Towards Flexible and Dynamic 5G Networks

Wolfgang Kellerer
Technical University of Munich
www.5g-munich.de
www.networkflexibility.org

Oct. 1, 2019
IEEE 5G Summit, Dresden

This work is part of a project that has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program grant agreement No 647158 – FlexNets (2015 – 2020).
5G Challenges: *Dynamic Changes and Timely Adaptation*

Beyond eMBB, massive IoT and URLLC new stakeholders bring ...

- Exploding user densities
- Sudden change in demands
- High rate vs. low latency requests
- Local events vs. wide area popularity

... to be addressed in a timely and cost efficient manner
5G Opportunities: *Programmability and Flexibility*

- Technology basis to support flexibility and adaptation
 - Network and RAN slicing
 - Network Function Virtualization
 - RAN Function Split
 - SDN for control plane programmability
 - Programmable hardware
 - Data-driven adaptation

- Yet, we miss experience with adaptive 5G systems …
- … from an end-to-end perspective
What is a flexible 5G system?

Example: Dynamic 5G RAN function split

Based on a full Proof-of-Concept implementation at TUM
Fixed 5G Function Split

- Function split implemented on dedicated hardware
- Difficult to update
- User dynamics lead to

![Diagram of Distributed and Centralized Units]

- PHY
- MAC
- RLC
- PDCP
- Fixed 5G Function Split
Function split implemented on dedicated hardware
- Difficult to update
- User dynamics lead to
 - Network congestion
Fixed 5G Function Split

- Function split implemented on dedicated hardware
- Difficult to update
- User dynamics lead to
 - Network congestion
 - Unmanaged interference
NFV-based 5G+ Function Split

- Softwarized functions on off-the-shelf hardware
- Simple to deploy and update
NFV-based 5G+ Function Split

- Softwarized functions on off-the-shelf hardware
- Simple to deploy and update
- Functions can be migrated to adapt to dynamics
NFV-based 5G+ Function Split

- Softwarized functions on off-the-shelf hardware
- Simple to deploy and update
- Functions can be migrated to adapt to dynamics
NFV-based 5G+ Function Split Use Case: **Focus on Adaptation**

- **Use case**: PHY-MAC split and RLC-PDCP split (*for this example*)
- **Adaptation**: dynamic migration between the two split options
- **Constraints (for measuring flexibility *)**
 - Time T to complete function migration
 - to avoid packet losses and latency
 - Cost C required to perform the adaptation
 - Packet losses
 - Computational cost
 - Power consumption

Objective: maximize data rate for all UEs

Topology: 18 DUs and 1 CU
 - The CU can implement up to 4 MAC-PHY DUs

Challenges: change in the UEs distribution

Successful adaptation: reach 80% of the data rate of the optimal configuration within \(T \) ms with cost \(C \) packet losses

Systems under comparison:
 - Fixed functional split

NFV-based functional split:
 - Greedy algorithms (load-based)
 - Greedy algorithm (IF-based)
 - Lagrangian-relaxed BnB (branch-and-bound)
 - Brute-force search
NFV-based 5G+ Function Split: Flexibility Measure Results

Flexibility measure

\[\varphi = \frac{\text{successful adaptations given } T \text{ and } C}{\text{all challenges}} \]

for \(C \to \infty\)

Simple (faster) algorithms do not reach high flexibility

Adaptable systems show flexibility vs. adaptation time trade-off

Fixed split is least flexible (and \(T\) indep.)

Adaptation time matters
What’s next: *End-to-End Flexible 5G Networking*

- 5G Research Hub Munich: 5G Experimental Platform
- www.5Gmunich.de
Focus application area: eHealth

Scenario: Telepresence and Teleservice
- Teleoperation and semi-autonomous task execution
- Visual immersion: 3D 360° video
- Object recognition
- Localization and mapping

5G requirements
- Ultra low delay
- Network-based processing
- High reliability
- High data rates (video)
- QoS differentiation → Slicing
Core network slicing: HyperFlex Hypervisor

Through HyperFLEX we trigger the migration of the security VNF to the edge cloud and re-route the vSDN traffic flows.
Objectives of the 5G Research Hub Munich

- **Realization of a 5G experimental lab platform** and its continuous advancement according to latest 5G standard releases and related research

- **Fundamental research** to significantly shape the state of the art for selected areas in 5G technologies and applications

- **Realization of a methods and technologies platform** as a modular framework being open for emerging applications

fundamental research on 5G and beyond
modular experimental 5G platform

open for collaboration
Innovative 5G applications
demonstration of 5G capabilities
join us on

www. 5G-munich.de

and

www.networkflexibility.org

This work is part of a project that has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program grant agreement No 647158 – FlexNets (2015 – 2020).
References

