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Abstract

In recent years, metamaterials have been attracting immense attention in electrical and optical

engineering. These are artificial materials which are engineered to shape the electromagnetic

responses and properties. Metamaterials are realized by the adjustment of many electrically

small inclusions in a dielectric substrate. Changing size, position and shape of those particles

affects the electromagnetic response. Two-dimensional metamaterials are called metasheets,

and their application to microwave radomes is the subject of this study.

While there exist closed expressions for the scattering parameters of some geometrical struc-

tures, for others such expressions cannot be found and only full-wave simulations can be used.

Despite its geometrical simplicity, the circular ring inclusion belongs to the latter group. A dimen-

sional parametric analysis with full-wave simulations is performed in this thesis to understand

the electromagnetic response of an infinite planar periodic array of circular rings.

An important aim of this thesis is to find a way of controlling microwave transmission through

metasheets realized as periodic planar arrays of circular inclusions. As the transmission is domi-

nated by the geometrical parameters of the circular inclusions, it is useful to find an analytical

expression for the transmission coefficient as a function of those geometrical parameters. This

expression cannot be derived from first principles. Thus, an empirical expression with free pa-

rameters is proposed to describe the transmission behavior of the metasheet by using the results

of full-wave simulations at discrete values of the geometrical parameters of the ring inclusions.

The free parameters are determined by fitting so that the simulated values for the transmission

coefficient are recovered in the best way.

As an application of this semianalytical method, a metasheet (metalens) compensating the

phase distortions of a hemispheric radome for a fixed frequency in the Ka-band is designed.

The phase distortions are calculated by ray tracing and the resulting fields are incident on

the metasheet. The electric fields transmitted through the finite electrically large metasheet is

calculated by Physical Optics (PO) upon homogenization of the metasheet. To check the accuracy

of the approach, the method is firstly applied to a circular finite electrically large metasheet
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with circular rings as inclusions. In order to decrease the complexity of the calculation, the

equivalent surface currents are calculated by using the tranmission coeffcient of the homogenized

metasheet, and cylindrical coordinates are chosen to reduce the two-dimensional integral to a

line integral over the rim of the metasheet. In the PO calculation for the hemispheric radome, the

PO integration surface is subdivided into small facets, followed by an expansion in Taylor series

of the phase part of the free-space Green function, which permits analytical integration. The

approach provides a good estimation of the electromagnetic response of the metalens, which is

confirmed by measurements.
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Kurzfassung

In den letzten Jahren haben Metamaterialien in der Elektrotechnik und Optik immense Beach-

tung gefunden. Diese sind künstliche Materialien, die entwickelt werden, um bestimmte elektro-

magnetische Reaktionen und Eigenschaften zu erzeugen. Metamaterialien werden durch die

Anordnung vieler elektrisch kleiner Einschlüsse in eine Trägerstruktur hergestellt.

Das Ändern von Größe, Position und Form dieser Partikel beeinflusst die elektromagnetische

Reaktion. Diese Arbeit konzentriert sich auf zweidimensionale Metamaterialien, sogenannte

Metasheets, und deren Anwendung auf Mikrowellenradome.

Während es geschlossene analytische Ausdrücke gibt, um die Streuparameter für einige ge-

ometrische Strukturen zu berechnen, können für andere solche Ausdrücke nicht gefunden wer-

den und ihre Analyse ist nur mit Vollwellensimulationen möglich. Trotz seiner geometrischen Ein-

fachheit gehört der Kreisringeinschluss zu der letzteren Gruppe. Eine umfassende parametrische

Analyse wird in dieser Arbeit mit Vollwellensimulationen durchgeführt, um die elektromagnetis-

che Antwort einer unendlichen planaren periodischen Anordnung von Kreisringen zu verstehen.

Ein wesentlisches Ziel dieser Arbeit ist es, die Mikrowellentransmission durch Metasheets

als unendliche planare periodische Anordnungen kreisförmiger Einschlüsse zu steuern. Da die

Transmission durch die geometrischen Parameter der kreisförmigen Einschlüsse bestimmt wird,

ist es notwendig einen analytischen Ausdruck für den Transmissionskoeffizienten als Funktion

dieser geometrischen Parameter zu finden. Dieser Ausdruck kann nicht aus physikalischen

Grundprinzipien abgeleitet werden. Daher wird ein empirischer Ausdruck mit freien Parametern

verwendet, um das Übertragungsverhalten des Metasheets zu beschreiben, das durch Voll-

wellensimulationen bei diskreten Werten für die geometrischen Parameter der Ringeinschlüsse

bestimmt wird. Die freien Parameter des empirischen Ausdrucks für den Transmissionskoef-

fizienten werden so angepasst, dass die simulierten Werte für den Transmissionskoeffizienten

am besten übereinstimmen.

Als Anwendung dieser semianalytischen Methode wird ein Metasheet entworfen, das die

Phasenverzerrungen eines hemisphärischen Radoms bei Frequenzen um 28 GHz im Ka-Band
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ausgleicht. Die Phasenverzerrungen des hemisphärischen Radoms werden durch Ray Tracing

berechnet. Das Ergebnis wird als Designziel für das Metasheet verwendet. Das durch das endliche

elektrisch große Metasheet transmittierte elektrische Feld wird mit Hilfe von Approximation der

Physikalischen Optik (PO) berechnet. Zur Überprüfung der Genauigkeit der PO-Berechnung wird

die PO zunächst für ein kreisförmiges elektrisch großes Metasheet mit Kreisringen verwendet. Um

die Komplexität der Berechnung zu verringern, wird eine äquivalente Näherung der Oberflächen-

ströme verwendet und die Zylinderkoordinaten werden so gewählt, dass das zweidimensionale

Integral zu einem Linienintegral reduziert werden kann. Bei der PO-Berechnung für die Anwen-

dung des hemisphärischen Radoms werden Taylorreihen im Phasenteil der Freiraum-Green-

Funktion und die mit der semianalytischen Methode bestimmten Transmissionskoeffizienten

verwendet. Das Ergebnis dieser Berechnung liefert eine gute Schätzung der elektromagnetischen

Reaktion, die durch Messungen bestätigt wird.
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Chapter 1

Introduction

1.1 Importance of metamaterials

Metamaterials are periodic structures with unit cells smaller than the wavelength of the incident

wave engineered to modify the wave propagation by changing the size and the design of the unit

cells. The properties of such artificial materials can be controlled well. Such a control gives a

chance to develop new technological properties. As an example, metamaterials can influence the

radiation pattern of antennas or scattering properties of various objects. Metamaterials can also

have unusual propeties, which are not present in natural materials. This is the main difference

between conventional materials and metamaterials. Another benefit of using metamaterials is

that they can increase the performance of electromagnetic devices and decrease the cost and

the size of devices [Cened].

1.2 History of radomes

The design of radomes has been studied since the 1940s with increased interest. A radome is an

important component of many antenna systems, which protects the antenna from environmental

effects such as rain, ice, wind. Also, it streamlines the design to reduce the aerodynamic drag. On

the other hand, the radome should not affect the performance of the antenna negatively. In the

radome design, choosing a suitable material is the key point; therefore, material technology and

material engineering help to improve the capabilities of a radome. Radomes are mainly used in

aerospace and radar technology [JW70]. There are different kinds of radomes [Sha18]. Radomes

can be differently shaped as shown in Figs. 1.1 and 1.2 depending on the type of application.

The shape of the nose is the critical part of the radome, particularly for rapidly moving objects

such as an aircraft or a missile [CB16]. To increase the aerodynamical performance of radomes,

mathematical modelling and engineering studies are necessary [CB16].
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(a) Hemisphere (b) Elliptical

Figure 1.1 Hemispheric and eliptical radomes.

(a) Ogival shape with sharp nose (b) Ogival shape with flat nose

Figure 1.2 Ogival shaped radomes with different nose types.

The developments of the radome between 1940 and 1970 are briefly addressed in this sec-

tion in order to better understand the critical points in the radome design. A first operational

hemispheric radome was designed for the Boeing B-18A in 1941. The material of the radome

was plexiglass (a kind of thermoplastic polymer) [Das15]. This radome was used in a radar test

for improving the guidance of the bomber. Tests indicated the suitability of the radome [JW70].

For radomes in the radar applications in 1941, plywood was chosen for radomes used for Navy

patrol torpedo boats and aircrafts. Plywood has the negative property of absorbing moisture,

which distorts the performance of the radome. For solving this problem, resin impregnated glass

fabric was used as an additional layer on the plywood material to block moisture, but the tests

were insufficiently successful. Then, three different materials were tried to handle the moisture

problem better. Firstly, polystyrene foam was used. It showed a good electrical performance but

it could not resist properly to the heavy mechanical stress. Secondly, phenolic-resin impregnated

cotton canvas was used. It had good strengths. Thirdly, glass cloths which are similar to resin

reinforcing materials, were utilized. Foam, plywood and different kinds of resins were used for

2
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constructing radomes in the past [Das15]. The aspects involved in the fabrication of a radome

include thermal properties, rain erosion resistance, mechanical and electrical properties [Nas96].

The thickness of the walls of the radome is the key parameter that affects the electrical perfor-

mance of the radome and the antenna. The radome should be thin to reduce reflections and

improve the transmission. Ideally, if it is thinner than the operational wavelength of the radar or

antenna and the permittivity of the radome material is close to unity, the transmission can be

increased. The thickness of the walls should be increased to increase the mechanical strength of

the radomes but it affects the electrical performance negatively.

After 1942, the research interest on the electrical properties of radomes started to increase.

As a test design, a sandwich radome with three layers was developed in the Radiation Labora-

tory, Massachusetts Institute of Technology [JW70]. The preferred material for this design was

laminated glass-fabric skin combined with cellular core of polystyrene fiber material with low

density. During 1955 and 1956, glass ceramic was used for the design of radomes. These radomes

were used for the Navy’s Tarter, Terrier missile systems, Air Force’s Gar IX and Gar XI and the

Navy’s Shrike and Typhon [JW70]. During the 1960s, cordierite, boron nitride, silicon nitride

got on a new significance. Choosing a wrong material can decrease mechanical sustainability

and degrade the electrical performance. Therefore, the materials should be analyzed carefully

and measured [SS68]. The electrical performance of a radome is affected by not only the type of

materials but also the shape of a radome. The geometry of the radome, being mainly decided by

aerodynamic needs, often leads to a severe decrease of the electrical performance of enclosed

antennas [CRT81].

For analyzing the electromagnetic properties of radomes, several assumptions are often

made to simplify the calculations and analyses. For example, plane wave solutions are often

used in the analysis of the wave propagation because of the large distances between transmitting

and receiving antennas. The plane wave solutions are applicable to electrically large antennas

and radomes [Sha18]. Under the plane wave assumption, the curved radome is considered as

locally planar. For flat surfaces, conventional boundary conditions can be applied to account for

the polarization, incidence angle, and frequency of the wave.

The type of material is a key element in the design of a radome with improved electrical

properties. However, the choice of material cannot improve all electrical properties at once. The

combination of natural and artificial materials for designing the surface of the radome can bring

additional features to the radome.
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1.3 Some historical developments in electromagnetic theory

This section addresses the principles and concepts of the classical electromagnetic theory which

are used in this thesis. The equivalence principle defines electromagnetic fields by replacing

real sources with equivalent sources. The principle, also known as Huygen’s principle, helps to

explain the propagation, refraction and reflection of electromagnetic waves [Huy93], [Lia18].

In 1800s, Helmholtz described “polarization” as displacement of the charges in dielectric

media. He showed that there were longitudinal waves of electric polarization. According to

Helmholtz’s theory, the propagation of perturbations in a dielectric medium must have different

velocities for transversal and longitudinal waves [Cah93].

Maxwell’s equations (1860-65) are a set of electrodynamic equations to describe all elec-

tromagnetic phenomena in nature. According to these equations, light is an electromagnetic

wave. Hertz verified Maxwell’s equations by his experiments. Many scientists including Edison,

Thompson, Dolbear and Hughes studied electromagnetic waves [Max65], [SS03] but only Hertz

could make the correlation with Maxwell’s theory [SS03].

For scalar diffraction theory, integral formulas were formulated by Kirchhoff and Rayleigh

[Heu73]. An exact solution for diffraction of a plane wave by a perfectly conducting infinitely thin

half-plane was derived by Sommerfeld in 1896 [BW99]. The solution describes well diffraction at

the apertures in plane screens [MM01].

In 1901, A. Love developed the concept of equivalent surface currents that behaves as Huygen’s

secondary sources [Lov01]. T. Young did a double-slit interference experiment for demonstrating

the wave properties of light [Lia18], [You07]. Fresnel [Fre00] studied diffraction of light by using

wave equations and boundary values. He combined the Huygen’s principle and the interference

principle. It became a mathematical basis for the analysis of light propagation.

Diffraction of electromagnetic waves was studied by Stratton and Chu [SC39], Richards and

Wolf [RW59], Kottler [Kot23], [MM01].

The Stratton-Chu integral representation is a vectorial equivalent of the Fresnel-Kirchhoff

diffraction integral which was based on the Kirchoff’s integral formula [MM01]. Franz developed

an integral model for the description of the field vectors in the interior of a source-free closed

surface [Lah16].
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1.4 Equivalent circuits and lumped elements

In metamaterial design, adjusting the dimensions of the particles, deciding the type of parti-

cles, positioning the particles and shaping the unit cells are the corner stones to modify the

electromagnetic response. In engineering analysis of metamaterials, equivalent circuit models

are often used. In this modeling, ideal simple circuit elements are utilized, namely resistors,

capacitors, inductors, voltage or current sources. At RF and microwave frequencies, lumped

elements are based on small parts of TEM lines shorter than the wavelength at the operational

frequency [Bah03].

Because of the small sizes and fabrication process, the quality factor Q is not higher than

that of a distributed circuits. On the other hand, lumped elements have lower costs and wider

bandwidths. The rules of circuit theory, the transmission lines and the equivalent circuit lumped

elements help to determine the electromagnetic behavior of the structure, for instance, reflection,

transmission and absorption. The circuits can be modeled with simple shunt and series circuits

to estimate the response. Increasing the complexity of the circuit is not preferred because it may

cause unnecessary complications [MDP48].

Analytical methods, full-wave simulations and measurement-based methods are used to

develop equivalent circuit models. The values of the lumped elements are extracted from DC

resistance measurements and S−parameter data [Bah03].

1.5 Equivalent circuit approach for metasheets

Metasheets are two-dimensional metamaterials. The other two dimensions of the layer become

much larger than the thickness. Because of this shape, an assumption about the field distribution,

which is named locally quasistatic, can be made. The field distribution is assumed as uniform

and waves travel along the layer but at every point of the field distribution over the thickness

remains unchanged. This assumption gives a chance to use a transmission line approach to

analyze the metasheets because the waves propagate along the axis of the transmission lines.

The field distribution is assumed quasistatic in the directions which are orthogonal to the axis of

the transmission line [Tre03].

A combination of transmission line and equivalent circuit approaches results in an efficient

and adequate tool. Even if the number of thin layers increases, this tool can still work to analyze

a multilayer metasheet. The time consumption of the analysis can be decreased compared to

full-wave simulations [Cap09].
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1.6 Importance of hybrid approaches

When two or many methods are mutually combined and used together, then this is called a

hybrid method. For practical applications, analytical solutions can be inaccurate or too difficult.

Therefore, approximate calculations can be performed by using numerical methods or asymptotic

methods. In the framework of numerical methods, electromagnetic problems such as scattering

and radiation are reduced to algebraic problems, which can be solved by using computers. For

electrically large structures, asymptotic methods are preferred. If an electrically large structure

includes electrically small particles, then hybrid methods combining numerical and asymptotic

methods can be suitable. The application of numerical methods to electrically large structures

requires powerful computers; otherwise, it can take a long time [Hag05]. To reduce the need for

heavy numerical computations, analytical and numerical methods can be combined and used

as a semianalytical or hybrid method.

1.7 Importance of lenses

Lenses are devices which focus or collimate propagating signals or transform incoming phase

fronts into desired outgoing phase fronts. The design targets of a lens are a large bandwidth,

decreasing the complexity of manufacturing, high gain, low cost, little weight. The shapes of

lenses are decided according to the phase delays of waves propagating through the material of

the lens. Well-known lenses are dielectric lenses and metal gratings. The phase delays happen

because of the refraction in the dielectric lenses or because of diffraction or interferences when

the lens has metal parts. The Fresnel zone plate is another kind of lens which can be used for

focusing and imaging. Because of the flat design, a reduction in thickness, weight and absorption

loss is possible [Hri00]. The negative sides of Fresnel zone plates are zone edge blockage and low

efficiency [Rot84], [HH95].

For controlling the phases, lenses with concentric annular zones can be designed to be

opaque (reflection), partially-opaque or transparent. The disadvantage of a partially-opaque

lens is that it produces approximately the same bandwidth as a conventional lens of the same

diameter. It does not increase the efficiency. F. Sobel studied the phase correcting zone plate for

microwave and millimeter bands [Wil85]. Measurements were carried out at 140 and 210 GHz.

Further studies were performed to improve the features of lenses, and lenses were designed for

frequencies between 10 to 280 GHz. In phase correcting plates, a different dielectric material

can be used for each zone. It can help to have different refraction because of the different

6



1.8 Motivation of the research

permittivity values of the material while keeping the thickness of the lens constant. It can be

named “planar lens” [Wil85]. Lens studies were also conducted for antennas, which are referred

to as microwave lens antennas [MPM95], [McG86]. There were also studies on metamaterial

based gradient index lenses [ea06], [ea07a] and Luneburg lenses [KS10], [QHT09] for enabling

ultrathin light-weight flat lenses for broadband operation [NIKS13], [ea12a]. In [LFHB14] [ea16a],

dielectric metasurface lenses have been designed for higher focusing efficiency in transmission

mode in the optical frequency range.

1.8 Motivation of the research

In microwave engineering, controlling or correcting the phase distribution, improving gain and

broadening the bandwidth of the electromagnetic response of antennas play a significant role.

There have been many studies to improve these features [HL16], [Sug18], [ARA17].

The first motivation reason is that antenna systems may comprise phased arrays which are

utilized for a scanning performance in transmission and receiving. Direction finding (DF), scan-

ning synthetic aperture radar (SAR) and similar applications mainly use such systems [MC10].

Every radome changes the phase of the signal which causes a loss in DF accuracy and SAR reso-

lution [AMC94], [MC10]. The shape, the material, material composition (for example laminated

or solid etc.) of the radome and varying incident angles cause phase shifts. The phase shift plays

an important role in the evaluation of the performance of radomes, and this is an important

topic in antenna engineering [NAM10]. In this study, a planar Fresnel lens is designed by using

metasheets.

A further reason is that finding the suitable dimensions of a particle for the defined microwave

application may take too long. It is therefore desirable to reduce the simulation time.

1.9 Objectives

The objectives of this thesis are to develop a semianalytical (hybrid) method to accelerate the

design process for planar metasheets and to design a metasheet for compensating the phase

distortion caused by a hemispheric radome in the Ka-band. The combination of metasheet and

radome can be called "metaradome". The definition of the metaradome is given in Chapter 2. For

the calculation of the electric field transmitted through electrically large metasheets, an approach

combining homogenization of the metasheet with the PO method is developed. In order to keep
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the mechanical complexity of the design as low as possible, simply shaped inclusions (metal

rings) without any lumped elements and electronic components are used.

1.10 Outline of the thesis

In Chapter 2, general formulations about electromagnetics, information from literature about

frequency selective surfaces, metamaterials, metasheets, arrays of circular inclusions, application

areas of metamaterials and potential applications of metaradomes are given. In Chapter 3,

modeling of metamaterials with finite element methods is explained, and the simulation results

for the infinite periodic planar metasheets obtained by HFSS are presented. In Chapter 4, a

semianalytical model, which is based on the equivalent circuit modeling for infinite planar

circular rings, is explained. In Chapter 5, the PO method and its usage for electrically large finite-

size metasheets are explained. A metalens design for a hemispheric radome in the Ka-band is

described, and an experimental validation of the design is presented in Chapter 6.
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Chapter 2

Metamaterials in Microwave
Applications

2.1 General formulations

2.1.1 Maxwell’s equations and plane waves

Maxwell’s equations are [Col92]

∇×E=−
∂ B

∂ t
(2.1)

∇×H= J+
∂D

∂ t
(2.2)

∇·D=ρ (2.3)

∇·B=0. (2.4)

where (2.1) is Faraday’s law of induction. (2.2) is Ampère’s law. (2.3) and (2.4) are Gauss laws

for the electric and magnetic fields. The quantities E and H are the electric and magnetic field

intensities (electric and magnetic vectors), respectively. The quantities D and B are the electric

and magnetic flux densities (electric displacement, magnetic induction), respectively. ρ and J

are the volume charge density and electric current density of any external charges (excluding

induced polarization charges and currents) [Orfed]. Maxwell’s equations in source-free regions
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of space are therefore given by

∇×E=−
∂ B

∂ t
(2.5)

∇×H=
∂D

∂ t
(2.6)

∇·D=0 (2.7)

∇·B=0. (2.8)

In vacuum, the relations between electric and magnetic flux densities D, B and field intensities

E, H are described as

D= ϵ0E (2.9)

B=µ0H, (2.10)

where ϵ0 and µ0 are permittivity and permeability in free space (vacuum). In homogeneous

dielectric or magnetic materials, the relation between electric and magnetic flux densities D, B

and field intensities E, H are described as [BW99]

D= ϵE (2.11)

B=µH, (2.12)

where ϵ, µ are permittivity and permeability of the medium. The speed of light in vacuum is

c =
1
p
ϵ0µ0

. (2.13)

The intrinsic impedance of free space (vacuum) is defined as

Z0=

√

√µ0

ϵ0
. (2.14)

The impedance of a material in terms of the corresponding vacuum value is

Z =Z0

√

√µr

ϵr
, (2.15)

where µr and ϵr are relative permeability and relative permittivity. Maxwell’s equations can be

written for linear combinations of single frequency solutions [Orfed]

E(r,t ) =

∫ +∞

−∞
E(r,ω)e jωt dω

2π
, (2.16)
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2.1 General formulations

whereω is angular frequency. Time-harmonic fields are expressed as

E(r,t ) =R e [E(r)e jωt ] (2.17)

H(r,t ) =R e [H(r)e jωt ]. (2.18)

where E(r) and H(r) are complex-valued. For traveling waves, fields should be real. When the

time derivatives are replaced with jω, then Maxwell’s equations in (2.1)- (2.4) can be written in

the form [Col92]

∇×E=− jωB (2.19)

∇×H= J+ jωD (2.20)

∇·D=ρ (2.21)

∇·B=0. (2.22)

The simplest electromagnetic waves are uniform plane waves, which propagate along a fixed

direction. It is assumed that it is the z direction in a lossless medium. Uniformity means that

the fields are functions of z and t as E(z ,t ), H(z ,t ). Then, the gradient, divergence, and curl

operations simplify to [Orfed]

∇= ẑ
∂

∂ z
(2.23)

∇·E=
∂ Ez

∂ z
(2.24)

∇×E= ẑ×
∂ E

∂ z
. (2.25)

According to equations in (2.11) and (2.12) , the source-free Maxwell’s equations become

ẑ×
∂ E

∂ z
=−µ

∂H

∂ t
(2.26)

ẑ×
∂H

∂ z
= ϵ
∂ E

∂ t
(2.27)

∂ Ez

∂ z
=0 (2.28)

∂Hz

∂ z
=0. (2.29)
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Equations (2.26) and (2.27) can be written in an equivalent form:

ẑ×
∂ E

∂ z
=−

1

cm
Z
∂H

∂ t
(2.30)

Z ẑ×
∂H

∂ z
=

1

cm

∂ E

∂ t
, (2.31)

where cm =
1p
ϵµ , and (2.30) and (2.31) can be expressed as

∂ E

∂ z
=−

1

cm

∂ (Z H× ẑ)
∂ t

(2.32)

∂ (Z H× ẑ)
∂ z

=−
1

cm

∂ E

∂ t
. (2.33)

Equations (2.32) and (2.33) can be written in terms of forward and backward fields (E+(z ,t ),

E−(z ,t )) [Orfed]

∂ E+
∂ z
=−

1

cm

∂ E+
∂ t

(2.34)

∂ E−
∂ z
=

1

cm

∂ E−
∂ t

. (2.35)

Harmonic time-dependent waves should be real as

E(z ,t ) =R e [E(z )e jωt ] (2.36)

H(z ,t ) =R e [H(z )e jωt ], (2.37)

where E(z ) and H(z ) are transverse to z direction. For time-periodic fields, equations (2.34)

and (2.35) convert into the first-order differential equations

∂ E±(z )
∂ z

=∓ j k E±(z ), (2.38)

where k =ωpϵµ, with the solutions for the forward and backward fields

E+(z ) =E0+e − j k z (2.39)

E−(z ) =E0−e j k z , (2.40)

where E± are arbitrary constant vectors such that ẑ ·E± = 0. The general solution of a single-

frequency wave can be expressed as

E(z ) =E0+e − j k z +E0−e j k z (2.41)

H(z ) =
1

Z
ẑ× (E0+e − j k z −E0−e j k z ). (2.42)
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2.1 General formulations

In this study, e jωt is suppressed. If the propagation medium is free space (vacuum), the parame-

ters ϵ0, µ0, Z0, c are used. The free-space wavelength and corresponding wavenumber k0 are

given by [Orfed]

λ0=
2π

k0
=

c

f
(2.43)

k0=
ω

c
, (2.44)

whereω=2π f . For a lossy dielectric substrate, the relative permittivity of the substrate and the

loss tangent are described by [Col92]

ϵr = ϵ
′
r − jϵ”

r

tan(δ) =
ϵ”

r

ϵ′r
. (2.45)

For small losses such as ϵ”
r ≪ ϵ

′

r , the wavenumber is

j k =α+ jβ = j
Æ

ϵ′r k0+
k0ϵ

”
r

2
p

ϵ′r
(2.46)

where α is the attenuation constant and β is the phase constant. The waves attenuate according

to e −αz while propagating in the +z direction [Col92].

2.1.2 Transmission and reflection coefficients

According to boundary conditions at a planar interface separating two dielectric media with

characteristic impedances Z1 of medium 1 and Z2 of medium 2 (Fig. 2.1), the total electric (E )

and magnetic (H ) fields are continuous across the interface as

E 1=E 2 (2.47)

E 1=H 2 (2.48)

The total electric field can be written in terms of forward and backward electric fields (E+, E−) as

E =E++E− (2.49)

Reflection and transmission coefficients at the interface are shown as q and τ respectively. The

relation between fields and the reflection, transmission coefficients are expressed as [Orfed]
�

E 1
+

E 1
−

�

=
1

τ

�

1 q
q 1

��

E 2
+

E 2
−

�
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Figure 2.1 The interface between two dielectric media

where E 2
− =0. The reflection and transmission coefficients are defined in terms of characteristic

impedances as [Som06], [Col92]

q =
Z2−Z1

Z2+Z1
(2.50)

and

τ=
2Z2

Z2+Z1
. (2.51)

The relationship between reflection and transmission coefficient is [Col92]

τ=1+q . (2.52)

In a two-interface problem, a dielectric slab Zd separates the semi-infinite media Z1 and Z2

as in Fig. 2.2. For describing the complete transmission response from medium 1 into medium 2

in Fig. 2.2, the transmission coefficient is defined by

T =
E 2
+

E 1
+

. (2.53)

The relation between fields E 2
+ and E 1

+ can be described in terms of fields in the dielectric slab

E 1
d+, E 1

d−, E 2
d+, E 2

d− and internal reflection and transmission coefficients (q1, q2, τ1, τ2) at two

interfaces as shown in Fig. 2.2 [Orfed]. E 2
− is assumed zero. The relation between E 2

d+, E 2
d− and

E 2
+ is

�

E 2
d+

E 2
d−

�

=
1

τ2

�

1 q2

q2 1

��

E 2
+

0

�

. (2.54)
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Figure 2.2 The dielectric slab between two semi-infinite mediums

The relation between E 1
+ , E 1
− and E 2

d+, E 2
d− is described as

�

E 1
+

E 1
−

�

=
1

τ1

�

1 q1

q1 1

��

E 1
d+

E 1
d−

�

=
1

τ1

�

1 q1

q1 1

��

e j k ld 0
0 e − j k ld

��

E 2
d+

E 2
d−

�

. (2.55)

Inserting (2.54) in (2.55) gives [Orfed]
�

E 1
+

E 1
−

�

=
1

τ1

�

1 q1

q1 1

��

e j k ld 0
0 e − j k ld

�

1

τ2

�

1 q2

q2 1

��

E 2
+

0

�

. (2.56)

After multiplying the matrix factors, the transmission response can be obtained as

T =
τ1τ2e − j k ld

1+q1q2e − j 2k ld
. (2.57)

Inserting (2.52) in (2.57) results in

T =
(q1+1)(q2+1)e − j k ld

1+q1q2e − j 2k ld
. (2.58)

2.1.3 Planar slot arrays

Babinet’s principle is an important and useful principle in electromagnetic theory. This principle

is based on the duality feature of the electromagnetic field. When a plane wave is incident,

incident wave in a complementary situation can be defined as the clockwise rotation of the plane

of polarization through 90° around the direction of propagation [OT17].
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In the complementary waves, the roles of electric field vector (E) and magnetic field vector

(H) are interchanged. Boundary conditions must be fulfilled, and this can be done by replacing

all electric walls with magnetic walls and vice versa. Both incident and complementary incident

fields satisfy Maxwell’s equations in free space [BSU69], [Bal05], [Boo46], [ea07b]. The relations

between the field and the complementary field in the same medium, are described by the

equations [Cha88]

HB =±
√

√ ε

µ
EA , (2.59)

EB =∓
s

µ

ε
HA . (2.60)

Conducting strip and slot resonators are the physical realizations of the complementary res-

onators (Fig. 2.3) [Naq16], [KO60]. These resonators are used in antenna design.

Figure 2.3 Conducting strip, ring and slot resonators

The consequence is that a slot antenna has the same radiation pattern as a dipole antenna

with the electric and magnetic planes interchanged. In this study, the circular rings and circular

slots are studied, and according to this principle, the amplitude of the transmission coefficient of

planar arrays of circular slots is identical with the amplitude of the reflection coefficient for planar

arrays of circular rings in free space. The resonance frequencies become also interchangeable.
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2.1.4 Equivalent surface currents and Green’s function

In this section, the equivalent surface currents and Green’s functions are explained. For

understanding the PO method in Chapter 5, the equivalent currents on the surface should be

analyzed. In Fig. 2.4, the region A represents a volume with sources, and region B is a source-free

region. In the source-free region, the observation point is positioned. The fields in the region B

are Et ,Ht . In region A, the field of the sources and the reflected field from the boundary S are

Ei ,Hi and Er ,Hr , respectively. The surface S is the boundary between these two regions (region

A and region B), and the unit normal vector is directed into the region where the observation

point is located [Cha88].

The tangential components of electric and magnetic fields are continuous on the surface. The

reflected field is the field reflected at the boundary S. The transmitted field is the field refracted

through the boundary S. If the conductivityσ, permittivity ϵ and permeability µ of both regions

are the same, then the complete region becomes homogeneous and the original sources and

the observation point are positioned in the same medium. When there is no reflection, only the

transmitted field forms the field in region B. The equivalence theorem states that instead of using

the original sources to calculate the scattered field in region B, the distribution of surface electric

and magnetic currents can be used [Col60].

Figure 2.4 Surface enclosing the field sources (Squares symbolize the sources).

The reflected and transmitted fields should satisfy the homogeneous form of Maxwell’s

equations as [Cha88], [Som06], [Uma89]

∇×Er =− jωµAHr (2.61)

∇×Hr = (σA+ jωεA)Er (2.62)
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∇×Et =− jωµB Ht (2.63)

∇×Ht = (σB + jωεB )Et . (2.64)

At the boundary surface S , the tangential components of E and H are continuous. Thus

E t
i +E t

r =E t
t (2.65)

H t
i +H t

r =H t
t . (2.66)

The tangential components (Et , Ht ) of E,H on S relate to the surface current densities JE and JM

according to

JE = n̂×Ht
t = n̂× (Ht

i +Ht
r ) (2.67)

JM =−n̂×Et
t =−n̂× (Et

i +Et
r ). (2.68)

These currents completely define the fields in region B [Col60]. They are called equivalent surface

currents. To solve electromagnetic radiation problems uniquely, a specific boundary condition

is to be applied on the fields at infinity.

The Green’s function is the response to a point source. Consider the solution of the scalar

Helmholtz equation in a homogeneous medium [Cha88], [Broed]

∇2G (r )+k 2G (r ) =−δ(r ). (2.69)

The scalar Green’s function is a solution of (2.69). For simplification, the position of a source is at

the origin. Available solutions of (2.69) are

G1=
e − j k r

4πr
(2.70)

and

G2=
e + j k r

4πr
, (2.71)

where r is the distance between the observation point and the source point. If the medium

is vacuum, then k is replaced by k0. The solution (2.70) describes an outgoing wave and is

used in integral formulas to describe scattered and radiated fields. The factor 1
4π is found by

integrating (2.69) over a sphere of infinitesimal radius centered at the origin. To write the Green’s

function for a general case, the distance r becomes |r−r1| which is the distance between the

observation point and the source point [Kon86].
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2.2 Frequency selective surfaces

A periodic array of metal resonators or small apertures in a metal surface behaves like an electro-

magnetic filter when it is illuminated by an electromagnetic wave. This is named a "frequency

selective surface" (FSS). Being a filter means that the structure shows a stopband and/or bandpass

behavior at a desired frequency or a frequency range [Mun00].

FSS structures can be classified into infinite periodic, cascaded, multilayered, finite periodic

and electrically large, planar or curved [NJ15], [Ton17]. Different types of inclusions such as rings,

patches, square loops, strips and slots are used to design FSS layers. The inclusions with fractal

geometries are used to provide a multiband operation [BRAJ06]. Methods like perturbation

methods or genetic algorithms are used, and different design models such as multi-resonant

unit-cells, multi-element unit-cells, composite unit-cells, complementary structures are utilized

to design FSS layers [MB10], [Ton17].

Frequency selective surfaces are used in different applications, including noise reduction, RF

interference, beam-forming, reconfiguration of antenna radiation patterns for better communi-

cation, in the defense area [HCWC15], [CM12].

There are many important studies about FSS and some of them are mentioned in this section.

With the help of a FSS, a radome can be designed as a spatial filter to permit transmission at the

operating frequency and reflect the out-of-band waves to other directions [ea12b], [CHD09]. A

frequency selective radome can be designed as a resistive or metal FSS, for example by using com-

pact interdigitated Jerusalem crosses to behave as a pass band filter within a defined frequency

band and as an absorber above the transmission band [CM12]. In [LPC+17], an active FSS which

is controlled by a PIN diode positioned between a cross-shaped loop and an inductive stub on

the surface, is designed. The operating frequencies are either the C or the X band. A flexible

printed circuit board is preferred to adjust the curved and flat structures easily and properly. The

goal of an active FSS is to make the design light and mechanically strong or to include the effect

of real environments. More research and studies are needed about multidimensional shapes

and composite materials.

2.3 Metamaterials

From the 1960’s, the interest in metamaterials started to increase in the scientific and engineering

community. In 1967, Veselago showed that left-handed materials can support electromagnetic
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waves with phase and group velocities pointing in opposite directions [Ves68]. Another well-

known contribution to the development of metamaterials is the first ever realization of a negative-

index material (NIM) as an array of copper strips and split ring resonators on printed circuit

boards [Die13].

The word “metamaterial” is a combination of “meta” and “material”. The greek word “meta”

means something beyond, something higher level [Sih09], [GPG14]. The properties of metamate-

rials come out on the macroscopic level by combining different components at microscopic level.

Properties of metamaterials can also be extraordinary, which are not observed in the elemental

materials and in nature [Sih07]. The choice of the periodicity, dimensions and positions of inclu-

sions let a metamaterial give different responses to the excitations, since effective permittivity

and permeability are affected. The key point is that the unit cells and the inclusions should be

smaller than the operational wavelength of the incident wave [Wal01].

The LC circuit, where L is inductance and C is capacitance of a resonator, can be considered

for defining the resonance property of a metamaterial, because electrically small resonators are

used to design metamaterials. By using electrically small resonators, a metamaterial should be

homogenized similar to natural materials [Sih07].

The inclusions can be metal conductive or nonmetal conductive materials. For instance,

conductive graphene, aluminum zinc oxide and indium tin oxide are nonmetal conductive

materials. Silver, gold, aluminum, zinc, copper, gold alloys, aluminum alloys and zinc alloys

are metal conductive materials. Ceramic, ferroelectric, ferrite, polymer material such as FR4,

fiber-reinforced resin composite and fiber reinforced ceramic matrix composite can be used as

the material of the inclusions [RLJ17]. Metamaterials can be adjusted on a flexible substrate such

as polymide, polyester, polytetrafluoroethylene, polyurethane, polyarylate, PET film and PVC

film. The flexible substrate can be mainly useful to design metamaterials for curved surfaces

such as radome walls. Such designs can be helpful for antennas and radomes in microwave

applications [RLJ17]. The equivalent circuit is a well known approach to design metamaterials.

Commercial software including the finite integration technique-based CST Microwave Studio

and the FEM solver of ANSOFT HFSS are mainly used for full-wave electromagnetic simulations

of metamaterials [Cap09].

When a metamaterial is applied to a product, it may be disposed according to the shape of

the specific product so that the metamaterials let the product fit. The metamaterial itself can

constitute a main part of the product. When a metamaterial is used for making a radome, it

can be utilized as the main body of the radome, or a metamaterial is disposed on the surface
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of the radome body made by a conventional ordinary material to enhance its electromagnetic

performance [RLJ17].

In the metamaterial design, differently shaped particles are used depending on the type

of application. The electrically small inclusions can have different shapes such as diamond,

snowflake, I shape, hexagonal, hexagon ring, cross-slotted shape, cross shape, Y-hole, Y shape, a

round-hole shape, an annular shape, square ring, circular ring, square disc, circular disc, square

split ring resonator (SRR), circular SRR and plus shape [RLJ17], [Mun00]. Some known shapes of

resonators are shown in Fig. 2.5.

Figure 2.5 Some known shapes of the resonators in metamaterials.
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2.4 Types of metamaterials

Electromagnetic metamaterials are classified into several categories such as double negative,

single negative, electromagnetic bandgap, double positive, bi-isotropic, bi-anisotropic and

chiral. These metamaterials can enhance the electromagnetic performance of beam steerers,

modulators, band-pass filters, lenses, microwave couplers and antenna radomes in optical and

microwave applications [KA18], [MK11]. Further types of metamaterials are as follows:

Chiral metamaterials are constructed from chiral elements [MK11].

Terahertz metamaterials act at terahertz frequencies. The terahertz frequency range is

defined from 0.1 to 10 THz [KA18], [Par18].

Photonic metamaterials are artificially designed subwavelength periodic structures to react

at optical frequencies. The sub-wavelength periodicity differentiates the photonic metamaterial

from photonic band gap structures [Par18].

Nonlinear metamaterials may also be produced from nonlinear components. They have

properties which change with the power of the incident wave. Such metamaterials can show

magnetic, electric and magnetoelectric nonlinear reactions [Sha15].

Tunable metamaterials can tune the transmitted, reflected, or absorbed electromagnetic

(EM) wave through the structure [KA18]. Tunable metamaterial gives the opportunity to

control and change the electromagnetic responses such as transmission, reflection and

absorption. Thus, the metamaterial becomes alterable and adaptable by permitting change of its

structural components to adjust its macroscopic properties to the desired application [KA18],

[Sih07], [zOE17a]. The example applications can be tunable phase shifters, filters, antennas and

nonlinear components [CWR+06], [SMK06], [HPH+07], [ZHW+12]. There are different ways to

make the metamaterial tunable. Permittivity and permeability can be tuned electrically, magneti-

cally, seperately or simultaneously [AGK15], [SV07]. The change of geometry, size and position of

inclusions, type of substrate or inclusion [TBM+14] is a well-known way. Another approach

[zOE17a] is the use of active lumped elements such as voltage-controlled capacitors [zAB+07],

varactors [HPS10], pin diodes [SCC+10], [PSK05], micro-electro-mechanical systems (MEMS)

[DPC14], [BMea11] and non-Foster active elements. The resistance is affected by pin diodes. The

resonance frequency can be controlled by voltage-controlled capacitors. The refractive index of

a liquid crystal substrate can be tuned by applying a bias electric field because the positions of

molecules are affected [SCP13], [ZKD+07].

The combination of FSS structures with liquid crystals can shift the frequency upon

application of a bias voltage [ea13], [zOE17a]. Using ferrites helps also to make metamateri-
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als tunable. When a magnetic bias is applied to a ferrite, the effective negative permeability can

be changed. The structure can be tuned by controlling the applied magnetic bias. With this

approach, tunability can be achieved in a broad frequency range [ZHW+12]. Tunable metama-

terials can be used for radome walls to enhance the properties of an antenna covered by the

radome [zOE17a].

2.5 Metasheets

A metasheet can be seen as a two-dimensional model of a metamaterial. A metasheet can

achieve unusual and worthwhile electromagnetic properties. The thickness of the structure is

small enough to be negligible with respect to the operational wavelength of the surrounding

medium. The periodicity of the inclusions in a metasheet is small compared to the wavelength.

A metasheet can be considered as homogeneous on the wavelength scale; therefore, it can be

described by effective averaged surface properties. Because of being homogeneous, it does not

produce any diffraction lobes as diffraction gratings do [Tre15]. The key difference between

metasheets and FSSs is the size of the unit cells. In metasheets, the size is smaller than the

wavelength, so no grating lobes occur. In an FSS, the size is comparable or greater than the

wavelength, so there are grating lobes. The thickness of the resonators can be also negligible

compared to the free-space wavelength. In the microwave region, even very thin metal inclusions

can be considered as perfect electric conductors, since the skin depth is extremely small.

2.6 Applications and realizations of metamaterials

The properties of metamaterials can be unusual; therefore, metamaterials are promising for

various types of applications. Metamaterials can be used effectively in antenna design, filter de-

sign and polarization converters to fulfill different requirements. Metamaterials can shape

transmission, absorption, beam forming, directivity pattern, absorption, beam divergence,

polarization conversion, beam deflection and beam convergence [RLJ17].

Negative-index materials (NIM), which are also referred to as left-handed materials, can be

used as a superlens to have a high-resolution optical image [Pen00]. It creates an opportunity

to be utilized in medical and optical imaging. Additionally, left-handed transmission lines

or composite right/left-handed transmission lines can be useful in microwave and antenna

applications. Another type of metamaterials is gradient refractive index metamaterials which

can be utilized for beam-bending lenses and beam focusing lenses [CSL09].
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In antenna design, metamaterials can help to improve the radiation properties such as

directivity enhancement with a zero-index metamaterial for flat horn antennas, gain

enhancement and reduction of the return loss of a patch antenna [GPG14]. Using

metamaterials can help to reduce the size of an antenna. Metamaterials can help to achieve

multiband operation and reconfigurability of microwave instruments.

Metamaterial structures can be used as cloaks. The generated electric and magnetic fields

are blocked by an object or the electromagnetic wave is guided around the object. Coordinate

transformation techniques are used to design cloaks [GPG14].

Metamaterials can be used for increasing the sensitivity and resolution of a sensor.

Metamaterial sensors can play an important role in agricultural and biomedical applications

[GPG14], [KRCB12]. Split ring resonators (SRRs) in a nested architecture are developed to increase

the sensitivity in strain sensors, which are used in biomedical applications [ea10]. Resonant-type

metamaterials, split ring resonators and spiral resonators can be used to design sensors for

mapping soil humidity in agriculture application [KRCB12].

Some other interesting engineering applications of microwave metamaterials are in particular

a broadband and reduced-loss 3D transformation optics lens for wide-angle scanning, a 3D

planar gradient index lens for increasing the gain in the radiation and a random metasurface

with reduced radar cross section (RCS) [Cui17].

For the industrialization of metamaterials, mass production should be developed. The con-

nection between fundamental research in universities/ research institutes and companies for

industrial implementations should be improved. For example, the center of the Kuang-Chi

Research Institute of Advanced Technology has developed its own industrialization architec-

ture. Under this architecture, real demands are introduced from the market and clients, and

filtered based on specific criteria [LJZZ15]. Metamaterials can be used together with different

technologies such as fibre, silicon photonic, laser and photovoltaic technologies [TUZ17].

2.7 Concept of metaradomes

The surface of radomes can be designed by using metasheets. As mentioned in Section 2.5, a

metasheet, which is a quasi-two-dimensional version of a metamaterial, can be widely used

in microwave systems such as antennas and radomes. The standard dielectric material of the

radome wall can be replaced with the metasheet, or a metasheet can be inserted into the radome

as an additional part. These two design models create a metaradome.

Metaradomes can be designed and developed for different application areas:
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1. Maritime

2. Telecommunication

3. Radar

4. Aerospace

5. Automative.

Metaradomes can be a part of directional antennas, which are used in wireless networks

to shape the directivity of the antennas. They can be designed for reconfigurable antennas

to be used in another interesting application such a cognitive radio [PYQG15], [TC09], [PG13],

which finds automatically available channels in a frequency spectrum, and its transmission or

reception parameters are changed for having an optimum communication bandwidth within

a determined spectral zone. A reconfigurable wireless system can be modified by depending

on networks and user’s choice [BKGA11]. With the help of metamaterials, radomes may attain

new electrical properties such as tailored transmission, absorption and reflection behaviors.

Metamaterials bring the benefits of correction of phase distortions, reduction of transmission

losses and shaping the frequency dependence of the electromagnetic response. A metasheet can

convert a radome into a multiband radome with reconfigurable frequency pass and stop bands,

enhanced out-of-band rejection, on/off modes and also increasing the antenna gain. Available

metaradome studies are overviewed in [zOE17a]. The most important directions of research

related to metasheets in the radome applications are as follows [zOE17a]:

1. The bandwidth of transparent structures should be extended. Because of the resonance

nature of the metamaterial inclusions, the bandwidth is limited. Wide and narrow band-

widths can be used in different application areas. Therefore, having a narrow bandwidth is

not unfavorable for some specific applications such as cost-effective wireless networking

for large outdoor scenes like seaports and rail yards [Teced].

2. Simulation of electrically large and curved radomes is a complicated calculation problem.

For having a homogeneous surface, the size of the inclusions, which are distributed over

an electrically large structure, should be as small as possible compared to the operational

wavelength. This large amount of small particles is distributed over a finitely sized area,

implying that the assumption of periodicity is not applicable; therefore, simulation of

curved metasheets can be a future research field [zOE17b].
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2.8 Studies on different circular inclusions

In this section, different types of circular inclusions, whose dimensions are smaller than the

operational wavelength, are addressed. The basic types of the associated arrays are as follows:

1. Dense arrays of circular holes in a perfectly conducting sheet (screen) which are named

"holey metasurfaces" (holey MTS). Such arrays can be used to realize partially reflective

surfaces (PRS), which initiate leaky wave and beam forming, when positioned in front of a

patch antenna or any other radiator. The gain and bandwidth are influenced by reflection

from the PRS and the distance from the radiator. Moreover, depending on the character

and appearance of structure, they can be used as back reflector [BBM+16].

2. Array of particles positioned on a dielectric substrate, which are backed by an electrically

thin metal layer to shape the electromagnetic response and improve the efficiency and

gain. A subclass of such arrays is referred to as "high-impedance surfaces" (HIS) which

reflect electromagnetic waves with zero phase shift around the resonance frequency. It can

decrease the thickness of an antenna system. Because of having subwavelength periodicity,

the quasi-static regime can be considered. Electrically small circular patches can be used

as particles [BBM+16].

Other studied ring configurations are the conventional split ring resonator (SRR), broadside

coupled split ring resonator (BC-SRR), non-bianisotropic split ring resonator (NB-SRR) and

double slit split ring resonator (DS-SRR) [MH13], [DSNP+12], [BM12], [CR12].

2.9 Planar array of circular rings

The main difficulty in the estimation of the electromagnetic response of metamaterial arrays of

circular rings such as transmission or reflection is the complicated spectral and spatial structure

of the induced currents on the subwavelength scale. The distance between the rings changes

because of the rounded shape of the inclusion (Fig. 2.6), which results in field variations. A

simplification is that the distance between the inclusions is smaller than the operating wave-

length; therefore, the field which illuminates the unit cells, can be considered as quasi-static

field [BBM+16].

The equivalent transmission line model of free-space propagation is used to estimate the

electromagnetic response of the array of circular rings. An effective width (we f f ) description

helps to account for the changeable distance between the inclusions. This effective width is
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Figure 2.6 Electric field lines between two metal rings for plane-wave excitation.

calculated by the integral mean value theorem, so the inclusions are modeled as an equivalent

array of sub-wavelength squared holes [BBM+16]. Another approach is a polarizability based

analysis. The assumption that the inclusions are electrically small, helps to express their contri-

butions in terms of electric dipoles but information cannot be provided about the geometry of

the inclusion itself [BBM+16]. The polarizabilities of the inclusions are defined in terms of their

dimensions for a single inclusion, not for a periodic array of inclusions [OT17], [Tre03].
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Chapter 3

Modelling Infinite Planar Metasheets

3.1 High-frequency structure simulator (HFSS)

Full-wave simulators are used for different varieties of high-frequency electronic products. Some

of the products are antennas, antenna arrays, RF or microwave components, high-speed inter-

connects, filters, connectors, integrated circuit (IC) packages and printed circuit boards. The

High-Frequency Structure Simulator (Ansys HFSS) is an electromagnetic simulation software.

Ansys HFSS is utilized to design high-frequency, high-speed electronics found in communication

systems, radar systems, advanced driver assistance systems (ADAS), satellites, internet-of-things

(IoT) product, and other high-speed RF and digital devices [Anyed]. HFSS uses the Finite Element

Method (FEM) to solve Maxwell’s equations [Dined].

3.2 Differential equation solvers

Examples of differential equation solving methods are the finite-difference time-domain (FDTD),

finite element (FEM) and transmission-line matrix (TLM) methods [ST]. Differential equation

solvers are used for both frequency and time-domain calculations. Such solvers can be useful to

solve driven problems and eigenvalue problems. For differential equation solvers in frequency

domain, iterative solvers are often used (especially in three dimensions). The closed-form and

infinite-series analytical solutions are widely used for simpler problems. FEM plays a key role in

analyzing complex metamaterials. The performance of computational electromagnetic tools and

computers has been constantly improved. A lot of efforts have been invested in developments of

algorithms [BIR08], [Rao05].
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3.3 Comparison of electromagnetic modeling techniques

Method of Moments (MOM), FEM and the finite difference (FD) method are well-known algo-

rithms and further studies are done on electromagnetic modeling [EH96], [Eib04]. FD uses the

field components, or the potentials, on a structured grid of points to discretize Maxwell’s equa-

tions. FD and FDTD are efficient algorithms because they need a small number of operations

per grid point. For having a good approximation of complex boundaries, FEM can be preferred

because it divides the computational region into subdomains. This is named as "discretization

or meshing". A disadvantage of FEM is that calculations in time domain are slow. FEM is mainly

used for eddy current calculations and time harmonic problems. FEM requires many computer

resources in terms of CPU [BIR08], [Die13], [Rao05].

Integral equations are the ways to solve Maxwell’s equations with the method of moments.

Currents or charges on the surface of dielectrics and conductors are the unknowns in MOM

[DeLed]. This method is suitable for scattering and radiation problems involving open regions,

metal bodies and small current-carrying surfaces [DeLed], [BIR08].

3.4 Finite Element Method (FEM)

FEM is a well-known method to solve boundary-value problems of partial differential equations.

Richard Courant published this method in 1943, to solve elasticity and structural problems

[Die13]. FEM is based on meshing. The body is meshed into subregions using trapezodial,

tetrahedral, or other types of meshing schemes. For having a better approximation, the size

of the subdomains should be as small as possible. To determine the fields, a linear system of

equations is solved. A finite number of basis functions is used to approximate the solution. The

basis functions are mainly low-order polynomials, which are nonzero only in a few adjacent

subregions [BIR08]. Many well-developed finite element simulation programs can subdivide

arbitrarily shaped lines, surfaces, and volumes into the corresponding elements [BIR08], [Rao05].

3.5 HFSS simulation setup for infinite periodic planar layer

For simulations in this thesis, HFSS has been used. The simulation setup can be chosen according

to the type of the design and type of meshing to be used [Dined]. A vacuumbox is defined between

two Floquent ports as a simulation volume shown in Fig. 3.1. The length of the vacuumbox is

not a fixed value. The length of the vacuumbox should be sufficiently long in order to propertly

account for evanesent higher-order modes in the structure but on the other hand it should be as
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small as possible in order not to increase the simulation time. For converting the unit cell into a

periodic structure, master/slave boundary conditions are used. The master/slave boundaries are

paired, and their surfaces should have identical sizes and shapes [Ansedb]. In the simulations,

direct or iterative solvers are used to expedite the simulation. In HFSS, the transmission and

the reflection are described in terms of a scattering matrix (S-matrix). The scattering matrix

corresponds to a microwave network relating the incident, reflected and transmitted power

waves.

Figure 3.1 Simulation setup for a unit cell of an infinite planar layer.

In the full-wave simulations of this thesis, the simulation parameters such as the vacuumbox

length, the solution setup and the type of meshing are not kept constant. The simulation-specific

information is given in this chapter and the following chapters.

3.6 Infinite periodic planar metasheets from metal circular rings

In this section, results of a parametric study of the infinite periodic arrays from rings are presented

based on full-wave simulations. As explained in Section 2.9, the unit cell and the size of the

resonator affect the electromagnetic response dramatically. The size of the resonator and the unit

cell are changed according to the desired frequency range. Analyzing the full-wave simulation

results gives a chance to better understand the properties of the arrays of circular rings. Results

of the full-wave simulations and measurements for concentric double rings on substrate FR4
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and slots in a metal screen will also be shown. The effects of the dimensional parameters of

the rings, dielectric substrate, thickness of the substrate and the unit cell are presented to get

an idea of the electromagnetic responses of the infinite periodic planar array of metal circular

rings, whose dimensional parameters are the outer radius (ro u t ), the inner radius (ri n ) and the

unit-cell length (periodicity p ) as shown in Fig. 3.2. A normally linearly polarized plane wave is

considered as the incident wave.

Figure 3.2 An infinite periodic planar array of circular rings obtained by the repetition of the unit
cell.

The width of the rings (ro u t − ri n ) should be as small as possible to keep the shape of the

resonator as a narrow planar ring. The resonator should not degenerate in a disc. The parame-

ters are changed separately to better see the influence of every parameter on the transmission

coefficient. Infinite periodic arrays of the rings in free space and on a dielectric substrate are

analyzed.

In Fig. 3.3, the unit cell of the ring array is varied, while the dimension of the ring is kept

constant. The transmission coefficient in Fig. 3.3 is S21 extracted from HFSS. In the metasheets,

the unit cell should be smaller than the operational wavelength. When the size of the unit cells

are smaller than the wavelength, the complete structure attains a macroscopic electromagnetic

behavior because of the homogeneity [Mem15]. The length of the vacuumbox between two

Floquet ports is 120 mm. The thickness of the rings is 0.018 mm. By changing the unit-cell size,
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the resonance frequency is shifted nonlinearly. For understanding the effect, the polarizability

approach, which is explained a bit later, can be used. Changing the unit-cell size changes the

distance between the inclusions. When the distance becomes smaller, the interaction between

the inclusions increases and causes a shift in the resonance [Mun00]. The frequency dependence

of transmission can be shaped by changing the unit-cell size of the structure [PHA+08]. When the

planar metasheet is illuminated by an incident wave, the coupling of electric fields gets stronger

with smaller unit cells. In the full-wave simulations, auto meshing is used. The iterative solver

and first-order basis functions are used for the unit-cell lengths 8 mm and 10 mm. The direct

solver and mixed-order basis functions for the unit-cell size 12 mm are used. The ring material

is perfect electric conductor (PEC).
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Figure 3.3 Amplitude of the transmission coefficient of an infinite periodic array of circular rings
(outer radius 3.6 mm, inner radius 3.4 mm) in free space versus frequency.

For modeling transmission and reflection of arrays of electrically small inclusions, the concept

of polarizability can be used. The inclusions can be electrically and/or magnetically polarizable.

The electromagnetic response of inclusions can be expressed in terms of electric and/or magnetic

dipole moments. The incident electric and magnetic fields induce current distributions in the

inclusions. Collective electric and magnetic polarizabilities of the unit cells in the metasheet can

be expressed as [ea15], [KPDRT18]

P= α̂e e Ei n c (3.1)

M= α̂mm Hi n c , (3.2)
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where P and M are the induced electric and magnetic moments, α̂e e is the scalar electrical

polarizability, and α̂mm is the scalar magnetic polarizability. Ei n c and Hi n c are the incident field

vectors. Dipole moments are linearly dependent on the field through a polarizability. In this study,

the magnetoelectric coupling is not included because the inclusion is a metal ring. Bi-anisotropic

inclusions such as the Omega particle have this coupling. The transmission coefficient is obtained

from the ratio of the forward scattered wave to the incident wave and the reflection coefficient

from the ratio of the reflected wave to the incident wave. The equations for a normally incident

plane wave which goes through the metasheet, can be written as [ea15], [KPDRT18]

Er =
jω

2S
(η0α̂e e −

1

η0
α̂mm )Ei n c (3.3)

Et = (1+
jω

2S
(η0α̂e e +

1

η0
α̂mm ))Ei n c , (3.4)

whereω is the angular frequency, S is the area of the unit cell,η0 is the free-space wave impedance,

α̂e e and α̂mm are the effective (collective) electric and magnetic polarizabilities of the unit cells

and Er , Et are reflected and transmitted electric field vectors respectively [ea15], [KPDRT18].

By using (3.3) and (3.4), the relation between the resonance frequency, the unit-cell area and

the effective electric polarizability can be defined. For example, for a perfect transmission, the

magnitude values of transmission (T ) and reflection (R ) coefficients should be

R =
|Er |
|Ei n c |

=0 (3.5)

T =
|Et |
|Ei n c |

=1. (3.6)

Inserting (3.3) and (3.4) in (3.5) and (3.6) gives the equations

jω

2S
(η0α̂e e −

1

η0
α̂mm ) =0. (3.7)

jω

2S
(η0α̂e e +

1

η0
α̂mm ) =−2 (3.8)

The resonance frequency of the metasheet can be expressed in terms of the effective electric

polarizability and the unit-cell area as

ω=
−2S

jη0α̂e e
. (3.9)
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The relation between the individual polarizabilites αe e , αmm of the inclusion and the effective

polarizabilities are written as [ea15], [KPDRT18]

α̂e e =
1

1
αe e
−βe

, (3.10)

α̂mm =
1

1
αmm
−βe

, (3.11)

where βe is the interaction constant of the infinite periodic array of electric dipoles. Thus, the

angular frequency can be expressed in terms of the individual polarizability, the interaction

constant and the unit-cell area as

ω=
−2S ( 1

αe e
−βe )

jη0
. (3.12)

Equation (3.12) shows the relation between the frequency of a perfect transmission and the

parameters of the array. The interaction constant (βe ) cannot be defined in a simple form even

for simply shaped particles; therefore, the response of infinite planar metasheets has to be

calculated by full-wave simulation.

Figure 3.4 shows the dependence of the transmission coefficient on frequency for several

values of ri n . When the inner radius decreases, the stop-band region becomes broader due to

the enlargement of the metal part of the ring, as the ring approaches a disc. In the full-wave

simulations, an iterative solver, first order basis functions and auto meshing are used. The ring is

PEC. The length of the vacuumbox between two Floquet ports is 120 mm. The length of the unit

cell is 12 mm. The thickness of the ring is 0.018 mm.

A dielectric substrate is necessary due to mechanical reasons. Periodic structures without a

dielectric substrate are analyzed to understand the role of the inclusions. The dielectric substrates

can have a strong effect on the transmission and reflection curves. When a periodic array of planar

inclusions is placed on a dielectric substrate, the resonant frequency changes. If the thickness

of the dielectric substrate increases, the frequency may shift to lower values. By adjusting the

parameters of the substrate, the transmission and reflection curves can be reshaped. Figure 3.5

shows the transmission coefficient of the array of PEC circular rings on different dielectric

substrates with the thicknesses of 2 mm. The relative permittivities of the substrates RO3203,

RO6010 and FR4 are 3.02, 10.2 and 4.4, respectively. The periodicity (unit-cell length) is 12 mm.

The length of the vacuumbox between the two Floquet ports is 150 mm. The thickness of the ring

is 0.018 mm. As it is seen from Fig. 3.5, when the relative permittivity increases, the resonance

frequency decreases. Auto meshing, mixed order basis functions, the direct solver are used in

the full-wave simulations where R03203 and R06010 are used for the dielectric substrate. First
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Figure 3.4 Amplitude of the transmission coefficient of an infinite periodic planar array of circular
rings in free space with the fixed outer radius 5.9 mm and a varying inner radius (ri n ).

order basis functions, iterative solver, auto meshing are used in the full-wave simulation where

FR4 is used for the dielectric substrate.
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Figure 3.5 Amplitude of the transmission coefficient of a periodic array of rings (outer radius
5 mm and inner radius 4.8 mm on the different dielectric substrates) versus frequency.
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The values of the resonance frequencies of the full-wave simulated infinite periodic planar

array of circular rings (ro u t =5 mm and ri n =4.8 mm, p =12 mm) without and with the dielectric

substrates are shown in Table 3.1.

Table 3.1 Resonance frequencies of the array of circular rings (ro u t =5 mm, ri n =4.8 mm).

In free space RO3203 FR4 RO6010

10.6 GHz 7.5 GHz 6.5 GHz 4.5 GHz

The resonance frequency of the array of circular rings in free space is f0 = 10.6 GHz. The

shift in the resonance frequency caused by a substrate with the relative permittivity ϵr can be

estimated by the formula [Mun00]

fne w ≃
f0p
ϵr

. (3.13)

The exact resonance frequency of an array of rings on a substrate lies however between

fne w and f0, where the resonance frequency of the array on substrate RO3203 is between fne w =

6.09 GHz and f0 = 10.6 GHz. The resonance frequency of the array on substrate RO6010 is

between fne w =3.25 GHz and f0=10.6 GHz. It is seen that the resonance frequency is closer to

fne w . Equation (3.13) does not give an exact estimate for the resonance frequency.

Figure 3.6 shows the effect of changing the thickness of the dielectric substrate. For metasheets,

the thickness of the substrate should be smaller than the operational wavelength. First order

basis functions, an iterative solver, interpolating sweep and auto meshing are chosen in the

HFSS simulation setup. The unit-cell length is 12 mm. The length of the vacuumbox between

two Floquet ports is 150 mm. The thickness of rings is 0.018 mm. As it is seen in Fig. 3.6, the

resonance frequency is not a linear function of the thickness (t ) .

The resonance frequency is mainly affected by the interaction of the arrays of planar metal

inclusions and dielectric substrate. When the thickness increases too much, the metasheet starts

to convert into a 3-D bulk structure. Inclusions can strongly interact with the surface of the

dielectric substrate at their sides. Therefore, increasing the thickness of the substrate does not

bring a linear shift on the resonance frequency. As observed in Fig. 3.6, the resonance frequency

is kept mainly constant even if the thickness is changed from 2.5mm to 3mm. Roughly, it can

be said that the resonance frequency is inversely proportional to the thickness of the dielectric

substrate.
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Figure 3.6 Amplitude of the transmission coefficient of an infinite periodic planar array of rings
(outer radius 5mm, inner radius 4.8mm) on a dielectric substrate (FR4-epoxy) for several thick-
ness values versus frequency.

3.7 Concentric double circular rings

One can use several concentric rings as an inclusion to get more design freedom. For example,

the concentric circular rings in Fig. 3.7 have two resonance frequencies, at which the amplitude

of the transmission coefficient is the lowest. If the size of one ring is kept constant and the size of

the other one is changed, only one resonance frequency is shifted in free space as it is observed

in Figs. 3.8 and 3.9.

The array consists of PEC rings in free space with the unit-cell size 12 mm. The vacuumbox

length between the Floquet ports is 90 mm. The iterative solver, first order basis functions,

interpolating sweep and classic mesh are chosen in the HFSS simulation setup.
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Figure 3.7 Double-ring inclusion.
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Figure 3.8 Amplitude of the transmission coefficient of an infinite periodic planar array of con-
centric circular rings in free space (outer and inner radii of the inner ring are 2.8 mm and 2.6 mm,
respectively) versus frequency.
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Figure 3.9 Amplitude of the transmission coefficient of infinite periodic planar array of concentric
double circular rings in free space (outer and inner radii of the outer ring are 5.8 mm and 5.6 mm,
respectively) versus frequency.
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3.8 Concentric double circular slots

Arrays of circular slots in a metal screen in Fig. 3.10 show complementary transmission and

reflection properties with respect to the circular rings, which can be explained by the Babinet

principle. The array of concentric double circular slots create two resonance frequencies where

the amplitude of the transmission coefficient has its maximum value. Figure 3.11 is an illustration

of the complementary properties.

Figure 3.10 Concentric double circular slots in a metal screen.
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Figure 3.11 Comparison of the reflection coefficient for the infinite periodic array of concentric
circular slots and transmission coefficient of the infinite periodic array of concentric double
circular rings.
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The reflection coefficient of an infinite periodic array of concentric double circular slots

(CDCS) and the transmission coefficient of an infinite periodic array of concentric double circular

rings (CDCR) are compared. It is seen that the reflection coefficient of the slot array can be

estimated from the transmission coefficient of the ring array or vice versa. For the outer ring (or

slot), the radius values are ro u t =5.8 mm, ri n =5.6 mm and for the inner ring (or slot), the radius

values are ro u t =3.6 mm, ri n =3.4 mm. The thickness of the rings (metal screen for slots) is 18µm.

The length of the unit cell is 12 mm. The length of the vacuumbox between the Floquet ports is

90 mm. The iterative solver, first order basis functions, interpolating sweep and classic mesh

are chosen in the HFSS simulation setup. The curves are not identical in Fig. 3.11 because the

structure has a finite thickness. In the higher frequencies, the thickness starts to be comparable

with the wavelength.

Below, a variety of full-wave simulation results for complementary concentric rings in the

UHF band is presented. This frequency band is used for the Galileo Navigation Signals [Galed].

To have resonance frequencies at the lower frequencies, the unit-cell size and the radius of the

rings should be increased.

Figure 3.12 shows that when the thickness of the metal screen increases, the magnitude of

the transmission coefficient decreases. The material of the metal parts was assumed to be PEC

in the simulations. For better transmission, thin metal inclusions are preferred. The change

in the thickness of the screen insignificantly affects the resonance frequencies. The unit-cell

length is 79 mm. The radii values are chosen as ro u t =39.23 mm and ri n =37.73 mm for the outer

ring and ro u t =30.125 mm and ri n =29.625 mm for the inner ring. The length of the vacuumbox

between two Floquet ports is 300 mm. The PEC screen with the slots is in free space. There is no

substrate. Auto meshing, an iterative solver and mixed order basis functions are chosen in the

HFSS simulation setup.

Next, a metal screen with circular slots, which are backed by a dielectric substrate, is consid-

ered because of its material properties. Its relative permittivity is 1.05 and the dielectric tangent

loss is 0.0003. The substrate Rohacell51GA is close to vacuum; therefore, the electromagnetic

response is close to the case of the ring array in free space. Furthermore, in Fig. 3.13, the dielectric

substrate is kept constant and only the dimensions of the rings in the unit cell are changed. The

unit-cell length is 79mm. The thickness of the substrate is 3mm. The material of the rings is

copper. The vacuumbox length between the Floquet ports is 320 mm. Interpolating sweep, an

iterative solver, mixed-order basis functions, auto meshing are chosen in the HFSS simulation
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Figure 3.12 Amplitude of the transmission coefficient of an infinite planar array of concentric
double circular slots in free space versus frequency for various thickness.

setup. The thickness of the metal screen is 3mm. The dimensions of the slots are given in

Tables 3.2 and 3.3.

The amplitude of the transmission coefficient or the resonance frequency can be altered by

changing the dielectric substrate material, the thickness of the dielectric substrate, dimensional

parameters of the rings and the unit cell. The dimensions of the rings are adjusted to have the

same resonance frequencies with different dielectric substrates in Fig. 3.14.

Table 3.2 Outer ring dimensions of concentric double circular slots in a metal screen backed by a
Rohacell51G substrate.

Concentric double circular slots ro u t in mm ri n in mm

(1) 39.00 37.96

(2) 38.66 38.30

(3) 38.50 38.46

(4) 39.00 37.96

The effect of dielectric substrate on the resonance frequencies are strong. Only adjust-

ing the dimensions of the slots may not be enough. The unit cell should be changed also.

The material of the screen is copper. The thickness of the metal screen is 0.2mm. The thickness

43



Modelling Infinite Planar Metasheets

0 . 5 0 0 . 7 5 1 . 0 0 1 . 2 5 1 . 5 0 1 . 7 5 2 . 0 0 2 . 2 5
0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

F r e q u e n c y   i n  G H z

 C D C S  ( 1 )
 C D C S  ( 2 )
 C D C S  ( 3 )
 C D C S  ( 4 )

Figure 3.13 Amplitude of the transmission coefficient of an infinite planar array of concen-
tric double circular slots versus frequency (The average radius is kept same. The substrate is
Rohacell51GA.)
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Figure 3.14 Amplitude of the transmission coefficient of an infinite planar array of concentric
double circular slots for three different dielectric substrates. The dimensions of the circular slots
are adjusted so as to have the same resonance frequencies.

of the dielectric substrate is 3mm. Classic meshing, mixed-order basis functions, an iterative
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3.8 Concentric double circular slots

Table 3.3 Inner ring dimensions of concentric double circular slots in a metal screen backed by a
Rohacell51G substrate.

Concentric double circular slots ro u t in mm ri n in mm

(1) 36.5 29.5

(2) 35 31

(3) 37 29

(4) 35 31

solver are chosen in the HFSS simulation setup. The dimensions of the slots for three different

substrates are given in Tables from 3.4 to 3.6.

Table 3.4 Dimensions of concentric double circular slots in a metal screen backed by the substrate
Duroid6010 for periodicity p =50 mm.

Concentric double rings ro u t in mm ri n in mm

Outer ring 21.5 20.0

Inner ring 17.5 16.0

Table 3.5 Dimensions of concentric double circular slots in a metal screen backed by the substrate
Duroid3006 for periodicity p =60 mm.

Concentric double rings ro u t in mm ri n in mm

Outer ring 25 24

Inner ring 20.5 19

As it is seen from Fig. 3.15, changing the material of the substrate affects both resonance

frequencies. While the relative permittivity is increased, the resonance frequencies are shifted

to lower frequencies. For staying in the defined frequency range, the dimensions of the rings

should be smaller if the relative permittivity of the dielectric substrate increases. The dimension

of the concentric double circular slots is shown in Table 3.7. The unit-cell length (periodicity) is

79 mm. The thicknesses of the rings is 0.2 mm. The thickness of the dielectric substrate is 3 mm.

The length of the vacuumbox is 320 mm. Classic meshing, an iterative solver, mixed-order basis

functions are chosen in the HFSS simulation setup.
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Table 3.6 Dimensions of concentric double circular slots in a metal screen backed by the substrate
FR4 for periodicity p =60 mm.

Concentric double slots ro u t in mm ri n in mm

Outer ring 27.5 26.5

Inner ring 23 22

The unit-cell size and the dimensions of the rings need to be adjusted to have the resonance

response in the preferred frequency band. According to the simulation results in this chapter,

the rings and the unit cells are smaller for the X band than for the UHF band.

Full-wave simulation is insufficient as a design method. Metasheet design by full-wave

simulations means the need to do many tries by changing the design parameters. The full-wave

simulations are useful to verify the electromagnetic response of the designed structure. For

designing the metasheets, suitable methods should be developed.

Table 3.7 Dimensions of concentric double circular slots in a metal screen backed by various
dielectric substrates.

Concentric double circular slots ro u t in mm ri n in mm

Outer ring 38.96 38.00

Inner ring 34.00 32.00
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Figure 3.15 Amplitude of the transmission coefficient of an infinite planar array of concentric
double circular slots versus frequency. (The unit-cell size is 79mm. The dimensions of the
circular slots are kept constant.)
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3.9 Full-wave simulation and measurement for a periodic array of
concentric double rings

In this section, simulation results for the array of double ring structure and the array of double

slot structure are compared with measurements. The manufactured arrays of concentric double

rings and concentric double slots are shown in Figs. 3.16 and 3.17. The copper arrays are placed

on FR4 substrate. The thickness of the substrate is 2mm. The length of the unit cell is 20mm. The

outer and inner radii of the outer ring are 9.8mm and 8.3mm, respectively. The outer and inner

radii of the inner ring are 5.1mm and 4.6mm, respectively. The thickness of the rings are 50 µm.

The frequency range is between 1 GHz and 20 GHz. The length of the vacuumbox between two

ports is 80mm.

Figure 3.16 Concentric double rings on an FR4 substrate.

In Figs. 3.18 and 3.19, there is a good match between the results from the measurement and

the full-wave simulation. The simulation setup for the infinite periodic planar layer which is

explained in Section 3.5, is used in this section. Interpolating sweep, iterative solver and auto

meshing model are chosen in the simulation setup. In the full-wave simulation, normal incident

plane wave and linear polarization are considered.
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Figure 3.17 Concentric double circular slots on an FR4 substrate.
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Figure 3.18 Comparison of measured and full-wave simulation results for transmission through
an array of concentric double rings on an FR4 substrate.
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Figure 3.19 The same as in Fig. 3.18 but for an array of concentric double circular slots in a metal
screen backed by an FR4 substrate.

The electromagnetic response of the array of concentric double metal rings shows a band-

stop behavior at two frequencies. The electromagnetic response of the array of concentric double

circular slots in a metal screen shows the resonance points where the transmission has the highest

value. It shows band-pass behavior at two frequencies.
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Chapter 4

Equivalent Circuit Modelling of
Metasheets

4.1 Approximation for the transmission of an array of circular rings
without substrate

The transmission line approach is helpful for analyzing the properties of one-dimensional prop-

agation. Waves propagate only in one direction if the length of the uniform transmission line is

infinite. The line is infinitely long so there are no reflections from a non-existent end. Suppose

there is a load at the far end of the cable whose impedance matches the characteristic impedance

of the transmission line. Then regardless of the transmission line length, there will be no reflec-

tions. There are forward and backward propagating waves if the transmission line is shunted

with an inductance, capacitance or resistance. Such lumped elements are a discontinuity on a

transmission line so a propagating wave cannot simultaneously satisfy the boundary conditions.

In this study, metasheet structures are represented by LC circuits (Fig. 4.1). Consider, for

example, a plane wave which goes in the +z direction, through a conducting metal ring, placed

between a pair of infinitely thin perfectly conducting plates. The plane wave has no components

of the electric and magnetic field along the propagation direction. Therefore, the x y -plane

can be considered as equiphase. TEM transmission lines are shown graphically as parallel lines

and their characteristic impedance Z0 is presented in Fig. 4.1. The characteristic impedance of

the transmission line is equal to the free space impedance Z0. If the dimensions of the planar

resonator are smaller than the wavelength of the operational frequency, then the conducting

planar rings can be represented by an equivalent impedance.The thickness of rings has a constant
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value as 18 µm. The width of the rings are between 0.1 mm and 0.2 mm. The thickness of the

ring is neglected in the following analysis.

Figure 4.1 Shunted transmission line with an equivalent impedance.

The input impedance, which has inductive reactance XL =2π f L and capacitive susceptance

BC =2π f C , can be written in terms of a complex reactance Xg [And75]. The expression for Xg

in terms of capacitive reactance and inductive reactance can be written as [And75]

Xg =XL +XC =2π f L−
1

2π f C
. (4.1)

Normalizing (4.1) to the free-space impedance gives

Xno r =
2π f L

Z0
−

1

Z02π f C
. (4.2)

The input impedance Zi normalized to Z0 is calculated according to the equivalent circuit in

Fig. 4.2 as

Zi =
j Xno r

1+ j Xno r
. (4.3)

Figure 4.2 Transmission line from Fig. 4.1 as a parallel circuit with free-space impedance.

In the lossless case, the transmission coefficient T is related to the reflection coefficient R as

1+R =T . (4.4)
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The reflection coefficient in terms of the input impedance is

R =
Zi −1

Zi +1
. (4.5)

It gives the transmission coefficient as

1+
Zi −1

Zi +1
=T (4.6)

T =
2Zi

Zi +1
. (4.7)

Inserting (4.3) in (4.7) results in

T =
4X 2

no r + j 2Xno r

1+4X 2
no r

. (4.8)

Real and imaginary parts of the transmission coefficient can be expressed through the normalized

reactance as

Tr e a l =
4X 2

no r

1+4X 2
no r

(4.9)

and

Ti m =
2Xno r

1+4X 2
no r

. (4.10)

The frequency f is written in terms of propagation constant k0 and speed of light c in free space

as

f =
k0c

2π
(4.11)

and inserting (4.11) in (4.2) gives

Xno r =
2πk0c

2π L

Z0
−

1

Z02πk0c
2π C

. (4.12)

Writing Z0 in terms of dielectric constant ϵ0 and speed of light c as

Z0=
1

ϵ0c
(4.13)

and inserting (4.13) in (4.12) gives

Xno r =k0ϵ0c 2L−
ϵ0

k0C
. (4.14)

and, k0 is replaced by k0p
p , then k0p =kno r . Xno r can be expressed in terms of kno r to give

Xno r =
k0p

p
ϵ0c 2L−

ϵ0
k0p

p C
. (4.15)
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For right-angled inclusions like Jerusalem-crosses, square rings and cut-wires, it is possible to

express the circuit parameters L and C through their dimensions [And75], [Mun00]. Because of

the rounded shape of circular rings, the inductive reactance and capacitive susceptance cannot

be written directly in terms of their dimensions. Therefore, the equivalent impedance Xno r is

expressed through two unknown functions which define the inductive and capacitive effects in

the circuit. Terms (ϵ0c 2L )/p and (pϵ0)/C in (4.15) in terms of functions F1 and F2 are written as

Xno r =kno r F1(rno r )−
1

kno r
F2(rno r ), (4.16)

where F1 and F2 are unit-less functions of rno r which is the normalized average radius ra v
p = rno r

is calculated by the arithmetic average of the outer and inner radii of the rings.

For calculating the transmission coefficient, (4.16) is inserted into (4.9) and (4.10), which

results:

Tr e a l (rno r ,kno r ) =
4(k 2

no r F1−F2)2

k 2
no r +4(k 2

no r F1−F2)2
, (4.17)

Ti m (rno r ,kno r ) =
2k 3

no r F1−2kno r F2

4k 4
no r F 2

1 +k 2
no r (1−8F1F2)+4F 2

2

. (4.18)

In these equations, suitable approximations will be used for the functions F1 and F2. To determine

the coefficients of the approximations, curve fitting is applied. This process is applied in MATLAB

by using the fitting toolbox with the Levenberg-Marquardt, and Trust-Region methods. The

Levenberg-Marquardt method is a well known algorithm to solve nonlinear least square problems

by fitting a parametrized function to a set of available data by minimizing the sum of the squares

of the errors between the data and the function [Gaved]. The trust region algorithm computes a

trial step by solving a subset of the region of the model function. If the approximated solution

matches the original problem well, then the trust region is expanded. Otherwise, the trust region

should be downsized [Mated], [Yua15].

Depending on the chosen method, the values of the coefficients in the fitting function can be

changed. These values are not unique. The most important thing is that the proper coefficient

values are found. Another advantage is that this semianalytical approach can be extended to

more than two variables in the algorithm which is used for fitting.

The amplitude and the phase of the transmission coefficient can be calculated as

|T |=
q

T 2
r e a l +T 2

i m , (4.19)

tan(θT ) =
Ti m

Tr e a l
. (4.20)
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The analytical expressions in (4.17) and (4.18) represent the complex transmission coefficient as

a function of kno r normalized propagation constant according to the periodicity p which is the

unit-cell length as shown in Fig. 3.2. A resonance occurs when both the real and imaginary parts

in (4.17) and (4.18) become zero, when [zOE18]

k 2
no r =

F2

F1
. (4.21)

Thus, the resonance frequency depends only on the ratio of F2 and F1.

The transmission coefficients in (4.17) and (4.18) depend only on the normalized wavenum-

ber and the free parameters F1 and F2. In order to determine these free parameters, the absolute

value of the transmission coefficient as given in (4.19) will be fitted to full-wave simulations for

seven different values of the ring radii with one constant periodicity (12mm). The length of the

vacuumbox between the two Floquet ports for the simulation is 120mm. To eliminate the effect

of the vacuumbox which causes the oscillation in the phase, the simulation data is multiplied by

e j k0ℓ, where ℓ is the distance between the two ports in the simulation setup in Section (3.5). In

the full-wave simulation setup, mixed order basis functions and the direct solver were chosen.

The frequency range is between 3 GHz and 30 GHz. Fitting (4.19) in the MATLAB curve fitting
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Figure 4.3 Full-wave simulated amplitude of the transmission coefficient of an array of circular
rings in free space for the largest and smallest radius values [zOE18] [reproduced figure courtesy
of The Electromagnetics Academy].

tool to the numerical data shown in Fig. 4.3 yields the values of F1 and F2 in dependence on

the normalized ra v in Table 4.1. The dependence of F1 and F2 on ra v suggests an exponential
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approximation

F1(rno r ) =a1e (b1rno r )+c1e (d1rno r )

F2(rno r ) =a2e (b2rno r )+c2e (d2rno r ). (4.22)

Table 4.1 Curve fitting of the amplitude of the transmission coefficient on the full-wave simula-
tion data for several radius values [zOE18] [reproduced table courtesy of The Electromagnetics
Academy].

ra v in mm F1 F2

2.45 0.9104 25.490

2.70 0.7232 17.670

3.50 0.5422 8.342

3.90 0.4872 6.031

4.45 0.5096 4.551

4.90 0.4134 2.976

5.70 0.3826 1.541

By fitting (4.22) to the data from Table 4.1, the coefficients a , b , c and d can be obtained as

shown in Table 4.2. The curves plotted in Figs. 4.4 and 4.5 show a good quality of the approxima-

tions (4.22).

Table 4.2 Coefficients of the exponential approximation in (4.22) [zOE18] [reproduced table
courtesy of The Electromagnetics Academy].

Coefficients F1 F2

a 1347 1.015×105

b -41.47 -46.32

c 0.9106 103.6

d -1.826 -8.694
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Figure 4.4 Fitting quality of the exponential approximation at the specific values of F1 [zOE18]
[reproduced figure courtesy of The Electromagnetics Academy].
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Figure 4.5 The same as in Fig. 4.4 but for F2 [zOE18] [reproduced figure courtesy of The Electro-
magnetics Academy].

4.2 Semianalytical approach versus full-wave simulation for arrays
of rings in free space

The results of the full-wave simulation and the semianalytical approach in Section 4.1 are com-

pared for arrays of differently sized circular rings. A radius value from the interval 2.45≤ ra v ≤5.7,

see Table 4.1, is chosen. As it is seen from Figs. 4.6 and 4.7, there is a good match between the

semianalytical approach and the full-wave simulation.

The relation (4.21) plays an important role in adjusting the resonance frequency. It follows

from (4.21) that the value of kno r , at which the transmission coefficient is at minimum, does not

change if all geometrical dimensions of the structure are scaled with a proper factor. Figure 4.8
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shows that the resonances (blockage frequencies) of the transmission coefficients for the arrays

of the circular rings with different radii and periodicity values are located at the same value of

the normalized wavenumber k 2
no r =7.2942 [zOE18], as expected. In the simulation setup, the

length of the vacuumbox between the Floquet ports is 150 mm. The mixed-order basis functions,

an iterative solver and interpolating sweep have been used in the full-wave simulation.

As an intermediate conclusion, it can be said that the semianalytical model for arrays of PEC

rings without substrate matches very well with full-wave simulation results.
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Figure 4.6 Amplitude of the transmission coefficient for the array of rings (ro u t = 4.9mm,
ri n =4.7mm and p =12mm) without substrate [zOE18] [reproduced figure courtesy of The Elec-
tromagnetics Academy].
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Figure 4.7 Phase of the transmission coefficient for the array of rings (ro u t =4.9mm, ri n =4.7mm
and p =12mm) without substrate [zOE18] [reproduced figure courtesy of The Electromagnetics
Academy].
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Figure 4.8 Full-wave simulated transmission coefficient with different radii and periodicities
of the array of circular rings in free space (normalized radius is 0.4) [zOE18] [reproduced figure
courtesy of The Electromagnetics Academy]

4.3 Semianalytical approach to the planar array of circular slots in a
metal screen

According to the Babinet’s principle, the transmission coefficient of the planar array of circular

slots in a thin planar PEC screen is equal to the reflection coefficient of the array of thin PEC rings

in free space. The semianalytical approach is used to calculate the amplitude of the reflection coef-

ficient.

The results of this approach will be compared with full-wave simulation results for infinite

periodic arrays of circular slots. The unit-cell length is 12 mm. A normally incident plane wave is

considered. The length of the vacuumbox between the Floquet ports is 60 mm. The direct solver

and the mixed-order basis functions have been used. The lambda target for refining the mesh

was chosen as 0.2. The classic mesh model and discrete sweep were chosen.

As it is seen from Figs. 4.9, 4.10 and 4.11, there is a good match between the semianalytical

approach and full-wave simulation. The Babinet’s principle worked well even if the structure has

a constant thickness.
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Figure 4.9 Amplitude of the transmission coefficient for the array of circular slots with ro u t =
3.2 mm and ri n =3 mm in a metal screen without substrate.
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Figure 4.10 Amplitude of the transmission coefficient for the array of circular slots with ro u t =
4.2 mm and ri n =4.1 mm in a metal screen without substrate.
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Figure 4.11 Amplitude of the transmission coefficient for the array of circular slots with ro u t =
5.5 mm and ri n =5.32 mm in a metal screen without substrate.
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4.4 Array of double rings in free space

As shown in Section 3.7, two concentric rings (Fig. 3.7) create two resonance frequencies, at

which the amplitude of the transmission coefficient is the lowest. For concentric rings in free

space, the same coefficients of the exponential approximations (4.22), which are calculated for

a single ring, are used. The radius values of the concentric rings should be in the range of the

radius values that were used in the fitting process in Section 4.1. Therefore, there is no need to

repeat the fitting for concentric rings in free space. If the concentric rings are supported by a

dielectric substrate, then the fitting needs to be redone because the dielectric substrate changes

the impedance of the rings.

The equivalent circuit should be accordingly adjusted. It is now a band-stop filter at two

frequencies. A series LC circuit, which is shunted across the transmission line, creates one

resonance frequency. For having a second resonance frequency, another series LC circuit is

connected in parallel to the first one as it is shown in Figs. 4.12 and 4.13.

Figure 4.12 Equivalent circuit for double rings in free space.

The complex impedances in each series circuit are written as

Xg1
=XL1

+XC1
=2π f L1−

1

2π f C1
(4.23)

Xg2
=XL2

+XC2
=2π f L2−

1

2π f C2
. (4.24)

The reactances in (4.23) and (4.24) are normalized by Z0. The equivalent reactance is expressed

in terms of the normalized complex reactances X no r
g1

and X no r
g2

as

X no r
D =

X no r
g1

X no r
g2

(X no r
g1
+X no r

g2
)
. (4.25)
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then, X no r
D is inserted in (4.9) and (4.10). The coefficients from Table 4.2 are used for the exponen-

tial approximations in (4.22) which are separately calculated for every ring. For the calculation

of the transmission coefficient, (4.7) is used.

Figure 4.13 Equivalent circuit for an array of double rings in free space as a parallel circuit with
free-space impedance.

4.5 Semianalytical approach for an array of double concentric rings
in free space

In this section, the semianalytical and full-wave simulation results for an array of differently sized

double concentric rings are compared. A distinct radius value from the interval 2.45≤ ra v ≤5.7

(Table 4.1) is chosen. As it is seen in Figs. 4.14, 4.15, 4.16, 4.17, 4.18 and 4.19, there is a good

match between the semianalytical approach and the full-wave simulation.
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Figure 4.14 Amplitude of the transmission coefficient for an array of double rings. Outer ring:
ro u t =4.3 mm and ri n =4.1 mm; inner ring: ro u t =3 mm and ri n =2.8 mm.
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In the simulation setup, the length of the vacuumbox between the two Floquet ports is 90mm.

The iterative solver, interpolating sweep and classic mesh options are chosen in the simulation.
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Figure 4.15 Phase of the transmission coefficient for an array of double rings. Outer ring: ro u t =
4.3 mm and ri n =4.1 mm; inner ring: ro u t =3 mm and ri n =2.8 mm.
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Figure 4.16 Amplitude of the transmission coefficient for an array of double rings. Outer ring:
ro u t =5.5 mm and ri n =5.35 mm; inner ring: ro u t =3.7 mm and ri n =3.5 mm.

According to the results, it is not necessary to repeat the curve fitting to calculate the functions

F1 and F2 and there is no need for additional full-wave simulations.

64



4.5 Semianalytical approach for an array of double concentric rings in free space

5 10 15 20

-100

-50

0

50

100

Figure 4.17 Phase of the transmission coefficient for an array of double rings. Outer ring: ro u t =
5.5 mm and ri n =5.35 mm; inner ring: ro u t =3.7 mm and ri n =3.5 mm.
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Figure 4.18 Amplitude of the transmission coefficient for an array of double rings. Outer ring:
ro u t =5.8 mm and ri n =5.6 mm; inner ring: ro u t =2.8 mm and ri n =2.6 mm.

The estimation of the transmission coefficient is sufficiently accurate with the semianalytical

approach. It is observed that the values should be in the range of radius values used in the fitting

for the single ring.

When Figs. 4.14, 4.16 and 4.18 are compared, the bandwidth of the passband can be expanded

by adjusting the radii of the inner and outer rings. Adjusting the radius values can also shift the

position of the passband.
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Figure 4.19 Phase of the transmission coefficient for an array of double rings. Outer ring: ro u t =
5.8 mm and ri n =5.6 mm; inner ring: ro u t =2.8 mm and ri n =2.6 mm.

4.6 Semianalytical approach for an array of double circular slots in a
metal screen

By applying Babinet’s principle, the amplitude of the transmission coefficient for the planar

array of double concentric circular slots can be calculated from the amplitude of the reflection

coefficient of the planar array of double concentric circular rings. The semianalytical approach

described in Sections 4.1, 4.4 and 4.5 can be used to calculate the amplitude of the reflection

coefficient. The result will be compared with full-wave simulation results for the infinite periodic

array of double circular slots in a metal screen. The unit-cell length is 12 mm. A normally incident

plane wave is considered. The length of the vacuumbox between the Floquet ports is 90 mm.

The iterative solver, first-order basis functions and iterative sweep options were used.

The highest transmission through the slot array takes place at the blockage frequencies of

the array of rings. By changing the radius of inner and outer rings, the position of the stopband

(where the transmission is low) can be changed. The bandwidth of the stopband can be adjusted

by changing the radius values as show in Figs. 4.20 and 4.21.
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Figure 4.20 Amplitude of the transmission coefficient for the array of double circular slots. Outer
ring: ro u t =5.5 mm and ri n =5.32 mm; inner ring: ro u t =3.2 mm and ri n =3 mm.
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Figure 4.21 Amplitude of the transmission coefficient for the array of double circular slots. Outer
ring: ro u t =4.3 mm and ri n =4.1 mm; inner ring: ro u t =3 mm and ri n =2.8 mm.

4.7 Transmission coefficient of an array of PEC rings on a substrate

A realistic metasheet is obtained by placing metal particles on a substrate as shown in Fig. 4.22.

In this section, a corresponding extension of the semianalytical approximation is described. In

the derivation, a layer of Rogers material RO3203 with the relative permittivity 3.02 and dielectric

loss tangent tan(δ) equal to 0.0016 are chosen as the substrate. This material, which has a low

dielectric loss and a high mechanical stability, is suitable for high-level microwave applications
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[Coredb],[Agued]. The presented approach is generic and can be used for any dielectric substrate

with or without losses.

The thickness of the substrate (ℓ2) is chosen to be 3mm. As in the Section 4.1, thin metal

rings with the width between 0.1mm and 0.2mm are used, and the periodicity of the rings is

12mm. The frequency range is between 0.5 GHz and 20 GHz.

Figure 4.22 An array of planar circular rings on a dielectric substrate [zOE18] [reproduced figure
courtesy of The Electromagnetics Academy].

In this study, the losses in the substrate are assumed to be small. The losses affect the

propagation constant. The material of the rings is assumed to be PEC. The intrinsic impedance

normalized to the free space impedance is given as

Z no r
d =

1
Æ

ϵ′r − jϵ′r tanδ
. (4.26)

The transmission coefficient for the structure in Fig. 4.22 can be represented as

T =
(q1+1)(q2+1)e −k0ℓ2(α+ j (β−1))

1+q1q2e −2k0ℓ2(α+ jβ ) , (4.27)

where α=
p
ϵ′r tan(δ)

2 , and β =
p

ϵ′r [Col92], [Orfed]. The parameters q1 and q2 are the internal

reflection coefficients at the interfaces between the array of rings and the dielectric layer and

between the dielectric layer and vacuum [Col92]:

q1=
Zi −Z no r

d

Zi +Z no r
d

, (4.28)
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4.7 Transmission coefficient of an array of PEC rings on a substrate

q2=
Z no r

d −1

Z no r
d +1

. (4.29)

The transmission of plane waves through an infinite periodic sheet of metal rings can be described

in the transmission line model by a parallel circuit of the free-space impedance Z0 and a reactance

Xg . The impedance Zi of the equivalent circuit describes the behaviour of the plane wave in

vacuum and an infinite periodic array of metal rings. Thus, there are only two transitions left,

into the dielectric layer of finite thickness and into free-space. Equation (4.27) converts into (4.7)

when the thickness of the dielectric substrate becomes 0. The lumped elements of the same type

as in Section 4.1 are used to describe the equivalent impedance Zi of the infinite periodic planar

array of circular rings on the dielectric substrate. Full-wave simulations have been conducted

for 5 different radius values shown in Table 4.3. The same simulation setup as in Section 3.5 is

applied here. The length of the vacuumbox between the two Floquet ports for the simulation is

150mm. The direct solver, mixed order basis functions, and interpolating sweep were used. In

one of the simulations, the iterative solver was used.

In Fig. 4.23, the full-wave simulation results for the amplitude of the transmission coefficient

for the largest (5.7mm) and the smallest (2.7mm) radius values are shown. The free parameters F1

and F2 in (4.16) are fitted to the full-wave simulation results for the amplitude of the transmission

coefficient in (4.27). This yields the values for F1 and F2 as given in Table 4.3.
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Figure 4.23 Full-wave simulated amplitude of the transmission coefficient of an array of circular
rings on RO3203 substrate for the largest and smallest radius values [zOE18] [reproduced figure
courtesy of The Electromagnetics Academy].
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Table 4.3 Curve fitting for arrays of circular rings on RO3203 substrate [zOE18] [reproduced table
courtesy of The Electromagnetics Academy].

ra v in mm F1 F2 F3=
F2
F1

2.7 0.6958 8.546 12.2823

3.5 0.4683 3.617 7.7237

4.45 0.427 1.915 4.4848

4.9 0.3804 1.385 3.6409

5.7 0.3923 0.8109 2.0670

The presence of the substrate leads to a higher sensitivity of the resonance frequency with

respect to the parameters F1 and F2. By analyzing (4.27), the same relation as in (4.21) holds for

the resonance (blockage) frequency

k 2
no r =

F2

F1
. (4.30)

A new parameter F3 defined by

F3=
F2

F1
(4.31)

is introduced to make sure that deviations in the following fitting process affect the resonance

frequency to a minimal extend. By looking at the calculated values of the functions F1 and F3 in

Figs. 4.24 and 4.25, the exponential approximations can be proposed.

F1(rno r ) =a1e (b1rno r )+c1e (d1rno r )

F3(rno r ) =a3e (b3rno r )+c3e (d3rno r ), (4.32)

A fitting with (4.32) in the Matlab curve fitting tool is done on the data in Table 4.3 to yield the

values of the free coefficients a , b , c , and d as given in Table 4.4. F2 can then be calculated

from (4.31).

The susceptance, which is affected by the dielectric substrate, causes the change of the

resonance frequency of the array of metal planar particles and the change of the bandwidth of

the stop-band region [CPL91]. If the material and/or thickness of the substrate change, fitting

should be repeated.
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Figure 4.24 Fitting quality of the exponential function at the specific values of F1 [zOE18] [repro-
duced figure courtesy of The Electromagnetics Academy].
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Figure 4.25 Fitting quality of the exponential function at the specific values of F3 [zOE18] [repro-
duced figure courtesy of The Electromagnetics Academy].

Table 4.4 Coefficients in the exponential function [zOE18] [reproduced table courtesy of The
Electromagnetics Academy].

Coefficients F1 F3

a 2298 58.12

b -41.2 -6.908

c 0.5742 −3.963×10−15

d -0.8019 65.3
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4.8 Semianalytical approach and full-wave simulations for an array
of rings on substrate

The substrate RO3203 with thickness 3 mm is used. The thickness of the rings is 18 µm. The unit-

cell length is equal to 12 mm. The radius values are chosen in the range 2.7mm≤ ra v ≤5.7mm

as given in Table 4.3.
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Figure 4.26 Amplitude of transmission coefficient of an array of copper rings (ro u t = 5.6mm,
ri n =5.4mm and p =12mm) on the substrate.
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Figure 4.27 The same as in Fig. 4.26 but for the phase.
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Figure 4.28 Amplitude of the transmission coefficient of an array of rings (ro u t = 4.9mm,
ri n =4.7mm and p =12mm) on the substrate [zOE18] [reproduced figure courtesy of The Elec-
tromagnetics Academy].

0 5 10 15 20
-100

-50

0

50

100 PEC circular ring (HFSS)
Copper circular ring (HFSS)
Semi-analytical approach

Figure 4.29 The same as in Fig. 4.28 but for the phase [zOE18] [reproduced figure courtesy of The
Electromagnetics Academy].

The radius values should be in the range where the fitting is done. When the radius values are

increased, the resonance frequency decreases. The shift of the resonance frequency is observed in

the results. It is seen that using copper instead of PEC for the rings does not make any difference
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Figure 4.30 Amplitude of transmission coefficient of array of copper rings (ro u t = 3.05mm,
ri n =2.95mm and p =12mm) on the substrate [zOE18] [reproduced figure courtesy of The Elec-
tromagnetics Academy].
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Figure 4.31 The same as in Fig. 4.30 but for the phase [zOE18] [reproduced figure courtesy of The
Electromagnetics Academy].

in the simulation results Figs. 4.28 and 4.31. There is a good match in the calculated and full-wave

simulated results from Fig. 4.26 to Fig. 4.31.
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4.9 Comparison of the results of the semianalytical approach with
measurements

In this section, measurement and semianalytical approach results are compared for two metasheets

both based on FR4 epoxy with two different copper ring sizes. A predefined value ϵr = 4.4

from the HFSS list of material parameters was used. A normally incident plane wave is con-

sidered [zOE18]. Table 4.5 shows the obtained coefficients by semianalytical approach. The

manufactured metasheets are shown in Figs. 4.32 and 4.33. The periodicity is 12mm, the thick-

ness of the substrate is 2mm and the thickness of the ring is 0.018mm.

Figure 4.32 Manufactured metasheet: copper rings with ro u t =4.9mm, ri n =4.7mm on an FR4
plate of the size 250 mm×250 mm.

The transmission coefficient was measured in a free-space measurement facility shown in

Fig. 4.34. The metasheet platine whose size is 25cm× 25cm, is positioned between the transmit

and receive antennas. The amplitude and phase of S21 are measured. The electronic equipments

to do this measurements are a vector network analyzer (VNA) Anritsu, a controller (Huber) and

computer (PC).

FR4-epoxy is a cheaper material than RO3203 and thus used more frequently. FR4 has a higher

dissipation factor in comparison with other high frequency laminates [Coo11]. High-frequency

laminates typically have a stable dissipation factor characteristic. In applications, where losses
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Figure 4.33 Manufactured metasheet: copper rings with ro u t =4.42mm, ri n =4.26mm on an FR4
of the size 250 mm×250 mm.

are not critical, FR4 can be preferred and it also has a good reliability characteristic. FR4 materials,

which are well proven and their performance is well known, are used generally in many PCB

applications [Coo11]. The same fitting process, what is explained in Section 4.7, is applied. The

substrate is different from Section 4.7, so the fitting must be repeated. The coefficients for the

functions F1 and F3 in (4.32) are calculated by fitting.

The values of ra v used in the fitting are 2.7mm, 3.5mm, 4.45mm, 4.9mm, 5.7mm. The

results of the simulations are presented in Figs. 4.35- 4.38. A good match is observed between

the measurements and the semianalytical approach. With this, the relative error for the ring

with ro u t =4.9mm and ri n =4.7mm is found to be 2.4% and for the ring with ro u t =4.42mm and

ri n =4.26mm, to be 3.25%. The relative error in the resonance frequency can be estimated as

E r r o r =
| fme a s u r e me n t − fs e mi a na l y t i c a l |

fme a s u r e me n t
·100%. (4.33)
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Figure 4.34 Free-space transmission measurement setup (DLR Techlab)

Table 4.5 Coefficients in exponential approximations [zOE18] [reproduced table courtesy of The
Electromagnetics Academy].

Coefficients F1 F3

a 1.074 43.3

b -2.383 -6.758

c 0 0

d -150.5 -107.5
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Figure 4.35 Comparison of semianalytical and measurement results for the ring size ro u t =4.9mm,
ri n =4.7mm [zOE18] [reproduced figure courtesy of The Electromagnetics Academy].
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Figure 4.36 The same as Fig. 4.35 for the ring size ro u t =4.42mm, ri n =4.26mm [zOE18] [repro-
duced figure courtesy of The Electromagnetics Academy].
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Figure 4.37 The same as Fig. 4.35 but for the phase [zOE18] [reproduced figure courtesy of The
Electromagnetics Academy].
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Figure 4.38 The same as Fig. 4.37 for the ring size ro u t =4.42mm, ri n =4.26mm [zOE18] [repro-
duced figure courtesy of The Electromagnetics Academy].
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4.10 Extended semianalytical approach for an array of circular rings
on substrate

In this section, the semianalytical approach is extended to include two parameters (outer radius

and width) of the rings Fig. 3.2. The approach will be used to design the metalens for a hemi-

spheric radome in Section 6.8. The same process as in Section 4.7 is followed but for calculating

the coefficients of the exponential functions F1 and F3, surface fitting is done. To include an addi-

tional parameter, the exponential functions F1 and F3 in (4.32) should be modified by assuming

that the coefficients b1, d1, b3, d3 are not constant.

The dielectric substrate is Megtron6. The frequency range is between 18 GHz and 46 GHz.

A normally incident linearly polarized plane wave is considered. To have a better information

about the relative permittivity of the substrate, the sample was characterized with the waveguide

transmission/reflection method in the material characterization facilities in the DLR Techlab

in Oberpfaffenhofen and it is observed that the relative permittivity is changing between 3.6

and 3.8 at different positions on the dielectric substrate. This shows that there is a microstruc-

tural heterogeneity, and the size of inhomogeneous parts on the substrate come closer to the

wavelength when the frequency increases. To analyze this unstable behavior more deeply, an-

other Megtron 6 with thickness 2 mm has been ordered and its reflection coefficient has been

measured in the free space measurement facility (Techlab, DLR, Oberpfaffenhofen)(the relative

permittivity is determined from the measured reflection coefficient). Then, the infinite periodic

planar dielectric substrate simulation is done in HFSS.

The best match between the simulated and measured reflection coefficient is achieved with

relative permittivity 4.33 and loss tangent 0.006 (Fig. 4.39). This value of permittivity is used in

the extended semianalytical approach.

The width of a ring is normalized to the unit-cell size as

wno r =
w

p
(4.34)

These coefficients are written in terms of the functions [zOE20]

F1(rno r ,wno r ) =a1e (b1(wno r )rno r )+c1e (d1(wno r )rno r )

F3(rno r ,wno r ) =a3e (b3(wno r )rno r )+c3e (d3(wno r )rno r ). (4.35)

The parameters b1, d1, b3 and d3 in (4.35) are expanded in Taylor series with respect to wno r . The

approximation should be kept as simple as possible. Therefore, higher orders of the Taylor series
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Figure 4.39 Reflection coefficient of the Megtron 6 substrate: free-space measurement vs. full-
wave simulation.

are not used in order to reduce the complexity of the calculation. It will be seen that keeping first

two terms in the Taylor series provides enough accuracy. Upon the Taylor series approximation,

(4.35) becomes [zOE20]

F1(rno r ,wno r ) =a1e (b11rno r+b12rno r wno r )+c1e (d11rno r+d12rno r wno r )

F3(rno r ,wno r ) =a3e (b31rno r+b32rno r wno r )+c3e (d31rno r+d32rno r wno r ), (4.36)

where b11, b12, d11, d12, b31, b32, d31, d32 are coefficients of the modified exponential approxima-

tion. To determine the coefficients, four different width values 0.1 mm, 0.13 mm, 0.16 mm and

0.19 mm are chosen. For each width value, the same outer radius values 0.9 mm, 1 mm, 1.1 mm,

1.2 mm and 1.3 mm are used. According to the different width values, the inner radii of the rings

are changed. The unit-cell length is 3 mm. The thickness of the ring and the thickness of the

substrate are 0.018 mm and 2 mm, respectively. The width of the rings is between 0.1 mm and

0.19 mm. The vacuumbox length for the simulation of the infinite periodic array of the rings

on the substrate is 50 mm. In the simulation setup, first order basis functions, iterative solver,

interpolating sweep and classic mesh model were chosen.

For the calculation of F1 and F2 for each radius, line fitting is done on the full-wave simulated

amplitude of transmission coefficient. The results are shown in the Tables from 4.6 to 4.9.
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Table 4.6 F1 and F2 for each value of
the radius of the ring with the width
0.1 mm [zOE20] [reproduced table courtesy
of The Electromagnetics Academy].

ri n in mm F1 F2

1.2 0.3151 0.8407
1.1 0.334 1.126
1 0.3653 1.531

0.9 0.4067 2.099
0.8 0.4668 2.952

Table 4.7 F1 and F2 for each value of
the radius of the ring with the width
0.13 mm [zOE20] [reproduced table cour-
tesy of The Electromagnetics Academy].

ri n in mm F1 F2

1.17 0.2936 0.8261
1.07 0.313 1.109
0.97 0.3415 1.507
0.87 0.3809 2.065
0.77 0.4375 2.892

Table 4.8 F1 and F2 for each value of
the radius of the ring with the width
0.16 mm [zOE20] [reproduced table cour-
tesy of The Electromagnetics Academy].

ri n in mm F1 F2

1.14 0.2749 0.806
1.04 0.2936 1.093
0.94 0.3205 1.484
0.84 0.3587 2.036
0.74 0.4135 2.859

Table 4.9 F1 and F2 for each value of
the radius of the ring with the width
0.19 mm [zOE20] [reproduced table cour-
tesy of The Electromagnetics Academy].

ri n in mm F1 F2

1.11 0.2588 0.7958
1.01 0.2777 1.086
0.91 0.3018 1.466
0.81 0.3397 2.022
0.71 0.3918 2.83

The values of F3 are calculated from the values of F1 and F2 by using the ratio in (4.31). The

values of F1 and F3 are written as matrix, then surface fitting is done on these two matrices as

shown in Fig. 4.40 and 4.41 to calculate the coefficients in (4.36).

As it is observed in Figs. 4.40 and 4.41, the result of surface fitting is accurate enough. The

calculated coefficients in (4.36) are shown in Tables 4.10 and 4.11.
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Figure 4.40 Surface fitting (WidthN - the normalized width, RoutN - the normalized outer radius)
on the F1 matrix [zOE20] [reproduced figure courtesy of The Electromagnetics Academy].
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Figure 4.41 Surface fitting (WidthN - the normalized width, RoutN - the normalized outer radius)
on the F3 matrix [zOE20] [reproduced figure courtesy of The Electromagnetics Academy].
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Table 4.10 Calculated coefficients of F1 function by applying surface fitting [zOE20] [reproduced
table courtesy of The Electromagnetics Academy].

Coefficients F1

a1 0.1991

c1 4.064

b11 0.9071

b12 −11.92

d11 −8.595

d12 −27.69

Table 4.11 Calculated coefficients of F3 function by applying surface fitting [zOE20] [reproduced
table courtesy of The Electromagnetics Academy].

Coefficients F3

a3 43.19

c3 3.754

b31 −6.789

b32 11.41

d31 −17.06

d32 128.1

4.11 Extended semianalytical approach vs. full-wave simulations for
an array of rings

Four different width values are chosen. For the results presented in Figs. 4.42 to 4.45, the width

values that are not used in the fitting, the outer radius values that are used in the fitting are

chosen. In Figs. 4.46 and 4.49, both the width and outer radius values are chosen which are

not used in the fitting. It is evident that the simulated and calculated results match well. It is

observed that the transmission coefficient can be estimated better by including the width as a

dimensional parameter.

When the radius values increase, the resonance frequency decreases or vice versa. The shift

of the resonance frequency is clearly seen by comparing Figs. 4.42 and 4.44. The radius value in

Fig. 4.48 is between the radius values in Fig 4.42 and 4.44; therefore the resonance frequencies
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are positioned accordingly. The fine tuning of the resonance frequency can be done by including

the combination of the width and the radius.
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Figure 4.42 Amplitude of the transmission coefficient of an array of rings (ro u t =1.3mm, ri n =
1.18mm and p =3mm) on the substrate.
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Figure 4.43 The same as in Fig. 4.42 but for the phase.
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Figure 4.44 Amplitude of the transmission coefficient of an array of rings (ro u t = 1mm, ri n =
0.82mm and p =3mm) on the substrate.
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Figure 4.45 The same as in Fig. 4.44 but for the phase.
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Figure 4.46 Amplitude of the transmission coefficient of array of rings (ro u t = 0.98mm, ri n =
0.83mm, and p =3mm) on the substrate.
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Figure 4.47 The same as in Fig. 4.46 but for the phase.
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Figure 4.48 Amplitude of the transmission coefficient of an array of rings (ro u t =1.25mm, ri n =
1.14mm and p =3mm) on the substrate.
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Figure 4.49 The same as in Fig. 4.48 but for the phase.
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Chapter 5

Physical Optics for Transmission
through Electrically Large Planar
Metasheets

5.1 Concept of Physical Optics

Physical Optics (PO) is a well known high-frequency approach to calculate the radiated

and scattered electromagnetic fields at an arbitrary observation point. This method is an ap-

proximation because it assumes that the scattered field can be calculated by integration of a

simplified current distribution (deduced by application of geometrical optics) over the scattering

surface. The radiated field can be found from the distribution of electric and magnetic currents.

In the estimation of the magnitude of the backscattered field or the level of the main lobe in

the directivity diagram of an antenna, the PO approach is useful and convenient [OT17], [Ufi08].

The electromagnetic version of the PO method was introduced by MacDonald in his study of

scattering for perfectly absorbing bodies [Mac12].

The computational cost of PO calculations mainly depends on the electrical size of the scat-

terer. When the size of the scatterer increases, the computational cost becomes heavier. The other

reasons for the computational cost are the number of observation points and frequency sam-

pling points [KA13]. For decreasing the computational cost, Fast Physical Optics and Multilevel

Physical Optics are studied in [Boa04], [BL05a].

The calculation of scattering from electrically large structures is a difficult problem for full-

wave simulations with finite-element methods. For having an acceptable accuracy in the calcu-

lation, meshing should be dense and the number of unknowns becomes high. High-frequency

approximation algorithms are adequate and applicable to electrically large structures. The

available full-wave simulations are mainly utilized for electromagnetic scattering problems.
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Physical Optics for Transmission through Electrically Large Planar Metasheets

The available numerical methods for full-wave simulations are insufficient when the size of

the scatterer increases, due to the fact that their computational complexity grows as fast as

O(N 2), where N shows the total number of facets on the scatterer [LG17]. Therefore, alterna-

tive methods are needed to calculate the scattered field. Physical Optics can be an alternative

method. The accuracy of PO grows when the size of the scatterer is increased. The electrically or

magnetically conducting scatterers, dielectric materials and scatterers with surface impedance

can be analyzed. With PO, the main difficulty in the calculation can be the approximation of

the induced currents when there are several reflections or when the curvature of the scatterer

increases [HLW]. The induced currents on the surface of the scatterer in PO calculations are

approximately computed by using boundary conditions and Fresnel formulas [LG17], [Pat88].

With growing frequency, the PO integral oscillates stronger and the rate of oscillations in-

creases.The vector fields can be computed with this approach. In PO calculation, the surface is

assumed to be locally planar then the reflection and transmission are calculated as determined

by Geometrical Optics (GO) [HLW].

For the calculation of the scattered field, the integration of the induced currents on the

electrically large surface is necessary and the induced currents cannot be calculated exactly;

therefore, induced currents on the surface should be replaced by equivalent currents [Col60].

The equivalent currents are defined by tangential electric and magnetic field components on the

surface. PO calculates the equivalent currents according to GO rules. As a result, Physical Optics

becomes a combination of GO and the field equivalence principle.

5.2 Geometrical Optics

Geometrical Optics is a high-frequency approximation which assumes energy propagating

in tubes of infinitesimal cross section, or rays [BW99], [Han64], [Sam84]. In Geometrical Optics,

equiphase surfaces and rays are considered. If permittivity and permeability of a medium are not

functions of position, the medium is named as homogeneous. If the material parameters depend

on position, then the medium is non-homogeneous. In a homogeneous medium, every ray is a

straight line. In a non-homogeneous medium, the rays become curved. When a ray moves into a

medium with a higher value of the index of refraction, it bends toward that region [Cha88]. The

gradient of the phase is directed along the ray, and the polarization of the field is conserved along

a ray. The Luneberg-Kline series is considered as the foundation of Geometrical Optics [Lah16].

The series can be constructed by Maxwell’s equations. The ray can be defined by a path between

the source and the observation point. The amplitude and phase along the path are calculated by
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using the laws of Geometrical Optics. A ray incident on a material boundary generates a reflected

ray and a transmitted ray. Geometrical Optics calculations depend on Snell’s law for reflection

and transmission at the surface separating two media (Fig. 5.1) [JRM55].

Figure 5.1 Reflection and transmission of a ray at an interface.

At every flat interface, the reflection law holds [Run07], [Som06]

θr e f =θi n c . (5.1)

The amplitudes of the incident and reflected rays are related by

Ar e f =±Ai n c (5.2)

with negative sign for Dirichlet condition and positive for Neumann condition. At an interface of

two transparent materials, the relation between incident, reflected and transmitted waves are

written as [Run07]

Ar e f =R Ai n c (5.3)

At r =T Ai n c (5.4)

where R and T are reflection and transmission coefficients respectively.

A well-known application of Geometrical Optics is the determination of the induced current

on a metallic reflector of an antenna. The accurate computation can be done only if the reflector

is far enough from the radiation sources for the field to be described in terms of wavefronts and

rays. Let the total magnetic field at the reflector be H; the surface current density is J = 2n̂×

H [JRM55], [Cha88]. The scattered or radiated field from this current distribution is computed by

the insertion in the PO integral. In this study, the Geometric Optics approximation for the currents

is used in a combination with the field equivalence principle to describe the fields transmitted
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through electrically large planar meatsheets. In the following section, the PO approximation for

the transmitted field is described.

5.3 Transmission of electromagnetic fields through electrically large
planar metasheets in PO approximation

In this section, the Physical Optics calculation is used for electrically large circular metasheet.

In this calculation, the fields scattered by an object can be calculated by integration of equivalent

electric and magnetic currents over a surface enclosing the object [Col60]. The equivalent

currents are given by tangential electric and magnetic field components on the integration

surface. Since the exact fields are a priory unknown, the GO approximation for the currents is

used, assuming that the integration surface is almost flat on the scale of the wavelength (tangent

plane approximation). The GO approximation for the equivalent surface currents is [OT17]

JE (r1)≈ JE (r1)
g o = n̂ (r1)×Hg o (r1) (5.5)

JM (r1)≈ JM (r1)
g o =−n̂ (r1)×Eg o (r1), (5.6)

where n̂ is the unit normal vector directed into the region where the observer is located (Fig. 5.2).

On electrically large surfaces, the edge contribution is a small part of the total induced current

on the structure. Except near the edges, Geometrical Optics gives accurate results. In this study,

the edge diffraction is described in the PO approximation.

Figure 5.2 Integration surface Ω between the source and observation points.
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5.3 Transmission of electromagnetic fields through electrically large planar metasheets in
PO approximation

The electric field transmitted through an infinite planar surfaceΩ, which separates the source

Q and observation point P (Fig. 5.2), can be expressed in terms of equivalence surface currents

as [zOE17b]

E(r)t r =−∇×
∫∫

Ω

G1(r,r1)JM (r1)dΩ+

1

jωϵ
[k 2

0 +∇(∇·)]
∫∫

Ω

G1(r,r1)JE (r1)dΩ.

(5.7)

Equation (5.7) is applicable at arbitrary distances from the surface. The expression (5.7) can be

simplified when the distance between the integration surface and the observation point is larger

than a wavelength. By using vector algebra, (5.7) can be simplified as [OT17]

[k 2
0 +∇(∇·)]G1JE ≈ [JE − (JE · ŝ1)ŝ1]k

2
0 G1=k 2

0 G1 ŝ1× (ŝ1×JE ) (5.8)

∇× (G1JM ) =∇G1×JM ≈− j k0G1 ŝ1×JM . (5.9)

Equation (5.7) is written in terms of (5.8) and (5.9) and expressed in a more compact form

E(r)t r =
j k0

4π

∫∫

Ω

G1(r,r1)c(r,r1)dΩ (5.10)

where c(r,r1) = ŝ1×JM (r1)+Z0 ŝ1× ŝ1×JE (r1), Z0=
q

µ0
ϵ0

and ŝ1=
r−r1
|r−r1| . Let the incident field be a

plane wave propagating in the direction ẑ . The direction of the linear polarization should not

change the result, because the polarization-independent metasheets are built from rotationally

symmetric particles. If the material of the sheet is fully transparent, the GO approximated

currents include only the incident electric field.

In this study, Ω is flat and is positioned (n̂ = ẑ which is the unit normal vector) at z = 0.

The surface Ω is chosen to coincide with an interface of a metasheet. The electric field on the

metasheet is written in terms of incident electric field and the transmission coefficient as

Et r (x1, y1,0) =T (x1, y1)E0, (5.11)

which permits a simple description of the equivalent currents on the planar metasheet. In

this study, the transmission coefficient is obtained from full-wave simulations. The equivalent

electric and magnetic currents are written in terms of the transmitted electric field (Et r (x1, y1,0))

and the magnetic field (Ht r (x1, y1,0)) on the planar metasheet as [zOE17b]

Jg o
M ≈−n̂×Et r (x1, y1,0) (5.12)
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Jg o
E ≈ n̂×Ht r (x1, y1,0). (5.13)

For plane waves, the transmitted magnetic field can be written in terms of the transmitted electric

field as

Ht r =
1

Z0
ẑ ×Et r . (5.14)

c(r,r1) is written in Cartesian coordinates as

c(r,r1) =E0T (x1, y1)
z x̂ +(x1−x )ẑ
p

(x1−x )2+(y1− y )2+z 2

+
((y1− y )2+z 2)x̂ − (x1−x )(y1− y ) ŷ +(x1−x )z ẑ

(x1−x )2+(y1− y )2+z 2
.

(5.15)

Direct numerical evaluation can be difficult, particularly when k0 is large, resulting in rapid

oscillations of the integrand over the integration path. The computational cost of direct numerical

integration rapidly increases with k0 [ea16b], [Lud68], [BL05b]. For observation points on the

z axis and a circular metasheet, the PO integral (5.10) can be converted to a one-dimensional

integral, which can be easily evaluated [zOE17b]. For a circular metasheet of the radius a in free

space, the function T can be defined as

T (x , y ) =

�

1 if
�

�ρ
�

�>a
Ts he e t if
�

�ρ
�

�≤a

where ρ is the distance from the z axis. Ts he e t is the transmission coefficient of the infinite peri-

odic planar array of circular rings. Integrating over the azimuth angle gives the formula [zOE17b]

Et r (0,0,z ) =E0
j k0

4π

∫ +∞

0

e − j k0

p
ρ2+z 2

T (ρ1)(2+
2z
p

ρ2+z 2
−

ρ2
1

ρ2
1+z 2

)
ρ1
Æ

ρ2
1+z 2

dρ1, (5.16)

where |r−r1|=
Æ

ρ2
1+z 2. T (ρ)=1 when ρ>a , The transmitted electric field has only one com-

ponent because the incident field has only one component; therefore, the field becomes a scalar

value so the complete transmitted electric field at the observation point is expressed as

Et r =E
p l a t e
t r +E r i m

t r (5.17)

where E
p l a t e
t r is the field transmitted through the metasheet disc and E r i m

t r is the field transmitted

outside of the metasheet, i.e.,

E
p l a t e
t r (0,0,z ) =E0

j k0

4

∫ a

0

e − j k0

q

ρ2
1+z 2

Ts he e t (2+
2z
Æ

ρ2
1+z 2

−
ρ2

1

ρ2
1+z 2

)
ρ1
p

ρ2+z 2
dρ1 (5.18)
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E r i m
t r (0,0,z ) =E0

j k0

4

∫ +∞

a

e − j k0

q

ρ2
1+z 2 (2+

2z
Æ

ρ2
1+z 2

−
ρ2

1

ρ2
1+z 2

)
ρ1
Æ

ρ2
1+z 2

dρ1 (5.19)

Integration by parts is applied, where the derivation is shown in Appendix 2 [Erd56]. The main

contribution to the integral comes from the endpoints of the integration interval [zOE17b] and

results in

E r i m
t r (0,0,z ) =E0

1

4
(2+

2z
p

a 2+z 2
−

a 2

a 2+z 2
)e − j k0

p
a 2+z 2+O (

1

k0
). (5.20)

5.4 HFSS simulation setup for finite-size circular metasheet

In this section, the properties of the simulation setup for the finite-size circular metasheet

are explained. HFSS is used to calculate the scalar scattered electric field (Es c = Et o t a l −Ei n c )

metasheet in the Fresnel zone, in the near region, where Et o t a l and Ei n c are the total electric

field and the incident electric field, respectively. The metasheet discs are placed in a cylindri-

cal vacuumbox whose material is vacuum (Fig. 5.3). The height of the vacuumbox is 17 mm.

The distance between the object and the boundary of the vacuumbox is advised to be at least
λ
4 [Edged], [ANSeda]. A plane linearly polarized wave is the incident wave. The radiation bound-

ary in HFSS (a hybrid region (finite element-boundary integral (FE-BI)) is applied at the whole

boundary of the cylindrical vacuumbox. This boundary model is mainly used for electrically

large structures, where the mesh truncation increases the speed of the simulation [ANSeda]. This

form of the boundary condition is a computationally efficient way of accounting for radiation

in electrically large problems. The scattered electric fields along the radiation line which is the

positive z axis, are then determined with the combination of the finite element and boundary

integral equations methods.

The field is sampled on the z -axis between 0.01 m and 1 m on the right of the discs. The

observation line is divided into 1000 points. In HFSS, it is calculated over a normalized distance

between 0 and 1.

When the diameter of the disc becomes too large, the simulation takes too long or can not

be completed. If the size of unit cells on the metasheet decreases, then their number should

increase to cover the surface of electrically large sheet. In this case also, the full-wave simulation

can become difficult.

In Fig. 5.4, the metasheet consists of an infinitely thin layer of circular rings on a sub-

strate is shown. The thickness of the substrate is 2 mm. The material of the substrate is FR4.

The material of the circular rings is copper, which is defined by a finite conductivity in HFSS.

The operation frequency is 10 GHz. A finer mesh is needed for a higher accuracy in the full-wave
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Figure 5.3 Simulation setup for a disk-shaped metasheet.

simulation for decreasing size of the rings. The electrically large metasheet is simulated, and

then the results of the PO approach and the full-wave simulation are compared.

5.5 A periodic array of circular rings on a substrate

To derive the transmission coefficient of the metasheet, an infinite periodic planar layer,

as explained in Section 3.5 is simulated. In the simulation, auto meshing and slider are used

as a mesh model. Direct solver, first-order basis functions and discrete sweep type are chosen.

The thickness of the rings is 18 µm. A linearly polarized plane wave is incident normally to the

metasheet, and the operation frequency is 10 GHz. The length of the vacuumbox in the HFSS

simulation setup is 60 mm. Two differently sized rings have been chosen (Tables 5.1 and 5.2).

HFSS version 15.0 has been employed.
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5.5 A periodic array of circular rings on a substrate

Figure 5.4 The finite circular metasheet in HFSS.

Table 5.1 Dimensional parameters of the circular rings and the unit cell [zOE17b].

ro u t in mm ri n in mm Periodicity (p )in mm
1.6 1.44 4.8
4.6 4.14 13.8

Table 5.2 Simulated transmission coefficient for the two differently sized circular rings as de-
scribed in Table 5.1 [zOE17b].

ro u t in mm Phase of T in degree T in dB

1.6 -42.3 -2.37

4.6 16.3 -1.55
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5.6 Full-wave simulation versus PO approximation

In this section, the values of the scattered field on the positive z axis behind the circular

metasheet calculated by the full-wave simulation and by the PO method are compared. When the

size of the rings becomes smaller, the results of the PO calculation and the full-wave simulation

match better as seen from Figs. 5.5 and 5.6. When the size of the rings increases and gets

comparable to λ2 or greater, the assumption of homogeneity of the metasheet degrades and does

not apply anymore. In this situation, PO cannot give accurate results.
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Figure 5.5 Field scattered by a circular metasheet with diameter 340mm along the symmetry
axis [zOE17b]. The parameters of the metasheet are given in the diagram.

With the size of the resonators getting smaller, and at the same time, the size of the metasheet

increasing, the simulation started to have problems such as long simulation time or the simula-

tion cannot be completed. When the size of the metasheet and resonators are both increased,

the scattered field has more oscillations. To increase the accuracy in the PO calculation, the

diameter of the metasheet should be as large as possible and the size of the resonators should be

much smaller than the operational wavelength.
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Figure 5.6 The same as in Fig. 5.5 but for the metasheet with diameter 160mm [zOE17b]. The
parameters are given in the diagram.
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Chapter 6

Designing a Planar Metalens for a
Hemispheric Radome

In this chapter, an application of a specially designed metasheet (metalens) for correction of

the phase distortion caused by a dielectric radome is presented. In this study, the metalens is

positioned at the basis of the hemispheric radome, and the radome covers the metalens and an

antenna (Fig. 6.1). A plane wave is incident perpendicularly to the basis of the radome. Because

of the curved surface of the radome, the phase of the wave transmitted through the radome is

distorted.

Figure 6.1 Hemispheric radome, a metalens and an antenna.

A metalens can be designed to compensate the phase distortion. Internal reflections in the

radome are neglected in the computation. Firstly, the phase of the transmission coefficient is
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calculated analytically. The symmetric shape of the radome simplifies the calculation of the

phase distribution of the transmitted field. For this calculation, a ray tracing algorithm is used.

After determining the phase distribution over the basis of the radome, a metalens with circular

concentric regions will be designed to compensate the phase distortions. Each region of the

metalens compensates the phase by a different value.

The metal circular ring as a resonator is chosen to design the metalens, because it is inde-

pendent of the polarization of the incident wave. Other types of particles (strips, crosses, etc.)

have this property partly. In Section 6.1, the dimensional and electrical properties of the radome

are addressed. In Section 6.2, the ray tracing algorithm is explained; furthermore, the results of

calculation and measurement are compared. In Section 6.3, the setup is described for measuring

the phase distribution of a test radome. In Section 6.4, a metasheet with two regions designed as

a pre-study for the metalens design is presented. In Section 6.5, a PO solution for the metasheet

is explained. In Section 6.6, the setup for measuring the transmission through the metasheet

with two regions is described. In Section 6.7, the measured and PO results are compared. In

Section 6.8, a design of a metalens for the Ka band is presented. Section 6.9 describes the mea-

surement setup for the radome and the metalens. In Section 6.10, the results of PO calculation

and measurements are compared.

6.1 Properties of the hemispheric radome

The hemispheric shape is a special case of the tangent ogive shape. Spherical or hemispheric

radomes are suitable for terrestrial radar. The shape is not useful for airbone applications because

of a vast aerodynamic drag [Koz10].

A manufactured test radome is shown in Fig. 6.2. The thickness of the radome is 5 mm and its

material is polypropylene. Transmission measurements were carried out in the frequency range

from 26.5 GHz to 40 GHz (Ka band). The measured values of the relative permittivity are almost

frequency independent, so an arithmetic average of the relative permittivity in this frequency

range , which is equal to 2.242, is used in the calculations. The radius of the hemisphere is

100 mm, which includes the thickness of the radome. The phase distribution at 28 GHz along

the diameter of the radome (190 mm, excluding the thickness of the radome) is calculated.
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Figure 6.2 Manufactured hemispheric radome.

6.2 Ray tracing simulation of the radome

A ray tracing algorithm is a way of implementing Geometrical Optics solutions. It can create

accurate result and be combined with the refraction laws for rays. The computation time can

last longer when the structure is electrically large and many rays have to be launched. The

parametric representation of the ray is utilized to solve a system of equations yielding the point

of intersection.

In the framework of ray tracing, the wavefront is discretized in small flat pieces and every

piece is traced independently to the receiver. In Figs. 6.3 and 6.4, the interaction of a ray and the

radome is presented. According to Fig. 6.3, a first phase shift comes out when the ray from the

radiation source reaches the curved surface because of the change of the distance between the

incident wave front and the curved surface of the radome. A second phase shift occurs, while

the ray goes through the wall of the radome and then, a third phase shift happens when the ray

leaves the radome inner surface and reaches the basis of the radome.

Let θ1, θ2, θ3 be the incident angle as at the outer surface, the incident angle at the inner

surface and the refractive angle at the inner surface of the radome, respectively. Because of the

curvature, the incidence angle θ1 is different for every ray (Fig. 6.3).

A ray tracing algorithm according to [Gla89] is followed and applied to calculate the trans-

mission coefficient along the radius of the radome. For solving the intersection problem, the ray

equation is inserted into the sphere equation.
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Figure 6.3 Phase shift due to a curved surface.

Figure 6.4 Refraction of a ray through a radome wall.

The center of the hemispheric radome is positioned at the origin. The points of intersection

of the ray with the outer and inner surfaces (see Fig. 6.4) can be found by using Snell’s law. The

ray is defined as a parametric structure in the form of a set of points on the line R(p ) =R0+Rd p ,

where p >0 which is a point on the ray. The ray is defined as
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R0≡ [X0,Y0,Z0],

Rd ≡ [Xd ,Yd ,Zd ], (6.1)

where R0 is the initial position vector of the ray and Rd is the direction vector. The sphere surface

equation is expressed as [Gla89]

(X s −C ′x )
2+(Ys −C ′y )

2+(Zs −C ′z )
2=R 2

a , (6.2)

where Ra is the radius of the radome, C ′x ,C ′y and C ′z are the coordinates of the sphere center and

X s ,Ys ,Zs are the coordinates of points on the spherical surface. The center of the hemisphere is

defined by C ′x =0,C ′y =0,C ′z =0. The parametric equation for the ray is inserted into (6.2), which

results in the equation

Ap 2+B p +C =0 (6.3)

in terms of p [Gla89]where

A=X 2
d +Y 2

d +Z 2
d =1,

B =2Xd (X0−C ′x )+2Yd (Y0−C ′y )+2Zd (Z0−C ′z ),

C = (X0−C ′x )
2+(Y0−C ′y )

2+(Z0−C ′z )
2−R 2

a , (6.4)

and A = 1 means that the ray direction is a unit vector. The solutions for p of the quadratic

equation (6.3) are given by

p1=
−B −
p

B 2−4AC

2
,

p2=
−B +
p

B 2−4AC

2
. (6.5)

The discriminant in (6.5) should be positive, so that the intersection point is real valued. The

smallest, positive root is the closest intersection distance on the ray. When p is found, the

coordinates of the intersection point are expressed from the parametric ray equation as [Gla89]

ri n t = [xi , yi ,zi ] = [X0+Xd p ,Y0+Yd p ,Z0+Zd p ]. (6.6)

The unit normal vector at the surface is described as

rno r =
� xi −C ′x

Ra
,

yi −C ′y
Ra

,
zi −C ′z

Ra

�

(6.7)
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The Snell’s law is utilized to calculate the direction vectors of the refracted rays. The Fresnel

equations are used to express the local transmission coefficient at each surface at the radome.

The refraction of rays should be included in the ray tracing calculation. Let η1 be the refractive

index of vacuum and η2 the refractive index of the medium of the radome.

The vector I is the direction of the incident (incoming) ray which comes from medium 1. T is

the propagation direction of the transmitted ray which goes through medium 2. The vector N is

the surface normal. According to Snell’s law, the angles of the incident and transmitted rays are

related as
sinθi

sinθt
=
ηt

ηi
=ηt i , (6.8)

and

ηi t =
1

ηt i
. (6.9)

In vector format, the direction of the transmitted ray is written in terms of the surface normal

vector and the incident ray as

T=ΛI+ζN, (6.10)

whereΛ andζ are coefficients. The angles of incidence and refraction (θi andθt ) can be expressed

as [Gla89]

cosθi =N · (−I), (6.11)

cosθt = (−N) · (T). (6.12)

The square of (6.8) is written according to the pythagorean identity of sin and cos functions

as [Gla89]

(1−cosθ 2
i )η

2
i t =1−cosθ 2

t . (6.13)

Using (6.12), (6.13) can be written as

1− (1−cosθ 2
i )η

2
i t = (Λcosθi −ζ)2. (6.14)

Furthermore, since T is a unit vector

1=T ·T, (6.15)

inserting (6.10) in (6.15) gives

1=Λ2−2Λζcosθi +ζ
2. (6.16)
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The two equations (6.14) and (6.16) are solved together to find the values of Λ and ζ. The four

values of Λ and ζ come out but to get the transmitted ray vector, the value of Λ and ζ should be

Λ=ηi t (6.17)

ζ=ηi t cosθi −
q

(1+η2
i t (cosθ 2

i −1)). (6.18)

Equation (6.18) is inserted into (6.10) to give the transmitted ray vector. In a similar way, the

refraction at the inner surface of the radome is treated. At the basis of the radome, the distortion

due to transmission through the radome can be described by the factor [zOE20]

Tr a d o me =
Ei n c (A)e j k0|AB |T12e j k |B C |T21e j k0|C D |

Ei n c (A)e j k0|AE | , (6.19)

where T12 is the transmission coefficient from medium 1 to medium 2, T21 is the transmission

coefficient from medium 2 to medium 1, k0 is the propagation constant in free space and k is the

propagation constant in the dielectric medium of the radome. While the amplitude of Tr a d o me

depends on the polarization, the phase does not depend on the polarization, provided that the

losses in the material of the radome are negligible. The attenuation through the radome is not

considered.

The multiple reflections in the radome wall and in the interior of the radome are not included

in this study. An obliquely incident plane wave transmitted through the radome wall in the

interior of the radome can be multiply reflected between the sidewalls of the radome. In this

study, the plane wave is incident parallel to the symmetry axis of the radome (Fig. 6.3) and no

such reflections occur. Furthermore, multiple reflections take place in the wall of the radome, but

for a sufficiently transparent radome these contributions can be neglected. For example, assume

that ϵr =2.242 (polypropylen) and the incidence angle on the outer surface is 24◦ and refractive

angle from vacuum to medium of radome is 16◦. Then, the amplitude of the main transmitted

ray is |τ1τ2|=0.9594 and the amplitude of the doubly reflected ray is
�

�τ1τ2q1q2

�

�=0.0437. Here,

τ1, q1 are transmission and reflection coefficient from vacuum to medium of radome and τ2,

q2 are transmission and reflection coefficient from medium of radome to vacuum. The ratio of

transmission of second ray to main ray is ≈0.04555.

In (6.19) and as it is shown in Fig. 6.5, |AB | is the distance from the source to the outer surface

of the radome. |C D | is the distance intersection point at the inner surface of the radome to the

point, at which the ray intersects the basis of the radome. If the radome is removed, then the ray

propagates straightforward without refraction, and |AE | is the distance between the source and

the basis plane. |B C | is the distance between the inner and the outer surface of the radome.
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Figure 6.5 The optical path between a source of the incident wave and the ground plane with
and without radome.

The diffraction of the incident wave at the edges of the radome is included only in the PO

approximation (no edge corrections) in order to reduce the complexity of the computation. The

analysis will be limited to the case of axial illumination of the radome, which is sufficient for

applications in which the main lobe of antenna is oriented in the axial direction.

6.3 Measurement setup for the test radome

The measurement setup is composed of a corrugated horn as a transmit antenna, an antenna

lens and a small open waveguide as a receiving antenna or probe (Fig. 6.6). The test radome is

placed in the holder as shown in Fig. 6.7. The distance between the transmit antenna and radome

is 400 cm. The distance between the probe and the holder is 10 cm. The copolar polarization is

considered. In this measurement, no metasheet is included. The aim of this measurement is

the comparison with the ray tracing calculation. The distance between the lens and the horn

antenna is 160 cm.

A lens in front of the transmit antenna is used to illuminate the radome with a plane wave.

The normalized phase of the measurement at the observation point is expressed as

P (Ed r ) =P (ER )−P (Eh ), (6.20)

where P (ER ) is the phase of the electric field transmitted through the radome. P (Eh ) is the phase

of the electric field transmitted through the holder without radome and metasheet.
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6.3 Measurement setup for the test radome

Figure 6.6 Measurement setup with the hemispheric radome (left), an antenna lens (in the middle)
and a horn antenna (right).

Figure 6.7 A probe and a holder with the radome.

The comparison of the calculated phase and the normalized phase of the measurement of

the transmitted signal at the radome basis along the radome diameter at 28 GHz is shown in

Fig. 6.8. As it is seen that there is an acceptable match. As it is observed in Fig. 6.8, there is an

asymmetry in the measured result even if the radome has a symmetric shape. The asymmetry is

caused by a limited precision in positioning the radome and the antennas. Even a positioning

error of an order of 0.1 mm results in significant phase distortion.
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Figure 6.8 Phase distribution along the diameter of the radome at 28 GHz.

6.4 Design of a metasheet with two regions as a pre-study

The aim of the metasheet described in this section is to validate the results of the PO calculations

for an inhomogeneous metasheet. This design was also used to analyze the dielectric properties

of the available substrate materials in the Ka band.

The full-wave simulations and the semianalytical approach for an infinite periodic planar

array are explained in Chapters 3 and 4. The metasheet design under study consists of two

regions, such that, at each region the size of the resonators is different (Fig. 6.9). Because of this,

the metasheet consists of two zones with different transmission properties. Another goal was to

make the measurement setup ready for the metalens in Section 6.8. It is seen from Fig. 6.9, the

layer is divided into 2 regions. The dimension of whole plate is 250×250 mm2. The dimension

of the region 1 is 62×62 mm2. The area of regions 1 and 2 together is 212×212 mm2. The

manufactured metasheet according to these sizes is shown in Fig. 6.11.

A plane wave incident normally to the surface of the metasheet is considered. The size

of the unit cell is 4 mm. The material of the dielectric substrate is FR4. The thickness of the

dielectric substrate is 2 mm. In the full-wave simulations, a predefined value ϵr =4.4 from the

HFSS list of material parameters was used. The size of the copper rings in the first and second

regions are different. The dimensions of the rings in region 1 (inner) and region 2 (outer) are

ri n =1.09 mm, ro u t =1.19 mm and ri n =1.15 mm, ro u t =1.25 mm, respectively. The thicknesses

of the rings is 0.018 mm. The phase and the amplitude of the transmission coefficient should

differ from region 1 to region 2, because of the different dimensions of the rings. So, free-space
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6.4 Design of a metasheet with two regions as a pre-study

transmission measurements were carried out to extract the transmission coefficient for the

region1 and compare with the results of the full-wave simulations. The comparison has revealed

a mismatch between the results (Fig. 6.10).

In order to match the simulation with the measurement, the full-wave simulation was re-

peated with slightly different relative permittivities. The best match is achieved with ϵr =4.75.

The values of the transmission coefficient of region 2 in Table 6.1 are calculated by full-wave

simulation with new relative permittivity. The values of the transmission coefficient are obtained

by multiplication of S21 with e j k0l , where l is the distance between the two Floquet ports in

the simulation setup. l is 50 mm. The transmission coefficient for region 1 in Table 6.1 is the

measured value. The HFSS simulation setup described in Section 3.5 is applied and the classic

mesh, iterative solver and first-order basis functions are used. The model resolution is activated

on the dielectric substrate to improve the mesh quality, increase the mesh speed and improve

the model convergence [Coreda]. The mesh length is chosen as 0.2 mm.

Figure 6.9 Metasheet with two regions filled with variously sized metal rings on an FR4 substrate.
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Table 6.1 Transmission coefficients of the regions in the metasheet for three different frequencies.

T of the region 1 T of the region 2 Frequency in GHz

−0.12619− j 0.0679 0.0069+ j 0.0960 28

0.0512− j 0.0607 0.1786+ j 0.1140 29

0.1871− j 0.1082 0.2678− j 0.1586 30

2 5 2 6 2 7 2 8 2 9 3 0 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 4 0
- 3 0

- 2 5

- 2 0

- 1 5

- 1 0

- 5

0

 in 
dB

F r e q u e n c y   i n  G H z

 M e a s u r e m e n t  f o r  r e g i o n  1
 I n f i n i t e  p l a n a r  f u l l - w a v e  s i m u l a t i o n  f o r  r e g i o n  1

Figure 6.10 Measured transmission coefficient of the inner region of the metasheet in the Ka
band.
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Figure 6.11 Manufactured two-region metasheet.
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6.5 PO calculation for the metasheet

The PO method is used to determine the electric field transmitted through the metasheet shown

in Figs. 6.9 and 6.11. Equation (5.10) is used in the PO calculation. In Chapter 5, the PO integral

was calculated along the z axis. In this section, the observation line is perpendicular to the z axis.

The incident electric field is a linearly polarized plane wave propagating in the −z direction with

the phase equal to zero at z =0, where the metasheet is positioned. The main difficulty in the

calculation of the PO integral is that the wavenumber k0 is large in the exponential part of the

Green’s function in (5.10) causing rapid oscillations of the integrand function. Therefore, some

modifications need to be applied to increase the accuracy.

The modification consists in subdivision of the integration region in smaller pieces, followed

by linear approximation of the phase in the exponential factor. For showing this modification

better, a similar integrand can be examined [Cra91] according to

∫ b

a

A(q )e − j k0M (q )d q . (6.21)

When the amplitude factor A(q ) is slowly varying on the integration interval, then it can be

assumed constant and factored out of the integral. The remaining integral is only applied to the

exponential function. If the integration interval is sufficiently small, then the phase term M (q )

can be approximated by the first-order polynomial as

M (x ) =m1+m2q , (6.22)

which permits analytical evaluation of the integral. In this study, the integration region is two

dimensional and a two-dimensional linear approximation of the phase factor is necessary. For

this linear approximation, a Taylor series is utilized. The amplitude term A(q ) can be assumed

constant because it is a slowly varying function compared with the exponent. A similar approach

is described in [IH91], [CI94]. The PO integral is calculated by summation. The integration

surface can be divided into small triangular or square facets. The equivalent surface currents

are assumed to be constant at each element. In this study, the shape of the facets is square.

Equation (5.10) can be written as

E(r)t r =
j k0

4π

∑

n=1

c(r,rcn)
|r−rcn|

∫∫

Ωn

e − j k0|r−r1|dΩ (6.23)
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where c(r,r1) is given by (see chapter 5)

c(r,r1) = ŝ1× ẑ ×E(r1)− ŝ1× ŝ1×E(r1). (6.24)

The surface integral (6.23) is calculated over the area of each facet Ωn . For sufficiently small

facets, the Taylor series can be applied to the phase part of the exponential function in (6.23). It

can be shown that [zOE20]
∫∫

Ωn

e − j k0|r−r1|dΩ∼=an bn sinc(
k0

2
(r2n−r1n, ŝc n ))sinc(

k0

2
(r3n−r2n, ŝc n ))e

− j k0|r−rcn|, (6.25)

where ŝc n =
r−rcn
|r−rcn| is the propagation unit vector, rcn=

1
4 (r1n+r2n+r3n+r4n) is the center of the

facet and r1n, r2n, r3n and r4n are the corner points of the facet as shown in Fig. 6.12. The

derivation of the surface integral (6.25) is explained in the appendix.

Figure 6.12 A square facet and the points rcn and r from (6.25) [zOE20] [reproduced figure courtesy
of The Electromagnetics Academy].

The integration region (212 mm × 212 mm) is divided into equal square facets as shown in

Fig. 6.13. The calculation is done in Matlab. The metasheet is assumed to be surrounded by an

impenetrable absorber, so there is no term similar to E r i m
t r .
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Figure 6.13 Division of the two-region metasheet into facets for the PO calculation.

6.6 Measurement setup for the two-region metasheet

The setup for measuring transmission through the two-region metasheet is shown in Fig. 6.14. A

horn antenna is used as a transmit antenna. A lens transforms the radiated wave into a plane

wave. The distance between the lens and the transmit antenna is 162 cm. The distance between

the lens and the metasheet is 236 cm. An open waveguide (receiving antenna or probe) is

positioned at the backside of the metasheet (Fig.6.15). In this study, measurements, for two

different distances 4 cm and 6 cm between the metasheet and the probe are used. The distance

between the metasheet and the receiving antenna is important because it is aimed to observe

the response of each region clearly and separately. The transmitted field was measured along

a horizontal line. The measurements were carried out for two different configurations: for the

holder alone(calibration) and for the holder with the metasheet. For comparing measured and

calculated results, the transmission data were normalized to the calibration data as

20log(|Ed |)=20log(|EM S |)−20log(|Eh |), (6.26)

where EM S is the electric field transmitted through the metasheet fixed in the holder, and Eh is

the electric field transmitted only through the holder.
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Figure 6.14 Measurement setup for the two-region metasheet.

Figure 6.15 An open waveguide (probe) and the backside of the metasheet.

The normalized phase at the observation point is expressed as

P (Ed ) =P (EM S )−P (Eh ). (6.27)

When P (Ed )<−180o , then 360o is added to the phase difference. If P (Ed )>180o , then 360o is

subtracted from the difference.
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6.7 Comparison of the calculated and measured results

The results of measurements and calculations are compared. VV and HH polarization cases are

considered. For the frequencies 28 GHz and 29 GHz and the distances 4 cm and 6 cm between

metasheet and receiver antenna, the results match well as seen from Fig. 6.17 to 6.26 but for the

frequency 30 GHz at 6 cm, the calculated and measured phase results do not overlap completely

as seen in Fig. 6.16. The reason can be that the effect of the edges of the layer cannot be ignored

in higher frequencies in the measurement for the outer region. The results clearly show the

jumps in the amplitude and phase of the transmitted field at the boundaries between the regions

on the metasheet. The results of measurement and calculation are compared at the frequencies

28 GHz, 29 GHz and 30 GHz.
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Figure 6.16 PO and measurement results for the phase of the transmitted field at the distance
6 GHz and freqeuncy 30 GHz (HH and VV polarization cases).
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Figure 6.17 The same as in Fig. 6.16 for 29 GHz and 4 cm.
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Figure 6.18 The same as in Fig. 6.17 but for the distance 6 cm.
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Figure 6.19 The same as in Fig. 6.17 but at 28 GHz for 4 cm.
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Figure 6.20 The same as in Fig. 6.19 but for the distance 6 cm.
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Figure 6.21 The same as in Fig. 6.16 but for amplitude.
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Figure 6.22 The same as in Fig. 6.21 but for the distance 4 cm.
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Figure 6.23 The same as in Fig. 6.22 but at 29 GHz.
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Figure 6.24 The same as in Fig. 6.23 but for 6 cm.
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Figure 6.25 The same as in Fig. 6.23 but at 28 GHz.
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Figure 6.26 The same as in Fig. 6.25 but for 6 cm.
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6.8 Design of a metalens with four concentric regions

This section decribes the design of a metalens for correcting the phase distortions of the hemi-

spheric radome (from section 6.1 to 6.3). The metalens is designed as a metasheet divided into

four circular concentric regions (Fig. 6.27). As seen from Fig. 6.27, the area of the regions 1 and 2

is greater than that of the region 3. The regions 1 and 2 become the main part of the metalens.

These two regions should be as transparent as possible. The transmission coefficient of each

region is extracted from the extended semianalytical approach (Chapter 4).

Table 6.2 shows the phase distribution along the diameter in the basis plane of the radome,

calculated with GO. After arithmetic averaging is applied to phase values at each region, the

constant phase values come out as shown in Table 6.3.

Table 6.2 Phase distribution calculated by ray tracing at observation points along the inner radius
of the hemispheric radome at 28 GHz.

Distance from center in mm Phase (from center) in degree Phase (to edge) in degree
95 - 56 −83.553 −88.440
55 - 31 −88.719 −99.378
30 - 12 −100.052 −119.002
11 - 0 −120.697 −146.398

Table 6.3 Constant phase values for each region obtained by arithmetic averaging.

Regions Phases in degree

1 −85.146∼=−85

2 −93.345∼=−93

3 −108.247∼=−108

4 −131.475∼=−132

In the design, the phase values between −153° and −178° observed close to the radome wall

are not considered. As it is seen from Fig. 6.8, the phase rapidly changes close to the radome

wall. To compensate this phase variation, narrow zones on the metalens would be necessary,

comparable to the size of the unit cells. Furthermore, the full-wave simulations assume an

infinite periodic planar structure, smaller finite width of the regions can decrease the accuracy

of the results.
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6.8 Design of a metalens with four concentric regions

Figure 6.27 Metalens with four concentric regions placed at the basis of the radome [zOE20].

In the metalens design, the results of the extended semianalytical method in Section 4.10 are

used. As it is seen in Fig. 6.29, the minimum amplitude of the transmission coefficient appears

between 1.2 mm and 1.35 mm of the outer radius values. The outer radius for each region in

the metalens should be chosen to give a phase value which is not close to the point where the

phase jumps and the amplitude of the transmission coefficient should be as high as possible;

therefore, the outer radius is chosen between 0.9 mm and 1.1 mm. As it is seen in Figs. 6.28

and 6.29, when the radius value is getting smaller, the phase and amplitude of the transmission

coefficient are only weakly influenced by the value of the width. The radius values in the regions

should not be too close to each other in order to simplify manufacturing the metalens. The

calculated transmission coefficients are shown in Table 6.4. For correcting the phase distribution

at the basis of the radome, the necessary phase values which should be created at each region

of the metalens, are defined as shown in Table 6.5. The calculated and simulated values of

the transmission coefficient are compared in Table 6.6 for the phase and in Table 6.7 for the

amplitude.

In Fig. 6.30, the theoretically expected phase correction is shown. The discrete phase distri-

bution is determined as arithmetic average of the calculated phase distortion by the radome for

each region of the metalens. The constant phase value should be −221° after the metalens is

combined with the radome.
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Figure 6.28 Phase of the transmission coefficient calculated with the semianalytical method as a
function of the outer radius for different values of the width at 28 GHz.
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Figure 6.29 The same as in fig 6.28 but for the amplitude.
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Table 6.4 Calculated transmission coefficient for each region of the metalens at 28 GHz.

Regions Calculated complex T
1 −0.4905− j 0.4638
2 −0.4727− j 0.6190
3 −0.3558− j 0.8233
4 0.0174− j 0.9728

Table 6.5 Calculated phase values depending on the dimensions of the rings at 28 GHz.

Regions Outer radius mm Width mm Phase of T in degree T in dB
1 1.1 0.16 −136.599 −3.413
2 1.07 0.16 −127.365 −2.171
3 1.03 0.19 −113.371 −0.945
4 0.9 0.19 −88.974 −0.238

Table 6.6 Comparison of the approximate and full-wave simulated phase values of the transmis-
sion coefficient for each region of the metalens at 28 GHz.

Regions Phase of T in degree, semianalytical Phase of T in degree, full-wave simulation
1 −136.599 −135.983
2 −127.365 −127.394
3 −113.371 −114.630
4 −88.974 −91.493

Table 6.7 Comparison of approximate and full-wave simulated amplitude values of the transmis-
sion coefficient for each region of the metalens at 28 GHz.

Regions Calculated |T | in dB Full-wave simulated |T | in dB
1 −3.413 −3.361
2 −2.171 −2.199
3 −0.945 −1.043
4 −0.238 −0.264
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Figure 6.30 Calculated and measured phase values and the expected phase compensation by
the metasheet as a function of the position along the diameter of the radome at 28 GHz [zOE20]
[reproduced figure courtesy of The Electromagnetics Academy].
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6.9 Measurement setup for the radome and the four-region metalens

In this section, the measurement setup is explained. The information about the used equipment

is provided. The positions of the radome, holder, lens, transmit and receive antenna are shown

in Fig. 6.31. A horn antenna with a lens is used as transmit antenna. The distance between the

antenna and the lens is 162 cm. The distance between the holder and the receiving antenna

(probe) is 6 cm. The probe moves horizontally along the diameter of the basis of the radome

(receiving antenna scan). The distance between the lens and holder is 110 cm. In Fig. 6.34, the

horn antenna is the transmit antenna which radiates to the radome through the lens. The lens

helps to convert the incident wave into a plane wave. The incident wave is sent parallel to the

axis of the radome. The polarization of the antennas is VV.

Figure 6.31 Three measurement configurations: (1) transmitting antenna, antenna lens and
receiving antenna; (2) as configuration (1) but with radome on the holder; (3) as configuration
(2) but with the metalens.

The material of the lens is polypropylene (PP) which is is a thermoplastic “addition polymer”

made from the combination of propylene monomers. Polypropylene can be utilized for applica-
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tions, where a higher transparency is required. The material is readily available and cheap. It

has a relatively slithery surface [Meced]. The metalens is made as PCB (Printed Circuit Board)

with the size 25 cm×25 cm. The border region on the plate is filled with the rings as in the fourth

circular region (Fig. 6.32). The radome is positioned at the center of the metalens as shown in

Fig. 6.33. The radome is positioned at the center of the metalens as shown in Fig. 6.33.

Figure 6.32 Manufactured metalens with four concentric regions filled with differently sized
circular rings.

Figure 6.33 Metasheet and radome.
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Figure 6.34 Measurement setup with an antenna lens and the radome on a holder.

6.10 Comparison of measured and calculated results for the radome
and the metalens

In this section, the measured and calculated results are compared. The PO approach described

in Section 6.5 is used for the calculation. The PO solution is derived for the metalens with four

regions. In the PO calculation, the holder is modeled as a circular aperture in an impenetrable

surface. In this aperture, the radome and metalens are positioned. In the PO solution, the

incident electric field with E0 = 1 is multiplied by the transmission coefficient of the radome

and by the transmission coefficient of the metalens, from which the equivalent surface currents

on the backside of the lens are calculated and inserted in the PO integral. The integration area

is subdivided in small square pieces with the side length 5 mm. The amplitudes (in dB) of

transmitted fields are normalized to the free-space values as

20log(|Ed |)=20log(|EM SR |)−20log
��

�Ep

�

�

�

, (6.28)

20log(|Ed r |)=20log(|ER |)−20log
��

�Ep

�

�

�

, (6.29)
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where ER is the electric field transmitted through the radome in the absence of the metalens.

EM SR is the electric field transmitted through the radome and metalens and Ep is the mea-

sured transmitted electric field in free space, i.e. without radome, metalens and holder. The

normalization for the phase (in degree) is given

P (Ed ) =P (EM SR )−P (Ep ), (6.30)

P (Ed r ) =P (ER )−P (Ep ), (6.31)

where P (ER ) is the phase of the electric field transmitted through the radome. P (TM SR ) is the

phase of the electric field transmitted through the radome and metalens. P (Ep ) is the phase

of transmitted electric field in free space, i.e. without radome, metalens and holder. When

P (Ed )<−180o , 360o is added to the phase value. If P (Ed )> 180o , 360o is subtracted from the

phase value. Additionally, 360o is subtracted from all phase values P (Ed ) at 28, 29 and 29.5 GHz

to compare with measured phase values of radome and with theoretically expected constant

phase value −221o easily. The measured and calculated values for the normalized amplitudes

and phases are compared. The receiving antenna moves along the diameter of the radome at a

distance of 6 cm behind the radome basis with a step used 0.5 mm.

The measured results for several frequencies from 27 GHz to 29.5 GHz are shown in Figs. 6.35

to 6.39. The metalens only slightly decreases the amplitude of the transmitted field but the effect

of the metalens cannot be ignored as indicated in Figs. 6.35 and 6.36. Figure 6.37 shows the

correction of the phase by the metalens. The corrected phase values are close to the expected

theoretical phase value −221° (Fig. 6.30). The bandwidth of the metalens is approximately

2.5 GHz. The oscillations observed in the curves are due to the holder, at which the radome and

metalens are positioned in the measurement setup.

Figures 6.40 through 6.43 compare the measured and calculated results for the radome with

and without the metalens. The frequency is equal to 28 GHz, the distance between the radome

basis and the probe is equal to 6 cm, and the case of vertically polarized transmitting and receiving

antennas is considered.

The PO calculation is done by using (6.23), (6.24) and (6.25). In the calculation, the holder

effect is also included. A circular aperture in the square area 0.4 m× 0.4 m is defined.

The radius of the aperture is the same as the radius of the radome. The transmitted field on the

aperture depends on the configuration (the presence of the radome and the metalens) and on the

position on the aperture. The transmission coefficient for the part of the square area outside the

radome basis is zero. In the PO calculation, the transmission coefficient of the metalens and the
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Figure 6.35 Measured amplitude of the field transmitted through the radome for the frequencies
27 GHz, 28 GHz, 29 GHz and 29.5 GHz.
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Figure 6.36 The same as in Fig. 6.35 but for the radome with metalens.
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Figure 6.37 Measured phase of the field transmitted through the radome and metalens at the
observation points at 28 GHz.
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Figure 6.38 The same as in Fig. 6.35 but for the phase.

radome is defined for each facet. The transmitted field on the radome basis is calculated by ray
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Figure 6.39 The same as in Fig. 6.38 but for the radome with metalens.

tracing along the radius of the basis of the radome. Ray tracing gives the transmission coefficient

for a set of discrete points along the radius of the base of the radome. For the PO calculation,

the transmission coefficient is needed at the center point of each facet in Fig. 6.12. The Matlab

interpolation function is utilized to calculate the field transmitted through the radome at each

facet over the basis of the radome. A spline interpolation function is chosen. As rotational

symmetry is assumed throughout this calculation, only the distance between the facet’s center

and the origin is necessary to determine the transmitted field at every point on the radome basis

with spline interpolation. The transmission coefficient of each region of the metalens, which is

used in PO, is calculated by the extended semianalytical method. As it is seen from Figs. 6.40

to 6.43, there is a good match between the calculated and measured results.

Geometrical Optics can only be used to calculate the electric field close to the metalens. For

calculation of the electric field at an observation point, which is further away from the metalens

(Fresnel and Fraunhofer regions), PO should be used.

The Taylor series approximation can cause a decrease in the accuracy of the employed PO solution.

The incident wave is also assumed as plane wave for simplification in the calculation. Adding

higher-order terms to the Taylor series can increase the accuracy, but the surface integral for each

facet cannot be calculated analytically. Another source of the errors in the PO solution are the

jumps in material properties between the rings on the metalens, which result in deviation of the
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Figure 6.40 Comparison of calculated and measured field amplitudes for the radome without
metalens.
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Figure 6.41 The same as in Fig. 6.40 but for the radome with metalens [zOE20] [reproduced figure
courtesy of The Electromagnetics Academy].

136



6.10 Comparison of measured and calculated results for the radome and the metalens

0 20 40 60 80 100 120 140 160 180 200
-160

-150

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

Ph
as

e 
of

 fi
el

d 
in

 d
eg

re
e

Receiver antenna scan in mm

 28 GHz, distance 6 cm, VV
 28 GHz, distance 6 cm, PO

Figure 6.42 The same as Fig. 6.40 but for the phase [zOE20] [reproduced figure courtesy of The
Electromagnetics Academy].
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Figure 6.43 The same as in Fig. 6.42 but for the radome with metalens.

true field distribution from the GO field distribution. A further subdivision of the metalens into
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concentric regions is limited by the size of the unit cells. As it is observed in Figs. 5.5 and 5.6, the

PO solutions are insufficient when the metasheet cannot be considered homogeneous and large

compared to the wavelength. Furthermore, dividing the metalens into more regions complicates

the design of the metalens.
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Chapter 7

Conclusion and Outlook

Electromagnetic metamaterials are artificial composites with a wide range of applications at

microwave and optical frequencies. Metamaterials are used in different fields such as communi-

cation, radar and military. In this thesis, planar periodic transparent arrays of ring-shaped metal

resonators on dielectric substrates were analyzed by using semianalytical methods, full-wave sim-

ulations and measurements. The focus was on such topics as analysis of transparent metasheets

with an emphasis on the phase control, detailed parametric study of transmission and reflection

at planar metamaterial arrays with circular rings as inclusions, a semianalytical method for rapid

simulation of such arrays, development and application of PO based approaches to calculation

of transmission through homogenized metasheets of finite size, design and experimental demon-

stration of a metalens for correction of the phase distortions caused by a hemispheric radome in

the Ka frequency band.

Infinite periodic planar arrays of circular metal rings were analyzed because the circular ring

is the simplest isotropic particle, which can be easily manufactured. In contrast to the square

ring or Jerusalem cross, the circular ring is less studied in the literature. As it is shown in Fig. 2.6,

the electric field is uniform between the square-shaped particles but this situation is not valid

for circular rings; therefore, a simple transmission line equivalent model cannot be found.

A semianalytical approach was developed for the fast design of metasheets built from circular

rings. In this approach, the equations for impedances of the equivalent circuit are parameterized

and fitted to match the values of transmission coefficients obtained by full-wave simulations at

selected frequency points. Full-wave simulations, for example with the finite element method,

require large memory and long computation time. The advantages of the semianalytical approach

are that it decreases the number of full-wave simulations and can be used for different frequency

ranges and greater number of dimensional parameters of the resonators, which are demonstrated

in the thesis. This approach can be applied for arrays of metal planar resonators with and without
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dielectric substrate. The approach can be extended to anisotropic and bi-anisotropic resonators

and to unit cells with lumped and/or active elements.The approach can be used as a design tool

in engineering praxis.

The semianalytical approach was used for the design of a metalens for a hemispheric radome

in the Ka band. The radome and metasheet must be electrically large to allow for a sufficiently

large number of unit cells, which are necessary to replace the metasheet with effectively homoge-

neous material layers. For easiness of the production, the Ka band was selected for measurement

and simulation. The designed metalens works well for the phase correction in the frequency

range between 27 GHz and 29.5 GHz , which means a bandwidth of 2.5 GHz. Planar metalenses

can be designed for differently shaped radomes by doing necessary modifications, because the

phase distortions of the radomes depend on the shape of the radome.

The measured results are slightly unsymmetric with respect to the symmetry axis of the

radome, which are explained by the limited sensitivity of the measurement facility in the Ka

band. Small changes in the setup cause oscillations in the results. This should be improved. In

this thesis, the distance between the electrically large scatterer and the observation point was

defined experimentally by comparing the calculated and measured results. When the distance

between the receiving antenna and metasheet decreases, it is observed that the accuracy of the

measured results decreases. The correct choice of this distance is important to measure the

electromagnetic response of each region of the metasheet separately and accurately.

The PO method is generally applied to electrically large dielectric or perfect electric conductor

surfaces. In this study, PO was applied to electrically large planar metasheets, which are divided

into square or concentric circular regions filled with electrically small metal rings. In order to

decrease the complexity of the simulations, the shape was chosen as planar, but the PO method

can be used for curved shapes too. The measured and calculated results matched well. This result

shows that the PO solution, despite the approximations used in this study, is sufficiently accurate

to predict the electromagnetic response of transparent metasheets, even of those composed of

several subregions.

As a future work, curved metasheets can be designed and used directly as a surface of the

radome. The material of the metasheet should be chosen to make the radome sustainable in

heavy weather conditions. For example, Polyurethane foam can be an option as a material for

the radome, because it has good dielectric properties and at the same time, good structural

strength [Mey15]. The type of the material depends on the type of the radome and its application

area. Polyurethane foam can be used in aerospace applications. Teflon coated Fiberglass (TSFG)
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can also be chosen as a material for radomes to protect antennas on airborne platforms [BIA+17].

Such antennas face heavy environmental conditions such as aerodynamic load, variable tempera-

ture and pressure. For broadband applications, multilayer radomes can be designed. Working on

the semianalytical method further to include the relative permittivity of the dielectric substrate

as a parameter for controlling the electromagnetic response is necessary, because it will help to

reduce the number of full-wave simulations for structures involving dielectric substrates. The

case of a plane wave incident obliquely on the radome should also be analyzed to account for

additional reflections from the walls of the radome.
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Appendix A

Derivation of Surface Integral for a
Single Facet

The calculation of the surface integral in (6.25) is explained here. Ωn is the integration surface

(Fig. 6.12). Let x and y be new coordinates, not necessarily orthogonal, measured along two

nonparallel edges of the integration region, such that the vector r1. The boundaries of the line

integrals are 0.5 and −0.5, because (A.1) is parameterized according to center of facet (rcn). dΩ

is expressed in terms of dx dy as [Here the upper equation (A.3)]. The vector r1 which is the

position vector on the surface area, is described as

r1= rcn+an x ûx +bn y û y , (A.1)

where −0.5< x < 0.5, −0.5< y < 0.5, an ûx = r2n−r1n, bn û y = r3n−r2n,and ûx , û y are the unit

vectors along the selected edges of the integration region. Defining |r−r1|=R (r1), equation (6.25)

is expressed as
∫∫

Ωn

e − j k0R (r1)

�

�

�

�

∂ r1

∂ x
×
∂ r1

∂ y

�

�

�

�

dx dy , (A.2)

where
�

�

�

�

∂ r1

∂ x
×
∂ r1

∂ y

�

�

�

�

dx dy =an bn dx dy =dΩ. (A.3)

Assuming that the integration region is small, a Taylor approximation can be used in the phase

part of the exponential function as

R (r1)≈R (rcn)+(r1−rcn)∇R (r1)|rcn
, (A.4)

where∇R (r1) is expressed as

∇R (r1) =∇|r−r1|=
r−r1

|r−r1|
. (A.5)
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Equation (A.5) is inserted in (A.4) and it is written as

R (r1)≈R (rcn)+(r1−rcn)
r−r1

|r−r1|

�

�

�

�

rcn=r1

≈R (rcn)+(r1−rcn)
r−rcn

|r−rcn|
,

≈R (rcn)+(r1−rcn) · ŝc n , (A.6)

where ŝc n =
r−rcn
|r−rcn| . Equation (A.6) is inserted in the phase part of exponential function in (A.2) to

give

e − j k0R (r1)= e − j k0(R (rcn)+(r1−rcn)·ŝc n ) (A.7)

and (A.2) becomes

e − j k0R (rcn)e j k0rcn·ŝc n

∫∫

Ωn

e − j k0r1·ŝc n dΩ. (A.8)

Inserting (A.1) in (A.8) results in the equations

e − j k0R (rcn)e j k rcn·ŝc n

∫∫

Ωn

e − j k0(rcn+an x ûx+bn y û y )·ŝc n dΩ=

e − j k0R (rcn)
∫∫

Ωn

e − j k0(an x ûx+bn y û y )·ŝc n dΩ. (A.9)

Using (A.3), equation (A.9) becomes a Riemann integral

an bn e − j k0R (rcn)
∫∫

Ωn

e − j k0an x ûx ·ŝc n e − j k0bn y û y ·ŝc n dx dy . (A.10)

The integral is written as the product of two one-dimensional integrals according to

an bn e − j k0R (rcn)
∫ −0.5

0.5

e − j k0an x ûx ·ŝc n dx

∫ −0.5

0.5

e − j k0bn y û y ·ŝc n dy . (A.11)

Both integrals are calculated in the same way, so let us consider the integral with respect to x :

∫ −0.5

0.5

e − j k0an x ûx ·ŝc n dx =
1

− j k0an ûx · ŝc n
(e − j k0

1
2 an ûx ·ŝc n −e j k0

1
2 an ûx ·ŝc n ). (A.12)

Using

sin(α)=
e jα−e − jα

2 j
(A.13)

and the definition of the sinc function

sinc(α) =
sin(α)
α

, (A.14)
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equation (A.12) becomes

∫ −0.5

0.5

e − j k0an x ûx ·ŝc n dx =
sin
�

k0
1
2 an ûx · ŝc n

�

k0
1
2 an ûx · ŝc n

= sinc(
1

2
k0an ûx · ŝc n )

= sinc(
1

2
k0(r2n−r1n, ŝc n )). (A.15)

After applying the same calculation process to the second integral in (A.11), the surface integral

calculation is completed and leads to

∫∫

Ωn

e − j k0|r−r1|dΩ∼=an bn sinc(
k0

2
(r2n−r1n, ŝc n ))sinc(

k0

2
(r3n−r2n, ŝc n ))e

− j k0|r−rcn|. (A.16)
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Appendix B

Asymptotic Evaluation of a PO Integral

The derivation of integral calculation for (5.19) in Section 5.3 is explained here. The integral is

written in a compact form as

E r i m
t r =E0

j k0

4

∫ +∞

x (a )
e − j k0 x A(x )d x (B.1)

and

d x =
ρ1dρ1
Æ

ρ2
1+z 2

. (B.2)

In (B.1), x =
Æ

ρ2
1+z 2, and A(x ) becomes

A(x ) =2+
2z
Æ

ρ2
1+z 2

−
ρ2

1

ρ2
1+z 2

. (B.3)

The derivative of the exponential function with respect to x is calculated as

∂ e − j k0 x

∂ x
=− j k0e − j k0 x (B.4)

and

e − j k0 x =−
1

j k0

∂ e − j k0 x

∂ x
. (B.5)

Inserting (B.5) in (B.1) gives

E r i m
t r =E0

j k0

4

∫ +∞

x (a )
−

1

j k0

∂ e − j k0 x

∂ x
A(x )d x . (B.6)

Integration by parts is applied to (B.6) as

E r i m
t r =−

E0

4
e − j k0 x A(x )
�

�

�

+∞

x (a )
+

E0

4

∫ +∞

x (a )
e − j k0 x ∂ A(x )

∂ x
d x . (B.7)
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Asymptotic Evaluation of a PO Integral

The second term in the right-hand side of (B.7) is O ( 1
k0
)and can be neglected in the high-frequency

limit, because it describes asymptotically smaller terms. The integration of the exponent brings

a large parameter k0 in the denominator in front of the integral. So (B.7) becomes

E r i m
t r =−

E0

4
e − j k0 x A(x )
�

�

�

+∞

x (a )
. (B.8)

The contribution from infinity is equal to zero, and (B.8) recovers (5.20).
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• E. Öziş, A. V. Osipov and T. F. Eibert, "Enhancing microwave radomes with metamaterials,"

Kleinheubacher Tagung, Miltenberg, Germany, 2015.
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• E. Kemptner, A. V. Osipov, E. Öziş, "Metamaterialien für Mikrowellenradome," Wehrwis-

senschaftliche Forschung, vol.2016, pp.42-43, 2017.
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• A. V. Osipov, E. Kemptner, E. Öziş, and S. Umrath, "Ausgewählte Problemstellungen zur

Radartechnik in der Anwendung für hochagile Flugkörper," Proceedings of the Angewandte

Forschung für Verteidigung und Sicherheit in Deutschland, Bonn, Deutschland, 2018.
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