue (SAT) and (D) 

visceral adipose tissue (VAT), N = 30. Waist-circumference, waist to hip ratio and VAT were significantly 

associated with the amount of liver fat, whereas SAT was not associated with the amount of liver fat. 

Figure 39: Relationship of liver fat content and BMI. (A) Occurrence of liver fat in three BMI classes. Subjects 

were split in three BMI classes according to the guidelines of WHO, normal weight with a BMI < 25 kg/m² (N = 5), 

pre-obesity with a BMI between 25 - 30 kg/m² (N = 14) and obesity class I and class II with a BMI between 

30 and 39.9 kg/m² (N = 6). (B) Increasing liver fat content, depicted by PDFF, significantly correlated with 

increasing BMI, N = 30.  
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Figure 40: Interaction of liver fat and related blood parameter. (A - F) Liver fat content is presented as PDFF 

in a linear regression analysis with (A) Insulin, (B) Cholesterol, (C) Triglyceride, (D) LDL-Cholesterol, (E) 

GGT - Gamma - Glutamyl Transferase and (F) GPT - Glutamic Pyruvic Transaminase, N = 26 - 30. All presented 

blood parameters were significantly associated with liver fat content, except for LDL-Cholesterol. 
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4 Discussion 

The worldwide incidence of obesity has almost tripled in the last 40 years (WHO 2018). The 

epidemic development of obesity and obesity related diseases requires a precise 

knowledge of the daily energy requirement to provide adequate dietary recommendations 

and therapies. The total daily energy expenditure (TDEE) consists of resting metabolic rate 

(RMR), which accounts for 60 - 80% of TDEE, followed by physical activity with 10 - 30% 

and adaptive thermogenesis with 10% (Landsberg 2012). RMR is the biggest component 

of the daily energy expenditure and therefore of particular importance to have a concise 

knowledge of its functionality and how it is composed.  

 

4.1 Predictors of resting metabolic rate variation 

RMR is defined as the energy expenditure at rest to maintain all vital functions. It is 

characterized by a high inter-individual variation. Variables like sex, age, fat mass, fat free 

mass (FFM) and race contribute to the variability of RMR and therefore are taken into 

consideration when analyzing and interpreting RMR (Muller et al. 2004, Javed et al. 2010, 

Johnstone et al. 2005, Bosy-Westphal et al. 2009a). Even after adjusting RMR for these 

influencing variables a residual variation of 24 - 30% remains unexplained (Javed et al. 

2010, Johnstone et al. 2005). The question arises, which other parameters are influencing 

RMR and explain the residual variation. Understanding the underlying physiological 

mechanisms of the variability is of great importance to improve the prediction and 

calculations of energy requirements for an accurate dietary recommendation.   

 

4.1.1 Body temperature as a predictor of resting metabolic rate 

In this work a new equation to calculate RMR is presented, using the variables sex, age, fat 

mass, FFM and body temperature. Sex, age, fat mass and FFM are parameters which have 

previously been shown to influence RMR (Javed et al. 2010, Johnstone et al. 2005, 

Gallagher et al. 2006, Cunningham 1991, Cunningham 1980, Muller et al. 2004). The results 

of this study presented body temperature to be a new and important variable influencing 

RMR and thereby contributing to RMR variation. In the context of obesity, a low body 

temperature was discussed to favor the progression of obesity (Landsberg 2012) due to a 

reduced RMR. No differences in core body temperature are detected between obese and 

lean subjects (Hoffmann et al. 2012), but a lower core body temperature may favor the 

development of obesity in the pre-obese state (Landsberg 2012). However, body 
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temperature has never been included as a variable in the prediction equations to calculate 

RMR. 

In clinical practice RMR is measured in the thermal neutral zone (TNZ) or thermoneutral 

environment to avoid heat production or heat loss, which has a major influence on RMR. 

Increasing temperatures are associated with an increase in metabolic rate (Du Bois 1921), 

as above the TNZ evaporative heat loss occurs (Roth and Sheard 1950, Kingma et al. 2014) 

and below the TNZ shivering and non-shivering mechanisms like peripheral 

vasoconstriction appear to maintain the core body temperature (Landsberg, Saville and 

Young 1984, Roth and Sheard 1950, Calton et al. 2016). Thus, it is difficult to determine if 

the subject is really in its individual TNZ. Subjects are not always at their TNZ even when 

they are measured in an environment of 25°C (Pathak et al. 2017). Consequently, it was 

proposed to include a forearm to fingertip skin temperature gradient (FFG) measurement to 

determine if the subject is in its individual TNZ (Pathak et al. 2017).  

The results of this study presented body temperature to be an important parameter when 

predicting and analyzing RMR, which is in line with the proposed measurement of FFG 

(Pathak et al. 2017). However, based on the results of the present enable study it is not 

possible to distinguish if the differences in the measured body temperature stand either for 

the individual costs of homeothermy or present the individual deviation from the TNZ during 

the measurement of RMR. 

 

4.1.2 Resting metabolic rate is influenced by clinical blood parameters and blood 
pressure 

RMR is influenced by the variables sex, age, fat mass, FFM and body temperature. Even 

after adjusting RMR for these variables a residual variation of 25% remained unexplained 

(Table 8), raising the question, which other variables contribute to the inter-individual 

variation of RMR. Analyzing the residual variation of RMR elucidated fT3, leukocyte number, 

creatinine, MCHC, systolic blood pressure and heart rate to be important physiological 

candidates contributing to RMR variation (Table 8, Figure 8). 

The results presented a significant impact of the thyroid hormone fT3 on RMR variation. The 

residuals of RMR were positively associated with the amount of fT3 in blood. Thyroid 

hormones generally play a central role in energy homeostasis and growth (Kim 2008, Lopez 

et al. 2013). Hypothyroidism is associated with a reduced RMR and weight gain, while 

hyperthyroidism is associated with an increased RMR and weight loss (Johansen, Hansen 

and Skovsted 1978, Iwen, Schroder and Brabant 2013). However, so far the function of 
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thyroid hormones in euthyroid subjects is not fully understood (Kim 2008). In previous 

studies some authors found a significant correlation of thyroid hormones with RMR 

(Svendsen et al. 1993, Astrup et al. 1992) some found a moderate influence of thyroid 

hormones on RMR (Bosy-Westphal et al. 2008) and others found no significant correlation 

of thyroid hormones and RMR (Meunier et al. 2005, Johnstone et al. 2005, Spadafranca et 

al. 2015). By analyzing the residual variation of RMR the correlation of fT3 and RMR is not 

based on any other variables having a major effect on RMR. Thereby these results proved 

that differences in fT3 levels of euthyroid subjects have an influence on RMR and have to 

be considered when RMR is interpreted and predicted. 

Leukocyte number was shown to be positively associated with the residual variation of RMR 

(Figure 8). Leukocytes are part of the immune system, play an important role in the immune 

defense and may increase upon an infection. RMR is increased after a vaccination (Cooper 

et al. 1992) or sepsis (Kreymann et al. 1993), situations in which an immune reaction occurs 

and therefore leukocytes are increased. Aside from the diseased situations, an increased 

RMR of healthy Tsimane people was associated with an elevated leukocyte number 

(Gurven et al. 2016). Nevertheless, the role of leukocytes on healthy Caucasian subjects 

has not been elucidated so far. The results of this study showed a positive correlation of 

leukocyte number and residual variation of RMR in healthy Caucasian subjects. Implying 

minor immune reactions, represented by leukocyte number in a healthy range, play a role 

in energy requirement and therefore accounted for part of the residual variation in RMR. 

Increased levels of creatinine were shown to be negatively associated with the residual 

variation of RMR (Figure 6). Creatinine is a breakdown product of creatine phosphate, which 

serves as an energy source of the skeletal muscle. Every day, 1 - 2 % of creatine phosphate 

is degraded to creatinine, which is excreted by the kidneys. If insufficient fluid is provided 

by drinking, the kidneys reduce their activity, less creatinine is excreted and, as a 

consequence, plasma creatinine levels increase. Assuming that increasing creatinine 

reflects a reduced kidneys activity, plasma creatinine levels might be a suitable method to 

determine kidney activity. In that case, plasma creatinine levels are an important parameter 

when analyzing RMR variation. 

A positive correlation of MCHC concentration and the residuals of RMR was presented in 

the results of this study (Figure 6). Hypothetically, a higher RMR causes an increase in 

hemoglobin per volume of packed red blood cells. As an increased RMR requires more 

oxygen the amount of hemoglobin per cell is increased to be able to transport more oxygen 

and compensate for the increased demand of oxygen. 
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The residuals of RMR were significant association with systolic blood pressure and heart 

rate (Figure 6, Table 7). In the context of obesity research and cardiometabolic risk factors 

the relationship of blood pressure and RMR was intensively studied (Bosy-Westphal et al. 

2008, Luke et al. 2004, Ali et al. 2017, Creber et al. 2018). Hypertension (Ali et al. 2017, 

Bosy-Westphal et al. 2008, Luke et al. 2004) and heart rate (Karhunen et al. 1997) are 

associated with an increased RMR. In obese subjects, blood pressure is associated with 

RMR, even after adjusting RMR for possible confounder like age and ethnicity (Luke et al. 

2004, Snodgrass et al. 2008). However, in healthy individuals the role of blood pressure on 

RMR variation was not studied so far. There is no equation using blood pressure as a 

parameter to predict RMR. The results of the present study presented a positive association 

of systolic blood pressure and heart rate with the residuals of RMR. An increased heart rate 

reflects an increased activity of the heart, which requires more oxygen and is therefore 

reflected in an increased RMR. Another possibility might be a stressful situation for the 

subjects during the measurement, reflected in an increased blood pressure and heart rate.  

Systolic blood pressure and heart rate were significantly associated with RMR, even after 

adjusting RMR for the known influencing variables, and are therefore two important 

parameters having an influence on RMR variation. 

Analyzing the residual variation of RMR revealed the thyroid hormone fT3, leukocyte 

number, creatinine, MCHC, systolic blood pressure and heart rate to be important 

physiological candidates influencing RMR variation. All candidates were significantly 

associated with the residuals of RMR and appeared to be significant predictors of RMR in 

the linear regression model. However, these six candidates together improved the model 

by only 3 percentage points (Table 8). Indicating that not just one big variable is missing to 

explain the residual variation in RMR, but rather several parameters, accounting for the 

residual variation in RMR. The presented equation with all the blood parameters and blood 

pressure is more a statistical model elucidating factors contributing to the variability of RMR, 

rather than an equation for the daily use to predict RMR. 

 

4.1.3 Partitioning of variables contributing to the variation of resting metabolic rate 

RMR is influenced by several parameters. It is of added value to understand to which extend 

the individual variables contribute to RMR variation and how RMR is composed.  

In the mixed effect model (Table 6) FFM is with almost 56% the strongest determinant of 

RMR. This is in line with previous publications, indicating FFM to be the dominant factor, 

accounting alone for 60 - 72% of RMR variation (Bosy-Westphal et al. 2008, Muller et al. 

2004, Johnstone et al. 2005, Karhunen et al. 1997, Ferraro and Ravussin 1992). The close 
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relationship of FFM and RMR was already described three decades ago (Cunningham 

1991). In the present study fat mass was shown to be and independent variable and the 

second strongest predictor of RMR, being responsible for 11.6% of the variance. Fat mass 

was identified before, to be an independent variable influencing RMR (Nelson et al. 1992, 

Svendsen et al. 1993, Ferraro and Ravussin 1992) and being responsible for 6 - 8% of 

variance in RMR (Johnstone et al. 2005, Ferraro and Ravussin 1992). Sex, age and body 

temperature accounted together for 12% of the variance in RMR. By combining these 

variables with FFM and fat mass 80% of the variance were explained by these 5 variables. 

In previous studies only up to 76% of the variance were explained (Bosy-Westphal et al. 

2008), even though HMRO were included in the prediction equation (Javed et al. 2010).  

Intra-individual variation was determined to be 4.3% of the total variance in RMR (Schicker 

2017). This is in line with previous publications where intra-individual variation was reported 

to be between 2 - 6% (Weststrate 1993, Zurlo et al. 1986, Adriaens, Schoffelen and 

Westerterp 2003, Haugen et al. 2003, Bader et al. 2005, Johnstone et al. 2005). The low 

variation of intra-individual variation presented the indirect calorimetry to be a reliable and 

repeatable method to determine RMR. The intra-individual variation represents technical 

and biological day to day variation of the subject. Every subject has a biological variation 

and every RMR measurement is accompanied by a technical variation, which contributes 

to the overall inter-individual variation of RMR. By including the intra-individual variation to 

the overall variance in RMR, 84% of the variance was explained. Leaving a residual 

variation of less than 16% unexplained. 

Adding the parameters fT3, leukocytes, creatinine, MCHC, blood pressure and heart rate to 

the linear regression model reduced the effect size of FFM and fat mass. These blood 

parameters are not only correlating with RMR, but also with FFM and fat mass. A reduced 

effect size indicates an interaction of the variables among each other, in this case the 

interaction of blood parameters and blood pressure with FFM and fat mass. Adding 

parameters to the linear regression model reduced the effect size of the original parameters 

due to an interaction with the added variables. The addition of blood parameters and blood 

pressure reduced the influence of FFM on RMR by over 20% and fat mass by 7%, indicating 

an interaction of the blood parameters, blood pressure and FFM respectively fat mass. FFM 

was associated with the blood parameters MCHC, creatinine and fT3. This might be 

explained by the fact that FFM is not a homogeneous tissue (Gallagher et al. 1998), as it 

represents high and low metabolic rate organs (Muller et al. 2002, Heymsfield et al. 2002), 

which have different metabolic rates.  
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By adding blood parameters and blood pressure to the linear regression analysis new 

predictors of RMR were identified. Including these physiological candidates to the 

regression analysis, additionally 3% of the variance in RMR was explained even though 

each single parameter alone accounted for 3 - 7 % of the variation in RMR. This 

demonstrates the interwoven complexity of all these factors contributing to RMR. Newly 

identified factors cannot just be added on top, there are several interactions between the 

individual variables, even if the effect of the known influencing variables was initially 

removed. This phenomenon was observed before, by including HMRO and brain to the 

linear regression model, rendering the effect of age, race and sex non-significant (Javed et 

al. 2010).  

 

4.1.4 High accuracy of the newly established equation to predict resting metabolic 
rate 

Several equations have been generated to predict RMR, since measuring RMR is a 

complex and time-consuming method, which requires strictly standardized conditions. 

However, there is a high inter-individual variation in RMR, and the precision and accuracy 

of the recommended equations varies. Well-established and commonly used equations are 

the equation from Harris-Benedict (Harris and Benedict 1918) and Food and Agriculture 

Organization/World Health Organization/United Nations University (FAO/WHO/UNU) 

(WHO (1985). The Harris-Benedict equation uses the variables weight, height and age to 

predict RMR whereas the WHO equation solely uses weight to predict RMR. In current 

research factors like sex, age, fat mass and FFM (Gallagher et al. 1998, Gallagher et al. 

2006) are taken into consideration when predicting RMR, which account for 60 - 70 % of 

variation in RMR (Muller et al. 2004, Javed et al. 2010). In addition, FFM is the major 

predictor of RMR (Bosy-Westphal et al. 2008, Johnstone et al. 2005, Ferraro and Ravussin 

1992) and was suggested to be used instead of body weight to predict RMR (Nelson et al. 

1992, Wang et al. 2000). Therefore, the question arises whether the commonly used 

equations from Harris-Benedict and WHO adequately predict RMR, which mainly use body 

weight and thereby differences in body compositing are neglected. 

In this work, an equation to predict RMR is presented, characterized by a high accuracy 

and precision. Precision of the newly developed equation was confirmed by a cross-

validation with an independent study cohort. Compared to the commonly used equations 

from WHO, Harris-Benedict, Tanita and Kleiber, the newly developed equation presented 

the highest coefficient of determination to predict RMR. However, RMR prediction and 

comparison of the newly developed equation with the common equations was performed 
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with the enable cohort and not with a completely independent cohort, which might possibly 

result in a different coefficient of determination. From the analyzed equations the WHO 

equation predicted RMR with the highest accuracy after the newly developed equation. 

However, the WHO equation is not one single equation for all ages and sexes. It consists 

of eight different equations, distinguishing on the one hand between men and women, and 

on the other hand between four different age groups, whereas the equation from Harris-

Benedict only distinguishes men and women. These two equations have been established 

decades ago and predict RMR by body weight, respectively height and age. Previously, 

FFM was discussed to be used as the major determinant to predict RMR instead of body 

weight (Nelson et al. 1992, Wang et al. 2000). The equation embedded in the BIA scale 

from Tanita consists only of one equation and calculates RMR by the variables FFM, age 

and weight. This equation predicted RMR the second most accurate after the WHO 

equation. Nevertheless, the equation provided by the Tanita scale, was not developed to 

calculate RMR of children.  

The equation from Harris Benedict and WHO were previously reanalyzed and evaluated 

(Muller et al. 2004, Rao et al. 2012, De Lorenzo et al. 2018, Henry 2005). The WHO 

equation overestimates RMR at low and underestimates at high RMR (Muller et al. 2004), 

whereas the Harris-Benedict equation predominantly overestimates RMR (Frankenfield, 

Roth-Yousey and Compher 2005). The specific metabolic rate at low body mass 

respectively low FFM is increased (Muller et al. 2004), which shows the importance to use 

FFM as the main variable to predict RMR instead of body weight. The WHO equation is 

based on a huge study cohort with more than 7000 subjects. However, these subjects are 

from various ethnicities, different ages, weight and were phenotyped in different study 

centers with different equipment’s. Thus, a not insignificant number of subjects had an BMI 

below 17 kg/m2 and were strongly underweight. The presented enable study was a 

homogeneous study cohort of healthy Caucasian subjects. All subjects were phenotyped 

by trained staff in two equally equipped study centers. However, the presented equation is 

only applicable for Caucasian subjects and was established on a comparatively small study 

cohort. 

In summary, the presented equation is characterized by a high precision to predict RMR, 

by using only anthropometric and body composition data. Compared to the commonly used 

equation provided by WHO and Harris-Benedict, the presented equation is one single 

equation, applicable for men and women for a wide range of age.  
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4.2 Peripheral blood mononuclear cells as a biomarker for mitochondrial activity 

Mitochondria are the ‘powerhouse’ of a cell to produce energy in form of ATP. Energy is 

provided in response to acute or chronic energy demand. Measuring ATP production in 

response to energy demand gives information about the efficiency and capacity to generate 

ATP (Jheng et al. 2015, Liesa and Shirihai 2013, Brand and Nicholls 2011). Mitochondrial 

function can be assessed in peripheral blood mononuclear cells (PBMCs) (Ost et al. 2018). 

As PBMCs are circulating cells of the blood they are directly affect by systemic changes like 

inflammatory processes and metabolic stress. Recently, the inflammatory processes of 

sepsis and diabetes were found to be associated with the respiratory capacity of PBMCs 

(Hartman et al. 2014, Belikova et al. 2007, Alonso et al. 2004). Therefore, PBMCs might 

also reflect processes globally affecting RMR variation. However, PBMCs as a biomarker 

for mitochondrial activity in healthy subjects has not deeply been analyzed so far. 

 

4.2.1 Protocols to measure mitochondrial respiration of PBMCs 

For respiration measurements, PBMCs are freshly isolated from blood by density gradient 

centrifugation (Riedhammer, Halbritter and Weissert 2016). Mitochondrial activity of PBMCs 

can be assessed by high resolution respirometry, in a chamber-based system. Different 

respiratory states of intact and permeabilized PBMCs can elucidate functional changes of 

mitochondria (Doerrier et al. 2018). Substrate uncoupler inhibitor titration protocols (SUIT) 

combine substrates, uncoupler and inhibitors to assess the different respiratory states like 

leak, oxidative phosphorylation (OXPHOS) and the capacity of the electron transport 

system (ETS). However, there are different possibilities how to assess these respiratory 

states. So far there is no consensus for an ideal isolation procedure, respectively protocol 

to measure mitochondrial activity of PBMCs. 

In the present study, different isolation procedures and respiration protocols were tested, 

analyzing the respiratory states of leak, OXPHOS and uncoupled respiration. Leak 

respiration can be either determined by oligomycin, which inhibits the ATP-synthase, or 

after permeabilizing the cells. Usually leak respiration is assessed by a prolonged waiting 

time, after permeabilizing the cells with digitonin (Ost et al. 2018). In the present study, leak 

respiration after permeabilization with digitonin resulted in a reduce OXPHOS capacity, 

whereas leak respiration induced by oligomycin inhibited the uncoupled respiration under 

FCCP. The reduced OXPHOS capacity indicates a lot of stress for the cells during the 

prolonged waiting time after permeabilization. Therefore, these cells could not achieve the 

same OXPHOS capacity as other cells, which were not exposed to this stressful situation. 

However, leak respiration under oligomycin was more stable and better reproducible 
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compared to leak respiration after permeabilization. Both approaches to assess leak 

respiration have their advantages and disadvantages. On the one hand oligomycin 

repressed the uncoupled respiration under FCCP and the real maximal uncoupled 

respiration could not be determined. On the other hand, leak respiration after permeabilizing 

with digitonin resulted in a reduced OXPHOS capacity due to a lot of stress for the cells.  

PBMCs are isolated by density gradient centrifugation and it is recommended to isolate 

cells directly after taking the blood sample (Hsiao and Hoppel 2018, Corkum et al. 2015). 

Results of the present study demonstrated that PBMCs can also be isolated a few hours 

after taking the blood sample, without affecting the mitochondrial activity. This observation 

is in line with the results of a previous master thesis (Schicker 2017), and another 

publication (Karabatsiakis et al. 2014). Even no differences in fresh and frozen PBMCs was 

observed (Karabatsiakis et al. 2014), but if PBMCs could also be cryopreserved for a longer 

time period has to be further analyzed. One limitation of the present study was the 

availability of two high-resolution respirometer, therefore the measurement was limited to 

four blood samples simultaneously. The storage of blood samples, respective 

cryopreservation of PBMCs, has the advantage that several blood samples of different 

subjects could be taken on one day, and assess mitochondrial activity later on. 

 

Based on these results, there is no protocol where all respiratory states can perfectly be 

determined. Depending on the scientific question the different options have to be 

considered carefully with the knowledge that not every respiratory state can accurately be 

determined at once. First steps to store blood samples have been undertaken and there are 

some possibilities to assess mitochondrial activity of PBMCs to a later time point. 

 

4.2.2 Mitochondrial activity of PBMCs has no influence on resting metabolic rate 
variation 

Inter-individual variation of RMR is mainly explained by variables like sex, age, fat mass, 

FFM and body temperature. Adjusting RMR for these influencing variables, a residual 

variation of about 20% remains. Recently, mitochondrial activity of skeletal muscles was 

found to be associated with whole body oxygen consumption (Larsen et al. 2011, Wijers et 

al. 2008). Energy expenditure, respectively RMR, is determined by measuring oxygen 

consumption and carbon dioxide production (Atwater 1905). Since mitochondrial respiration 

takes about 90% of the total oxygen turnover to produce energy in form of ATP by oxidative 

phosphorylation the question arises whether individual difference in mitochondrial activity 

account for the inter-individual variation of RMR. 
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To assess whether PBMCs could be used as a biomarker to determine mitochondrial 

activity, respiratory capacity of PBMCs was determined. The respiratory activity of PBMCs 

was not associated with the residual variation of RMR and therefore individual differences 

in mitochondrial activity did not explain inter-individual variation of RMR. Earlier, basal 

metabolic rate (BMR) was associated with mitochondrial respiration (Porter and Brand 

1993). Mitochondrial proton leak correlates with BMR and it was suggested to be an 

important parameter accounting for interspecies variation of BMR in mammals (Porter and 

Brand 1993), thus it was proposed that proton leak contributes with 20 - 25% to the in vivo 

BMR (Rolfe and Brand 1996). In contrast, recent results found no association of proton leak 

and BMR (Larsen et al. 2011). Furthermore, mitochondrial coupling, meaning the ATP 

produced per consumed oxygen, was not associated with BMR (Befroy et al. 2008). 

However, an increased RMR was associated with a reduced oxygen affinity of skeletal 

muscle mitochondria (Larsen et al. 2011). Thereby the hypothesis was raised that 

differences in the oxygen affinity of mitochondria explain inter-individual variation in RMR 

(Larsen et al. 2011). So far, there is no clear correlation of mitochondria respiration and 

RMR. 

Previously, energy expenditure was associated with an increase in uncoupling respiration 

of skeletal muscle cells, upon a cold stimulus (Wijers et al. 2008). Since FFM and fat mass 

are major predictors of metabolic rate, mitochondrial respiration was predominantly studied 

in skeletal muscle and adipocytes (Jheng et al. 2015, Liesa and Shirihai 2013, Rustin et al. 

1994). In contrast to skeletal muscle and adipocytes, PBMCs represent a very small fraction 

of cells with less than 1% of the whole body cell mass, which is expected to be 3.72 ´ 10^13 

cells (Bianconi et al. 2013). Nevertheless, PBMCs have the advantage to be accessible by 

a minimal invasive procedure of a venipuncture (Ost et al. 2018), compared to invasive 

procedure of a muscle biopsy. As circulating cells PBMCs might reflect systemic changes 

affecting RMR variation, whereas adipocytes and muscle cells reflect only local changes of 

adipose tissue and muscle.  

 

Leukocyte number was found to explain part of the residual variation of RMR. An increased 

leukocyte number was associated with an increased RMR. Leukocytes are part of the 

PBMC population, which is a heterogenous cell population, consisting of lymphocytes, 

monocytes and dendritic cells (Kleiveland 2015). The frequency and composition of these 

cells varies among individuals (Kleiveland 2015). Since leukocytes are part of the immune 

system, they may increase upon an infection. The correlation of leukocytes and RMR might 

therefore imply that minor immune reactions play a role in energy requirement. Not only 

leukocytes, but also monocytes and lymphocytes respond to an immune activation. 
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Especially T-cells, belonging to lymphocytes, can respond to stressful situations by using 

their spare respiratory capacity to generate additional energy (van der Windt et al. 2012). 

For the present study, respiration measurements were performed with a defined number of 

PBMCs, to obtain comparable results. However, there was a big variation of PBMC number 

between individuals. Since an increased leukocyte number was associated with an 

increased RMR also the increased PBMC number may explain inter-individual difference in 

RMR. Moreover, in a recent master thesis an increased leukocyte number was associated 

with a higher number of isolated PBMCs (Schicker 2017). Differential composition and 

frequency of PBMCs may play a role in RMR variation. Additionally, measurements of 

isolated T-cells or other singular cell populations may explain individual differences in RMR. 

Taken together, mitochondria play an important role in energy metabolism, whether and 

how mitochondrial respiration affects resting metabolic rate is not clear. The simple, non-

invasive and fast approach to assess mitochondrial activity is a clear advantage of PBMCs. 

However, the possibility of PBMCs as a biomarker for mitochondrial activity in the context 

of energy homeostasis has to be further analyzed, regarding the different cell populations 

of PBMCs, their frequency and individual activity. 

 

4.2.3 Declining mitochondrial activity of peripheral blood mononuclear cells with 
age 

The process of aging is associated with physiological changes and loss of fitness. Age 

related changes are presented in a decline of muscle mass, increase in fat mass, reduced 

RMR (Bosy-Westphal et al. 2003) and mitochondrial changes (Harman 1956), arising the 

question whether general physiological processes of aging are reflected in the mitochondrial 

activity of PBMCs. 

 

Across the three adult cohorts of enable, an increased proton leak was associated with 

increasing age. The tendency of a reduced uncoupled respiration and increased leak 

respiration resulted in a significantly reduced uncoupled respiratory control ratio (RCRu), 

indicating an impaired mitochondrial function in elder subjects. The reduced mitochondrial 

function was accompanied by a trend of reduced basal respiration and OXPHOS capacity. 

Early on, proton leakage was described to be a factor contributing to the process of aging, 

due to an impaired inner mitochondrial membrane (Ames et al. 1995). Thus, aging was 

associated with a reduced efficiency of the respiratory chain (Green, Galluzzi and Kroemer 

2011), reflected in a reduced OXPHOS capacity of skeletal muscle cells (Trounce, Byrne 

and Marzuki 1989), resulting in a reduced ATP production (Green et al. 2011). 
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The efficiency of ATP generation is based on the integrity of the inner mitochondrial 

membrane, to build up a membrane potential without compensating too much for proton 

leakage. Cardiolipin is a large phospholipid comprising 20% of the inner mitochondrial 

membrane and an important factor to keep up the membrane integrity. Therefore, cardiolipin 

plays an important role in the OXPHOS efficiency, respectively ATP production (Chicco and 

Sparagna 2007, Shigenaga, Hagen and Ames 1994). In addition, aging was associated with 

increasing levels of reactive oxygen species (ROS) (Kauppila, Kauppila and Larsson 2017), 

which affect cardiolipin by peroxidation (Chicco and Sparagna 2007), resulting in a reduced 

membrane integrity. The reduced levels of cardiolipin lead to an increase in proton leak 

(Ames et al. 1995) and reduced ATP generation (Green et al. 2011) in aging subjects. These 

age-related changes were observed in the respiratory capacity of PBMCs in the enable 

cohort. Elderly exhibited an increased proton leak and a reduced efficiency to generate 

ATP, reflected in a mildly reduced OXPHOS capacity, which might be due to changes of 

the membrane integrity of the inner-mitochondrial membrane. 

 

 

 
Figure 41: Physiological changes associated with agingAging is associated with some mechanisms which 

are ‘upregulated’ and some are ‘downregulated’. Upregulated mechanisms like an increased production of 

reactive oxygen species (ROS), increased proton leak and mitochondrial dysfunction are presented along the 

red arrow. Downregulated mechanisms like ATP production, autophagy and cardiolipin are presented along the 

brown arrow. Enzymes involved in autophagy are ATG5 and ATG7, found to be downregulated in aging 

subjects. These mechanisms do not elucidate if aging is a cause or consequence of these processes. 
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The observation of age-related changes in mitochondrial respiration might also be due to 

an accumulation of damaged mitochondria. Damaged mitochondria are removed by 

autophagy (Kroemer, Marino and Levine 2010), which is triggered by enzymes and proteins 

(Tait and Green 2010). Autophagy and the related enzymes and proteins are reduced in 

aging subjects (Lipinski et al. 2010), leading to an accumulation of damaged mitochondria. 

The accumulation of damaged mitochondria may favor the development of age-related 

diseases like diabetes mellitus type 2 or neurodegenerative diseases (Sebastian et al. 

2017). 

 

Mitochondrial activity of PBMCs were associated with age related changes, presented by 

an increased proton leak and the tendency of a reduced ATP generation. These 

observations could be due to an increased proportion of damaged mitochondria or reduced 

cardiolipin levels. Analyzing cardiolipin and ROS production could further elucidate age 

related changes in mitochondria of PBMCs. 

 

4.3 Gut microbiota composition does not explain the residual variation of resting 
metabolic rate 

The gut microbiome is a complex ecosystem consisting of almost 38 billion bacteria (Sender 

et al. 2016). In the context of obesity an altered gut microbiota composition was found in 

obese compared to lean subjects (Scheepers et al. 2015). Overweight individuals exhibit 

an increased ratio of Firmicutes to Bacteroidetes (Ley et al. 2006, Castaner et al. 2018, 

Abdallah Ismail et al. 2011, Ley et al. 2005), with the increased capacity to extract energy 

from the diet (Turnbaugh et al. 2006, Shen et al. 2014). The question arises whether an 

altered gut microbiota composition influences energy homeostasis and thereby RMR. 

Association of RMR with gut microbiota diversity and bacteria from the family level 

disappeared after RMR was adjusted by the influencing variables sex, age, fat mass, FFM, 

body temperature, leukocytes, fT3, MCHC, creatinine and blood pressure, demonstrating 

clearly that gut microbiota composition has no direct influence on RMR variation. These 

findings were supported by individual correlation, neural network and principal component 

analysis on all taxonomic levels. Analysis of gut microbiota and the variables influencing 

RMR revealed a negative correlation of the family bacteria Ruminococcaceae, 

Porphyromondaceae and Rikenellaceae with FFM (Figure 29). This explained the previous 

observed association of these gut bacteria with RMR, since FFM is a major determinant of 

RMR.  

Ruminococcaceae belong to the phylum of Firmicutes, which have been associated with 

obesity (Abdallah Ismail et al. 2011, Ley et al. 2006, Beaumont et al. 2016). The abundance 
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of Ruminococcaceae is associated with body composition (Smith-Brown et al. 2018), fat 

distribution (Min et al. 2019) and visceral fat mass (Beaumont et al. 2016). Furthermore, 

they are negatively associated with the metabolic syndrome (Ferrer et al. 2013, He et al. 

2018), which is the occurrence of several symptoms like abdominal obesity and high serum 

triglycerides among other things. Different studies have observed a correlation of an 

increased abundance of Ruminococcaceae and fat mass, respectively overweight. This 

observation is consistent with the association of an increased abundance of Firmicutes in 

obese people, as Ruminococcaceae belong to the phylum of Firmicutes. However, the 

results of the present study showed an opposite trend. Adjusting FFM for body weight 

eliminated the correlation of FFM and Ruminococcaceae (data not shown), illustrating the 

observed correlation be due to total body mass and not body composition. This presented 

a reduced body mass to be associated with an increased abundance of Ruminococcaceae. 

This is the opposite as described in literature where a reduced body weight is associated 

with reduced abundance of Firmicutes respectively Ruminococcaceae. The results of this 

study rather indicated that Ruminococcaceae do not behave like ‘typical’ Firmicutes, which 

increase with increasing body mass. 

 

The family Rikenellaceae and Porphyromondaceae were negatively associated with FFM. 

Rikenellaceae and Porphyromondaceae belong to the phylum of Bacteroidetes. 

Bacteroidetes stand for a healthy, balanced diet (David et al. 2014) and are increased in 

lean subjects (Ley et al. 2005). Adjusting FFM for body mass eliminated the correlation of 

Porphyromondaceae with FFM, indicating an association with body mass and not solely 

FFM (data not shown). The association of an increased abundance of Porphyromondaceae 

and reduced body mass is in line with the observation of an increased abundance of 

Bacteroidetes in lean subjects, as Porphyromondaceae belong to the phylum of 

Bacteroidetes.  

The correlation of Rikenellaceae and FFM still existed after adjusting FFM for body weight 

(data not shown). This presents a direct association of reduced FFM with increased 

abundance of Rikenellaceae. However, only a few subjects illustrated a really high 

abundance of Rikenellaceae. This indicates some special circumstances lead to an 

increased abundance of Rikenellaceae and reduced FFM but not reduced total body weight. 

These subjects should be analyzed separately to investigate if a specific diet or a reduced 

protein intake is leading to this phenomenon.  

 

Taken together, not every bacterium belonging to the phylum of Firmicutes and 

Bacteroidetes can simply be accredited with their respective characteristics. Findings of the 
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present study illustrate the difficulty to identify gut microbiota associated with body 

composition, respectively body weight. Any association of gut microbiota and RMR 

disappeared when the effect of FFM and other predictors of RMR was removed, 

demonstrating clearly that gut microbiota composition does not account for RMR variation.  

 

4.4 Liver fat in the context of resting metabolic rate and abdominal obesity 

Inter-individual variation of RMR is determined by variables like body composition, sex, age 

and clinical blood parameters. FFM accounts for the biggest part of the inter-individual 

variation with 30 - 60% and was therefore analyzed in several studies regarding its influence 

on RMR (Gallagher et al. 2006, Gallagher et al. 1998, Javed et al. 2010, Bosy-Westphal et 

al. 2004). However, FFM is not a homogenous tissue and is resembled by high and low 

metabolic rate organs. HMRO are heart, liver, spleen, kidneys and brain, which account for 

less than 6% of body weight but for 60 - 70% of RMR (Elia 1992, Gallagher et al. 1998). 

Whereas, skeletal muscle, as a low metabolic rate organ (LMRO), accounts only for 

20 - 30% of RMR and resembles 40 - 50% of the body weight (Gallagher et al. 1998, Elia 

1992). Commonly high and low metabolic rate organs are combined in FFM and are not 

differentiated. A previous study showed that additionally 5% of the inter-individual variation 

in RMR are explained by the size of HMRO (Javed et al. 2010). Nevertheless, measuring 

only organ size does not elucidate if changes in the organ density or lipid accumulation 

affect the individual organ activity (Javed et al. 2010). 

In the present study, liver fat was measured instead of liver activity, based on the hypothesis 

that increasing amounts of fat result in a reduced organ activity and therefore explain part 

of the residual variation in RMR. The results did not show an association of liver fat and 

RMR variation. The hypothesis, that increasing liver fat would reduce the specific organ 

metabolic rate, was raised before (Bosy-Westphal et al. 2004). However, in a subjects with 

nonalcoholic steatohepatitis the calculated RMR, based on a theoretical liver fat content of 

50%, underestimated the measured RMR (Bosy-Westphal et al. 2004). This led to the 

assumption that increasing amounts of liver fat lead to a hypermetabolic state to 

compensate for fat infiltration (Bosy-Westphal et al. 2004). This is in line with the 

observation of an increased RMR in subjects with liver cirrhosis, presenting also a 

hypermetabolic state (Perseghin et al. 2002). In the present study no association of liver fat 

and RMR was observed, and also no tendency indicating an association. This might be due 

to the small study cohort existing of only 30 subjects, respectively five subjects with really 

high liver fat content. To analyze the correlation of liver fat on RMR variation a larger sample 

size with a larger number of high liver fat might be necessary. 
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For a long time, liver biopsy was the gold standard to determine liver fat, respectively hepatic 

steatosis (Bravo, Sheth and Chopra 2001, Gaidos, Hillner and Sanyal 2008). A biopsy is an 

invasive method and therefore unsuitable for the daily and frequent use. In recent years 

magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) have 

become the gold standard to determine liver fat (Reeder, Hu and Sirlin 2012). However, the 

method of MRI and MRS to determine liver fat by proton density fat fraction (PDFF) is limited 

and not available at every hospital or study center. Fatty liver is associated with abdominal 

obesity, especially VAT, but so far the amount of liver fat cannot easily be assessed by 

anthropometric measurements.  

Subjects of the present study were selected based on VAT and body mass index (BMI), to 

increase the probability of high liver fat. Visceral adipose tissue and BMI were both strongly 

associated with the amount of liver fat. Additionally, the anthropometric parameters waist-

circumference and waist to hip ratio (WHR) were associated with liver fat, whereas the mass 

of subcutaneous adipose tissue (SAT) was not related to liver fat. The measurement of 

waist-circumference was already described to be a simple method to determine the 

abdominal fat distribution, respectively VAT (Alberti et al. 2005, Alberti and Zimmet 1998), 

which is strongly associated with liver fat (Kotronen et al. 2007, Rocha et al. 2005, Jakobsen 

et al. 2007). The parameter WHR describes more in detail how the abdominal fat is 

distributed and would therefore be a more precise parameter to be associated with liver fat. 

However, the present results showed a weaker association of liver fat with WHR than with 

waist-circumference.  

Liver fat was described to be associated with BMI (Wilman et al. 2017). This observation is 

in line with the present study results, where liver fat was related to BMI. Nevertheless, a 

detailed look at the distribution of BMI and liver fat, revealed some subjects with really high 

liver fat content but pre-obese BMI, whereas some subjects of the obesity class I and II had 

only slightly elevated liver fat content. BMI does not distinguish between lean and fat mass 

and was therefore depicted to be an imprecise parameter to determine adiposity (Romero-

Corral et al. 2008). The results of the present study revealed VAT to be a better predictor 

of liver fat, compared to BMI. Visceral adipose tissue was shown before to be associated 

with liver fat, more than any other anthropometric parameter (Kotronen et al. 2007, 

Speliotes et al. 2010). Furthermore, there is no association of SAT and liver fat (Kelley et 

al. 2003), respectively the correlation is controversial (Jakobsen et al. 2007). These 

observations describe the inaccuracy of BMI to determine liver fat, due to neglecting the 

distribution of lean and fat tissue, respectively the distribution of adipose tissue depos, 

described by SAT and VAT. Thus, by using BMI as a parameter to determine adiposity the 

phenomenon of thin outside, fat inside (TOFI) phenotype is neglected, where a low BMI is 



Discussion 

90 
 
 

associated with a higher than expected visceral fat content (Thomas et al. 2012). The 

present study presents several anthropometric parameters to be associated with fatty liver. 

Thereby VAT was identified to be the best predictor of fatty liver, describing most 

appropriate abdominal obesity due to its unique location.  

 

Taken together, increasing amounts of liver fat were associated with several parameters 

describing abdominal obesity. Among the analyzed anthropometric parameters, VAT 

seemed to be the best predictor of fatty liver, compared to BMI which does not distinguish 

between the different fat depots, respectively lean and fat mass. HMRO were shown to 

contribute to the inter-individual variation of RMR (Javed et al. 2010). Based on the 

hypothesis that fat infiltration might reduce the specific organ metabolic rate of liver, liver fat 

content was analyzed regarding RMR variation. However, the amount of fat in the HMRO 

liver did not account for the inter-individual variation of RMR. 

 

4.5 Conclusion 

Resting metabolic rate is characterized by a high inter-individual variation, which cannot 

completely be explained. Understanding the underlying physiological processes causing 

the inter-interindividual variation of RMR is important to accurately predict RMR by 

prediction model. To identify the components contributing to RMR variation a prediction 

model was generated with anthropometric data and body temperature, explaining 80% of 

the variability. In a more complex model, part of the residual variation in RMR was explained 

by the blood parameters, free triiodothyronine, leukocytes, creatinine, MCHC and blood 

pressure, accounting for a substantial predictive improvement. Based on this prediction 

model the influence of gut microbiota composition, liver metabolism and respiratory capacity 

of PBMCs was analyzed regarding the inter-individual variation of RMR. 

In the first part, the respiratory capacity of PBMCs was analyzed as a biomarker for 

mitochondrial activity on RMR variation. As mitochondria play an essential role in energy 

homeostasis, this study adds to the understanding of mitochondrial function of circulating 

PBMCs on RMR. The respiratory capacity of PBMCs was not associated with the variability 

of RMR. However, the respiratory capacity of PBMCs was shown to be decreased in aging 

subjects. Since RMR decreases with aging, the declined mitochondrial function of PBMCs 

contributes to the understanding of this aging process. This study presents a possibility to 

determine mitochondrial activity of PBMCs by respirometry, which is not invasive or requires 

expensive equipment like other approaches to measure mitochondrial function in humans 

and has therefore a great potential to assess mitochondrial function in large interventional 

or epidemiological studies. 
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In the second part, gut microbiota composition was analyzed regarding its influence on RMR 

variation. Gut microbiota was discussed to play an important role in energy homeostasis 

due to the association with obesity and the potential to extract additional energy from the 

diet. The present data confirm by several statistical approaches that gut microbiota is not a 

significant predictor of RMR. When the effect of FFM and other predictors of RMR were 

removed, any association of gut microbiota and RMR disappeared, which suggests that 

previous links between RMR and gut microbiota composition occurred because of 

inadequate adjustment for the effect of factors contributing to RMR. 

In the third part, liver metabolism was studied regarding its influence on the inter-individual 

variation of RMR. Liver, as a high metabolic rate organ, plays an important role in energy 

expenditure. Previously, a hypothesis was formulated that fat infiltration might reduce the 

organ specific metabolic rate of liver. The present results showed no evidence for a 

decreasing organ metabolic rate due to intrahepatic fat accumulation and intrahepatic fat 

was not associated with inter-individual variation of RMR. Determining liver fat by MRI 

based PDFF was shown to be an effective and non-invasive method, allowing a fast and 

easy assessment of liver fat, which is important in the context of overweight and metabolic 

diseases. 

 

In conclusion, a novel prediction model for RMR is presented, which will be useful in human 

studies due to its high precision to predict RMR. The connection of blood parameters, blood 

pressure, gut microbiota composition, liver fat and respiratory capacity of PBMCs on RMR 

variation are of added value to better understand the components of RMR causing the inter-

individual variation. 
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