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Abstract

Nearly 90% of the 390 million ha of grasslands in northern China are degraded.

‘Grazing exclusion’ has been implemented as a nature‐based solution to rejuvenate

degraded grasslands, but the effectiveness of the rejuvenation processes is uncertain.

Here, we investigated the effects of grazing exclusion on aboveground plant

community traits, soil physiochemical and biological properties, and the mechanisms

responsible for enhanced grassland rejuvenation. A meta‐analysis across various

studies was used to assess the effectiveness. On average, grazing exclusion improved

vegetation coverage by 18.5 percentage points and increased aboveground biomass

by 1.13 t ha−1 and root biomass by 1.27 t ha−1, which represent an increase of

84%, 246%, and 31%, respectively, compared with continuous grazing practices.

Grazing exclusion reduced soil bulk density by 13.7% and increased soil water content

by 68.9%. Grasslands under grazing exclusion increased soil organic carbon (SOC) in

the 0‐ to 15‐cm depth by 3.95 (±0.35 Std err) t ha−1 and total soil N, available N,

and total soil P in the 0‐ to 40‐cm depth by 2.39 (±0.14), 0.83 (±0.37), and 1.96

(±0.44) t ha−1, respectively, compared with continuous grazing; these values represent

an increase of 31%, 25%, 23%, and 14%, respectively. Prolonging the duration (years)

of grazing practices enlarged the differences in SOC and soil N content between

grazing exclusion and continuous grazing. Grazing exclusion has improved plant

community traits and enhanced soil physiochemical and biological properties of

degraded grasslands, and thus, this ‘nature‐based’ approach can serve as an effective

means to rejuvenate degraded grasslands.
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1 | INTRODUCTION

Grasslands, one of the largest terrestrial ecosystems in the world, are

crucial for wildlife habitat (Galli et al., 2012), livestock forage

(Odriozola, García‐Baquero, Laskurain, & Aldezabal, 2014), and the

livelihoods of nearly 800 million people globally (FAOSTAT, 2015). In

China, about 390 million ha of grasslands (Wang et al., 2014) cover

41% of the total land area (Anonymous, 2012). Of which, about 84%

(or 330 million ha) is suitable for grazing, but a significant proportion

has been degraded due to overgrazing (Wu, Zhao, Yu, Luo, & Pan,

2017), reclamation to croplands (Xu, Chen, Luo, & Lin, 2011), and

exploitation of by‐products or mineral resources (Dong & Yang,

2014). Degraded grasslands are characterized by diminished vegeta-

tion coverage and deteriorated soil structure and function and are vul-

nerable to erosion and desertification (Li, Zhao, Zhang, Zhang, &

Shirato, 2004).

To restore degraded grassland ecosystems, China took drastic

measures by implementing a series of grassland management policies

from 1970s to the 2000s. ‘Grazing exclusion’ (i.e., total ban on grass-

land grazing) is one of the highly profiled rejuvenation measures

(Conte & Tilt, 2014). This ‘leave it alone’ approach is considered a

“nature‐based” solution (Schaubroeck, 2017) as it helps alleviate the

conflict between human needs and nature function (Fernandes &

Guiomar, 2018). Grazing exclusion promotes living beings by promot-

ing a positive soil–plant–microbiome interaction naturally to fulfill

technical tasks that would have required high‐energy, artificial means

previously (Eggermont et al., 2015). This nature‐based solution via

natural processes (Nesshöver et al., 2017) requires little financial

investment and can potentially bring simultaneous benefits to the

nature, economy, and society (Albert, Spangenberg, & Schröter,

2017) and provide a long‐term sustainable solution naturally

(Schaubroeck, 2017) for grassland management.

With the recent efforts to address food security to eliminate hun-

ger and improve eco‐environmental sustainability, many questions

have arisen: How effective are the decades of grazing exclusion mea-

sures for restoring degraded grasslands? What are the main mecha-

nisms responsible for effective grassland restoration? Can the

degraded grasslands be used for food production after years of resto-

ration by grazing exclusion? This study offers a comprehensive assess-

ment of the effectiveness of implementing the decades of grazing

exclusion policies. Using a systematic approach, we summarize the

major research findings on the effects of grazing intensity and the

duration of grazing exclusion on plant community composition and

diversity, vegetation characteristics, and soil physiochemical dynamics.

We discuss the mechanisms involved in grazing exclusion on soil car-

bon and N dynamics, soil biological properties, and plant–soil–

environment interactions. We offer suggestions on how grasslands in

northern China could be managed more efficiently and sustainably using

nature‐based solutions.
2 | METHODS

We employed a four‐step approach in this study. First, we conducted

a systematic review of peer‐reviewed literature using Agris, PubAg,

and Scopus databases and identified studies that met the following

criteria: (a) conducted under field conditions (those exclusively

conducted in a controlled environment were excluded); (b) in northern

or northwest China only (Figure 1a); (c) treatments included grazing

exclusion and continuous grazing for three or more years with minimal

two replications; (d) at least two or more variables were measured;

and (e) papers published in English language journals with an impact

factor (many Chinese‐language papers on the subject in journals

without an impact factor were excluded). Second, relevant data were

extracted on a treatment‐by‐treatment basis from each identified

study, entered in Excel spreadsheets, examined visually for accuracy

and usefulness, and combined into a Master file. Some of the results

presented in graphs in the original papers were converted into values

using a graph‐to‐value conversion program. In some studies, results

were aggregated and treatment means in some years or sites were

used. Third, variables with sufficient data points to meet the basic

criteria of meta‐analysis were identified from 46 data‐rich publica-

tions that cover the main grassland types in northern China. The Pro-

fessional version (3rd version) of the Comprehensive Meta‐Analysis

program (Borenstein & Higgins, 2013) was used to analyze the key

variables in regard to plant community characteristics and soil physio-

chemical properties (Table 1). In the analysis, treatment effects were

assessed in the same or different subgroups, even if the ‘effect size’

differed or treatment subgroups were in different study years

(Borenstein & Higgins, 2013); the Q‐statistic was used to test the null

hypothesis that all studies in the analysis share a common effect size;

the i2 statistic was used to quantify the proportion of observed vari-

ance that reflects differences in true effect sizes (i.e., heterogeneity);

and Tau2 was used to represent the variance of true effect sizes

(Table 2). Further, significant treatment effects were determined using

Duncan's multiple‐range test at P ≤ 0.05 using SAS Mixed model

(Littell, Milliken, Stroup, & Wolfinger, 2006). Linear and nonlinear

regression analyses were performed to determine the relationships

between response variables (vegetation coverage, plant biomass, soil

organic carbon [SOC], soil water content, etc.) and the number of

years in grazing exclusion. Fourth, we summarized key results of 12

other published meta‐analyses, including the study on the effects of

grazing exclusion on carbon sequestration from 78 studies (Xiong,

Shi, Zhang, & Zou, 2016), biomass from 48 studies (Yan, Zhou, &

Zhang, 2013), soil microbial communities from 71 studies (Zhao

et al., 2017), carbon (C) and nitrogen (N) cycling from 115 studies

(Zhou et al., 2017), and grassland management and greenhouse gas

(GHG) emissions from 67 studies (Nayak et al., 2015). Additionally,

we cited key results from numerous articles that were not included

in the meta‐analysis.

mailto:cyhoufj@lzu.edu.cn


FIGURE 1 A meta‐analysis to synthesize the
key results of field studies conducted in (a) the
major grassland zones in northern China (the
blue dots denote the sites of the studies),
where (b) about 390 million ha of grasslands
mainly consist of meadow steppe, alpine
steppe, typical steppe, and desert steppe
[Colour figure can be viewed at
wileyonlinelibrary.com]
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3 | BACKGROUND OF NORTHERN CHINA
GRASSLANDS

About 40% of Chinese natural grasslands are concentrated in the

temperate arid to semiarid northern part of the country. Annual

precipitation ranges from 500 mm in the northeast to as little as

50 mm in the northwest, with 70% occurring from July to September

(Chai et al., 2014), whereas annual evaporation ranges from 1,500 to

2,600 mm (Deng, Shan, Zhang, & Turner, 2006). Shortage of water is

the dominant biophysical factor affecting the degree of grassland

degradation and the success of restoration in northern China. Using

Inner Mongolia, where the typical grassland ecosystems are located in

northern China, as an example, the long‐term annual mean temperature

is 3.4°C, with highest monthly mean temperature in July (22.6°C) and

lowest in January (−18.3°C; Anonymous, 2018), with windy and dry

springs (March–May) and comparatively rainy and warm summers

(June–August). Soils in the northern region range from light‐colored

Chernozems in the northwest to dark‐brown‐ and black‐colored

Phaeozems and Kastanozems in the northeast (Shi et al., 2006). Elevation

in the region ranges from 900 to 1,850 m above sea level, and the
topography is high plain and diluvial land near mountains with rolling

slopes of about 1 to 5° in cultivated land (R. Zhang, Wang, et al., 2018).

Northern China grasslands are one of the largest agro‐pastoral

ecotones in the world. The grasslands mainly include meadow steppe,

alpine steppe, typical steppe, and desert steppe (Figure 1b). Alpine typical

steppe is dominated by Stipa purpurea or Stipa capillata, alpine desert

steppe is dominated by Stipa breviflora or Stipa orientalis, and subalpine

meadow is normally located above the forest zone in high altitude areas.

Historically, herd farmers adopted a nomadic mode of grazing

(Figure 2a), a practice that exerted little pressure on grasslands. From

the 1950s to 1980s, large areas of grasslands were converted to crop-

land (Xu et al., 2011), which decreased the availability of grasslands for

nomadic grazing (Su et al., 2018). Heavy grazing with high stocking

rates severely degraded the remaining grasslands (Figure 2b) and

accelerated the degradation (Figure 2c). To curb further degradation

and rejuvenate degraded grasslands, China implemented a series of

policies. ‘Grazing exclusion’ was established in 1979 (Chen & Tang,

2016) with the goal of total elimination of grazing. A follow‐up pro-

gramme ‘Grain‐for‐Green’ was established in the late 1990s to

encourage food production without affecting grassland ecosystems.

http://wileyonlinelibrary.com
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TABLE 2 Heterogeneity, i2, and Tau2 values for the main variables in the meta‐analysis

Heterogeneity Tau2

Variable
Number of standardized
comparison Q value df (Q) P value i2 Tau2 Standard error Variance Tau

Plant property

Vegetative cover 30 929 29 0.000 96.9 498 165 27,158 22.32

Plant biomass 41 1,456 40 0.000 97.3 257,256 122,702 15,055,819,606 507

Plant diversity 25 1,178 24 0.000 98.0 0.261 0.146 0.021 0.51

Root biomass 20 211 19 0.000 91.0 785,767 399,819 159,855,002,842 886

Soil property

Soil bulk density 37 3,420 36 0.000 98.9 0.010 0.004 0.000 0.10

Soil water content 33 1,107 32 0.000 97.1 0.660 0.354 0.126 0.81

SOC 67 1,188 60 0.000 95.0 6.50 2.19 4.80 2.55

Soil total N 72 91,393 60 0.000 99.9 1.20 0.63 0.40 1.10

Soil available N 39 670 38 0.000 94.3 4.22 2.06 4.25 2.06

Soil C:N ratio 21 1,173 20 0.000 98.3 1.007 0.526 0.276 1.00

Soil avail P 29 384 28 0.000 92.7 4.73 2.05 4.20 2.18

Soil pH 32 1,071 31 0.000 97.1 0.023 0.011 0.000 0.15

Standardized, paired comparison between grazing practices in meta‐analysis (Borenstein & Higgins, 2013).
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In the early 2000s, a program ‘Returning Croplands to Grasses’ was

established with the aim of banning grazing on severely degraded grass-

land, alternating seasonal‐grazing with fallow in moderately degraded

grassland, and rotating grazing on slightly degraded grassland. Fencing

practices are commonly used to implement ‘grazing exclusion’ to pro-

mote a natural recovery of the degraded grasslands (Figure 3).

4 | GRAZING EXCLUSION AND PLANT
COMMUNITIES

4.1 | Plant productivity

Natural grasslands in northern China are historically rich in plant species

with a productive community structure, but overgrazing has altered the

vegetation characteristics and severely degraded the grasslands in many

areas. Our meta‐analysis of data‐rich studies revealed that grazing

intensity is one of the most influential factors that significantly (P < 0.05)

affects vegetation coverage, aboveground biomass, and root biomass of

grasslands (Table 3). Compared with other grazing practices (normal to

heavy grazing), grazing exclusion improved vegetation coverage by an

average 18.5 percentage points (range 17.0–19.8 from 228 paired

comparisons, Figure S1) and increased aboveground biomass by an

average 1.14 t ha−1 (range 0.97–1.31 t ha−1 from 313 paired comparisons,

Figure S2) and root biomass by 1.80 t ha−1 (range 1.36–2.23 t ha−1 from

213 paired comparisons, Figure S3). Expressed as percentage change,

grazing exclusion increased vegetation coverage, aboveground biomass,

and root biomass by an average 84%, 246%, and 31%, respectively.

Grazing exclusion led a rapid recovery of the plant community structure

of degraded grasslands to a benign state (Hao et al., 2014).

4.2 | Plant diversity and richness

Diversity is regarded as an important indicator of plant community

functioning. Enhancing plant diversity typically increases plant

productivity (X. Zhang, Liu, et al., 2018), improves the community's
stability to tolerate abiotic extremes (Bloor & Bardgett, 2012), and pro-

motes plant–soil interactions for the provision of positive feedback to

the plant community (Loranger‐Merciris, Barthes, Gastine, & Leadley,

2006). Our meta‐analysis of 268 paired comparisons revealed that plant

diversity values spread widely across different experiments (Figure S4).

Grazing exclusion enhanced overall plant diversity by 11.4% across stud-

ies with an i2 value of 98.0 and Tau2 value of 0.261, which were signif-

icant at P = 0.011. In a 12‐year field experiment on the desert steppe of

Inner Mongolia, X. Zhang, Liu, et al. (2018) found that increased grazing

intensity (from nongrazing to heavy grazing) significantly decreased spe-

cies richness (R2 = 0.94), Margalef index (R2 = 0.95), Shannon–Wiener

index (R2 = 0.99), and Pielou's index (R2 = 0.94). However, a published

meta‐analysis with data from 78 articles showed that grazing exclusion

provided little or no benefit to plant diversity (Xiong et al., 2016).

Plant species richness is one of the key properties of grasslands.

Grazing exclusion tends to increase the richness of a plant community

(Zhu, Deng, Zhang, & Shangguan, 2016) through improving the seed bank

of annual and perennial species (Zuo et al., 2012) or increasing seed ger-

mination rates (Zhao, Su, Wu, & Gillet, 2011). In some cases, grazing

exclusion promotes rapid accumulation of some palatable genera, such

as Stipa (Zhao, Li, & Qi, 2007), bunchgrass (e.g., Festuca idahoensis), and

rhizomatous grasses (Huang, Wang, & Wu, 2007). Grazing practices also

affect the size and composition of bud banks, which affect population

regeneration and community dynamics (Qian, Wang, Liu, & Busso,

2017). However, the richness response varies with other factors (Qian

et al., 2017) such as seed morphology and germination characteristics

(Chen et al., 2015) and the resistance to biotic stresses (Chen,

Christensen, Nan, & Hou, 2017b). Also, the positive effect on

community richness may diminish with the length of grazing exclusion.
4.3 | Heterogeneity

Northern China grasslands include various steppes (desert, typical,

alpine, and meadow) composed of different plant communities (Kang,



FIGURE 2 Traditional nomadic feeding practices adopted in
northern China for thousands of years have a rich history of using (a)
‘temporal rotation’ grazing systems as herders move from one place to
the next according to the growing season. Since the 1950s, most
grasslands have been (b) heavily grazed with a stocking rate higher

than the grasslands can hold, which has caused (c) severe degradation
with low productivity and poor quality [Colour figure can be viewed at
wileyonlinelibrary.com]
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Han, Zhang, & Sun, 2007), which are located in different regions with

diverse topographical and climatic conditions (Figure 1). These spatio-

temporal variabilities lead to an inconsistent response of plant diver-

sity to grazing practices. Plant diversity is usually more sensitive in

alpine steppes in the humid and semihumid northeastern than in the

arid and semiarid steppes of the northwest (Ren, Lü, & Fu, 2016).

Grazing has a highly selective pressure toward certain species, and

grazing exclusion promotes the rapid recovery of dominant plant spe-

cies with other species providing niche complementarity to the domi-

nant species (Figure 4). Diversity heterogeneity can be related to the

distribution of grazing animals (Ruifrok, Postma, Olff, & Smit, 2014),

the different groups of plant species (Qu et al., 2016), and the critical

threshold of N‐induced vegetation recovery capacity (Tang, Deng, An,
Yan, & Shangguan, 2017). In the scientific literature, it is not always

clear whether grazing exclusion promotes plant species enrichment

or perhaps the loss of plant diversity and their consequences for grass-

land ecosystem functioning.
5 | GRAZING EXCLUSION AND SOIL
PROPERTIES

5.1 | Soil physical properties

Our meta‐analysis revealed significant effects of grazing practices on

soil physiochemical properties (Table 2), and the magnitude of the

effects varied between variables (Table 3). On average, grazing

exclusion led to a 13.7% reduction in bulk density (or 0.047–0.054

units from 569 paired comparisons; Figure S5) and 68.9% increase in

soil water content (from 285 paired comparisons; Figure S6). The

mechanisms responsible for reducing soil bulk density and increasing

soil water content with grazing exclusion can be complex, but it is

largely attributable to (a) decreased precompression stress and

increased saturated hydraulic conductivity and anisotropy (vertical

vs. horizontal conductivity; Reszkowska et al., 2011); (b) reduced soil

evaporation (Krümmelbein, Peth, Zhao, & Horn, 2009); (c) decreased

tensile strength of aggregates due to improved dynamics of soil

macroporosity and vertical continuity of macropores (Kölbl et al.,

2011); (d) a pronounced recovery of soil strength in steppes with high

precipitation (Reszkowska et al., 2011); and (e) increased soil organic

matter inputs (detailed in Section 5.2) that enhances soil carbon‐

induced wetness (Kölbl et al., 2011).

The magnitude of the effect of grazing exclusion on soil physical

properties varies with various factors. In the arid and semidesert grass-

lands of Inner Mongolia, a 6‐year grazing exclusion lowered soil bulk

density through increased aboveground and belowground biomasses

(Wu et al., 2014). In comparison, an 8‐year grazing exclusion in alpine

grasslands did not improve soil bulk density or particle size distribution

(Lu et al., 2015). Heavy grazing typically reduces the fine mineral frac-

tion (silt and clay) and increases the sand fraction, resulting in coarser

textured soil (Huang et al., 2007). Heavy grazing significantly increases

the tensile strength of aggregates (Reszkowska et al., 2011), which

decreases the shear resistance of soil to scouring (Gan, Peng, Peth,

& Horn, 2013) and increases soil erodibility (Zhou, Gan, Shangguan,

& Dong, 2010). Additionally, reduced soil aggregation with heavy graz-

ing has a negative effect on soil crusting (Zhang et al., 2013).
5.2 | Soil carbon

The grassland carbon cycle, a significant global carbon cycle compo-

nent (G. Hu, Liu, Yin, & Song, 2016), typically includes three carbon

pools: plant carbon, litter‐fall carbon, and soil carbon. The size of these

carbon pools is closely related to natural variables and human activi-

ties. Grazing management is a main driver for the change in SOC that

contributes to the sustainability of grasslands. Our meta‐analysis of

1,321 paired comparisons from 43 studies showed that grazing exclu-

sion practices increased SOC in the 0‐ to 15‐cm soil layer significantly

compared with other grazing practices with a standardized mean

http://wileyonlinelibrary.com


FIGURE 3 Fencing practices have been
commonly used to implement “grazing
exclusion” policies in northern China [Colour

figure can be viewed at wileyonlinelibrary.
com]

TABLE 3 Mean differences between grazing exclusion and other grazing practices in various plant and soil traits identified in the meta‐analysis

Number of
standardized
comparisona

Effect size and 95% confidence interval Test of null (2‐tail)

Effect Variable Mean difference Std err Variance Lower limit Upper limit Z value P value

Plant property

Vegetation coverage, %

Fixed 30 18.5 0.7 0.5 17.0 19.9 25.5 0.000

Random 30 25.2 4.2 17.7 17.0 33.5 6.0 0.000

Aboveground biomass, kg ha−1

Fixed 41 309 13 162 284 334 24 0.000

Random 41 1,142 86 7,454 973 1,311 13 0.000

Root biomass (kg ha−1)

Fixed 20 1,718 60 3,618 1,600 1,836 29 0.000

Random 20 1,795 224 50,085 1,356 2,233 8 0.000

Plant diversity

Fixed 25 0.03 0.01 0.00 0.01 0.06 2.53 0.011

Random 25 0.24 0.11 0.01 0.01 0.46 2.07 0.038

Soil property

Soil bulk density (g cm−3)

Fixed 37 −0.05 0.00 0.00 –0.05 –0.05 −30.12 0.000

Random 37 −0.10 0.02 0.00 −0.13 −0.06 −5.50 0.000

Soil water content (%)

Fixed 33 0.19 0.02 0.00 0.15 0.24 8.36 0.000

Random 33 1.58 0.17 0.03 1.24 1.91 9.17 0.000

SOC (t ha−1)

Fixed 61 3.64 0.07 0.01 3.50 3.79 49.49 0.000

Random 61 3.95 0.35 0.12 3.27 4.63 11.37 0.000

Total soil N (t ha−1)

Fixed 61 0.35 0.00 0.00 0.35 0.36 104.28 0.000

Random 61 2.39 0.14 0.02 2.11 2.67 16.90 0.000

Available soil N (t ha−1)

Fixed 39 0.90 0.08 0.01 0.75 1.05 11.73 0.000

Random 39 0.83 0.37 0.13 0.11 1.54 2.26 0.024

Soil C:N ratio

Fixed 21 0.82 0.03 0.00 0.77 0.87 29.69 0.000

Random 21 0.29 0.24 0.06 −0.18 0.76 1.20 0.231

(Continues)
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TABLE 3 (Continued)

Number of
standardized
comparisona

Effect size and 95% confidence interval Test of null (2‐tail)

Effect Variable Mean difference Std err Variance Lower limit Upper limit Z value P value

Soil pH

Fixed 32 0.02 0.00 0.00 0.01 0.03 4.91 0.000

Random 32 −0.10 0.03 0.00 −0.16 −0.04 −3.29 0.001

Total soil P (t ha−1)

Fixed 29 3.07 0.11 0.01 2.86 3.29 27.84 0.000

Random 29 1.96 0.44 0.20 1.09 2.83 4.40 0.000

Note. SOC: soil organic carbon.
aStandardized, paired comparison between grazing practices in meta‐analysis (Borenstein & Higgins, 2013).

FIGURE 4 With grazing exclusion, the
dominant plant species may increase growth
and productivity whereas other species
provide some niche complementarity to the
community (photo taken in a moderately
grazed grassland in Inner Mongolia where
shrubs and scattered trees provide some
niche complementarity to the grass‐
dominated plant community) [Colour figure
can be viewed at wileyonlinelibrary.com]
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difference of 3.95 t ha−1 (range 3.27–4.63 t ha−1, or 31.4%; Figure S7).

The duration (year) of grazing exclusion had a marginal impact on the

absolute value of SOC (Figure 5a), but the percent difference was sig-

nificant between continuous grazing and grazing exclusion; the longer

the exclusion duration, the greater the difference in SOC between the

two grazing practices (Figure 5b). A meta‐analysis by other researchers

revealed that grazing exclusion increased the amount of carbon by

112% as litter fall, belowground biomass by 26%, and soil carbon by

14% compared with other grazing practices (Xiong et al., 2016). Similarly,

a study in the Xilin River basin of northern China with Leymus chinensis L.

and Carex tristachya showed that as the exclusion duration increased from

0 to 11 years, SOC stocks increased by 14.3% (or 0.26 g kg−1 of soil; Chen

& Tang, 2016). However, a further increase of grazing exclusion duration

from 11 to 31 years did not increase SOC stocks.

The mechanisms involved in SOC changes in response to grazing

exclusion during grassland restoration are not clear. There are some

indications in the literature that the SOC changes are most likely

attributable to the following:

1. Grazing exclusion boosts net primary production of the grassland due

to reduced grazing pressure (Huang, Brümmer, & Huntsinger, 2016;
Wang, Johnson, Rong, & Wang, 2016), leading to increased plant bio-

mass accumulation on the soil surface (Li et al., 2013). The reduction in

grazing pressure also leads to more belowground root biomass than

aboveground biomass, and the increased root: Shoot ratio accelerates

SOC accumulation (Liu, Liu, Wu, Wang, & Chen, 2014).

2. With grazing exclusion, the cessation of animal trampling

enhances soil aggregation that fosters physical protection of

SOC, and the increased input of organic matter acts as binding

agents for aggregation. Long‐term grazing exclusion can result

in a higher proportion of SOC occluded in soil aggregates (Wu,

Zhang, Qian, & Huang, 2013).

3. Grazing exclusion stimulates the development of a heteroge-

neous structure of carbon‐rich spots in highly productive patches

(Kölbl et al., 2011; Wiesmeier et al., 2009). These patches can be

regarded as “islands of fertility” (Hibbard, Archer, Schimel, & Val-

entine, 2001) where rainwater and organic materials are

redistributed from bare soil areas (runoff zones with low infiltra-

tion) to patches (run‐on zone with higher infiltration). This pro-

cess favors plant biomass accumulation and thus more input of

organic matter into the soil.

http://wileyonlinelibrary.com


FIGURE 5 Relationship of duration (year) of grazing exclusion with
(a) the amount of SOC and (b) percent differences in SOC between
grazing exclusion and continuous grazing*. And ns represent the
regression slope (b value) equaling to zero at P < 0.05 and P ≥ 0.05,
respectively. SOC: soil organic carbon [Colour figure can be viewed at
wileyonlinelibrary.com]
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4. The change in grassland SOC is a result of plant–soil–microbiome

interactions. Grazing exclusion enhances the carbon accumulation

in the soil but at the meantime, it increases soil microbial respiration

that depletes soil carbon (Li et al., 2013). Ultimately, the magnitude

of the effect of grazing exclusion on the quantity of SOC is a func-

tion of the amount of organic matter input and the turnover process.

5. The magnitude of the SOC change with grazing exclusion is highly

related to abiotic (soil temperature, soil water content, and soil

nutrient content), biotic (plant community structure, litter input,

and microbial activity), and climatic and geographical factors (T.

Chen, Nan, et al., 2018; Wittmer, Auerswald, Bai, Schäufele, &

Schnyder, 2010). For example, in arid and semiarid grasslands of

northern China, grazing exclusion generally increased SOC con-

centration (Gao & Cheng, 2013; S. K. Wang, Zuo, et al., 2016).

In the more humid regions of the northeast, grazing exclusion

had little effect on SOC (Su et al., 2015).
5.3 | Soil chemical properties

Besides the effects on SOC status, grazing exclusion has a large effect

on the dynamics of other chemical elements in grassland soils. With
the values averaged across the 0‐ to 40‐cm soil depth, our meta‐

analysis showed that grazing exclusion increased total soil N by

2.39 t ha−1 (range 2.11–2.67 t ha−1) from 992 standardized paired

comparisons (Figure S8), soil available N by 0.83 t ha−1 (range 0.11–

1.54 t ha−1) from 547 standardized paired comparisons (Figure S9),

and total soil P by 1.96 t ha−1 (range 1.09–2.83 t ha−1) from 419 stan-

dardized paired comparisons (Figure S10), compared with continuous

grazing practices; these values represent an increase of 25%, 23%,

and 14%, respectively. The wide range of the difference in soil N

and P was partly relative to the duration (year) of grazing practices

(data not shown). The differences in soil N and P status between graz-

ing exclusion and continuous grazing increased with the duration of

exclusion; the longer the exclusion duration, the greater the differ-

ences in soil N and P between the two grazing systems.

Overall, the enhancement of soil carbon sequestration with

grazing exclusion is greater than the increase in soil N, leading to

an increase in the soil C:N ratio of 0.82 units across studies (Figure

S11). The increase in soil C:N ratio plays a key role in the restora-

tion of degraded grasslands (Chen, Christensen, Nan, & Hou,

2017a). Also, there is a close relationship between grazing practices

and some micronutrients such as Cu, Mn, and Zn (Jiao, Nie, Zhao,

& Cao, 2016). Grazing exclusion may stimulate a heterogeneous

distribution of certain soil particles in a soil niche, leading to an

increased capacity to restore nutrient stocks in degraded soils

(Ma, Ding, & Li, 2016).

In summary, our meta‐analysis across studies shows that grazing

exclusion has improved aboveground plant properties, including an

average increase of grassland vegetation coverage by 83.6%

(Figure 6a), plant biomass by 246.0% (Figure 6b), root biomass by

31.2% (Figure 6c), and plant diversity by 11.4% (Figure 6d). Also,

grazing exclusion practices have increased SOC by an average of

31.4% (Figure 6e) and total soil N by 25.4% (Figure 6f) and

decreased soil bulk density by 13.7% (Figure 6g). Grazing practices

did not affect overall soil C:N ratio in the grassland soil (Figure 6

h). However, there is a tendency of increasing available soil N (by

23.0%), total soil P (14.2%), and soil water content (by 68.9%) in

grasslands with grazing exclusion compared with continuous grazing

(data not shown). These percent changes are averages across various

studies evaluated in our meta‐analysis, and it was impossible to

determine an annualized percentage value accurately. Also, the mag-

nitude of the effects varied with other factors such as climate (S.

Chen, Nan, et al., 2018; Wittmer et al., 2010), geographic location

(Xu, Xie, & Wang, 2014), and steppe type (Liu, Zhao, Zhao, & Zhu,

2013), among others.
5.4 | Soil biological properties

Soil microbes play a critical role in maintaining soil functionality as

they control SOC dynamics (Hooker & Stark, 2012; Yu, Li, Jin, Liu, &

Wang, 2017) and nutrient supply (Jia et al., 2016) and provide feed-

back to plant growth (Borrell et al., 2017; Niu, Bainard, Bandara,

Hamel, & Gan, 2017). Thus, soil microbes are important components

of grassland ecosystems (Rasche & Cadisch, 2013). Other published

meta‐analyses revealed that light grazing practices had no effect on

http://wileyonlinelibrary.com


FIGURE 6 Summary on the effects of grazing practices (grazing exclusion vs. continuous grazing) on main plant traits and soil physiochemical
properties. Each boxplot shows the median, 25 and 75 quartiles, and range of values. Δy and % values represent the differences between the
two grazing systems in absolute value and percent differences, respectively; n is number of replicates from the studies included in our meta‐
analysis; **, *, and ns denote significance in mean between the two grazing systems at P < 0.01, P < 0.05, and P ≥ 0.05, respectively. The quantity of
SOC was estimated for the 0‐ to 15‐cm soil depth, the amounts of total soil N, available soil N, and total soil P were for the 0‐ to 40‐cm soil
depths, and the C:N ratio (C/N) was the values reported in the articles included in our meta‐analysis. SOC: soil organic carbon
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soil microbial community, but heavy grazing significantly reduced the

size of microbial community (Zhao et al., 2017). Grazing has a signifi-

cant effect on the composition of soil microbial biodiversity (Chávez,

Escobar, Anghinoni, de Faccio Carvalho, & Meurer, 2011; Eldridge

et al., 2017), which is particularly significant in arid northwestern

China. For example, in the dry steppe of the Loess Plateau, grazing

exclusion for 20 years significantly increased microbial biomass in

the 0‐ to 10‐cm layer compared with continuous grazing (Cheng

et al., 2011). Grazing exclusion improved the abundance of soil bacte-

ria in the dominant taxonomic groups including Actinobacteria,

Proteobacteria, Acidobacteria, Firmicutes, Planctomycetes, Chloroflexi,

Gemmatimonadetes, and Bacteroidetes (Cheng, Jing, Wei, & Jing,

2016), as well as soil macroinvertebrate abundance (Liu et al., 2013).

Those effects on plant and microbial community traits often interact

with the status of SOC and soil nutrients (Cheng et al., 2016).

Due to the complex nature of the characteristics of soil

microbiomes in response to grazing practices, a quantitative assess-

ment of the effect is difficult. We briefly highlight some of the possible

mechanisms responsible for enhanced soil biological properties with

grazing practices:

1. Different grazing intensities alter the diversity of soil fungi and

bacteria under the principle of ‘competitive exclusion’, meaning

that some microbial species are more efficient at exploiting
available resources than others when competing for the same

resources. Grazing exclusion allows the dominant species to have

a competitive advantage for greater fitness than the subordinate

species. Thus, the relative abundance of specific taxa in the soil is

resource‐selective, and the availability of specific resources drives

the alteration of relative abundance and biodiversity (Bainard,

Hamel, & Gan, 2016).

2. Microbial competitors in grassland soil are vast, and their pool

size varies with steppe type and human activities. Substantial

changes in the soil microbial community can occur as a result of

soil disturbance (Bainard, Bainard, Hamel, & Gan, 2014). Grazing

exclusion enables the soil to maintain a silent status with little dis-

turbance, allowing a natural recovery of the beneficial microbial

community. Of course, the status of soil microbial composition

and community function can vary with abiotic conditions such

as soil pH (T. Wang, Zhang, Li, & Li, 2017; Zhang et al., 2017), soil

water content and temperature (Dorji, Moe, Klein, & Totland,

2014; Gan, Peng, Peth, & Horn, 2012a), or fertility status (Yan,

Yang, et al., 2016).

3. Specific macrofaunal groups may favor different living conditions

in grassland soils to adapt to their specific habitats (Liu et al.,

2013). Grazing exclusion with no soil disturbance allows a favor-

able soil environment where subordinate microbial taxa are
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released from competitive exclusion by altering the relative abun-

dance of dominant microbial taxa; this process ultimately helps to

increase the biodiversity.

These possible mechanisms are largely based on how soil microbial

communities respond to soil environment and grazing practices. A

need to understand the mechanisms of soil biological properties in

association with grassland management practices is pressing in north-

western China where climatic conditions are highly variable, and

drought is highly frequent, which may affect grassland soil biological

properties.
6 | INTERACTIONS OF GRASS–CLIMATE–
SOIL–HUMAN ACTIVITY

Grasslands in northern China are spread across diverse landscapes in

the arid, semiarid, and humid climatic zones with varying weather

conditions. Thus, the outcome of grassland restoration efforts from

severe degradation is a consequence of the complex interaction

between meteorological, topographic, and soil environments with

plant community structure and management practices (Figure 7).

Climate has a significant impact on many aspects of aboveground

properties, such as species composition (Luo et al., 2013), herb

abundance (Li et al., 2017), shrub encroachment (J. Chen, Li,

et al., 2015), and forb patch densities (L. Chen, Li, et al., 2015). In

arid and semiarid areas, C3 species such as Stipa grandis are highly

competitive when March–June temperatures are low and precipita-

tion is high, whereas C4 species such as Cleistogenes squarrosa

often benefit from higher March–June temperatures and lower pre-

cipitation (Ren, Schönbach, Wan, Gierus, & Taube, 2012). Degraded
FIGURE 7 Grassland degradation in northern China is due to many facto
reasons, and human activity. Rejuvenation efforts through grazing exclusion
grasslandsandmayhavesignificant socioeconomic, ecological, andenvironme
grasslands may recover faster with grazing exclusion in the more

humid northeast areas than in the arid and semiarid northwest

areas, as precipitation amplifies the restoration process (Hao

et al., 2014). However, the magnitude of climatic impact on grass-

land restoration interacts with management practices (Gao et al.,

2013; X. Yang, Liu, et al., 2016). For example, the percent change

in aboveground biomass had a quadratic relationship with precipita-

tion under light grazing, but a linear relationship under heavy graz-

ing (Yan et al., 2013).

Grassland restoration is a vital process that includes the

restructuring of belowground properties (J. Wang, Li, & Bian, 2016)

as root traits are often altered with grazing practices (Chen et al.,

2017a; Zhang et al., 2017). The root:shoot ratio, a key variable for

assessing the effectiveness of grassland restoration, often differs with

grazing practices (J. Wang, Li, & Bian, 2016), grassland type (Wang,

Niu, Yang, & Zhou, 2010), and the characteristics of biomass

partitioning between aboveground parts and roots at the community

level (Yang, Fang, Ma, Guo, & Mohammat, 2010).

The degree of restoration of degraded grasslands in northern

China largely depends on various factors, including different grazing

intensities (nongrazing, mild to moderate, and heavy grazing), grazing

systems (seasonal vs. continuous grazing), and duration of grazing

exclusion (3 to 31 years). Also, anthropogenic activities can have some

significant impacts on human‐induced net primary productivity (Ren &

Zhou, 2018). Inconsistent outcomes of the effect of grazing exclusion

on grassland restoration may occur across Chinese grassland zones.

Below, we summarize the mechanisms responsible for the various out-

comes:effects of grazing practices:

1. Complex nature of plant community. Chinese grasslands have a

wide range of ecotypes ranging from semidesert, arid, and
r interactions including topography, climate, grassland type, historical
practices affected the aboveground and belowground properties of
ntal implications [Colour figurecanbeviewedatwileyonlinelibrary.com]
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semiarid steppes in the Great West to the high, alpine pastures

in the Qinghai‐Tibetan plateau and the meadows and forest

steppes in the northeast (Figure 1b). Grazing exclusion can

drastically increase whole‐ecosystem C storage in mid‐ and

tallgrass communities but is minimal in shortgrass communities.

The ratio of root:soil carbon often differs between tallgrass

and shortgrass communities, leading to the differences in

SOC stocks between communities. The presence of legumes

in grasslands can increase species richness in some degraded

steppes (Z. Hu, Li, et al., 2016). Fine roots of legume plants

in the upper soil profile can act as a principal driver in mediat-

ing the effect of plant community composition on soil biogeo-

chemistry (Liu, Gan, Bueckert, Van Rees, & Warkentin, 2010).

Legume species may promote plant community succession

and accelerate the recovery of degraded grasslands with

coarse soil.

2. Duration of grazing exclusion and stocking rates have a profound

impact on the physical, chemical, and biological properties of

grassland soils. In general, the longer the period of grazing

exclusion, the greater the improvement in soil properties, as

a new equilibrium can be reached after a few decades of graz-

ing exclusion (Li, Zhao, Chen, Luo, & Wang, 2012). Stocking

rates have a significant impact on C and N cycling in the

plant–soil system of grasslands (Jiao et al., 2016). In general,

the higher the stocking rate, the more negative the impact

on soil properties. Stocking rates may have direct or indirect

impacts on soil properties by influencing plant stands (Wang

et al., 2014), soil and root respiration (Chen, Hou, Chen,

Wan, & Millner, 2015), and animal behavior while grazing (Lin

et al., 2011). An optimal stocking rate is difficult to define as

it varies with various factors, such as grazing practices (Dong,

Zhao, Wu, & Chang, 2014) and animal type.

3. Geographical and climatic conditions have a fundamental effect on

the soil biogeochemistry of grasslands in relation to grazing prac-

tices. Across the major grasslands in northern China, annual evap-

oration is higher in the northwest than in the northeast, whereas

annual precipitation has the reverse pattern. The variable climates

not only affect the degree of degradation but also the progress of

rejuvenation of degraded grasslands (Ma et al., 2017). Grazing

exclusion increases plant community height, coverage, and

aboveground biomass, but the magnitude of this effect varies

between geographic locations (Hao et al., 2014). Thus, the effec-

tiveness of grazing exclusion on grassland rejuvenation alters

with climatic heterogeneity.

4. Historical degree of degradation affects the outcomes of the

restoration effort for degraded grasslands (Jiang, Han, & Wu,

2006). Some grasslands in the northwestern desert steppes

are degraded substantially due to historical reasons, such that

a short period (2–6 years) of grazing exclusion is unlikely to

restore the grassland properties to a productive level (Pei, Fu,

& Wan, 2008). In contrast, a shorter period of grazing exclu-

sion (3–5 years) will likely have an ameliorating effect on

lightly degraded grasslands (Steffens, Kölbl, Totsche, & Kögel‐

Knabner, 2008).
7 | CONCLUSIONS

Grassland ecosystems in northern China face significant challenges

due to the increased demand for food by the ever‐growing human

population, rapid urbanization that competes for available resources,

and the evidenced global climate change. Most of the grasslands in

arid and semiarid northern China were degraded mainly due to

overgrazing, which reduced grassland productivity, lost soil fertility,

and increased risks for erosion and desertification. Grassland manage-

ment policies have been established for decades to help rejuvenate

degraded grasslands, and numerous studies have been published indi-

vidually. In this study, we reviewed the relevant studies, analyzed the

results collectively using a meta‐analysis approach, and summarized

the key findings. We conclude that grazing exclusion practices can

be employed as an effective approach to rejuvenate degraded grass-

lands naturally, as the practice has improved plant community traits,

and enhanced soil physiochemical and biological properties of

degraded grasslands. For the long‐term sustainability of grasslands,

we suggest multidisciplinary research across different grassland

ecozones is conducted to determine how the sedentarization and pri-

vatization of grasslands associated with the grazing exclusion policies

may impact the effectiveness of the rejuvenation processes. Addi-

tional, steps may be taken to explore the potential of developing

‘grassland ecotourism’ that gives urban citizens opportunity to nurture

eco‐culture and appreciate eco‐beauty of grasslands.
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