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ABSTRACT 

In the last years, a new role for circulating bile acids has emerged, as they do not only aid in 

the absorption of dietary lipids but also may function as signaling molecules. Bile acids were 

identified to protect against diet-induced obesity (DIO) in C57BL/6J mice. It was hypothesized 

that this phenomenon is based on a bile acid-derived increase in thermogenic processes in 

brown adipose tissue, the adaptive heater organ in mammals. Yet, it has not been proven that 

the brown adipose tissue-specific Uncoupling Protein 1 (UCP1) which uncouples the 

respiratory chain and thereby dissipates energy as heat, is necessary within this context.  

We were able to verify the DIO-protective effect of bile acids in mice of the inbred mouse 

strain C57BL/6J. The mice were fully protected from fat mass accumulation, if their high-fat 

diet was supplemented with the primary bile acid cholic acid. Moreover, bile acid-

supplementation provoked browning and an increase in brown adipocyte markers in inguinal 

white adipose tissue. However, indirect calorimetry measurements revealed, that the 

adiposity-preventive effects could not be attributed to an increase in energy expenditure. 

To elucidate the contribution of a browning effect of bile acids, we used 129S6/SvEvTac mice, 

which naturally have a high propensity to recruit brite adipocytes. In contrast to expectations, 

129S6/SvEvTac mice were not at all influenced by cholic acid supplementation. All previously 

observed impacts on body mass, body composition, or brown adipocyte marker expression 

were absent in this strain, and no browning effect was detected. Differing bile acid 

concentrations in the organs of enterohepatic circulation reflected the strain specific response 

to bile acid supplementation. Eventually, variants of intestinal bile acid transporters may 

account for the observed variations and need to be further elucidated. 

To clarify the role of UCP1 in this regard, we compared the effect of cholic acid 

supplementation in C57BL/6J wildtype and Ucp1 knockout mice. No differences between both 

genotypes were detected in body mass development or body composition. Yet, we observed 

pathological increases in liver enzyme levels that hint at an impairment of liver functionality 

in both genotypes. 

Taking together, bile acid-derived prevention of diet-induced obesity in mice is strain specific 

and not dependent on Ucp1. 
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ZUSAMMENFASSUNG 

Gallensäuren erfüllen neben ihrer klassischen Rolle als Endprodukt des Cholesterin-

stoffwechsels und in der Fettverdauung auch eine Funktion als Signalmoleküle und schützen 

beispielsweise C57BL/6J Mäuse vor einer ernährungsbedingten Adipositas. Dafür 

verantwortlich gemacht wurde eine durch Gallensäuren verstärkte Thermogenese und damit 

ein erhöhter Energieverbrauch des Braunen Fettgewebes. Die Notwendigkeit des Braunfett-

Proteins Uncoupling Protein 1 (UCP1), welches die Atmungskette entkoppelt und dadurch 

Energie als Wärme freisetzt, wurde bisher jedoch nicht zweifelsfrei bewiesen. 

In unserer Studie konnte die protektive Wirkung der primären Gallensäure Cholsäure in 

Mäusen des Inzuchtstammes C57BL/6J nachgewiesen werden. Die Entstehung einer 

Adipositas durch eine fettreiche Diät konnte in den Tieren, welche zusätzlich mit Cholat 

supplementiert wurden, verhindert werden. Darüber hinaus bewirkte die 

Cholatsupplementation eine erhöhte Expression verschiedener Braunfett-Marker-Gene sowie 

das Browning des inguinalen weißen Fettgewebes. Mithilfe der indirekten Kalorimetrie konnte 

jedoch nachgewiesen werden, dass die gallensäurebedingte Adipositasprävention nicht auf 

eine Erhöhung des Energieverbrauchs zurückzuführen ist. 

Um den Browning-Effekt der Gallensäuren zu verstärken, sollten die Ergebnisse in Mäusen des 

Inzuchtstamms 129S6/SvEvTac verifiziert werden, da Tiere dieses Stamms eine natürlich hohe 

Neigung besitzen, Brite-Adipozyten zu rekrutieren. Entgegen der Erwartungen zeigte die 

Cholatsupplementation keinerlei Einfluss auf diese Tiere. Weder der Adipositas-präventive 

Effekt des Cholats, noch dessen Browning-Kapazität konnte in 129S6/SvEvTac Mäusen 

nachgewiesen werden. Hinweise auf mögliche Stammunterschiede lieferte dabei die 

Gallensäure-Analytik, welche unterschiedliche Gallensäurekonzentrationen in den Organen 

des enterohepatischen Kreislaufs zu Tage brachte. Verschiedene Gallensäuretransporter-

Varianten im Darm könnten hierbei die beobachteten Veränderungen erklären. 

Um die Rolle von UCP1 in diesem Zusammenhang zweifelsfrei klären zu können, wurde die 

Wirkung der Cholatsupplementation in C57BL/6J-Wildtyp- und Ucp1-Knockout-Mäusen 

verglichen. Es wurden dabei keine Unterschiede zwischen den Genotypen identifiziert. Wir 

beobachteten jedoch einen pathologischen Anstieg der Leberenzymspiegel, der auf eine 

Beeinträchtigung der Leberfunktion in beiden Genotypen hindeutet. 

Zusammenfassend wurde damit erstmals gezeigt, dass die Gallensäure-bedingte Prävention 

Diät-induzierter Adipositas in Mäusen stammspezifisch sowie Ucp1-unabhängig ist. 
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1    INTRODUCTION 

1.1   Bile acid synthesis, chemistry and function 

Bile acids (BAs) are a group of water-soluble steroids that are synthesized in hepatocytes 

during cholesterol catabolism. They are endogenous detergents (Berry and Reichen, 1983) 

and thereby help in digestion and absorption of fats. They emulsify dietary lipids and the 

products of digestion including cholesterol, phospholipids and fatty acids (Jenkins and Hardie, 

2008).  

Bile is formed by the net movement of water and solutes into the bile canaliculi (Reuben, 

1984). Bile secretion is sensitive to metabolic inhibitors (Hofmann, 1990) and temperature 

changes, as bile flow increases with increasing temperature (Brauer et al., 1954), but it is 

independent of hepatic perfusion within physiological ranges (Tavoloni et al., 1978). Healthy 

human subjects normally possess an endogenous bile acid pool of 1.25 to 4 g and daily 

synthesize approximately 250 to 500 mg under steady-state conditions to compensate for the 

fecal loss. The whole BA pool daily cycles five to 15 times through the enterohepatic circulation 

(Berry and Reichen, 1983).  

The human liver synthesizes the primary BAs cholic acid (CA) and chenodeoxycholic acid 

(CDCA) from cholesterol via different intermediates, with cholesterol 7 alpha-hydroxylase 

(CYP7A1) being the rate limiting enzyme. Prior to excretion, BAs are conjugated at the carboxyl 

group with glycine and taurine, normally in a ratio of 3 to 1. Glycine-conjugated BAs are the 

most abundant conjugated BAs, representing more than 70 % of bile, taurine-conjugated BAs 

represent more tha 20 % of bile (Jenkins and Hardie, 2008). Sulfation and glucuronidation can 

occur at the hydroxyl groups (Berry and Reichen, 1983). These detoxifying mechanisms can be 

intensified under pathologic conditions as e.g. intrahepatic cholestasis, where hepatic BA 

levels reach toxic concentrations (Makino et al., 1975; Stiehl et al., 1980). Bile salts form mixed 

micelles with phospholipids and cholesterol and are stored in the gallbladder (Chiang, 2013). 

After secretion into the intestine, secondary bile acids are formed by bacterial 

dehydroxylation, with deoxycholic acid (DCA) and lithocholic acid (LCA) being the main 

secondary bile acids. Tertiary bile acids are formed in the liver by epimerization of secondary 

BAs, which were recycled via enterohepatic circulation (term definition: see 1.2). In humans, 
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ursodeoxycholic acid (UDCA) is the main tertiary bile acid and is e.g. found in relatively large 

amounts in sera of hyperlipidemic patients (Pennington et al., 1978), as it possesses a lower 

toxicity compared to e.g. CDCA and DCA (Leuschner et al., 1989), and is nowadays used as a 

drug for the treatment of various liver diseases (Eggert et al., 2014). Different BAs possess 

different absorption efficiencies, therefore the daily synthesis and fractional turnover rates 

vary for individual BAs (Angelin et al., 1982).  

In mice, the primary BAs cholic acid, alpha-muricholic acid (MCA)  and beta-muricholic acid 

(MCA), as well as small amounts of chenodeoxycholic (CDCA) and allocholic acid are present, 

as studies in germ-free mice revealed. In conventional mice, the secondary BAS lithocholic 

(LCA), deoxycholic ACID (DCA) and omega-muricholic acid (MCA) were identified (Eyssen et 

al., 1976). 

1.2   Physiologic bile acid regulation 

Bile secretion has a pivotal role in the excretion of both endogenous and exogenous 

compounds. Many waste products, including bilirubin, are removed from the body by 

secretion into bile and elimination with feces (Hofmann, 1988). Due to their amphipathic 

properties, BAs can emulsify lipid compounds, e.g. for fat absorption. Their ability to solubilize 

fats into emulsions is also potentially toxic for cells depending on lipid membranes maintaining 

their integrity. Consequently, the process from BA synthesis through the enterohepatic 

circulation to excretion must be tightly regulated using complex arrangements of chemical 

pumps (Jenkins and Hardie, 2008). In plasma, BAs circulate mainly bound to albumin, 

minimizing free concentrations of BAs (Kramer et al., 1979). Protein-bound BAs in plasma are 

removed with high efficiency by the hepatocytes, with over 80 % extraction of BAs in one pass 

(Paumgartner and Reichen, 1976). Retuning in portal blood, they are taken up by the 

hepatocyte via the sodium taurocholate co-transporting polypeptide (NTCP) and organic-

anion-transporting polypeptide (OATP) (Hagenbuch and Meier, 1996) (Fig. 1). The transport 

of BAs from hepatocyte into bile via the canaliculi is rate-limited by the activity of the bile-salt 

export pump (BSEP), playing a crucial role both in control of intra-cellular concentrations of 

BAs in the hepatocyte and in secretion of bile. Dietary supplementation of CA to mice leads to 

an up-regulation of BSEP gene expression by the nuclear BA receptor farnesoid X receptor 

(FXR), which also demonstrates the role of this receptor as a sensor for the intra-cellular BA 
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concentration (Sinal et al., 2000). Other transporters that export BAs from the hepatocyte e.g. 

are the multidrug resistance-related proteins MRP2 and MRP3, two ABC-transporters, that 

have a merely wide range of substrates and export BAs from hepatocytes into canaliculus 

(MRP2) or blood (MRP3), respectively, on a limited scale (Gerk and Vore, 2002; Teng and 

Piquette-Miller, 2007) (Fig. 2). 

BA secretion into bile canaliculi stimulates secretion of phospholipids and probably 

cholesterol, protecting canalicular membrane against the toxic effects of BAs (Coleman et al., 

1979). Cholangiocytes, which are the epithelial cells lining the bile ducts, possess amongst 

others the apical sodium-dependent BA transporter (ASBT). With ASBT, BAs can be absorbed 

from the bile-duct lumen to cycle back to hepatocytes. This uptake mechanism activates a 

process called “cholehepatic shunting”, which increases biliary lipid and fluid secretion by the 

 

Fig. 1: Hepatocyte basolateral BA 

transporters. Protein-bound BAs returning 

in portal blood are taken up by the 

hepatocyte via the sodium taurocholate co-

transporting poly-peptide (NTCP) and 

organic-anion-transporting polypeptide 

(OATP). In cholestasis BAs may be returned 

to blood by the multi-drug-resistance-

associated protein 3 (MRP3). BAs cross the 

hepatocyte bound to 3a-hydroxysteroid 

dehydrogenase (adapted from Jenkins et 

al., 2008). 

 

 

Fig. 2: Secretion of BAs and biliary 

components. BAs are exported into the 

canaliculus by the bile-salt export protein 

(BSEP). Phosphatidylcholine (PC) from the 

inner leaflet of the apical membrane is 

flipped to the outer layer and interacts with 

BAs secreted by BSEP. BAs, PC, together 

with cholesterol from the membrane form 

mixed micelles that are not toxic to 

epithelial membranes of the biliary tree. 

Aquaporins (AQP) secrete water into bile 

(adapted from Jenkins et al., 2008). 
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hepatocyte, thus eliminating toxic bile with high efficiency, especially during increased BA 

levels (Alpini et al., 2005; Lamri et al., 1992), e.g. occurring during cholestasis (Woolbright et 

al., 2015) or after dietary BA administration (Watanabe et al., 2006) (Fig. 3). 

After its synthesis in hepatocytes and excretion to the ducts, bile can be stored in the 

gallbladder, a storage and concentrating system for bile during inter-digestive phases (Fahey 

et al., 1995). Subsequent to food intake, the gallbladder contracts and ejects a bolus of bile 

into the small bowel where they facilitate fat digestion. Water-soluble pancreatic lipase acts 

at the surface of intestinal lipid droplets to hydrolyze dietary triglycerides. BAs aid this process 

by their detergent properties that cause the formation of smaller lipid droplets and thereby 

increase surface area available for the lipase. The detergent molecules form micelles, which 

solubilize monoglycerides and fatty acid. Partially, intestinal BA absorption occurs passively, 

e.g. for unconjugated BAs that have pK values of around 6 and therefore are un-ionized in the 

intestinal lumen. However, the majority of BAs are conjugated and ionized and therefore 

require transporters to cross the enterocyte. The majority of BAs is transported Na+-

dependently by ASBT from the small bowel lumen into enterocytes. ASBT mainly transports 

conjugates, but can also transport unconjugated BAs (Jenkins and Hardie, 2008). In 

comparison to ileal absorption, the mechanisms responsible for transport of BAs in the 

proximal intestine and their quantitative significance are not as well defined (Dawson et al., 

2009). As BAs enter the enterocyte, they are mostly bound to intestinal BA-binding protein 

(IBABP) to be transported intracellular across the enterocyte (Vodenlich et al., 1991). BA 

export from enterocytes into portal blood is majorly driven by the heteromeric organic-solute 

transporter (OST). OSTα and OSTβ actively transport BAs and some steroids (Seward et al., 

2003).  

Comparably high levels of OSTα/OSTβ are found at the basolateral membrane of ileal 

enterocytes and function via a facilitated diffusion mechanism (Ballatori et al., 2013). Other 

transporters that also are present at the basolateral side may have a role in BA efflux from the 

enterocyte, too, but this remains to be further defined (Jenkins and Hardie, 2008) (Fig. 4). 
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Beyond enterohepatic circulation, BAs can also escape hepatic extraction and spillover into 

systemic circulation. As BAs are bound to plasma proteins, glomerular filtration and urinary 

excretion is reduced. Yet, a small fraction of BAs is also excreted in the urine. Due to a highly 

efficient tubular reabsorption (Weiner et al., 1964; Wilson et al., 1981), only 1-2 µmol of BAs 

are found in the urine of healthy patients despite an originally filtered amount of approx. 

100 µmol per day (Stiehl, 1974). However, this process contributes to the rise in serum BA 

concentrations in patients with cholestatic liver disease (Dawson et al., 2009). Even in case of 

 

Fig. 3: BA absorption by the cholangiocyte in the 

cholehepatic shunt. BAs are absorbed at the 

apical membrane of the cholangiocyte by the 

apical sodium-dependent BA transporter (ASBT) 

that causes cholehepatic shunting of BAs back to 

the hepatocyte. Absorbed BAs are exported 

across the basolateral membrane by multi-drug-

resistance-associated protein 3 (MRP3), a 

truncated form of ASBT or by OSTα/OSTβ. BAs 

cause choleresis that is rich in bicarbonate ions 

secreted by the chloride/bicarbonate ion 

exchanger (adapted from Jenkins et al., 2008). 

 

 

Fig. 4: BA absorption from the small bowel 

lumen. BAs are efficiently transported from 

the lumen of the terminal ileum by the apical 

sodium-dependent BA transporter (ASBT). 

Unconjugated BAs will be un-ionised at the 

pH of the lumen and may be passively 

absorbed. Within the enterocyte BAs are 

bound by the intestinal BA-binding protein 

(IBABP). Efflux from the enterocyte may 

involve the truncated ASBT (tASBT) and/or 

multi-drug-resistance-associated protein 3 

(MRP3) but this remains to be defined. 

OSTα/OSTβ gene products together but not 

separately transport BAs out of the 

enterocyte. OATP3 mRNA has been identified 

but it is not yet clear whether the protein is 

functional (adapted from Jenkins et al., 

2008). 
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elevated plasma BA concentrations, e.g. in patients with cholestatic liver disease, the 24-h 

urinary excretion of nonsulfated BAs is significantly less than the quantity that undergoes 

glomerular filtration (Raedsch et al., 1981; Rudman and Kendall, 1957; Stiehl et al., 1975). 

1.3   Bile acids and metabolic regulation 

In the last years, a new role for BAs as signaling molecules has emerged. BAs do not only aid 

in the absorption of dietary lipids, but also function as metabolic regulators. For example, BAs 

activate mitogen-activated protein kinase (MAPK) signaling pathways (Gupta et al., 2001; Qiao 

et al., 2003) and are natural ligands for the nuclear hormone receptor farnesoid X receptor 

(FXR) (Makishima et al., 1999; Parks et al., 1999; Wang et al., 1999) as well as G-protein-

coupled receptors (GPCRs) such as TGR5 (Kawamata et al., 2003; Maruyama et al., 2002).  

FXR is a transcription factor that controls both the biosynthesis and enterohepatic recycling 

of BAs and regulates the expression of the short heterodimer partner (SHP). SHP inhibits the 

activity of other nuclear receptors like the liver X receptors LXRα and LXRβ, both necessary for 

the transcriptional induction of CYP7A1, the rate-limiting enzyme of BA biosynthesis. Thereby, 

the FXR-mediated SHP-induction contributes to the negative feedback regulation of BA 

biosynthesis (Brendel et al., 2002; Goodwin et al., 2000; Lu et al., 2000). Moreover, FXR 

induces the fibroblast growth factor FGF19 (FGF15 in mice) in intestinal epithelial cells, which 

passes to the liver and acts on the FGFR4 (Inagaki et al., 2005; Stroeve et al., 2010) (Fig. 5). 

Thereby, the hepatic FXR-mediated SHP induction after BA administration inhibits fatty acid 

and triglyceride biosynthesis and VLDL production (Watanabe et al., 2004). In this way, BAs 

control their own levels as well as those of their precursor, cholesterol. 

TGR5, as a member of GPCRs, was discovered in 2002 (Maruyama et al., 2002). High levels of 

TGR5 mRNA can be detected in several organs such as small intestine, stomach, liver, lung, 

placenta and spleen (Keitel et al., 2007; Tiwari and Maiti, 2009). Bile acids are the endogenous 

natural agonists of TGR5 (Guo et al., 2016). They activate TGR5 and thereby induce cAMP 

production (Maruyama et al., 2002). TGR5 activation also causes increased intracellular cAMP 

levels in brown adipose tissue (BAT) and skeletal muscle. This leads to an activation of type 2 

iodothyronine deiodinase (D2), which converts inactive thyroxine (T4) to active 3,5,3’-

triiodothyronine (T3) (Bianco et al., 2002). The following saturation of thyroid hormone 
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receptor as well as the activation of PGC-1α leads to an induction of energy expenditure in 

BAT and skeletal muscle (Watanabe et al., 2006). Moreover, TGR5 signaling induces intestinal 

glucagon-like peptide-1 (GLP-1) release in entero-endocrine L-cells and thereby increases 

insulin secretion (Thomas et al., 2009) (Fig. 5). Taken together, BAs not only help in lipid 

digestion, but were also shown to be potent metabolic regulators. The underlying mechanisms 

have to be further elucidated, yet. 

 

Fig. 5: Impact on energy metabolism after FXR activation, e.g. by BAs or GW4064. Administration of 

the synthetic FXR agonist GW4064 to high-fat diet fed mice leads to a reduction in BA synthesis and 

reduced BA pool size. This translates into reduced energy expenditure in BAT, TG accumulation in WAT, 

BAT, and liver, as well as insulin resistance. As BAs are natural ligands for FXR and activate equal signal 

transduction routes, similar effects can be observed (adapted from Watanabe et al., 2011). 

1.4   Brown, white and brite- the different types of adipose tissue 

To date we are aware of three different adipose tissue types: brown, white and brite adipose 

tissue.  

White adipose tissue (WAT) principally is an energy storage that stores dietary energy in times 

of excess energy intake and releases fatty acids when fuel is required. In the last decades, 

however, WAT was also discovered to inherit a complex metabolic role. It is an endocrine 

organ that produces a myriad of endocrine factors called adipokines (Villarroya et al., 2013). 
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The tissue is e.g. needed for normal glucose homeostasis and plays a role in inflammatory 

processes through preadipocytes acting as macrophage-like cells (Cousin et al., 1999). A 

radical change in perspective followed the discovery of leptin, as this critical hormone in 

energy balance is produced principally by white fat, giving the tissue an endocrine function. 

Indeed, there is a growing list of protein signals and factors that are released from white 

adipocytes (Ailhaud, 2000; Mohamed-Ali et al., 1998). These proteins released by WAT are 

e.g. inflammatory cytokines, play a role in lipid metabolism, and are involved in vascular 

haemostasis or the complement system. In essence, WAT is a major secretory and endocrine 

organ, that plays a wide-ranging role in metabolic regulation and physiological homeostasis, 

far beyond the simple paradigm of fat storage (Trayhurn and Beattie, 2001). 

In contrast to WAT, the brown adipose tissue (BAT) is not primarily responsible for lipid 

storage, but rather is the main site of non-shivering thermogenesis in mammals. BAT is found 

in almost all mammals and is mainly located at the interscapular region. The active brown fat 

cell has a round centrally placed nucleus and a granular cytoplasm containing multiple fat 

vacuoles. It is thus often referred to as multilocular, in contrast to white fat, which is unilocular 

(Heaton, 1972). The thermogenic processes in BAT are driven by its large number of 

mitochondria, which also confer the brownish appearance to BAT. They possess a unique 

biochemical property, wherein the brown adipocyte-specific protein, the mitochondrial 

carrier protein uncoupling protein 1 (UCP1), uncouples the respiratory chain and thereby 

dissipates chemical energy as heat. These effects are physiologically activated e.g. in response 

to cold (Klingenspor et al., 2008). Furthermore, BAT is also known to be a possible site of diet-

induced thermogenesis. In response to cold as well as to overfeeding, an activation of the 

sympathetic nervous system is triggered. Thereby, the thermogenic activity of BAT is induced 

via distinct cellular processes, including the rapid activation of the existing UCP1 as well as 

transcriptional induction of the genes encoding UCP1. Moreover, enzymes responsible for 

oxidizing metabolic substrates, and components of the cellular machinery responsible for the 

active uptake of lipids and glucose from the circulation, are induced to sustain oxidation and 

thermogenesis (Cannon and Nedergaard, 2004; Giralt and Villarroya, 2013). In man, brown fat 

was once considered only necessary in newborns. However, recent morphological and 

imaging studies have provided evidence that, contrary to prior belief, this tissue is present and 

active in adult humans (Nedergaard et al., 2007; Townsend and Tseng, 2012). It is speculated, 
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that the functional BAT has a distinct influence on the prevention of obesity. Ablation of BAT 

has been shown to sensitize organisms to obesity in several experimental settings (Hamann 

et al., 1998; Lowell et al., 1993). In contrast, the genetic knockout of the UCP1-encoding gene 

provided partly conflicting data on the development of obesity under different experimental 

settings. On the one hand, Ucp1 ko mice were described to be DIO-resistant at room 

temperature (20° C), as they have to maintain normal body temperature without non-

shivering thermogenesis, but by using less efficient, more energy consumptive pathways of 

metabolism (Liu et al., 2003). Some investigations failed to demonstrate an obese phenotype 

in Ucp1-ablated mice and did not observe differences in resting oxygen consumption between 

Ucp1-ko and wildtype mice at 28°C (Enerback et al., 1997). In contrast, another study showed 

that an Ucp1-ablation in itself is sufficient to induce obesity under thermoneutral conditions 

(Feldmann et al., 2009). For this reason, scientific examinations that investigate anti-

obesogenic properties on Ucp1-ablated mice need to be performed with an adequate control 

group that investigates whether the ko-mice can develop obesity under the specific present 

conditions. 

Besides its capacity of metabolite oxidation for thermogenesis, accumulating evidence 

indicates that BAT also exhibits an endocrine role, as genetically mediated ablation of BAT 

(Hamann et al., 1996; Lowell et al., 1993) had a much more profound impact on metabolism 

than specific blockage of BAT thermogenic activity via Ucp1 invalidation (Enerback et al., 

1997). It is assumed, that the endocrine factors possibly released by BAT, and termed 

“batokines” (for “BAT adipokines”) (Stanford et al., 2013; Townsend and Tseng, 2012), may 

have different or probably opposite effects than those of the WAT adipokines, act on other 

tissues, and will be actively released if BAT is activated. The endocrine function of BAT is not 

doubtlessly proved, so far. However, BAT is deemed to release autocrine or paracrine factors, 

amongst others T3, angiotensinogen, or also FGF21, which is induced upon cold and 

adrenergic stimulation (Townsend and Tseng, 2012; Villarroya et al., 2013). 

In humans, there were also found BAT-like depots, e.g. in the supraclavicular, but also in the 

interscapular regions of the body. Initially, it was believed to be the equivalent of the 

interscapular thermogenic organ of small mammals. However, this view was disputed, as it 

was demonstrated, that this depot consists of a newly identified type of brown adipocytes 

that is distinct from the classical brown adipocytes (Lidell et al., 2013): 
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In addition the “classical” two adipose tissues WAT and BAT, cells exhibiting a brown adipocyte 

thermogenic phenotype, but appear in WAT depots after thermogenic activation have been 

identified and characterized. These so-called “brite” (from “brown in white”) or also “beige” 

adipocytes are multilocular and express Ucp1. Classical brown adipocytes present in BAT 

depots are closely related to skeletal muscle precursors (Seale et al., 2008; Timmons et al., 

2007) and in fact, both brown adipocytes and myocytes share a common precursor that 

expresses the myogenic lineage marker Myf5. In contrast, brite adipocytes were found to 

come from Myf5-negative cells that more closely resemble white adipocyte precursors (Seale 

et al., 2008). Different processes that give rise to brite adipocytes are discussed: On the one 

hand, the browning process seems to arise partly or in whole via the transdifferentiation of 

white adipocytes into brite adipocytes (Barbatelli et al., 2010). Besides, genetic labelling of 

adipose cells supports the existence of bidirectional interconversion processes between brite 

and white adipocytes (Rosenwald et al., 2013). Indeed, brite adipocytes apparently represent 

intermediate forms of adipocytes, as they do not only express Ucp1 and reside in WAT depots, 

but also are mitochondria-rich, multilocular and show a lipid droplet distribution intermediate 

between that of brown and white adipocytes. According to some, these “paucilocular” 

adipocytes may constitute transition states from white to brite adipocytes (Barbatelli et al., 

1993; Himms-Hagen et al., 2000). On the other hand, some reports indicated that β3-

adrenergic activation induces browning through two different processes: white to brown 

transdifferentiation in inguinal WAT, but proliferation and further differentiation of 

precursors in epididymial WAT (Giralt and Villarroya, 2013; Lee et al., 2012). Moreover, the 

hitherto distinct separation into adipocytes with Myf5-positive or Myf5-negative precursor 

cells has been challenged to some extent by the finding that Myf5-positive precursors may 

also differentiate to white adipocytes (Sanchez-Gurmaches et al., 2012; Schulz et al., 2013).  

Despite the unclear origination of brite cells, there is genetic evidence that the capacity to 

induce these cells is highly relevant for protection against obesity in rodents (Guerra et al., 

1998). Inversely, mouse strains that have an increased tendency to become obese rather show 

decreased capacities for browning of WAT depots compared with those of obesity-resistant 

strains, despite similar BAT size, activity and capacity to recruit classical BAT in response to 

thermogenic activation (Guerra et al., 1998; Xue et al., 2007). These results suggest that the 
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browning process has a special, independent relevance in protection against obesity (Giralt 

and Villarroya, 2013). 

1.5   Effect of bile acids on obesity 

Obesity is a global epidemic that causes significant morbidity and mortality (Jenkins and 

Hardie, 2008). Manifold approaches from public education, to legislative procedures, to 

medical treatments are studied and applied to encounter this complex of problems. Thereby 

always new paths are struck. In the last years, a new role for bile acids as signaling molecules 

and metabolic regulators has emerged. Traditionally, BAs have been linked to the 

development of obesity through their role in the intestinal absorption of fatty acids. However, 

recent studies indicate that BAs have a much wider role in the regulation of energy balance in 

the body (Jenkins and Hardie, 2008). 

In 1997, a study by Ikemoto and colleagues was the first to suggest a link for BAs in the 

regulation of obesity. They demonstrated that the addition of the common bile salt sodium 

cholate (0.5 %) to a high-fat diet prevented increases in total body weight and WAT in 

C57BL/6J mice compared to littermates fed a non-supplemented high-fat diet. These effects 

occurred despite similar energy intakes across control (high-carbohydrate), high-fat and 

cholate-supplemented high-fat diet groups, indicating that the cholate-associated effect was 

not simply a reflection of reduced calorie intake in the supplemented animals. Cholate 

supplementation also prevented the development of hyperglycemia and reduced blood 

insulin levels compared with high-fat-diet-fed animals. Similar effects were reported with 

supplementation of the other primary BA, CDCA (Ikemoto et al., 1997). 

Watanabe and colleagues confirmed and extended these findings, as they directly linked BAs 

to the regulation of thermogenesis. It was demonstrated that CA-supplementation does not 

only reduce high-fat-diet-induced weight gain but also reverses the established weight gain in 

obese mice, resulting in reduced WAT mass and improved glucose tolerance. These effects 

were described to result from increased energy expenditure in CA-supplemented animals, 

rather than reduced caloric intake, as these animals showed a higher O2 consumption and CO2 

production compared to control animals during short-term indirect calorimetry 

measurements (Watanabe et al., 2006) (Fig. 6).  
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Fig. 6: Schematic illustration of bile acid-derived induction of thermogenesis. During digestion, bile 

acids are secreted with bile from the gallbladder and released into the intestine to emulsify dietary 

lipids, etc. They can be transferred back to the hepatocytes by intestinal reabsorption. Besides this 

recycling mechanism, which is called “enterohepatic circulation”, BAs also spillover from liver into 

systemic blood circulation. Thereby they reach peripheral sites of action, amongst others brown 

adipose tissue, where they are supposed to bind to the G-protein-coupled BA receptor TGR5, thereby 

increase Ucp1 expression and induce thermogenesis. 

Moreover, electron microscopy revealed that CA-supplementation resulted in an increased 

number of BAT mitochondrial lamellar cristae. Microarray analysis showed a strong up-

regulation of type-2 iodothyronine deiodinase (D2) mRNA in BAT of CA supplemented animals 

(Watanabe et al., 2006). The enzyme D2 converts thyroxine (T4) to active 3,5,3-tri-

iodothyronine (T3) and is required for adaptive thermogenesis in BAT (Bianco et al., 2002). 

The authors suggested that this effect was mediated via the G-protein-coupled BA receptor 

(GPBAR-1 or TGR5) resulting in a BA-derived cAMP-PKA activation in BAT cells (Fig. 7). TGR5 is 

ubiquitously expressed in humans and animals (Duboc et al., 2014) and its signal transduction 

is stimulated in varying intense, dependent on the respective BA. For example in HEK293-

hBG37 cells, the rank order of potency was LCA > DCA > CDCA > CA (Maruyama et al., 2002). 
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Fig. 7: The effect of BAs on energy expenditure. Circulating BAs bind to the G-protein-coupled BA 

receptor TGR5, which stimulates increased cAMP-PKA activation and increased expression of D2. This 

response is sensitized by a high-fat diet. D2 converts T4 to active T3, which stimulates thyroid hormone 

receptor binding to target genes. This leads to an altered expression of genes associated with energy 

balance and increased energy expenditure (adapted from Jenkins and Hardie, 2008). 

Besides TGR5, BAs are also natural ligands for the farnesoid X receptor (FXR). FXR belongs to 

the nuclear hormone receptor family and is activated most potently by the hydrophobic BA 

CDCA, whereas hydrophilic UDCA demonstrates little activity (Makishima et al., 1999; Parks et 

al., 1999; Wang et al., 1999). FXR activation leads to a decreased endogenous BA production, 

and thereby protects liver cells against toxic high BA levels. Moreover FXR directly affects 

adipocyte differentiation and function and may play an important role in the regulation of 

systemic lipid metabolism and peripheral glucose homeostasis (Kalaany and Mangelsdorf, 

2006). The loss of FXR using a gene knockout model results in impaired adipocyte 

differentiation, impaired glucose tolerance, insulin resistance and dyslipidemia (Cariou et al., 

2007; Rizzo et al., 2006; Sinal et al., 2000). These data raise the possibility that targeted FXR 

activation may also be useful to manage various aspects of the metabolic phenotype including 

type-2 diabetes, dyslipidemia and adipocyte function (Jenkins and Hardie, 2008). 
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In summary, the findings of the recent years raised the possibility that targeting BA signaling 

pathways may ameliorate obesity and associated pathologies such as insulin resistance, 

impaired glucose tolerance and dyslipidemia and promise to be highly active areas of research 

in the future (Jenkins and Hardie, 2008). However, BAs are potent detergents that may disrupt 

cell membranes and can promote the generation of reactive oxygen species that, in turn, 

oxidatively modify lipids, proteins, and nucleic acids, and eventually cause hepatocyte necrosis 

and apoptosis. Toxic BAs, especially hydrophobic BAs, can activate hepatocyte death 

receptors directly and induce oxidative damage. Thereby mitochondrial dysfunction is caused, 

and endoplasmic reticulum stress is induced (Perez and Briz, 2009). For this reason, the direct 

impacts of a BA-supplementation always have to be calculated and its risks need to be 

balanced against its potential advantages. 

1.6   Aims and scope 

This study is based on the studies of Watanabe and colleagues from 2006, showing that a 

dietary BA-supplementation prevents and ameliorates diet-induced obesity in mice fed a high-

fat diet by a mechanism dependent on type-2 deiodinase (Watanabe et al., 2006). However, 

the authors did not provide a substantive, direct proof of neither brown adipose tissue 

recruitment nor UCP1 activation within this context. In order to prove the reproducibility of 

their experiment, Watanabe’s key experiment should initially be repeated. Afterwards, the 

Ucp1 ko mouse model was used to directly prove the role of UCP1 in BA-derived protection of 

obesity. Additionally, 129S6/SvEvTac mice were used to assess the potential anti-obesogenic 

effects of white adipose tissue browning within this context. With the help of the obtained 

findings, we would be able to further enlighten and investigate the underlying molecular 

mechanisms of BA-mediated DIO-prevention.
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2    MATERIAL AND METHODS 

2.1   Animals  

We employed male mice of the C57BL/6J and 129S6/SvEvTac inbred strains bred in our 

specified pathogen-free facility (at TU München, Kleintierforschungszentrum, Freising, 

Germany) with regular hygiene monitoring according to FELASA (Federation of European 

Laboratory Animal Science Associations)  criteria at 50-60 % relative humidity, 22 °C ± 1°C and 

a 12-hour light/dark cycle. All mice received standard rodent chow diet (V1124-300, Ssniff 

Spezialdiäten GmbH) prior to experiments. They were housed in individually ventilated cages 

(IVC, type II long, 540 cm², Tecniplast, USA) up to five animals per cage. 

Uncoupling protein 1 (Ucp1) knockout (ko) mice on C57BL/6J background were generated by 

Leslie Kozak and coworkers (Enerback et al., 1997; Hofmann et al., 2001) and founder mice 

were kindly provided to establish our colony. Wildtype (wt) and Ucp1 ko mice obtained from 

heterozygous breeding were mated in homozygous wt/wt and ko/ko breeding pairs. These 

pairs were kept at 30 °C inside a climate cabinet (HPP749, Memmert), where offspring was 

born, raised and subjected to experiments. Homozygous breeding allowed a usage of 

averagely 50 % of the offspring (only male mice). This approach facilitated direct comparisons 

of littermates, as usually more than one male offspring was born in each litter (in contrast to 

this approach, breeding heterozygous mice results in only one male, homozygous mouse 

(Ucp1+/+ or Ucp1-/-) each litter on average). Up to five animals were kept in open cages (type 

II long, 540 cm², Tecniplast, USA) with a 12-hour light/dark cycle and relative humidity of 50-

60 %. Procedures were carried out in accordance with the German animal welfare law and 

approved by the Regional Government of Oberbayern, Germany. 

2.2   Diets 

Data were collected in three independent experiments characterized by the administration of 

four diets. Mice received control (C, S5745-E702) or high-fat (H, S5745-E712) diet providing 

13 % or 48 % of energy from fat, respectively. To investigate the effect of dietary BA 

administration, these diets were supplemented with 0.5 % (w/w) sodium cholate at the 

expense of cornstarch to generate C + cholate (CC, S5745-706) and H + cholate (HC, S5745-
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716) diets. All diets were obtained from Ssniff Spezialdiäten GmbH, Germany and fed ad 

libitum: 

1) C: low fat control diet (5 % soy oil, 5 % saccharose; ssniff order number S5745-E702) 

2) CC: low fat control diet containing 0.5 % cholic acid (ssniff order number S5745-E706) 

3) H: high-fat diet (20 % palm oil, 5 % soy oil, 5 % saccharose; ssniff order number S5745-E712) 

4) HC: high-fat diet containing 0.5 % cholic acid (ssniff order number S5745-E716) 

Cholic acid was mixed into the homogenized food powder as sodium compound [Na-Cholate: 

CAS: 361-09-1], which afterwards was pressed to feeding pellets. This procedure prevents 

demixing and assures homogenous distribution of cholic acid within the pellet. 

 

Fig. 8: Composition of experimental diets used in this thesis. The custom-made semi-purified diets 

were obtained from Ssniff Spezialdiäten GmbH, Soest, Germany: (A) C, S5745-E702, (B) CC, S5745–

E706, (C) H, S5745-E712, (D) HC, S5745–E716. Macronutrients are given in percent by weight. Weight 

of supplemented sodium cholate was equalized by the percentage weight reduction of corn starch. 
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2.3   Cholic acid supplementation in C57BL/6J and 129S6/SvEvTac mice 

Male C57BL/6J and 129S6/SvEvTac mice were assigned to one of the four diet groups (n=4-7 

per diet group) at the age of 6-7 weeks and kept at room temperature for 4 weeks. Mice were 

housed individually. Body mass and food consumption were measured twice weekly. Body 

composition (fat mass and lean mass) was determined noninvasively using the time domain 

(TD-)NMR analyzer (MQ 7.5 NMR, Minispec, Bruker Optic GmbH, Germany) at the beginning, 

as well as after 2 and after 4 weeks of experiment. Data were analyzed with the MinispecPlus 

(Bruker Optic GmbH) and OPUS (OPUS Version 5.0, Bruker Optic GmbH) software. To 

determine assimilated energy, feces was collected of all individual mice during first and fourth 

week of experiment and its energy content subtracted from energy intake. Mice were 

euthanized with carbon dioxide. Plasma samples, iBAT, iWAT and enterohepatic organs (one 

sample containing small and large intestine, caecum, liver, gall bladder and pancreas) were 

removed during dissection and weighed. As two tissue locations exist from iWAT and iBAT at 

the left and on the right side of the body, the right-sided part was fixed for histologic 

examinations (see 2.5), the left-sided part as well as plasma and enterohepatic organs were 

shock frozen using liquid nitrogen and stored at -80 °C for further analyses. 

2.4   Cholic acid supplementation in Ucp1 knockout and wildtype C57BL/6J 

mice 

In order to challenge the hypothesis, that CA-derived resistance to DIO is due to increased 

thermogenic processes in BAT, we used Ucp1 ko C57BL/6J mice for a further feeding 

experiment. As body temperature is basically maintained via thermogenic processes, which 

should not be involved in these energy expenditure investigations, all animals (both wt and 

Ucp1 ko mice) were kept at thermoneutrality (30 °C) during pregnancy, breeding and the 

experimental phase. Except surrounding temperature, and open cages instead of IVC-cages, 

animals were kept under same conditions as for earlier experiments (as described above, part 

2.1). At the age of 6 to 7 weeks, male mice were adapted to control diet for one week to 

circumvent an initial body mass drop that was observed in earlier experiments due to 

acclimatization problems to the harder texture of the semi-purified diets in comparison to 

chow diet. At the age of 7-8 weeks mice were assigned to one of the four experimental diets 

and kept at thermoneutrality for four further weeks (n=6 per group). Body mass and food 



MATERIAL AND METHODS   26 

 
 

 
 

consumption were recorded twice weekly. At the day of diet switch (from control diet to the 

respective experimental diet) as well as after two and four weeks of experimental phase, body 

composition (fat and lean mass) was analyzed noninvasively as described above (2.3). At the 

end of the experiment, mice were euthanized with carbon dioxide. 

2.4.1   Plasma collection and blood parameter measurement  

Cardiac blood was collected from 6-8 hours fasted mice (fasting duration depended on 

dissection order) in a lithiumheparin-coated tube. The time window of blood collection did 

not exceed 2.5 hours during day time. Blood samples were centrifuged for 5 min at 2000 g. 

The plasma -appearing as supernatant- was removed, frozen in liquid nitrogen and stored 

at -80 °C. Plasma biomarker determination was performed with Piccolo Lipid Panel Plus Discs 

and the automated analyzer Piccolo xpressTM (HITADO GmbH, Germany). Thereby plasma 

concentrations of cholesterol, HDL, triglyceride, glucose as well as liver enzymes alanine 

aminotransferase (ALAT) and aspartate aminotransferase (ASAT) were determined 

simultaneously. 

2.4.2   Tissue dissection 

After blood collection iWAT, eWAT, iBAT, liver, heart and kidneys were dissected and weighed. 

As two fat tissue locations exist from iWAT, eWAT and iBAT at the left and on the right side of 

the body, the right-sided part was fixed for histologic examinations (see 2.5). The left-sided 

part as well as liver, heart and kidneys were shock frozen using liquid nitrogen and stored 

at -80 °C for further analyses.  

2.5   Tissue sample preparation for histologic analyses 

2.5.1   Tissue fixation and paraffin embedding 

Dissected tissues were fixed in 4 % paraformaldehyde solution with 0.0024 % picric acid for 

one week. Afterwards, fixated tissues were dehydrated in a series of increasing volume 

percent ethanol and xylene and infiltrated with Paraplast (Leica). 
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Table 1: Automated dehydration steps and respective incubation times for tissue paraffin 
embedding 

Bin # Content Incubation 
 time [min] 

1 70 % EtOH 60 

2 70 % EtOH 60 

3 80 % EtOH 60 

4 80 % EtOH 60 

5 90 % EtOH 60 

6 90 % EtOH 60 

7 99 % EtOH 60 

8 99 % EtOH 60 

9 Xylene 60 

10 Xylene 60 

11 Paraplast 60 

12 Paraplast 60 

 

Afterwards, infiltrated tissue samples were paraffin embedded and cut with a rotary 

microtome (Leica). For that, about 1/3 of the tissue was discarded to reach interior tissue parts 

and be able to draw tissue-specific conclusions. Sections of 5 µm thickness were mounted on 

specimen slides (Carl Roth) and dried for 3 days at 55 °C.  

2.5.2   Hematoxylin & Eosin (H&E) staining 

For H&E staining, dried sections were transferred to a Multistainer (Leica) to ensure a 

standardized coloration. Hematoxylin and Eosin stains (Carl Roth) were used to color nuclei 

(Hematoxylin, blue stain) and cytosolic (Eosin, red/pink stain) structures. Stained sections 

were mounted in Roti-Mount (Carl Roth). 
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Table 2: Automated H&E staining steps 

Bin # Content Incubation 
 time [min] 

1 Xylene 3 

2 Xylene 3 

3 100 % EtOH 2 

4 96 % EtOH 2 

5 70 % EtOH 1 

6 distilled water 1 

7 Hematoxylin 5 

8 flow water 

station 

4 

9 Eosin 2 

10 70 % EtOH 1 

11 96 % EtOH 1 

12 100 % EtOH 1 

13 100 % EtOH 1.5 

14 Xylene 1.5 

15 Xylene 2 

16 Xylene 2 

 

2.5.3   Immunohistochemistry (IHC)  

In order to detect UCP1-positive cells, IHC staining was conducted (we were not able to 

conduct Western blots, as we used both iWAT parts for qPCR & histological analyses). For IHC 

analyses, dried H&E-stained tissue sections were heated at 70 °C for 10 min and deparaffinized 

in xylene and a decreasing ethanol gradient (99 %, 80 % and 70 %). Afterwards, sections were 

unmasked at 90 °C in 20 mM sodium-citrate for 20 min and in 10 mM sodium-citrate for 10 

min. Next, the sections were rinsed with dH2O three times, 5 min each, incubated in 3 % H2O2 

for 10 min, rinsed in dH2O for 5 min, incubated with 2.5 % blocking buffer (goat serum in PBS) 

for 1 h at room temperature and rinsed again three times for 5 min in dH2O. Sections were 

incubated overnight with 1:500 diluted primary UCP1 antibody (Abcam, ab10983) in 0.25 % 

goat serum and 0.1 % PBS-T at 4 °C. After rinsing three times 5 min each in 0.1 % PBS-T, 

sections were incubated with 1:200 diluted HRP conjugated secondary antibody (Abcam, 

ab97051) for 1 h at RT. Afterwards, sections were rinsed three times in 0.1 % PBS-T, 5 min 

each and incubated with DAB enhanced mix (Leica) for 2 min. DAB reaction was stopped by 

rinsing the sections in ddH2O. Subsequently sections were incubated for 3 min in hematoxylin 
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and rinsed with ddH2O. Sections were then dehydrated in increasing ethanol concentrates 

(70%, 96% and 100%) and xylene for 2 min each. Sections were mounted in Roti-Mount (Roth). 

2.6   Calculation of assimilated energy by balancing dietary energy intake and 

fecal energy loss 

The part of dietary energy that is absorbed in the gut and not lost with feces is called 

assimilated energy. To estimate assimilated energy, dietary energy intake was opposed fecal 

energy loss. Energy intake and energy loss are calculated by multiplying food or feces mass 

with its corresponding energy content, respectively. Energy content of food and feces samples 

was determined by bomb calorimetry analysis. For that purpose, food intake and feces mass 

was recorded as stated above (2.3). Feces was separated from litter, dried at 55 °C for at least 

one week and homogenized with a bead mill (TissueLyser II, Retsch, Qiagen, Hilden, Germany). 

Around 1 g of the homogenized feces was used to press a pellet. The exact pellet weight was 

noted. As food samples already were homogenized, a food pellet of around 1 g (the exact 

weight was noted) was used for further analysis. To analyze the energy content of food and 

feces samples, a bomb calorimeter (Calorimeter 6300, Parr, Frankfurt, Germany) was used. 

Within the bomb calorimeter, the dried sample is burned under high pressure of excess pure 

oxygen. During combustion, energy is released as heat. The induced temperature rise (ΔT) is 

measured with a thermometer and used to calculate the energy content (J/g) of the sample: 

𝐶𝑎𝑙𝑜𝑟𝑖𝑐 𝑣𝑎𝑙𝑢𝑒 (𝐽/𝑔) = 𝑊 ∗
Δ𝑇

𝐺
 

W = heat capacity of the calorimeter (J/K) 

ΔT = temperature change (K) 

G = sample weight (g) 

The heat capacity is defined as the amount of heat needed to increase the temperature of the 

entire calorimeter by 1 °C. 

2.7   Energy expenditure analysis by indirect calorimetry measurements 

Energy expenditure of mice was determined by indirect calorimetry (CaloSys SPEC, LabMaster, 

TSE Systems, Bad Homburg, Germany). In subjects with aerobic metabolism dietary nutrients 
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are converted to energy under oxygen consumption and carbon dioxide production. The 

caloric equivalent, which corresponds to the energy per liter oxygen consumed, is used to 

determine energy expenditure. Depending on the substrate that is oxidized, the caloric 

equivalent ranges from 19-21 kJ*l O2
-1. 

Two weeks before experimental start and during the first two days of measurement all mice 

received the control diet to acclimate to the texture and taste of the experimental diet as well 

as the altered habitat. The diet change to either H or HC diet was conducted in the time period 

between 9 am and 1 pm (cohort 1: 9 am, cohort 2: 12 am, cohort 3: 1 pm). For indirect 

calorimetry measurements, up to eight mice were kept individually in special modified home 

cages and placed in a temperature-controlled climate chamber (Feutron) at 23 °C. Air was 

aspirated with a constant flow rate of 0.7 l*min-1. The volumes of oxygen consumed (Δvol % 

O2) and carbon dioxide produced (Δvol % CO2) were determined automatically every nine 

minutes. Mice were kept in the indirect calorimetry chamber for seven days. After 48 hours in 

the climate chamber, diet was changed to high-fat diet with our without cholic acid 

supplementation, in each case to the half of all animals. Body weight was determined at five 

specific time points:  

- Previous to indirect calorimetry measurements: 14, 7 and 2 days before diet change 

- After indirect calorimetry measurements: 5 and 8 days after diet change, which 

corresponds to the beginning and the end of the subsequent FDA measurement 

Body weight and food intake were not measured during indirect calorimetry phase, in order 

to not distort gas concentrations (overview experimental setup: see Fig. 2). 

The respiratory exchange ratio (RER) was calculated for each data point every nine minutes 

according to the following equation: 

RER = ΔCO2 [%] / ΔO2 [%] 

The RER indicates, which substrate is mainly oxidized for energy generation. It ranges within 

the limits from 1.0 (carbohydrates), 0.81 (proteins) to 0.705 (lipids) (Even and Nadkarni, 2012). 
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Oxidation of one carbohydrate molecule: 

6 O2 + C6H12O6 → 6 CO2 + 6 H2O + 38 ATP  

RERcarbohydrate = VCO2/VO2 = 6 CO2/6 O2 = 1.0 

Oxidation of one fatty acid molecule:  

23 O2 + C16H32O2 → 16 CO2 + 16 H2O + 129 ATP  

RERfatty acid: VCO2/VO2 = 16 CO2/23 O2 = 0.7 

 

MeanRER24h was assessed by calculating the mean RER value for 24 hours at the second day 

of measurement (the first day was discarded as acclimatization phase). 

The caloric equivalent (CE), which is the number of kilojoules produced per liter of oxygen 

consumed, was calculated according to the following equation: 

CE [kJ*l O2
-1] = 16 + 5*meanRER24h, ad-lib

 

The daily energy expenditure (DEE), which is the energy expended during 24 hours, was 

calculated according to the following equation: 

Daily energy expenditure (DEE) [J/d] = CE [k*l O2
-1] * meanVO2, 24h [ml*d-1] 

Resting metabolic rate (RMR), which represents the minimum amount of energy required to 

maintain body functions at rest, under thermoneutrality (30 °C) and fasted, was calculated 

according to the following equation: 

Resting metabolic rate (RMR) [J/h] = CE [kJ*l O2
-1] * VO2, rest [ml O2*h-1] 

VO2, rest was specified by selecting the lowest VO2 consumption rate during all days of measure-

ment, which normally can be found during the resting phase of the animals at day times. 

DEE and RMR were corrected for body composition. As lean mass is metabolically more active 

than fat mass, a correction formula, that involves fitting both lean mass and fat mass as 

independent variables and that weighs lean mass stronger than fat mass, was used: lean mass 

+ 0.2 fat mass (Even and Nadkarni, 2012). 
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2.8   Feeding-drinking-activity measurements 

Subsequent to indirect calorimetry measurements, mice were transferred to a feeding-

drinking-activity system (TSE Systems), where food intake and spontaneous locomotor activity 

were measured automatically. Mice were kept in type III cages (820 cm2) at room temperature 

with ad libitum access to food and water. Food intake was measured in 5-minutes intervals. 

Physical activity was identified via infrared photo sensors three-dimensionally (X, Y and Z 

directive light barriers). The first day of measurement was skipped as acclimatization phase of 

mice and analysis started at 0:00 a.m. at day 2. Food intake and activity (given as distance 

covered in meters) were analyzed cumulatively or in absolute numbers in 12-hours periods 

(light/dark phases), respectively. 

 

Fig. 9: Overview of experimental setup for indirect calorimetry and subsequent feeding-drinking-

activity measurements (C: control diet, FDA: Feeding-drinking-activity measurement, H: high-fat diet, 

HC: high-fat diet supplemented with 0.5 % cholic acid, IVC: Individually ventilated cage).  

2.9   RNA isolation from tissue samples, cDNA synthesis and quantitative real-

time polymerase chain reaction (qRT-PCR) 

Total tissue RNA was isolated by homogenizing tissue samples in 1000 μl TRIsure (Bioline) for 

20 s using an Ultra-Turrax (IKA) and incubating for 5 min at room temperature. For tissues with 

high fat content, such as iWAT or eWAT, an intermediate centrifugation step of 2500 g for 

5 min was inserted to separate the homogenate from the top lipid phase. Afterwards, the 

samples were mixed with 200 μl chloroform, incubated for further 3 min at room temperature 
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and centrifuged for 15 min, 12000 g at 4 °C. The clear top phase was mixed with 500 μl 75 % 

ethanol, transferred to columns of the SV Total RNA Isolation System (Promega) and 

proceeded according to the manual. RNA was eluted in 50 μl nuclease-free water and 

concentration was measured spectrophotometrically (Infinite® 200 NanoQuant, Tecan). RNA 

integrity was assessed on a 1.5 % DNA agarose gel (note: DNA gels were tested to assess rRNA 

samples and found to be equally suitable with RNA gels). 800 ng of isolated RNA (about 15 µl 

sample) were mixed with 10 µl nuclease free H2O as well as 5 µl loading buffer and separated 

by length on the DNA agarose gel for approximately 40 min at 100 V to visualize the 28S and 

18S rRNA bands. RNA was portioned into aliquots and stored at -80 °C.  

loading buffer (6x concentrated):  

10 mM Tris-HCl (pH 7.6), 0.2 % OrangeG, 60 % glycerol, 60 mM EDTA 

1.5 % agarose gel: 

3 g agarose, 200 ml TAE-Buffer (Roth), 10 µl Roti Safe (Roth) 

Isolated RNA was reverse-transcribed into cDNA by means of the QuantiTect® Reverse 

Transcription Kit (Qiagen), which utilizes oligo-dT and random primers in a 10 μl reaction 

mixture containing 500 ng RNA, was used. cDNA was stored at -20 °C. Primer sequences were 

designed using the Primer3 algorithm (SDSC Biology Workbench) and tested in a non-

quantitative PCR. Only primer pairs that generated a single, sharp product band were applied 

in the qRT-PCR analysis. Primers were produced by Eurofins Genomics and sequences were as 

follows:  

Ucp1: for: 5’-TCT CTG CCA GGA CAG TAC CC-3’, rev: 5’-AGA AGC CCA ATG ATG TTC AG-3’ 

Cidea: for: 5’- TGC TCT TCT GTA TCG CCC AGT-3’, rev: 5’-GCC GTG TTA AGG AAT CTG CTG-3’ 

Cox7a1: for: 5’-CCG ACA ATG ACC TCC CAG TA-3’, rev: 5’-TGT TTG TCC AAG TCC TCC AA-3’ 

Otop1: for: 5’-ACT AGG ACC CCG TCG AAT CT-3’, rev: 5’-ACC ATG CTC TAC GTG CTG TG-3’ 

Hsp90: for: 5’-AGG AGG GTC AAG GAA GTG GT-3’, rev: 5’-TTT TTC TTG TCT TTG CCG CT-3’ 

ActB: for: 5’-AGA GGG AAA TCG TGC GTG AC-3’, rev: 5’-CAA TAG TGA TGA CCT GGC CGT-3’ 
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Gene expression was determined from a standard curve consisting of pooled cDNA in 28-fold 

dilution. Expression levels of target genes were normalized to the mean of heat shock 

protein 90 (Hsp90) and beta-actin (ActB) expression. 

For analysis of gene expression, the SYBR Green-based qRT-PCR was performed either on 96-

well (Mastercycler® ep realplex epgradient S, Eppendorf) or 384-well format (Roche 

LightCycler® 480) according to tables 3 and 4. A melting curve was recorded at the end of the 

program to confirm the quality of the amplified product and identify possible non-specific 

reaction products. 

Table 3: qRT-PCR reaction mixture for gene expression analysis 

 Volume per reaction [µl] 
 96-well plate 384-well plate 

Sensimix SYBR No-ROX (Bioline) 12.5 6.25 
Primer forward 1.0 (10 pmol/µl) 1.0 (5 pmol/µl) 

Primer reverse 1.0 (10pmol/µl) 1.0 (5 pmol/µl) 

Nuclease-free water 9.5 3.25 

cDNA 1.0 1.0 

Total volume per well 25.0 12.5 

 

Table 4: qRT-PCR program for gene expression analysis 

Step Temperature [°C] Time [s]  Cycles 

Initialization 95 420   
Denaturation 97 10   

Annealing 53 15 45x 

Elongation 72 20  

Melting Curve 60 to 95 1200   

 

The samples’ gene expression range was calculated with the help of a standard curve that was 

generated from pooled, undiluted cDNA of all samples (n=48) and diluted by 2n in eight steps. 

On 96-well plates, standards and cDNAs were measured in duplicates, on 384-well format in 

triplicates. The mean expression of the technical replicates was normalized by the mean 

expression of the two housekeeping genes HSP90 and ActB. 
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2.10   Mass spectrometric analysis of bile acid composition and concentration 

2.10.1   Bile acid extraction 

Plasma 

10 µl plasma were mixed 1:2 with 10 µl of 1 µM internal standard mix (bile acids that were 

used for external and internal standards: see appendix, table 10). To extract bile acids, 500 µl 

methanol was added, mixed and centrifuged at 12000 rpm for 10 min at 4 °C. 1.5 ml 

supernatant was transferred to a new reaction tube. The solvent was evaporated in a speed 

vac (SPD111V SpeedVac, Thermo Savant) at 40 °C. The residue was resuspended in 50 µl 

methanol and 50 µl LCMS water, vortexed at 40 °C for 5 min (Thermomixer compact, 

eppendorf). 10 µl of the final analyte, which contains a bile acid proportion of plasma : internal 

standard of 1:1, was transferred to HPLC vials. 

Organs 

Enterohepatic organ samples were ground in liquid nitrogen. Bile acids were extracted out of 

40 mg tissue with 800 µl methanol. The supernatant was dried in speed vac at 40 °C. The 

extract was resuspended in 800 µl methanol. 20 µl of the resuspended extract were diluted 

1:50 with 980 µl of a methanol and water mix (1:1). 100 µl were transferred to the LCMS vial 

and 10 µl stable isotope labeled standard added. As the proportion of extract and standard 

was 1:5 in vial (2 µl extract, 10 µl standard), the final bile acid concentration results were 

multiplied by 5. 

Feces 

20 mg of dried and pestled feces were extracted twice with 800 µl methanol and mixed at 

700 rpm at 25 °C for 30 min and afterwards centrifuged at 12000 rpm for 10 min. The 

supernatant was transferred to a new reaction tube and dried in speed vac at 40 °C. The 

extract was resuspended in 1 ml methanol and diluted 1:50 (10 µl extract, 490 µl methanol). 

50 µl of the diluted extract was combined with 10 µl stable isotope labeled standards and 60 

µl LCMS water containing NH4Ac 10 mM and filtered. As the proportion of extract and 

standard was 1:10 in vial (1 µl extract, 10 µl standard), the final bile acid concentration results 

were multiplied by 10. 
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2.10.2   Analysis of bile acid concentration and composition 

The mass spectrometer (ABSciex QTrap 5500) was operated in positive mode and mass 

spectra recorded using the multiple reaction monitoring (MRM) mode. Signal acquisition was 

performed using Analyst Software and quantitation with Multiquant Software (ABSciex, 

Framingham, MA, USA). 

2.11   Blood lipids analysis 

A quantitative determination of total cholesterol (CHOL), high-density lipoprotein cholesterol 

(HDL), triglycerides (TRIG), alanine aminotransferase (ALT), aspartate aminotransferase (AST), 

and glucose (GLU) in the plasma samples was conducted with Piccolo® Lipid Panel Plus Reagent 

Disc, used with the Piccolo xpress™ Chemistry Analyzer (Abaxis North America, USA). For that 

purpose, 110 µl of heparinized plasma samples were transferred to a lipid panel plus disc and 

analyzed according to the manufacturer’s protocol in the automated Piccolo Analyzer. Low-

density lipoprotein cholesterol (LDL) and very low-density lipoprotein cholesterol (VLDL) were 

automatically calculated out of the CHOL, HDL and TRIG concentrations by the analyzer.  

2.12   Bile acid transporter sequencing & in silico PCR 

RNA of enterohepatic organs (small & large intestine, liver, gall bladder) was isolated from a 

C57BL/6J as well as a 129S6/SvEvTac mouse, and qualitatively as well as quantitatively 

controlled as described in chapter 2.9 and reverse transcribed to cDNA. 

Full length primers were designed with the help of the online platforms “Ensemble genome 

browser” (http://www.ensembl.org/index.html) and “Primer3” 

(http://workbench.sdsc.edu/), to cover the full length of the gene’s coding region. 

Oligo name Forward primer sequence (5’ → 3’) Reverse primer sequence (5’ → 3’) 

ASBT ATTTGCACAGCACAAGCAGT TCTCATCAAATGATGGCCTG 

OSTb GGGCCAGAAACATCTCAATC GGGCGTTATGGGGTACTCTC 
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The PCR products were transferred to a DNA gel, generated bands were cut. Sequencing of 

the bile acid transporters Ostb (Slc51b gene) and Asbt (Alc10A2 gene) was performed by a 

commercial provider (Eurofins Genomics GmbH, Germany). 

2.13   Statistics 

Statistical analyses were performed using the software GraphPad PRISM 6, SigmaPlot 12.3 

(Systat Software Inc., San Jose CA/USA), and R (RStudio 2.14.1). Statistical tests were applied 

as specified in the respective figure legends. P-values <0.05 were considered as statistically 

significant. 

For comparison of two normally distributed groups, significance was determined using the 

two-sided Student’s t-test. Two or more normally distributed groups were compared by two-

way Analysis Of Variance (ANOVA) with respect to two variables. Related samples were 

analyzed with Sidak’s post-test for multiple comparisons. Two-Way Repeated Measures (RM) 

ANOVA and Sidak’s post-test was used to compare one variable between two groups, that was 

repeatedly measured over time. A linear regression model was applied to compare a repeatedly 

measured variable among experimental groups that differed with respect to two characteristics. 

Data adjustment was performed to remove the influence of a disruptive factor. Regression lines 

are indicated for significant correlations only. 
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3    RESULTS 

In the year 2006, Watanabe et al. described the prevention of diet-induced obesity (DIO) due 

to dietary cholic acid (CA) supplementation in C57BL/6J (BL6J) mice. They speculated that this 

phenomenon is based on a CA-derived increase of thermogenic processes in brown adipose 

tissue (BAT). However, the authors did not provide a substantive, direct proof of neither BAT 

recruitment nor UCP1 activation within this context. In order to prove their experiment’s 

reproducibility, we initially repeated the key experiment of Watanabe et al., 2006. Moreover, 

we used the Ucp1 ko mouse to directly prove the role of UCP1. 129S6/SvEvTac (129Sv) mice 

were used to investigate the role of white fat browning within this regard. With the help of 

the obtained findings, we would be able to further enlighten the underlying molecular 

mechanisms and to investigate a possible contribution of white adipose tissue (WAT) 

browning to this effect. 

Parts of this work have recently been published (Fromme et al., 2019). 

3.1   Bile acid supplementation verifiably prevents C57BL/6J mice from diet-

induced obesity 

In our study male BL6J mice at the age of 6-7 weeks were fed a control (C) or high-fat diet (H), 

or one of the two diets with CA-supplementation (CC or HC), respectively. No differences in 

food intake were observed during the complete experimental phase (Fig. 10a). As 

experimental diets varied in energy content (Table 5), animal food intake was adjusted by 

energy content (kJ/g) of the respective diet. No differences in energy intake could be detected 

between non-supplemented and CA-supplemented diet groups (Fig. 10b). Despite these 

findings, H-fed BL6J mice significantly gained more body mass compared to control fed mice 

after 28 feeding days (p=0.001), whereas HC-fed mice showed a body mass development 

comparable to C-fed mice. Notably, CA-supplementation seems to prevent diet-induced 

obesity but does not lead to body mass loss in general: it maintains normal body weight in H-

fed mice but does not further reduce body mass in C-fed mice (Fig. 10c). Thereby, a reduced 

fat mass fully accounted for the CA-mediated DIO-prevention (Fig. 10d), as lean mass was not 

affected by CA-supplementation (Fig. 10e). These observations proved the reproducibility of 

Watanabe’s key finding and provided the basis for all further investigations. 
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We observed an initial body mass drop for C, CC and HC-fed mice within the first experimental 

week (Fig. 10c). This effect presumably resulted from the diet change from chow diet to 

experimental semi-purified diet, which has a different taste and comparatively hard texture. 

The H diet instead is pleasant-tasting and its texture is soft. Moreover, the related initial body 

mass loss of HC and CC-fed mice can eventually be attributed to the bitter taste that bile acids 

possess by nature. In order to circumvent adaption difficulties to the differing texture of the 

semi-purified experimental food, an intermediate phase was included in all following feeding 

experiments, where all animals first switched to C diet for one week and afterwards received 

the respective experimental diet. 

 
Fig. 10: Cholic acid supplementation prevents diet-induced obesity in C57BL/6J mice due to fat mass 

reduction (n=4-7). Figure modified from Fromme et al. (2019). a) Cumulative food intake during 28 

experimental days. Note: Food intake of only four H-fed animals was analysed due to exclusion of three 

food spilling animals). b) Mean energy intake at experimental day 28. Differences between 
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supplemented and non-supplemented groups were t-tested. a) and b) Mean values with standard 

deviation are shown (n=4-7). c) Body mass development over 28 experimental days. CA-

supplementation effectively prevented body mass gain of H-fed BL6J mice (BA main effect p=0.0024; 

Linear Mixed Effects Model), whereas supplementing CA to C diet does not affect body mass 

development (p=0.718). Mean values with standard error bars are shown (n=6-7). d) Total fat mass at 

experimental day 28. CA-supplementation impeded H feeding derived fat mass accumulation 

(p=0.0024). e) Total lean mass at experimental day 28. d) and e) Mean values with standard deviation 

are shown (n=6-7). 

Table 5: Energy content of experimental diets analyzed by bomb calorimetry. 

Diet Energy [kJ/g] 

C 17.2 

CC 17.0 

H 20.5 

HC 21.2 

 

To consider possible effects of CA-supplementation on energy assimilation, energy contents 

of food and feces samples of experimental week 4 were analyzed by bomb calorimetry. The 

energy of high-fat diets is assimilated more effectively than energy of low fat diets. However, 

no influence of CA-supplementation on assimilated energy and assimilation coefficient was 

observed, neither on C nor on H diet (Fig. 11). Thus, differences in body mass and body 

composition between non-supplemented and CA-supplemented diets were not caused by an 

altered energy intake. 

 
Fig. 11: Assimilated energy and assimilation coefficient in BL6J mice after 28 experimental days (n=4-

7). Mean values are shown, data points represent individual animals. 
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3.2   Influence of dietary cholic acid supplementation on C57BL/6J mice 

At experimental day 28, animals were sacrificed and dissected. Amongst others, inguinal white 

adipose tissue (iWAT) and interscapular brown adipose tissue (iBAT) were weighed, the left-

sided fat pad was shock frozen for qPCR experiments, the right-sided part was fixed for H&E-

staining and subsequent microscopic analyses. 

3.2.1   Altered iBAT morphology and Ucp1 mRNA expression  

Mean total iBAT mass was significantly reduced due to CA-supplementation in H-fed mice (Fig. 

12a). This effect, however, presumably is not caused by the reduction of pure brown 

adipocytes but mainly by a reduction of the size and number of white adipocytes residing in 

iBAT. This effect was not only observed during animal dissection by comparing iBAT 

appearance visually, whereby iBAT of H-fed mice was larger and pale compared to the more 

consolidated and darker iBAT of HC-fed mice. Moreover, microscopic analyses revealed 

enlarged iBAT adipocyte sizes of H-fed BL6J mice. This effect was reversed by CA-

supplementation, as iBAT lipid storage of HC-fed mice was comparable to C-fed mice (Fig. 

12b).  

As it was hypothesized, that the DIO-protective effect of CA-supplementation to H diet is due 

to increased thermogenic processes in BL6J mice, we analyzed iBAT Ucp1 mRNA expression. 

The qPCR measurements revealed a decrease of relative iBAT Ucp1 expression in HC-fed mice 

compared to H-fed mice (p=0.0302). CA-supplementation did not affect Ucp1 expression in C-

fed mice (p=0.4862) (Fig. 12c). Therefore, we cannot confirm a CA-caused Ucp1 recruitment 

in BL6J iBAT on transcript levels. Moreover, we analyzed mRNA expression of the cAMP-

dependent thyroid hormone activating enzyme type 2 iodothyronine deiodinase (D2), as it 

was presented to be essential to the DIO-protective effect of CA (Watanabe et al., 2006). 

However, we found no effect of CA-supplementation on D2 mRNA expression (comparing 

non-supplemented with the respective supplemented diet group with Student’s t-test, data 

not shown).  
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Fig. 12: Effects of CA-supplementation on BL6J iBAT mass, morphology and Ucp1 mRNA expression 

(n=6-7). Figure modified from Fromme et al. (2019). a) Mean BL6J iBAT mass: Comparison of 

interscapular brown adipose tissue (iBAT) masses according to different diets. Mean values with 

standard deviation are shown. b) Microscopic specimen of exemplary H&E-stained iBAT tissue slides. 

Scale bar: 50 µm. c) Relative BL6J Ucp1 mRNA expression in iBAT after 28 days of experimental diet 

feeding with or without cholic acid supplementation. Ucp1 gene expression measured by quantitative 

PCR. Transcript levels were normalized to the mean expression of Hsp90 and ActB. Means are shown, 

data points represent individual animals. Statistical significance between non-supplemented and CA-

supplemented diet groups was tested using Student’s t-test. 

3.2.2   Reduced iWAT mass and potential recruitment of brite adipocytes in HC-fed 

C57BL/6J mice  

Bile acids effectively impede white adipocyte hypertrophy caused by H feeding in BL6J mice. 

Congruently to total fat mass, CA-supplementation reduced mean iWAT mass of H-fed mice 

(p<0.001) but not C-fed mice (Fig. 13a). Analyzing histologic specimens of iWAT derived from 

HC-fed BL6J mice, we did not only observe a reduced adipocyte hypertrophy, but also the 

occurrence of multilocular cells (Fig. 13b). In order to decide, whether these cells potentially 
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contribute to thermogenic processes, we analyzed the expression of the brown adipocyte 

markers Ucp1, CideA, Cox7A1 and Otop1 in BL6J iWAT using two separate two-way ANOVAs, 

for each C and H diets, with the two factors “CA-supplementation” and “gene”.  

The results of these qPCR measurements support the hypothesis that BAs cause brite 

adipocyte formation in BL6J iWAT, as CA-supplementation significantly increases brown fat 

marker expression in H-fed mice (p=0.0034). Moreover, we detected a significant interaction 

between both factors (p=0.0021), showing that the effect of CA-supplementation differs 

between the several brown fat markers of H-fed mice. In order to elucidate the strength of 

this effect on the different brown fat markers we conducted a Post-Hoc Sidak’s multiple 

comparisons test, which revealed a significant increase of Ucp1 expression due to CA-

supplementation of H diet. 

In C-fed animals, CA-supplementation did not affect brown fat marker expression, but we 

found an interaction between both factors “CA-supplementation” and “gene” (p=0.0232). 

However, this effect could not be confirmed for a single brown fat marker with Sidak’s multiple 

comparisons test (Fig. 13c). 

To corroborate these observations on protein level, we IHC-stained UCP1-positive cells in 

iWAT and observed a browning effect of HC-fed BL6J mice (Fig. 13d). With the help of IHC-

staining, we were able to proof, that the multilocular cells, which occurred in iWAT of HC-fed 

Bl6J mice, were UCP1-positive. Thus, CA-supplementation of BL6J mice in combination with a 

high-fat diet leads to a browning effect in iWAT. 

In summary, CA-supplementation significantly decreases iWAT mass, significantly increases 

brown fat marker expression and leads to recruitment of UCP1-positive multilocular cells in 

H-fed BL6J mice but has none of these effects in C-fed BL6J mice (Fig. 13). 
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Fig. 13: Effects of CA-supplementation on BL6J iWAT mass, morphology, brown adipocyte marker 

mRNA expression and occurrence of UCP1-positive cells (n=5-7). Figure modified from Fromme et al. 

(2019). a) Mean BL6J iWAT masses: Comparison of inguinal white adipose tissue masses according to 

different diets. Mean values with standard deviation are shown (n=5-7). Statistical significance 

between non-supplemented and CA-supplemented diet groups was tested using Student’s t-test. b) 

Microscopic specimen of exemplary H&E-stained iWAT tissue slides. Scale bar: 50 µm. c) Compilation 

of relative mRNA expression levels of different brown adipocyte markers in iWAT after 28 days of 

experimental diet feeding with or without CA-supplementation. Transcript levels were normalized to 

the mean expression of Hsp90 and ActB (n=6-7). Statistical significance was tested group-wise for C 

and H groups, respectively, using two-way RM ANOVA and Sidak’s multiple comparisons test for Post-

Hoc testing. d) Exemplary specimen of IHC-stained UCP1-positive cells in BL6J iWAT. Scale bar: 50 µm. 

3.2.3   Cholic acid supplementation does not increase energy expenditure 

With the help of indirect calorimetry (IC) measurements, it was possible to analyze the effect 

of CA-supplementation on energy expenditure. Therefore, IC measurements were performed 

with a further cohort of male BL6J mice. Twenty-two animals were set on control diet at the 

age of 4-5 weeks. After 12 days on C diet, the animals were singly caged and carried over into 

the indirect calorimetry measurement chamber for two further days on C diet, to adapt to the 
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climate chamber. Afterwards, at the age of 6-7 weeks (which corresponds to the age of the 

mice of the initial experiment) the animals were assigned to either H or HC group (n=11). After 

five consecutive measurement days on the experimental diets, the animals switched to a 

feeding-drinking-activity (FDA) measurement system for further 3 days (experimental design: 

see Fig. 9). All animals had free access to food and water during the whole experimental phase. 

The animals were randomly assigned to one of the two diet groups. Before the switch from C 

to H/HC diet, both diet groups did not significantly differ in mean body mass (p=0.98, Student’s 

t-test). After diet change mean body mass significantly differed between the two groups 

already after 5 days (p<0.001). This difference persisted after transferring the mice from 

indirect calorimetry to FDA device (p<0.01) (Fig. 14). 

 

Fig. 14: Absolute body mass of BL6J mice during IVC housing (days -14 to -2) and indirect calorimetry 

(days -2 to 0) on C diet as well as on indirect calorimetry (days 0 to 5) and feeding-drinking-activity 

measurements (days 5 to 8) on H or HC diet, respectively (n=11). Means with standard deviation are 

shown. Two-way RM ANOVAs were used for statistical testing. 
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Food intake did not differ between the groups at all time points during the experiment (Fig. 

15). 

 
Fig. 15: Food intake of BL6J mice during IVC housing (days -14 to -2) and indirect calorimetry (days -

2 to 0) on C diet as well as on indirect calorimetry (days 0 to 5) and feeding-drinking-activity 

measurements (days 5 to 8) on H or HC diet, respectively (n=11). Means with standard deviation are 

shown. Two-way RM ANOVAs were used for statistical testing. Note: Standard deviation of food intake 

mass of period 0 to 5 was comparatively high due to food spilling animals. Excluding spilling animals 

from statistical testing does not alter food intake comparability between both diet groups. 

Fat and lean mass were determined before (at day -2) and after (at day 5) indirect calorimetry 

measurement via NMR spectrometry (Fig. 16, experimental design: see Fig. 9). The high-fat 

diet-induced increase in fat mass was prevented by CA-supplementation, two-way RM ANOVA 

analyses of fat masses before and after indirect calorimetry (factor “time-point”) revealed a 

significant variation due to CA-supplementation (factor “diet”) of H-fed BL6J mice (p=0.0045), 

as well as a significant interaction between time-point and diet (p<0.0001). Sidak’s multiple 

comparisons testing identified a significant reduction of HC-fed mice’s fat mass, five days after 

diet change (“after IC”), as H-fed mice gained 1.5 g fat mass, but HC-fed mice did not 

accumulate further adipose tissue.) No fat mass difference was detected between both diet 

groups before IC.  

H-fed mice also gained lean mass, probably in line with the higher weight of fat mass they had 

to cope with (Fig. 16). Two-way RM ANOVA analysis of lean mass before and after indirect 
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calorimetry (factor “time-point) revealed a significant variation due to CA-supplementation 

(factor “diet”) of H-fed BL6J mice (p=0.0235), as well as a significant interaction between time-

point and diet (p=0.0008). Sidak’s multiple comparisons testing identified, that lean mass was 

significantly increased in H-fed BL6J mice after IC, as they gained 1.5 g of lean mass during IC 

measurement, whereas HC-fed mice did not. These results are comparable to the results 

obtained in earlier experiments. 

 

Fig. 16: Fat mass and lean mass before and after indirect calorimetry measurements (at day -2 and 

day 5 of experiment) (n=11). Figure modified from Fromme et al. (2019). Values are means with 

standard deviation. Body composition was assessed via NMR spectrometry (Minispec, Bruker). Two-

way RM ANOVAs were used for statistical testing. 

Energy expenditure analysis 

Analyzing the indirect calorimetry results, both groups on C diet show parallel mean 

respiratory exchange ratios initially (Fig. 17). During dark phase from 5 pm (17:00) to 5 am 

(5:00) the mean RER is kept at levels around 1.0 and starts to fall at late dark phase. During 

light phase from 5 am (5:00) to 5 pm (17:00) mean RER initially falls and finally reaches lowest 

values around 0.8 at 10-12 am. After that, RER rises again constantly and reaches levels around 

1.0 in the following dark phase. At time points where RER exceeds 1.0, animals probably 

exercised intensely, CO2 production by the working muscles rises. All mice displayed the 

typical circadian rhythm of nocturnal activity accompanied by high heat production and 

preferred carbohydrate usage as compared to lower heat production and preferred lipid usage 

during daytime at rest. 
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However, after switching the diet from C to H or HC, respectively, RER courses alter and clearly 

differ between diet groups at a progressive rate. In contrast to C-feeding, RER of H-fed mice is 

flattened with far lower peaks during active phases. They only reach levels between 0.9 at the 

beginning of dark phase and 0.8 at the beginning of light phase. This curve progression is 

typical for H feeding, as animals primarily metabolize lipids but not carbohydrates. HC fed mice 

however show phases during light phase, where very low RER levels, partly below 0.8 are 

reached for several hours. Moreover, the whole RER course seems to be shifted in comparison 

to H-fed mice. Especially from day two after diet change on, clear differences between diet 

groups were observed. HC-fed animals did not only maintain RER levels of around 0.8 during 

light phase, they also reach RER values of about 0.9 around two hours later compared to their 

H-fed mates (around 17:00 for H-fed mice, 19:00 for HC-fed mice) (Fig. 17). These observations 

suggest, that HC-fed mice either start feeding at later time-points compared to H-fed mice, 

probably due to unfavorable flavor of CA, which is known to exhibit a bitter taste, or that CA-

supplementation leads to an altered metabolism, where lipid metabolism is prolonged and 

the change to carbohydrate metabolization is delayed. Differences in RER between the 

supplemented and the non-supplemented diet group appeared rapidly after diet change and 

were thus not secondary to changes in body mass and composition. 

 

Fig. 17: Mean RER over one week, before and after diet change from C to H or HC diet, respectively 

(n=11). Figure modified from Fromme et al. (2019). 

Contradicting to our hypothesis, calculations of mean energy expenditure revealed decreased 

rates for HC-fed mice compared to H-fed mice. Both H and HC-fed mice showed highest energy 

expenditure levels at the beginning of dark phase, as they are comparatively active directly 

after resting phase, typically start searching for food and show increased food intake. Energy 
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expenditure slightly decreases during dark and active phase (17:00-5:00). H-fed animals 

seemed to expend slightly more energy compared to HC-fed during dark. This difference 

distinctly appears during light, resting phase (5:00-17:00), where HC-fed animals constantly 

expended less energy (HC: ~2.9 Watt compared to H: ~3.3 Watt) (Fig. 18). 

 

Fig. 18: Mean energy expenditure over one week, before and after diet change from C to H or HC 

diet, respectively (n=11). Figure modified from Fromme et al. (2019). 

With the help of IC and FI data, we were able to balance energy over two days of C feeding 

(days -2 to 0) as well as five days of H and HC feeding (days 0 to 5). FI (g/d) was multiplied by 

energy content of respective diet type (C: 17.2 kJ/g before diet change, and H: 20.5 kJ/g or HC: 

21.2 kJ/g after diet change). Approximately half of all animals spilled food (probably due to 

single caging). Therefore, we conducted energy balance calculations twice. Calculations 

including all animals resulted of a positive energy balance before and after diet change. There 

were no differences in mean energy intake or energy expenditure during C feeding (Figs. 19a 

and 19b). After diet change to H or HC diet, respectively, two-way RM ANOVA revealed a 

significant increase of energy intake after diet change to H diets (p=0.0002), as well as a 

significantly higher energy intake of HC-fed compared to H-fed BL6J mice (p=0.0443). Energy 

expenditure also was significantly increased after diet change to H or HC diet (p<0.0001). 

Besides, we fund a significant interaction between both factors “time” and “CA-

supplementation” (despite no effect for CA-supplementation alone) (p= 0.0061). Sidak’s 

multiple comparisons testing showed a significant difference between CA-supplemented and 

non-supplemented H diet after diet change. As HC fed BL6J mice exhibited an increased energy 

intake, but a decreased energy expenditure compared to H-fed animals, the positive energy 

balance was significantly greater in these animals (p=0.0317) (Fig. 19c). These results 
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contradict body mass observations, at which body mass was significantly reduced by HC-

feeding. 

 

Fig. 19: Energy intake (kJ/d), energy expenditure (kJ/d) and their respective delta, before (days -2 to 

0) and after diet change (days 0 to 5) during IC measurements, including spilling animals (n=11). 

Figure modified from Fromme et al. (2019). Two-way RM ANOVAs were used for statistical testing. 

As these calculations were adulterated due to spilling animals, we exemplary excluded food 

intake data of these animals (spillage limit was set to a food consumption of >5g/d). By 

extracting these data, neither mean energy intake (p=0.9196), nor delta energy (p=0.3537) 

differed between H and HC-fed animals, anymore. Energy expenditure was not altered, as it 

is not affected by food spillage (Fig. 20). 

 

Fig. 20: Energy intake (kJ/d) (n=3-9), energy expenditure (n=11) and their respective delta (n=3-9), 

before (days -2 to 0) and after diet change (days 0 to 5) during IC measurements, excluding spilling 

animals. Figure modified from Fromme et al. (2019). Student’s t-tests were applied to compare H to 

HC diet group after diet change. 
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Calculations of daily energy expenditure (DEE) and resting metabolic rate (RMR) revealed 

similar results: Both mean DEE and mean RMR did not differ between groups before diet 

change but increased due to H feeding and decreased due to CA-supplementation in the HC 

diet group, respectively. Both DEE and RMR significantly differed between non-supplemented 

and CA-supplemented H diets (Figs. 21b and 22b). 

As H-fed animals significantly gained body mass during five days of indirect calorimetry 

measurements, we adjusted both DEE and RMR, respectively for body composition according 

to the formula LM + 0.2 FM (Even and Nadkarni, 2012) in order to accommodate for the 

different body compositions of both diet groups. 

Both DEE and RMR significantly correlated with adapted body composition. As both DEE and 

RMR fitted to the regression line, H-fed animals seemingly just adapted their energy 

metabolism appropriate to their higher body mass. After body composition adjustment, both 

DEE and RMR did not differ between diet groups (Figs. 21 and 22). Consequently, we can 

conclude that any variations for DEE and RMR are due to body mass differences between diet 

groups. 

DEE and RMR adjustment was additionally done for full body mass in comparison to the body 

mass correction formula LM + 0.2 FM (data not shown). Both types of calculation yielded the 

same result, leaving the basic statement identical. 
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Fig. 21: Daily energy expenditure of H and HC-fed BL6J mice (n=11). Figure modified from Fromme 

et al. (2019). a) Body composition according to correction formula (LM + 0.2 FM) after five days on H 

or HC diet, respectively. b) Mean daily energy expenditure before (C) and after (H or HC) diet change. 

a) and b) Means with standard deviation are shown. c) Scatterplot showing a significant correlation of 

DEE and corrected body composition. d) DEE adjusted for corrected body composition. Both diet 

groups exhibit a comparable DEE, adapted to different body compositions. Mean values are shown, 

data points represent individual animals. 
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Fig. 22: Resting metabolic rate of H and HC-fed BL6J mice (n=11). Figure modified from Fromme et 

al. (2019). a) Body composition according to correction formula (LM + 0.2 FM) after five days on H or 

HC diet, respectively. b) Mean resting metabolic rate before (C) and after (H or HC) diet change. a) and 

b) Means with standard deviation are shown. c) Scatterplot showing a significant correlation of RMR 

and corrected body composition. d) RMR adjusted for corrected body composition. Both diet groups 

exhibit a comparable RMR, adapted to different body compositions. Mean values are shown, data 

points represent individual animals.  

Feeding-drinking-activity-measurements 

Subsequent to indirect calorimetry measurements, animals were transferred to the FDA 

measurement system in order to automatically measure food intake as well as physical activity 

in 5-minutes intervals per animal (drinking frequency was not observed within this setting). 

Mice were kept in the FDA measurement system at room temperature (22 ± 1 °C) on a 12 

hours light/dark cycle and were further fed their respective experimental diet, which they 

were assigned to (H or HC diet, ad libitum) for 3 days. The first day was used for acclimatization 

of animals and therefore all measurements discarded. Measurement analyses were started 

with the first light phase at day 2. 
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Both non-supplemented and CA-supplemented groups showed similar cumulative food 

intakes. During the first 12 hours of light phase HC-fed mice showed a slightly reduced 

cumulative food intake compared to H-fed mice. At the end of the first light phase the HC-fed 

mice ate significantly less compared to H-fed mice. During dark phase however, HC-fed mice 

absolutely ate more than H-fed mice, so cumulative food intake was comparatively similar for 

both diet groups at the end of the first day. During the second light phase, cumulative food 

intake stayed fairly constant for both groups, so no differences were observed for absolute or 

cumulative food intake between both diet groups. During second dark phase however, HC-fed 

mice significantly ate more compared to H-fed mice. This difference however was not 

significant when cumulative food intake was examined. In summary, HC-fed mice seem to eat 

more during dark phases when they are active. However, this difference is compensated 

during light phases, in which H-fed mice eat more (Fig. 23). In order to verify these results, 

longer measurement periods of several days have to be performed and an overestimation of 

food intake due to spilling needs to be controlled. 

 

Fig. 23: Cumulative and absolute food intake of H and HC-fed BL6J animals during FDA-

measurements over 48 hours (n=11). Food intake was compared between diet groups for every time-

point separately with Student’s t-test. Values are means with standard deviation. 

Feed consumption of individual animals was comparatively high due to spillage. Therefore, 

energy could not be balanced perfectly. Nevertheless, energy expenditure measurements (as 

follows) provided clear evidence. 
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Activity rate was determined by measuring the distance that all mice covered during the 

second and third day after transferring them to the FDA system. Analysis of absolute distance 

showed no significant difference between the diet groups, whereas HC-fed mice tend to run 

longer distances, however statistically not significant (Fig. 24). Analysis of cumulative distance 

only was significant at the end of dark phase one, 24 hours after start of measurement. 

 

Fig. 24: Cumulative and absolute distance, that H and HC-fed BL6J animals covered during FDA-

measurements over 48 hours (n=11). Food intake was compared between diet groups for every time 

point separately with Student’s t-test. Values are means with standard deviation. 

All results from IC and FDA system measurements suggest, that the CA-derived DIO-resistance 

of BL6J mice is not due to increased energy expenditure. Energy expenditure was rather 

decreased due to HC feeding. This effect however was merely caused by an adaption to a 

decreased body mass, as it disappeared after adjusting energy expenditure data to body 

composition. 

3.3   Influence of dietary cholic acid supplementation on 129S6/SvEvTac mice 

It was hypothesized, that body mass changes in BL6J mice could also result of brite adipocyte 

recruitment by CA-supplementation. 129S6 mice were used to verify this hypothesis. The 
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129S6 mouse strain is well known for its high capacity to recruit brite adipocytes. If CA-

supplementation really affects body mass by brite adipocyte recruitment and enlargement of 

thermogenic capacity, stronger effects of CA-supplementation on body mass development 

were expected in 129S6 mice. 

Mice of the 129S6 strain were kept and fed similar and in parallel to BL6J mice. At the age of 

6-7 weeks mice received a diet switch from standard chow to the respective experimental 

diet. The animals received C or H diet either with or without 0.5 % CA-supplementation and 

were kept for four weeks on the experimental diet. Body mass and food intake were recorded 

twice a week. After 28 days mice were dissected and different tissues sampled for further 

analyses (at the same time and identical to BL6J mice). 

3.3.1   Bile acid supplementation does not alter 129S6/SvEvTac body mass 

Comparable to BL6J mice, 129S6 mice showed mean food as well as energy intakes, which 

were not affected by CA-supplementation (Figs. 25a and 25b). All diet groups continuously 

gained body mass (in accordance with age specific development) and H-fed 129S6 mice gained 

significantly more body mass compared to C-fed mice (p=0.047). In contrast to BL6J mice, CA-

supplementation did not affect body mass of 129S6 mice, neither of C-fed nor H-fed mice (BA 

main-effect p=0.3925). Mean body mass of CA-supplemented and non-supplemented animals 

never differed significantly during the whole experimental phase (Fig. 25c). 

Concordant with body mass development, no differences were observed in fat mass between 

control groups and supplemented diet groups: CA-supplementation did not influence body 

mass in both C and H diets and did not reduce fat mass of H-fed mice (Fig. 25d), as detected 

in BL6J mice. Furthermore, no differences between CA-supplemented and non-supplemented 

animals were seen in lean mass at the end of experiment (Fig. 25e). 
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Fig. 25: Cholic acid supplementation has no influence on 129S6 body mass or composition (n=4-6). 

Figure modified from Fromme et al. (2019). a) Cumulative food intake during 28 days. b) Mean energy 

intake at experimental day 28. Differences between supplemented and non-supplemented groups 

were t-tested. a) and b) Mean values with standard deviation are shown. c) 129S6 body mass 

development after diet change. CA-supplementation does not affect 129S6 body mass development 

(BA main effect p=0.3925; Linear Mixed Effects Model). Mean values with standard error bars are 

shown. d) and e) Mean values with standard deviation are shown. 

Similar to BL6J mice, energy intake (Fig. 25b), assimilated energy as well as assimilation 

efficiency (Fig. 26) were slightly increased in both H compared to C-fed groups, but CA-

supplementation did not affect energy assimilation or assimilation coefficient, respectively, in 

129S6 mice (Fig. 26). 
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Fig. 26: Assimilated energy and assimilation coefficient in 129S6 mice after 28 experimental days 

(n=4-6). Mean values are shown, data points represent individual animals. Student’s t-tests were 

applied to compare non-supplemented to CA-supplemented diets. 

3.3.2   No influence on neither iBAT nor iWAT mass, morphology or brown fat 

marker mRNA expression, respectively 

Mean iBAT mass of 129S6 mice was higher in H-fed mice compared to C-fed mice (p=0.0182). 

However, CA-supplementation did not alter iBAT mass in 129S6 mice (Fig. 27a). Microscopic 

analyses of 129S6 iBAT specimen revealed, that the increase of iBAT mass due to H feeding is 

mainly caused by the increase of lipid accumulation within adipocytes. This effect is not 

prohibited by CA-supplementation, as it was observed in BL6J mice (Fig. 27b). 

Relative iBAT Ucp1 expression was not affected by CA-supplementation (Fig. 27c). Moreover, 

no differences between CA-supplemented and non-supplemented 129S6 animals were 

detected for relative iBAT Cox7a1, CideA, or Otop1 expression (not shown). 
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Fig. 27: 129S6 iBAT analyses (n=4-6). Figure modified from Fromme et al. (2019). a) Mean iBAT mass 

after 28 experimental days. CA-supplemented groups were compared to non-supplemented diets 

using Student’s t-test. Means with standard deviation are shown. b) Exemplary iBAT specimen taken 

from 129S6 mice after 28 experimental days. H&E staining, scale bar 50 µm. c) Relative Ucp1 mRNA 

expression after 28 experimental days. Means are shown, data points represent individual animals. 

Congruently, iWAT mass was increased due to H feeding (p=0.0155), however not affected by 

CA-supplementation (Fig. 28a). iWAT adipocyte morphology did not obviously differ between 

diet groups. Adipocyte size was not (as obviously as in BL6J mice) altered by different diets or 

CA-supplementation. The observed H diet-caused increase of iWAT mass did not seem to 

result in adipocyte hypertrophy primarily (Fig. 28b). Eventually adipocyte hyperplasia 

accounted for iWAT mass increase in H-fed mice. This hypothesis however was not 

investigated within this study. 

Quantitative PCR analyses of brown adipocyte marker expression in 129S6 iWAT did not show 

a specific trend towards gene expression alterations due to CA-supplementation (Fig. 28c). As 

for BL6J mice, C and H groups were compared separately using two separate two-way 

ANOVAs, for each C and H diets, with the factors “CA-supplementation“ and “gene”. 
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In contrast to BL6J mice, CA-supplementation did not affect brown fat marker expression in 

H-fed animals. The same results were obtained for the C diet group.  

 
Fig. 28: 129S6 iWAT analyses (n=4-6). Figure modified from Fromme et al. (2019). a) Mean 129S6 

iWAT masses after 28 experimental diets. Mean values with standard deviation are shown. Statistical 

significance between non-supplemented and CA-supplemented diet groups was tested using Student’s 

t-test. b) Exemplary 129S6 iWAT specimen after 28 experimental diets. H&E stains, scale bar 50 µm. 

c) Compilation of relative mRNA expression levels of different brown adipocyte markers in iWAT after 

28 days of experimental diet feeding with or without CA-supplementation. Transcript levels were 

normalized to the mean expression of Hsp90 and ActB. Statistical significance was tested group-wise 

for C and H groups, respectively, using two-way RM ANOVA and Sidak’s multiple comparisons test for 

Post-Hoc testing. 

We can conclude that the CA-derived prevention of DIO is strain specific. Moreover, there is 

a strain specific difference between BL6J and 129S6 mice concerning the influence of CA-

supplementation on iWAT morphology and iWAT brown fat marker expression. With the help 

of this result, we further studied the different mouse strains to narrow down the relevant site 

of action by successive strain comparisons. 
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3.4   Searching for the relevant strain difference 

3.4.1   Bile acid transporter sequencing 

The data we have raised did not argument for a decreased food intake, which might have 

accounted for a body mass drop of HC-fed animals. As food intake seemed to be unchanged 

by CA-supplementation, we investigated subsequent sites of action that might account for the 

observed strain differences between BL6J and 129S6 mice. 

In order to elucidate the strain specific variations, we initially sequenced the genes of the two 

BA transporters apical sodium dependent bile acid transporter (ASBT), and organic solute 

transporter β (OSTb) that are responsible for the uptake of BAs from gut and their efflux to 

portal blood. 

The ASBT transporter is located at the terminal ileum, where it is responsible for the uptake 

of BAs from the gut lumen into enterocytes. The coding region of the corresponding gene was 

sequenced in large parts (codons for >320 amino acids). However, the start codon and the 

codons for the first eight amino acids as well as the stop codon and the codons for the last 20 

amino acids were missing. Within the sequenced region ten stem specific differences were 

identified. Five of these nucleotide sequence differences lead to stem specific differences in 

amino acid sequence, whereby three of those are located N-terminal within a region of only 

12 amino acids. 

The OSTb transporter is primarily located at the basolateral membrane of enterocytes from 

the ileum and responsible for the efflux of bile acids into portal blood (as heteromer in 

interaction with OSTa). The coding region of the OSTb transporter gene was sequenced 

completely. Sequencing revealed one single strain specific position, which is known as 

rs29931408. A nucleotide replacement C/A leads to an amino acid switch of Q (glutamine) to 

A (alanine). 

Accordingly, these two transporters are prime candidates to further investigate the strain 

specific phenotypic differences that were observed after CA-supplementation of H diet. 
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3.4.2   Balancing bile acid levels in C57BL/6J and 129S6/SvEvTac mice 

In contrast to mice of the C57BL/6J strain, 129S6/SvEvTac mice did not react to dietary cholate 

supplementation in any parameter measured in this study. To clarify whether this discrepancy 

is caused by differences in intestinal bile acid absorption, metabolism or tissue sensitivity, we 

determined BA concentration and composition in several organismic compartments.  

As food intake did not differ between strains and was not influenced by CA-supplementation, 

CA intake also was expected to be similar between diet groups as well as strains. CA was mixed 

into food pellets by a specialized food manufacturer (Ssniff), who guarantees for homogenous 

distribution of CA within the food pellets as well as prevention of demixing or separation. Both 

mouse strains were fed with pellets of the same batch. As food intake was comparable 

between strains and diet groups, the calculated CA intake amounts to averagely 40 µmol/day 

in all supplemented groups (Table 6, Fig. 29). 

Calculation of mean CA intake [µmol/day]: 

Mean food intake [g*day-1] * 0.005 (CA percentage in CC and HC diet) * 408.58 [g*mol-1]-1 

(molecular weight of CA)*106. 

Table 6: Mean daily food intake (n=4-7). 

 

 

In plasma, organ and feces samples, bile acids were mass spectrometrically quantified and 

qualified by using radiolabelled standards. With this procedure, the 17 physiologically most 

abundant bile acids could be detected (15 single BAs +2 groups of murine BAs) in plasma. Due 

to supply difficulties, fewer standards were available during subsequent BA analysis in organs 

and feces: Nine single BAs and the two BA-groups could be detected in enterohepatic organs 

Fig. 29: Calculated cholic acid intake (n=4-7). 

Figure modified from Fromme et al. (2019). 
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and 13 single BAs and the two BA-groups in feces. The amount of total BAs was calculated by 

adding masses of individual BAs. 

Plasma 

The quantified plasma BA levels were adjusted to the calculated individual plasma volume of 

each animal. Therefore, the following plasma BA concentrations relate to total plamsa levels 

within experimental animals. 

Plasma BA levels of BL6J mice were massively increased due to CA-supplementation, both in 

C diet group (14-fold increase) and in H diet group (45-fold increase). In 129S6 mice, this 

increase was only seen in C-fed animals, as their mean plasma BA level was raised 53-fold, but 

was not in H-fed animals.  

In plasma of C-fed BL6J mice, a more than 10-fold higher BA level was found compared to C-

fed 129S6 mice (BC/SC=15.8 µM/1.4 µM). This difference could hint at a generally higher BA 

concentration in BL6J plasma compared to 129S6 mice. This strain difference was not 

observed in the H-fed group, as one SH animal exhibited extraordinary high plasma BA levels. 

Without this animal, H-fed BL6J animals would have shown 4.4-times higher BA plamsa levels 

compared to 129S6 mice. Bile acid concentration in H-fed BL6J (BH) mice was approximately 

70 % less than their C-fed (BC) counterparts (BC/BH=15.8 µM/4.4 µM). This difference was 

also mainly caused by a single C-fed BL6J animal. Removing this animal would lead to similar 

BA levels in BC and BH mice. BL6J mice seem to naturally have higher plasma BA levels 

compared to 129S6 mice, except during H diet, where we found similar mean BA levels for 

both strains. 

Notably, there have been individual mice, that showed exceptional high plasma BA levels, 

which were much higher compared to their counterparts of the same diet and strain. For 

example, one H-fed 129S6 animal had 20-fold higher plasma BA levels compared to the other 

H-fed 129S6 mice. Without this animal, we would also have seen an increase of BA levels due 

to CA-supplementation in H-fed 129S6 animals, as well as a difference of H-fed BL6J mice 

compared to 129S6 mice (Table 7, Fig. 30). 
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Table 7: Plasma BA levels (n=4-7). 

Diet Strain 
Mean plasma bile 
acid levels [µM] 

 
B 15.8 
S 1.4 

CC 
B 227.6 
S 37.6 

H 
B 4.4 
S 5.0 

HC 
B 196.1 
S 4.8 

 

 

In order to receive statistical evidence, we used two separate two-way ANOVAs for each C and 

H diet group separately with the two factors “CA-supplementation” and “strain”. (As no 

matched data was imposed, like in analyses of e.g. gene expressions, Post-Hoc testing was not 

conducted.) 

Plasma BA levels of all C-fed animals of both strains neither showed a statistically significant 

strain effect nor an influence of CA-supplementation. 

In contrast to this, plasma BA levels of H-fed animals were significantly increased due to CA-

supplementation (p=0.0088). Moreover, strains significantly differed in H diet groups 

(p=0.0090), with BL6J mice showing a higher plasma BA concentration compared to 129S6 

mice, above all with CA-supplemented H diet. We also detected a significant interaction 

between both factors (p=0.0087) in this group, confirming a higher plasma BA-raising effect 

for supplemented H-fed BL6J compared to 129S6 animals. 
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Fig. 30: Plasma bile acid concentration [µM] on log-scale, analyzed by HPLC/MS quantification (n=4-

7). Figure modified from Fromme et al. (2019). Means are depicted on log-scale, data points represent 

individual animals. Statistical analyses were conducted using separate two-way ANOVAs for C and H 

diets, with the two factors “CA-supplementation” and “strain”. C diets: no effect due to CA-

supplementation, no strain effect. H diets: effect due to CA-supplementation (p=0.0088), strain effect 

(p=0.0090), and strain-diet-interaction (p=0.0087). 

In conclusion, BL6J mice generally exhibit higher plasma BA levels compared to 129S6 mice. 

Plasma BA levels were found to be influenced by both CA-supplementation and strain, 

respectively, in H diet groups.  

Enterohepatic organs 

For BA analyses in organs, mice were dissected and all organs that are part of the 

enterohepatic circulation (including small and large intestine, caecum, liver, and gall bladder; 

collectively called enterohepatic organs (EO) in the following) were removed, shock frozen in 

liquid nitrogen, homogenized and processed for HPLC analysis as described above (see 

paragraph 2.10). As hypothesized, BA pool was enlarged in CA-supplemented animals 

compared to non-supplemented animals. BL6J mice naturally show higher BA pool sizes 

compared to 129S6 mice, with C-fed 129S6 mice having only an organ BA pool size of 55 % 

compared to C-fed BL6J mice and 42 % in H-fed animals. H-feeding slightly increases organ BA 

pool size in in BL6J animals but not in 129S6 animals.  

Despite equal CA-uptake with food, supplemented 129S6 mice showed a far less BA pool size 

compared to BL6J mice (CC: 78 % less, HC: 67 % less). Due to CA-supplementation, 129S6 mice 

only reach organ BA pool concentrations that are comparable to BL6J organ BA pool 
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concentrations without CA-supplementation. Moreover, the fold-change of mean organ BA 

pool due to CA-supplementation is higher in BL6J (C → CC: 5.3-fold, and H → HC: 3.5-fold) 

compared to 129S6 mice (C → CC: 2.2-fold and H → HC: 2.7-fold) (Table 8). 

Table 8: Mean BA pool [µmol/animal] in enterohepatic circulation of BL6J and 129S6 mice, 

adjusted to individual EO weight. 

Diet Strain 
Mean organ BA 

pool 
[µmol/animal] C B 5.3 

S 2.9 

CC 
B 28.1 
S 6.3 

H 
B 7.3 
S 3.1 

HC 
B 25.5 
S 8.4 

 

Statistical analyses were also conducted using two separate two-way ANOVAs for each C and 

H diet group separately with the two factors “CA-supplementation” and “strain”. 

In both diet groups, EO BA concentration significantly differed due to CA-supplementation (C: 

p<0.0001, H: p<0.0001), with higher BA concentrations in CA-supplemented diet groups. 

Moreover, EO BA concentration significantly differed between strains in both diet groups (C: 

p<0.0001, H: p<0.0001). We also found a significant strain-diet-interaction in both diet groups 

(C: p<0.0001, H: p=0.0016), demonstrating a stronger BA pool raising effect in supplemented 

BL6J compared to 129S6 animals (Fig. 31). 
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Fig. 31: Bile acid concentration [nmol/mg] in enterohepatic organs, analyzed by HPLC/MS 

quantification (n=4-7). Figure modified from Fromme et al. (2019). Means are depicted, data points 

represent individual animals. Statistical analyses were conducted using separate two-way ANOVAs for 

C and H diets, with the two factors “CA-supplementation” and “strain”. C diets: effect due to CA-

supplementation (p<0.0001), strain effect (p<0.0001), strain-diet-interaction (p<0.0001). H diets: 

effect due to CA-supplementation (p<0.0001), strain effect (p<0.0001), strain-diet-interaction 

(p=0.0016). Cave: Not all BAs that were quantified in plasma were also quantified in EO (missing bile 

acids: Dehydro-CA, CDCA, UDCA, GCDCA, GUDCA, TUDCA). 

Feces 

To estimate daily fecal bile acid loss, excreted feces mass was determined and its BA 

concentration analyzed using HPLC/MS. For that, feces were sampled at week four of 

experiment for three days, pooled, homogenized and processed for HPLC/MS analysis as 

stated above (methods, paragraph 2.10.1). 

The total amount of BAs in feces was drastically increased by CA-supplementation. The 

observed strain difference in plasma and organ BA concentrations could also be seen in fecal 

bile acid concentrations, as 129S6 mice exhibited slightly lower BA concentrations (statistically 

significant for C/CC-fed animals) (Table 9, Fig. 32). 
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Table 9: Mean fecal bile acid excretion [µmol/g] of BL6J and 129S6 mice. 

Diet Strain 
Mean fecal BA 

excretion [µmol/g] 

C 
B 6.2 
S 4.8 

CC 
B 69.0 
S 46.2 

H 
B 17.7 
S 7.9 

HC 
B 73.5 
S 68.3 

 

For statistical analyses we pooled animals of both strains and conducted two-way ANOVAs for 

each diet group separately: BA excretion significantly differs between strains in C diet groups 

(p=0.0074), with 129S6 animals excreting less BAs compared to BL6J animals. Moreover, we 

found a statistically significant increase of fecal BA excretion due to CA-supplementation 

(p<0.0001) as well as a significant interaction between both factors (p=0.0150), hinting at a 

stronger increase in BA excretion due to CA-supplementation in BL6J animals. Additionally, 

CA-supplementation also significantly increases BA excretion in H-fed animals (p<0.0001). In 

contrast to C-fed mice, we did not observe a strain difference in H diet groups (Fig. 32).  

As there were no differences in feces mass between strains or diet groups, similar results were 

obtained for daily fecal BA excretion mass (not shown). 

 

Fig. 32: Fecal bile acid excretion [µmol/g], analyzed by HPLC/MS quantification (n=4-7). Figure 

modified from Fromme et al. (2019). Means are depicted, data points represent individual animals. 

Statistical analyses were conducted using separate two-way ANOVAs for C and H diets, with the two 

factors “CA-supplementation” and “strain”. C diets: effect due to CA-supplementation (p<0.0001), 
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strain effect (p=0.0074), and strain-diet-interaction (p=0.0150). H diets: effect due to CA-

supplementation (p<0.0001). Cave: Not all bile acids that were quantified in plasma were also 

quantified in EO (missing bile acids: Dehydro-CA, TCDCA). 

Bile acid composition 

Bile acid composition is compartment (feces, enterohepatic organ, plasma) specific and similar 

in both strains (Fig. 33). Interestingly, despite differences in absolute plasma concentration 

(Fig. 30), the contribution of individual bile acids to the total pool was comparable in both 

strains and differed only as a consequence of supplementation and compartment (feces, 

enterohepatic organ, plasma) (Fig. 33). 

 

Fig. 33: Composition of bile acid pools in feces, enterohepatic organs and plasma (n=4-7). Figure 

taken from Fromme et al. (2019). Every bar section represents the median molar concentration as a 

fraction of total pool size. CA: cholate, DCA: deoxycholate, TCA: taurocholate, GDCA: 

glycodeoxycholate, LCA: lithocholate, TCDCA: taurochenodeoxycholate, TDCA: taurodeoxycholate, 

wMCAs: omega-muricholates, CDCA: chenodeoxycholate, UDCA: ursodeoxycholate, TUDCA: 

tauroursodeoxycholate, DHCA: dehydrocholate, GCA: glycocholate, TLCA: taurolithocholate , TwMCAs: 

tauro-omega-muricholates, GCDCA: glycochenodeoxycholate, GUDCA: glycoursodeoxycholate. 

Taking together all results of plasma, organ, and fecal bile acid quantification, we can 

conclude, that the spillover of BAs from enterohepatic circulation into plasma does not seem 

to be responsible for the strain difference in the DIO-preventive effect of CA, as it was 

hypothesized in literature before (Watanabe et al., 2006). 
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3.5   Ucp1 is not responsible for the adiposity-preventive effect of cholic acid 

Increased energy expenditure in brown adipose tissue was made responsible for the DIO-

preventive effect of dietary CA-supplementation in published literature (Watanabe et al., 

2006). In a first approach, only indirect proofs were used, e.g. the use of D2 ko mice.  

In order to directly challenge the hypothesis that resistance to diet-induced obesity conferred 

by bile acid supplementation is due to increased thermogenic processes in BAT, we used Ucp1 

ko C57BL/6J mice for a further feeding experiment. Male Ucp1 ko and wildtype BL6J mice, 

respectively, at the age of 6-7 weeks were fed C diet for one week in order to acclimatize to 

the experimental diet. In order to extract the potential CA-derived increase in thermogenic 

processes, we impeded thermogenic processes for body temperature maintenance by 

keeping all animals at thermoneutrality (30 °C). All mice were assigned to one of four diet 

groups: C or H diet, with or without cholic acid (0.5 % w/w) supplementation, respectively. 

Body mass, food intake and body composition were determined in frequent intervals. After 

four weeks of feeding the experimental diet, mice were sacrificed and dissected. Amongst 

others, iBAT, iWAT and eWAT were taken for further analyses. 

3.5.1   No genotype effect on body mass development or body composition  

Seven days before diet change and assignment to one of four experimental diets all mice 

received control diet in order to acclimatize to the texture and composition, which the semi-

purified experimental diets have in comparison to a regular chow diet. During that week, no 

differences in body mass development were observed between diet groups. After assignment 

to one of the four particular diet groups, clear differences occurred already after one week of 

experiment. 

Due to the insertion of one week adaption phase, all BL6J wildtype diet groups absolutely 

gained more weight compared to the mice of the previous experiment.  

At thermoneutrality, H-fed BL6J mice also gained more weight compared to C-fed mice and 

this effect was prevented by CA-supplementation in both wt (p<0.0001) and Ucp1 ko mice 

(p<0.0001), without statistical significant differences due to Ucp1 ko. Sidak’s multiple 

comparisons testing showed that the observed BM restriction significantly affects wt mice 
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from the first week after diet change on. In Ucp1 ko mice this difference becomes significant 

from two weeks after diet change on (Fig. 34). 

 
Fig. 34: Body mass development of wt and Ucp1 ko mice on C or H diet, with or without cholic acid 

supplementation (n=6). Figure modified from Fromme et al. (2019). Body mass development during 

28 days of C and CC (a) or H and HC (b) feeding, respectively. Statistical analysis was conducted for 

each diet group separately. Four separate two-way RM ANOVAs were used with the two factors “time-

point” and “genotype”. In all diet groups, genotype did not affect body mass development. Means with 

standard deviation are shown. 

In contrast to earlier experiments at room temperature, we also observed a significant BM 

gain restriction due to CA-supplementation in C-fed mice at thermoneutrality (taking together 

all C-fed mice of both genotypes): CA-supplementation restricts absolute BM gain of C-fed 

mice (p=0.0025), but no genotype effect was detected. Comparably, in H diet groups CA-

supplementation restricts BM gain of H-fed mice (p=0.0002), as observed in earlier 

experiments at room temperature, but no genotype effect was observed (Fig. 35). 

 
Fig. 35: Total body mass gain after 28 experimental days (n=6). Statistical analysis was conducted for 

C and H diets separately. Two separate two-way ANOVAs were used with the two factors “CA-

supplementation” and “genotype”. No genotype effect was detected. Means with standard deviation 

are shown. 
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Body composition analyses revealed that CA-supplementation significantly reduced fat mass 

accumulation in H-fed mice in both diet groups (p=0.0245 in C, and p=0.0013 in H-fed mice) 

after 28 days of experimental diet feeding. However, no genotype difference was detected. 

Lean mass of H-fed animals significantly differed between both genotypes (p=0.0302), and 

was only affected by CA-supplementation in C-fed animals (p=0.0083). As Ucp1 ko mice 

generally possess less body mass, fat mass and lean mass compared to wt mice, body 

composition parameters were depicted as delta, relating to the start of the experiment (day 

0) (Fig. 36). 

 
Fig. 36: Delta fat mass and delta lean mass (related to baseline values at the start of the experiment 

day 0) of BL6J wt and Ucp1 ko mice after 28 days of experimental feeding (n=6). Figure modified 

from Fromme et al. (2019). Means with standard deviation are shown. 

The observed differences in body weight and fat mass conferred by cholic acid 

supplementation cannot be attributed to differences in food intake, as absolute food intake 

at week four did not differ, neither between diet groups nor between genotypes (Fig. 37).  
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Fig. 37: Cumulative food intake of C57BL/6J wt and Ucp1 ko mice during four weeks of C and CC (a) 

or H and HC (b) diet feeding, respectively (n=6). 

3.5.2   Brown and white adipose tissue weight analyses 

Cholic acid supplementation did not affect iBAT mass of neither wt nor Ucp1 ko BL6J mice. It 

tended towards reducing iBAT mass of H-fed wt and ko mice, however statistically not 

significant. iBAT activity or function is not predicated on iBAT mass. Probably, the slight 

reduction of iBAT mass in H-fed animals, as it was also seen in earlier experiments, is only a 

cause of cholic acid induced body fat reduction, whereupon embedded white adipocytes 

within iBAT are reduced in size (Fig. 38). 

 
Fig. 38: iBAT mass after 28 experimental days (n=6). Means with standard deviation are shown. 

Statistical significance was tested using two separate two-way ANOVA analyses, each for C and H diets, 

respectively, with the two factors “CA-supplementation” and “genotype”. None of the two factors 

influenced iBAT mass. 
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Epididymal and inguinal WAT masses were analyzed both separately and pooled. Congruent 

with former experiments (and body mass/ other results obtained in this trial) the H feeding 

induced increase of WAT weight is abrogated by cholic acid supplementation in wt, but also 

in ko mice. To analyze the influence of the two factors “CA-supplementation” and “genotype” 

on eWAT and iWAT masses, we used two separate two-way ANOVAs for each C and H diets. 

In C diets, CA-supplementation was found to significantly influence pooled WAT mass 

(p=0.0062), whereas genotype does not. In H diets, both CA-supplementation (p=0.0023) as 

well as genotype (p=0.0085) significantly influenced pooled WAT mass, but no interaction 

between both factors was detected (Fig. 39). These observances point towards generally 

reduced WAT mass increase due to H feeding in Ucp1 ko mice, as well as a reduction of WAT 

mass in both genotypes due to CA-supplementation. However, CA-driven prevention of 

pooled WAT accumulation due to H feeding is equally potent in both genotypes. 

 
Fig. 39: Pooled WAT (both iWAT and eWAT) mass in wt and ko mice after 28 experimental days (n=6). 

Means with standard deviation are shown. Statistical significance was tested using two separate two-

way ANOVA analyses, each for C and H diets, respectively, with the factors “CA-supplementation” and 

“genotype”. 

Similar results were obtained, if iWAT and eWAT data were analyzed separately: 

CA-supplementation significantly reduced iWAT mass of C-fed mice (p=0.0261) and of H-fed 

mice (p=0.0042) in both genotypes. Moreover, iWAT mass significantly differed between both 

genotypes (p=0.0334). There was no interaction between both factors in none of the two 

different diet groups (Fig. 40a). eWAT mass of C-fed mice was significantly influenced by both 

factors genotype (p=0.0105) and CA-supplementation (p=0.0029). The same result was 

obtained for eWAT mass of H-fed mice, as it was significantly reduced by CA-supplementation 
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(p=0.0016) and Ucp1 ko (p=0.0028). There was no interaction between both factors in none 

of the two different diet groups (Fig. 40b). 

 

Fig. 40: Separate analyses of iWAT and eWAT mass in wt and ko mice after 28 experimental days 

(n=6). Means with standard deviation are shown. Statistical significance was analyzed for iWAT and 

eWAT separately. For each iWAT and eWAT, there were used two separate two-way ANOVA analyses, 

for C and H diets, respectively, with the two factors “CA-supplementation” and “genotype”. 

3.5.3   Blood parameter analysis 

Piccolo Lipid Panel Plus Reagent Discs (Abaxis, Inc.) were used for the in vitro quantitative 

determination of total cholesterol, high-density lipoprotein cholesterol (HDL), triglycerides, as 

well as glucose, respectively, in heparinized plasma samples. Moreover, we determined 

plasma levels of the liver enzymes alanine aminotransferase (ALAT) and aspartate 

aminotransferase (ASAT), which are biomarkers for liver health. 

We targeted on revising beneficial effects of dietary CA-supplementation, which is supposed 

to partially revert the pathological impact of H diet, and to generally compare plasma 

parameters of BL6J wt to Ucp1 ko mice. 

As described in literature, the collected data patterns a general trend towards improving the 

H diet caused negative impact on blood parameters. The H diet-caused increase of cholesterol 

(p=0.0033), glucose (p=0.0014) and HDL (p=0.0132) levels was reduced by CA-

supplementation. There was also seen a certain reduction of the respective plasma levels of 

C-fed animals. This trend was significant for cholesterol and HDL. We also observed a 

statistically significant genotype difference for cholesterol of C-fed animals (p=0.0260). In 



RESULTS   76 

 
 

 
 

summary, CA-supplementation partially causes improvement of blood parameters in H-fed 

mice (Fig. 41). 

 

Fig. 41: Plasma parameter analysis in BL6J Ucp1 ko and wt mice, separated for diets (n=6). Plasma 

cholesterol (a), HDL (b), triglycerides (c), and glucose (d), means with standard deviation are shown. 

Two separate two-way ANOVAs were conducted for C and H diets, factors “CA-supplementation” and 

“genotype”. 

In contrast to these rather beneficial impacts, we also observed pathological side effects of 

CA-supplementation, as liver enzyme levels were increased in both CA-supplemented diets. 

Especially in H-fed animals, mean ALAT levels were increased 10-fold in wt and 8-fold, and 

ASAT levels were increased 6-fold in wt and 4-fold in ko mice due to CA-supplementation (Fig. 

42). These increases were especially pronounced in single animals, resulting in high standard 

deviations. Therefore, the observed increase was only significant for ALAT of H-fed animals 
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(p=0.0179, two-way ANOVA over both wt and ko mice on H diet, factors “CA-

supplementation” and “genotype”). If both genotypes are analyzed separately, the CA-

supplementation-caused increase of ASAT and ALAT in H-fed ko mice is statistically significant 

(ALAT: p=0.0046, and ASAT: p=0.0186; unpaired t-tests). 

C and CC-fed Ucp1 ko mice generally seemed to obtain higher ALAT and ASAT levels compared 

to H-fed animals as well as compared to wt mice. However, these observances only are 

significant for ALAT levels of C-fed animals. 

 

Fig. 42: Liver enzyme analysis in BL6J Ucp1 ko and wt mice, separated for diets (n=6). ASAT (a) and 

ALAT (b), means with standard deviation are shown. Two separate two-way ANOVAs were conducted 

for C and H diets, factors “CA-supplementation” and “genotype”. 

Summarizing all results from the plasma metabolic marker analysis, we observed a CA-

supplementation induced trend towards improvement of H diet caused impairment of 

selected plasma parameters. However, this improvement goes hand in hand with 

pathologically elevated liver enzyme levels (ASAT and ALAT), which points towards an 

impairment of liver functionality in both genotypes. 

Taking together all results obtained from Ucp1 ko mouse studies, the Ucp1 gene knockout did 

not lead to a loss of the DIO-preventive effect of CA-supplementation in this experiment, as 

Ucp1 ko mice in all diet groups showed BM developments as well as body compositions, that 

are comparable to those of wt mice. These results stand in clear contrast to published 

literature. In conclusion, the DIO-preventive effect of dietary cholic acid supplementation 

must be independent of the Ucp1 gene. 
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4    DISCUSSION 

During the last years, a new role for circulating bile acids has emerged, as bile acids do not 

only solubilize dietary lipids, cholesterol or fat-soluble vitamins, but also function as signaling 

molecules and thereby mediate various metabolic effects. Bile acids activate nuclear receptors 

like FXR (Makishima et al., 1999; Parks et al., 1999; Wang et al., 1999), the G-protein coupled 

receptor TGR5 (Kawamata et al., 2003; Maruyama et al., 2002) and cell signaling pathways in 

hepatocytes or enterocytes (Dent et al., 2005; Fang et al., 2007). Thereby bile acids influence 

e.g. glucose or fatty acid metabolism and contribute to the prevention or amelioration of 

characteristic features of the metabolic syndrome, as they e.g. protect mice against hepatic 

lipid accumulation, increased plasma triacyl glycerol and glucose levels (Liaset et al., 2011) and 

can prevent as well as reverse diet-induced obesity (Watanabe et al., 2006). The inverse 

correlation between systemic bile acid levels and body fat mass was not only observed in mice, 

but also was proved in men (Suzuki et al., 2014).  

In order to increase the understanding how BAs mediate body mass stabilization, we 

investigated BA derived effects on two different inbred mouse strains, with a special focus on 

the generation of brite adipocytes in iWAT as well as energy expenditure analyses. 

Furthermore, we used Ucp1 knockout mice to clarify the participation of non-shivering 

thermogenesis at this effect.  

4.1   Cholic acid derived prevention from diet-induced obesity in C57BL/6J 

mice 

In our study we were able to reproduce the DIO-protective effect of cholic acid (CA) in BL6J 

mice, that has been described previously (Teodoro et al., 2014; Watanabe et al., 2011; 

Watanabe et al., 2006; Watanabe et al., 2012; Zietak and Kozak, 2016), as HC-fed mice showed 

a significantly lower body mass increase compared to H-fed mice without differences in energy 

intake. Body mass stabilization in HC-fed BL6J mice could be fully explained by a significant fat 

mass reduction due to CA-supplementation, whereas lean mass was not affected. Intriguingly, 

body mass was not further reduced in CC-fed animals compared to C-fed mice. This 

phenomenon is already confirmed on cell level by in vitro experiments, where isolated BAT 

cells were treated with TCA and cells from H-fed mice were more sensitive to the addition of 
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TCA than cells from chow fed mice (Watanabe et al., 2006). Yet it needs to be clarified why 

this effect is only present in relation to high-fat diets.  

As CA-supplementation did not affect energy assimilation, we hypothezised, that energy 

expenditure was the site to analyze BA effects on body mass stabilization. Due to a spillover 

from liver into blood circulation, BAs reach peripheral sites of action. Thus it was hypothesized, 

that BAs bind TGR5 in BAT and initiate a signaling cascade, where cAMP-dependent thyroid 

hormone activating enzyme type 2 iodothyronine deiodinase (D2) is induced. Thereby D2 

converts inactive thyroxine (T4) into the active 3,5,3’-tri-iodothyronine (T3) (Bianco et al., 

2002). Besides, other key genes in energy expenditure were reported to be increasingly 

expressed in BAT after BA feeding, amongst others PGC-1α, which is the main regulator of 

mitochondrial biogenesis (Weitzel et al., 2003), and UCP1, which mediates non-shivering 

thermogenesis in BAT. Thereby energy expenditure in BAT and skeletal muscle shall activated, 

leading to adiposity prevention and insulin sensitization(Watanabe et al., 2006). In BAT, this 

mechanism is proposed to be driven by an enhanced Ucp1 mRNA expression (Watanabe et 

al., 2006).  

In order to assess the influence of BA-supplementation on BAT, we investigated iBAT mass 

and morphology as well as Ucp1 mRNA expression levels of BL6J mice, which were fed either 

a low fat control diet (C) or a high-fat diet (H) non-supplemented or supplemented with cholic 

acid (CC and HC). Comparable to previously published results, iBAT of HC-fed mice weighed 

significantly less than iBAT of their H-fed counterparts. Microscopic analyses confirmed that 

not only surrounding WAT mass, but also lipid content of brown adipocytes was reduced due 

to CA-supplementation. This effect could not be observed in iBAT of CA-supplemented C-fed 

mice. Besides reduction of adipocyte hypertrophy, it has already been shown by electron 

microscopic analyses, that CA-supplementation leads to an increase in the number of lamellar 

cristae in iBAT mitochondria. This effect goes along with an increase of iBAT Ucp1 mRNA 

expression (Watanabe et al., 2006). Moreover, it was shown, that also CDCA-supplementation 

to H diet increases iBAT Ucp1 mRNA expression as well as UCP1 protein content in C57BL/6J 

mice (Teodoro et al., 2014). In contrast to that, we were not able to confirm this effect, as we 

observed a significant reduction of iBAT Ucp1 mRNA expression levels in HC-fed mice. In order 

to approve and further explain our result, iBAT UCP1 measurements on protein level need to 

be performed. However, HC-feeding showed to significantly reduce iWAT mass as well as 
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adipocyte lipid content in BL6J mice. Microscopic analyses revealed the occurrence of 

multilocular cells in iWAT of HC-fed BL6J mice. With respect to browning, we used qPCR 

measurements to confirm the induction of the BAT-selective genes Ucp1, Cox7A1, CideA and 

Otop1. We found an overall increase of BAT-selective gene expression in iWAT due to CA-

supplementation to H diet, as well as a moderate, but significant increase of Ucp1 transcript 

abundance as reported earlier (Teodoro et al., 2014; Zietak and Kozak, 2016), an effect 

probably caused by direct interaction of bile acids with TGR5 (Velazquez-Villegas et al., 2018). 

Moreover, immunohistochemical staining for UCP1-positive cells in iWAT showed a relative 

browning effect of CA-supplementation in H-fed BL6J mice. The bile acid-derived promotion 

of fat oxidation was not only proved after dietary bile acid supplementation, but also after 

continuous intracerebroventricular bile acid infusion, (Eggink et al., 2017), showing that bile 

acids may exert metabolic effects on fat metabolism via the brain. Besides, supplementing a 

gut-restricted agonist for the bile acid sensor farnesoid X receptor (FXR) induces enteric 

fibroblast growth factor 15 (FGF15) and thereby alters BA composition, reduces DIO, enhances 

thermogenesis and WAT browning (Fang et al., 2015). Therefore, the influence of BAs on 

metabolism seems to have different sites of action, as cerebral as well as peripheral-mediated 

BA signals lead to similar effects like DIO-resistance or WAT browning. 

We can confirm that CA-supplementation effectively prevents BL6J mice from DIO by 

significantly decreasing WAT mass. Moreover, CA-supplementation significantly increases 

brown fat marker expression and leads to a recruitment of UCP1-positive multilocular cells in 

iWAT of H-fed BL6J mice, but has none of these effects in C-fed BL6J mice. 

4.2   Cholic acid supplementation does not induce energy expenditure in 

C57BL/6J mice 

We hypothesized, that energy expenditure must be responsible for the DIO-preventive effect 

of CA-supplementation, as it neither affected food nor energy intake. In order to analyze the 

influence of CA-supplementation on energy expenditure, indirect calorimetry as well as 

feeding-drinking-activity measurements were performed on C57BL/6J mice. Already one day 

after diet change, clear differences between H and HC-fed animals were observed. Mean RER 

of both diet groups was lowered. All mice displayed the typical circadian rhythm of nocturnal 

activity accompanied by high heat production and preferred carbohydrate usage as compared 
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to lower heat production and preferred lipid use during daytime. However, CA-

supplementation stimulated an accentuation of the H-diet-induced decrease of RER, which 

verifies that BA-supplementation increases fat oxidation, as already described in earlier 

publications (Teodoro et al., 2014; Watanabe et al., 2006). Furthermore, we observed a time-

delayed shift of mean RER pattern in HC-fed mice, which has not been shown or discussed 

before. This shift suggests that HC-fed mice either start feeding at later time points compared 

to H-fed mice, probably due to an unpleasant flavor of CA, which is known to exhibit a bitter 

taste, or that CA-supplementation leads to an altered metabolism, where lipid metabolism 

phase is prolonged and the change to carbohydrate metabolization is delayed. 

Despite body mass and body composition developments that were comparable to the results 

of our former experiments, as well as the observed differences in mean RER, daily energy 

expenditure as well as resting metabolic rate did not differ between H and HC-fed mice after 

body mass adjustment. Thus, mice displayed a DEE appropriate for their individual body mass 

regardless of dietary bile acid supplementation at all times and only differences in body mass 

accounted for the differences in energy expenditure. Nevertheless, our data can not be 

resolved high enough to explain the minor differences in energy balance, that accumulate to 

the final differences in body weight and composition. Food intake measurements potentially 

were not accurate enough to reveal the relevant changes in energy intake that might account 

for the observed phenomenon. Previous studies stated that BA-mediated prevention of DIO 

could not be traced back by a decreased food intake. However, food intake oftentimes was 

adjusted to the animals’ BW (Watanabe et al., 2011; Watanabe et al., 2006; Watanabe et al., 

2012). Thereby a decrease in absolute food intake could be disguised with a decreased BW, 

which occurred after CA-supplementation. In studies, where a food intake per mouse was 

considered, a transient decrease in food intake could be observed at the beginning of the 

intervention (Teodoro et al., 2014). During these studies, pair-feeding experiments were 

conducted in order to dissect the effect of BA-supplementation on body mass per se. Pair-

feeding revealed that the DIO-preventive effect of BAs mostly traces back to a reduced food 

intake. However, a relatively mild and food intake-independent reduction in adiposity (not 

detectable on body weight level) could be observed, as well (Teodoro et al., 2014). 

Our data cannot support the hypothesis that dietary bile acid supplementation increases 

energy expenditure as described before (Ockenga et al., 2012; Watanabe et al., 2006; Zietak 
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and Kozak, 2016). However, none of these observations doubtlessly proved that bile acid 

supplementation to mice causes an increase in energy expenditure. Data of Watanabe et al., 

2006 is only based on a 15 hours indirect calorimetry measurement and normalized to body 

mass (Watanabe et al., 2006), a procedure not advisable in animals of different body mass and 

composition (Butler and Kozak, 2010; Tschop et al., 2011). Ockenga et al., 2012 did not show 

original data on O2-consumption or VO2-production, but only presented calculated values of 

energy expenditure, whose basis of calculation is not explained within this article (Ockenga et 

al., 2012). Zietak and Kozak, 2016 only consulted an indirect prove by estimating total energy 

expenditure with the help of a formula, that basically subtracts change in body energy stores 

from caloric intake (Ravussin et al., 2013; Zietak and Kozak, 2016). Moreover, two 

independent studies by other laboratories measuring the impact of dietary bile acid 

supplementation found no effect on energy expenditure (da-Silva et al., 2011; Teodoro et al., 

2014). 

To sum up, we cannot confirm an increase in energy expenditure in response to cholate 

supplementation, neither in absolute terms nor adjusted and neither at rest nor as a daily 

budget. As this conclusion was also drawn in other laboratories (da-Silva et al., 2011; Teodoro 

et al., 2014), we conclude that the contribution of brown fat thermogenesis to DIO-resistance 

conferred by cholate supplementation is questionable. 

4.3   Cholic acid derived prevention from diet-induced obesity is strain 

specific 

As bile acid derived prevention of DIO is claimed to result from increased BAT activity, we 

speculated that brite adipocyte recruitment may have an important influence and additionally 

contributes to the body mass stabilizing outcome. We used 129S6 mice to study the browning 

potential observed in BL6J mice by CA supplementation and eventually to potentiate it within 

this strain, as 129S6 mice have a higher propensity to recruit brite adipocytes. The 129S6 mice 

received the same diets and experimental treatments as the BL6J mice. 

In contrast to our hypothesis, 129S6 mice were not at all responsive for CA-supplementation, 

as no differences emerged between non-supplemented and supplemented diet groups. All 

metabolic consequences of the CA-supplementation observed in C57BL/6J animals are 
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completely absent in 129S6 mice: Neither body mass development, nor iBAT or iWAT mass, 

morphology and gene expression profile was influenced by CA-supplementation. These results 

clearly exhibit the novel finding, that the prevention of DIO by BAs is mouse strain specific. 

With the help of this phenomenon, we obtained the possibility to specifically study strain 

specificities and thereby elucidate the adiposity protective effects of BAs in BL6J mice.  

We started to compare both mouse strains by the enteral bile acid transporters ASBT and OST. 

ASBT is located at the apical membrane of ileal enterocytes and responsible for the uptake of 

bile acids from gut lumen across the apical brush border membrane of the enterocyte 

(Shneider, 2001). An Asbt knockout results in a down-regulation of FXR target genes such as 

Fgf15. The decreased Fgf15 expression as well as the reduced return of BAs to the liver results 

in an increased Cyp7a1 expression, thus resulting in an increased translation of the rate-

limiting enzyme in the classical BA synthesis pathway. Accordingly, BA synthesis is increased 

by the Asbt gene knockout (Dawson, 2015). The heteromeric BA transporter OSTα-OSTβ is 

located at the enterocyte’s basolateral membrane. Ostα and Ostβ actually are expressed in 

most tissues, but are most abundant in tissues involved in bile acid and steroid homeostasis 

(Ballatori et al., 2009). In Ostα knockout mice, Fgf15 expression is increased due to an 

increased BA storage in the enterocyte. Thereby Cyp7a1 gene expression is decreased and BA 

synthesis limited (Dawson, 2015; Rao et al., 2008). We were in fact able to identify strain 

specific differences, which might be jointly responsible for the varying bile acid absorption. 

For this reason, and as we could not observe a difference in food intake and thereby CA uptake 

between both strains, we suspected differences in CA uptake within gut and spillover into 

circulation or in CA excretion. Therefore, BA analyses were conducted to determine BA 

concentration and composition in plasma, enterohepatic organs and feces. 

Plasma BA analysis revealed that BL6J mice generally exhibit higher plasma BA levels 

compared to 129S6. Plasma BA levels were found to be influenced by both CA-

supplementation and strain, respectively, in H diet groups. Additionally, we confirmed a higher 

plasma BA-raising effect for supplemented H-fed BL6J compared to 129S6 animals. There were 

not found major differences in plasma BA composition between strains or diet groups.  

Organ bile acid pool was significantly influenced by strain and CA-supplementation: BL6J mice 

naturally possess a higher organ BA pool size compared to 129S6 mice, and CA-
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supplementation led to a significant increase in organ pool size in both strains. Thereby, organ 

BA pool was stronger raised in BL6J compared to 129S6 animals. Compositional differences 

were merely seen due to CA-supplementation and not due to strain. 

Fecal BA excretion mass also was increased due to CA-supplementation in both strains and 

diets. A strain effect as well as a diet-strain interaction was observed in C-fed animals, with a 

stronger increase of BA excretion in CA-supplemented BL6J mice compared to 129S6 mice. 

Similar to the other compartments, no differences were observed in fecal BA composition. 

Taking together all results we can conclude that the spillover of BAs from enterohepatic 

circulation into plasma might account for the BA-derived effects itself, but does not seem to 

be responsible for the strain difference. As the relevant strain specific differences of H-fed 

animals were already seen in organ BA concentrations, and strain-specific differences in 

plasma BA levels only reflect those in enterohepatic organs, the CA-derived prevention of DIO 

must originate from a site of action, which is located downstream of plasma circulation. 

Differences in plasma BA levels might be responsible for the CA-derived DIO-preventive effect 

in H diets only. As no effect of neither strain nor CA-supplementation was found in plasma BA 

levels in C-fed animals, but plasma BA levels were stronger increased in CA-supplemented H-

fed BL6J mice, the relevant site of action might be along plasma circulation. 

4.4   Using C57BL/6J Ucp1 knockout mice to challenge the hypothesis of 

UCP1-derived prevention of diet-induced obesity by cholic acid 

In the absence of increased energy expenditure, the contribution of brown fat thermogenesis 

to DIO resistance conferred by CA-supplementation is questionable. We nevertheless 

conducted the appropriate experiment to investigate this possibility by including Ucp1 ko mice 

into a feeding trial, according to the initial experiments with BL6J and 129S6 mice.  

In general, iBAT Ucp1 expression is decreased under thermoneutral conditions (Freeman et 

al., 1989; Rippe et al., 2000), as UCP1 is not needed to maintain body temperature. Moreover, 

Ucp1 ko mice were described to be DIO-resistant at room temperature (20° C), as they have 

to maintain normal body temperature without non-shivering thermogenesis, but by using less 

efficient, more energy consumptive pathways of metabolism (Liu et al., 2003). It has been 
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described that only UCP1 can mediate adaptive non-shivering thermogenesis in the cold and 

Ucp1-deficient mice shiver to maintain their body temperature (Golozoubova et al., 2001; 

Nedergaard et al., 2001). For this reason, and in order to subtract the energy expenditure used 

for body temperature maintenance as well as to distinctly quantify the BA-derived increase of 

energy expenditure, the experiment was conducted at thermoneutrality.  

At room temperature, mice approximately use one third of the consumed calories to maintain 

body temperature (James and Trayhurn, 1981). Under thermoneutral conditions, no energy 

has to be expended to maintain body temperature. Accordingly, if food intake is not limited, 

excess energy from a high-fat diet is stored in adipose tissue and animals show an increased 

body mass gain compared to keeping at room temperature (Cui et al., 2016; Stemmer et al., 

2015). In contrast, low-fat diet fed animals are able to regulate their appetite, resulting in a 

maintained body weight balance (Enerback et al., 1997). Under high-fat diet, however, it has 

already been described that food intake is not reduced, resulting in an increased body weight 

of high-fat diet fed animals at thermoneutrality (Rippe et al., 2000). During our thermoneutral 

experiment, the animals indeed reduced their food intake compared to the experiments at 

room temperature, but this reduction was not great enough to compensate for the decreased 

need of energy intake. 

As described before, we used Ucp1 ko mice to investigate its necessity to mediating BA-

derived DIO-resistance and thereby clearly demonstrate that UCP1-dependent, non-shivering 

thermogenesis in brown or brite adipocytes is not required for bile acid mediated protection 

against DIO. This conclusion, however, is in disagreement with the results of a very similar 

experiment with the same mouse strain conducted unknowingly in parallel in L. Kozak’s 

laboratory (Zietak and Kozak, 2016). Here, Ucp1 ko mice were not protected against DIO by 

CA-supplementation. However, even the role of UCP1 itself in the development of DIO is not 

fully resolved. In different studies, the identical Ucp1 ko mouse strain is more (Feldmann et 

al., 2009; Rowland et al., 2016; von Essen et al., 2017), less (Liu et al., 2003) or similarly prone 

to DIO (this study, Maurer, 2016; Winn et al., 2017; Zietak and Kozak, 2016), even from cohort 

to cohort within the same colony (Von Essen, 2017).  

For example, the studies of Liu et al. revealed that Ucp1-deficient mice are DIO-resistant at 

room temperature. Control wildtype mice significantly gained more body mass on a high-fat 
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diet. This difference, however, was reverted if ambient temperature was raised to 27 °C. 

Moreover, Ucp1 ko mice generally possessed lower RER values and it was shown, that this 

effect is not dependent on the ambient temperature, but on the diet’s fat content. Moreover, 

Ucp1 ko mice apparently had a basic difference in substrate utilization compared to wt mice. 

From all their findings, Liu et al. hypothesized, that thermogenesis in Ucp1 ko mice is 

metabolically more expensive and for these reasons Ucp1 kos paradoxically are protected 

against obesity (Liu et al., 2003). Nevertheless, investigations failed to demonstrate an obese 

phenotype in Ucp1 ablated mice (Enerback et al., 1997; Liu et al., 2003).  

In contrast to that, Feldmann and colleagues showed that an Ucp1 ablation in itself is sufficient 

to induce obesity under thermoneutral conditions (Feldmann et al., 2009). In their 

experiments, body fat depots’ weights were significantly increased in both low fat and high-

fat diet fed mutant mice, respectively. In conformity with Liu et al., they speculated that under 

thermoneutral conditions, there is no longer a need for a chronically elevated metabolism, as 

it is normally required at room temperature to maintain body temperature. Room 

temperature actually is a chronic thermal stress for mice, as they have to defend their body 

temperature at a low grade constantly. This is ensured by an increased food intake (Feldmann 

et al., 2009). 

In our hands, no difference in neither body weight, fat nor lean mass development was 

detected between wildtype and Ucp1 ko BL6J mice under thermoneutral conditions. Both 

genotypes accumulated excess adipose tissue due to H-feeding. Comparable to experiments 

on wt BL6J mice at room temperature, CA-supplementation also leads to DIO-resistance and 

reduced accumulation of WAT depots in both BL6J wt and Ucp1 ko mice at thermoneutrality. 

Compared to room temperature, BL6J wt mice absolutely gained more body mass under 

thermoneutral conditions, as shown in earlier experiments (Rippe et al., 2000), but were also 

prevented from DIO, independently of their genotype. For this reason, we conclude, that the 

DIO-protective effect of CA-supplementation is independent of Ucp1. 
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4.5   Relevance in humans 

To this day it has not been investigated whether cholic acid also exerts all of these positive 

effects on metabolic outcomes in men. If the findings obtained in rodent studies relating to 

weight control or glucose and lipid metabolism can be confirmed in human studies, such drugs 

would be highly attractive (Jenkins et al., 2008). 

It has been proposed, that the DIO-preventive effect exerted by CA-supplementation might 

also be present in men, as the treatment of brown adipocytes and human skeletal myocytes 

with BA were shown to increase D2 activity and oxygen consumption via the activation of 

UCP1. It was postulated, that this effect is also mediated by TGR5-activation (Watanabe et al., 

2006). However, the mere co-expression of the ubiquitously expressed BA receptor TGR5 and 

D2 in human skeletal muscle cells does not necessarily implicate a direct link of BA-D2-Ucp1 

pathway in human BAT. 

Since metabolically active brown adipose tissue has been identified in adult humans (Cypess 

et al., 2009; van Marken Lichtenbelt et al., 2009; Virtanen et al., 2009) brown adipose tissue 

activity has become an interesting target for the treatment of obesity, especially as the 

amount and activity of BAT in men is inversely correlated with body-mass index (Cypess et al., 

2009) and percentage of body fat, but positively correlated with resting metabolic rate (van 

Marken Lichtenbelt et al., 2009). In addition, BAT-positive subjects are of comparatively 

younger age, have lower fasting insulin levels and insulin resistance, but a greater level of high-

density lipoprotein cholesterol than individuals without BAT (Zhang et al., 2013). 

In a study supplementing the primary bile acid chenodeoxycholic acid (CDCA) and investigating 

BAT activity via PET/CT examinations, it was shown that CDCA-supplementation indeed 

increases human BAT activity. However, the authors could not exclude, that BAs increase 

energy expenditure via BAT-independent mechanisms (Broeders et al., 2015). Nevertheless, 

as CDCA showed to be BAT-activating in humans, the other primary bile acid CA might be a 

promising BAT-activator, as well. 

Humans have long been treated with the tertiary bile acid ursodeoxycholic acid (UDCA), which 

is formed in the liver by epimerization of the secondary bile acid lithocholic acid and naturally 

occurring in high concentration in the bile of the Chinese black bear (Gray). UDCA improves 
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fat digestion and absorption in cystic fibrosis patients with mild liver involvement (Drzymala-

Czyz et al., 2016). Moreover, UDCA is used in the therapy on gallstone formation (Worobetz 

et al., 1993), or chronic liver disease (Guslandi, 1990) and has shown chemopreventive 

potential in colon cancer (Solimando et al., 2011). However, the respective studies have not 

focused on whether the often accompanying weight loss was more pronounced in the UDCA-

treated group, or whether UDCA drugs used to prevent gallstone formation had an effect 

beyond that of bariatric surgery itself (Worobetz et al., 1993).  

After Roux-en-Y gastric bypass (RYGB) surgery, in which the stomach’s small upper pouch is 

directly connected to the small intestine (Andalib et al., 2015), total fasting BAs are increased 

compared to preoperative levels. This effect was not observed after purely restrictive 

procedures like adjustable gastric banding (Kohli et al., 2013; Patti et al., 2009; Pournaras et 

al., 2012). RYGB is the most effective treatment for morbid obesity and diabetes (Kashyap et 

al., 2013; Schauer et al., 2012). However, the resolution of diabetes and other comorbid 

conditions typically occurs before significant weight loss. As bile acid homeostasis is a tightly 

regulated process, and bile acid level and composition are rapidly adapted after RYGB, BAs 

have been identified as one class of putative compounds involved in the weight-independent 

effects of bariatric surgery. Overall findings on bile acid changes after bariatric surgery 

propose that especially bacterially derived, secondary BAs may mediate the early 

improvements after RYGB (Albaugh et al., 2015; Lutz and Bueter, 2014). These observations 

suggest an important influence of not only BA concentration, but also composition on 

metabolic outcomes. Moreover, an inverse correlation between postprandial bile acid 

concentration and body fat mass in healthy normal-weight subjects has been proven (Suzuki 

et al., 2014). The underlying mechanisms, however, have not been elucidated, yet. 

Besides their positive metabolic impacts, bile acids may also exert deleterious effects if 

supplemented. As bile acids are potent detergents and cytotoxic at higher concentrations, 

their synthesis is normally tightly controlled and bile acid concentration normally maintains 

within narrow limits, to avoid cellular injury. Bile acids themselves are known to be cytotoxic 

to hepatocytes (Malhi et al., 2010) and early human studies confirm bile acid toxicity in 

primary human hepatocytes e.g. using GCDCA (Galle et al., 1990). Therefore, increased bile 

acid concentrations that for example are caused by bile acid supplementation can also 

generate a series of problems: Bile acids can induce arrhythmias (Desai and Penny, 2013), not 
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only in adults but also in fetuses. Intrahepatic cholestasis of pregnancy, where bile acid 

concentrations are pathologically raised in the mothers circulation, causes fetal arrhythmia 

and sudden intrauterine death (Sheikh Abdul Kadir et al., 2010). Besides, dietary lithocholic 

acid supplementation was shown to result in intrahepatic cholestasis and bile infarcts. This 

hepatotoxic effects went in line with a significant increase in plasma ALAT levels (Woolbright 

et al., 2014), an effect that we also observed in response to dietary cholic acid 

supplementation in BL6J mice. For this reason, the currently known positive effects of a 

dietary bile acid supplementation are not great enough to legitimate the negative 

consequences accompanying a bile acid treatment in humans. 

4.6   Conclusion and perspective 

In summary, we here report that the DIO-protective effect of a dietary cholic acid 

supplementation is mouse strain specific, does not increase energy expenditure and does not 

require UCP1-dependent, non-shivering thermogenesis. 

The black and white strain difference observed in the metabolic response of C57BL/6J and 

129S6/SvEvTac mice certainly proves a valuable model to elucidate molecular mechanistic 

determinants of these processes. However, it remains to be clarified which of the two strains 

is more representative for other mouse strains, other commonly used animal models and 

humans. Disconcertingly, a large body of literature on effects of dietary cholate 

supplementation relies on experiments with the C57BL/6J mouse strain (da-Silva et al., 2011; 

Teodoro et al., 2014; Watanabe et al., 2011; Watanabe et al., 2006; Watanabe et al., 2012; 

Zietak and Kozak, 2016). Past conclusions will have to be reviewed in the light of the very 

specific genetic background leading to exceptionally high bile acid sequestration and spillover 

in this strain and the new finding that all of these effects may be strain-specific. 

Furthermore, dietary cholic acid supplementation also seems to recruit brite adipocytes in 

C57BL/6J iWAT. However, its underlying thermogenic capacity is not great enough to explain 

the prevention of adipose tissue accumulation during H diet. Moreover, indirect calorimetry 

measurements did not hint at an increased energy expenditure mediated by the CA-

supplementation. We were not able to detect differences in energy intake, energy 

expenditure or energy loss with feces, respectively. Nevertheless, substantial body weight 
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differences were observed between CA-supplemented and non-supplemented H-fed BL6J 

animals. Our analytical apparatuses either were not sensitive enough to explain the minor 

differences in energy balance that in the end account for the DIO-protection of CA-

supplementation, or more likely, CA-supplemented H-fed animals consume less food 

compared to non-supplemented mice. This would not explain why CA-supplemented C-fed 

animals do not loose further weight compared to non-supplemented C-fed mice, yet. 

In the end, we clearly showed that the DIO-preventive effect of bile acids is independent of 

UCP1, as the respective knockout animals are protected in the same manner as wildtype 

animals. This is in line with the results obtained from indirect calorimetry measurements that 

also did not provide a basis for an increased non-shivering energy expenditure mediated by 

UCP1. 

Data on the effects of bile acids is diversely discussed in literature. The underlying mechanisms 

of bile acid-derived effects on energy expenditure still are not doubtlessly elucidated. Bile 

acids in general display a wide range of steroid compounds that are not well studied up to 

date, but might be promising metabolic active effectors.  

Despite all the positive impacts that are described in literature and assigned to bile acids, we 

must not forget that bile acids are potent detergents and cytotoxic at higher concentrations. 

Under physiologic conditions, bile acid synthesis is tightly controlled and BA concentration 

normally maintains within narrow limits to avoid cellular injury (in healthy objects, without 

BA-supplementation). A bile acid supplementation that e.g. prevents from diet-induced 

obesity also elevates systemic bile acid concentrations to cytotoxic levels. Therefore, the 

currently known positive effects of a dietary bile acid supplementation are not great enough 

to legitimate the negative consequences accompanying a bile acid treatment in human. In the 

future, any advantages and disadvantages of bile acid supplementation must be carefully 

considered. 
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Table 10: External and internal standards used for bile acid quantification by means of UPLC/TOF-MS. 

 Abbreviation Molecular mass 
[M-H]-  

Company  Order number  

Chenodeoxycholic acid  CDCA 391.285383  Sigma C9377 

Cholic acid  CA  407.280298  Sigma  C1129 

Deoxycholic acid  DCA  391.285383  Sigma  D2510  

Glycochenodeoxycholate, sodium  GCDCA  448.306847  Sigma  G0759 

Glycocholic acid, hydrate  GCA  464.301762  Sigma  G2878 

Glycodeoxycholic acid, sodium  GDCA  448.306847  Calbiochem  361311 

Glycoursodeoxycholic acid  GUDCA  448.306847  Sigma  06863  

Dehydrocholic acid  Dehydro-CA  391.285383  Sigma  30830 

Lithocholic acid  LCA  375.290469  Sigma  L6250  

Taurochenodeoxycholate, sodium  TCDCA  498.289483  Sigma  T6260 

Taurocholic acid, sodium hydrate  TCA  514.284397  Sigma  T4009 

Taurodeoxycholate, sodium hydrate  TDCA  498.289483  Sigma  T0875 

Taurolithocholate, sodium  TLCA  482.294568  Sigma  T7515 

Tauroursodeoxycholic acid, sodium  TUDCA  498.289483  Calbiochem  580549 

Ursodeoxycholic acid  UDCA  391.285383  Sigma  U5127 

α-Muricholic acid  αMCA  407.280298  Steraloids  C1890-000  

α-Tauromuricholic acid  αTMCA  514.284397  Steraloids  C1893-000  

β-Muricholic acid  βMCA  407.280298  Steraloids  C1898-000  

β-Tauromuricholic acid  βTMCA  514.284397  Steraloids  C1899-000  

ω-Muricholic acid  ωMCA  407.280298  Steraloids  C1888-000  

d4-Cholic acid  d4-DCA  411.304308  Sigma  D-2452  

d4-Deoxycholic acid  d4-DCA  395.309393  CDN Isotopes  D-2941  

d5-Taurocholic acid  d5-TCA  519.314684  Toronto research chemicals  NC0341860  
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