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A classical nonrelativistic effective field theory for a real Lorentz-scalar field ϕ is most conveniently
formulated in terms of a complex scalar field ψ . There have been two derivations of effective Lagrangians
for the complex field ψ in which terms in the effective potential were determined to order ðψ�ψÞ4. We point
out an error in each of the effective Lagrangians. After correcting the errors, we demonstrate the
equivalence of the two effective Lagrangians by verifying that they both reproduce T-matrix elements of
the relativistic real scalar field theory and by also constructing a redefinition of the complex field ψ that
transforms terms in one effective Lagrangian into the corresponding terms of the other.
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I. INTRODUCTION

Scalar fields play an important role in particle physics
and in cosmology. A classical scalar field can arise as the
vacuum expectation value of an elementary quantum scalar
field or of a scalar composite operator of quantum fields.
An example of an elementary scalar field is the Higgs field,
whose vacuum expectation value generates the spontaneous
breaking of the SUð2Þ ×Uð1Þ symmetry of the Standard
Model of particle physics. An example of a scalar field that
is not elementary is a pion field, which can be expressed
as a composite operator constructed from the quark fields
of QCD. A scalar field can arise as the Goldstone mode
of a global symmetry. For example, the axion field is a
Goldstone mode of a Uð1Þ symmetry of an extension of the
Standard Model [1]. Scalar fields are sometimes used as a
simple model for phenomena that might actually be more
complicated. For example, the inflation of the early
Universe is often described by a single inflaton field.
A Bose-Einstein condensate of spin-0 bosons can also

be described by a classical scalar field. A real Lorentz-
scalar field ϕðxÞ has quanta that are identical spin-0 bosons.

The bosons are their own antiparticles, but if the annihi-
lation reaction is suppressed, we can consider many-body
systems of the bosons. A Bose-Einstein condensate is a
system with a large number of bosons in the same quantum
state. The condensate can be described by a classical
complex mean field ψðxÞ that is proportional to the common
wave function of the bosons and is normalized so that ψ�ψ
is the number density of bosons. The mean field can be
interpreted as the vacuum expectation value of a non-
relativistic quantum field ψðxÞ. It is therefore plausible that
the nonrelativistic reduction of the relativistic quantum field
theory for a real scalar field ϕðxÞ gives a nonrelativistic
quantum field theory with a complex scalar field ψðxÞ.
It is somewhat counterintuitive that the nonrelativistic

reduction of the real scalar field ϕðxÞ could be a complex
scalar field ψðxÞ, because its real and imaginary compo-
nents are two real scalar fields. Despite the mismatch in the
number of fields, they describe the same number of degrees
of freedom. The resolution of this puzzle is that the
relativistic Lagrangian has two time derivatives of ϕðxÞ,
while the nonrelativistic Lagrangian has only a single time
derivative of ψðxÞ. The number of propagating degrees of
freedom is equal to the number of real fields if the
Lagrangian is second order in their time derivatives, and
it is equal to half the number of real fields if the Lagrangian
is first order in their time derivatives.
A Bose-Einstein condensate of identical spin-0 bosons of

mass m whose number density varies sufficiently slowly
in space and time can be described by a classical mean
field ψðxÞ with only wavelengths large compared to 2π=m
and with only angular frequencies small compared to m.
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The connection between the real field ϕðxÞ and the
complex field ψðxÞ can be expressed naively as

ϕðr; tÞ ¼ 1ffiffiffiffiffiffiffi
2m

p ½ψðr; tÞe−imt þ ψ�ðr; tÞeþimt�: ð1Þ

A naive effective Lagrangian for ψ can be obtained by
substituting the expression in Eq. (1) into the Lagrangian
for ϕ and omitting all terms with frequencies of order m.
This effective Lagrangian may be adequate if the particles
have no interactions. However if there are interactions, the
field ϕðr; tÞ necessarily has frequencies that are harmonics
of the fundamental angular frequency m. The higher
harmonics and other angular frequencies whose difference
from m is of order m arise either from particles that are
highly virtual or from relativistic particles that are on-shell.
In either case, their effects on nonrelativistic particles can
be localized to within a distance 1=m [2]. Thus it should be
possible to develop a classical nonrelativistic effective field
theory (CNREFT) with a local Lagrangian that reproduces
the classical relativistic field theory with systematically
improvable accuracy at long wavelengths and at angular
frequencies close to m.
An interesting application of CNREFT is to axions,

which are a well-motivated candidate for the particles that
make up the dark matter of the Universe [1]. The axions
produced in the early Universe are highly nonrelativistic
and have huge occupation numbers [3–7]. Gravitational
interactions may be able to thermalize the axions into a
Bose-Einstein condensate (BEC) [8]. Some aspects of the
axion BEC can be described more simply using a CNREFT
with complex field ψðxÞ than with the relativistic field
theory with real field ϕðxÞ.
Another interesting application of CNREFT is to oscil-

lons. Oscillons are approximately localized solutions of the
classical field equations for a real scalar field that remain
approximately periodic for a very large number of oscil-
lation periods. They were first discovered by Bogolubsky
and Makhankov [9]. They were subsequently studied by
Gleiser, who proposed the name “oscillons” [10]. In a real
scalar field theory with an interaction potential VðϕÞ that
allows oscillons, a spherically symmetric initial configu-
ration that is localized in a region much larger than the
Compton wavelength 2π=m will typically relax to an
oscillon configuration by radiating away a significant
fraction of its initial energy. After remaining apparently
stable for a very large number of oscillations with angular
frequency near m, the oscillon becomes unstable and it
rather quickly disappears into outgoing waves. Assuming
the oscillon configuration has only long wavelengths much
larger than 2π=m, it can be described more simply by
CNREFT with the slowly varying complex field ψðr; tÞ
instead of the relativistic field theory with the rapidly
oscillating real field ϕðr; tÞ.
A CNREFT for a real scalar field ϕðxÞ with interactions

given by a potential VðϕÞwas first constructed explicitly by

us in Ref. [11] using effective field theory methods. The
effective field theory for the complex field ψ was called
axion EFT, because it was applied to the axion field whose
potential VðϕÞ is a periodic function of ϕ. The effective
Lagrangian has the conventional form for a nonrelativistic
field theory, in which the only term that depends on the time
derivative of ψ is a single term with one time derivative. The
real part of the effective potential Veffðψ�ψÞ for the complex
field was calculated to fifth order in ψ�ψ for a general
potential VðϕÞ that is invariant under the Z2 symmetry
ϕðxÞ → −ϕðxÞ and has a minimum at ϕ ¼ 0. In Ref. [12],
the imaginary part of the effective potential was calculated
to sixth order in ψ�ψ . If the power series for the potential
VðϕÞ has a finite radius of convergence, the power series for
the effective potential Veffðψ�ψÞ also has a finite radius of
convergence. In Ref. [11], a resummation method was
developed to calculate Veffðψ�ψÞ beyond the radius of
convergence of its power series.
There have been several subsequent efforts to derive a

CNREFT for a relativistic field theory with a real scalar field.
In Ref. [13], Mukaida, Takimoto and Yamada constructed
the nonrelativistic effective Lagrangian for ψðxÞ by integrat-
ing out relativistic fluctuations of ϕðxÞ. Their effective
Lagrangian for ψ is completely different from that in
Ref. [11], having a term with two time derivatives of ψ
and an effective potential that is different beginning with the
ðψ�ψÞ3 term. In Ref. [14], Namjoo, Guth, and Kaiser
discovered an exact transformation between the real scalar
field ϕðxÞ and a complex field ψðxÞ that is a generalization
of the naive relation in Eq. (1) which is nonlocal in space.
They used the transformation to verify the ðψ�ψÞ3 term in
the effective potential Veffðψ�ψÞ in Ref. [11]. In Ref. [15],
Eby, Suranyi, and Wijewardhana developed a method that
gives a sequence of improvements to equations for a
complex field ψðxÞ with harmonic time dependence.
In this paper, we elucidate the relations between the

classical effective field theories in Refs. [11,13–15]. All
four papers give results that depend on the ðψ�ψÞ3 term in
the effective potential, and they are all consistent at that
order. The only papers in which ðψ�ψÞ4 terms in the
effective potential were determined were Refs. [11,13].
We identify an error in the effective Lagrangian in both
papers. In Ref. [11], the failure to take into account gradient
interaction terms in the effective Lagrangian led to an
error in the coefficient of the ðψ�ψÞ4 term in the effective
potential. In Ref. [13], the error in the effective Lagrangian
is the omission of an interaction term with time derivatives.
After correcting the errors, we demonstrate the equivalence
of the effective Lagrangians in Refs. [11,13] by verifying
that they both reproduce T-matrix elements of the relativ-
istic real scalar field theory and by constructing a redefi-
nition of the complex field ψ that transforms terms in one
effective Lagrangian into the corresponding terms of
the other.
We begin in Sec. II by defining the relativistic field

theory of the real scalar field. In Sec. III, we describe the
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CNREFTwe constructed in Ref. [11] and we point out the
error in the calculation of the effective potential. In Sec. IV,
we describe the exact transformation between the real
scalar field ϕ and a complex field ψ discovered by
Namjoo et al. in Ref. [14]. In Sec. V, we describe the
CNREFT constructed byMukaida et al. in Ref. [13] and we
point out the time-derivative interaction term that was
omitted from their effective Lagrangian. After correcting
the errors in the effective Lagrangians in Refs. [11,13], we
demonstrate their equivalence in two different ways. In
Sec. VI, we show that the equations for the field ψðxÞ
with harmonic time dependence derived by Eby et al. in
Ref. [15] are consistent with the field equation from the
effective Lagrangian in Ref. [13]. We summarize our results
in Sec. VII.

II. RELATIVISTIC FIELD THEORY

The Lorentz-invariant Lagrangian for a real scalar field
ϕðxÞ is

L ¼ 1

2
∂μϕ∂μϕ −

1

2
m2ϕ2 − VðϕÞ; ð2Þ

where m is a positive parameter and VðϕÞ is the interaction
potential energy density. Quantization of the noninteracting
field theory with V ¼ 0 produces quanta that are spin-0
bosons with mass m and with the relativistic energy-
momentum relation

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
: ð3Þ

The classical equations of motion are

ϕ̈ ¼ ∇2ϕ −m2ϕ − V 0ðϕÞ: ð4Þ

In the classical theory, the energy-momentum relation in
Eq. (3) gives the dispersion relation for low-amplitude
waves with angular frequency E and wave vector p.
We assume that ϕ ¼ 0 is a minimum of VðϕÞ. We choose

to consider field theories with the Z2 symmetry ϕ → −ϕ,
which requires V to be an even function of ϕ. It can
therefore be expanded in powers of ϕ2:

VðϕÞ ¼ m2f2
X∞
n¼2

λ2n
ð2nÞ! ðϕ

2=f2Þn; ð5Þ

where the coefficients λ2n are dimensionless coupling
constants. The positive parameter f provides a loop-
counting device: if m=f is small, loop diagrams are
suppressed by a factor of m2=f2 for every loop. Our
primary interest is in the classical field theory, so we
assume m ≪ f, and we usually keep only the leading term
in the expansion in powers of m=f.

For a fundamental quantum field theory, renormaliz-
ability requires the series for the effective potential in
Eq. (5) to terminate at the power ϕ4. This requirement is
unnecessary for a classical field theory or for an effective
quantum field theory. If the series terminates with some
maximum even power ϕ2N, classical stability requires its
coupling constant λ2N to be positive. An important example
in which the series does not terminate is the sine-Gordon
model, in which the potential energy density is

1

2
m2ϕ2 þ VðϕÞ ¼ m2f2½1 − cosðϕ=fÞ�: ð6Þ

This model is often used as an effective field theory for
the axion.
Oscillons were first discovered by Bogolubsky and

Makhankov in a real scalar field theory with a ϕ4 interaction
potential with a Z2 symmetry but with m2 < 0 [9]. Our
assumption that VðϕÞ has a minimum at ϕ ¼ 0 excludes this
symmetric double-well potential. Oscillons require an inter-
action potential such that m2 þ V 00ðϕÞ < 0 for some region
of ϕ. They arise in the sine-Gordon model [16]. They also
arise in a model whose interaction potential has ϕ4 and ϕ6

terms with λ4 < 0 and λ6 > 0.

III. NONRELATIVISTIC EFFECTIVE
FIELD THEORY

Identical relativistic spin-0 bosons can be described by a
field theory with a real Lorentz-scalar field ϕðxÞ. However
nonrelativistic particles can be described more simply
by a nonrelativistic field theory with a complex scalar
field ψðr; tÞ. A complex field can be introduced naively by
expressing the real scalar field in the form in Eq. (1), where
ψðr; tÞ has only wavelengths large compared to 1=m and
only frequencies small compared to m. A naive effective
Lagrangian for ψ can be obtained by inserting the expres-
sion for ϕ in Eq. (1) into the Lagrangian in Eq. (2),
dropping terms with a rapidly changing phase factor of the
form expðinmtÞ, where n is a nonzero integer, and dropping
terms in which the time derivative ψ̇ is divided by m. The
resulting Lagrangian has the form

Lnaive ¼
i
2
ðψ�ψ̇ − ψ̇�ψÞ − 1

2m
∇ψ� · ∇ψ − Vnaiveðψ�ψÞ:

ð7Þ
If the potential energy density VðϕÞ for the real scalar field
has the power series in Eq. (5), the power series for the
naive effective potential is

Vnaiveðψ�ψÞ ¼ m2f2
X∞
j¼2

λ2j
ðj!Þ2

�
ψ�ψ
2mf2

�
j
: ð8Þ

A nonrelativistic effective field theory that provides a
systematically improvable approximation to the relativistic
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field theory in the nonrelativistic region can be obtained
rigorously by using effective field theory methods. We
developed a CNREFT for a real Lorentz-scalar field in
Ref. [11]. We called it axion EFT, because we applied it to
the axion field. The effective Lagrangian has the form

Leff ¼
1

2
iðψ�ψ̇ − ψ̇�ψÞ −Heff ; ð9Þ

where Heff depends only on ψ and ψ� and their spatial
derivatives. The effective Lagrangian has a Uð1Þ symmetry
in which the field ψðxÞ is multiplied by a phase. This
ensures that every term has equal numbers of factors of ψ
and ψ�. We refer to a term with n factors of ψ and n factors
of ψ� as an n-body term. The only term that depends on
the time derivative ψ̇ is the one-body term that appears
explicitly in Eq. (9). The effective Hamiltonian density has
the form

Heff ¼ T eff þ ½Veff þWeff � − i½Xeff þ Yeff �: ð10Þ

The kinetic energy density T eff consists of one-body terms
with at least two gradients. The remaining terms are
interaction terms that are two-body and higher, and they
have been separated into real and imaginary parts. The
effective potential Veff − iXeff is a function of ψ�ψ . The
terms in Weff − iYeff have two or more gradients acting on
ψ and ψ�.
The kinetic energy density is

T eff ¼
1

2m
∇ψ� · ∇ψ −

1

8m3
∇2ψ�∇2ψ

þ 1

16m5
∇ð∇2ψ�Þ · ∇ð∇2ψÞ þ � � � : ð11Þ

Only the ∇ψ� · ∇ψ term was given explicitly in Ref. [11].
The terms with additional gradients are needed to repro-
duce the relativistic energy-momentum relation in Eq. (3)
to higher orders in p2=m2.
The real part of the effective potential can be expanded in

powers of ψ�ψ beginning at order ðψ�ψÞ2:

Veffðψ�ψÞ ¼ m2f2
X∞
j¼2

vj
ðj!Þ2

�
ψ�ψ
2mf2

�
j
: ð12Þ

In Ref. [11], the mass energy term mψ�ψ was included in
the effective potential. The equations of motion then imply
that ψðr; tÞ has a multiplicative factor eimt, so it has large
frequencies of order m. In the effective field theory, it is
more appropriate to eliminate the scale m, so that ψðr; tÞ
has only frequencies much smaller than m. We therefore
omit the term mψ�ψ from the effective potential. In the
classical effective field theory, we keep only the leading
terms in the expansions of the real dimensionless coef-
ficients vj in powers of m2=f2. The coefficient vj can be

determined by calculating the tree-level j → j T-matrix
element in the relativistic theory and matching it with the
tree-level T-matrix element in the nonrelativistic EFT in the
limit where the 3-momenta go to zero [11]. The coefficient
vj is determined by the coefficients λ2n in the interaction
potential VðϕÞ for the real scalar field in Eq. (5) with n ≤ j.
The first three coefficients are

v2 ¼ λ4; ð13aÞ

v3 ¼ λ6 −
17

8
λ24; ð13bÞ

v4 ¼ λ8 − 11λ4λ6 þ
125

8
λ34: ð13cÞ

The coefficient v2 is the same as in the naive effective
potential in Eq. (8). The coefficients v3, v4, and v5 were
calculated in Ref. [11], but there were errors in the
coefficients v4 and v5. The error in v4 has been corrected
in Eq. (13c).
The error made in Ref. [11] was assuming that inter-

action terms in Weff , which depend on gradients of ψ and
ψ�, can be ignored in the matching calculations of T-matrix
elements in the limit where the 3-momenta go to zero. In
that limit, the Feynman rule for the j → j vertex in
CNREFT is −ivjm2f2=ð2mf2Þj. These vertices were used
in the matching calculation in Ref. [11]. The resulting
expression for v4 is given by Eq. (13c), with the coefficient
125=8 of λ34 replaced by 49=4. When the gradient inter-
action terms in Weff are taken into account, the vertices
become momentum dependent [17]. For example, at
second order in the 3-momenta, the Feynman rule for
the 2 → 2 vertex with incoming 3-momenta p1 and p2
and outgoing 3-momenta p10 and p20 is −iðλ4=4f2Þ
½1 − ðp21 þ p22 þ p021 þ p022 Þ=ð4m2Þ�. To obtain the correct
coefficient v4 in Eq. (13c), it is necessary to keep terms
in the 2 → 2 vertex up to fourth order in the 3-momenta
and terms in the 3 → 3 vertex up to second order in the
3-momenta, even when matching the 4 → 4 T-matrix
element in the limit where the 3-momenta go to zero.
The imaginary part Xeff of the effective potential is

suppressed relative to Veff by a factor of m2=f2. It can
be expanded in powers of ðψ�ψÞ2 beginning at order
ðψ�ψÞ4 [12]:

Xeffðψ�ψÞ ¼ m4
X∞
j¼2

x2j
½ð2jÞ!�2

�
ψ�ψ
2mf2

�
2j
: ð14Þ

The coefficient x2j can be determined by calculating the
tree-level 2j → 2 T-matrix element for bosons in the
relativistic theory and matching its square with the imagi-
nary part of the tree-level 2j → 2j T-matrix element in
the nonrelativistic EFT in the limit where the incoming
3-momenta go to zero [12]. The coefficients x4 and x6 were
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calculated in Ref. [12]. If the effective Hamiltonian was
Hermitian, the Uð1Þ symmetry of the effective Lagrangian
would imply conservation of the particle number:

N ¼
Z

d3rψ�ψ : ð15Þ

However the Hamiltonian density in Eq. (10) includes the
anti-Hermitian terms −iXeff and −iYeff . The rate of
decrease in the particle number is given by

d
dt

N ¼ −2
Z

d3r½X0
effðψ�ψÞψ�ψ þ � � ��; ð16Þ

where X0
eff denotes the derivative of Xeff with respect to its

argument ψ�ψ . The additional terms not shown explicitly
come from the interaction terms in Yeff , which have
gradients of ψ and ψ�.

IV. NONLOCAL FIELD TRANSFORMATION

In Ref. [14], Namjoo, Guth, and Kaiser discovered an
exact transformation between a relativistic real scalar field
ϕðxÞ with the Lagrangian in Eq. (2) and a complex field
ψðxÞ.1 The Lagrangian for ψ has the form in Eq. (9), with
a one-body term that is first order in the time derivative ψ̇
and a nonlocal Hamiltonian density Hðr; tÞ that depends
explicitly on the time t and depends on the field ψðr0; tÞ
everywhere in space. Their exact relation between ϕðr; tÞ
and ψðr; tÞ is

ϕðr; tÞ ¼ 1ffiffiffiffiffiffiffi
2m

p
�
1−

∇2

m2

�−1=4
ðψðr; tÞe−imt þψ�ðr; tÞeþimtÞ:

ð17Þ

The relation between the real fields ϕ and ϕ̇ and the
complex fields ψ and ψ† is a canonical transformation.
Despite the relation being nonlocal in space, the local
equal-time commutation relations between ϕ and its
canonical momentum imply the canonical local equal-time
commutation relations between ψ and ψ�.
If one considers complex fields ψðr; tÞ with gradients

small compared to 2π=m and frequencies small compared
to m, the Hamiltonian density for ψ can be expanded in
terms of local operators with no explicit time dependence
and no time derivatives [14]. The resulting Lagrangian for
ψ has the same form as the effective Lagrangian for
the CNREFT in Eq. (9). Namjoo et al. used operator
methods based on their exact transformation to derive terms
in the effective Lagrangian [14]. They verified the results in
Eqs. (13a) and (13b) for the coefficients v2 and v3 in the
real part of the effective potential. They also calculated an

interaction term in the effective Lagrangian that depends on
gradients of the field:2

Weff ¼
λ4
16m

�
ψ�ψ
2mf2

�
ðψ�∇2ψ þ ∇2ψ�ψÞ þ � � � : ð18Þ

In Ref. [19], Schiappacasse and Hertzberg claimed that
for the sine-Gordon model, whose interaction potential
is given in Eq. (6), the nonrelativistic EFT with complex
field ψ can only be applied in the dilute region where
ψ�ψ ≪ 2π2mf2, which corresponds to jϕj ≪ 2πf.
Their primary argument was that the shift symmetry ϕ →
ϕþ 2πf of the scalar field associated with the periodicity
of VðϕÞ is not evident in the Lagrangian for the non-
relativistic EFT. Their argument is convincingly refuted by
the discovery of the exact transformation between ϕ and ψ
by Namjoo et al. [14]. This relation makes it clear that the
shift symmetry of ϕ is not broken when the relativistic field
theory is expressed in terms of the complex field ψ , but is
only hidden. It suggests that the shift symmetry may also be
only hidden in the CNREFT.

V. INTEGRATING OUT RELATIVISTIC
FLUCTUATIONS

In Ref. [13], Mukaida, Takimoto and Yamada developed
a CNREFT in order to study oscillons in a relativistic field
theory with a real scalar field. Their effective Lagrangian is
very different from the effective Lagrangian in Ref. [11].
After correcting an error in the effective Lagrangian of
Ref. [13], we demonstrate its equivalence with the cor-
rected effective Lagrangian of Ref. [11]. We show that the
two effective Lagrangians give the same T-matrix elements,
and we show that they differ by a redefinition of the
complex field ψ .

A. MTY effective Lagrangian

In Ref. [13], Mukaida et al. considered a real scalar field
ϕ with an interaction potential VðϕÞ that has a minimum at
ϕ ¼ 0 and that has a term g3ϕ3=3 in addition to even
powers of ϕ. We choose to consider only field theories with
the Z2 symmetry ϕ → −ϕ, so we set g3 ¼ 0.
In Ref. [13], Mukaida et al. derived a nonrelativistic

effective Lagrangian for a complex scalar field ψ by
integrating out relativistic fluctuations of the real field ϕ.
We refer to the CNREFT defined by this Lagrangian as the
MTY effective theory. We choose to rescale their complex
field by a factor of

ffiffiffiffiffiffiffiffiffi
2=m

p
so that the ∇ψ� · ∇ψ term in the

Lagrangian has the standard coefficient −1=2m. The real
part of the MTY effective Lagrangian has the form

1This transformation has appeared previously as a problem in a
textbook [18].

2We have corrected an apparent typographical error in the
power of m in the coefficient.
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Re½LMTY� ¼
i
2
ðψ�ψ̇ − ψ̇�ψÞ þ 1

2m
ψ̇�ψ̇

−
1

2m
∇ψ� · ∇ψ − VMTY −WMTY: ð19Þ

No imaginary terms in the MTY effective Lagrangian were
determined in Ref. [13]. The real part of LMTY has one-body
terms with both one and two time derivatives. The only other
one-body term is the ∇ψ� · ∇ψ term. The interaction terms
consist of the effective potential VMTY, which is a function of
ψ�ψ , and WMTY, which consists of terms with gradients or
time derivatives of ψ and ψ�. The effective potential can be
expressed as a power series in ψ�ψ :

VMTYðψ�ψÞ ¼ m2f2
X∞
j¼2

zj
ðj!Þ2

�
ψ�ψ
2mf2

�
j
: ð20Þ

If the potential VðϕÞ for the real scalar field has the power
series in Eq. (5), the coefficients of the first few terms are

z2 ¼ λ4; ð21aÞ

z3 ¼ λ6 þ
1

8
λ24; ð21bÞ

z4 ¼ λ8 þ xλ4λ6 þ
1

4
λ34: ð21cÞ

The coefficients z2 and z3 and the λ34 term in z4 were
given in Ref. [13]. The λ8 term in z4 can be deduced from
the naive effective potential in Eq. (8). The coefficient x of
λ4λ6 in z4 was not given in Ref. [13]. The terms in WMTY
that were determined in Ref. [13] reduce in the case g3 ¼ 0
to a single three-body interaction term:

WMTY ¼ 1

512m
λ24

�
ψ�ψ
2mf2

�
2

∇ψ� · ∇ψ þ � � � : ð22Þ

The MTY effective Lagrangian in Ref. [13] differs from
the effective Lagrangian in Ref. [11] in many ways. The
effective Lagrangian in Eq. (19) has an additional ψ̇�ψ̇ term
with two time derivatives that does not appear in Eq. (9).
The only one-body term with gradients in Eq. (19) is the
∇ψ� · ∇ψ term, while there are infinitely many terms in the
kinetic energy density in Eq. (11). The function VMTY in
Eq. (20) differs from the effective potential in Eq. (12)
beginning with the ðψ�ψÞ3 term. The two-body two-
gradient interaction term in Eq. (18) does not appear in
Eq. (22). Despite the many differences in their Lagrangians,
the two effective field theories could be equivalent if they
correspond to different definitions of the complex field ψ .

B. T-matrix elements

One way to show the equivalence of two different
effective field theories is to verify that they give the same

T-matrix elements. Equivalently, one can verify that they
both reproduce the low-energy T-matrix elements of the
same fundamental theory. In Ref. [11], the effective
Lagrangian in Eq. (9) was constructed by requiring tree-
level T-matrix elements to match those in the relativistic real
scalar field theory in the low-momentum limit. An error in
the coefficient v4 has been corrected in Ref. (13c). We will
show that the 4 → 4 tree-level T-matrix element from the
MTY effective Lagrangian in Eq. (19) matches that in the
relativistic real scalar field theory in the limit as the external
3-momenta go to 0 provided an interaction term with a time
derivative is added to the MTY Lagrangian. With this
correction, the first few tree-level T-matrix elements also
match those from the effective Lagrangian in Eq. (9). This
suggests that the effective Lagrangian in Eq. (9) and
the MTY effective Lagrangian in Eq. (19) are equivalent.
The equivalence could be proven by showing that all the
T-matrices are equal for all external momenta.
In the relativistic real scalar field theory, the Feynman

rule for a propagator with 4-momentum pμ ¼ ðmþ E; pÞ
is i=ðp2 −m2 þ iϵÞ. The Feynman rule for the 2n vertex
is −iλ2nm2=fn−2. In the MTY effective Lagrangian in
Eq. (19), the complete propagator for a particle with energy
E and momentum p is i=ðE − p2=2mþ E2=2mþ iϵÞ,
which can be expressed more simply as 2im=
ðp2 −m2 þ iϵÞ, The momentum-independent term in the
Feynman rule for the n → n vertex, which comes from the
potential VMTY in Eq. (20), is −iznm2f2=ð2mf2Þn. To
obtain the n → n T-matrix element with the standard
nonrelativistic normalization of single-particle states, the
sum of diagrams in the relativistic theory must be multi-
plied by a factor of ½4ðm2 þ p2Þ�−1=4 for each external line
with momentum p. The diagrams in the nonrelativistic
effective field theory are the subset of diagrams in the
relativistic theory in which the number of incoming and
outgoing lines at every vertex are equal.
We begin by matching 2 → 2 T-matrix elements. The

only tree-level diagram in the relativistic theory is the four-
particle vertex. The only tree-level diagram in the MTY
effective theory is the 2 → 2 vertex. The T-matrix elements
match in the low-momentum limit if the coefficient in the
2 → 2 vertex has the value z2 ¼ λ4 in Eq. (21a).
We proceed to match the 3 → 3 T-matrix elements. The

tree-level diagrams for 3 → 3 scattering in the relativistic
theory are shown in Fig. 1. The tree-level diagrams for
3 → 3 scattering in the MTYeffective theory are the first 2
of the 3 diagrams in Fig. 1. The second diagram matches
exactly in the two theories up to the normalization factors
for external lines. The first diagram in the MTY effective
theory matches the sum of the first and 3rd diagrams in
the relativistic theory in the low-momentum limit if the
coefficient in the 3 → 3 vertex has the value z3 ¼ λ6 þ λ24=8
in Eq. (21b).
Finally we match the 4 → 4 T-matrix elements. The tree-

level diagrams for 4 → 4 scattering in the relativistic theory
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are shown in Fig. 2. The tree-level diagrams for 4 → 4
scattering in the MTYeffective theory are the first six of the
11 diagrams in Fig. 2. The second, third, and fourth
diagrams match exactly in the two theories up to the
normalization factors for external lines. Given the value of
z3, the residues of the poles in the propagators in the fifth
and sixth diagrams match. The sum of the first, fifth, and
sixth diagrams in the effective theory matches the sum of
the first, fifth, sixth, and last five diagrams in the relativistic
theory in the low-momentum limit if the coefficient z4 in
the 4 → 4 vertex has the value

z4 ¼ λ8 þ λ4λ6 −
7

8
λ34: ð23Þ

The coefficient of λ4λ6 agrees with that in Eq. (21c) if
x ¼ 1, but the coefficient of λ34 does not agree.
The source of the disagreement can be traced back to the

failure of the MTY effective Lagrangian to reproduce
correctly the momentum dependence of the 3 → 3 T-matrix
element in the relativistic theory. In the relativistic theory,
the 3 → 3 T-matrix element is the sum of the three
diagrams in Fig. 1. The dependence on the 3-momenta
from the second diagram is correctly reproduced, but the
dependence on the 3-momenta from the third diagram is
not. The dependence of the 3 → 3 vertex on the 3-momenta
enters into the calculation of the 4 → 4 T-matrix element
through the fifth and sixth diagrams in Fig. 2. The problem
can be fixed most easily by adding an interaction term with
time derivatives to the MTY Lagrangian:3

ΔWMTY ¼ −
1

256
λ24

�
ψ�ψ
2mf2

�
2 i
2
ðψ�ψ̇ − ψ̇�ψÞ þ � � � :

ð24Þ

The contribution of this time-derivative interaction term to
the 3 → 3 T-matrix element for nonzero 3-momenta is
comparable to that from the gradient interaction term in
Eq. (22). This interaction term gives additional contribu-
tions to the 4 → 4 T-matrix element in the low-momentum

limit from the fifth and sixth diagrams in Fig. 2. When they
are taken into account, matching with the relativistic theory
gives the value of z4 in Eq. (21c) with x ¼ 1.

C. Field redefinition

Two different effective Lagrangians are equivalent if one
can be transformed into the other by redefinitions of the
fields. If the MTY effective Lagrangian in Eq. (19) is
equivalent to the effective Lagrangian in Eq. (9), it should
be possible to transform it into Eq. (9) by a redefinition of
the complex field ψ .
The one-body terms in the effective Lagrangians in

Eqs. (9) and (19) both describe a particle with the
energy-momentum relation E¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þp2

p
−m. The one-

body terms in Eq. (19) can be transformed into the one-body
terms in Eqs. (9) and (11) by a redefinition of the complex
field ψ that is nonlocal in space and time:

ψ →

�
1þ 1

2m

�
i∂t þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ∇2

p
−m

��−1=2
ψ : ð25Þ

This field redefinition can be expanded in powers of the
operator in parentheses and then expanded in powers of ∇2.
Inserting the expansion into the terms VMTY and WMTY in
the effective Lagrangian in Eq. (19) produces local inter-
action terms that depend on time derivatives of ψ . To
transform the effective Lagrangian into that in Eq. (9) would
require subsequent field redefinitions that eliminate inter-
action terms with time derivatives without modifying the
one-body terms.
We will determine the field redefinitions required to

eliminate those time-derivative interaction terms in the
MTY effective Lagrangian that affect terms through order
ðψ�ψÞ4 in the effective potential. For this purpose, we can
ignore gradients of the field in the MTY Lagrangian. The
expansion of the nonlocal field redefinition in Eq. (25) to
second order in the time derivative is

ψ → ψ − ði=4mÞψ̇ − ð3=32m2Þψ̈ : ð26Þ

After making this substitution in the MTY Lagrangian and
adding a total time derivative that cancels the terms with a
factor of ψ̈ , the terms with no gradients and up to two time
derivatives are

L0 ¼ −VMTYðnÞ; ð27aÞ

L1 ¼
�
1þ 1

2m
V 0
MTYðnÞ

�
i
2
ðψ�ψ̇ − ψ̇�ψÞ; ð27bÞ

L2 ¼
1

32m2
½V 00

MTYðnÞ þ 2V 0
MTYðnÞ=n�ðψ�ψ̇ − ψ̇�ψÞ2

−
1

32m2
½3V 00

MTYðnÞ þ 2V 0
MTYðnÞ=n�ṅ2; ð27cÞ

FIG. 1. The tree-level diagrams for low-energy 3 → 3 scatter-
ing in the relativistic theory. The first two diagrams are also
diagrams in a nonrelativistic effective theory. In the last diagram,
the thicker line indicates a virtual particle whose invariant mass is
approximately 3m.

3This time-derivative interaction term can be deduced from
Eq. (B.4) in an Appendix of Ref. [13] by interpreting the
difference μ between the “bare mass” and the “effective mass”
as the differential operator −i∂t=3 acting on ψ3.
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where n ¼ ψ�ψ and V 0
MTY and V 00

MTY are derivatives of
VMTYðnÞ with respect to its argument.
The Lagrangian L1 in Eq. (27b) includes a two-body

interaction term with a time derivative. It can be canceled
by a local field redefinition of the form

ψ → ψ þ p1ðn=2mf2Þψ : ð28Þ

This field redefinition changes the Lagrangians L0 and L1

in Eq. (27) into L0
0 and L1

0. The resulting effective
potential is −L0

0 ¼ VMTYðð1þ PÞ2nÞ, where PðnÞ ¼
p1ðn=2mf2Þ. The three-body coefficient v3 defined by
Eq. (12) is v3 ¼ z3 þ 36p1z2. The terms in L1

0, including
the two-body interaction term, are

L1
0 ¼

�
1þ z2 þ 16p1

8

�
n

2mf2

��
i
2
ðψ�ψ̇ − ψ̇�ψÞ: ð29Þ

The coefficient required to cancel the two-body interaction
term with one time derivative is p1 ¼ −z2=16. The
three-body coefficient in the effective potential is deter-
mined to be

v3 ¼ z3 −
9

4
z22: ð30Þ

Upon inserting the results for zn into Eq. (21), we reproduce
the value of v3 in Eq. (13b).
The three-body interaction term with one time derivative

and the two-body interaction terms with two time deriv-
atives can also be canceled by a more complicated local
field redefinition of the form

ψ → ψ þ p1

�
n

2mf2

�
ψ þ p2ð

n
2mf2

Þ2ψ þ q1
4m

�
n

2mf2

�
iψ̇

þ r0
8m2f2

ð−iψ2ψ̇�Þ: ð31Þ

After inserting this field redefinition into the Lagrangian
L0

0 þ L1
0 þ L2

0, we expand to second order in time
derivatives and we add a total time derivative that cancels
the terms with a factor of ψ̈ or ψ̈�. The resulting terms with
zero, one, and two time derivatives are L0

00, L1
00, and L2

00.
The expression for the effective potential −L0

00 remains
VMTYðð1þ PÞ2nÞ, except that now PðnÞ ¼ p1ðn=2mf2Þþ
p2ðn=2mf2Þ2. The four-body coefficient v4 defined by
Eq. (12) is v4 ¼ z4 þ 96p1z3 þ 288ð2p2 þ 3p2

1Þz2. The
terms with one time derivative, including interaction terms
up to three-body, and the two-body terms with two time
derivatives are

L1
00 ¼

�
1þ z2 þ 16p1

8

�
n

2mf2

�

þ z3 þ 6ð4p1 − q1 − r0Þz2 þ 48ð2p2 þ p2
1Þ

48

×

�
n

2mf2

�
2
�
i
2
ðψ�ψ̇ − ψ̇�ψÞ; ð32aÞ

L2
00 ¼ 3z2 − 16ðq1 þ r0Þ

256m2f2
ðψ�ψ̇ − ψ̇�ψÞ2

−
5z2 − 16ðq1 − r0Þ

256m2f2
ṅ2: ð32bÞ

The coefficients required to cancel the two-body inter-
action terms with two time derivatives are q1 ¼ z2=4
and r0 ¼ −z2=16. The coefficient required to cancel the
three-body interaction term with one time derivative is
p2 ¼ −ð16z3 − 39z22Þ=1536. The four-body coefficient in
the effective potential is determined to be v4 ¼ z4 −
12z2z3 þ 18z32. Upon inserting the results for zn into
Eq. (21), we obtain a value for v4 that differs from the
one in Eq. (13c). The coefficient of λ34 is 67=4 instead
of 125=8.

FIG. 2. The tree-level diagrams for low-energy 4 → 4 scattering in the relativistic theory. The first six diagrams are also diagrams in
a nonrelativistic effective theory. In the last five diagrams, the thicker lines indicate virtual particles whose invariant mass is
approximately 3m.
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The calculation above does not take into account the
time-derivative interaction term in Eq. (24) that was
omitted from the MTY effective Lagrangian. After the
field redefinition in Eq. (26), it gives an additional term in
the Lagrangian L1 in Eq. (27b), which results in an
additional term in the Lagrangian L1

00:

ΔL00
1 ¼

λ24
256

�
n

2mf2

�
2 i
2
ðψ�ψ̇ − ψ̇�ψÞ: ð33Þ

The coefficient p2 required to cancel the three-body
interaction term with one time derivative is now
p2 ¼ −ð16z3 − 39z22 þ 3λ24Þ=1536. The four-body coeffi-
cient in the effective potential is determined to be

v4 ¼ z4 − 12z2z3 þ 18z32 −
9

8
λ24z2: ð34Þ

Upon inserting the results for zn into Eq. (21) (with x ¼ 1),
we reproduce the value for v4 in Eq. (13c).

VI. GENERALIZED RUFFINI-BONAZZOLA
APPROACH

In Ref. [20], Ruffini and Bonazzola developed a method
for finding solutions for Bose stars that consist of non-
interacting bosons bound by their own gravitational field.
Their method gave coupled partial differential equations for
the gravitational metric and the normalized wave function
ψ̂1ðrÞ of a single-particle quantum state. Their equations
can be obtained by making an ansatz for the real scalar
quantum field ϕðr; tÞ of the form

ϕðr; tÞ ¼ 1ffiffiffiffiffiffiffi
2m

p ðψ̂1ðrÞa0e−iE0t þ ψ̂�
1ðrÞa†0eiE0tÞ; ð35Þ

where E0 is the energy of the ground state and a0 is an
operator that satisfies the commutation relation ½a0; a†0� ¼ 1.
The quantum state with N bosons in the state created by a†0
is jNi ¼ ðN!Þ−1=2a†N0 j0i, where the state j0i satisfies
a0j0i ¼ 0 and h0j0i ¼ 1. The partial differential equation
for ψ̂1ðrÞ can be obtained by inserting the ansatz in Eq. (35)
into the general-relativistic Klein-Gordon equation and
taking the matrix element between the (N − 1)-boson state
and the N-boson state in the limit N ≫ 1. If instead of
gravitational interactions, we consider a real scalar field with
a self-interaction potential VðϕÞ, the analogous equation is

hN − 1jðϕ̈ − ∇2ϕþm2ϕþ V 0ðϕÞÞjNi ¼ 0: ð36Þ

The resulting partial differential equation for ψ̂1 is [21]

∇2ψ̂1 þ ðE2
0 −m2Þψ̂1 − 2mV 0

naiveðNψ̂�
1ψ̂1Þψ̂1 ¼ 0; ð37Þ

where Vnaive is the naive effective potential in Eq. (8).

In Ref. [15], Eby, Suranyi, and Wijewardhana developed
a method for calculating corrections to the equations for
Bose stars that they referred to as a “generalized Ruffini-
Bonazzola approach.” They introduced an ansatz for the
real scalar quantum field that can be expressed in the form

ϕðr; tÞ ¼ 1ffiffiffiffiffiffiffi
2m

p
X∞
n¼0

�
ψ̂2nþ1ðrÞa2nþ1

0 e−ið2nþ1ÞE0t

þ ψ̂�
2nþ1ðrÞða†0Þ2nþ1eþið2nþ1ÞE0t

�
: ð38Þ

In Ref. [15], the Fourier modes ψ̂2nþ1ðrÞ were taken to be
real-valued functions of a radial coordinate r only, but they
could in general be complex functions of the position vector
r. They obtained an arbitrarily large set of coupled non-
linear differential equations for ψ̂2nþ1ðrÞ by inserting the
ansatz in Eq. (38) into the quantum field equation for ϕðr; tÞ
in Eq. (4) and taking matrix elements between the (N − k)-
boson state and the N-boson state, where k ≪ N:

hN − kjðϕ̈ − ∇2ϕþm2ϕþ V 0ðϕÞÞjNi ¼ 0: ð39Þ

If we keep only the n ¼ 0 term in the ansatz in Eq. (38), the
single equation in Eq. (39) with k ¼ 1 is Eq. (37).
In Ref. [15], the authors devised a truncation scheme for

the infinite set of coupled equations for the functions
ψ̂2nþ1ðrÞ in Eq. (38) that corresponds to an expansion in
powers of Δ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − E2

0

p
=m. Their coupled equations for

ψ̂2nþ1ðrÞ can be used to derive a self-contained differential
equation for ψ̂1ðrÞ without increasing the parametric error.
It is convenient to define the function ψ1ðrÞ ¼ N1=2ψ̂ iðrÞ,
so that ψ�

1ψ1 is a number density. Eby et al. applied their
truncation scheme at order Δ3 to the scalar field theory
whose potential VðϕÞ has only a ϕ4 term. The truncation
scheme gives coupled partial differential equations for ψ1

and ψ̂3. The equation for ψ̂3 was reduced without increas-
ing the parametric error to an algebraic equation for ψ̂3 in
terms of ψ1. After eliminating ψ̂3 from the equation for ψ1,
it reduces to a self-contained partial differential equation:

∇2ψ1 ¼ ðm2 − E2
0Þψ1 þ

λ4m2

2

�
ψ�
1ψ1

2mf2

�
ψ1: ð40Þ

The interaction term at this order is essentially trivial, since
it can be obtained from the ðψ�ψÞ2 interaction term in the
naive effective potential in Eq. (8).
In Ref. [15], the truncation method was applied at order

Δ5 to the sine-Gordon model, whose interaction potential
VðϕÞ is given by Eq. (6). The potential VðϕÞ was truncated
after the ϕ6 term. The truncation scheme of Ref. [15] gives
coupled partial differential equations for ψ1, ψ̂3, and ψ̂5.
The equations for ψ̂3 and ψ̂5 were reduced without
increasing the parametric error to algebraic equations for
ψ̂3 and ψ̂5 in terms of ψ1 and its spatial derivatives. After
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eliminating ψ̂3 and ψ̂5 from the equation for ψ1, it reduces
to a self-contained partial differential equation:

∇2ψ1 ¼ ðm2 − E2
0Þψ1 −

m2

2

�
ψ�
1ψ1

2mf2

�
ψ1

þ 3m2

32

�
ψ�
1ψ1

2mf2

�
2

ψ1: ð41Þ

The equation of motion for ψ derived from the MTY
effective Lagrangian in Eq. (19), including the potential in
Eq. (20) but excluding the gradient interaction terms in
WMTY, is

iψ̇ −
1

2m
ψ̈ ¼ −

1

2m
∇2ψ þm

2

�
z2
2

�
ψ�ψ
2mf2

�

þ z3
12

�
ψ�ψ
2mf2

�
2

þ…

�
ψ : ð42Þ

For the sine-Gordon model, the first two dimensionless
coupling constants in Eq. (8) are λ4 ¼ −1 and λ6 ¼ þ1, so
the coefficients in Eqs. (21a) and (21b) are z2 ¼ −1 and
z3 ¼ 9=8. We can obtain Eq. (41) for ψ1ðrÞ by substituting
an ansatz with harmonic time dependence into Eq. (42):

ψðr; tÞ ¼ ψ1ðrÞe−iðE0−mÞt: ð43Þ

Thus the improved equation for ψ1ðrÞ in the sine-Gordon
model in Eq. (41) is consistent with the MTY effective
Lagrangian with the effective potential truncated after the
ðψ�ψÞ3 term.
The authors of Ref. [15] interpreted their truncation

scheme at successively higher orders in Δ as defining a
solution to the quantum field equation for ϕ. However
their ansatz in Eq. (38) was not derived from the quantum
field theory. Whether the generalized Ruffini-Bonazzola
approach introduced in Ref. [15] continues to give correct
results at higher orders is an open question. A good test of
the method would be whether the next improved equation
at order Δ7 is consistent with the MTY Lagrangian with the
effective potential truncated after the ðψ�ψÞ4 term.

VII. SUMMARY AND DISCUSSION

A field theory with a real Lorentz-scalar field ϕðxÞ can
be described by a Lagrangian that is second order in both
the time derivative and the spatial derivatives. If we
consider only classical nonrelativistic field configurations
in which gradients of ϕ are small compared to the mass m
and in which frequencies differ from the fundamental
angular frequency m by amounts much less than m, the
field theory can alternatively be described by a CNREFT
with a complex scalar field ψðxÞ whose Lagrangian is local
and first order in the time derivative. Contrary to the claim
in Ref. [19], the CNREFT does not necessarily require any

limitation to low number density ψ�ψ. This point is
reinforced by the discovery by Namjoo, Guth and Kaiser
of an exact canonical transformation between the real field
ϕðxÞ and the complex field ψðxÞ [14]. The nonrelativistic
effective field theory may be able to describe field
configurations with high number density as long as they
have only long wavelengths and only frequencies close to
m. When the number density n ¼ ψ�ψ is high, approxi-
mating the effective potential by a truncated power series in
ψ�ψ may be insufficient. It may be necessary to determine
the effective potential at large values of ψ�ψ more accu-
rately using a resummation method, such as that proposed
in Ref. [11].
A CNREFT for a real Lorentz-scalar field was first

explicitly constructed by us in Ref. [11] using the matching
methods of effective field theory. We considered the most
general potential VðϕÞ with a Z2 symmetry and a minimum
at ϕ ¼ 0. The real part Veff of the effective potential has the
expansion in powers of ψ�ψ in Eq. (12). The first few
coefficients in the expansion are given in Eqs. (13a)–(13c).
In Ref. [11], the coefficients were calculated through fifth
order in ψ�ψ , but an error was made in the coefficients
of the ðψ�ψÞ4 and ðψ�ψÞ5 terms. In the calculation of
these coefficients, it is necessary to take into account
interaction terms with gradients of ψ and ψ� in the effective
Lagrangian [17]. The correct coefficient v4 of the ðψ�ψÞ4
term is given in Eq. (13c).
Namjoo et al. used their exact transformation between

ϕðxÞ and ψðxÞ to verify the first nontrivial term in Veff ,
which is the ðψ�ψÞ3 term [14]. They also determined a two-
body interaction term with gradients of ψ , which is given
in Eq. (18).
Mukaida, Takimoto and Yamada have developed a

CNREFT by integrating out relativistic fluctuations of
the real scalar field [13]. They considered a potential
VðϕÞ with a minimum at ϕ ¼ 0 and with a ϕ3 term as
well as even powers of ϕ. After the ϕ3 term is set to 0, the
MTY effective Lagrangian differs from that in Ref. [11] in
many ways, including having a term that is second order in
the time derivative of ψ and having an effective potential
that differs beginning at order ðψ�ψÞ3. Mukaida et al.
determined the ðψ�ψÞ2 and ðψ�ψÞ3 terms in the effective
potential and part of the coefficient of the ðψ�ψÞ4 term.
They also determined a three-body interaction term with
gradients of ψ , which is given in Eq. (22). The three-body
interaction term with one time derivative in Eq. (24) is
equally important, but they failed to include this term in
their effective Lagrangian.
We demonstrated the equivalence between our CNREFT

in Ref. [11] (with the corrected coefficient v4) and the
CNREFT of Ref. [13] (with the time-derivative term in
Eq. (24) added to the effective Lagrangian). We demon-
strated the equivalence in two different ways for the case of
a potential VðϕÞ without a ϕ3 term. We showed that they
both give the same T-matrix elements for 2 → 2, 3 → 3,
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and 4 → 4 scattering in the low-momentum limit as the
relativistic real scalar field theory. We also constructed a
redefinition of the complex field that changes terms in the
MTY effective Lagrangian, including the time-derivative
interaction term in Eq. (24), into the corresponding terms in
the effective Lagrangian in Ref. [11] with the corrected
coefficient v4. The nonlocal field redefinition in Eq. (25)
makes the one-body terms the same, but it introduces time-
derivative interaction terms. The subsequent local field
redefinition in Eq. (31) eliminates the two-body and three-
body interaction terms with one time derivative and no
gradients and the two-body interaction terms with two time
derivatives and no gradients. They change the coefficients
z3 and z4 in the MTY effective potential in Eqs. (21b) and
(21c) into the coefficients v3 and v4 in the effective
potential in Eqs. (13b) and (13c).
In Ref. [15], Eby, Suranyi, and Wijewardhana developed

a generalized Ruffini-Bonazzola approach that gives a
sequence of improved equations for a complex field
ψðxÞ with harmonic time dependence. They determined
the first nontrivial interaction term in the specific case of the
sine-Gordon model. We verified that their equation at this
order can be derived from the MTY effective Lagrangian
with the ðψ�ψÞ3 term in the effective potential. A nontrivial
test of their formalism is whether their improved equation
at the next order can be derived from the MTY effective
Lagrangian with the ðψ�ψÞ4 term in the effective potential.
In Ref. [22], Deng et al. used canonical transformations on

the creation and annihilation operators of a real scalar field
ϕðxÞ with a ϕ4 interaction potential to derive an effective
Hamiltonian for a complex field ψðxÞ. They determined the
coefficient v2 of the ðψ�ψÞ2 term in the effective potential,
which is given inEq. (13a). It is straightforward to extend their
analysis to obtain the coefficient v3 of the ðψ�ψÞ3 term in
Eq. (13b) in the case λ6 ¼ 0. It would be interesting to see
whether their method can also give the correct coefficient v4
of the ðψ�ψÞ4 term in Eq. (13c).
In Ref. [23], Visinelli et al. pointed out that higher

harmonics of the fundamental frequency of the real scalar
field ϕðr; tÞ could be important in the classical solutions for
dense axion stars and for oscillons. They studied the effects
of higher harmonics on oscillons in the sine-Gordon model
by using first-order perturbation theory to obtain coupled
equations for the fundamental harmonic and the third
harmonic. The problem of taking into account higher
harmonics of the real scalar field was solved in the
CNREFT framework in Ref. [11]. The effects of the higher
harmonics are taken into account through the coefficients in

the effective Lagrangian. The third diagram for the 3 → 3
T-matrix element in Fig. 1 can be interpreted as a contri-
bution from the third harmonic of the real scalar field. Its
effects are taken into account systematically through the
coefficient v3 of the ðψ�ψÞ3 term in the effective potential
and through coefficients of three-body gradient interac-
tion terms.
The effective Lagrangian for CNREFT has a Uð1Þ

symmetry, but the associated particle number is not con-
served because there are imaginary terms in the effective
Hamiltonian. These imaginary terms take into account the
loss of nonrelativistic particles from reactions in the
relativistic theory that decrease the number of nonrelativ-
istic particles and produce relativistic particles. The imagi-
nary part Xeff of the effective potential has the expansion in
powers of ðψ�ψÞ2 in Eq. (14). The coefficients of the
ðψ�ψÞ4 and ðψ�ψÞ6 terms were calculated in Ref. [12].
They both vanish in the case of the sine-Gordon model. The
cancellation of these coefficients suggests that Xeff may be
zero to all orders in the sine-Gordon model. If Xeff ¼ 0, the
loss rate of nonrelativistic particles in the sine-Gordon
model must come from interaction terms in Yeff , which
depend on gradients of ψ . Calculations of those interaction
terms are in progress [17].
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Note added in proof.—After this paper was finalized, a
revised version of Ref. [14] appeared with additional
appendices. In Appendix C of the revised version, the
authors compared their nonrelativistic EFT (which is
identical to ours) with the EFT of MTY in Ref. [13].
They verified the equivalence of the EFTs up to ðψ�ψÞ3
terms in the effective potential. They did not compare the
ðψ�ψÞ4 terms, so they did not find the term in Eq. (24) that
is missing from the MTY Lagrangian in Ref. [13]. The
authors of Ref. [14] also verified the equivalence of two-
body interaction terms with two gradients, which we did
not do in this paper.
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