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Abstract 

Road accidents are one of the most predominant factors for deaths throughout the world. With the inclusion 

of several driver assistance systems, intelligent vehicles are becoming peak of the automotive industry to 

mitigate accidents. Autonomous vehicles are widely considered safer, because of the introduction of 

advanced robotics and Advanced Driver Assistance Systems (ADAS) into the task of driving. However, 

the main challenge for AVs is to properly detect dangerous situations and react properly to avoid potential 

collisions. To overcome this challenge, it is important to assess current traffic situation and vehicle 

dynamics for real-time collision prediction. This thesis provides an insight to identify and predict dangerous 

driving behaviour for autonomous vehicles in an uncontrolled intersection for rear-end collision scenarios. 

A large naturalistic driving dataset containing single vehicle data of position, speed and heading is analyzed 

to predict future conflicts by utilizing machine learning classification techniques.  

To that aim, vehicle level data are collected using sensors installed on a vehicle, which deliberately passes 

through an uncontrolled T-intersection. The vehicle passed approximately ten times in each of the six 

possible manoeuvres. A circular area of interest with radius of 35 meters is selected around the center of 

intersection. Based on this bounding area, vehicle trajectories are extracted from position data based on 

their entry and exit points. Trajectories are then time-shifted, so as to imitate interactions among them and 

develop rear-end collision scenarios. Finally, Time-to-Collision (TTC) is used as a surrogate safety 

indicator to identify dangerous behaviour.  

A total of 11,208 gap observations are counted in all six manoeuvres in the bounding area. Among them 

35.96% observations are marked as dangerous, where TTC lie below the threshold value of 1.5 seconds. It 

is observed that TTC gets lower when the vehicle approaches to the intersection. Moreover, there is an 

inverse relationship between TTC and speed difference. High difference of speed between the following 

vehicle and lead vehicle leads to lower TTC and results in dangerous situation. On the contrary, low speed 

difference shows high TTC and low collision risk. It is observed that TTC decreases exponentially with 

increase in speed difference between the following and lead vehicle. 

Finally, different machine learning classifiers are tested to classify and predict dangerous situations 

considering speed difference as the independent variable or predictor. After analyzing performance 

matrices, it is observed that Random Forest (RF) performs better than other classifiers in terms of different 

performance matrices and gives a lower rate of false alarm (less than 7%). Area under the ROC curve also 

increases for RF. Later on, RF classifier is employed in all the six manoeuvres to classify dangerous driving 

behaviour. However, in some manoeuvres, it gives higher false prediction due to the high imbalance 

between safe and collision-prone test samples. It is expected that more sophisticated real-world traffic data 

and integration of more advanced classification techniques like imbalanced learning or deep learning are 

more likely to give better prediction of collisions. 
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1 Introduction 

1.1 Background and motivation 

Road accidents have become one of the most increasing factors for deaths in the present world. According 

to WHO (2015), more than 1.25 million people died around the world in 2013 because of road accidents 

and they are the biggest non-health reason for deaths. WHO also predicted that, road traffic injuries will 

become the seventh leading cause of human death by the year 2030. 

As the severity of losses is immense due to road accident, traffic safety issue has got a lot of attention in 

the research industry over the years. Evans (2004) defined ‘traffic safety’ as “the absence of unintended 

harm to living creatures or inanimate objects”. Treat et al. (1979) stated that road environment, vehicle 

state and human factors all contribute to collisions. According to Oh et al. (2001) traffic dynamics also play 

a significant role in conflict occurrence along with these three components. The main challenge in road 

safety is to detect or predict dangerous situation and react properly to avoid collision. This is the reason 

why, identification of dangerous driving behaviour and real-time collision prediction have gained major 

focus in the field of Intelligent Transportation Systems (ITS). 

Abdel-Aty and Pande (2005) stated that real-time collision prediction can be performed by estimating the 

probability of a collision occurrence from traffic data for a short-time prediction horizon.  ITS has facilitated 

the research of collision prediction immensely by increasing the availability of traffic data. Real-time 

collision prediction has become easier with the inclusion of advanced loop detectors and sensors. 

Advancement in smartphone technology has also helped immensely in cost effective and additional traffic 

data collection (Guido et al. 2012, Vlahogianni and Barmpounakis 2017). Image and video processors have 

been used in many research successfully for collecting less noisy data for collision detection (Ikeda et al. 

1999, Astarita et al. 2011). Automatic Vehicle Identification (AVI) technology is also practiced in literature 

in recent times for collision data collection (Yu et al. 2013, Ahmed et al. 2012).  

Apart from growing research in road safety, accidents are still predominant. According to the Bureau of 

Transportation Statistics (2015), in USA around 32,000 people are died, and more than two millions are 

injured in road accidents every year. According to the statistics from NHTSA (National Highway Traffic 

Safety Administration and U.S. Department of Transportation) (2011), about 41% road accidents are done 

by drunk driving, 10% by distraction of drivers and 2.5% by fatigue. Several studies also showed that more 

than 90% traffic accidents were caused by driving mistakes or human errors (Staubach 2009, Singh 2015, 

Paden et al. 2016). Human error can be caused due to lack of information or misuse of information like 

misinterpretation of other vehicle’s relative speed or distance. Driver’s age and mental stage also play vital 

role in the occurrence of traffic collision. 

ITS research has been rapidly increasing to minimize human error in driving. With the inclusion of several 

driver assistance systems, “Intelligent Vehicles” have become a big step in the automotive industry to 

mitigate road accidents. Autonomous vehicles (AVs) increase driving safety significantly by eliminating 

human errors like drunk driving, fatigue, distraction etc. Introduction of advanced robotics and Advanced 

Driver Assistance Systems (ADAS) in AVs have added better perception and decision-making when 

driving on roads. Many authors have stated the benefits of autonomous vehicles for increasing road safety. 

Fagnant and Kockelman (2015) described the advantages of autonomous vehicles in terms of increasing 

safety, solving for congestion, decreasing travel time and cheaper travelling. According to them, parking 

cost and space will be reduced, and car sharing can be introduced for less traffic. Autonomous vehicles will 

play a great role in the near future for solving mobility problems by reaching to different groups of people 

(Sivak and Schoettle 2015). Low carbon mobility is another environmental advantage of AVs to reduce 
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emissions (Thomopoulos and Givoni 2015). Introduction of vehicle-to-vehicle (V2V) communication and 

3D laser sensor technology will inform drivers about the collision happened on road and warn them, which 

may prevent after-collision congestion (Wei et al. 2013, Jiménez et al. 2016). In the study of the A.T. 

Kearney (2016), it is expected that road accidents will be reduced by 70% by introducing autonomous 

driving. Also, the annual savings in USA will be 1.3 trillion US dollars due to the introduction of AVs. 

 

Figure 1.1 Expected annual economic benefits of autonomous vehicles in USA (A.T. Kearney 2016) 

In recent years, enormous number of researches are going on to enhance the safety of autonomous vehicles 

after realizing the benefits associated with AVs in future. The challenge of adapting with surrounding 

environment (human driven vehicles, pedestrians etc.) while driving on complex road geometry is a big 

focus in safety assessment of autonomous driving. Moreover, future collision prediction from present traffic 

data has got a lot of attention in road safety research along with the research of identifying collision-prone 

road geometry. 

1.2 Problem statement  

As autonomous vehicle is the most recent advancement in automotive industry, the underlying safety 

associated with it forms a big problem. Safe navigation of AVs with other traffic participants, as well as 

threats and challenges faced by different impact groups due to the introduction of AVs are studied 

intensively. However, perfect safety assessment of AVs is not achieved yet.  

“Perfect safety is really an impossible goal. It’s really about improving the probability of safety 

– that’s the only thing possible.”- (Lambert 2016) 

Manoeuvre planning or path planning is the fundamental of risk assessment for autonomous vehicles 

(Katrakazas et al. 2015). Typically, a motion model predicts trajectories of other vehicles and estimates the 

collision risk associated with the trajectory of autonomous vehicle. However, computational complexity is 

emerged in different complex road geometries for getting a safe trajectory, where traffic participants are 

assumed to navigate independently (Lefèvre et al. 2014). Research is going on to integrate human 

interaction or driving behaviour without predicting other vehicle’s trajectory and information of traffic data 

in the risk assessment of autonomous vehicles (Agamennoni et al. 2012, Gindele et al. 2015, Lefevre et al. 

2012). But in reality, inter-vehicle communication is not always feasible. Therefore, it is often assumed 

when modelling collision risk prediction (Paden et al. 2016). There is still a need for robust collision 

prediction model for the risk assessment of autonomous vehicles.  

Real-time collision prediction has become popular in risk assessment in the recent years. According to 

Katrakazas (2017), Real-time collision prediction for autonomous vehicles is typically hierarchically 

structured into the following four steps.  

a) Identifying traffic variable/variables as predictors 
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b) Traffic data collection for both normal and collision-prone situations 

c) Predict collision by classification technique 

d) Performance evaluation of the classification model 

But most of the times noisy or missing traffic data lead to a bad prediction by the classification model (Xu 

et al. 2015). Moreover, an imbalance between data emerges due to the lack of collision data compared to 

safe situations. Xu et al. (2016) stated that this imbalance leads to biased classification and high number of 

false alarms. Most of the literatures have neglected this effect of imbalance. According to Roshandel et al. 

(2015), the ratio of collision-prone and safe cases should not exceed 1:5 for better prediction performance 

of the classifiers. Inclusion of more disaggregated data is also important while building a classification 

model (Katrakazas 2017).   

This thesis will attempt to identify dangerous driving behaviour based on naturalistic driving data with 

respect to the performed manoeuvre. A large naturalistic dataset will be used for this approach and machine 

learning classification techniques will be employed for collision risk assessment. 

1.3 Aim and objectives 

This thesis aims to build a vehicle-level collision risk prediction model that can identify dangerous driving 

behaviour using naturalistic driving data. The following objectives have been formulated, so as to fulfil this 

aim: 

• To review existing motion planning and real time collision prediction models from literature. 

• To extract car-following events from time shifted trajectories to identify rear-end collisions. 

• To implement machine learning classification techniques for predicting dangerous driving 

behaviour leading to collision. 

• To evaluate classifier performance and build a prediction model to predict dangerous driving 

behaviour associated with autonomous vehicles. 

1.4 Expected contributions 

This thesis contributes to the knowledge of methodological and practical level in the following ways: 

• Existing approaches of real-time collision prediction are mostly based on network level traffic data. 

Risk assessment can be enhanced by predicting real-time collision based on vehicle dynamics or 

driving behavior named vehicle level collision prediction. This thesis uses a single vehicle data 

from a naturalistic dataset to predict future collision situations due to dangerous driving, which 

supports the argument that collision prediction model does not need to depend fully on trajectory 

studies of surrounding vehicles in a road segment. 

• Concept of time shifted trajectories is implemented to extract car-following events from a single 

vehicle data of the naturalistic driving study. Generating trajectories for actual collision is not 

feasible. Hence, controlling the time shifting of trajectories can be a good alternative for collision 

prediction and safety assessment. 

• Dangerous driving behaviour is identified for rear-end collision around an uncontrolled T-

intersection by setting a threshold value of surrogate measure Time-to-Collision (TTC). For 

classifying dangerous behaviour, speed difference is considered as the predictor instead of the 

individual speed of vehicles. With the advancement in vehicle-to-vehicle (V2V) and vehicle-to-

infrastructure (V2I) communication, avoiding dangerous situations will be easier by the early 

prediction of collision-prone situations due to dangerous driving behaviour obtained from the 

classification technique used in this thesis. 
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1.5 Overview of the thesis 

This report contains six main chapters. Chapter 1 introduces the background and motivation of the research 

and problem definition. It also describes the main objectives of the thesis and expected contributions to the 

field of safety assessment of AVs. In Chapter 2, brief literature of AV motion planning approaches and 

safety assessment is reviewed. The same chapter also provides a brief description of different surrogate 

safety indicators used in collision risk prediction models with related work. Chapter 3 describes the data 

collection procedure, giving insight on the data used for the research and a visualization of the study area. 

Chapter 4 presents the methodology followed throughout the thesis in order to solve the research problem. 

Chapter 5 contains the analysis results obtained from the methods applied and represents a driving 

behaviour prediction model using machine learning classification techniques with corresponding 

performance evaluation. The final chapter provides a summary of the report as well as limitations and 

possible future work of the thesis. An overview of the thesis is illustrated in Figure 1.2. 
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        Figure 1.2 Thesis overview 
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2 Literature Review 

2.1 Planning for autonomous vehicles 

Research on autonomous vehicles has become the first choice in automotive industry after the success of 

DARPA (Defense Advanced Research Projects Agency) Grand challenge (Buehler et al. 2009, Stilgoe 

2017, Schwarting et al. 2018, Kala and Warwick 2013). Different automotive companies like Google 

(Dolgov 2016), Tesla (Stilgoe 2017), BMW (Ziegler et al. 2014) have initiated their research to make 

autonomous vehicles. It is expected in current literature that fully autonomous vehicles will appear within 

the next decade and a huge amount of AVs will be driven on road within next 50 years (Hörl et al. 2016). 

Litman (2015) also predicted AVs to be affordable for the majority of people between 2040 and 2060. 

However, to replace conventional cars and making autonomous vehicles accepted to all groups of people, 

it is needed to establish public trust in safety associated with AVs. Research is going on for increasing 

safety level of AVs, although number of accidents have occurred (Dolgov 2016, Stilgoe 2017). Therefore, 

expected safety of AVs is still not achieved (Fagnant and Kockelman 2015). 

Reliable and robust planning is a prerequisite for safe navigation of autonomous vehicles. The main 

challenge of autonomous vehicles while driving on the road is decision making on critical situations. 

Planning algorithms for decision making are key to navigate the vehicle towards a safe manoeuvre and 

reach the destination bound by traffic rules and road boundaries (Zhang et al. 2013). Varaiya (1993) 

suggested that planning for on-road autonomous vehicles is hierarchically structured into four parts named 

a) route planning, b) path planning, c) manoeuvre choice and d) trajectory planning. Paden et al. (2016) 

integrated these four steps in decision making process and visualized hierarchically as shown in Figure 2.1. 

Route planning is defined as finding the best route to reach the destination and it is not associated with 

vehicle dynamics or traffic interaction. Behavioural layer (path planning), Motion planning (manoeuvre 

choice) and local feedback control or vehicle control (trajectory planning) are associated with the vehicle 

dynamics, road geometry and traffic interactions. 

The road environment and state space of the vehicle (position, speed, orientation) need to be represented 

for searching the path and planning. It can be done by visualizing the sensor data in a digital map. The 

digital representation of the road environment must be performed with efficiency, density and 

expressiveness (Howard 2009). Widely used representing techniques in literature are Voronoi diagrams 

(Dolgov et al. 2010, Lee et al. 2014), driving corridors (Wille et al. 2010, Jeon et al. 2013, Hardy and 

Campbell 2013), occupancy grids (Kammel et al. 2009, Hundelshausen et al. 2008, Zhao et al. 2011, Xu et 

al. 2014), cost maps (Schroder et al. 2008, Broggi et al. 2012, Murphy and Newman 2011) and state lattices 

(Pivtoraiko and Kelly 2005, McNaughton et al. 2011, Ziegler and Stiller 2009). These representation 

techniques are sometimes combined with other techniques for better planning of path, manoeuvre and 

trajectory. For instance, potential fields were combined with Voronoi diagrams to generate Voronoi fields 

to obtain better results by Dolgov et al. (2010). 
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Figure 2.1 Hierarchy of decision-making process (Paden et al. 2016) 

After the search space representation, planning algorithms are employed for finding the best path, 

manoeuvre and trajectory. According to Katrakazas et al. (2015), planning of on-road driving of 

autonomous vehicles is divided into three parts:  

1) Search for the best path to follow 

2) Search for the best manoeuvre to perform and 

3) Search for the best trajectory 

Path-planning or behavioural decision making comes after finding a route. Path is the continuous sequence 

of configurations from start to end with the boundary configurations (Eskandarian 2012). Path-planning 

refers to finding the best geometric path in the selected route, without any collision with traffic participants 

or obstacles while driving according to road boundary and traffic rules. 

After finding the best path, best manoeuvre should be performed. Manoeuvre indicates the motion of the 

vehicle regarding vehicle state (e.g. position and speed). Manoeuvre planning refers to the best driving 

behaviour to be performed in the current context like going straight, changing lane, overtaking, turning etc. 

(Paden et al. 2016). Autonomous vehicles need to interact with surrounding traffic participants before 

performing the best and safest manoeuvre. According to Katrakazas (2017), Manoeuvre planning can be 
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performed by two categories named motion planning (also obstacle prediction) and decision-making 

module. 

Trajectory represents the states or points followed by vehicle in a manoeuvre. Trajectory planning is 

referred by finding the transition of a vehicle from one state to another in real-time, constrained by road 

boundaries and traffic rules. Trajectory planning is often addressed as motion planning and is parameterized 

by time and velocity or acceleration (Katrakazas et al. 2015). Trajectory planning can be done at regular 

intervals of time depending on the position data, which can be obtained from sensor measurements. Risk 

assessment can be performed by studying future trajectories that can collide or detecting unexpected 

behaviour or manoeuvres by traffic participants (Lefèvre et al. 2014, Ammoun and Nashashibi 2009). 

2.1.1 Motion planning models for manoeuvre choice 

A key challenge in predicting collision is dealing with uncertainties like inaccurate or unclear motion 

intentions of vehicles (Song et al. 2016). Gadepally (2013) used hierarchical hidden Markov models and 

finite state machines to predict the motion of vehicles at intersections. However, his approach needs large 

amount of data for training. Armand et al. (2014) used ontology to predict behaviour of the vehicles for 

limited manoeuvres. Alin et al. (2012) predicted vehicle trajectories as spline functions by using grid-based 

Bayesian filter, although they only considered cut-in and lane changing manoeuvres.   

Vehicle level collision risk prediction of autonomous vehicles are based on different motion models which 

describe vehicle’s movement considering the surrounding (Katrakazas et al. 2015). Lefèvre et al. (2014) 

surveyed different motion models and prediction approaches for the risk assessment of intelligent vehicles. 

They classified motion models into three categories named physics-based, maneuver-based and interaction-

aware motion models. Physics -based motion models are widely used in literature to predict future motion 

or trajectory using dynamic and kinematic models. These models follow the laws of physics and face the 

limitation of predicting motion of a very short time. They are also incapable of anticipating any change in 

motion for abrupt braking or acceleration. Maneuver-based motion models are based on predicting the 

intention of vehicles by clustering the trajectories or estimating manoeuvres. These models also do not 

consider traffic environment into account and do not adapt well in every road layout like road intersections 

because each motion model is trained for specific road geometry. The last one is interaction-aware motion 

models which are based on inter-vehicle dependencies and are very handy in collision risk prediction. These 

models perform well in predicting collision risk at different road geometry like intersections, where priority 

rules are applied and manoeuvres of other vehicles needed to be considered. Interaction-aware motion 

models are more robust to predict collision, though they take more time and costs to compute all the 

trajectories in a time segment from large amount of data.  

Figure 2.2 illustrates the difference between three types of motion models proposed by Lefèvre et al. (2014). 

Physics-based and maneuver-based motion models do not consider other vehicles manoeuvre. Interaction-

aware motion models predict motion based on inter-vehicle dependency and are constrained by traffic rules. 

Interaction-aware motion models are addressed in this section because this thesis aims to identify or predict 

dangerous driving behaviour which is measured by inter-vehicle dependency (speed and manoeuvre of both 

cars). 
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Figure 2.2 Motion prediction by three types of motion models (Lefèvre et al. 2014) 

Most of the interaction-aware models are based on Dynamic Bayesian Network (DBN), because of their 

performance of handling missing data and representing the relationship between variables and outcomes 

(Lefèvre et al. 2014). DBN based models are widely used in literature for real-time probabilistic collision 

prediction. Worall et al. (2012) built a probabilistic motion model by using DBN with surrogate safety 

measure TTC. However, their model was not built to perform well under complex traffic scenarios and 

V2V communication was assumed. This limitation is overcome in the research of Gindele et al. (2015), 

where inter-vehicle communication was integrated in the car-following models for better perception of 

vehicle motion. They also used TTC for the risk assessment. But their model needed too many network 

level variables like road geometry, other cars states and traffic rules. To reduce the effect of variables, a 

static street model for motion planning was proposed by Kuhnt et al. (2015); although their model did not 

describe V2V communication efficiently. Bahram et al. (2016) stated that only two variables- road 

geometry and traffic rules can enhance the prediction time of manoeuvre perception, even without V2V 

communication. However, their approach lacked the ability to predict other vehicle’s manoeuvres with 

abrupt acceleration or decelearation in complex road geometry. 

2.1.2 Decision-making approaches for manoeuvre choice 

Decision-making modules for manoeuvre planning are based on the modelling of traffic environment 

(Katrakazas et al. 2015). Different approaches are found in literature for the decision-making of 

autonomous vehicles. Multiple Criteria Decision Making (MCDM) approach was used by Furda and Vlacic 

(2011) for decision making when executing manoeuvres. Their approach needed several criterions like 

traffic rules, road boundary, safety distances and required accurate measurements from sensors and inter-

vehicle communication. Kala and Warwick (2013) assumed in their approach that surrounding vehicles are 

non-autonomous, and the road has no lane. Different manoeuvres were predetermined and they were 

displayed according to the motion of other traffic participants. This decision-making approach was only for 

straight roads and showed a delay in the decision-making for some manoeuvres like overtaking or centring 

on the curves/bends. 
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Wei et al. (2014) used Prediction and Cost-function Based (PCB) approach for decision making. They 

generated multiple trajectories and chose the best one based on safety, comfort and fuel consumption. They 

validated the approach in both simulation environment and on-road, considering motion of other traffic 

participants and time delay. The approach showed 90% reduction on computational costs, although only 

single lane behaviours were considered. 

Markov Decision Processes (MDP) were employed by White and White (1989) for selecting the best 

manoeuvre while driving. MDPs choose the best manoeuvre from a set of predetermined manoeuvres 

performing under uncertainty by maximizing weights. But MDPs assume all the states are fully observable. 

This limitation can be overcome by the approach of Partially Observable Markov Decision Processes 

(POMDP) which assumes a state of vehicle is unknown (Ong et al. 2010). Hubmann et al. (2017) used 

POMDP to select manoeuvre from unknown manoeuvre intentions. Their approach did not rely on V2V 

communications and operated on a continuous state space. However, their approach is not efficient for more 

than three traffic participants at a time. Mixed Observability MDP or MOMDP is also used if some states 

are unknown. MOMDP was used in predicting the intention of pedestrians while interacting with AVs by 

Bandyopadhyay et al. (2013). This approach assumed that the position and velocity of each pedestrian are 

known and their intentions remain constant. Brechtel et al. (2014) used a continuous POMDP approach and 

assumed that majority of the states are known. They simulated the model in merging cases where vision is 

obstructed due to illegal parking. However, their approach needed a lot of samples and a lot of options were 

available for decision-making. 

Interactions between vehicles while making decision for the best manoeuvre can be introduced by Game 

Theory. Aoude et al. (2010) used Game Theory to build a threat assessment model in RRT planner for 

intersection by choosing the best path to avoid collision. Time-to-Collision was used as the safety indicator 

and speed limit of 0.5 m/s was selected. This approach also assumed no uncertainty in obstacle’s motion. 

Martin (2013) also used the same approach of Game Theory to predict the motion of other traffic 

participants in highways. Position, speed and acceleration of vehicles were taken as model criterions and 

the best manoeuvre was decided from selected manoeuvres of driving straight and changing lane. However, 

the approach assumed the lane to be straight and up to four vehicles could be simulated at a time. 

Most of the above approaches of motion planning and decision-making have the limitations in handling 

obstacles and perception ability. Majority of the approaches assume no uncertainty. Also, interaction among 

vehicles is often assumed. Therefore, new approaches are needed for better perception capability and 

obstacles handling to improve risk assessment of AVs.   

2.2 Real-time collision prediction approaches 

As stated in 2.1, research in improving the safety of autonomous vehicles has got an immense attention in 

the present world. The success of AV depends on the acceptance of people and for that reason, their safety 

needs to be ensured or properly addressed. With constant improvement in Intelligent Transport Systems 

(ITS), risk assessment of AVs by real-time collision prediction has become a hot topic for the researchers. 

Real-time collision prediction is based on the concept of estimating the probability of collision during a 

short-time prediction state (Abdel-Aty and Pande 2005). Pande et al. (2011) stated that collision risk 

prediction can be done by comparing the traffic measurements like speed, traffic flow, occupancy etc. on a 

specific road segment of a time segment just before a collision with normal situation’s traffic measurements 

of the same segment and time. This collision risk prediction is called Network Level Collision Prediction 

(NLCP), where future collision-prone situations are identified by studying real-time traffic data and road 

environment (Hossain 2011). Number of collision risk assessment approaches are found in the literature 

based on NLCP. But to understand the full safety challenge for automated vehicles, vehicle level collision 
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risk prediction (safe speed, acceleration, braking of the individual vehicle) is also required. Agamennoni et 

al. (2012) stated that there is a lack of research that addresses the collision risk based on vehicle level for 

real-time risk assessment of autonomous vehicles. Lefèvre et al. (2012) proposed a risk assessment model 

based on Dynamic Bayesian Network (DBN) which compares driving behaviour at safe and dangerous 

situations and predicts the collision by studying the vehicles, which were going to be in danger or in 

potential collision. Their model did not include trajectory of other vehicles and hence indicated that the 

collision prediction model can be enhanced by studying dangerous driving scenarios without fully 

depending on trajectory studies of all the vehicles in a road segment. Recently, Katrakazas (2017) developed 

an advanced DBN based collision risk model for AVs to integrate both network level collision risk and 

vehicle level collision risk. 

Traffic conditions and road geometry affect types of collision enormously (Golob and Recker 2004); hence 

separate collision prediction models are required for different types of collisions (Qu et al. 2013). Typically 

collisions can be classified into four categories named rear-end, side sweep, head-on and right angle 

collisions (Mohamed et al. 2017). Among these four types, rear-end collisions mostly occur in roads. In 

USA over 2.5 million rear-end collisions are reported every year which is one-third of all the collisions 

(Singh 2003). In Japan, 35% of the collisions at intersections are due to rear-end collisions (Wang et al. 

2003). It is obvious from literature that 60%-90% rear-end collisions could be avoided if drivers were 

warned 0.5-1 second before the collision occurred (Meinel 1998).  

According to Lefèvre et al. (2014), collision prediction is of two types- binary collision prediction and 

probabilistic collision prediction. Several risk indicators or safety measures are used in predicting collision. 

Real-time collision prediction can be done by two methods named statistical methods and artificial 

intelligence methods (Hossain and Muromachi 2012). Traffic data from collision-prone situations and safe 

situations are compared to find out the indicators or predictors of collision in statistical methods. Abdel-

Aty et al. (2004) used a method called matched-case control to remove the effects of environment on 

collision occurence probability. Individual vehicle level study at normal and collision-prone situations is 

the core objective of this method. Later this method was used with logistic regression to predict collision 

occurance by different authors (Abdel-Aty et al. 2005, Lee et al. 2006, Zheng et al. 2010, Pande and Abdel-

Aty 2007). Aggregate log linear model (Lee et al. 2003) and Bayesian statistics (Oh et al. 2001) are also 

used to predict collision after statistically comparing traffic data of safe and collision-prone situation. 

However, statistical methods are not highly effiicient in predicting collision because it neglects most of the 

traffic flow variables like speed, traffic flow, occupancy (Hossain and Muromachi 2012). Therefore, 

artificial intelligence methods or machine learning classification models for real-time collision prediction 

are highly practised in recent time.  

Artificial intelligence methods or machine learning algorithms are immensely popular in big data analysis 

now a days. They can learn from thousands of data and aim at identifying a vigorous description of a dataset 

given a limited sample (Herbrich 2001). They are capable of handling missing data and predicting collision 

based on learning from a large dataset in a short time. Classification or pattern recognition is one type of 

supervised machine learning technique which predicts the outcome of a given sample (Murphy 2012). 

Classification can be defined as the task of approximating a mapping function (f) from input variables (x) 

to discrete output variables (y) (Asiri 2018). Different machine learning classifiers are used in previous 

literature to predict collision risk in real-time. 

Researchers tried to build different risk assessment models based on several machine learning classification 

techniques for predicting real-time rear-end collision. Oh et al. (2001) built a crash likelihood prediction 

model based on Bayesian classification, where they considered 5-minute standrad deviation of speed before 

crashes as the variable or crash predictor. Neural Network (NN) have been used by different researchers 
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for real-time collision prediction. Probabilistic Neural Network (PNN) classification technique was used 

by Abdel-Aty and Pande (2005) for identifying crashes, taking speed variations as the predictor. Their 

model could predict 70% of crashes. In continuing work, they integrated multi-layer perceptron (MLP) and 

normalized radial basis function (NRBF) with neural network to predict rear-end collisions (Pande and 

Abdel-Aty 2006). However, their model produced a significant number of false alarm (false collision 

prediction). Limitations of Neural Network approaches are over-fitting (Yu and Abdel-Aty 2013) and 

‘black-box’ effect, which affects model transferability and interpretation of results (Sargent 2001). k-

Nearest Neighbor (kNN) was introduced in different works to reduce this ‘black-box’ effect (Lv et al. 2009, 

Lin et al. 2015, Katrakazas 2017). A brief description of k-NN is given in section 4.4.4. 

Support Vector Machine (SVM) has been used in recent times by different researchers in real-time safety 

assessment to predict rear-end collision. SVM classifier gave better accuracy in predicting crash frequency 

than traditional binomial models in the research of Li et al. (2008). SVM also performed better in crash 

injury severity analysis than Ordered Probit (OP) model in the work of Li et al. (2012). Mima et al. (2009) 

used SVM in building a warning system for rear-end collision. Aoude et al. (2012) used SVM and hidden 

Markov model to predict dangerous driving behaviour at intersection and validated the results on 

naturalistic data. Three SVM models, based on radial basis, sigmoid and polynomial kernel functions have 

given great accuracy (88.5%, 78.2% and 79.5%) in real-time freeway sideswipe crash prediction by Qu et 

al. (2013). SVM is also used successfully in other studies for real-time collision prediction (Yu et al. 2013, 

Wang et al. 2013). SVM is less susceptible to over-fitting problem when classifying large driving dataset. 

Mechanism of SVM is described in section 4.4.3. 

Relevance Vector Machines (RVM) is another technique which performs like SVM (Bishop 2006). It is 

used in very few approaches of collision prediction. Katrakazas (2017) used RVM with SVM in network 

level collision prediction model. In their recent work, Katrakazas et al. (2019) used Random Forest and 

Neural Network classifiers, integrated with imbalanced learning for real-time collision prediction from raw 

speed time-series data from a driving simulator. Their study has showed that Random Forest performs well 

in predicting collision-prone situation and also imbalanced learning approaches can improve the 

classification performance as much as 40%. 

Bayesian Networks (Hossain and Muromachi 2012) and Dynamic Bayesian Network (DBN) (Katrakazas 

2017, Sun and Sun 2015) have been used in recent approaches of real-time collision prediction extensively 

because of their ability to represent the dependency between predictors and dependent variables. However, 

Bayesian approaches need a large dataset for training safe and collision-prone situations and might be 

ineffective in low number of collision-prone situations. 

2.3 Surrogate safety measures 

Surrogate safety measures are widely used to assess the safety of a road before any collision occurs (Ariza 

2011). Surrogate measures are not reliable on crash data and these are used to analyze danger or collision 

risk based on crash records (Ceunynck 2017). Traffic accident events are rare. As surrogate measures don’t 

need any crash to happen, they are widely accepted in road safety and collision prediction research. Many 

studies have shown surrogate safety measures are more proactive, accurate and time-efficient than crash 

based analyses (Hydén 1987). As crash data based analyses lack of real-crash data and don’t contain 

behavioural factors, which can lead to collision, surrogate safety measures have become a lot popular in 

risk assessment (Laureshyn et al. 2017). 

Perkins and Harris (1968) first introduced the idea of surrogate safety measures. With the immense 

improvement in sensor techniques and driver assistance systems, these indicators have been applied with 

success in recent times because data collection has become more efficient (Laureshyn et al. 2010, Saunier 
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et al. 2010, Tarko et al. 2017). Many indicators are used as Surrogate safety measures like velocity, traffic 

volume, gaps, delay etc. Typical time-based surrogate indicators are widely used to describe safety status 

from vehicle level data. In this section, various time-based surrogate safety indicators “Time-To-X” (or 

TTX) is briefly described, where X corresponds to an event in the course toward the collision (Lefèvre et 

al. 2014). 

2.3.1 Time-Headway (THW) 

Time-to-Headway is one of the most traditional time-based surrogate safety indicators, which is defined as 

the time difference between two consecutive vehicles in the same lane (Yang 2012). The equation can be 

described as below: 

𝑇𝐻𝑊 = 𝑡𝑖 − 𝑡𝑖−1  (2.1) 

Where ti and ti-1 show the time of the following vehicle and lead vehicle pass in a lane respectively in 

seconds. 

If the difference between the position of two vehicles (Δd) and the speed of the following vehicle (𝑉𝑖) is 

known, THW can be derived as: 

𝑇𝐻𝑊 =  
𝛥𝑑

𝑉𝑖
  

  

(2.2) 

In previous studies, different values of THW have been taken as a critical value under which the vehicles 

would have a collision risk. Some studies show that if the time gap between two vehicles is less than 1 

second, the situation is unsafe. THW between 1.1 and 1.7 seconds is defined as ‘comfortable’ gap by Ohta 

(1993), while less than 0.6 sec was defined as an area of danger. To avoid rear-end collisions minimum 

headway of 2 seconds should be maintained (Evans 1991, Michael et al. 2000). Many European road 

administrations have recommended 2 seconds as a safe headway (Vogel 2003). 

2.3.2 Time-to-Accident (TA) 

According to Hydén (1987), Time to accident (TA) is defined as the time between when an evasive action 

was taken (like harsh brake, deceleration) and when a collision would have occurred if the two road users 

would continue with same speed and direction. If the following vehicle speed is 𝑉𝑖 and the gap between the 

two vehicles is Δd, minimum TA for the following vehicle coming to stop is defined as (assuming the 

vehicle can successfully stop at collision point): 

𝑇𝐴 =  
𝛥𝑑

𝑉𝑖
 

   

(2.3) 

Different threshold values are considered for critical TA to determine the seriousness of conflicts. TA value 

of 1.5 seconds was taken by Hydén (1977) to distinguish between serious and slight conflict. However,  

Shbeeb (2000) found that in urban areas 1.5 seconds limit is regarded fine but not in rural areas because of 

high speeds. Hydén (1987) later took 0.5 seconds as a limit of TA and described the severity level of 

collision compared to 0.5 seconds as well as Archer (2005) defined the same. 

2.3.3 Post-Encroachment Time (PET) 

Post-Encroachment Time (PET) is defined as the time between the first road user leaving the common 

spatial zone and the second road user arriving at it (Allen et al. 1978). As shown in Figure 2.3, PET is 

illustrated as the time from the first vehicle leaving the conflict spot to the second one reaching at the spot, 

measured from the rear-end of the first vehicle to the front-end of the second (Songchitruksa and Tarko 

2006). 
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Figure 2.3 Illustration of Post-Encroachment Time (van der Horst 1990) 

Threshold value of PET is normally taken as 1 or 1.5 seconds (Archer 2005). Extraction of PET is easier 

because speed and distance are not measured for the calculation of PET (Yang 2012). PET is a good 

surrogate measure, because driving interaction with other users is taken into account (Tarko and 

Songchitruksa 2005).  

The drawback of PET is, it cannot be applied to a large area, because it is based on data collected from a 

fixed spatial zone (Abbas and Khan 2007).  

2.3.4 Time-to-Collision (TTC) 

TTC is one of the most popular indicators in Collision Avoidance system (van der Horst and Hogema 1993). 

It is defined as the time required for two vehicles to collide, if they continue at their present speed and on 

the same path (Hayward 1972). If i is the following vehicle and (i-1) is the lead vehicle, TTC is calculated 

by the gap of the two vehicles divided by the speed difference of following vehicle and lead vehicle. The 

equation for deriving TTC (Yang 2012) is given below: 

𝑇𝑇𝐶𝑖(𝑡) =
𝑋𝑖−1(𝑡)−𝑋𝑖(𝑡)−𝐿𝑖

𝑉𝑖(𝑡)−𝑉𝑖−1(𝑡)
             ∀𝑉𝑖(𝑡) > 𝑉𝑖−1(𝑡)                                                                   (2.4) 

Where X denotes the position and V denotes speed. Li is the length of the following vehicle.  

 
 

Figure 2.4 Vehicle trajectories and TTC (Yang 2012) 

TTC is measured by predicting the future motion of two road users, which are on a collision course 

(Ceunynck 2017). In calculating traditional TTC, only vehicle speed is used and acceleration is not 
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considered (van der Horst 1990). As a result, only a positive speed difference between the following vehicle 

and lead vehicle must be taken to calculate the TTC. If the speed difference is zero, TTC will be infinity. 

So, this case is also omitted. A threshold TTC value is to be defined for differentiating dangerous and safe 

situation. 

TTC is more accurate and popular surrogate safety indicator than other indicators like PET, THW or TA. 

THW only shows the potential danger but does not show the actual situation of an occurrence like low TTC 

value does (Vogel 2003). As described in 2.3.3, PET indicator has less correlation with conflict because of 

scatter behaviour (Lord 1996). TTC gives more information about dangerous situations than PET because 

PET cannot be applicable to all interactions (Archer 2005). TTC has been taken as an important factor by 

various automobiles to design collision avoidance systems (Riener and Ferscha 2009, Gettman and Head 

2003).  

TTC value defines how close the following vehicle is approaching to the lead vehicle. Low value of TTC 

means the distance is decreasing and braking or deceleration is required. However, TTC value cannot define 

the severity of conflicts. Two same value of TTC defines same severity although speeds of vehicles can be 

different (Archer and Young 2010). Previous studies have provided various values for the threshold of TTC. 

Some studies have shown 4 seconds as a safe situation (Farber 1991, Horst 1991), while some others have 

taken 1.5 seconds as the minimum value for avoiding Collision (Hydén 1987, Lord 1996).  However, there 

is no fixed value to define minimum TTC in literature. 

TTC has been used to derive other time-based indicators like Time-to-Zebra (Várhelyi 1998), Time-to-Line 

crossing (van Winsum et al. 2000), Inverse TTC (Balas and Balas 2006, Kiefer et al. 2005), Time Exposed 

TTC (TET) and Time Integrated TTC (TIT) (Minderhoud and Bovy 2001). However, they are not widely 

used indicators in literature like TTC. 

2.3.5 Deceleration family 

Deceleration family has different indicators which are rarely used in literature to predict dangerous 

situation. Initial Deceleration Rate is mostly used among these indicators. It is the magnitude of deceleration 

when the driver starts evasive braking (Ceunynck 2017). Higher deceleration rate indicates high probability 

of collision occurrence. In Figure 2.5, the Initial Deceleration Rate is measured as the second derivative of 

Curve B at time t2 (Gettman and Head 2003).  

Another indicator is Maximum Deceleration. It is the maximum value of deceleration during a collision 

course (Gettman and Head 2003). Deceleration-to-Safety Time is defined as the minimum required 

deceleration to avoid collision (Hupfer 1997). These indicators are discussed in the literature although no 

validation is provided with crash data. 
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 Figure 2.5 Different surrogate measures defined on conflict diagram (Gettman and Head 2003) 

2.4 Safety assessment using naturalistic driving data 

Over the past years, safety assessment has been researched extensively by studying safety-related events 

(Shankar et al. 2008, Wu and Jovanis 2012, Wu et al. 2014). Human errors are mostly responsible for traffic 

accidents; hence, driving behavior, driver characteristics and collision involvement has been studied in 

literature using safety-related events (Evans and Wasielewski 1983, Waggenaar and Reason 1990, 

Verschuur and Hurts 2008, Wu et al. 2014). Early studies of safety-related events were based on crash data. 

The need for surrogate events related studies arises, because crash data samples are rare and surrogate 

events include both crash and near-crash samples (Wu and Jovanis 2012, Laureshyn et al. 2017, Ceunynck 

2017). Previously, safety-related events studies were done either by collecting field data from intersection 

and segments or by interviewing drivers (Wu et al. 2014). Video-tape and street cameras were used for data 

collection at intersections or road segments (Hydén 1987, Chin and Quek 1997). However, these techniques 

of data collection did not include driving behaviour and driver distraction. The outcome from these data 

could argue that safety-related events occur more frequently than normal driving scenarios (Hanowski et 

al. 2005); which is completely opposite in driving scenarios. Also, risk assessment studies need to focus on 

the events caused by driving error (Wåhlberg 2003). For better safety assessment, Verschuur and Hurts 

(2008) have proposed to integrate driving behaviour and driver characteristics studies with collision 

involvement. 

For vehicle level collision prediction, driving exposure or driver behavior study is important, because 

sometimes high speed or acceleration does not lead to a collision. For better prediction of collision-prone 

situations, this dangerous driving behaviour data is needed to be included in the model. Naturalistic Driving 

Study (NDS) has become a big advancement in data collection techniques for safety assessment which 

helps by providing data to understand driver behaviour (Muronga and Venter 2014). NDS provides precise 

observation and measurements of safety-related events (Dingus et al. 2006). According to UDRIVE 

(European Naturalistic Driving Studies), NDS can be defined as “A study undertaken to provide insight 

into driver behaviour during every day trips by recording details of the driver, the vehicle and the 
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surroundings through unobtrusive data gathering equipment and without experimental control”. Under 

this approach, behaviour of road users and drivers is observed unobtrusively for a period of time. The 

vehicles are equipped with devices (cameras and sensors) for continuous monitoring of driving behaviour 

as well as vehicle dynamics like speed, position, acceleration, yaw rate etc. NDS help to observe the 

interrelationship between road users, vehicle and vehicle surroundings which are the three main physical 

characteristics of the road transport system. NDS can be used to analyze driving behaviour as well as in 

collision prediction model to advise drivers for taking necessary actions preceding crashes or near-crash 

events (Venter 2014). 

The 100-Car Naturalistic Driving Study (from 2004-2005) by Virginia Tech Transportation Institute is the 

first large-scale NDS in USA to collect data about crashes and near-crashes for using in collision risk 

prediction model (Dingus et al. 2006). The study included 102 primary drivers in northern Virginia and 

driving data were collected continuously for 12 months. The data acquisition system included five camera 

views (forward, driver face, over the shoulder, left and right mirror), GPS, speedometer, three-dimension 

accelerometer, and radar, etc. This naturalistic driving dataset contained about 2 million vehicle miles and 

43000 hours of data (Neale et al. 2005). The results of the study provided information from 82 crashes and 

761 near-crashes and 8295 incidents (less severe near-crashes). But due to the initialization of system and 

camera failure, some instances of crashes were missed in this study. 100-Car Naturalistic Driving Study 

dataset has been used by different researchers for risk assessment in road safety research. Guo et al. (2010) 

studied the association between crashes and near-crashes samples. Later they used this dataset to investigate 

risk factors associated with individual driving risk and built a risk prediction model by using logistic 

regression (Guo and Fang 2013). However, their study was limited by a sample size of 102 drivers. Klauer 

et al. (2006) utilized reduced samples of crashes, near-crashes and incidents data to identify driver’s 

inattention. Wu et al. (2014) used single vehicle naturalistic driving data from the 100-Car NDS to find out 

interrelationship among driving behaviour, traffic-safety related events and collision involvement. 

Recently, Xiong et al. (2018) used this dataset to predict driving risk based on Markov Chain model. 

The SHRP2 study (from 2011-2014) is another example of using NDS for safety assessment in USA 

(Gordon et al. 2013). Collision prediction in this study was done by statistical analysis of near-crashes and 

actual crashes based on surrogate safety measures. This study contained naturalistic driving data from 3000 

volunteer drivers. Later different researchers used this SHRP2 dataset for safety assessment (Seshadri et al. 

2015, Paone et al. 2015, Seaman et al. 2016, Hallmark et al. 2015, Wang and Zhou 2018). 

The Australian 400 Car-NDS aimed at identifying driving behaviour at the time of normal and safety critical 

situations (Regan et al. 2013). The study has noted that NDS could affect driving behaviour because of 

continuous monitoring and therefore, very large data samples are required to yield sufficient outcomes. 

In recent years, safety assessment using naturalistic driving data has become popular in road safety research 

(LeBlanc 2006, Gordon et al. 2013, Klauer et al. 2006). Driver’s exposure to distraction was studied with 

unobtrusive video data collected from 70 drivers over one-week time period by Stutts et al. (2005). 

Hanowski et al. (2005) used naturalistic data from truck drivers to find out driver-distraction related 

collision-prone events. Shankar et al. (2008) proposed driver-based analysis of naturalistic driving data for 

better understanding of NDS paradigms. Some studies empirically tested these paradigms (Jovanis et al. 

2012). Bender et al. (2015) utilized the same naturalistic dataset used in this thesis for predicting driver 

intention in intersection. In recent times, Molnar et al. (2018) used NDS to understand driving patterns 

among different age groups; although their study contained only 108 data samples. Li et al. (2018) validated 

a crash probability estimation model based on driver hazard perception ability on a naturalistic dataset 

containing two-month Collision Mitigation Braking System (CMBS) equipped vehicle data. However, 

different drivers took part in their NDS test, therefore individual driving characteristics was overlooked. 
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2.5 Identification of research gap from literature review 

It is clear from the review of the literature that human driving error arising from misperception and wrong 

decision-making leads to most of the collisions. Autonomous vehicles are considered safer for reducing the 

part of human error. Therefore, accurate risk assessment of AVs is a prerequisite for preventing collisions. 

Current planning modules of AVs emphasize decision making which is a key to navigate the vehicle 

towards a safe manoeuvre and reach the destination bound by traffic rules. Through manoeuvre planning, 

AVs need to consider the behaviour of surroundings and take the best decision in navigation. Although 

current AV systems are considered to finding the safest and best navigation by detecting obstacles, 

collisions still occur. From the literature it is obvious that the most important challenge in collision risk 

assessment by AVs is handling of obstacles and perception and decision-making ability. Most of the 

approaches for risk assessment consider the vehicle as an independent entity and assume the presence of 

interaction among traffic participants. These approaches are based on traffic network related data and 

collision prediction is done by predicting the trajectories of vehicles. However, these approaches need a 

high amount of time and computational cost for checking all possible trajectories. Lefèvre et al. (2012) 

stated that the collision prediction can be enhanced by studying the scenarios of dangerous driving, without 

fully depending on trajectory studies of all vehicles in a road segment. 

Most of the existing collision prediction models in AVs are based on road network level. Network Level 

Collision Prediction (NLCP) approaches are bound to road geometry and traffic rules, which cannot fully 

describe the underlying safety level regarding AVs. Moreover, the existing approaches face difficulty in 

collision prediction because of the high imbalance between ‘safe’ and ‘collision-prone’ situations. Hence, 

vehicle-level prediction approaches are needed for collision prediction in real time. Vehicle level collision 

prediction requires a large number of dangerous driving behavior samples based on vehicle dynamics such 

as speed, position, acceleration etc. Naturalistic driving data from NDS have been immensely used in 

collision risk assessment due to the inclusion of driver characteristic and driving behaviour data as well as 

precise observation of safety-related events. However, most of the safety assessment approaches using NDS 

face the problem of small data samples or monitoring of different groups of drivers which overlook to 

predict collision from individual dangerous driving behaviour.  

Existing vehicle level collision prediction approaches try to predict collision either by identifying safe and 

collision-prone situations from statistical analysis or by machine learning classification techniques. 

Machine learning approaches are more popular in recent times for real-time collision prediction because of 

their effective handling of missing data. However, easy interpretation of results is sometimes hindered due 

to ‘black-box’ effects and some approaches suffer from overfitting and high imbalance between samples. 

Hence, a robust vehicle-level approach easily integrated into behaviour planning of AVs, is needed in order 

to predict dangerous situations with regards to the context from individual vehicle data.
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3 Data Collection and Visualization 

The dataset used in this thesis is derived from a vehicle driving around single-lane urban streets around the 

Australian Centre for Field Robotics in Sydney (http://its.acfr.usyd.edu.au/datasets/naturalistic-

intersection-driving-dataset/). The dataset contains the position of the vehicle, speed and heading. Data 

were collected by a system fusing GPS and dead reckoning information from gyroscopes and odometry at 

a resolution of 10 Hertz. Position of the car was recorded at every 10 Hz by using global navigation satellite 

system (GNSS). Inertial data were collected by a strap-down inertial measurement unit (IMU) and speed 

data were recorded by wheel encoders of the car (Bender et al. 2015). The road feature of interest was an 

uncontrolled three-way T-intersection (shown in Figure 3.1). Three different drivers executed the driving 

manoeuvres by driving straight across the top of the intersection and turning into and out of the intersection 

both left and right for the purpose of predicting driving intent (Bender et al. 2015). They were instructed to 

drive through the T- Intersection approximately 10 passes in six possible manoeuvres (west-east, west-

south, east-west, east-south, south-west and south-east). Trajectories in each manoeuvre are found out from 

heading data. Speed limit of the study area is 40 km/hour (11.11 m/s). 

 

Figure 3.1 T- Intersection of the experiment area in google map 

 

Figure 3.2 Collecting naturalistic driving data (http://its.acfr.usyd.edu.au/collecting-naturalistic-driving-

data/)

file:///C:/Users/Safwan/Desktop/(http:/its.acfr.usyd.edu.au/datasets/naturalistic-intersection-driving-dataset/)
file:///C:/Users/Safwan/Desktop/(http:/its.acfr.usyd.edu.au/datasets/naturalistic-intersection-driving-dataset/)
http://its.acfr.usyd.edu.au/collecting-naturalistic-driving-data/
http://its.acfr.usyd.edu.au/collecting-naturalistic-driving-data/


Data Collection and Visualization 

20 

 

The vehicle equipped with sensors used in this experiment is a mid-size Sedan (shown in Figure 3.2). 

Length of the vehicle is presumed to be 4.8 meters in the calculation of TTC, as the standard length of 

Sedan size. Position of the vehicle in each trajectory was extracted from latitude-longitude data. Trajectories 

of the vehicle for three different drivers are visualized in OpenStreetMap using position data in figure 3.3, 

3.4 and 3.5 respectively. The T-intersection is visualized by the circle area.  

 

Figure 3.3 Collected trajectories of driver 1 in OpenStreetMap in Python environment 

 

Figure 3.4 Collected trajectories of driver 2 in OpenStreetMap in Python environment 
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 Figure 3.5 Collected trajectories of driver 3 in OpenStreetMap in Python environment  

Table 3.1 shows number of trajectories in the circle area in six possible manoeuvres by three different 

drivers. In total 199 separate manoeuvres were found. Number of trajectories found for driver 1, driver 2 

and driver 3 was 69, 71 and 59 respectively.   

Manoeuvre Driver 1 Driver 2 Driver 3 Total 

East-west 14 11 10 35 

East-south 10 14 9 33 

West-east 13 11 10 34 

West-south 10 11 10 31 

South-east 11 14 10 35 

South-west 11 10 10 31 

Total 69 71 59 199 

Table 3.1 Number of trajectories in bounding area 

For every driver, speed data were analyzed so as to understand the speed distribution of the vehicle. Results 

are shown in Table 3.2. 
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Speed (m/s) Driver 1 Driver 2 Driver 3 

Total count 443318 602331 307834 

Mean 6.974386 5.175807 7.621625 

Std deviation 3.697586 2.965245 3.411286 

Maximum value 14.973695 13.343713 13.397516 

Minimum value 0 0 0 

Table 3.2 Speed profile for three different drivers 

As stated, all the three drivers were instructed to pass through the intersection approximately 10 times in 

all the six manoeuvres to get more interaction points among the vehicle trajectories, so as to extract 

sufficient car-following events.  From Table 3.1, it is evident that the first two drivers passed through the 

intersection more than 10 times in some manoeuvres. The third driver passed through the intersection 10 

times in each manoeuvre (except east-south = 9) and results in same number of trajectories in the six 

manoeuvres (except east-south). That is why, sensor data from the third driver are used in this thesis for 

generating car-following events to identify and classify dangerous driving behaviour. Speed variation of 

the third driver is shown in Figure 3.6. 

 

Figure 3.6 Speed variation with time for driver 3 
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4 Methodology 

4.1 Trajectory extraction in bounding area  

To identify dangerous driving behaviour in a roadway based on vehicle level data, relative distance and 

speed of the vehicles are needed. High speed can be more collision prone in the intersection than in 

highways (Worrall et al. 2012). Intersections are rated as a highly collision-prone area of the road network 

due to the occurrence of multiple conflicting manoeuvres (Sobhani et al. 2013). In this thesis, the 

uncontrolled T-intersection is regarded as the area to identify dangerous situations, because an uncontrolled 

intersection is a complex scenario with high collision risk (Song et al. 2016). 

A boundary region is defined around the intersection to get interaction points among trajectories for 

modelling driving behaviour. For each dataset, the influence region is taken as 35 meters at each side from 

center of the intersection. When identifying dangerous driving behaviour, vehicle trajectories in this circle 

are only considered. Trajectories are extracted based on entry and exit points from the bounding area. Rest 

of the data outside the area are discarded by using programming language python. Thus, trajectories are 

found for different manoeuvres in the bounding area, which are used to identify dangerous driving 

behaviour. Figure 4.1 visualizes the trajectories in the boundary area for the third driver. 

 

Figure 4.1 Trajectories in the bounding area for driver 3 

4.2 Concept of time shifted trajectory 

To estimate time-based surrogate safety indicator TTC, car-following events are required. For identifying 

dangerous driving scenarios, we also need vehicles driving very closely. As it is not feasible to generate 

trajectory data for actual collisions, time shifting of trajectory method is used to find out collision 

probability (Ward et al. 2014a). In this method, time shifting is controlled to get the trajectory segments to 

pass each other closely or collide at some point. Each trajectory in a manoeuvre can be considered as a new 

vehicle trajectory and sufficient car-following events can be generated for the experiment. In this thesis, 

the first trajectory entering the bounding circle in each manoeuvre is controlled to pass closely or have rear-

end collision with other trajectories in that manoeuvre and considered as lead vehicle. Shifting of the 

trajectories is controlled by maintaining an initial safe distance between the lead vehicle and the following 
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vehicle trajectory. In this thesis, initial minimum distance between the trajectory pairs is regarded as 4 

meters, because radius of the circle of study area from center of the intersection is only 35 meters. Car-

following events are then monitored in the bounding area for identifying driving behaviour from all pairs 

of the trajectories in each of the six manoeuvres. Car-following events are considered only when positive 

speed difference exists between the following and predecessor car; otherwise, collision never occurs (Yang 

2012). So, for identifying and classifying driving behaviour in this thesis, negative speed difference cases 

are omitted in the car-following events in order to avoid high imbalance between safe and dangerous 

samples. 

4.3 Estimation of Time-to-Collision (TTC)  

Time-to-Collision (TTC) is calculated in the bounding area in each direction to identify rear-end collision. 

As the bounding area is not very large, TTC values can be artificially bounded at 40 seconds for better 

monitoring of car-following events (Balas and Balas 2006). Threshold value of TTC is taken as 1.5 seconds 

because average human reaction time is 1.5 seconds (Triggs and Harris 1982). If TTC goes below the 

threshold, the situation is identified as dangerous. TTC value greater than 1.5 seconds is termed as safe. 

The equation stated in section 2.3.4 is used for the calculation of TTC. 

𝑇𝑇𝐶𝑖(𝑡) =
𝑋𝑖−1(𝑡)−𝑋𝑖(𝑡)−𝐿𝑖

𝑉𝑖(𝑡)−𝑉𝑖−1(𝑡)
             ∀𝑉𝑖(𝑡) > 𝑉𝑖−1(𝑡)                                                                   (4.1) 

Where, 𝑋𝑖−1  𝑎𝑛𝑑 𝑉𝑖−1= Position and speed of the lead vehicle respectively 

𝑋𝑖  𝑎𝑛𝑑 𝑉𝑖= Position and speed of the following vehicles respectively 

𝐿𝑖= Length of the following vehicle= 4.8 meter 

Distance between two points is calculated by Haversine formula which is commonly used to find the 

distance between two different latitude and longitudes. It is a widely used formula in Geographic 

Information System (https://www.igismap.com/haversine-formula-calculate-geographic-distance-

earth/(2015). Original Haversine formula is given below: 

Haversine (
𝑑

𝑅
)= haversin (lat2-lat1) + cos(lat1) cos (lat2) haversin (lon2-lon1)                                   (4.2) 

Here, d is the distance between two points and R is the radius of earth = 6371000 meters; lat and lon 

represents latitude and longitude respectively for two points. This formula can be derived as follows and is 

used in this thesis to calculate distance between the position of lead vehicle and following vehicle. 

a = sin2 (
𝑙𝑎𝑡1−𝑙𝑎𝑡2

2
) + cos (lat1) *cos(lat2) *sin² (

𝑙𝑜𝑛1−𝑙𝑜𝑛2

2
  )                                                              (4.3) 

c = 2*a*tan2 (√a, √(1−a))                                                                                                                    (4.4) 

d = R*c                                                                                                                                                  (4.5) 

The final equation derived from Haversine formula to find the difference between points in excel is given 

below in equation 3.6: 

𝑑 = [𝐴𝐶𝑂𝑆{𝐶𝑂𝑆(𝑅𝐴𝐷𝐼𝐴𝑁𝑆(90 − 𝑙𝑎𝑡1) ∗ 𝐶𝑂𝑆(𝑅𝐴𝐷𝐼𝐴𝑁𝑆(90 − 𝑙𝑎𝑡2))

+ 𝑆𝐼𝑁(𝑅𝐴𝐷𝐼𝐴𝑁𝑆(90 − 𝑙𝑎𝑡1)) ∗ 𝑆𝐼𝑁(𝑅𝐴𝐷𝐼𝐴𝑁𝑆(90 − 𝑙𝑎𝑡2))

∗ 𝐶𝑂𝑆(𝑅𝐴𝐷𝐼𝐴𝑁𝑆(𝑙𝑜𝑛1 − 𝑙𝑜𝑛2))}] ∗ 6371000 

(4.6) 

As discussed in 4.2, by controlling the time-shifting technique, in total 11,208 gap observations were 

counted in the car-following events. TTC is then calculated by using equation 4.1. From Table 4.1, it is 

observed that 35.96% observations were marked as dangerous, where TTC lies below the threshold value 



Methodology 

25 

 

of 1.5 seconds. The most collision prone trajectories were found in the south-west and east-west 

manoeuvres, where almost half of the observations have TTC below the threshold. In west-east manoeuvre, 

there is no event where TTC goes below the threshold. 

Manoeuvres Number of 

trajectories 

Number of 

events when 

TTC<1.5s 

Rate of dangerous 

situation (%) 

Total gap 

observations in Car-

following events 

South-east 10 1067 37.82 2821 

East-south 9 277 14.45 1917 

South-west 10 1210 50.48 2397 

West-south 10 515 30.09 1711 

East-west 10 962 45.48 2115 

West-east 10 0 0 247 

Total 59 4031 35.96 11208 

Table 4.1 TTC-based evaluation results for driver 3 

4.4 Classification of driving behaviour  

In this research, different machine learning algorithms are employed to predict dangerous driving 

behaviour. Collision risk increases with high speed at intersections (Worrall et al. 2012). In this thesis, real-

collision data is not used for safety assessment. Trajectories are controlled by time shifting to have 

interaction (e.g. collision) among the vehicles. For this reason, there is a chance of getting TTC value lower 

than the threshold of 1.5 seconds in some manoeuvres even when the speed of the vehicle is low. To avoid 

this effect, speed difference between the following vehicle and lead vehicle is taken as the only predictor 

in classification. Heading is not considered as variable because the change of heading in this dataset 

contributes very little to separate the data prior to entering the intersection (Bender et al. 2015). Two classes 

(dangerous and safe speed) are to be predicted, hence; this classification problem will give binary output (1 

or 0). If we assume a training dataset Xtraining= (x𝑛, 𝑦n) where 𝑛 = 1,…𝑁 and xn is an independent variable 

and yn is the output in 0 or 1; a binary classification will predict new data from these training data and give 

the response to the correct class (Katrakazas 2017). In this section, different machine learning classifiers 

are briefly described which are tested and compared to each other in this thesis to predict driving behaviour. 

4.4.1 Naive Bayes 

Naive Bayes is a simple probabilistic classification technique based on Bayes theorem with assuming no 

independence among the predictors. Bayes theorem for probabilistic classification is given in equation 2.5 

𝑝(𝑦|𝑥) =
𝑝(𝑥|𝑦)×𝑝(𝑦)

𝑝(𝑥)
                                        (4.7) 

Where 𝑝(𝑦|𝑥) is the posterior probability of class 𝑦 given predictor 𝑥; 

 𝑝(𝑦) is the prior probability of class 𝑦; 

 𝑝(𝑥|𝑦) is defined as likelihood or probability of predictor given class; 

and 𝑝(𝑥) is the prior probability of predictor 𝑥 

Naive Bayes is very simple to implement (Stewart 1998) and quick to predict class. When classifying 

numerical variables, it assumes the variables have normal distribution. So, it normally performs well in 

classifying categorical input variables. Although it was used in literature for real-time collision prediction, 

Naive Bayes classifier is considered as a bad estimator and does not perform well with increasing sample 
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size (Stewart 1998). It has also a problem of zero probability and cannot predict when conditional 

probability is zero for a variable (Gahukar 2018). Smoothing technique is needed to solve this problem.  

In this thesis, two types of Naive Bayes classifiers are applied to predict dangerous behaviour, named 

Gaussian Naive Bayes and Bernoulli Naive Bayes. Generally, both are used in binary classification. There 

is another Naive Bayes classifier named Multinomial Naive Bayes which is used for discrete variable 

counts. 

4.4.2 Logistic Regression 

Logistic regression is a common classifier for binary classification which is also tested to predict the 

dangerous or safe driving behaviour in this thesis. It predicts and describes the relationship between one or 

more independent variables and one dependent binary variable and gives the outcome in 0 or 1. As the 

algorithm of this classifier is derived from highly interpretable linear regression, logistic regression has 

high interpretability (https://www.facebook.com/pages/Statistics-Solutions). For binary classification by 

logistic regression, it is assumed that there are no high correlations among the predictors. The correlation 

coefficients among independent variables have to be less than 0.90 (Tabachnick and Fidell 2007). Unlike 

Naive Bayes classifier, independent variables don’t need to be normally distributed.  

4.4.3 Support Vector Machine 

Support Vector Machine (SVM) classifier separates training data into categories and new data are predicted 

to belong to a category based on which side they fall (Gahukar 2018). Support vectors are data points that 

lie closest to the decision surface and are the most difficult to classify (Berwick 2003). SVM classifies those 

points by separating hyperplane. There are some tuning parameters in SVM classification technique like 

Kernel, Regularization, Gamma and Margin. Kernel-based SVM is very useful in nonlinear classification 

(Murty and Raghava 2016). Parameter Gamma depicts how far influence of single training example 

reaches; that means with low gamma value distant points from the separation line are taken in calculation 

and with high gamma only points close to the separation line are considered in calculation (Patel 2017). 

SVM classifier performs well in high dimensional space and uses a subset of training points in prediction. 

It is only used in binary classification (gives binary outcome 0 or 1). They have been used successfully in 

literature for collision prediction because of their flexibility and sparsity when support vectors are much 

smaller in number than the number of training data (Ward et al. 2014). However, there is a ‘Black-box’ 

effect on SVM and Support Vectors grows linearly with increasing size of training sets (Bishop 2006, 

Dreiseitl and Ohno-Machado 2002). Separating mechanism of SVM can be visualized by Figure 4.2. It is 

observed that H1 and H2 hyperplanes do not separate the data classes in a good margin. H3 is used as the 

SVM here because it separates the classes by a good margin that means distance of both classes from the 

hyperplane are not large. 

 
Figure 4.2 Support Vector Machine separating data by hyperplane (Gahukar 2018) 
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4.4.4 k-Nearest Neighbor 

k-Nearest Neighbor (kNN) is a simple algorithm which can be used in both regression and classification 

problem. It is a popular classification technique in industrial research for it’s simple interpretation in large 

training data and low calculation time (https://www.facebook.com/AnalyticsVidhya/ 2018). kNN classifies 

data to the class which is most common among its nearest neighbors k (k is the number of classes 

predefined). It is a lazy algorithm because it does not learn the model or make the generalization of data. It 

classifies the object based on feature similarity or input variables (Gahukar 2018). That’s why it is not a 

very popular algorithm for predicting collision in literature. 

4.4.5 Decision Tree 

Decision Tree is a widely used classification technique which can be used to handle both numerical and 

categorical variables. It splits the data sample into two or more homogeneous sets based on the most 

significant differentiators or predictors in the input variables (Gahukar 2018). The Decision Tree algorithm 

chooses the predictor of highest accuracy by binary splitting all features and repeats the process until all 

the data samples in the leaves or sub-populations are trained. Figure 4.3 shows the leaves or subpopulations 

which are split by the predictor. After training all the samples, binary results are obtained. 

 

Figure 4.3 Decision Tree algorithm (https://www.facebook.com/AnalyticsVidhya/ 2016) 

Decision Tree classifier is popular for its simplicity to understand and visualize. It also needs less data 

cleaning and is not influenced by outliers or missing values. Overfitting can be a drawback in classification 

by this technique. It can sometimes create a complex and unstable tree if any small variation in data occurs 

which will generate a completely different tree (Gahukar 2018). 

4.4.6 Random Forest 

Random Forest (RF) is a very useful algorithm for handling large data samples and can be used for both 

classification and regression. Bagging algorithms are used by RFs to create new training sets from the 

specific training set (Katrakazas et al. 2019). It creates decision trees on random samples, gets a prediction 

from each tree and then gives the best prediction by voting (Maheshwari 2019). As the output comes from 

the votes of all the trees, overfitting problem can be minimized (Gahukar 2018). It normally gives high 

accuracy in classification or prediction because a large number of trees give the final decision by voting. 

But the classification can be time-consuming for a large sample because of the large number of trees. 

Random Forest is successfully used in several research for real-time traffic safety assessment (Katrakazas 

2017). Figure 4.4 illustrates the working algorithm of RF classifier where the output prediction comes from 

voting of different training sets. 
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Figure 4.4 Random Forest classifier algorithm (Maheshwari 2019) 

4.5 Performance evaluation of classifiers 

As discussed in section 4.4, several classifiers are tested and compared to predict dangerous driving 

behaviour in this thesis. The output in the classification is binary (1 for dangerous and 0 for safe). 

Classification is done by using sci-kit learn in Python 3.7. Performance of the classifiers is evaluated by 

different metrices which are briefly discussed in this section. After evaluating performance, the best 

classifier is chosen and used in predicting driving behaviour. 

4.5.1 Confusion matrix 

Confusion matrix is used to assess the performance of a classification model. It is a table to describe the 

performance of a classifier on a test dataset for which true values are known. In a confusion matrix, 

predictions of each data are contrasted with the actual class to which they belonged, to ensure whether they 

are correctly classified or not. As dangerous driving behaviour is to be predicted, positive class represents 

‘dangerous’ and negative class represents ‘safe’ behaviour. 

 
Table 4.2 Confusion matrix table 

In this thesis, some of the popular matrices obtained from confusion matrix are used to compare the 

performance of classifiers. These matrices are defined below: 

Accuracy: Accuracy is a very common and widely used measure. It is defined as the total number of values 

correctly classified (both safe and dangerous) divided by the total number of values classified.  
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Accuracy = 
TP+TN

TP+TN+FP+FN
                                                                                       (4.8) 

High accuracy value does not always indicate high performance because it also indicates overfitting. As a 

result, accuracy is not taken as a widely accepted performance measure for the classifiers. 

Precision: Precision is the proportion of the values that are actually dangerous. High precision means the 

classification model or classifier has high trustworthiness that means it produces less false alarms.  

Precision = 
TP

TP+FP
 (4.9) 

Recall: Recall or sensitivity is the proportion of values known to be dangerous that test positive for it. High 

recall means the classifier can give timely warning. 

Recall = 
TP

TP+FN
 (4.10) 

Specificity: It measures the proportion of ‘safe’ values that are correctly classified. 

Specificity = 
TN

TN+FP
 (4.11) 

False alarm rate: False alarm rate or false collision prediction rate is the percentage of ‘safe’ values that 

are classified as dangerous. It is calculated from specificity. 

False alarm rate = 1- Specificity (4.12) 

It can be also calculated from the following equation: 

False alarm rate = 
FP

TN+FP
  (4.13) 

f1 score: It is the harmonic mean of precision and recall. f1-score is a more appropriate performance 

measure for large imbalanced dataset where difference between positive and negative cases is higher.  

f1 score = 
2∗ Precision∗ Recall

Precision+Recall
 (4.14) 

ROC curve: Another useful performance matrix is the Receiver Operating Characteristics (ROC) curve. It 

visually represents the trade-off between true positive rate and false positive rate (Asiri 2018). Accuracy of a 

classifier is measured by area under ROC curve (auc). A high value of area close to 1 defines the high accuracy 

of the classifier. 

All the methods applied in this thesis from identifying to predicting dangerous driving behaviour by 

classification technique is illustrated chronologically by a flowchart in Figure 4.5. 
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Figure 4.5 Chronological steps in Methodology 
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5 Results and Discussion 

5.1 Identification of dangerous driving behaviour from TTC analysis 

5.1.1 Change of TTC with distance to intersection 

The T- Intersection is unsignalized and not controlled. From TTC calculation, it is observed that TTC value 

decreases when the vehicle approaches to the intersection. Figure 5.1 shows two pairs of trajectories in 

south-east and south-west manoeuvres, where TTC decreases with vehicle approaching to the intersection. 

Increase of TTC with distance from intersection can be correlated with an exponential growth curve. 

 
(a) 

 

                                                                                  (b) 

Figure 5.1 Decreasing trend of TTC approaching to intersection (a. south-east; b. South-west) 

Pairs in other manoeuvres also show the same trend. 

adj R-Square 

0.81784 

adj R-Square 

0.84001 
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5.1.2 Change of TTC with speed difference 

5.1.2.1 South-east manoeuvre 

In south-east manoeuvre there were 10 trajectories. The first trajectory entering the bounding area is 

considered as the lead vehicle trajectory and was controlled and time shifted for calculating TTC with other 

trajectories. Figure 5.2 visualizes TTC from nine pairs of trajectories in south-east manoeuvre in boxplot 

with the mean value. It is obvious from the mean values of TTC that the first, fourth, fifth, sixth and seventh 

pairs are mostly collision-prone, where mean TTC value is less than 1.5 seconds.  

  
Figure 5.2 TTC in south-east manoeuvre 

In this thesis, speed difference is taken as the independent variable in classifying dangerous driving 

behaviour. So, statistical analysis is done to see how TTC changes with speed difference between following 

vehicle and lead vehicle. High speed of the following vehicle leads to lower TTC or dangerous situation. 

The decrease in TTC is exponential with the increase in speed difference. Figure 5.3 shows an exponential 

decrease in TTC with increasing speed difference between following and lead vehicle in the first pair of 

trajectories at south-east direction. 

 

Figure 5.3 Change of TTC with speed difference for TTC1 in south-east manoeuvre 

adj R-Square 

0.96943 
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If yt is TTC at time t, y0 is initial TTC and λ is exponential decay constant; then decreasing trend of TTC 

can be expressed by the following first order exponential decay equation:  

𝑦𝑡 = 𝑦0 ∗ exp− λt (5.1) 

It is observed that for the scenarios, where speed difference is over 11 km/h, TTC comes below the threshold 

value of 1.5 seconds. To show the effect of speed difference on collision-prone situations, value of TTC is 

categorized in safe (=0) or dangerous (=1) as described in section 4.4. Figure 5.4 shows the mean value for 

speed difference in case of safe driving is less than 7 km/h and in dangerous driving it is almost 12 km/h. 

Cross mark in the boxplot shows the mean value. 

Figure 5.4 Speed difference for safe and dangerous situations for TTC1 in south-east manoeuvre  

All other pairs of trajectories in south-east manoeuvre show the same trend of exponential decrease of TTC 

with increase of speed difference. After categorizing speed difference for all the pairs in Figure 5.5, it is 

observed that if speed difference between the two vehicles is kept below 7 km/h, there is less risk for 

collision. 

 

Figure 5.5 Speed difference for safe and dangerous situations for all pairs in south-east manoeuvre 
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5.1.2.2 East-south manoeuvre 

The driver passed through the intersection nine times in east-south manoeuvre. Among them seven pairs of 

trajectories are extracted, because speed of the eighth trajectory has lower value than of the first one (e.g. 

lead vehicle speed is higher) and there is no chance of collision (as described in 4.3). Hence, there is no 

TTC7. Speed difference between lead and following vehicle in all the pairs are less in east-south manoeuvre. 

As a result, mean value of TTC is also lower and rate of dangerous situation is also very low (14.45%). 

Figure 5.6 visualizes TTC in the pairs of trajectories in east-south manoeuvre. 

 

Figure 5.6 TTC in east-south manoeuvre  

In east-south manoeuvre, change of TTC with speed difference follows the same trend as south-east 

manoeuvre. With increase in speed difference TTC decreases exponentially and collision risk increases 

(Figure 5.7 (a)). Mean value of speed difference is low for both safe and dangerous situations as shown in 

Figure 5.7 (b). 

 
(a)                                                                                                (b) 

Figure 5.7 Relationship between speed difference and TTC for safe and dangerous situations for all pairs 

in east-south manoeuvre 

adj R-Square 

0. 78766 
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5.1.2.3 South-west manoeuvre 

Nine pairs of trajectories were found from ten trajectories in south-west manoeuvres as shown in Figure 

5.8. It is observed that in south-west manoeuvre, mean value of TTC in all the pairs are close to the threshold 

1.5 seconds. That is why, half of the observations in south-west manoeuvre are found dangerous in TTC 

analysis (shown in Table 4.1).   

 

Figure 5.8 TTC in south-west manoeuvre 

Figure 5.9 depicts that speed of the following vehicles are higher than the lead vehicle in south-west 

manoeuvre. As a result, mean value of speed difference for both safe and dangerous behaviour are also high 

(Figure 5.9(b)). Mean value of speed difference for dangerous behaviour is over 12.75 km/h in this 

manoeuvre.  

  

(a)                                                                                      (b) 

Figure 5.9 Relationship between speed difference and TTC for safe and dangerous situations for all pairs 

in south-west manoeuvre 

adj R-Square 

0. 88656 
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5.1.2.4 West-south manoeuvre 

There are also nine pairs of trajectories found in west-south manoeuvre from car-following events. Rate of 

dangerous driving situation (TTC less than 1.5 seconds) found in west-south is 30.09%. Figure 5.10 shows 

the values of TTC in the trajectory pairs with mean value.                   

  

Figure 5.10 TTC in west-south manoeuvre 

Mean value of speed difference for dangerous driving is over 7.2 km/h in west-south manoeuvre as shown 

in Figure 5.11 (b). For safe scenarios, the mean speed difference is 4.6 km/h. 

       

(a)                                                                                 (b) 

Figure 5.11 Relationship between speed difference and TTC for safe and dangerous situations for all 

pairs in west-south manoeuvre 

 

 

adj R-Square 

0. 54241 
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5.1.2.5 East-west manoeuvre 

From car-following events, eight pairs of trajectories are found in east-west manoeuvre because the ninth 

trajectory has less speed than the first vehicle trajectory and hence omitted in the car-following events. Rate 

of dangerous events, where TTC is below the threshold is 45.48% in this direction. TTC pairs in east-west 

manoeuvre are illustrated in Figure 5.12.   

 

Figure 5.12 TTC in east-west manoeuvre 

Figure 5.13 (a) shows exponential decrease in TTC with increase in speed difference between following 

and lead vehicle. From Figure 5.13 (b), it is observed that Mean value of speed difference for dangerous 

driving is 6.7 km/h while for safe driving the mean value is 3.9 km/h. 

 

(a)                                                                                  (b) 

Figure 5.13 Relationship between speed difference and TTC for safe and dangerous situations for all 

pairs in east-west manoeuvre 

 

 

adj R-Square 

0. 76179 
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5.1.2.6 West-east manoeuvre 

In west-east manoeuvre, there is no dangerous driving situation found in the car-following events because 

in most of the cases speed of the following trajectories are less than the speed of first trajectory (Vi-1>Vi). 

So, TTC becomes negative and there is no collision risk. The mean speed difference in 247 car-following 

observations in this manoeuvre is only 2.88 km/hour (Figure 5.14).   

  

Figure 5.14 Speed difference in west-east manoeuvre 

5.1.2.7 Visualization of speed difference for all observations 

Figure 5.15 visualizes speed difference between following and lead vehicle for all 11,208 observations in 

six manoeuvres in the bounding area. Speed difference in safe situations is labelled as 0 and in dangerous 

situations as 1. It is obvious from the figure that high speed difference leads to dangerous situations. Mean 

value of speed difference for dangerous situations is 9 km/h, while for the safe situations mean value is less 

than 5.3 km/hour. 

Figure 5.15 Speed difference for safe and dangerous situations for all observations in the bounding area  
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5.1.3 Clustering of TTC and speed difference 

Clustering is an unsupervised machine learning technique, which is opposite to classification and 

considered as a grouping technique. Clustering has been used in identifying collision risk for vehicles by 

different researchers. Zheng et al. (2014) used three clusters of deceleration values to identify high, 

moderate and low risk of collision from a naturalistic driving dataset. K-means clustering is a very popular 

technique, which is mainly used to find association between data based on inherent similarities between 

them (Castle 2017). Number of unique groups is represented by K. Association among data is identified by 

the shortest distance of data from centroid of clusters. Guo & Fang (2013) used k-means clustering 

technique to assess individual driving risk using naturalistic data. 

The aim of this thesis is to identify dangerous driving behaviour. So, k-means clustering can be used to 

visualize the grouping between safe and dangerous driving behaviour. Based on TTC analysis in all the 

manoeuvres from section 5.1.2, two groups or clusters can be employed to understand the association 

between speed difference and TTC. Figure 5.16 represents the association among data in all the 

manoeuvres. Values in the yellow cluster represents high TTC or safe situation and blue cluster values 

represent low TTC e.g. dangerous situation. Centroid of the clusters are represented by red dots. It is evident 

from the graph that high speed difference values lie in the blue cluster which define dangerous driving 

behaviour and low speed difference values lie with the values in yellow cluster or safe behaviour. K-means 

clustering is a good technique to represent anomaly in the data which affect the performance of 

classification. Figure 5.16 also shows some anomaly when low speed difference represents low TTC and 

vice-versa. 

 

Figure 5.16 K-means clustering between TTC and speed difference 
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5.2 Comparison of classifiers 

As described in section 4.4, seven machine learning classifiers (Gaussian Naive Bayes, Bernoulli Naive 

Bayes, Logistic Regression, Support Vector Machine, Decision Tree, k-Nearest Neighbor and Random 

Forest) are compared to classify or predict dangerous driving behaviour in Python 3.7 by using sci-kit learn 

package (Pedregosa et al. 2011). Speed difference is taken as the predictor and binary outcome 0 or 1 stands 

for safe or dangerous situations respectively.  

Overfitting is a common problem in machine learning classification and prediction performance is reduced 

due to this problem. An overfitted model contains more parameters that can be justified by the dataset 

(Everitt and Skrondal 2010). To avoid this problem, cross-validation is widely used to evaluate machine 

learning models. K-fold cross validation is a popular cross-validation technique to estimate performance of 

classifiers on unseen data. This technique splits the dataset into k number of groups for less bias in 

classification (James et al. 2013). 

In this thesis, 10-fold cross-validation was run on the dataset before employing each classifier in order to 

find the optimal parameters for each algorithm. Moreover, to avoid overfitting, 2/3 of the datasets were 

used for training and the remaining l/3 was used for testing. The classifiers are evaluated by some 

performance measures derived from the confusion matrix (discussed in 4.5.1). Confusion matrix for seven 

different classifiers is given in Table 5.1. 

Classifier TN FP FN TP  

 

 

Testing 

sample 

size=3699 

(safe=2353, 

dangerous=

1346) 

 

Gaussian Naive Bayes 2184 169 781 565 

Bernoulli Naive Bayes 2353 0 1346 0 

Logistic Regression 2169 184 773 573 

Support Vector 

Machine 

2059 294 698 648 

k-Nearest Neighbor 2094 259 552 794 

Decision Tree 2191 162 632 714 

Random Forest 2190 163 628 718 

Table 5.1 Confusion matrix of the classifiers 

It is observed from Table 5.1 that False positive or false danger prediction is the least in number for Decision 

Tree and Random Forest classifier compared to other classifiers. Different performance metrices obtained 

from confusion matrix are used to evaluate the performance of the classification techniques. Table 5.2 

shows the result of different performance matrices derived from the confusion matrix Table 5.1. 

 

 



Results and Discussion 

41 

 

Classifier name Accuracy Precision 

(%) 

Recall (%) Specificity 

(%) 

f1-score 

(%) 

False 

alarm 

rate (%) 

Gaussian Naive- 

Bayes 

74.317 76.975 41.976 92.817 54.327 7.18 

Bernoulli Naive-

Bayes 

63.612 NA 0 100 - - 

Logistic 

Regression 

74.128 75.693 42.57 92.18 54.49 7.82 

Support Vector 

Machine 

73.182 68.789 48.14 87.505 56.64 12.49 

k-Nearest 

Neighbor 

78.075 75.403 58.98 88.99 66.19 11.007 

Decision Tree 78.534 81.50 53.04 93.11 62.266 6.88 

Random Forest 78.669 81.50 53.34 93.073 64.481 6.92 

Table 5.2 Performance evaluation of different classifiers 

Table 5.2 depicts that all the classifiers show high percentage of specificity compared to recall and f1-score. 

That demonstrates that the classifiers can distinguish safe driving behaviour easily but cannot detect 

dangerous behaviour in the same rate. It is obvious from the performane matrices that Decision Tree and 

Random Forest classifier give the best prediction of dangerous driving situations among the seven 

classifiers tested, based on better accuracy, f1-score and least rate of false collision prediction. 

Figure 5.17 visualizes the comparison of different classifiers based on accuracy, f1-score and false alarm 

rate.  
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Figure 5.17 Comparison of classifiers based on accuracy, f1-score and false alarm rate 

Area under ROC curve (auc) is a good measure to visualize the tradeoff between false positive rate and true 

positive rate. Figure 5.18 visualizes auc value under ROC curve for different classifiers. 

 
Figure 5.18 ROC curve of different classifiers 
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5.3 Classifying driving behaviour by Random Forest classifier 

In this thesis, Random Forest classifier is used to predict dangerous driving behaviour because it gives 

better area under ROC curve and also better f1-score which is an increasing function for both precision and 

recall. When employing RF in all the manouevres, 2/3 of the dataset is used for training and 1/3 of the 

dataset is used as test samples in order to avoid overfitting. Table 5.3 shows the confusion matrix of Random 

Forest classifiers in all manoeuvres. 

Manoeuvre TN FP FN TP Testing sample size 

South-east 511 61 169 190 931(safe=572, 

dangerous=359) 

East-south 539 1 83 10 633(safe=540, 

dangerous=93) 

South-west 327 47 16 402 792(safe=374, 

dangerous=418) 

West-south 358 43 67 97 565(safe=401, 

dangerous=164) 

East-west 285 104 37 272 698(safe=389, 

dangerous=309) 

West-east - - - - - 

Table 5.3 Confusion matrix of RF in all manoeuvres 

Table 5.4 shows evaluation results of Random Forest classifier by performance matrices for predicting 

dangerous driving behaviour in all the manoeuvres for driver 3. 

Manoeuvres Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

Specificity 

(%) 

f1-

score 

(%) 

False alarm 

rate (%) 

South-east 75.29 76.11 52.37 89.69 62.05 10.31 

East-south 86.73 90.91 10.75 99.81 19.23 0.18 

South-west 92.04 89.53 96.17 87.43 92.73 12.57 

West-south 80.71 68.97 60.98 88.78 64.72 11.22 

East-west 79.94 72.41 88.35 73.26 79.26 26.74 

West-east - - - - - - 

 

Table 5.4 Performance matrices of Random Forest classifier in all manoeuvres 
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Table 5.4 shows that Random Forest classifier performs well in predicting dangerous driving behaviour for 

majority of the manoeuvres except east-west where false alarm rate is 26.74%. Percentage of recall is very 

low in east-south manoeuvre because of the high amount of imbalanced data in test set where number of 

dangerous situations is very few (only 93) compared to 540 safe situations (from Table 5.3). High number 

of specificity in all the manoeuvres indicate that the model performs better in identifying safe driving 

behaviour than the dangerous behaviour. High percentage of precision in the manoeuvres (except west-

south) demonstrates that when the model identifies a dangerous driving situation, it is more likely to be 

dangerous scenario rather than false alarm or safe situation. Figure 5.19 shows performance of Random 

Forest classifier in different manoeuvres based on accuracy, f1-score and false alarm rate.  

 

Figure 5.19 Accuracy, f1-score and false alarm rate of Random Forest for different manoeuvres 

Area under ROC curve for RF in all the manoeuvres is shown in Figure 5.20. Area under ROC curves 

indicate that RF classifier performs well in predicting the dangerous situations in different manoeuvres 

apart from east-south because of high imbalance among data between safe and dangerous driving behaviour. 

 
Figure 5.20 ROC curve of Random Forest classifier for different manoeuvres 
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5.4 Results summary and discussion 

This thesis aims at identifying and classifying dangerous driving behaviour for autonomous vehicles from 

a naturalistic driving dataset. The dataset contains only single vehicle’s position, speed and heading data. 

Trajectories are extracted from position data and time shifted to generate collision or dangerous situations 

around the uncontrolled T-intersection. The bounding area was selected as 35 meters from the center of T-

intersection in every direction.  

Surrogate safety measure TTC is applied to identify safe or collision prone situation. In total, 35.96% 

dangerous situations are found from 11,208 car-following observations in all manoeuvres, where TTC lies 

below the threshold of 1.5 seconds. It is observed that the decrease in TTC with the increasing speed 

difference is exponential. In general, if speed difference between following vehicle and lead vehicle is more 

than 2.5 m/s or 9 km/h, dangerous situation arises. TTC value comes lower when the vehicles approach to 

the intersection. K-means clustering is used to show the association between TTC and speed difference by 

visualizing two groups as safe and dangerous driving behaviour. 

Finally, seven machine learning classification algorithms are tested on all the manoeuvres to classify 

dangerous driving behaviour. Speed difference is considered as the only predictor for classifying dangerous 

situations. In order to avoid overfitting and reduce bias in classification, 10-fold cross-validation was run 

on the data before employing the classifiers and l/3 of the data samples were used for testing. Different 

performance matrices are used to evaluate the classifiers and Random Forest classifier comes out to perform 

better in predicting dangerous situations compared to other classifiers. It gives only 6.92% false collision 

alarm and outperforms other classifiers in terms of f1-score. Area under the curve of ROC also increases 

for RF classifier. However, in some manoeuvres, it does not identify dangerous behaviours in a better rate 

because of either high imbalance of data between safe and dangerous situations or small test sample.  

According to Lefèvre (2012), evaluation of vehicle level risk assessment models should be done on the 

same dataset. Hence, the performance of the classification technique used in this thesis is not compared 

with existing approaches from literature. Random Forest is primarily used for variable selection in existing 

literature (Hassan and Abdel-Aty 2013, Hossain and Muromachi 2013, Xu et al. 2013, Ahmed and Abdel-

Aty 2012). However, in this thesis it gives more robust performance than other widely used classifiers in 

classifying driving behaviour.    

Literature suggests that imbalanced learning techniques enhance the collision prediction performance of 

classifiers, when imbalance exists between ‘safe’ and ‘collision-prone’ samples (Katrakazas 2017, 

Katrakazas et al. 2019). It is believed that integration of imbalanced learning techniques like oversampling 

of dangerous situation samples, under sampling of safe samples or ensemble learning techniques with 

Random Forest classifier would have provided more accuracy in predicting dangerous driving behaviour. 
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6 Conclusion 

6.1 Summary 

Traffic accidents are still one of the dominant reasons for huge amount of human deaths/injuries and 

economic loss in present world. Mostly, misperception and decision making from human drivers are 

responsible for collision occurrences. Introduction of autonomous vehicles has been proven to be a big 

advancement in road safety research for mitigating the error in human driving. Research is still going on 

for finding accurate risk assessment models of autonomous vehicles. 

Motion planning is the prerequisite for safe navigation of autonomous vehicles which defines the safest 

manoeuvres for driving through the trajectories according to traffic dynamics. However, existing literature 

of motion planning and risk assessment approaches lack proper AV applications and face the complexity 

of surrounding traffic participants and environment. Most of the approaches overlook interaction among 

traffic participants and consider them as independent entities. In recent times, improvement in ITS and 

advanced data collection technologies have facilitated traffic safety research immensely. Real-time 

collision prediction is a big step in road safety analysis which classifies present traffic condition into safe 

or collision-prone by comparing traffic conditions at normal situation and just before the collision occurs. 

Existing literature mostly describes the real-time collision prediction based on road network level data 

which is defined as Network Level Collision Prediction (NLCP). However, vehicle level collision 

prediction is also required for understanding driving behaviour and vehicle dynamics in safety assessment 

of autonomous vehicles. 

This thesis aimed at identifying dangerous driving behaviour of AVs for rear-end collision in an 

uncontrolled three-way T-intersection by using a naturalistic driving data. Only single vehicle data is used 

in the experiment to understand vehicle level collision prediction and to interpret how the speed changes at 

times of collision. Trajectories were time shifted and controlled to have interactions among them for rear-

end collision scenario. Surrogate safety indicator TTC was used to identify dangerous situation and how 

speed variation affect safe or collision-prone situations in different manoeuvres.  

Furthermore, different machine learning classification techniques were applied to classify safe or dangerous 

speed difference in rear-end collision scenario. Seven classifiers were tested, and Random Forest classifier 

performed the best in predicting dangerous behaviour after evaluation. Combined false alarm rate is less 

than 7% for RF in predicting dangerous driving situations. However, in some manoeuvres it does not predict 

well because of high imbalance between safe and collision-prone samples. It is expected that, more 

sophisticated real-world traffic data and integration of more advanced classification techniques like 

imbalanced learning, deep learning with this model will provide better classification performance. 
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6.2 Limitations and future work 

This research aimed at classifying dangerous driving behaviour by identifying them from time-shifted 

trajectories from a naturalistic driving dataset, which contains single vehicle data from sensor 

measurements. Machine learning algorithms were employed for predicting safe or dangerous behaviour by 

selecting only one variable speed difference. Classification results could be improved if more predictors 

like vehicle acceleration/deceleration or yaw rate were available in dataset. 

As trajectories are time-shifted and car-following events are controlled artificially for rear-end collision, 

there is a little imbalance in the number of total safe and collision-prone situations. However, in real-world, 

the data samples are highly imbalanced and there is high number of safe samples than collision-prone 

samples which can derail the classification performance of classifiers. 

In some manoeuvres, false alarm rate is higher, because of the imbalance among data samples. In that case, 

it is believed that imbalanced learning like oversampling of collision-prone samples and under sampling of 

safe samples would have given better prediction. It is suggested to integrate the imbalanced learning 

techniques with Random Forest classifiers for better accuracy in classification.  

Only rear-end collision scenarios in the intersection is studied in this thesis. Classification of dangerous 

driving behaviour for turning and head-on collisions by time-shifting of trajectories will be a scope of 

research in future. 

The naturalistic driving study for data collection was performed only on single-lane urban streets and the 

road feature is a three-way T-intersection. The classification technique applied in this thesis can be tested 

on double-lane expressways with four-way intersection, to include lane changing behaviour in rear-end 

collision risk assessment. 

Although, position data were recorded at every 10 Hertz by GNSS, there was measurement noise in data. 

The noise in the data measurement is shown in one of the collected trajectories in Figure 6.1. A more robust 

risk assessment model can be achieved by processing the data for recovering smooth trajectories (Ward et 

al. 2014b, Agamennoni et al. 2010). 

 

Figure 6.1 Noise in measurements in one of the trajectories 

Finally, only vehicle level collision prediction is considered in this research. The integration of network 

level collision prediction with this classification method will be valuable for the safety assessment of 

autonomous vehicles in future. 
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Appendix A: Trajectories in the Bounding Area for Driver 1 and 2 

 

Figure A.1 Trajectories in the bounding area for driver 1 

 

Figure A.2 Trajectories in the bounding area for driver 2 
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