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Abstract

The past ten years witnessed the exponential evolution of the single-cell
sequencing technologies, nowadays reaching to analysis of over a million cells in a
single experiment. They provide unprecedented insights into developmental
trajectories in complex organisms, significant rare cells such as adult stem cells or
circulating tumor cells, cancer microevolution, and environmental studies. Most
popular single-cell analysis techniques have certain limitations though, such as
shallow coverage, lack of quantitativeness for many genes, and high costs. In order
to address these problems, I developed a method for enrichment of selected
genomic/transcriptomic loci and barcoding for next-generation sequencing, named
Barcode Assembly for Targeted Sequencing (BART-Seq).

In this study, I initially optimized a workflow and implemented it for
targeted transcriptomics. After verifying dynamic range measurements of bulk
samples, I used the method for analyzing transcripts in single cells. I explored the
expression of selected pluripotency genes in self-renewing human embryonic stem
cells (hESCs) and observed that they embrace different flavors of pluripotency
depending on the maintenance media composition. Next, I analyzed the cell
subpopulations that emerge from hESCs upon activation of the Wnt/β-catenin
pathway at different levels, and observed that they correspond to distinct regions of
the gastrulating embryo based on the inducer. Moreover, I have contributed to two
projects for targeted genotyping and compound screening of bulk gDNA/RNA
samples. In parallel, I developed bioinformatics tools for analyzing the BART-Seq
data; from raw count matrices to biological interpretations.

BART-Seq is the first targeted sequencing technology that is applicable for
both transcriptomics of single cells and genomics/transcriptomics of bulk samples. It
addresses drawbacks of existing methods by offering increased sequencing depth,
quantitative measurements, and ability to analyze also the non-poly(A) transcripts.
The simple and cost-effective workflow that can be performed with basic laboratory
equipment and open-access bioinformatic tools makes BART-Seq accessible to any
research group. I therefore expect that it will serve as an important companion to
existing technologies for a wide spectrum of research fields.
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Zusammenfassung

In den letzten zehn Jahren hat sich die Technologie der
Einzelzellsequenzierung exponentiell weiterentwickelt, sodass mittlerweile über
eine Million Zellen in einem einzigen Experiment analysiert werden können. Dies
liefert beispiellose Einblicke in Entwicklungsverläufe in komplexen Organismen,
signifikante seltene Zellen wie adulte Stammzellen oder zirkulierende Tumorzellen,
Krebsmikroevolution und Umweltstudien. Die meisten gängigen
Einzelzellanalysetechniken weisen jedoch bestimmte Einschränkungen auf, z. B.
geringe Abdeckung, mangelnder quantitativer Sinn für viele Gene und hohe Kosten.
Um diese Probleme anzugehen, habe ich eine Methode zur Anreicherung
ausgewählter genomischer/transkriptomischer Loci und zum Barcoding für Next-
Generation Sequenzierung mit dem Namen Barcode Assembly for Targeted
Sequencing (BART-Seq) entwickelt.

In dieser Studie habe ich zunächst einen Workflow optimiert und diesen für
gezielte Transkriptomanalysen implementiert. Nachdem ich die dynamischen
Bereichsmessungen von Gesamtproben verifiziert hatte, verwendete ich die Methode
zur Analyse von Transkripten in einzelnen Zellen. Ich untersuchte die Expression
ausgewählter Pluripotenzgene in sich selbst erneuernden humanen embryonalen
Stammzellen (hESCs) und stellte fest, dass sie je nach Zusammensetzung des
Erhaltungsmediums unterschiedliche Arten der Pluripotenz aufweisen. Als nächstes
analysierte ich die Zell-Subpopulationen, die bei Aktivierung des Wnt/β-Catenin-
Weges auf verschiedenen Ebenen aus hESCs hervorgehen, und beobachtete, dass sie
je nach Induktor unterschiedlichen Regionen des gastrulierenden Embryos
entsprechen. Darüber hinaus habe ich an zwei Projekten zur gezielten
Genotypisierung und zum Screening von gDNA/RNA-Gesamtproben mitgewirkt.
Parallel dazu entwickelte ich Bioinformatik-Tools zur Analyse der BART-Seq-Daten;
ausgehend von den Rohdaten bis hin zu deren biologischer Interpretation.

BART-Seq ist die erste zielgerichtete Sequenzierungstechnologie, die sowohl
für die Transkriptomik einzelner Zellen als auch für die Genomik/Transkriptomik
von Gesamtproben anwendbar ist. Es behebt die Nachteile bestehender Methoden,
indem es eine erhöhte Sequenzierungstiefe, quantitative Messungen und die
Möglichkeit bietet, auch Nicht-Poly(A)-Transkripte zu analysieren. Der einfache und
kostengünstige Workflow, der mit grundlegenden Laborgeräten und frei
zugänglichen Bioinformatik-Tools durchgeführt werden kann, macht BART-Seq für
jede Forschungsgruppe zugänglich. Ich gehe daher davon aus, dass es für ein breites
Spektrum an Forschungsbereichen ein wichtiger Begleiter bereits bestehender
Technologien sein wird.
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"Investigating the cascades that give rise to a whole
organism commencing with fertilization is like witnessing

the very beginning of a miracle, an alchemy combining
an egg and a sperm to create an exquisite organism via a
process similar to the formation of the Universe after the

Big Bang; both start with a multi-potential but
invariable structure and end in a vast multiplicity."

Fatma Uzbaş
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1 INTRODUCTION

1.1 Transcriptomics

The transcriptome is defined as the set of all transcripts produced in a cell, which
characterize a certain physiological or pathological state (Piétu et al., 1999).
Although proteins are the incarnation of one-dimensional digital genetic code as
“flesh and blood”, it is often laborious to identify and quantify them. Therefore,
measurement of mRNA molecules is traditionally used as a proxy (Svensson et al.,
2017). The coding transcriptome transfers the genetic information from the genomic
DNA to ribosomes in the form of messenger RNAs (mRNAs) for the synthesis of
proteins, the ultimate functional products of the central dogma. The non-coding
transcriptome comprises 98% of the transcripts, and includes ribosomal RNAs
(rRNA), transfer RNAs (tRNA), long noncoding RNAs (lncRNAs), and small RNAs
(miRNAs, promoter associated RNAs), which serve structural, epigenetic, and
regulatory functions (Ozsolak and Milos, 2011).

Besides the genes that are constantly expressed based on a cell’s identity, different
sets of transcripts are produced during development, and in response to internal or
external cues in homeostatic or disease conditions (Lowe et al., 2017). Gene
expression is fine-tuned by mechanisms such as alternative promoter usage, allele-
specific expression, or alternative splicing. Alternative splicing, for instance, is
known to be important for stem cell differentiation and development (Salomonis et
al., 2010). Disruption of these regulatory mechanisms for both coding and non-
coding RNAs are implicated in many inherited and acquired diseases, including
cancer, and cardiovascular and neurological disorders (Esteller, 2011; Lee and
Young, 2013).

1.1.1 Analysis of gene expression

The discovery of the reverse transcriptase in 1970 marks a key milestone for
transcriptomics (Baltimore, 1970; Temin and Mizutani, 1970), as it allowed the
conversion of rather unstable RNA molecules into complementary DNAs (cDNA)
with the same sequence, which are much easier to preserve and analyze. Since then,
numerous techniques have been developed to determine the sequence and
abundance of the transcripts in cells (Figure 1), which fall broadly under two
categories; hybridization-based (indirect) and sequencing based (direct) methods.
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Figure 1: The timeline of transcriptomics

1.1.1.1 Hybridization-based methods

Hybridization-based methods analyze transcripts indirectly by measuring
secondary signals. Northern blotting is one of the earliest examples of this type,
which involves gel electrophoresis followed by hybridization of the labeled
complementary probe and detection of the transcript (Alwine et al., 1977). Later,
nylon membrane arrays (macroarrays) allowed analysis of several transcripts at
once, whereas their processing was laborious (Lowe et al., 2017). Invention of the
oligonucleotide microarrays scaled the number of target sequences up to thousands,
which today is still a powerful high-throughput method widely used in genomics and
transcriptomics. It is based on printing numerous oligonucleotide spots on a solid
surface, each of which is complementary to a fragment of their target (Schena et al.,
1995). Test and control samples differentially labeled with fluorescence (e.g. red vs
green) are simultaneously hybridized to the array for relative measurement of
thousands of targets. On the downside, prior knowledge of the sequences is required
to manufacture the arrays, and sensitivity and dynamic range are rather limited
(Saliba et al., 2014).

Real-time PCR (also known as qPCR) is another indirect method widely used for
quantification of gene expression (Higuchi et al., 1993) that is based on measuring
the signals emitted from samples in each cycle of PCR during the exponential phase,
using DNA intercalating dyes or fluorophore-tagged probes. It allows simultaneous
analysis of template concentrations that differ by several orders of magnitude, with
sub-picogram sensitivity. Although qPCR can analyze hundreds of samples in
parallel, it is not truly high-throughput in terms of the number of targets (Lowe et
al., 2017; Marín de Evsikova et al., 2019).

1.1.1.2 Sequencing-based methods

A direct approach to analyze gene expression is sequencing that determines the
order of nucleotides in transcripts without prior knowledge. Sequencing-based
methods can be classified into three main categories; first-generation (since 1975),
next-generation (since 2005), and third-generation (since 2008) (Figure 2).
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Figure 2: Three generations of sequencing-based transcriptomics (left and right panels are
adapted from Online Biology Notes1 and Deamer et al. (2016), respectively)

1.1.1.2.1 First-generation (Sanger) sequencing

Introduction of the Sanger method in 1975 launched the first generation of
sequencing, which utilized the primer extension and chain-termination idea
(Sanger and Coulson, 1975). Including small amounts of a modified di-
deoxynucleotidetriphosphate (ddNTP) in the dNTP mixture causes the DNA
polymerase to stop at semi-random positions during replication, resulting in a
mixture of DNA strands with varying lengths terminated in theoretically all possible
positions where the specific nucleotide is found. Gel electrophoresis of the reactions
each performed with one of the four ddNTPs reveals position of the bases in the
template DNA fragment (Figure 2, left).

Adoption of Sanger sequencing, in combination with the routine production of cDNA
libraries from different individuals and species enabled massive endeavors such as
the Human Genome Project, a major leap forward for discovery of genes,
understanding their regulation, and disease. For example, Expressed Sequence Tags
(ESTs), random fragments (100-800 nt) cloned from cDNA libraries, allowed de novo
discovery of genes from various species (Adams et al., 1991). While ESTs were useful
for the analysis of individual genes, they did not allow comparative quantitative

1 https://www.onlinebiologynotes.com/sangers-method-gene-sequencing/
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analyses and were low-throughput. Subsequently introduced Serial Analysis of Gene
Expression (SAGE) covered a larger portion of the transcriptome by concatenating
small (11 nt) random fragments from each mRNA, and enabled quantification of
transcript frequencies by counting fragments (Velculescu et al., 1995). Because
entire transcripts were not sequenced, it was not optimal for homologous loci or
repeats though (Marín de Evsikova et al., 2019).

1.1.1.2.2 Next-generation sequencing

First introduced in 2005 (Margulies et al., 2005), next-generation (second
generation) sequencing (NGS) revolutionized the transcriptomics and genomics
fields by enabling parallel analysis of millions or billions of sequences. The key
principle of NGS is determining the order of nucleotides by imaging during the
synthesis of a complementary strand using fluorescently labeled nucleotides
(Figure 2, middle), with the following basic steps: Preparation of an RNA sample
for NGS begins with conversion to cDNA. It is possible to enrich the target RNA
molecules, for example via rRNA depletion, reverse transcription with oligo(dT)
primers (e.g. poly(A) mRNAs), or size selection (e.g. micro RNAs) (Lowe et al., 2017).
Genomic DNA (gDNA) or cDNA samples are then fragmented to a size range
compatible with the sequencing instrument and the kit; via chemical hydrolysis,
nebulization, sonication, or tagmentation. Adapters are attached to both ends of the
fragments, which are typically used for (optional) PCR enrichment. Finally, single-
stranded fragments are captured on the sequencing surface via adapters, and clonal
amplification takes place (e.g. Illumina) to create tight clusters of several hundred
copies of the initial oligonucleotides, to ensure the visibility of the fluorescent signal
to the imaging system during sequencing. In some systems, clonal amplification is
performed on the surface of the beads in emulsion (emPCR), which are subsequently
captured on a surface (e.g. Roche/454). Next, sequencing synthesis takes place using
fluorescently labelled nucleotides, and interpretation of multiple images taken at
each fluorescent channel in each sequencing cycle determines the order of
nucleotides per cluster (Metzker, 2010). There are various techniques that differ in
one or more of these steps such as pyrosequencing (Roche), sequencing by synthesis
(Illumina and Life Technologies), or sequencing by ligation (SOLiD) (Kulski, 2016).
Ion Torrent from Life Technologies differs from these, in that it measures the
voltage changes caused by the released H+ ions during the synthesis reaction instead
of imaging fluorescent signals (Rothberg et al., 2011).

NGS technology quickly replaced numerous applications of microarrays and other
transcriptomic techniques, since it provides higher throughput, speed, resolution,
and dynamic ranges up to five orders of magnitude, while lowering costs and input
materials. In contrast to SAGE or microarrays, the entire length of the transcripts
can be determined by NGS. Since the NGS technology requires no prior knowledge
of the target sequences, it enables discovery of new forms of gene regulation
including transcription initiation sites, 5’ and 3’ untranslated regions (UTRs),
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alternative splicing events, sense-/anti-sense transcripts, modifications (e.g. indels,
SNPs)2, gene fusion events, and more (Ozsolak and Milos, 2011; Saliba et al., 2014).
For example, it revealed pervasiveness of the transcription, i.e. although only 2% of
the human genome is protein-coding genes, more than 80% of it is transcribed,
adding to the overall complexity (Hangauer et al., 2013).

Next-generation sequencing boosted many research fields. Many disease
mechanisms are known to relate to transcription, such as alternative promoter
usage, allele usage, modifications of the regulatory elements (i.e. control of
transcription), or SNPs (Lowe et al., 2017). Genome-wide association studies
(GWAS) aim to identify the complete genome or exome sequences of complex
organisms to gain insights into the full range of variation, and to learn how they
influence the phenotypic traits and disease progression (Mamanova et al., 2010a).
As opposed to Mendelian diseases that can be explained with a single gene, many of
the prevalent diseases such as autism, obesity, diabetes, and schizophrenia are
multifactorial, caused by multiple genetic and environmental factors, and their exact
molecular pathophysiologies remain to be explained (Karczewski and Snyder, 2018).
Next-generation sequencing aided the GWAS projects greatly by allowing routine
and cheap resequencing of individual genomes and transcriptomes. In addition to
disease discovery, high-throughput sequencing has already started to benefit
personalized therapies as well. Since disease progression has a multifactorial nature
in complex organisms, resequencing information can be readily used to determine
the optimum treatment regime based on the patient-specific targets, rather than
relying on the ultimate symptoms (Karczewski and Snyder, 2018). Intermediate
screening can enable timely modification or fine-tuning the treatments based on the
patient’s response, for example in cancer (Marín de Evsikova et al., 2019).

Beyond NGS, which requires the conversion of RNA molecules to cDNA first (Saliba
et al., 2014), there are also a few methods that can infer the sequence of RNA
molecules directly, without reverse transcription or amplification, which preserves
strand specificity that is often lost with the methods that involve amplification. For
example, FRT-Seq analyzes the poly(A)+ RNAs directly on the flow cell during cDNA
synthesis by reverse transcriptase. The fragmented RNA is ligated to two DNA-RNA
hybrid adapters homologous to Illumina’s P5 and P7 primers, captured by the flow
cell, and sequenced (Mamanova et al., 2010b). Direct RNA-Seq (DRS) is a similar
method where poly(A)+ RNA molecules are captured on a flow cell with oligo(dT)
probes on the surface, and sequencing takes place during cDNA synthesis using a
special polymerase with reverse transcription function (Helicos BioScience; Ozsolak
and Milos, 2011). Nevertheless, these methods hinge on the synthesis of a
complementary strand, which does not preserve base modifications, and the reads
are too short for capturing alternative splicing events in eukaryotes. Although
sequencing full-length cDNA molecules was made possible via strand switching and

2 https://www.illumina.com/science/technology/next-generation-sequencing/microarray-rna-seq-
comparison.html
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using a long-read sequencer, it can still suffer from the problems related to reverse
transcription (Thomas et al., 2014).

1.1.1.2.3 Third-generation sequencing

The third generation of sequencing is the direct determination of template
sequences, including modified nucleotides (e.g. epigenetic modifications), without
any amplification or reverse transcription step, which is not possible with the NGS
workflows. An example is single-molecule real-time (SMRT) sequencing that uses
zero-mode waveguide (ZMW) nanostructures to significantly reduce the observation
area per single reaction in order to detect the signals over the background (Pacific
Biosciences, Eid et al., 2009). A template strand is attached to the DNA polymerase
that is immobilized at the bottom of each structure, and nucleotide-specific
fluorophores released during synthesis of the complementary strand are imaged.
While templates of >10 kb can be sequenced with this method, the error rate of 10-
13% is still higher than NGS (Picelli, 2017). Nanopore is another technology (Figure
2, right), which passes the DNA/RNA molecules through protein nanopores that are
embedded on a synthetic hydrophobic membrane (MinION/PromethION from
Oxford Nanopore Technologies3, Garalde et al., 2016). In this system, the current
passing through individual nanopores is continuously recorded, which is modified by
the nucleic acid translocating through the nanopore in a sequence-specific manner.
To enable recording, the strands are attached to a motor protein that slows down the
process. Nanopore systems can sequence full length of DNA/RNA molecules (>2
million bp) directionally, including non-poly(A) transcripts, however their
throughput is currently lower than NGS (Picelli, 2017). Although still in its infancy,
the third generation of sequencing is a promising tool of the future.

1.1.1.2.4 Targeted sequencing

More than 90% of the transcripts have less than 50 copies per cell despite having
central roles in biological processes, including critical genes such as signaling
proteins and transcription factors. Due to the fact that the global (unbiased) RNA-
sequencing (RNA-Seq) approaches randomly sample the transcripts, sensitive
detection and in-depth analysis of lowly expressed genes are hindered as the most
abundant (e.g. housekeeping) genes consume majority of the sequencing reads
(Eberwine et al., 2014; Mercer et al., 2014). Therefore, targeted analysis of a small
number of loci of interest can be advantageous in particular cases over exhausting
the sequencing resources for the uninteresting information (Hodges et al., 2007).

With a fixed number of total reads consumed for a specific experiment, enriching the
transcripts of interest over others (targeted sequencing) can maximize the coverage,
e.g. of the lowly expressed genes (Figure 3). Targeted sequencing can be used for a
broad range of applications such as detecting mutations, RNA editing events, and
fusion transcripts; studying the dynamics of specific processes (e.g. stem cell

3 https://nanoporetech.com/products
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differentiation) or screening the response of selected genes to a compound library. A
large number of samples can be analyzed in parallel while minimizing sequencing
costs and time, which would benefit both clinical and research applications (Li et al.,
2012). There are different methods for enrichment of selected sets of transcripts,
which can be classified under the following categories:

 Amplification based:
o PCR based
o MIP-based

 Hybridization-based:
o On-array capture
o In-solution capture

Figure 3: Global (unbiased) and targeted sequencing approaches trade the number of genes
with the sequencing depth reciprocally (when the output is fixed)

One strategy to enrich the selected set of transcripts is amplification, which can be
done either per target via individual reactions, or in a multiplexed manner. For
example, Craig et al. (Craig et al., 2008) resequenced 46 individuals in parallel, to
identify genetic variants. Multiple 5 kb regions from each individual were co-
amplified, samples were fragmented, barcoded and mixed in equimolar
concentrations for sequencing. Commercial platforms such as Ion AmpliSeq gene
panels (Life Technologies) also use the multiplex PCR technology. Multiplex PCR
can have certain disadvantages such as uneven efficiency of different primer pairs,
non-specific amplification, or cross-hybridization of the pooled primers. This can be
avoided if each target can be amplified in isolation, such as the RainStorm
platform4, which is based on parallel individual PCR reactions that take place in
microdroplets (Mamanova et al., 2010a; Tewhey et al., 2009). The fragmented
sample is captured together with the PCR reagents within multiple droplets, each of
which receives a single primer pair targeting a specific locus. The droplets per target
are combined equimolarly and PCR is run within each droplet, which are
subsequently combined and prepared for sequencing. Isolation of the reactions
circumvents the problems inherent to multiplex PCR, and thousands of loci can be

4 http://raindancetech.com/
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co-analyzed this way; however, cost and processing time limits the length of the
targets (<2-3 Mb) and high-throughput analyses.

Capturing by circularization is based on the principle of placing inversely
oriented target-specific probe pairs at the 3’ and 5’ of an oligonucleotide stretch with
a spacer, to increase the specificity of multiplex amplification, such as padlock or
molecular inversion probes (MIPs) (Mercer et al., 2014). Following hybridization, the
gap in between the probes are filled-in, and the resulting circular molecule contains
the target fragment and the spacer, which contains loci for global primers to amplify
the captured DNA stretch with PCR or rolling circle amplification. The probes on the
original padlock systems hybridized to the entire target without any space, and the
gap is closed via ligation, which required full complementarity. The MIP system
derived thereof contains a space between the probes, which is filled in by a
polymerase using the target as the template, allowing to capture also the variable
sequences in between, e.g. SNPs or indels (Porreca et al., 2007; Turner et al., 2009).
Nonetheless, target-specific sequence of each probe lowers the uniformity of the
padlock/MIP systems compared to hybridization-based methods (Mamanova et al.,
2010a).

Another strategy to select the sequences of interest is hybridization to pre-
designed probes, either on arrays or in solution. The first adaptation of the array-
based target capturing to NGS was established by NimbleGen (Hodges et al.,
2007). It is much faster and easier to perform in comparison to PCR, yet requires
expensive instruments and relatively large amount of starting material (10-15 µg of
DNA), and is not suitable for parallelization of many samples. In-solution
capturing, on the other hand, requires lower amount of starting material compared
to array-based versions and does not need special instruments (Mamanova et al.,
2010a). An example is the RNA CaptureSeq, in which a pool of custom
oligonucleotides attached to beads are used to capture the targets of interest from
fragmented samples, and then are pulled down. The use of multiple probes for the
same target can help normalizing the variations (like in microarrays) that might
arise from individual probes, which can ensure a higher uniformity (Mercer et al.,
2014). Nevertheless, in comparison to amplification-based methods, hybridization-
based target enrichment demands higher amount of starting material (Ozsolak and
Milos, 2011), which does not suit single-cell applications.

To my knowledge, there are currently two methods for targeted transcriptomics of
single cells. CytoSeq combines oligo(dT) capturing and gene-specific primers to
analyze up to 111 genes (3’ ends) in tens of thousands of cells using nanowell plates
(Fan et al., 2015). The recently introduced RAGE-Seq combines targeted nanopore
sequencing of full-length transcripts with the short-read transcriptome sequencing
in single cells (Singh et al., 2019).
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1.1.2 Single-cell analysis

Human body is made up of tens of trillions of cells that can be categorized merely
into about 200 cell types. Even if located in the same tissue, the cells of the same
type often have heterogeneous gene activity though, which plays important roles
during development, homeostasis, and disease (Figure 4). Fluctuations of gene
expression during embryonic development allow the cells to explore alternative
lineages. In adult tissues, it ensures the continuous presence of a small population of
cells that are ready to rapidly respond to physiological or external cues, thereby
warrant adaptiveness. Besides, whereas all the cells of an organism hypothetically
contain the same genome, exceptions are common, such as the immune system,
germline cells, tumor cells, as well as replication-related somatic mutations.

Traditionally, biological mechanisms are studied using materials obtained from
pools of thousands or millions of cells in order to have enough material to study,
which, as a result provides averaged information on the sampled cell population.
However, it is impossible to know whether these values reflected an underlying
uniform profile or are the average of bimodal or multimodal subpopulations. It is
now known that gene expression levels varies significantly (up to 1000-fold) even
within the presumably homogenous cell populations (Raj et al., 2006).

Figure 4: Analysis of cells in bulk masks the underlying heterogeneity, which plays crucial
roles in development, homeostasis, and disease. Single-cell analysis can provide higher-resolution and
more accurate information. Top and right figures were adapted from online resources5,6

5 https://cdn.the-scientist.com/assets/articleNo/30175/iImg/1098/-kst1.jpg
6 http://www.marketreportgazette.com/wp-content/uploads/2019/07/Organ-Transplant-
Immunosuppreant.jpg
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Being able to analyze single cells can provide unprecedented insights into biological
mechanisms, and address questions that were impossible to answer previously. How
to create a colossally complex organism step-by-step starting from a single zygote? Is
stem cell differentiation stochastic or deterministic, is it reversible, and when does it
become irreversible? Reconstructing developmental lineage trees, for example by
examining accumulated somatic mutations in single cells can partially answer these
questions. Significant rare cells can be investigated, such as adult stem cells in
tissues, circulating tumor cells in the blood, or cells that cause resistance to
antibiotics (Picelli, 2017). Single-cell analysis of biopsies can provide insights into
the tumor microevolution and cancer relapse and advance the strategies to target
them using precision medicine (Shapiro et al., 2013). Environmental studies can
benefit from single-cell analysis, too, e.g. for novel discoveries of microorganisms
that cannot be cultured in the lab (Saliba et al., 2014).

1.1.2.1 Single-cell sequencing techniques

Following the first single-cell RNA-sequencing experiment that reported the
analysis of “seven” cells (Tang et al., 2009), the technology grew tremendously over
the past ten years that simultaneous sequencing of over a million cells is possible
today (Figure 5). This is made possible by co-development of different techniques
for isolating single cells, capturing and amplification of the transcripts, introducing
the barcodes, and analyzing the data. A technical summary of the techniques is
given in Table 1.

Figure 5: The exponential growth of single-cell sequencing technologies over the past ten
years (Svensson et al., 2017)

1.1.2.1.1 Isolating single cells

The very first step of single-cell analysis is their proper isolation from the primary
tissue or the culture plate, and transfer to the reaction site (Figure 6). Following is
an overview of the existing techniques (based on Hwang et al., 2018; Marín de
Evsikova et al., 2019; Picelli, 2017; Saliba et al., 2014):
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Figure 6: Single cell isolation techniques. (A) Limiting dilution. (B) Micromanipulation. (C)
Fluorescence-activated cell sorting (FACS). (D) Laser capture microdissection (LCM). (E) Droplet
emulsion. Figure modified from Hwang et al. (2018)

 Micromanipulation is the isolation of cells from a suspension e.g. using mouth
pipette under microscope. Pros: cells can be observed and handling also the
fragile cells is possible. Cons: cells have to be in suspension, low-throughput,
labor-intensive.

 Optical tweezers use laser beams to hold and move the cells. Pros: cells can be
observed. Cons: cells have to be in suspension.

 Laser capture microdissection (LCM) uses laser beams to dissect the cells
from solid tissues. Pros: spatial information is preserved. Cons: low throughput,
might not recover the whole cytoplasm, thus sub-optimal for transcriptomics.

 Limiting dilution of the cells to a certain concentration allows sampling single
cells based on Poisson distribution. Cons: majority of the wells will contain zero
cells rather than one, leading to unnecessary reagent consumption.

 Fluorescence-activated cell sorting (FACS) isolates highly puried single
cells, as well as single nuclei using an electric field (e.g. MARS-Seq, snRNA-Seq).
Pros: can be either an unbiased (all live cells) or biased technique (specific
size/morphology or marker expression), high-throughput, economical, easy,
accessible by many research groups. Cons: requires large number of cells,
suboptimal for mixture of cells with different sizes.

 Microfluidic chips offer compartmentalized nanoliter-sized units to capture
cells, into which additional components can be transferred in a controlled
manner (e.g. Fluidigm C1). Pros: low sample consumption, reduced risk of
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contamination due to closed circuitry, high throughput. Cons: limited cell size
range, expensive chips.

 Nanowells/microwells are microfabricated surfaces containing hundreds of
thousands of wells that capture cells via limiting dilution (e.g. ICELL8,
CytoSeq). Pros: works by gravity, possible to visually inspect the wells. Cons:
only a small percentage of wells contain cells.

 Droplet emulsion captures the cells and reagents in tiny aqueous droplets
enclosed by an oil phase (e.g. InDrop, Drop-seq, 10x Chromium). Pros: low cost
per cell, high throughput. Cons: Large number of starting cells are required,
majority of the droplets are empty.

1.1.2.1.2 RNA capturing and amplification

The next step to isolating the cells is recovery and amplification of their transcripts.
The workflows roughly consist of the following steps: reverse transcription, second
strand synthesis (optional), amplification, fragmentation, and library preparation
(Shapiro et al., 2013) (Figure 7):

Reverse transcription is often performed using oligo(dT) primers, either dissolved
in reaction solution (e.g. plate-based or microfluidic platforms) or attached to beads
(e.g. droplet or nanowell formats). Oligo(dT) stretch is flanked with a universal PCR
primer locus for the subsequent amplification. Later methods additionally include a
stretch of cell barcode and a molecular barcode -unique molecular identifier (UMI)-
in between the oligo(dT) and the universal primer (Figure 6E). The cell barcodes -
unique per cell- are used to sort the reads to the cell of origin, while the UMIs -
unique per molecule- are used to correct for the amplification bias (Kivioja et al.,
2012). Most of the techniques capture the transcripts at the poly(A) tail and count
the sequences in the 3’ or 5’ end (tag-based) at the expense of full-length coverage
(Table 1). There are a few techniques that can provide full-length coverage, such as
Smart-seq that uses template switching and RamDA-seq that combines random
displacement amplification with not-so-random primers to analyze full length (>10
kb) RNA including non-poly(A) transcripts (Hayashi et al., 2018; Picelli et al., 2013).
Notwithstanding the in-depth information they offer about transcripts, e.g. isoforms
or SNPs, these methods are often limited to a smaller number of cells due to labor
and costs, and they might not accommodate cell barcodes.

Many of the methods include a second strand synthesis step. One strategy is
homopolymer tailing, which is the addition of ~30 nt poly(A) tail to the 3’ end of
the first strand cDNA using a terminal deoxynucleotidyl transferase (Quartz-Seq:
Sasagawa et al., 2013; Tang et al., 2009). Subsequently, oligo(dT) flanked by a
second primer locus is used to synthesize the second strand. The drawbacks include
loss of strand information and 3’ bias, thus uneven coverage of the transcripts,
because reverse transcription may terminate prematurely resulting in incomplete
sequences (Picelli, 2017; Saliba et al., 2014). Another strategy is template
switching (SMART: Switching Mechanism at the 5′ end of the RNA Transcript)
that uses Moloney Murine leukemia virus reverse transcriptase (M-MuLV RT) to
ensure full transcript coverage since only complete mRNA molecules are processed
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(Zhu et al., 2001). It is based on an intrinsic property of the M-MuLV RT to add 3-4
cytosines to the 3’ end of the first strand cDNA. When a universal primer ending
with a short poly(G) motif is added to the reaction, it is anchored by the newly
synthesized poly(C) stretch, and the reverse transcriptase proceeds to synthesize the
second strand with its DNA dependent DNA polymerase activity. While majority of
the methods target the poly(A) tails of mRNAs, there are a few exceptions, for
example, MATQ-Seq is able to analyze non-poly(A) transcripts (Sheng et al., 2017),
and Hayashi et al. (2018) designed not-so-random (NSR) primers, which are
bioinformatically optimized to target all the RNA molecules except rRNAs.

Figure 7: Methods used for capturing and amplification of transcripts from single cells
(Saliba et al., 2014)

Amplification is the next step of the workflows due to the limited RNA content of
single cells (1-50 pg) (Livesey, 2003) (Figure 7). For the methods that flank the
transcripts with universal primer loci on both ends, PCR is the choice for initial
amplification of the full-length transcripts. The following tagmentation
simultaneously adds the sequencing adapters while fragmenting the amplicons. In
vitro transcription (IVT) is used by the methods that attach a T7 promoter to the
oligo(dT) primers during the first strand synthesis. Anti-sense RNAs (aRNA) are
produced via IVT, which are then fragmented, reverse transcribed, and prepared for
sequencing. Although linear amplification with IVT prevents potential PCR
artifacts, it tends to cause 3’ bias, and second reverse transcription might decrease
the overall efficiency (Ziegenhain et al., 2018). A third strategy is rolling circle
amplification (RCA), in which Phi29 DNA polymerase is used to amplify the
circularized cDNA (Pan et al., 2013).

Single-cell Combinatorial Indexing RNA-seq (sci-RNA-seq) is a recently introduced
method that couples the cell isolation with barcoding and amplification, using the
fixed cells or nuclei as in situ reaction chambers (Cao et al., 2017, 2019).
Combinatorial barcoding is achieved via splitting the cells as pools into 96/384-well
plates for the first round of barcoding, then collecting and mixing them, and
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splitting again for the second round of barcoding. SPLiT-Seq is a similar method
(Rosenberg et al., 2018) that includes multiple split-pool rounds, during which
barcodes are added by ligation. These methods achieve analysis of very large
number of cells, scaling up to millions.

Table 1: Technical summary of single-cell sequencing methods

1.1.2.1.3 Analysis of single-cell sequencing data

Many tools were developed for analyzing the single-cell sequencing data, mostly
based on Python or R; including Monocle (Trapnell et al., 2014), SEURAT (Satija et
al., 2015), and Scanpy (Wolf et al., 2018). Some sequencing platforms offer
accompanying software for complete analysis starting from raw reads, such as the
Cell Ranger of 10x Chromium7. The main analysis steps include filtering out the
low-quality cells, normalizing the data, dimensionality reduction and clustering the
cells, and identifying differentially expressed genes or gene trajectories.

Processing the raw sequencing data results in a read count matrix that consists of
cells and genes as columns and rows. The first step is filtering out the cells with
sub-optimal biological or computational quality, for example when the transcripts
could not be recovered due to failed capturing, incomplete lysis, degradation, or
subsequent reactions. Low number of UMIs or detected genes, or high percentage of
spike-in reads (if used) might indicate incomplete recovery of transcripts or captured
ambient RNA molecules instead of cells. High number of UMIs or detected genes
might indicate doublets. Increased percentage of mitochondrial transcripts may

7 https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-
ranger
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imply stress or cell death. Such samples are omitted from subsequent steps.
Optionally, genes expressed in lower than a certain number of cells are also
excluded (Luecken and Theis, 2019). Nevertheless, the cell types being analyzed,
their metabolic demands and potential size heterogeneity within the population
should be taken into account on an experiment-to-experiment basis when deciding
on the filtering thresholds.

Since the sequencing depth per cell can vary due to biological or technical
confounders such as dropouts or random sampling, normalization aims to scale the
read counts per cell and per gene to comparable levels. Some methods simply
presume equal number of transcripts in each cell; hence, they use the total UMIs
detected in a cell as the scaling factor. Despite some limitations, use of ERCC RNA
spike-ins (rather for plate-based methods) is another strategy to deconvolute the
technical and biological variations, and to estimate the total mRNA count per cell
(Ziegenhain et al., 2018). Nevertheless, the zero-inflated nature of single-cell data
usually necessitates more complex approaches. To address this, various techniques
were developed, such as using pooled read counts from multiple cells as reference,
omitting the highest expressed genes, building non-linear models of the data,
quantile regression, and so on, as discussed extensively in multiple reviews (Hwang
et al., 2018; Luecken and Theis, 2019; Ziegenhain et al., 2018). An additional
correction step might be necessary to adjust the variations coming from cell cycle
stage or batch effects, for example when combining samples from different
experiments, namely data integration, which is important for the projects
accommodating data produced using various platforms, such as the Human Cell
Atlas Project (Regev et al., 2017).

Although the number of dimensions of a count matrix equals to the number of genes
detected, the underlying biological variability can indeed be explained with a much
smaller set of dimensions. Dimensionality reduction aims to discover the
inherent biological variance while reducing the computational burden (Luecken and
Theis, 2019). Principal component analysis (PCA) is a linear and the simplest
method, which also serves as a basis for the commonly used non-linear approaches
such as t-distributed Stochastic Neighbor Embedding (t-SNE: Maaten and Hinton,
2008) or Uniform Manifold Approximation and Projection (UMAP: McInnes et al.,
2018) that allows visualization of the multi-dimensional data in two dimensional
space. There are further methods that visualize the movements and bifurcations of a
cell population (e.g. diffusion maps: Haghverdi et al., 2015), and the connectivity
among the clusters (e.g. PAGA: Wolf et al., 2019). Finally, differential expression
analysis enables discovery of new pathways, gene regulatory networks, and the
molecular mechanisms behind them.

1.1.2.2 Alternative techniques for single-cell analysis

There are also non-NGS transcriptomics techniques to analyze single cells. For
example, Fluidigm Biomark is built upon multiplexed pre-amplification of selected
genes from single cells in a microfluidic device and subsequent analysis by qPCR
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(Sanchez-Freire et al., 2012). The advantages include the ability to design and
optimize primers, high sensitivity, specificity, and wide dynamic range. On the other
hand, cells should be homogenous in size to comply with the microfluidic device
(Hwang et al., 2018), the genes should be known in advance, and the data is based
on secondary signals which might lead to false positive signals (Kalisky et al., 2018).

Another approach is fluorescent in situ sequencing that is based on fixing the cells
on a surface, and sequencing via hybridization of fluorescent probes and imaging.
Transcripts are either sequenced at single nucleotide resolution (e.g. FISSEQ: Lee et
al., 2015), or estimated by the combinatorial information obtained using multiple
oligonucleotide probes (e.g. MERFISH: Chen et al., 2015). These methods have
complex workflows, high costs, and low throughput; nevertheless, they can be useful
for analyzing a smaller number of cells with high resolution since they preserve
spatial information of the RNA molecules.

1.2 Human Pluripotent Stem Cells

1.2.1 Pluripotent stem cells, in vivo and in vitro

Early embryonic development is an exceptional stage of a human’s life, where a
perfectly fine-tuned cascade starting from the zygote, a single cell with a single
genome, flows towards a colossally complex structure. In a very short time, a small
number of seemingly homogenous cells undergo major remodeling steps to initiate a
process that will give rise to hundreds of different cell types in the body. It starts
with the formation of the zygote which undergoes multiple cell divisions to create a
ball of cells resembling a mulberry, named morula (morus: mulberry in Latin).
Then, the cells divide further to create a fluid-filled ball named blastocyst,
consisting of two cell lineages; the trophoblast that surrounds the structure and
contributes to placenta, and the inner cell mass that gives rise to the embryo
proper and some extraembryonic tissues (Figure 4).

Pluripotency is defined as the ability of cells to differentiate into all three germ
layers (ectoderm, endoderm, mesoderm) and to the germline, but not to
extraembryonic tissues (Weinberger et al., 2016). As the embryo develops from
morula towards gastrula stage, pluripotent stem cells (PSCs) come into existence in
a very narrow window. However, they could be locked in an indefinitely self-
renewing state in vitro by controlling the culture components. The first human
embryonic stem cells (hESCs) were derived from inner cell mass outgrowths of
the donated IVF embryos by Thomson et al. (1998).

Naturally, development is a one directional flow of cells from less specialized to more
specialized states, as exemplified first by Waddington’s epigenetic landscape
(Waddington, 1957). Once established, these states are very stable throughout the
organism’s life, lasting over multiple division cycles (Smith et al., 2016). However,
Takahashi and Yamanaka (2006) showed that the cells could be driven back along
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the Waddington’s landscape to a pluripotent state by ectopically expressing as little
as four factors: OCT4, SOX2, KLF4, and c-MYC (known as OSKM or Yamanaka
factors) in mouse fibroblasts, which are termed induced pluripotent stem cells
(iPSCs). Human somatic cells, too, were reprogrammed to iPSCs a year later by two
different research groups (Takahashi et al., 2007; Yu et al., 2007).

Since their first derivation, hESCs and hiPSCs became valuable tools for studying
the pluripotency and early lineage commitment events, because the cells of the
human embryo at the equivalent stage in vivo are inaccessible. Besides basic
research, understanding the stepwise events giving rise to hundreds of different cell
types from pluripotent stem cells enables us to understand the developmental roots
of diseases, and would allow us in the future to mimic them to regenerate tissues
and organs using the hiPSCs that are routinely generated today. Since diseased
tissues are often not accessible and appropriate for experimentation, iPSCs will
serve as standardized tools for high-throughput compound screening in
pharmacology, and for precision medicine.

hESCs were traditionally maintained on mitotically inactivated mouse embryonic
fibroblasts (MEFs) using fetal bovine/calf serum (FBS/FCS) and growth factors
(Dakhore et al., 2018). Later, the factors secreted by MEFs were identified, which
included fibroblast growth factors (FGFs), transforming growth factor-β (TGFβ),
BMPs, and extracellular matrix components. Accordingly, different culture media
formulations were defined that can maintain the hPSCs without MEFs (Table 2).

Table 2: Compositions of the media used in this study (adapted from Dakhore et al. (2018))

Medium Components Extracellular
matrix Reference

mTeSR™1

DMEM/F12, bFGF, insulin, transferrin, selenium,
l-ascorbic acid, TGFβ, BSA, cholesterol, lipids,
pipecolic acid, GABA, β-mercaptoethanol,
Glutathione, trace elements, Lithium Chloride,
NaHCO3, x

Corning®
Matrigel®

Ludwig et
al. 2006,
Navara et
al. 2018

E8 DMEM/F12, bFGF, insulin, transferrin, selenium,
l-ascorbic acid, TGFβ (or Nodal), NaHCO3

Corning®
Matrigel®

Chen et al.
2011

KSR-bFGF
DMEM/F12, bFGF, 20% KSR, Glutamax,
nonessential amino acids, β-mercaptoethanol, and
1% penicillin–streptomycin

irradiated mouse
embryonic
fibroblasts (MEFs)

Krendl et
al. 2017

1.2.2 Ground-state (naïve) and primed pluripotency

ESCs were initially derived from the inner cell mass of pre-implantation blastocysts
in mouse. Subsequently, pluripotent stem cells were derived also from early post-
implantation epiblast, which are termed epiblast stem cells (EpiSC) (Tesar et al.,
2007). Like ESCs, EpiSCs also express pluripotency markers, have both activating
and repressing (bivalent) histone marks on the developmental genes, and can
differentiate into all three germ layers and to the germline (Theunissen et al., 2014).
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Nevertheless, ESCs and EpiSCs differ in certain aspects; hence, their states are
described as ground-state (naïve) and primed pluripotency, the latter corresponding
to a later stage in development (Nichols and Smith, 2009). It was noted that
cultured hESCs were indeed more similar to mouse EpiSCs (mEpiSCs) than mESCs,
for example both depend on FGF2/Activin signaling (Weinberger et al., 2016).
Primed pluripotent stem cells have an inactive X chromosome, use the proximal
OCT4 enhancer, have lower germline contribution and higher multilineage
differentiation potential, express primed pluripotency markers (e.g. DNMT3A,
DNMT3B) and early differentiation genes, and have a glycolytic metabolism
(Figure 8). On the other hand, presence of two active X chromosomes, open
chromatin (H3K27 hypomethylation), usage of distal enhancer of OCT4, higher
clonogenicity, expression of naïve markers (e.g. NANOG, REX1/ZFP42), and a
metabolism dependent on oxidative phosphorylation (instead of glycolytic) are some
characteristics of naïve pluripotency (Lee et al., 2017; Ware, 2017; Warrier et al.,
2017).

Figure 8: Primed vs ground-state (naïve) pluripotency (adapted from Ware (2017) & Yilmaz and
Benvenisty (2019))

Naïve and primed states of pluripotency can be interconverted by tuning the culture
conditions. Traditionally, mouse naïve cells were maintained by including leukemia
inhibitory factor (LIF), and inhibitors of mitogen-activated protein kinase (MEK)
and glycogen synthase kinase 3 beta (GSK3β) in the medium (i.e. 2i) (Silva and
Smith, 2008; Ying et al., 2008). The concentration of the GSK3β inhibitor
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CHIR99021 should be fine-tuned, because it maintains ground-state pluripotency at
low concentrations, while it causes differentiation at higher concentrations
(Takashima et al., 2014). Likewise, several groups published protocols for conversion
of hPSCs to ground-state pluripotency (Figure 8), most of which share the basic
2i/LIF condition, as reviewed by Ware (2017) and Yilmaz and Benvenisty (2019) in
detail, though a universal recipe is not established yet.

1.2.3 Early lineage commitment

In the early embryo, the development of the blastocyst proceeds with the alignment
of the cells of the inner cell mass in the form of two adherent discs; epiblast and
hypoblast, which are the precursors of embryonic and extraembryonic tissues,
respectively. Subsequent fates of PSCs are determined by different combinations of
Activin/Nodal, BMP, FGF, and Wnt signaling gradients (Vallier et al., 2009a)
(Figure 9).

Figure 9: Lineage bifurcations during early embryonic development. Important signaling
pathways are indicated

Initially, BMP4 signaling activates the Wnt pathway, which in turn induces the
formation of the primitive streak, a structure extending from the middle of the
embryo towards the posterior end. Subsequently, the cells along the streak start to
migrate inwards, which is called gastrulation (Figure 10). Wnt-induced activation
of the Activin/Nodal signaling results in the emergence of mesendoderm cells at this
stage (Ben-Haim et al., 2006). Positive regulation of the Activin/Nodal signaling
gives rise to the endoderm (Yiangou et al., 2018), a second layer formed by the
migrating cells that align along the hypoblast, which gives rise to the organs or
tissues that are related to the inner body cavity, such as gastrointestinal tract and
respiratory system. On the other hand, negative regulation of the Activin/Nodal
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signaling in the migrating cells that remain in between the epiblast and endoderm
results in the mesoderm layer, which is the source of the tissues like muscles, bones,
and the circulatory system. Formation of only one primitive streak in the embryo,
and its exclusion from the anterior part is ensured by the Nodal-antagonizing
signals secreted from the hypoblast (Perea-Gomez et al., 2002). The cells that
remain in the epiblast layer form the neuroectoderm, which gives rise to tissues
such as skin or the nervous system. Neuroectoderm is the default layer formed upon
the clearance of anti-differentiation signals in the absence of other lineage-
specifying signals, while endoderm and mesoderm are actively induced (Yiangou et
al., 2018). There are several genes that are used as markers (some of which are
master lineage regulators) of specific stages during gastrulation; such as T
(BRACHYURY) and MIXL1 for primitive streak; EOMES and GSC for
mesendoderm; T for mesoderm; CER1, FOXA2, GSC and SOX17 for endoderm
(Faial et al., 2015); and SOX2 for neuroectoderm (Vallier et al., 2009b).

Figure 10: Gastrulation8

The canonical Wnt pathway (Wnt/β-catenin pathway) has a crucial function in
gastrulation, which is thought to exert its effect mainly via stabilization of β-catenin
(Doble and Woodgett, 2003). In the absence of Wnt ligand, a destruction complex in
the cytoplasm constantly phosphorylates and ubiquitinates β-catenin for
degradation (Figure 11, left). In the presence of the Wnt ligand the β-catenin
destruction complex is sequestered to the cell membrane, and ubiquitination of β-
catenin is inhibited, leading to the saturation of the destruction complex and
translocation of the excess β-catenin to the nucleus (Li et al., 2012) (Figure 11,
right). In the nucleus, β-catenin transactivates the TCF/LEF family of transcription
factors, which are bound to Wnt target genes (Doble and Woodgett, 2003). The Wnt
pathway can be stimulated using isolated Wnt3a protein, chemically inhibiting

8 http://www.mun.ca/biology/desmid/brian/BIOL3530/DEVO_03/devo_03.html
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GSK3β (e.g. using CHIR99021) which blocks the degradation of β-catenin
(Blauwkamp et al., 2012), or overexpressing β-catenin (Figure 46).

Figure 11: Wnt/β-catenin pathway in the presence and absence of the Wnt ligand (Li et al.,
2012)

1.3 Barcode Assembly for Targeted Sequencing (BART-Seq)

The previous sections portrayed the history of transcriptomics and the advances in
the field of single-cell sequencing. As a summary, the techniques for analyzing bulk
samples that provide secondary signals as output (e.g. microarrays or qPCR) are not
sequence-sensitive, and they do not allow high degree of sample multiplexing.
Targeted approaches often aim to analyze a large number of loci in a small number
of samples, require a high amount of starting material and provide poor dynamic
readouts due to the intermittent purification steps, rendering them incompatible for
single-cell analysis. The major challenge for the current single-cell transcriptomic
approaches is the poor detection of the genes expressed in moderate to low levels,
which are in fact majority of the genes in a cell. Since they attempt to sample all the
transcripts, a few highly expressed (mostly housekeeping) genes consume most of
the reads, hindering any mechanistic understanding of the expression patterns of
the genes of special interest. Second, commercial methods usually require expensive
instrumentation and consumables, which make them unaffordable for many
research laboratories. Third, many of them are tag-based, meaning that they count
only the 3’ (or 5’) of the transcripts, making the analysis of different isoforms or non-
poly(A) transcripts impossible. The methods that can analyze full-length transcripts,
such as Smart-Seq2 (Picelli et al., 2013), and the non-NGS methods such as FISSEQ
(Lee et al., 2015) or MERFISH (Chen et al., 2015) are costly and often not high-
throughput.
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1.3.1 A novel target enrichment and barcoding workflow

With the purpose of addressing the aforementioned problems, I established a
workflow for enriching the selected sets of loci from gDNA or cDNA samples (Figure
12). Preliminary work in the Drukker Lab had established the general concept for
synthesizing differentially barcoded forward and reverse primers for target
enrichment by multiplex PCR and sample indexing for NGS. The novel method is
named Barcode Assembly for Targeted Sequencing (BART-Seq). It was envisioned
that the PCR enrichment would enable focusing the sequencing capacity to the
selected targets, thus provide high-resolution information. The simple workflow that
circumvents intermittent steps of fragmentation, hybridization, or ligation would
make quantitative analysis possible for both bulk samples and sorted single cells.
The simple synthesis reaction and combinatorial indexing would allow massive
multiplexing using only a small number of barcodes; therefore, reducing the costs
substantially.

Figure 12: Barcode Assembly for Targeted Sequencing (BART-Seq) workflow. ❶ Invariant
sets of multiplexed primers (Gene1-GeneX) are differentially indexed using panels of forward (BcF) and
reverse (BcR) DNA barcodes. ❷ (c)DNA templates from bulk samples or single cells are prepared. ❸
Amplicons with dual barcodes are generated using combinations of barcoded-primer sets during the
PreAmplification PCR. ❹ PCR products are pooled and sequenced in a paired-end NGS run. ❺
Sequencing reads are demultiplexed to count matrices for further analyses
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1.3.2 Focus of the thesis

The global goal of my project was to establish a complete workflow based on the
BART-Seq method, and then apply it to biological questions. I aimed to implement it
for efficient analysis of selected genomic or transcriptomic loci in a large number of
samples, including single cells, cost-effectively, and develop the accompanying
computational methods to analyze the data. The specific questions of my project
were the following:

 Can we increase the efficiency of individual steps of the workflow, and decrease
the overall cost?

 Is BART-Seq suitable for sensitive quantification of template mRNAs?
 Can we detect gene expression changes in single cells?
 Does the method suit high-throughput analysis of bulk samples?

To address these, I initially carried out optimization experiments on individual steps
of the workflow to increase the efficiency of reactions, decrease the cost per sample,
or reduce the total number of steps. Next, I demonstrated that the method is
suitable for dynamic range measurements in isolated bulk RNA samples or directly
in sorted cells. Subsequently, I adapted it for high-throughput transcriptomics and
applied it in a series of experiments including thousands of single cells. The specific
questions were: whether different maintenance media influence the pluripotency
state of hESCs, and whether activating the Wnt pathway using different stimuli
yields the same transcriptional outcomes. I also contributed to two projects where
we used the method to screen gDNA samples from patients for mutations or the
transcriptional response of hepatocytes to a compound library. Along with the
experiments, I developed bioinformatics scripts for processing the data starting from
the raw count matrices and ending with biological interpretations, besides assisting
the development of bioinformatics tools for de-multiplexing the raw sequencing data
to read count matrices. I discuss these endeavors and their outcomes in this thesis.
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2 MATERIALS & METHODS

2.1 Materials

Table 3: Reagents and kits

Reagent Supplier Cat. No
Agencourt AMPure XP beads Beckman Coulter A63881
Agilent High Sensitivity DNA Kit Agilent 5067-4626
Ambion® ArrayControl™ RNA Spikes Invitrogen™ AM1780
DNA Polymerase I large (Klenow) fragment Invitrogen™ 18012021
dNTP Set 100 mM Solutions Thermo Scientific™ R0181
Ethanol ≥99,8 % Carl Roth 9065.2
GeneRuler™ 100bp DNA Ladder Thermo Scientific™ SM0241
Lambda Exonuclease New England Biolabs M0262L
MgCl2 (magnesium chloride) (25 mM) Thermo Scientific™ R0971
MiSeq® Reagent Kit v2 (300 cycles) Illumina MS-102-2002
NaOAc (pH 5.5) Ambion AM9740
NEBNext® ChIP-seq Library Prep Reagent Set for

Illumina®
New England Biolabs E6200S

NEBNext® dA-Tailing Module New England Biolabs E6053S
NEBNext® dA-Tailing Reaction Buffer New England Biolabs B6059S
NEBNext® End Repair Module New England Biolabs E6050S
NEBNext® High-Fidelity 2X PCR Master Mix New England Biolabs M0541S
NEBNext® Multiplex Oligos for Illumina® (Index Primers

Set 1)
New England Biolabs E7335L

NextSeq® 500/550 Mid Output Kit v2 (300 cycles) Illumina FC-404-2003
Nuclease-Free Water (not DEPC-Treated) Invitrogen™ AM9932
Oligo(dT)18 Primer Thermo Scientific™ SO132
PhiX Control v3 Illumina FC-110-3001
Platinum™ Multiplex PCR Master Mix Applied Biosystems™ 4464268
Power SYBR™ Green PCR Master Mix Applied Biosystems™ 4367659
Primers Sigma Aldrich
QIAGEN Multiplex PCR Plus Kit QiaGen 206152
Quant-iT™ PicoGreen™ dsDNA Assay Kit Invitrogen™ P7589
Qubit™ dsDNA HS Assay Kit Invitrogen™ Q32854
React®2 Buffer (10X) Invitrogen™ 16302-010
RNeasy Mini Kit QiaGen 74106
SuperScript ™ III First-Strand Synthesis System Invitrogen™ 18080051
SuperScript™ IV First-Strand Synthesis System Invitrogen™ 18091200
SYBR™ Safe DNA Gel Stain Invitrogen™ S33102
T7 Exonuclease New England Biolabs M0263S
TE Buffer (20X), RNase-free Invitrogen™ T11493
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Table 4: Cell culture media, supplements, and cell lines

Reagent Supplier Cat. No
2-Mercaptoethanol (β-Mercaptoethanol) (50 mM) Gibco™ 31350010
Accutase® solution Sigma-Aldrich A6964-100ML
B-27™ Supplement, minus insulin Gibco™ A1895601
BD FACSFlow™ Sheath Fluid BD Biosciences 342003
CHIR 99021 trihydrochloride Tocris 4953
Collagenase Type IV, powder Gibco™ 17104019
DMEM, high glucose, pyruvate, no glutamine Gibco™ 21969035
DMEM/F-12 Gibco™ 11320074
Doxycycline hyclate Sigma-Aldrich D9891-1G
DPBS, no calcium, no magnesium Gibco™ 14190094
EDTA disodium salt dihydrate Carl Roth X986.1
Fetal Bovine Serum (FBS) HyClone™ SH30071.03
FGF2 (Recombinant Human FGF-basic) (154 a.a.) Peprotech 100-18B
GlutaMAX™ Supplement Gibco™ 35050061
Hygromycin B (50 mg/mL) Gibco™ 10687010
Insulin-Transferrin-Selenium Supplement (100X) Gibco™ 41400045
KnockOut™ Serum Replacement (KSR) Gibco™ 10828028
L-Ascorbic Acid 2-Phosphate Magnesium Sigma-Aldrich A8960-5G
Matrigel® Growth Factor Reduced (GFR) Corning® 354230
MEM Non-Essential Amino Acids Solution (100X) Gibco™ 11140050
mTeSR™1 Stemcell Technologies 5850
Penicillin-Streptomycin (10,000 U/mL) Gibco™ 15140122
Propidium iodide Sigma-Aldrich P4170-10MG
Recombinant Human TGF-β1 (HEK293 derived) Peprotech 100-21
RPMI Medium 1640 - L-Glutamine Gibco™ 21875034
Sodium bicarbonate (NaHCO3) Sigma-Aldrich S5761-1KG
Trypsin-EDTA (0.25%), phenol red Gibco 25200056
Y-27632 dihydrochloride Tocris 1254/10
CD1-irradiated mouse embryonic fibroblasts Drukker Lab
H9 (WA09) hESCs line WiCell
H9 hESC line modified with dox-inducible β-cateninΔN90  Drukker Lab
HMGU#1 human iPSC line (Kunze et al., 2018) Drukker Lab
Newborn human BJ fibroblasts (ATCC® CRL-2522™) ATCC®
rWnt3a (gift from Derk ten Berge) Erasmus MC, Rotterdam

Table 5: Consumables

Consumable Supplier Cat. No
384-well PCR plates Kisker Biotech G034-ABI
PCR Plate, 96-well, non-skirted Thermo Scientific™ AB0600
Sapphire PCR 8-tube sptrips, 0,2 mL, PP, natural Grenier BioOne 673210
Conical Tubes (50 mL) Invitrogen™ AM12502
DNA LoBind Tubes, 5 mL Eppendorf 30122348
DNA LoBind Tubes, 2.0 / 1.5 mL Eppendorf 301080**
Sealing Tape Aluminium Foil Starlab E2796-9792
MicroAmp™ Optical Adhesive Film Applied Biosystems™ 4311971
Falcon® 5 mL Tubes with Cell Strainer Cap Corning® 352235
Nunc™ Cell-Culture 6-well plates Thermo Scientific™ 140685
10/20 µl XL TipOne® filter tips Starlab S1120-3810-C
200 µl TipOne® filter tips Starlab S1120-8810
1000 µl TipOne® filter tips Starlab S1126-7810-C
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2.2 Instruments

Table 6: Instruments and equipment

Instrument Company Cat. No
+4 freezer, -20 freezer Liebherr
10 / 20 / 200 / 1000 µl pipettes, single-channel Eppendorf 31210000**
12-channel pipette, 10 µl Sartorius 725220
1-channel electronic pipette, 5-120 µl Sartorius 735041
8-channel electronic pipette, 10-300 µl Sartorius 735361
Agilent 2100 Bioanalyzer Agilent G2939BA
BD FACSAria™ III BD Biosciences
Heracell™ 240i CO2 Incubator Thermo Scientific™
Heraeus™ Megafuge™ 40 Centrifuge Series Thermo Scientific™
Heraeus™ Pico™ 21 Microcentrifuge Thermo Scientific™
Mastercycler® nexus X2 / nexus eco / nexus gradient Eppendorf
Microcentrifuge, MiniStar silverline VWR 521-2844P
MiSeq® System Illumina SY-410-1003
NextSeq® 500 System Illumina SY-415-1001
Power Supply peqPOWER 300V Peqlab
QuantStudio 12K Flex Real-Time PCR System Thermo Fisher
Qubit® 2.0 Fluorometer Thermo Fisher
Revco™ ExF -86 °C Upright Ultra-Low Temperature Freezer Thermo Scientific™
Safe 2020 Class II Biological Safety Cabinet Thermo Scientific™
Safire II Microplate Reader Tecan
Thermomixer Eppendorf 5355 000.011

2.3 Computational Tools

Table 7: Software

Software Address
R (v3.5.2) https://www.r-project.org/
CLC Genomics Workbench

(v8.5.1)
https://www.qiagenbioinformatics.com/products/clc-genomics-
workbench/

FastQC tool (v0.11.8) https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Table 8: Websites

Website Address
Ensembl Genome Browser https://www.ensembl.org/index.html
Illumina BaseSpace https://basespace.illumina.com
NCBI-GEO https://www.ncbi.nlm.nih.gov/geo/
Predict a 2° Structure Web

Server
https://rna.urmc.rochester.edu/RNAstructureWeb/Servers/Predict1/Predic

t1.html
PrimerSelect http://icb-bar.helmholtz-muenchen.de/primerselect
UCSC In-Silico PCR https://genome.ucsc.edu/cgi-bin/hgPcr

https://www.r-project.org/
https://www.qiagenbioinformatics.com/products/clc-genomics-workbench/
https://www.qiagenbioinformatics.com/products/clc-genomics-workbench/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.ensembl.org/index.html
https://basespace.illumina.com/
https://www.ncbi.nlm.nih.gov/geo/
https://rna.urmc.rochester.edu/RNAstructureWeb/Servers/Predict1/Predict1.html
https://rna.urmc.rochester.edu/RNAstructureWeb/Servers/Predict1/Predict1.html
http://icb-bar.helmholtz-muenchen.de/primerselect
https://genome.ucsc.edu/cgi-bin/hgPcr
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2.4 Methods

2.4.1 Design of barcode panels

All possible 8-mer (barcode) and 10-mer (linker) oligonucleotides of 50-60% GC
content were computed omitting sequences with one, two, or three nucleotide
repeats. All pairwise global alignment scores were computed separately for barcodes
and linkers using pariwise2 from Biopython package. Whenever comparing two
barcodes in all forward and reverse combinations, the maximal alignment scores
were used for further analysis. Next, a global optimization heuristic (simulated
annealing) was implemented to efficiently identify a set of highly unique sequences
in terms of likelihood that mutations (exchange, deletion, insertion) might lead to a
conversion into another sequence within the set. A random initial set of sequences
was either shrunk (with 10% probability), altered by randomly exchanging
sequences (36% probability), or randomly increased (54% probability). Changes were
accepted if the new sum of alignment scores was lower or by change whenever exp(-
Δsumscore÷T) was lower than another random number. This simulated annealing
algorithm scanned temperatures T from 10,000 to 0 along 300 cooling iterations to
reach a global optimum. The resulting sets were randomly divided into forward and
reverse barcodes and linkers. Next, the 3’ of the forward and reverse linkers were
ligated in silico to the sequences of the forward and reverse barcode sets,
respectively. Finally, BLAST was used to accept 18 nt sequences without any
identified hit in the human genome (APPENDIX G) and transcriptome
(APPENDIX F). (Description adapted from Dr. Nikola Müller)

2.4.2 Primer design and optimization

Primers were designed to have an adenine (A) base at the 3’ position of the final
primer sequence after barcode assembly. This was done due to the fact that the DNA
Polymerase I large (Klenow) fragment frequently adds a template-independent A
base to the 3’ of the newly synthesized strand. Primer3 was used with default
settings, but with modified internal primer predictions such that it enforces the
primer’s 3’ to end with a T nucleotide. For each template, up to five forward and
reverse primer pairs were predicted. Certain regions can be excluded or included
just like the Primer3, e.g. using “< >” or “{ }”. Each primer pair set was compared
against the human genome using the blastn command from the blast+ package with
the parameters -reward 1 -gapopen 5 -gapextend 5. Using our web-based software,
the user can set the number of hits allowed for further processing. Next, given the
predefined linkers, and 1-5 predicted primer pairs per loci, an in silico ligation step
was performed to generate all possible primer-linker combinations. Hereby,
matching forward and reverse primers defined one amplicon. To minimize the
probability of forming stable dimers, we calculated the all-against-all minimal free
energy (including all reverse complements) using the RNAcofold command from the
ViennaRNA package version 2.1.8 with the parameters --noPS --noLP -P
dna_mathews2004.par. Low predicted minimum free energy correlates to a high
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probability of forming a stable dimer. A simulated annealing was implemented to
identify optimal combinations of each primer pair per locus, thereby taking barcode
and linker sequences into account. During optimization, the minimal value of free
energy of the forward or reverse complement sequence was used for determining the
probability of forming stable primer dimers. Per amplicon and gene, we started with
a random initial set of primers. We proceeded to either randomly alter it (with 80%
probability) or randomly exchanged amplicons if there were several amplicons
available for a gene. In each step, the random change was accepted if the new sum of
minimum free energies (mfe) is lower than in the last or randomly if exp(-Δmfe÷T)
was lower than a uniformly drawn random number. We scanned over temperatures
T from 15,000 to 0 along 500 cooling iterations. The primer prediction
implementation is a Python-based web front end that is available online at:
http://icb-bar.helmholtz-muenchen.de, of which we made the code freely available
(see 2.5 Availability of Data and Materials). (Description quoted from Dr. Nikola
Müller and Philipp Angerer)

2.4.3 Design of primer sets

An amplicon size range of 75-248 nt was aimed to ensure detection by 2×150 bp
paired-end sequencing. Primer sets targeting 10 specific mutations in BRCA1 and
BRCA2 genes (Kaufman et al., 2006; Laitman et al., 2012; Lerer et al., 1998) were
designed based on the human genome reference hg19 (APPENDIX L). Pluripotency
primer set was designed based on the analysis of publicly available RNA-Seq
datasets of hESCs via NCBI-GEO from H9, H7, and HD291 cells (GSM602289,
GSM1163070, GSM1163071, GSM1163072, GSM1704789, GSM1273672,
GSM1327339), and own datasets (APPENDIX J). The target regions were selected
for Wnt stimulation (mesoderm) primer set using bulk RNA-Seq data produced by
stimulation of hESCs by rWnt3a or CHIR99021 for 72 h (APPENDIX K). RNA-Seq
reads were mapped to the genome reference hg38 using CLC Genomics Workbench
using mismatch cost: 2, insertion cost: 3, and deletion cost: 3. To find the highest
expressed loci of the genes regardless of transcripts, initially the ratio of reads per
transcript variant to its length was calculated and summed up to obtain an average
for the gene. This sum was multiplied by ~20 (empirical), which is used as the lower
threshold to create coverage map of the gene in a particular sample. The regions
higher than this threshold were marked. After repeating this for each sample, the
loci overlapping in the majority of the samples were selected for primer design. This
was repeated for each gene. The complete sequences of RNA spike-ins EC2 (RNA1),
EC12 (RNA2), EC13 (RNA6), and EC5 (RNA8) were used.

Table 9: Derivation of reverse complementary (rc) primers from nested primers

Process Sequence

Sequencing (nested) primer 5'CTGCCGTGTGAACCATGTGA 3'

Add linker to 5'  &  remove 3'A 5'ATGCGCATTCCTGCCGTGTGAACCATGTG  3'

Reverse complement  &  add 5'[phos] 5'[phos]CACATGGTTCACACGGCAGGAATGCGCAT  3'
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2.4.4 Cell culture

Undifferentiated hESCs (H9 line) were routinely maintained on Matrigel™-coated
plates in mTeSR™1 medium in 5% (v/v) O2. Cells were passaged as clumps using
2 mg/ml solution of Collagenase Type IV prepared in DMEM/F-12.

2.4.4.1 Growth media comparison

Cells were split and maintained for five passages in mTeSR™1, E8 (on Matrigel™),
and KSR-bFGF media (on CD1-irradiated mouse embryonic fibroblasts) in parallel.
E8 medium consisted of DMEM/F12 supplemented with 64 mg/l l-ascorbic
acid-2-phosphate magnesium, 14 µg/l sodium selenium, 100 µg/l FGF2, 19.4 mg/l
insulin, 543 mg/l NaHCO3 and 10.7 mg/l transferrin, 2 µg/l TGFβ1, and osmolarity
was adjusted to 340 mOsm at pH 7.4, as described by Chen et al. (2011). KSR-bFGF
media consisted of DMEM/F12 supplemented with 20% KSR, Glutamax,
nonessential amino acids, β-mercaptoethanol, 10 ng/mL FGF2, and 1% penicillin-
streptomycin as described by Krendl et al. (2017). Newborn human BJ fibroblasts
were cultured in DMEM high glucose, supplemented with 1% GlutaMAX, NEAA,
and 10% HyClone™ Fetal Bovine Serum.

2.4.4.2 Wnt/β-catenin pathway activation

hESCs and hESC line modified with doxycycline-inducible β-catenin (constitutively
active form ΔN90) were maintained on Matrigel™-coated plates in mTeSR™1
medium, with 25 μg/ml Hygromycin B in the case of β-cateninΔN90 line. For time
course stimulations, the cells were dissociated to single-cell suspension with
Accutase and seeded into 12-well plates at 2.5×105 cells per well in the presence of
10 μM Y-27632. The next day, the medium was changed to RPMI-1640 with L-
glutamine supplemented with 1x non-essential amino acids and 1x B27 supplement
without insulin. Ligands were as follows: 10 μM CHIR99021 and 240 ng/ml
recombinant Wnt3a. β-catenin expression was induced by adding 1 μg/ml
doxycycline. The medium and ligands were freshly re-added every 24 h.

2.4.5 Single-cell sorting and cDNA synthesis

2.4.5.1 Sorting

hESCs were dissociated using Accutase, and cells maintained in KSR-bFGF on
MEFs were collected as clumps using Collagenase Type IV prior to Accutase
treatment. Newborn human BJ fibroblasts were dissociated using Trypsin-EDTA
0.25%. For sorting, the cells were resuspended in 1 ml of FACS buffer (4% FBS and
5 μM EDTA in PBS), filtered through a 0.2 μm nylon mesh, and single live cells
(propidium iodide negative) were sorted into the 384-well plates (1-32 cells for
medium comparison, and single cells for Wnt pathway activation) pre-filled with 2 μl
reverse transcription mixture, using Aria III sorter.



2.MATERIALS & METHODS

– 30 –

2.4.5.2 cDNA synthesis

Reverse transcription mixture (RT mix) was prepared using SuperScript ™ III First-
Strand Synthesis System with reverse transcriptase at a final concentration of
2.5 U/μl (nuclease-free water) and oligo-dT primers (2.5 μM). The percentage of
reads each spike-in would possibly receive was calculated based on the previous
NGS and qPCR data, and the corresponding amounts were combined with the RT
mix, which was then aliquoted into individual wells of 384-well plates (2 µl/well).
The cells were sorted (often with FACS) directly into the RT mix, plates were sealed
with adhesive foils, placed immediately on dry ice for 2 min, and stored at 20 °C.
Plates were thawed at room temperature, and the reverse transcription was
performed using the thermocycler program: 50 °C for 50 min and 85 °C for 5 min;
RNaseH was not used.

2.4.5.3 Bulk RNA isolation

Total RNA was extracted using RNeasy Mini Kit according to manufacturer’s
instructions.

2.4.5.4 RNA spike-ins

Molecular counts of four RNA spike-ins EC2 (RNA1), EC12 (RNA2), EC13 (RNA6),
and EC5 (RNA8) in the stock solutions were calculated based on molecular weights
and known concentrations (100 ng/µl). They were serially diluted initially to obtain
5 million/µl (1 million/0.2 µl for conventional reasons), out of which 10-fold serial
dilutions down to 100 molecule/0.2 µl were prepared. They were aliquoted into PCR
stripes and kept at -80 °C freezer, and thawed on ice before use.

2.4.6 Barcode assembly

2.4.6.1 Klenow fill-in reaction

Unit reaction mixture was prepared in nuclease-free water by combining 1x React®2
Buffer, 0.267 mM dNTPs, 2.5 μM multiplexed rc-primer mix, 2.5 μM barcode, and
0.0167 U/μl DNA Polymerase I large (Klenow) fragment. The reaction was incubated
at 25 °C for 1 h. Individual rc-primers were used at a 0.25 μM final concentration,
and barcode concentrations were matched to the total concentration of rc-primers
(incubation time of 2 h was also applicable). The enzyme was heat inactivated at
80 °C for 10 min.

2.4.6.2 Reverse complementary strand removal by Lambda
exonuclease

Products of the fill-in reaction were directly diluted as 2/3 volume ratio in the
Lambda reaction mixture containing 1x reaction buffer and 0.33 U/μl Lambda
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exonuclease and incubated at 37 °C for 30 min (incubation time of 1 h was also
applicable). The enzyme was heat inactivated at 80 °C for 10 min.

2.4.6.3 Pre-amplification PCR

PCR reactions (10 μl total) consisted of 2.5 μl Platinum® Multiplex PCR Master Mix
(0.5x final), 1.8 μl 25 mM MgCl2 (4.5 mM final), 1.5 μl forward Lambda reaction
product (non-purified), 1.5 μl reverse Lambda reaction product (non-purified), 2 μl
cDNA, and 0.7 μl nuclease-free water (not DEPC-treated). The reaction cycle profile
was as follows: initial denaturation at 95 °C for 5 min; 22 cycles of 95 °C for 30 s,
60 °C for 3 min, 72 °C for 60 s; and final extension at 68 °C for 10 min. Unit PCR
reaction of genotyping assays was 20 μl, with the same concentration of reagents,
and 18 cycles of PCR. Unit PCR reaction of transcriptomics experiments was 10 μl,
with cycle numbers between 16 and 22.

2.4.7 qPCR and melting curve analysis

qPCR analyses were carried out using nested primers, which were homologous to
the barcode-assembled primers (Figure 18), excluding the barcode and the linker
regions (Appendices I-L). Unit reaction (10 μl total) consisted of 5 μl (1x final)
Power SYBR™ Green PCR Master Mix, 1 μl pre-amplification PCR product, 1 μl
mixture of forward and reverse nested primers (each 0.2 μM final), and 3 μl
nuclease-free water (not DEPC-treated). The reaction cycle profile was as follows:
initial denaturation at 95 °C for 10 min followed by 35-40 cycles of 95 °C for 15 s and
60 °C for 1 min. Melting curve analysis was done by heating the amplicons from 60
to 95 °C, incrementing 0.05 °C/s. All the reactions were run as two or three
replicates. For statistics, two tailed and paired Student’s t-test was used. P values
were indicated on the graphs according to following: P>0.5 ns; P≤0.05 *; P<0.01 **; P
<0.001***; P <0.0001****.

2.4.8 Next-generation sequencing

2.4.8.1 Sample pooling and purification

PCR products were pooled in nuclease-free falcon tubes, mixed with 0.1 volume 3 M
NaOAc (pH 5.5) and 2.5 volume 100% ethanol (molecular biology grade), and kept at
20 °C overnight for precipitation. Samples were centrifuged at 4000 g for 30 min in a
centrifuge pre-cooled to 4 °C. The supernatant was discarded, and the samples were
washed once with 500 μl ice-cold 70% ethanol. Tubes were centrifuged at 4000 g for
2 min (4 °C), and the remaining supernatant was pipetted out. The pellet was air
dried for 2-3 min and re-suspended in 200-500 μl nuclease-free water. Prior to
library preparation, double-sided size selection was performed using Agencourt
AMPure XP beads. 0.5x and 1.5x bead to DNA ratio was used for upper and lower
size limits, respectively.



2.MATERIALS & METHODS

– 32 –

2.4.8.2 RNA-Seq library preparation and sequencing

For library preparation 50% to 25% of the ethanol precipitated libraries were used,
and the rest was kept as backup at -20 °C. Libraries were prepared using
NEBNext® Multiplex Oligos for Illumina®, and the protocol was based on
NEBNext® ChIP-Seq Library Prep Master Mix Set for Illumina® with the following
modifications: end repair was performed using 1 μl NEBNext End Repair Enzyme
Mix in 50 μl final reaction. PCR enrichment included 1 μl index and 1 μl universal
primers in 50 μl final reaction. The enrichment PCR cycle profile was as follows:
initial denaturation at 98 °C for 30 s; 10-15 cycles of 98 °C for 10 s, 65 °C for 30 s,
72 °C for 30 s; and final extension at 72 °C for 5 min. Fifteen, 12, 10 and 15 cycles of
PCR enrichment was applied for RNA quantification, media comparison, Wnt
pathway stimulation, and BRCA genotyping experiments, respectively. Beads to
DNA ratios for purification steps using AMPure XP beads were adjusted based on
the expected size range of each library after each step of the library preparation
(Figure 13). The original size range was increased by 1, 65, and 122 after end
repair, adapter ligation, and PCR enrichment, respectively.

Figure 13: Determination of the size selection thresholds during library preparation. (A)
Library sizes after each reaction was calculated relative to the original range (M-N). (B) Beads:DNA
ratio was adjusted based on the library size at each step, referring to example analyses9

Final libraries were evaluated using Agilent 2100 Bioanalyzer by High Sensitivity
DNA Kit and quantified using Qubit® 2.0 Fluorometer by Qubit® dsDNA HS Assay
Kit, and by Safire II Microplate Reader using Quant-iT™ PicoGreen™ dsDNA Assay
Kit. Libraries were sequenced (paired-end) on Illumina MiSeq using MiSeq®
Reagent Kit v2 (300 cycles) or Illumina NextSeq 500 using NSQ® 500/550 Mid
Output Kit v2 (300 cycles). Approximately ten percent PhiX control was included in
the sequencing runs as a measure against index switching (Sinha et al., 2017).

9 http://core-genomics.blogspot.com/2012/04/how-do-spri-beads-work.html
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2.4.9 Demultiplexing of RNA-Seq reads to count matrices

To trace the origins of reads back to the samples, a pipeline that demultiplexed the
reads and counted them while accounting for sequencing errors was implemented.
FastQC software was used to create quality reports for manual inspection (Andrews,
2010). Given the acceptable quality, Snakemake workflow engine (Köster and
Rahmann, 2012) was used for automatic or step-by-step analysis of raw reads, sets
of primers, linkers, barcodes, and expected amplicons. This started by trimming the
read ends according to quality using Sickle (Joshi and Fass, 2011), then a list of
possible single nucleotide-mutated variants per barcode, excluding the ones shared
with other barcodes, was created. Using the algorithm of Aho and Corasick (1975),
this list efficiently assigned barcodes to all reads while allowing at most one
unambiguous mismatch. We also annotate the reads with several boolean criteria
for statistical analysis of libraries. This included the information if the read
contained only a primer, multiple (or no) barcodes, if the barcode contained a
mismatch or if the read contained bases before the protection group. We aligned the
longer amplicons to the reads using HISAT2 (Kim et al., 2015). The final step of the
pipeline is to summarize the results. Heatmaps for each library were created per
amplicon using the forward and reverse barcodes as a coordinate system, and a
spreadsheet file containing the aforementioned read statistics as well as count
matrices was generated (Figure 32). The pipeline was also made available as
described in 2.5 Availability of Data and Materials. (Description quoted from
Philipp Angerer)

2.4.10 Classification of BRCA mutations

To classify the amplicons corresponding to mutations 1-10, we generated read count
per patient for both wild-type and mutation alleles (identified by top blast hit per
read) and assigned the genotypes to patients based on the ratio of mutation to wild-
type reads. We accepted the ratios >20% to call a mutation (due to the high
background).

2.4.11 Analysis of protection groups

For the analysis of 5’ protection groups, we identified barcodes using BLAT (Kent,
2002), a BLAST-like alignment tool, with options -minScore=0 -minIdentity=95
allowing for one base mismatch at most. This was necessary to screen all possible
protection groups. For each detected wild-type or mutant allele, we calculated the
frequency of 64 trinucleotides for each forward and reverse barcode. Then, summing
the frequencies up across all the alleles, we obtained the total frequency of each
trinucleotide per barcode.
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2.4.12 Data correction and normalization

2.4.12.1 Correction of RNA spike-in reads

Two alternative approaches were used for correcting the spike-in reads, first of
which was the median method that is simpler and deals with only the severely
inefficient combinations. Second method addresses all the combinations and is based
on the correction of spike-ins using negative binomial generalized linear modeling.
The initial step for both methods was removal of the wells with extreme outlier
spike-in reads after inspecting the heatmaps of raw read counts (i.e., if exhibiting
hundreds of folds higher/lower reads than the average). Next, samples exhibiting
extremely low barcode-gene combinations were removed.

Median Method: Per spike-in, two-sided t-test (default parameters, R version 3.5.2)
was performed for each barcode against the rest of the barcodes of the same type
(i.e., forward or reverse), using the data between the 5th and 95th percentiles for
both groups. Barcode-spike-in combinations with P values lower than an empirically
set threshold were replaced with the median of the rest of the barcodes.

GLM Method: Initially, spike-in values were modeled (glm.nb from MASS package,
R version 3.5.2) using the formula below (Figure 35B, C), and the samples that
deviate from the predictions more than two-fold were flagged as outliers:

𝑓𝑢𝑙𝑙_𝑚𝑜𝑑𝑒𝑙: 𝑟𝑒𝑎𝑑 𝑐𝑜𝑢𝑛𝑡 ~ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 + 𝑐𝑒𝑙𝑙𝑠 + 𝑤𝑒𝑙𝑙. 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 + 𝑓𝑜𝑟𝑤𝑎𝑟𝑑
+ 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 + 𝑓𝑜𝑟𝑤𝑎𝑟𝑑: 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 + 𝑟𝑒𝑣𝑒𝑟𝑠𝑒: 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

(1)

The explanatory variables of the model were as follows: spike-in ID (variable),
number of sorted cells to the well (cells), location of the well on the plate
(side/corner/middle) (location), global efficiency of the barcodes (forward/reverse),
and combination of barcodes and primers (forward:variable, reverse:variable). Then,
the model was re-calculated excluding the flagged values. Wells were completely
removed from the original dataset if only one spike-in was left non-flagged. The
remaining outliers were replaced by the predictions of the re-calculated model using
the same formula.

Next, two basic models were built for the correction:

model#1: 𝑟𝑒𝑎𝑑 𝑐𝑜𝑢𝑛𝑡 ~ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 + 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 + 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 + 𝑓𝑜𝑟𝑤𝑎𝑟𝑑: 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
+ 𝑟𝑒𝑣𝑒𝑟𝑠𝑒: 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

(2)

model#0: 𝑟𝑒𝑎𝑑 𝑐𝑜𝑢𝑛𝑡 ~ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 + 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 + 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 (3)

Correction factors were calculated by dividing the predictions of the model#1 to the
predictions of the model#0. Raw reads were divided by the correction factors. A
shortened version of the R script containing the basic steps is provided in
APPENDIX E.
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2.4.12.2 Normalization of the data

Using the corrected dataset, scaling factors (RNAx) were calculated using spike-ins
(left) or spike-ins and genes together (right) as follows:

or
RNAx = (2

1
N∑ log2(spiken+1)N

1 − 1) 𝑚𝑒𝑑𝑖𝑎𝑛⁄ (4)

RNAx = (2
1
N∑ log2(genen+1)N

1 − 1) 𝑚𝑒𝑑𝑖𝑎𝑛⁄ (5)

Wells were removed if their scaling factor was ten-fold lower or higher than the
median of all the factors, to prevent overcorrection. Then, the factors were median-
centered via division to preserve the read count magnitudes. Finally, raw read
counts of the transcripts were divided by the scaling factors (Figure 36). The
corresponding script is available at the Github (see 2.5 Availability of Data and
Materials).

2.4.12.3 Well filtering in single-cell experiments

Wells sorted with single cells were operationally defined as “empty” if the ratio of
the sum of the spike-in reads to the total reads per sample (normalized and log2-
transformed) was same or higher than the negative controls (Figure 14A). No cells
were sorted into negative control wells, yet they also received some reads due to
index switching; therefore, they were used as the background (Sinha et al., 2017).
Samples representing the wells sorted with multiple cells were filtered based on the
calculated one-cell values of the genes. Filtering the samples sorted with two cells or
more, i.e. “doublets”, was done by placing a threshold estimated based on the two-
fold of the median values and bimodal distribution of the sum of the genes (log2-
transformed) (Figure 14B). Only housekeeping genes were used for filtering
fibroblasts.

Figure 14: Plots exemplifying filtering of the samples that potentially contain (A) no cells or (B)
more than one cell (calculations were made using log2 transformed read counts)
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2.4.12.4 Analysis of gene expression

Gene expression analyses were done using custom scripts or Seurat package in R
(version 2.3.4), based on normalized and log2-transformed read counts. Linear
regression models were calculated using lm function (default parameters, R version
3.5.2).

2.5 Availability of Data and Materials

Data: The raw and processed BART-Seq data discussed in this thesis is deposited in
NCBI’s Gene Expression Omnibus (NCBI-GEO) and is accessible under SuperSeries:
GSE107723 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE107723). Bulk
RNA sequencing data used for comparison to 72 h samples (bCat: GSM3737181,
GSM3737182; CHIR99021: GSM3737193, GSM3737194; rWnt3a: GSM3737203,
GSM3737204) is available under: GSE130381
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE130381).

Codes: The scripts for designing barcodes and primers and normalizing the read
counts are available at https://github.com/theislab/bartSeq, licensed under GNU
General Public License. The versions used in this thesis are permanently available
under https://doi.org/10.5281/zenodo.3252205. The pipeline for demultiplexing the
sequencing reads are available at https://github.com/theislab/bartseq-pipeline,
licensed under GNU General Public License v3.0. The version used in this thesis is
permanently available under https://doi.org/10.5281/zenodo.3251773. The website
for designing the primers is available at http://icb-bar.helmholtz-muenchen.de.
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3 RESULTS

3.1 Development and Optimization of the BART-Seq Workflow

A critical specific aim of my project was to create ways for the BART-Seq method to
work effectively with very large cohorts of RNA and gDNA samples, including of
single cells, with optimum efficiency and cost. This section provides a summary of
the experiments I carried out to optimize the method towards these goals.

3.1.1 The principle of barcode-primer assembly

The BART-Seq workflow is built upon serial synthesis of a large number of
differentially barcoded forward and reverse primers for target enrichment by
multiplex PCR and sample indexing for next-generation sequencing (Figure 12,
Figure 15). The synthesis of primers -named barcode-primer assembly- requires
oligonucleotides as the building blocks, DNA Polymerase I large (Klenow) fragment,
and Lambda exonuclease (λ-exo). The building blocks are eight-mer DNA barcodes
coupled to ten-mer linker sequences, and reverse complementary (rc) primer sets
coupled to rc-linkers (Figure 16). Different forward and reverse barcode panels and
linker sequences are used for the forward and reverse primer sets.

Figure 15: The complete BART-Seq workflow. Barcoded primers are synthesized in two steps
(Klenow & Lambda). In parallel, cDNA or gDNA samples are prepared. Samples and primers are
combined in the PreAmp PCR to generate amplicons with sample-specific dual barcodes, which are
pooled and prepared for sequencing. Using a custom-made algorithm, sequencing reads are
demultiplexed to count matrices, which are analyzed further to draw biological interpretations.

The steps of the assembly method are as follows: Barcodes and multiplexed rc-
primers are hybridized via ten-mer complementary linkers, and double-stranded
barcoded primers are synthesized through a bi-directional fill-in by a DNA
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polymerase (Klenow fragment). In a second step, anti-sense primer strands are
removed by an exonuclease, generating barcoded single-stranded gene-specific
primers (Figure 16). Intermediate and end products of the barcode assembly were
visually confirmed by Agarose gel electrophoresis (Figure 17).

Figure 16: The basic principle of barcode-primer assembly. Barcodes and reverse
complementary primers are hybridized via complementary linkers, and a fill-in DNA synthesis
complements both strands (an A base is frequently added to the 3′ ends by Klenow fragment). Then, an
exonuclease is used to remove the anti-sense strand, resulting in single-stranded barcoded primers

Figure 17: Intermediate products of barcode assembly visualized by Agarose gel
electrophoresis. Rc-primer (P) and barcode (B) following hybridization (P+B) forms a molecule with
higher molecular weight, which is increased further with Klenow fill-in reaction (K). λ-exo treatment
(λ) yields single-stranded barcoded primers with reduced molecular weight. Heat inactivation steps
(KHI, λHI) do not influence the products. Samples were a single barcode with a linker and a single rc-
primer with an rc-linker, ran on 2.5% Agarose gel with GeneRuler™ 100 bp DNA Ladder. To ensure co-
visibility of single and double stranded products, reactions were loaded in different volumes

3.1.2 A concept to analyze the efficiency of intermediate reactions by
qPCR

It was not feasible in terms of labor and costs to use NGS to evaluate the outcome of
each optimization experiment during the development of BART-Seq. With the
assumption that the changes in the amount of amplicons generated in the PreAmp
PCR should essentially reflect the changes in the efficiency of primer synthesis or
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PreAmp PCR, I employed qPCR with nested primers (without barcodes) to compare
the amplicon yields of the tested conditions (Figure 18A). For this, I compared the
control and test conditions side by side for the same target. For statistical
significance, I aliquoted the PCR products to multiple reactions and tested several
targets in parallel. Ct values were shown as bar plots with standard deviation of two
or three technical replicates as error bars. I interpreted the reduced Ct values
relative to the control as increased efficiency of the tested condition, and vice versa.
Statistical significance of the difference between the control and the tested condition
is shown next to the legend (described in the Materials and Methods, section
2.4.7). Unique and well-defined melt curves were interpreted as higher efficiency
compared to distorted melt curves with multiple peaks, since they might be
indicative of byproducts. Presence of “+” signs on top of each bar reflects the
distortion of melt curves, severity of which correlates with the number of signs (one
to four) (Figure 18B).

For the initial optimization experiments I used a multiplex primer set targeting four
and six genomic loci within the human BRCA1 and BRCA2 genes, respectively
(APPENDIX I, APPENDIX L). I assembled barcodes with these primers through
different reaction conditions and used them to pre-amplify the 10 loci from the bulk
gDNA derived from human MCF-7 cell line. I conducted the experiments often using
two alternative barcode combinations, one known to be efficient (e.g. A×1 or
L14×R05) and one known to be inefficient (e.g. D×9 or L07×R10).

Figure 18: A concept to assess the intermediate reactions with qPCR. (A) Amplicons generated
using barcoded primers were quantified with qPCR using nested primers (without barcodes), to
estimate the efficiency of barcode assembly or PreAmp PCR. (B) Ct values of the nested qPCR were
plotted with error bars indicating the standard deviation of two/three replicates. Degree of melt curve
distortions were indicated with the “+” signs (one to four). Statistical significance of the comparisons
was shown next to the legends
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3.1.3 Barcode assembly

Given that barcode assembly is essentially the step where the primers are
synthesized, the success of the whole BART-Seq workflow profoundly depends on the
efficient conversion of the oligonucleotide building blocks into barcoded primers
(Figure 15). Therefore, I first aimed to optimize the assembly steps by comparing
reaction components, concentrations, and conditions.

3.1.3.1 Klenow reaction

The first reaction of the barcode assembly is the fill-in synthesis of the hybridized
barcodes and rc-primers by a DNA polymerase (Figure 16). For this, we used the
Large Fragment of DNA Polymerase I (Klenow Fragment) of E. coli (Klenow and
Henningsen, 1970) because its 3'→5' exonuclease activity allows proofreading, while
its lack of 5'→3' exonuclease activity ensures the intactness of the newly synthesized
primer duplex, which is crucial for the integrity of the barcode located to the 5’ of the
sense strand.

3.1.3.1.1 Concentration of oligonucleotides

Initially, I explored the optimum oligonucleotide concentrations for the barcode
assembly and PCR, because multiplex PCR has different dynamics than the
singleplex one (Henegariu et al., 1997). For this, I screened individual primers in a
range of 0.01-1 µM final in the Klenow reaction containing 10 multiplexed primers.
Concentration of barcodes was matched to the total primer concentration. Dilutions
below 0.25 µM resulted in reduced efficiency of PreAmp PCR, and additional melt
curve peaks (Figure 19A). Concentrations over 0.25 µM, too, resulted in increased
Ct values, and totally abolished specific amplification at 1 µM, possibly resulting
from either incomplete primer synthesis or excess primers in the PCR (Figure 19B).
As a result, I decided to adopt 0.25 µM of each primer as the standard for Klenow
reaction, which translates to 0.025 µM in the PreAmp PCR.

3.1.3.1.2 Klenow reaction duration

I tested the influence of the Klenow reaction length on the complete conversion of
the oligonucleotide components to barcoded primers. Gradually increasing the
duration of Klenow reaction brought the efficiency to a maximum at 60 min (Figure
20), possibly because the standard 30 min incubation was not sufficient for full
conversion of the oligonucleotides to barcoded primers. Extending the reactions to
120, and 240 minutes did not reduce the Ct values further (not shown), and were not
favorable since longer incubation times might result in recessed 3’ primer ends due
to 3’→5' exonuclease activity of Klenow fragment10. Therefore, I decided to adopt 60
minutes as the standard duration for the Klenow step.

10 https://www.neb.com/~/media/Catalog/All-
Products/8A59478F7C464A55A999D8FC33C0AFAE/Datacards%20or%20Manuals/M0210Datasheet-Lot0881209.pdf
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Figure 19: Optimum oligonucleotide concentrations for the workflow. Barcode assembly of
primers in a range of 0.01 µM to 1 µM (each) final in the Klenow reaction were compared (10 primers
were multiplexed). (A) Concentrations lower than 0.25 µM resulted in reduced PCR efficiencies, for
both barcode combinations tested. (B) Concentrations over 0.25 µM resulted in reduced PCR
efficiencies, too, and complete loss of specific amplification with 1 µM. Barcode combination D×9 had
very similar results (not shown)

Figure 20: Duration of the Klenow reaction. Increasing the Klenow reaction from 30 min to 45 and
60 min improved the PCR efficiency significantly for both barcode combinations tested

3.1.3.2 Exonuclease reaction

Following synthesis of the primer duplex by Klenow fragment, the assembly protocol
includes exonuclease removal of the anti-sense primer to prevent it from annealing
to the sense primer during PCR cycles, which could inhibit amplification of the
targets by reducing the availability of free primers in the reaction. The following
sections summarize the experiments I performed for optimizing this step on multiple
aspects.
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3.1.3.2.1 Comparison of T7 and Lambda exonucleases

I compared two 5’→3’ exonucleases, T7 and Lambda (λ), to find out which one would
perform better within our assembly protocol (Figure 21A, B). T7 preferentially
hydrolyses the bases at the 5’ end of a DNA duplex (Kerr and Sadowski, 1972),
which can be inhibited by the presence of at least four phosphorothioate (PTO)
bonds at the 5’ (Nikiforov et al., 1994). Therefore, I coupled this enzyme with the
barcodes containing PTO bonds between first six nucleotides, in order to protect the
sense primers from degradation. Lambda exonuclease (λ-exo) has a much higher
affinity towards 5’P ends compared to 5’OH ends (Little, 1967). Accordingly, I
coupled this enzyme with the rc-primers ending with 5’P (purchased oligonucleotides
contain 5’OH by default), so that the anti-sense strand would preferentially be
degraded by the λ-exo.

Using λ exonuclease resulted in Ct values lower than or equal to T7 for the majority
of the targets, and T7-treated samples exhibited distorted melting curves (Figure
21C). Furthermore, T7 exonuclease cannot be heat inactivated according to the
manufacturer, which can result in undesired residual activity during the next steps
of the workflow. For these reasons, I decided to include the λ exonuclease in the
workflow in combination with rc-primers with 5’P ends.

3.1.3.2.2 Exonuclease +/-

With an attempt to minimize the steps in the barcode assembly protocol, I asked
whether the exonuclease removal of the anti-sense primers was indispensable for
the PCR efficiency. I therefore compared using λ exo-treated primers with the non-
treated counterparts for PreAmp PCR. Non-treated primers resulted in higher Ct
values and/or distorted melt curves in comparison to the λ-treated ones. Running
the same experiment with T7 exonuclease exhibited parallel patterns (not shown
here because we discontinued its usage in the project). Consequently, I decided to
keep the exonuclease removal of the anti-sense primers in the workflow.

3.1.3.2.3 Lambda reaction duration

Having established that removing the anti-sense primers following Klenow reaction
is crucial, the next logical step was to test whether increasing the duration of
Lambda reaction can enhance the PreAmp PCR efficiency, possibly by ensuring
complete hydrolysis of the anti-sense strands. Increasing the λ-exo treatment from
30 min to 60 and 120 min did not decrease, but slightly increased the Ct values
(Figure 22A), possibly due to partial degradation of sense primers, too, due to
residual activity of Lambda exonuclease towards 5’OH ends (Little, 1967). As a
result, I decided to keep the 30 minutes λ-exo treatment, which seems to be
adequate for hydrolyzing the anti-sense primers.
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Figure 21: Exonuclease treatment to remove anti-sense primers. (A) T7-exo was combined with
barcodes protected by 6 consecutive PTO bonds at the 5’ end. λ-exo was combined with anti-sense
primers harboring 5’P, to facilitate their preferential hydrolysis by the enzyme. (B) Comparison of
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phosphorothioate (PTO) and phosphodiester bonds11. (C) Removing the anti-sense primers using λ-exo
enhanced PCR efficiency compared to T7 with barcodes A×1. No difference in Ct values was observed
with barcodes D×9, but melt curves were distorted with T7 in comparison to λ. (D) Skipping the
exonuclease removal of anti-sense primers (- Lambda) led to reduced PCR efficiencies and almost
complete loss of specific amplification of the targets. Reduced Ct values with barcodes D×9 is the result
of non-specific products as implied by the melt curves

Figure 22: Duration of λ exonuclease treatment. (A) Increasing the duration of the Lambda
reaction from 30 min to 60 min or 120 min did not reduce Ct values, while insignificantly increasing
them. Melt curves did not display any secondary peaks in any of the conditions tested (not shown). (B)
When the primers assembled with 5’PTO barcodes were treated with λ-exo, PCR efficiency decreased
significantly in comparison to the same barcodes with regular phosphodiester bonds (noPTO). (C) Melt
curves of the reactions in B. (target: Amp9)

3.1.3.2.4 Protecting the barcode ends

Integrity of barcode sequences is imperative for the fidelity of BART-Seq workflow,
because missing nucleotides pose the risk of barcode misidentification, thus read
cross-contamination across the samples. Though with much lower processivity
compared to 5’P ends, λ-exo can also degrade 5’OH barcode ends (Little, 1967).
Because preliminary experiments that involved sequencing amplicon libraries
displayed shortening of a small proportion of barcodes by a few bases at the 5’ end,

11 http://blog.biosearchtech.com/know-your-oligo-mod-phosphorothioate-bonds
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we wanted to shield the barcodes from trimming by exonuclease. I initially tested
whether using barcodes with 5’PTO bonds would protect them from potential
degradation. Curiously, 5’PTO barcodes resulted in significantly reduced PCR
efficiency in comparison to the ones with regular phosphodiester bonds (noPTO)
(Figure 22B). Potential explanations might be higher affinity of Lambda towards
5’PTO ends, or getting trapped by the PTO bonds, in turn depriving the PCR
reaction of free primers. I did not run further experiments to test these hypotheses;
yet, practically decided not to use the barcodes with 5’PTO bonds.

I next tested if adding extra nucleotides to the 5’ of barcodes, namely “protection
groups”, can preserve the intactness of the actual barcode sequences. When I
compared different protection groups attached to the same barcode with qPCR (part
of which is shown in Figure 23A) there was not pronounced differences among
them. In order to analyze the protection groups more systematically, we designed an
NGS experiment where we assembled primers with the barcodes flanked by
additional 5’ trinucleotides in all possible combinations (NNN) to amplify a constant
amount of gDNA template, to identify the best sequences that could “protect” the
barcodes from trimming. CCA- had the highest relative frequency among all the 64
combinations tested (Figure 23C). We therefore inferred that this group should be
the most resilient sequence against exonuclease trimming and decided to include it
at the 5’ of barcodes as a protection group in the subsequent experiments.

Figure 23: Selecting a protection group for barcodes. (A-B) Protection groups with different
sequences and lengths resulted in very similar efficiencies when evaluated with qPCR (target: Amp9).
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(C) A matrix of ten forward (A-J) and eight reverse (1-8) barcodes flanked with 5’NNN trinucleotides
were assembled with the BRCA genotyping primer set to amplify constant amount of gDNA templates
(20 pg/µL) from MCF7 cells. Heatmaps illustrate the sorted amplicons following NGS to each forward
and reverse barcode. 5’CCA had the highest relative frequency among all the 64 trinucleotides tested,
implying the highest resistance to λ-exo hydrolysis. Intensity range light to dark corresponds to low to
high read numbers, respectively

3.1.4 Reverse transcription

For analyzing RNA samples with BART-Seq, a reverse transcription (RT) step is
required in the workflow (Figure 15). For this, the RT mix that contains spike-ins
was aliquoted to the wells, into which single cells were sorted (often with FACS) or
bulk RNA samples were pipetted, and RT reaction was run. Given that the efficiency
of RT can influence the accuracy of quantification of bulk samples and the extent of
dropout events in single cells, I tested whether the modifications I made to adapt the
protocol to our workflow has any influence on the efficiency of this reaction.

3.1.4.1 RNase H treatment following reverse transcription

The commercial reverse transcriptases are engineered to have diminished RNase
activity; consequently, an RNase H treatment step often follows the RT protocols to
remove the template RNA molecules, since the RNA:cDNA hybrids might display
higher stability compared to their homodimer counterparts, depending on their base
composition (Gyi et al., 1998) and negatively influence the subsequent PCR. With
the purpose of reducing the sample-intervention steps within the BART-Seq
workflow, in particular when analyzing thousands of single cells, I explored whether
the RNase H treatment could be skipped or combined with the subsequent PCR.
Among the targets tested, only SOX2 was negatively influenced when RNase H
treatment was skipped (Figure 24). On the other hand, mixing the RNase H with
the PCR reagents, even in lower concentrations, and running an additional step just
before PCR restored its Ct values.

Figure 24: RNase H treatment following reverse transcription. Using 50% RNase H (RNaseH
50%) did not change the Ct values in comparison to the recommended concentration for the three
different barcode combinations tested (two of them are shown). Skipping the RNase H addition
(RNaseH -) did not influence the Ct values either, except for SOX2
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3.1.4.2 Diluting and freeze-thawing reverse transcriptase

To make the mRNA of single cells available for reverse transcription following
sorting, the workflow involves snap-freezing the cells together with the reverse
transcription reagents and thawing for lysis, which could potentially damage the
enzyme (Cao et al., 2003). I investigated whether this step reduces the efficiency of
the reverse transcription. The efficiency of the snap-frozen reactions did not
decrease as compared to the non-frozen ones (Figure 25). The same held true when
I reduced the reverse transcriptase used per sample to 25% of the recommended
concentration. The only significant reduction of Ct values was attained by using
Superscript IV in comparison to Superscript III.

Figure 25: Freeze-thawing or diluting the reverse transcriptase. Snap freezing (+F) the reverse
transcription mixture did not result in any significant differences in comparison to non-frozen (-F)
samples for the template concentrations tested. Likewise, using 25% of the recommended enzyme
concentration did not influence the efficiency. Superscript IV enzyme (SSIV) significantly improved the
Ct values in comparison to SSIII. Very similar patterns were observed with GAPDH and POU5F1

3.1.5 Pre-amplification PCR

The PreAmp PCR is the step where the targets are co-amplified and samples are
barcoded at the same time. I tested different parameters such as degree of
multiplexing, primer concentrations, potential inhibitors, and so on, to increase the
yield as much as possible to make it compatible for detecting minute amounts of
template cDNAs from single cells, while reducing the consumption of multiplex PCR
master mix, which constitutes one of the most expensive components of the
workflow.

3.1.5.1 Multiplexing

The BART-Seq primers are relatively long oligonucleotides, ranging between ~38-50
nucleotides (barcode + linker + primer), which embrace a high potential of cross- or
self-hybridization, especially when multiple primers are present in the same
reaction. Therefore, I investigated whether multiplexing has any adverse effects on
the uniformity and efficiency of barcode assembly or subsequent PCR. I compared
multiplexing the primers ranging from 1 to 10 in parallel reactions and observed
that increasing the number of multiplexed primers gradually did not influence the
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efficiency of individual primers for the range tested (Figure 26).

Figure 26: Influence of multiplexing on the efficiency of barcode assembly and PCR. (A)
Multiplexing range from 1 to 10 was tested starting with Amp3 as singleplex, with the order shown in
the right pane. The concentration of the individual primers was equal in all reactions, and the barcode
concentration was matched to the total primer concentration. Total number of multiplexed primers did
not influence the efficiency of individual primers. Non-pre-amplified gDNA and the non-targeted
DNMT3B locus were used as negative controls. MCF7 gDNA was the template. (B) Melting curve
signals of Amp3 was the same for the range of 1 to 10 primer pairs, while Amp1 and Amp4 exhibited
weak signals in the reactions where they were not pre-amplified (MP1-2 and MP1-3, respectively)

3.1.5.2 Multiplex PCR master mix selection

Given that BART-Seq is based on multiplex pre-amplification, it requires a
specialized master mix for the PCR. To find out which multiplex PCR master mix
(MM) would perform better within the context of the workflow, I compared two kits,
namely QiaGen and Platinum, and observed that the Platinum MM resulted in 25-
fold higher amplification in average compared to QiaGen (Figure 27). Therefore, I
integrated the Platinum MM into the workflow.

Figure 27: Comparison of two multiplex PCR master mixes. Platinum master mix yielded
significantly higher efficiency compared to the QiaGen master mix for both barcode combinations
tested. Melt curves did not indicate any non-specific amplification for both enzymes and barcode
combinations (not shown)
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3.1.5.3 PCR master mix dilution

The multiplex PCR MM is one of the most expensive reagents of the workflow;
therefore, I tested whether we could attain similar efficiencies using reduced
concentrations. Hypothetically, the enzyme concentration should not be a rate
limiting factor for the PCR because single cells comprise tiny amounts of templates.
Compared to the recommended dilution of Platinum master mix (100%), 67% and
50% dilutions resulted in slight reduction of PCR efficiencies (Figure 28A). It is
known that MgCl2 (up to a certain level) can increase the processivity of Taq DNA
Polymerase (Henegariu et al., 1997). Accordingly, I supplemented the reactions with
additional MgCl2 to reach to the original concentrations (presumed to be 3 mM
based on the equivalent MMs), and the Ct values became comparable to the
recommended MM dilution. Further dilutions of the Platinum MM (50%, 33%, and
25%) resulted in similar efficiencies with additional MgCl2 supplementation (to
3 mM, 4.5 mM, and 6 mM) (Figure 28B). Because some of the lower dilutions had
slight melt curve irregularities, I decided to proceed with 50% of the recommended
concentration with 6 mM final MgCl2. Nevertheless, down to 25% dilution can be
used for very large-scale experiments after testing the primers. Importantly,
because the fidelity of Taq polymerase is inversely correlated with Mg++

concentration (Eckert and Kunkel, 1990), the MM dilutions and MgCl2

supplementation should be carefully adjusted for sensitive experiments, such as for
mutation screening.

Figure 28: Using reduced concentrations of the multiplex PCR master mix. (A) Using 67% or
50% of the recommended concentrations of Platinum PCR MM resulted in slightly increased Ct values,
which is restored by MgCl2 supplementation (3 mM final). (B) Further dilutions of the MM down to
25% yielded comparable PCR efficiencies upon MgCl2 supplementation (up to 6 mM final). The barcode
combination D×9 resulted in very similar outcomes (not shown)
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3.1.5.4 Individual and total concentration of multiplexed primers

While the first set of primers we designed consisted of 10 targets, resulting in
0.025 µM of each primer and 0.5 µM total primers in the PCR, scaling up the primer
sets brought about the question of whether the concentration of individual primers
or the total concentration of multiplexed primers is more important for the efficiency
of multiplex PCR. To test this, I ran experiments in a range of 0.025-0.1 µM
individual primers, and 0.5-2 µM total primers, and observed that the concentration
of individual primers has a higher influence on the PCR. Specifically, up to 0.03 µM
of each primer resulted in good amplification, increasing it to 0.05 µM disrupted the
melt curves of some targets, and to 0.1 µM totally abolished specific amplification of
all the targets (results not shown). Therefore, I concluded that the total primer
concentration does not adversely affect the specific amplification for the range tested
(22 targets), as long as the optimum concentration of individual primers is ensured
(in this case 0.03 µM maximum).

3.1.5.5 Annealing temperature gradients

While the barcode+linker portion of the primers overhang in the initial cycles of
PCR (Figure 18), they subsequently start to hybridize completely in the later cycles,
resulting in two different melting temperatures (Tm). I tested whether increasing
the annealing temperature (Ta) after the initial cycles of PCR would improve the
PCR efficiency and specificity. For this, I compared various reactions with initial 3-5
cycles with 55-60 °C Ta and remaining cycles with 60-65 °C Ta. Because there was
not any consistent improvement of the PCR efficiency with the gradients (data not
shown), I decided to keep the Ta constant (58-60 °C) throughout the reaction for the
subsequent experiments.

3.1.5.6 RT/PCR ratio

Following cDNA synthesis from bulk RNA or single cells, the PCR components are
added directly into the wells where the RT reaction took place. However, it is known
that the presence of reverse transcriptase might have inhibitory effects on PCR
efficiency especially with lower template concentrations, possibly because it can
remain attached to the template (RNA or cDNA) despite heat inactivation, and
mask the cDNAs from PCR (Chandler et al., 1998; Chumakov, 1994). Therefore, I
compared the percentage of RT reaction volumes in the final PCR (RT/PCR) within a
range of 10% to 30% (Figure 29). With QiaGen MM, PCR efficiency decreased
gradually with increasing RT/PCR ratio. On the other hand, RT/PCR ratio up to 30%
did not result any significant decrease with the Platinum MM; thus, I decided to use
20% RT/PCR in the subsequent experiments. Importantly, the slight decrease for
the efficiency of the lowly expressed gene LIN28A above 25% supported the
hypothesis of reduced effective template concentration mentioned above.
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Figure 29: Influence of the reverse transcription reaction volume ratio on the PCR. The ratio
of the RT reaction volume in the final PCR reaction (RT/PCR) was tested for the range of 10% to 30%.
While the Platinum MM was not influenced for the genes tested, QiaGen master mix exhibited
gradually decreasing efficiency with increasing RT/PCR volume ratios

3.1.6 Next-generation sequencing

The next step of the BART-Seq workflow following PreAmp PCR is pooling the
amplicons from all the samples and preparing libraries for NGS. Because pooled
samples from thousands of wells can reach up to tens of milliliters, Ethanol
precipitation would be required so as to bring the volumes to the levels compatible
with library preparation. Then, the libraries are prepared as described in Materials
and Methods, and evaluated using Bioanalyzer before sequencing (Figure 15).

Following demultiplexing of the sequencing reads, we recurrently observed in the
count matrices several reads assigned to negative control wells that did not contain
any template RNA/DNA. Given the correlation between the magnitude of these
background reads per target with the total number of reads that target received in
the whole run, I hypothesized that this could be the result of index switching across
the samples (Sinha et al., 2017). Due to the fact that BART-Seq libraries are
inherently low diversity (consisting of PCR amplicons), I started to include the PhiX
spike-in control12 (5-15%) in the sequencing runs to mitigate this effect by increasing
the diversity on the flow cell. Importantly, when I co-sequenced BART-Seq libraries
(~35% of the run) together with non-BART-Seq samples, the reads assigned to
control wells decreased significantly (e.g. 0 pg samples in Figure 42C). This showed
that increasing the diversity of libraries can minimize read cross-assignment across
the samples, thus enhance the accuracy of the results.

12 https://www.illumina.com/products/by-type/sequencing-kits/cluster-gen-sequencing-reagents/phix-
control-v3.html
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3.1.7 Bioinformatics

Bioinformatic analyses of the BART-Seq experiments consist of three main steps:
1) demultiplexing the raw sequencing reads to generate count matrices,
2) normalization and correction of the read counts, and 3) analysis of the data to
draw biological conclusions. This section provides a summary of the methods I
implemented regarding these steps.

3.1.7.1.1 Demultiplexing the RNA-Seq reads to count matrices

BART-Seq libraries consist of amplicons that contain linkers and barcodes on both
ends, analyzed with paired-end sequencing (Figure 30A). As a result, read pairs in
the FASTQ files must be processed by a tailor-made demultiplexing algorithm to
identify the two barcodes and the amplicon contained between them. To this goal,
we developed the methods and scripts for demultiplexing the NGS reads in
collaboration with the Institute of Computational Biology of Helmholtz Center
Munich.

3.1.7.1.2 Merging the read pairs

The first demultiplexing algorithm developed for BART-Seq was based on merging
the read pairs in the first step (mergePairedEnds) (Figure 30B). Then, the
amplicons were BLASTed against the custom database consisting of expected
amplicon sequences (blastReads). In parallel, first n nucleotides of each read
(depending on the barcode length) were searched against the list of barcodes
(bc.splitter.pl). Finally, using this information, the count matrices (as in Figure
30C) with the amplicon IDs and barcode combinations were generated. This
algorithm worked very efficiently for the initial experiments (i.e. the MiSeq runs).
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Figure 30: The demultiplexing algorithm based on merging read pairs. (A) Paired-end
sequencing of the amplicon libraries results in partially overlapping reads each beginning with a
barcode and a linker. (B) The earlier version of the demultiplexing pipeline merged the read pairs, and
subsequently identified the barcodes and amplicons to create the count matrices. (C) Part of an
example read count matrix

3.1.7.1.3 De-multiplexing read pairs separately

Once I started to design larger scale experiments, i.e. analyzing thousands of
samples, I decided to use the NextSeq instrument instead of MiSeq to ensure
sufficient sequencing depth per sample. When we de-multiplexed these runs using
the initial pipeline, the mapping percentage was unexpectedly low (down to 4% for
some samples). Hence, I investigated the possible reasons of this problem from
multiple aspects. First of all, re-inspecting the BioAnalyzer traces of the sequenced
libraries so as to see whether the size range was accurate revealed a significant
percentage of fragments that were out of the anticipated range (Figure 31A),
implying that the expected amplicons comprised only approximately 40% of the
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sequencing reads. This was because I had avoided performing a strict size selection
as it would partially remove the target fragments as well, and there was the
possibility that these smaller fragments could be shorter variants of some
transcripts.

Figure 31: Investigation of a sequencing run with sub-optimal quality. (A) Sample Bioanalyzer
trace of a sequencing library. A significant percentage of fragments (dashed lines) were shorter than
the anticipated range (257-364 nt) (solid lines). (B) Linker sequences were found in random positions in
a low quality library (bottom panel) in contrast to the uniform localization in a high quality one (upper
panel), when the raw reads in the FASTQ files were inspected. (C) Per base sequence quality of a
library analyzed with a NextSeq instrument (left) showing decreased qualities towards read ends in
contrast to the same library analyzed with a MiSeq instrument (right)
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Next, we manually inspected the raw reads inside the FASTQ files to see whether
the library contained correct amplicons. Many reads contained barcode and linker
sequences at random positions (Figure 31B, lower panel), sometimes at multiple
locations within one read. Moreover, in comparison to a high quality run (Figure
31B, upper panel), many reads were shorter than 151 nt (the maximum read
length). Since these experiments consisted mainly of single cells, I hypothesized that
those unusual reads might have originated from concatemerized excess primers, and
because our size selection was not strict, they should be retained in the libraries and
sequenced.

Nonetheless, we should still have recovered around 40% of the reads in theory,
which was not the case. We then hypothesized that a failure in merging the read
pairs due to base mismatches or quality trimming of the read ends might be the
reason of data loss. To investigate this, we checked per base quality of the raw reads
using FASTQC tool and observed a massive decrease after cycles 90-100 (Figure
31C, left). This could be a joint result of low diversity libraries and the two-channel
chemistry of the NextSeq instrument, because sequencing the same library on
MiSeq resulted in very high base qualities throughout the reads (Figure 31C,
right). Having confirmed the hypothesis of failed merging, we decided to design a
new algorithm that is robust to all these issues.

The new demultiplexing pipeline processes the read pairs separately (Figure 32),
and combines the information at the last step, as follows: The reads are first
trimmed based on the per base quality scores (trim quality). Then, the barcode is
identified with reference to a table of barcode sequences and their potential single
nucleotide variants, excluding potential overlaps between barcodes (tag reads). The
next step aligns the reads to the amplicons, using a minimum pre-defined length of
nucleotides to prevent potential false positives that may originate from primer-only
reads or concatemers (map reads). Here, the anti-sense barcodes and linkers at the
end of the amplicons shorter than 151 nt are excluded from alignment. Finally, a
table containing the reads annotated with barcode and amplicon information is
created (R1, R2), which is then summarized as a read count matrix (spreadsheet).
When we re-processed the NextSeq run mentioned above using this pipeline,
percentage of mapping increased from 4% to 42%, which agreed with the anticipated
ratio based on the BioAnalyzer traces, suggesting that we could recover all the true
amplicons from the experiment.
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Figure 32: The demultiplexing algorithm for processing the read pairs separately. The new
demultiplexing pipeline processes the read pairs separately and combines the information from the two
reads in the last step to create a count matrix

3.1.7.2 Normalization of count matrices

For transcriptomics experiments, I routinely added fixed amounts of RNA spike-ins
to each sample to calculate the technical variations that might arise within the
workflow starting from the reverse transcription till the end of sequencing, and to
normalize the data. Although the stochastic events at the molecular level cannot be
estimated, the systematic effects within or across the samples such as RT efficiency,
PCR efficiency, pipetting errors, degradation, evaporation and so on should
theoretically influence all the amplicons within a sample the same way, and should
be reflected by the spike-in reads. To confirm this, I analyzed an experiment where a
mixture of bulk RNA and spike-ins was aliquoted into multiple wells, reverse
transcribed, and tagged with 225 different barcode combinations. Sum of the gene
reads and sum of the spike-in reads had a high correlation (R=0.8219) across the
wells, indicating that the spike-ins can account for the majority of the technical
variations (Figure 33).

Figure 33: Spike-in reads can estimate the technical variations. Correlation of sum of the spike-
in reads to sum of the gene reads (R=0.8219) per sample in an experiment where constant amount of
bulk RNA & spike-in mixture was pre-amplified using 225 different barcode combinations (each
represented with a dot)
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3.1.7.2.1 Barcode-primer combination effect

Besides the technical variations within the data, there were consistent differences in
the efficiency of barcodes that influenced all the amplicons (including spike-ins)
similarly, which could in theory be eliminated during normalization. However, an
entirely unexpected phenomenon I discovered during the analyses was the variation
of barcode efficiencies depending on the primer they are combined with, which I
named “barcode-primer combination effect” (Figure 34). Because it perturbed the
read counts of amplicons (including spike-ins) non-uniformly within each sample, it
biased the scaling factors that were calculated using spike-ins (Figure 34, black
dots), and in turn distorted the data during normalization. In order to solve this
problem, I ran several analyses to empirically and computationally calculate and
correct this effect in the existing experiments, and to find out the underlying
mechanism in order to avoid it in the future experiments.

Figure 34: Global and primer-specific variation of barcode efficiencies. Two types of
systematic variations existed in the read-count matrices. Global barcode efficiencies influenced all the
targets similarly (more evident in the upper panel). Barcode-primer combination effects influenced the
read counts of only some genes/spike-ins and biased the scaling factors (black dots) that were
calculated using the spike-ins. e.g. R33-RNA6, R49-RNA8, L20-RNA6

3.1.7.2.2 Correction and normalization

Modeling and correcting the barcode-primer combination effects

Given the consistent patterns the barcode-primer combination effects had across the
count matrix, I hypothesized that it should in theory be possible to calculate and
correct them. After trying numerous strategies, I finally decided to build negative
binomial generalized linear models (nb-glm) from the spike-in reads and try to
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estimate an efficiency coefficient for each combination. For this, I initially modeled
the spike-ins using the full formula below:

𝑓𝑢𝑙𝑙_𝑚𝑜𝑑𝑒𝑙: 𝑟𝑒𝑎𝑑 𝑐𝑜𝑢𝑛𝑡 ~ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 + 𝑐𝑒𝑙𝑙𝑠 + 𝑤𝑒𝑙𝑙. 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 + 𝑓𝑜𝑟𝑤𝑎𝑟𝑑
+ 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 + 𝑓𝑜𝑟𝑤𝑎𝑟𝑑: 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 + 𝑟𝑒𝑣𝑒𝑟𝑠𝑒: 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

(1)

where I used the spike-in ID (variable), number of sorted cells to the well (cells),
location of the well on the plate (side/corner/middle) (location), global efficiency of
the barcodes (forward/reverse), and combination of barcodes and primers
(forward:variable, reverse:variable) as the explanatory variables.

The distribution of the spike-in reads visually resembled a negative binomial
distribution (Gierliński et al., 2015; Jiang et al., 2011). I verified the power of the fit
by building a model from 95% of the data and using it to predict the test data (5%),
which resulted in very high correlation coefficients (R=0.97 in average from 10
repetitions) (Figure 35). Next, I modelled the complete data (100%) (full_model),
and tagged individual reads as outliers if they deviated from the predictions more
than 2-fold, and filtered out the wells completely if they contained more than two
outlier spike-ins. Subsequently, I replaced the remaining outliers with the
predictions of the model that was built with the same formula using the filtered
data.

The next step following the clean-up was correcting the barcode-primer combination
effects. Importantly, I wanted to correct in this step “only” the barcode-primer
combination effects (i.e. forward:variable and reverse:variable) while preserving the
global ones, because they should still account for technical variations during
normalization.

Because the model uses one of the elements of each explanatory variable as
intercept, it was not possible to extract the full set of coefficients directly from the
model. To overcome this, I developed a strategy using two basic models, one taking
the combination effects into account (model#1) and one ignoring them (model#0):

model#1: 𝑟𝑒𝑎𝑑 𝑐𝑜𝑢𝑛𝑡 ~ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 + 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 + 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 + 𝑓𝑜𝑟𝑤𝑎𝑟𝑑: 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
+ 𝑟𝑒𝑣𝑒𝑟𝑠𝑒: 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

(2)

model#0: 𝑟𝑒𝑎𝑑 𝑐𝑜𝑢𝑛𝑡 ~ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 + 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 + 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 (3)

I calculated the correction factors by dividing the predictions of the model#1 to the
predictions of the model#0, which should theoretically reflect the variations that
result only from combinations. Then, I corrected the raw reads by dividing them
with these correction factors. I hypothesized that if the barcode-primer combination
effects are corrected, only the variations that influence all the reads similarly should
remain, thus the co-variation of the spike-ins should improve. To test this, I
compared the pairwise correlations of spike-ins before and after the correction, and
observed remarkable increase in the latter, indicating the success of the correction
strategy (Figure 36). A shortened version of the R script is provided in APPENDIX
E.
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Figure 35: Fitting a negative binomial generalized linear model to spike-in reads. (A)
Histogram of the raw reads counts assigned to one of the spike-ins (bin size: 5) (B) Predictions of the
5% of the data using the model built from 95% of the data correlates very highly with the raw reads
(R=0.97, average of 10 repetitions). (C) Heatmaps visually comparing the raw reads of the spike-in
RNA1 (left) with the predictions of the model (right)

Normalization

The next step was the normalization of the count matrices using the corrected spike-
in reads. Before the normalization, I removed all the barcodes exhibiting extremely
low efficiencies in combination with any of the primers. Then, I normalized the reads
by calculating scaling factors (RNAx) using either corrected spike-ins (4) only or
spike-ins and genes together (5) as follows:

or
RNAx =  (2

1
N∑ log2(spiken+1)N

1 − 1) 𝑚𝑒𝑑𝑖𝑎𝑛⁄ (4)

RNAx =  (2
1
N∑ log2(genen+1)N

1 − 1) 𝑚𝑒𝑑𝑖𝑎𝑛⁄ (5)

I removed the samples if its scaling factor differed more than 10-fold from median of
all scaling factors in order to prevent over-correction. Finally, I divided the raw read
counts of the transcripts with the scaling factors. Variation of each spike-in across
the data shrank to a 2-fold range after normalizing, demonstrating the efficiency of
the correction and normalization strategy.
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Figure 36: Correction of the spike-in reads using model fits. Pairwise correlations of spike-ins
increased significantly (P-value < 0.0001) (B) after correction of the barcode-primer combination effects
compared to (A) raw reads. (C) Improved co-variation of spike-in reads following correction was
evident visually (compare to Figure 34, upper panel)

3.1.7.2.3 Empirical analysis of barcode efficiencies

Although I could model and correct the sub-optimal barcode-primer combinations for
the spike-ins that had constant input concentrations, it was not feasible to do the
same for the genes that are heterogeneously expressed. Ideally, all the possible
combinations of barcodes with all the gene and spike-in primers using constant
template should allow to empirically estimate all such effects and to exclude them
from the subsequent experiments. Yet, this would require a massive and expensive
sequencing run. Because the effects tend to be consistent across the samples, I
hypothesized that combining a few forward/reverse barcodes with all the barcodes of
the opposite type should simulate the complete matrix. Therefore, I combined three
forward barcodes with all the reverse barcodes and vice versa (Figure 37A), and
assembled them with three different primer sets (APPENDIX J, APPENDIX K) to
amplify constant amount of templates.

As I inspected the heatmaps or scatter plots of the raw data, the sub-optimal
barcodes were readily noticeable even by eye (Figure 37B, top). In order to
numerically determine global and primer-specific barcode inefficiencies, I built a
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custom R script, which runs as follows: First, I adjusted any differences between the
three common barcodes, and median centered each gene by subtraction (using log2-
transformed reads) (Figure 37B, middle). Using this matrix, I calculated the global
efficiency of each barcode as the average distance to the median. Then, I subtracted
the global efficiencies from the barcodes, which should leave the barcode-primer
combination effects (Figure 37B, bottom). Then, I set empirical thresholds to make
a list of globally inefficient barcodes and barcode-primer combinations, which would
serve a reference for the subsequent experiments, and for the computational
analysis of barcode efficiencies.

Although I attempted to employ a more sophisticated method, for example modeling
the data with nb-glm, whose predictions correlated with the raw data perfectly (i.e.
R = 0.99); the usage of the first component of each variable as the intercept (e.g. all
the Reverse barcodes were calculated relative to R01) rendered it useless to
calculate the efficiencies accurately. As a result, I implemented the method above.

Figure 37: Determining inefficient barcodes and barcode-primer combinations empirically.
(A) As a proxy for a matrix of all possible combinations of 75 Forward × 75 Reverse barcodes, three
Reverse barcodes were combined with 75 Forward barcodes, and vice versa, to amplify a constant
template. (B) Upper: Raw reads (log2) generated from bulk RNA templates using the barcode
combinations in A in combination with pluripotency primers. Middle: Median centering each gene
reveals global efficiency of the barcodes. Bottom: Subtracting the global barcode efficiencies from the
median-centered reads reveals barcode-primer combination effects. Thresholds were decided
empirically based on the distribution of the reads
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3.1.7.2.4 Computational analysis of barcode efficiencies

Because I postulated that there should be an underlying rule that can explain the
reduced barcode-primer efficiencies, I tried to correlate the in silico calculated
thermodynamic properties of barcodes and primers with the empirical findings from
the previous section. For this, I initially predicted13 secondary (2°) structure of the
amplicon pairs that differed only in the 8 nt barcode on one end. Investigating
amplicon pairs, one with an inefficient barcode-primer combination, and the other
with an average combination pointed to the first 30-40 nucleotides, which
correspond exactly to the barcode-linker-primer stretch. While the inefficient
combinations formed a stable hairpin structure in this region, the average
combinations had weaker and smaller hairpins (Figure 38A).

Following this observation, I shifted my focus to the barcode-linker-primer
sequences. Folding the barcode-primer combinations that were known to be
inefficient resulted in stronger 2° structures in comparison to the same primer in an
average barcode combination (Figure 38B). Next, I simulated and calculated the
minimum free energies (MFE) of all the possible primer-barcode combinations using
the RNAfold software from the Vienna Package (R version 3.6.0). Computationally
calculated MFEs of the experimentally identified inefficient barcode-primer pairs
often fell below -10, whereas the average combinations of the same primers
remained above this level (Figure 38C). An extreme confirmation from the opposite
end was L19-EOMES that had much higher read counts than the average and a
very high MFE. Overall, these results indicated that MFE can be a robust predictor
of the barcoded primer efficiencies, which should be taken into account when
designing the BART-Seq primers.

Finally, I investigated the barcodes that were globally inefficient regardless of the
primer they are combined with (e.g. L07, L52, L69, L74), which consistently
appeared in all the experiments. Comparing their 2° structures (barcode+linker
sequences), MFEs, or similarity to human genome & transcriptome (BLAST) with
the average barcodes did not reveal any differences. Surprisingly, when I analyzed
the dimer formations, the only four barcodes forming self-dimers with 12 consecutive
bonds were the ones that were found to be the most inefficient. This was because all
four of them ended with “GA”, increasing the complementarity of the linker, which
turns out to be already self-complementary for 8 nt out of 10 (Figure 39). Self-
dimerization possibly reduced the efficiency of the Klenow reaction, thus decreased
the concentration of assembled primers with these barcodes, an important
consideration when designing new barcode panels in the future.

13 https://rna.urmc.rochester.edu/RNAstructureWeb/Servers/Predict1/Predict1.html
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Figure 38: Barcode-primer combination effect explained by minimum free energies. (A)
Folding analysis13 of the whole amplicons that differ only in the 8 nt barcode (inefficient vs average
barcode combination) point to the differences in the barcode-linker-primer stretch. (B) Folding analysis
of only barcode-linker-primer sequences shows stronger 2° structures of the inefficient barcode
combinations compared to average barcode combinations of the same primers. (C) Calculated minimum
free energies (MFE) of the empirically determined (Figure 37) high-, average-, and low-efficiency
barcode-linker-primer sequences. Low MFEs (< -10) corresponded to inefficient combinations, while
over-efficient combinations had above-the-average MFEs (> -5) (e.g. L19-EOMES)
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Figure 39: Global barcode inefficiencies explained by stable dimerization. The most inefficient
four barcodes (Figure 37B) ends with GA dinucleotide, which causes them to form very strong dimers
when combined with the linker sequence (12 consecutive bonds), possibly decreasing the effective
amount of primers synthesized during the Klenow step

3.2 Applications of BART-Seq

The ultimate goal of this thesis was to establish a complete workflow that can be
used to address specific biological questions. This section summarizes the
applications of the BART-Seq method; first, to validate its power, and then to
answer biological questions by analyzing single cells and bulk samples.

3.2.1 Validation of the barcode assembly

3.2.1.1 Co-amplification of genomic targets

In order confirm that the assembly method can generate excess of barcoded primers
to specifically enrich the targeted loci, I initially used qPCR to compare the enriched
and non-enriched samples. For this, I used multiplex primers to co-amplify 10
genomic loci within the human BRCA1 and BRCA2 genes from human bulk gDNA.
qPCR analysis indicated specific enrichment of all 10 loci (Amp1-10) with very
similar efficiencies using four alternative barcode combinations, in contrast to non-
pre-amplified gDNA, non-enriched loci (MSX1, ZIC1), or non-assembled reverse
complementary primers (Figure 40A).

Next, we wanted to use NGS to confirm the target enrichment, which is indeed the
ultimate objective of the workflow. To this goal, we scaled up the size of the barcode
matrix to amplify the 10 BRCA loci from bulk gDNA samples of 96 patients, and
sequenced the amplicons in a paired-end run (Figure 40B). Demultiplexing the
reads mapped the amplicons exclusively to the barcode combinations that were used
in the experiment, in contrast to the 18 additional “dummy” barcodes that were not
part of the experiment, which received negligible number of reads, probably due to
index switching. This proved the robustness of our barcode design, and specific
enrichment of the target loci using the assembled multiplex primers.
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Figure 40: Enrichment of genomic targets, assessed by qPCR and NGS. (A) 10 loci in BRCA1
and BRCA2 genes were co-amplified from bulk gDNA templates using genotyping primers and four
different barcode combinations (L03/L08 × R01/R06), and the amplicons were assessed by qPCR using
nested primers. Different primer pairs and barcode combinations exhibited homogenous amplification.
Non-pre-amplified gDNA, non-barcoded rc-primers, and non-targeted loci (MSX1 and ZIC1) were
negative controls. Melt curves showed unique peaks for all the targets (not shown). (B) 10 targets were
co-amplified from 96 bulk gDNA samples, using 96 different barcode combinations (L01-L08 × R01-
R12), and sequenced. Heatmaps show the number of amplicons assigned to three out of ten loci (Amp3,
Amp6, and Amp9). L09-L19 and R13-R19 were control barcodes for demultiplexing, which were not
used in the experiment. The sample-to-sample heterogeneity, which has a similar pattern in each
amplicon, is mainly caused by different template concentrations.

3.2.2 RNA quantification

Because one of the main objectives of this project was to implement the BART-Seq
for targeted transcriptomics, I next carried out experiments starting with RNA
samples and tested whether we can quantify the abundance of RNA targets
accurately.

3.2.2.1 Pluripotency primer set

I initially confirmed that the assembled primers can enrich the RNA targets just
like the genomic targets. For this, I designed a set of 15 primer pairs to amplify
selected loci (5 of which exon spanning) from pluripotency and control gene
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transcripts, as well as 4 exogenous RNA spike-in molecules (APPENDIX J). Nested
qPCR validation of the amplicons derived from hESC cDNA indicated comparable
enrichment, which were accompanied with unique melt curve peaks indicating
specific amplification (Figure 41).

Figure 41: qPCR evaluation of the pluripotency primer set. Primers targeting 11 transcripts
(pluripotency, housekeeping (HK), and cell cycle) and 4 RNA spike-ins were assembled with two
different barcode combinations (L07×R10 and L08×R22, inefficient and efficient respectively) and used
for pre-amplification of hESC bulk cDNA templates (100 pg/µl). Shown are the Ct values of pre-
amplified samples assessed by nested primers, and error bars represent standard deviation of
duplicates. Melting curves had unique peaks for all the targets (not shown)

3.2.2.2 Quantifying transcripts from bulk RNA

Next, I asked how well BART-Seq performs in relative quantification of RNA
templates. To test this, I prepared four-fold dilution series of bulk RNA isolated from
H9 hESCs, combined with constant concentration of spike-ins, and aliquoted into 9
replicate wells for reverse transcription. Negative control wells contained only water
and spike-ins. Each replicate well received primers assembled with different barcode
combinations (Figure 42A). Following sequencing, coefficients of variation among
the equimolar replicates were very low (std/avg <25%) even though they were at
picogram levels (Figure 42B), indicating that the technical variations were minimal
in the workflow. Only exceptions were a few genes in the lower end of the dilution
series (i.e. 4 pg) due to very low averages, such as CER1, which is marginally
expressed in undifferentiated cells.

Second, fitted regression models to the read counts and template concentrations had
remarkably high correlations, with coefficients of determination (R2) 0.96 on average
(Figure 42C). A replicate experiment starting with bulk cDNA instead of RNA
yielded very similar results (not shown). As an orthogonal validation, I analyzed the
same cDNA samples with qPCR, and compared the results directly with the raw
sequencing reads, which showed linear trends between the two methods (average R2

of 0.99) (Figure 42D). Overall, these results demonstrated that the synthesized
primers can co-amplify multiple RNA targets linearly for sequencing-based
quantification with high precision.
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Figure 42: Quantification of transcripts in isolated bulk RNA samples. (A) Four-fold serial
dilutions of bulk RNA isolated from hPSCs (Kunze et al., 2018) were combined with constant amount of
spike-in RNA mixture, aliquoted into 9 replicate wells (4-256 pg/well), and reverse transcribed, each of
which is indexed with a different barcode combination. Water mixed with spike-ins was a negative
control. (B) The coefficients of variation (standard deviation divided by the average) of the normalized
reads obtained from the RNA dilutions in A, calculated for the groups of nine samples with identical
template concentration, had an average of less than 25%. The experiment was repeated by reverse
transcribing the bulk RNA and spike-in mixture separately and combining respective bulk cDNA
dilutions with spike-in mix cDNA, with very similar results (not shown). (C) Boxplots showing
normalized read counts per target, plotted against template concentration. Coefficients of
determination (R2) were higher than 0.96 on average for the linear regression models fitted to the 4-
256 pg sample groups. (D) cDNA dilution series was analyzed in parallel by qPCR. The plots show the
correlation of BART-Seq results (average log2 read counts) with the qPCR (average Ct values). Vertical
error bars represent three qPCR replicates, and horizontal error bars represent nine sequencing
replicates. R values on the right are the corresponding coefficients of correlation per gene
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Finally, I compared the quantitative power of BART-Seq with the contemporary
global single-cell sequencing techniques (scRNA-Seq) reviewed by Ziegenhain et al.
(2017). They used the known concentrations of 92 spike-ins and read counts thereof
to calculate the linear model fits and the R2 values. Similarly, I used average read
counts of 11 genes across the count matrix instead of the known concentrations to
calculate linear regressions per sample, as if each gene was a spike-in with a fixed
concentration. BART-Seq results exhibited an outstanding accuracy (median R2 of
0.98), placing it above all the single-cell transcriptomics methods reviewed (Figure
43).

Figure 43: Accuracy of BART-Seq as compared to other scRNA-Seq methods. A plot adapted
from Ziegenhain et al. (2017), displaying the adjusted R2 values of linear regression models calculated
using 96 ERCC spike-in expression values obtained using different global transcriptomics methods.
The regression models calculated for BART-Seq samples using the average read counts of 11 genes
across the bulk RNA dilution experiment (Figure 42) had a median R2 value of 0.98

3.2.2.3 Quantifying transcripts from cells

Having confirmed its accuracy to quantify isolated bulk RNA samples, I next
assessed BART-Seq in measuring the transcripts directly from cells. I analyzed the
hESCs sorted into 384-well plates with two-fold increments (1-32 cells per well), and
correlated the transcript counts with the number of cells. The plates were pre-filled
with the reverse transcription (RT) reaction mix that contained four RNA spike-ins
(Figure 44A), and BJ fibroblasts were included as control. The number of sorted
cells per well and the corresponding read counts showed very high correlations,
while the spike-in values remained constant (Figure 44B). Single cells, as expected,
had the highest transcriptional heterogeneity. Analyzing the same set of genes in
sorted fibroblasts showed a clear distinction of their expression profiles (Figure
44C), despite receiving some reads of the pluripotency genes, which should be
predominantly caused by index switching (Sinha et al., 2017). Considering that only
DNMT3B primers was exon spanning among the pluripotency targets, the others
may be residually amplified from the gDNA of fibroblasts as well. Taken together,
these analyses show that BART-Seq can be used for directly analyzing gene
expression in numerous single cells and produce quantitative results within a broad
dynamic range.
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Figure 44: Quantification of transcripts directly from cells. (A) Part of the barcode matrix used
for analyzing single (1) and multiple (2-32) hESCs maintained on different media (mTeSR™1, KSR-
bFGF, and E8), and BJ fibroblasts. Negative control wells (0) did not receive any sorted cells. Prior to
sorting, all wells (including negative controls) were pre-filled with 2 µl of RT mixture containing fixed
concentrations of four RNA spike-ins. Over 4500 wells representing two biological replicates were
analyzed as two libraries, and sequenced using Illumina NextSeq for a total of 23.5 million processed
paired reads. (B) Normalized read counts plotted against the number of cells sorted per well (n=858
samples from KSR-bFGF medium are shown). Correlation coefficients (R) between the cell counts and
the median of corresponding reads are shown. (C) Violin plots illustrating gene expression differences
between hESCs and fibroblasts. Samples include single cells and calculated 1-cell values of multi-cell
wells. Fibroblasts had higher B2M expression (Drukker et al., 2002), whereas pluripotency and cell
cycle genes had notably higher expression in the hESCs

3.2.3 Single-cell analyses

After confirming that the BART-Seq is suitable for targeted quantitative single-cell
transcriptomics, I used it to investigate specific processes related to self-renewal or
lineage commitment of human pluripotent stem cells (hPSCs), which are
summarized in this section.

3.2.3.1 Influence of maintenance media on the pluripotency state of
hESCs

There are many commercial and homemade formulations to maintain the hPSCs in
a self-renewing state, as described in the Introduction. I hypothesized that they
might endow the hPSCs with different flavors of pluripotency due to diverse sets of
constituents (Table 2), which may stimulate the signaling pathways differently. To
test this, I measured the expression levels of the core pluripotency network of
transcription factors using BART-Seq in single H9 hESCs, which were cultured on
mTeSR™1, KSR-bFGF, or E8 at least five passages, using the pluripotency primer
set (APPENDIX J).

Non-linear dimensionality reduction (UMAP) revealed two major subpopulations of
cells exhibiting naïve-like -NANOGHIGH ZFP42 (REX1)HIGH- and primed-like -
LIN28AHIGH DNMT3BHIGH- profiles (Figure 45) (Pastor et al., 2016; Theunissen et
al., 2014; Warrier et al., 2017; Zhang et al., 2016). The cell cycle-related gene
CCND1 strongly correlated with NANOG (and ZFP42), although it is not a known
marker for the ground-state pluripotency. Remarkably, mTeSR™1-treated cells
were found primarily in the primed-like cluster, whereas majority of the E8-treated
cells were localized to the ground state-like (naïve) cluster; suggesting that these
growth conditions shifted the hESCs along the pluripotency axis.
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Figure 45: Transcriptional profiles of single hESCs cultured on different media. UMAP
visualization of single hESCs (n=1550) treated with three media ( mTeSR™1,  bFGF,  E8).
Expression of the genes underlying the distribution (11 genes) and spike-ins are shown. E8- and
mTeSR™1-cultured cells formed distinguishable clusters resembling naïve (NANOG, ZFP42) and
primed (DNMT3B, LIN28A) pluripotent states, respectively. The results are based on two biological
repetitions

3.2.3.2 Stimulation of the Wnt pathway in hESCs

Wnt signaling has key functions in gastrulation and early lineage segregation events
in the developing embryo, as described in the Introduction. Although numerous in
vitro differentiation protocols involve activation of the pathway with different
stimulants (Lindsley et al., 2006; Loh et al., 2016), it is not clear whether they truly
mimic the canonical pathway. Therefore, I wanted to test the hypothesis that
chemical inhibitors of GSK3 or ectopic expression of β-catenin can substitute the
ligands of the Wnt pathway (Barth et al., 1997; Blauwkamp et al., 2012). To this
goal, I analyzed hESCs differentiated using recombinant Wnt3a protein, treatment
with a chemical inhibitor of GSK3 (CHIR99021), or via Dox-induced ectopic
expression of the constitutively active β-catenin (ΔN90-β-catenin), for 22 targets
including early gastrulation and housekeeping genes, and 3 RNA spike-ins, at 0, 24
and 72 hours of treatment (Figure 46, APPENDIX K). The validation of the
primers with nested qPCR and BART-Seq can be found in APPENDIX B.
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Figure 46: Stimulation of the Wnt/β-catenin pathway at different stages of the cascade.
(A) hESCs were treated by recombinant Wnt3a or CHIR99021 (CHIR), or a transgenic hESC line was
induced with Doxycycline to induce the expression of β-cateninΔN90 for 72 hours. Single cells were
sampled at 0, 24, and 72 hours. A total of 4324 cells from three biological replicates were analyzed in a
single Illumina NextSeq mid-output run. (B) The primer set used for the analysis (APPENDIX K)

Initially, I inspected the expression of the same gene set in the global sequencing
results of bulk RNA following 72 hour of stimulation, and observed a striking
similarity between ΔN90-β-catenin and CHIR99021, which differed from the rWnt3a
treatment. Single-cell data from BART-Seq analysis corresponding to the same time
point showed remarkable resemblance to the global RNA-Seq results
notwithstanding a significant degree of cellular heterogeneity (Figure 47).

Figure 47: Comparison of the BART-Seq results with the bulk RNA-Seq results. Heatmaps of
the expression of 19 genes after 72 hours of treatment with the three inducers of the Wnt pathway.
Left: single cells analyzed with BART-Seq. Right: TPM values (Transcripts per Million) obtained from
bulk RNA-Seq analysis of a replicate experiment (two independent replicates per condition). Very
similar patterns were observed between the BART-Seq results and bulk RNA-Seq
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Next, I analyzed the pairwise gene correlations in single cells that were stimulated
for 24 hours, and observed that they were grouped in two major clusters exhibiting
NANOG, NODAL, EOMES, FOXA2 and MESP1, MSX1, SOX17, ZIC1, TBX6,
HOXA1, HAND1, MSGN1 gene signatures, respectively (Figure 48, left). They
reflected the emergence of two cell subpopulations at 24 h in the dimensionality
reduction (tSNE) analysis (Figure 48, right; APPENDIX C), which likely
correspond to the proximal and the distal region of the embryo, respectively, as
indicated by the topography of the expression of orthologous genes in the mouse
embryo14. Pan primitive streak markers GSC, EVX1, MIXL1 correlated with both
groups, while MIXL1 was expressed at a higher level in the distal-like group. With
respect to the influence of different stimulations of the Wnt/β-catenin pathway,
distinct clusters were observed after 72 hours, and rWnt3a treatment exhibited
definitive endoderm-like and lateral plate mesoderm-like cells, with FOXA2HIGH

SOX17HIGH and HAND1HIGH MESP1HIGH EOMESHIGH profiles, respectively. The
latter population dominated the rWnt3a progeny in a replicate experiment
(APPENDIX D). Taken together, CHIR99021 seems to limit the diversity of
primitive streak-like progeny that differentiates from hESCs compared to the ligand
of the pathway Wnt3a, an effect that was also validated using constitutively active
β-catenin.

3.2.4 Bulk analyses

Besides single-cell transcriptomics, BART-Seq is applicable also to the analysis of
bulk RNA or gDNA samples. This section summarizes the two proof of concept
projects I contributed that involved analysis of bulk samples using BART-Seq.

3.2.4.1 Genotyping the patients for BRCA mutations

Because BART-Seq workflow can enrich genomic targets, we hypothesized that we
should be able to detect mutations if they are located within the loci targeted by
BART-Seq primers (Figure 49). BRCA1 and BRCA2 are breast and ovarian cancer
susceptibility genes with a strong hereditary component. The Jewish Ashkenazi
population in Israel is a carrier of 10 founder mutations in BRCA1 and 2, which
reside within the loci targeted by the primer sets we had designed for developing
and optimizing the barcode assembly method (Kaufman et al., 2006; Laitman et al.,
2012; Lerer et al., 1998) (APPENDIX L). We received genomic DNA samples
obtained from 96 breast cancer patients of Jewish Ashkenazi descent that have been
previously tested for a panel of 10 hereditary mutations by Sanger sequencing and
other conventional assays. To test our hypothesis, we co-amplified 10 BRCA1 and
BRCA2 loci from these samples using a matrix of 12 forward and 8 reverse barcodes,
and analyzed the pooled amplicons with NGS.

14 http://www.picb.ac.cn/hanlab/itranscriptome/Home/
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When we compared the genotyping results of all 1920 multiplexed alleles (spanning
10 amplicons from 96 patient samples with 2 alleles each), we saw that 95 out of 96
patients (~99%) were classified in agreement with the results of the clinical lab
(Figure 49B). In the misclassified sample, the expected mutation (Mut2) was
detected together with an unexpected mutation (Mut7). When I analyzed this
sample with Sanger sequencing for these two mutations, only Mut2 was present, in
agreement with the known genotype (Figure 49C), indicating a false positive.
Because this experiment was demultiplexed with the earlier pipeline, which used
BLAST for identifying amplicons, the allowed mismatches might partially have
hindered true identification of the mutations. Hence, using string matching for the
exact mutation region (e.g. 5-10 nucleotides before and after the mutation) can
enhance the genotyping rates for future analyses. Collectively, these results showed
that BART-Seq performs well also in targeted genomics applications.

Figure 48: Cell populations that emerge upon stimulation of the Wnt/β-catenin pathway. A
heatmap of the pairwise gene correlations in single cells after 24 h from the three treatments (left) and
two-dimensional representation (tSNE) of all the single cells sampled at 0, 24, and 72 h, based on the
expression of 19 genes (right). Expression of selected genes underlying the tSNE plot is shown in the
upper and lower panels (additional data in APPENDIX C). The corn plots were derived from the
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iTranscriptome database15 that represent the localization of the same transcripts in epiblast stage
mouse embryos (E6.5-E7.5)

Figure 49: Genotyping cancer patients using BART-Seq. (A) Schematic representation of the
application of BART-Seq for genotyping to replace mutation-specific assays. (B) Genotypes of 96 breast
cancer patients corresponding to 10 BRCA1 and BRCA2 mutations. Correspondence of BART-Seq
results to the known genotypes is marked by green sectors (true positives), and the statistics is
provided below. (C) Although BART-Seq detected two mutations in one of the samples, Sanger
sequencing identified only the mutation 5382insC (Mut2) but not the 8765delAG (Mut7)

15 http://www.picb.ac.cn/hanlab/itranscriptome/Home/



3.RESULTS

– 76 –

3.2.4.2 Compound screening on hepatocytes

Because BART-Seq is capable of analyzing tens of transcriptional targets in
hundreds to thousands of samples, we hypothesized that it should be suitable also
for pharmaceutical applications, for example for screening the transcriptional
response of cells to a compound library. To this goal, we collaborated with the
pharmaceutical company AstraZeneca to screen the dose responses of human iPS-
derived hepatocytes to a library of agonists using BART-Seq. We screened 17
selected genes in the bulk cDNA samples synthesized from lysates of cells treated
with 3-fold dilutions of compounds. We analyzed the same cDNA samples with qPCR
in parallel. Even though this preliminary experiment partially failed due to
incomplete lysis of the cells (because the spike-ins had rather consistent results), we
could obtain dose-response curves that closely paralleled the qPCR results for some
of the genes and compounds, as shown in Figure 50. This pilot project showed that
BART-Seq can be adapted to a variety of research applications.

Figure 50: Compound screening on hepatocytes using BART-Seq. We analyzed the cDNAs
derived from hiPSC-derived hepatocytes treated with three-fold dilution series of a compound library,
using BART-Seq and qPCR in parallel. Sample results show the response of ABCG1 gene to four of the
compounds. BART-Seq plots are based on log-normalized counts and qPCR results are based on ΔΔCt
(% of control) values
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4 DISCUSSION

It was not long after the introduction of the NGS technology that the first single-cell
RNA-Seq (scRNA-Seq) analysis was published (Tang et al., 2009). Over the past ten
years the number of publications that accommodate single-cell experiments has
grown exponentially, as well as the number of cells that can be analyzed in parallel
(Svensson et al., 2017) (Figure 5). Although a variety of scRNA-Seq techniques exist
today, essentially all have certain limitations, which converge mainly upon two
major issues: shallow coverage (depth) and high costs. One of the reasons of shallow
coverage is the attempt of global (unbiased) techniques to sequence the whole
transcriptome in a very large number of cells. As a result, moderately or lowly
expressed genes receive either zero or very small number of reads given a fixed
sequencing capacity (L. Lun et al., 2016), while many reads are consumed by
housekeeping and uninteresting genes. This can be partly circumvented by
sequencing samples with much greater depth, albeit with considerably higher costs.

The central premise of my thesis is that the coverage and quantitative accuracy per
gene should increase if the same sequencing capacity could be focused on a small
number of genes. To achieve this in a way that is compatible with single cell
applications and for a reasonable cost, I established a workflow (named BART-Seq)
that combines enrichment of pre-selected transcripts or genomic loci using barcoded
primers for multiplex PCR, and NGS. In parallel, I developed customized
computational methods to analyze the sequencing data generated using the
technique.

Because BART-Seq is a novel targeted sequencing technique, it is important to
discuss here questions about its comparability to other approaches, to analyze its
pros and cons, possible improvements, and the biological lessons learnt. Specifically,
I address a series of questions outlined in the sections below starting with specific
insights about the path I took during the development phase.

4.1 Development and Optimization of the BART-Seq Workflow

During the development of BART-Seq, I placed special emphasis and diligence in
optimizing the individual reaction steps, which resulted in the end an easy to follow
and robust workflow that can readily accommodate single-cell analysis.

4.1.1 Barcode assembly

With the purpose of ensuring full conversion of oligonucleotide building blocks to
single-stranded barcoded primers, the initial parameter I tested was the duration of
the assembly steps. By gradually increasing the duration of Klenow reaction I found
that the efficiency reaches to a maximum after 60 minutes (Figure 20), and the
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Lambda treatment had the maximum at 30 minutes (Figure 22A). I refrained from
longer incubations to avoid possible degradation of the newly synthesized primer
ends by Klenow by its 3'→5' exonuclease activity10, and trimming of the barcodes by
Lambda exonuclease with its residual activity towards 5’OH ends (Little, 1967). A
notable observation was the essence of removing the anti-sense primers, as their
presence reduced the efficiency of PreAmp PCR up to tens of folds and resulted in
non-specific amplification (Figure 21D), possibly by reducing the availability of
sense primers in the reaction (Kapley et al., 2000). Using an exonuclease for anti-
sense primer removal required different oligonucleotide modifications, i.e. T7 was
used with barcodes with 6 consecutive phosphorothioate bonds to prevent
degradation and Lambda was used with anti-sense primers with 5’P ends to promote
their hydrolysis (Figure 21A). The cost for these additional modifications is
comparable and the two enzymes exhibited similar efficiencies; however, the
distortion of melt curves with T7 and the inability to heat-inactivate it16 prompted
me to proceed with the Lambda exonuclease.

I also took measures to maintain the intactness of barcode sequences through the
assembly reactions, which would eventually cause read cross-contamination due to
the trimmed sequences. Screening all possible trinucleotides (NNN) flanking the 5’
of barcodes revealed that CCA- had the highest resistance among all the 64
sequences (Figure 23C). A previous study also reported lower degradation rates of
GC-rich DNA by Lambda exonuclease compared to AT-rich DNA (Foulk et al., 2015).
Interestingly, our data contained many GC-rich trinucleotides with low frequency
(Figure 11), whereas a consistent pattern was the high frequency C nucleotide as
the first base, which might be the key position for resistance against degradation.
Based on these results, I flanked all the BART-Seq barcodes by the 5’CCA protection
group. A validation of the efficacy of this modification was the increase in
genotyping rates from 96% to 99% when the same samples were analyzed using the
barcodes without and with the CCA- group (Figure 49).

4.1.2 Reverse transcription

The major cause of the dropout events in single-cell experiments is the failure to
capture and reverse transcribe a fraction of mRNA molecules, which may cause
incorrect designation of a gene’s expression status (Stegle et al., 2015). Whereas the
target mRNA molecules are significantly enriched with the BART-Seq protocol, their
inadequate capturing might weaken the linearity of quantification. Hence, when
adapting the RT protocol for cost-efficiency and practicality, I ensured that the
efficiency of reverse transcription remains the same. For instance, the workflow
involves snap-freezing the cells together with the reverse transcription reagents to
lyse the sorted cells, which could damage the enzyme (Cao et al., 2003). I verified
that this step did not reduce the efficiency of RT reaction in my protocol (Figure
25), possibly because either freezing does not damage this enzyme, or there is still

16 https://international.neb.com/products/m0263-t7-exonuclease#Product%20Information



4.1. Development and Optimization of the BART-Seq Workflow

– 79 –

plenty of the intact enzyme left in the reaction to process small template amounts
(down to single cell levels). Using 25% of the recommended concentration of reverse
transcriptase did not affect the efficiency at all (Figure 25). This adjustment
reduced the overall cost of large-scale experiments substantially. A significant
improvement of RT efficiency was evident when I used the newer version of the
enzyme (Superscript IV), which should be preferred for the future experiments.

To reduce the number of steps in the protocol, I omitted the RNase H treatment
following RT. Even though the presence of RNA:DNA heterodimers could potentially
reduce the PCR efficiency, I did not observe any difference with the treated samples,
except for one gene (Figure 24). On the other hand, adding the RNase H to the PCR
reagents (even in lower concentrations) and running an additional cycle before PCR
could restore the efficiency for the affected gene. Hence, this optional step can be
considered for the future single-cell experiments that involve lowly expressed genes.

It is essentially possible to use the barcoded-primers also for priming the reverse
transcription. A preliminary experiment I conducted suggested that RT and PCR
could be run successively within the same mixture (RT+PCR) including components
of both reactions (APPENDIX A). Although I did not run further experiments in
this regard within this project, this one-step reaction could potentially be optimized
further to achieve similar efficiencies with separate reactions.

4.1.3 Pre-amplification PCR

Within the frame of BART-Seq, the number of multiplexed primers (tested up to 10)
did not influence the efficiency of PreAmp PCR (Figure 26) as long as the
concentration of individual primers are kept in the optimal range, which I found to
be 0.025-0.030 µM final (which translates to 0.25-0.30 µM in the Klenow reaction)
(Figure 19). Nevertheless, for larger primer sets reducing individual primer
concentrations can be considered to prevent overcrowding, which might lead to non-
specific amplification products or concatemers. Even though I explored alternating
the annealing temperature (Ta) in the early and late phases of the PCR to enhance
specific amplification (to account for the hybridization status of barcode-linker
sequences) it did not seem to have an influence on the efficiency (Figure 18A).

As the BART-Seq workflow entails addition of PCR reagents directly on top of the
RT reaction, another concern to be addressed with respect to efficiency was the
amount of reverse transcriptase carried over into the PCR, as it can inhibit the
amplification by remaining attached to the newly synthesized cDNA (Chandler et
al., 1998; Chumakov, 1994). While gradually increasing the ratio of RT reaction
volume within the PCR (RT/PCR) did not cause any reduction in the efficiency of
Platinum MM; QiaGen MM exhibited decreasing trends (Figure 29). Despite both
master mixes contain Taq polymerase, modifications of the enzymes or different
ingredients of each master mix could be the reason of this difference. Besides, the
Platinum MM had several folds higher efficiency (Figure 27, Figure 29) and ~20%
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lower cost compared to the QiaGen MM, hence, I decided to integrate it into the
workflow.

Because the multiplex PCR MM is one of the most expensive reagents of the
workflow, I reduced the concentration of MM down to 25% of the manufacturer
guidelines, considering that the enzyme should not be the rate limiting component
for the single-cell experiments. Notably, this did not decrease the quality or
robustness of amplification when I supplemented the reactions with MgCl2 up to
6 mM final (Figure 28). Although MgCl2 increases the processivity of the Taq
polymerase to a certain extent if well-balanced with dNTP concentrations
(Henegariu et al., 1997), special attention should be paid for the sequence-sensitive
experiments, such as mutation screening, as the fidelity of the Taq polymerase is
inversely correlated with the Mg++ concentrations (Eckert and Kunkel, 1990).

Despite mixing the primers equimolarly in the experiments presented here, they
had varied efficiencies even in the presence of same concentration of targets, as in
the case of genomic loci (Figure 20). An arduous measure would be adjusting the
concentration of individual primers to compensate for this variation, as discussed by
Henegariu et al. (1997). This can be considered for the cases where a few primers
have much higher efficiency, or a few genes have much higher expression compared
to the others and consume majority of the reads. Nevertheless, such an adjustment
should be done cautiously in order to avoid reaching the plateau phase of PCR due to
limiting primer concentrations, especially for the highly expressed genes (Kainz,
2000), which may hinder the quantitativeness of the method.

4.2 Bioinformatics

Each stage of the BART-Seq workflow goes hand in hand with computational
components, such as designing the primers and barcodes, processing the raw reads
to count matrices, and analyzing the data. While some of those were previously
established, such as the primer designing tool, my project involved implementing
majority of the analysis methods from scratch and assisting development of updated
versions of the existing tools.

4.2.1 Primer design

PrimerSelect17 is the custom-made open-access web tool developed in collaboration
with the Institute of Computational Biology of Helmholtz Center Munich for
designing multiplex primers for the BART-Seq method. It requires as the input the
sequence of the regions that will be targeted by the primers and a configuration file
(APPENDIX H) to specify parameters for the prospective primer set, such as
melting temperatures, size range, GC content. Besides ensuring the compatibility of

17 http://icb-bar.helmholtz-muenchen.de/primerselect
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multiplexed primers, the tool forces the primers to end with an Adenine (A) base,
because the Klenow polymerase template-independently adds an A to the newly
synthesized strand (Clark, 1988). Accordingly, we order the reverse complementary
primers excluding the 5’T, so that they are still complementary to their targets
following the Klenow fill-in reaction (Figure 17, Table 9, Appendices I-L).

Designing primers for the genomic loci is easier because there is a single target
sequence. On the other hand, selecting the target transcriptomic loci was a
challenge, in particular for the genes that express several mRNA isoforms. Because
my focus in this project was not to distinguish transcript isoforms, I aimed to select
the regions that would capture majority of the expression from each gene. To achieve
this, I implemented a method using bulk RNA-Seq data obtained from the cell types
and differentiation stages that were relevant to my experiment. After aligning them
to the human genome, I generated coverage maps that indicate the distribution of
the reads to the genomic sequence regardless of the transcript variants, and selected
the loci that receive the highest number of reads per gene for designing primers
(Materials and Methods, section 2.4.3).

4.2.2 Demultiplexing the sequencing reads

Due to the unique structure of BART-Seq libraries, in which dual barcodes are
contained by the paired reads, we developed a tailor-made algorithm for translating
the raw sequencing reads to count matrices, in collaboration with the Institute of
Computational Biology of Helmholtz Center Munich. The initial demultiplexing
pipeline (Figure 30) worked smoothly for the earlier experiments that were
conducted on bulk templates, which generated fairly pure amplicons and good read
qualities as they were analyzed on a MiSeq instrument.

After starting to analyze thousands of single cells, I preferred a NextSeq instrument
in order to have higher coverage, as it can generate several folds more reads than
the MiSeq. Yet, we experienced troubles merging the read pairs unlike the previous
experiments. This turned out to be due to a significant reduction of base calling
qualities towards the read ends (Figure 31C). Consequently, we decided to develop
a more robust algorithm that would bypass this problem by processing the read
pairs separately (Figure 32).

In the new version of the demultiplexing algorithm, we took into account several
considerations that we either already knew in the earlier version or learned through
trial and error during the analyses.

 Barcodes may contain single nucleotide errors when they are purchased, or may
harbor mutations during the workflow or sequencing. Therefore, we allow
mismatches in barcode identification to minimize false negatives. At the same
time, we minimize barcode misidentification by excluding mismatches that could
potentially arise from more than a single barcode to prevent read cross-
contamination.
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 To avoid missing the barcodes that might be trimmed by a few bases (i.e. at the
CCA- protection group), we allow some positional flexibility instead of searching
the barcode sequence at exactly the nucleotide positions 4-11. Using 8 nt barcode
sequences instead (excluding the CCA-) as a reference did not make a significant
difference in the percentage of mapping.

 Reads from short amplicons (< 172 bp) contain part of or complete second linker
and barcode at the other end, which may preclude their proper alignment with
the reference amplicons. Accordingly, we identify and trim those sequences
before the alignment.

 We apply quality trimming to remove the bases with decreased qualities at the
read ends (e.g. the NextSeq experiments) (Figure 31C).

 Some of the reads might contain junk sequences that consist of primer
concatemers or non-specific PCR products (Figure 31B). Thus, we enforce a
minimum alignment length that is longer than the primer sequence to assign it
as a true amplicon.

Once we addressed these considerations, the mapping ratio of one of the NextSeq
runs increased from 4% to 42%, demonstrating the power of the new algorithm. We
provide its source code in GitHub18 (see 2.5 Availability of Data and Materials).

We traditionally designed the BART-Seq primers in a way that the resulting
barcoded amplicons comply with 2×150 bp sequencing run with partially
overlapping read pairs (Figure 30A), so that they could subsequently be merged.
The primers targeted 80-250 bp loci, which, following addition of the linker and the
barcode (10+11 bp) to both ends, would result in an amplicon range within 122-
292 bp. Nonetheless, it is potentially possible to sequence an amplicon library in the
range of 100-N bp with single end N nt sequencing. With the new demultiplexing
pipeline, the size restriction becomes even less strict. For example, longer amplicons
than the 122-292 bp range should not be a problem if identification of the exact
amplicon sequence between the primers is not required, because merging is not
necessary. Likewise, it should be possible to analyze the libraries with shorter reads,
e.g. 2×75 bp paired-end, because they will still contain ~30 bp after the primers, that
should be sufficient for assigning them to a target. Nevertheless, avoiding too long
amplicons would be safer as they might reduce the total number of reads to be
sequenced by taking up more space on the flow cell at optimal density, and result in
lower base qualities as recently reviewed by Tan et al. (2019).

4.2.3 Using exogenous spike-ins for normalization and filtering

Various methods were introduced for normalizing the single-cell data using
quantiles, total read counts, spike-ins, non-differentially expressed genes, pooled
read counts, and so on. This is because, compared to bulk RNA-Seq, expression data
from single cells is subject to higher variability due to biological (e.g. transcriptional

18 https://github.com/theislab/bartseq-pipeline
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bursting, cell size, cell type) or technical (e.g. sequencing depth, dropouts) factors,
which holds true for the housekeeping genes as well (Luecken and Theis, 2019;
Vallejos et al., 2017). The assumptions made for the global single-cell RNA-Seq data,
such as constant amount of total mRNA per cell or majority of the genes not being
differentially expressed (Lun et al., 2017) does not apply to BART-Seq due to the
small number of genes analyzed and significant difference in their magnitudes,
rendering the existing normalization methods impractical.

RNA spike-ins are commonly used in particular with the plate-based methods, to
estimate the technical variations, even though they cannot normalize the differences
in total mRNA content of cells. I, too, included RNA spike-ins in my experiments
(Figure 33) by adding them at the reverse transcription phase, and including the
primers targeting them in the multiplex primer sets. Because I could not include the
whole set (e.g. 96) but only a few of the ERCC spike-ins, special attention was
required in order not to skew the data while trying to normalize it.

A highly critical consideration was precise adjustment of the ratio of spike-ins to the
cellular mRNAs. They may consume majority of the reads and preclude biological
conclusions with very high ratios, whereas they may not suffice for normalization
with lower ratios by intermingling with the noise (Lun et al., 2017; Vallejos et al.,
2017). Hence, I carefully calculated per experiment the expected spike-in
percentages based on the previous sequencing runs and adjusted the concentration
of spike-ins accordingly.

Another challenge was the calculation of scaling factors for normalization.
Arithmetic or geometric mean of non-transformed spike-in reads was not robust
enough to outliers. Using median spike-in as the scaling factor was not an option
either, because there were a maximum of four of them in my experiments,
magnitudes of which could differ more than ten-fold despite fine-tuning the input
amounts. Adjusting their overall magnitudes in the count data would bias the
scaling factor towards the smaller spike-ins, whose variations became magnified
upon re-sizing. Eventually, I came up with a formula to calculate the arithmetic
mean of log2-transformed spike-ins, and back-transform this value to calculate size
factors (Formula (4) or (5), Materials and Methods, section 2.4.12.2). When I
applied it to normalize the count matrices, the variation of the spike-ins shrunk to a
two-fold range, demonstrating the power of the approach. Even though I used three
to four spike-ins in this project, including more would benefit the future experiments
for the robustness of scaling factors. For bulk RNA analyses, more housekeeping
genes can be included instead, as an alternative normalization approach.

Spike-ins were useful also to filter the wells containing insufficient number of reads
due to failed sorting or lysis of the cells. I used the ratio of spike-ins to the total
reads in the known empty wells (0 cell) as a filtering reference for failed samples.
Conversely, some wells would receive cell doublets, which I filtered by estimating
the two-cell expression levels by referring to the median read count of each gene
across the matrix (Figure 14).
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4.2.4 Barcode-primer combination effect

I discovered during data analyses that the amplification efficiency per gene had
specific patterns depending on the barcode identities (barcode-primer combination
effect), which were evident in both qPCR and sequencing data (Figure 34).
Including spike-ins with constant amounts in the sequencing experiments facilitated
this finding, because they made the patterns more obvious in comparison to the
variably expressed genes. I initially sought to correct them, as I had already
conducted a couple of large-scale experiments with substantial costs. Later, I also
identified the underlying causes, which will considerably enhance the future projects
by enabling in silico pre-selection of the optimal barcode and primer sets to
minimize these effects.

Consistency of the patterns across the count matrices facilitated modeling and
correcting them. Negative binomial generalized linear models could robustly
estimate the read counts (Figure 35); yet, the use of the first component of each
explanatory variable as intercept precluded calculation of their own coefficients. I
circumvented this by building two models, one taking into account the interactions
and one ignoring them, and dividing the predictions of the first model to that of the
second to estimate the combination effects (Formulas (2) and (3)), and correct the
data, as described in detail in Materials and Methods, section 2.4.12.1.

Subsequently, I ran an experiment dedicated to calculating the combination effects
for all the barcodes and primer sets we already had (Figure 37). The results helped
me to empirically identify the globally inefficient barcodes and barcode-primer
combinations. One use of this information was to flag the barcodes that are
inefficient in a combination, for future reference. Another usage was to use them for
further in silico analyses. Predicting the 2° structures of the whole amplicons
containing average or inefficient combinations pointed to the barcode-linker-primer
regions as the primary source of variations. Analysis of only the barcode-linker-
primer sequences indicated that the stability of the 2° structures highly correlated
with the inefficiency of the combination (Figure 38). I subsequently calculated the
minimum free energies (MFE) of the known good/bad combinations, which revealed
a clear pattern, where MFEs lower than -10 were all inefficient barcode-primer
pairs. Parallel to that, some of the over-efficient combinations had higher-than-
average MFEs.

These findings indicate that the barcode-primer combination effect is likely to be the
result of stable hairpin formation of the primers, which reduces their availability in
the reaction, thus the efficiency of PCR. PrimerSelect tool calculates the
compatibility of multiplexed (nested) primers with each other, but not the combined
sequences with the barcodes. To address this, there could be two potential
improvements of the tool. The software can prompt the user to provide the list of
barcodes and linkers that will be used in the experiment, so that the primers can be
selected accordingly. Yet, this can restrict the primer selection considerably, which
is already limited by the amplicon size range and the requirement to end with an
Adenine base. A better option would be to design the primers as usual, simulate



4.3. Applications of BART-Seq

– 85 –

their combinations with the whole barcode set, rank the MFEs of barcode-primer
combinations, and eliminate barcodes that could potentially generate an inefficient
combination. This can be either integrated into the PrimerSelect tool or provided as
an accompanying script.

On the other hand, I discovered the roots of global barcode inefficiencies in an
earlier step, the Klenow reaction. Presence of the GA dinucleotide as the last two
bases of barcodes seems to increase the complementarity of barcode-linker dimers,
eventually reducing the quantity of synthesized primers (Figure 39). This can
simply be surpassed by excluding those barcodes from the panel and taking this
knowledge into account when designing new barcode and linker sets.

Even though the barcode-primer combination effects also influenced the gene reads,
I did not attempt to correct them in this study due to the complexity caused by their
variable expression patterns. Yet, I excluded from the analysis the whole columns or
rows with known inefficient combinations. Nevertheless, the MFE method should be
helpful when designing new experiments to filter out the barcodes that might
potentially have a bad combination with one of the primers, as stated above.

4.3 Applications of BART-Seq

4.3.1 RNA quantification

BART-Seq is a powerful method for quantifying template RNAs. To verify that, I
initially measured a dilution series of isolated bulk RNA from hESCs, which showed
remarkably high correlations between read counts and template concentrations
(average R2 of 0.96) (Figure 42). Importantly, the linear range spanned single cell
levels (i.e. 4-16 pg). Direct analysis of cells (1-32 cells per well), too, revealed a
notable correlation with the number of sorted cells and read counts (R > 0.95 for
most genes) (Figure 44). When compared to the contemporary global scRNA-Seq
techniques, the sensitivity of BART-Seq (median R2 of 0.98) exceeded all the
methods reviewed by Ziegenhain et al. (2017) (Figure 43).

BART-Seq has advantages over other targeted techniques as well. While the
hybridization-based targeted methods require high amount of starting material that
is not compatible with gene expression analysis in single cells, the amplification-
based ones are not suited for quantitative precision (Hodges et al., 2007; Mercer et
al., 2014; Ozsolak and Milos, 2011), both of which could be addressed with BART-
Seq.

4.3.2 Influence of maintenance media on the pluripotency state of
hESCs

With the purpose of finding out whether maintenance media might influence the
expression of the core pluripotency network, I analyzed single hESCs cultured on
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mTeSR™1, KSR-bFGF, or E8 using BART-Seq. Two main clusters emerged in the
UMAP distribution, exhibiting naïve-like (NANOGHIGH ZFP42/REX1HIGH) and
primed-like (LIN28AHIGH DNMT3BHIGH) pluripotency profiles (Figure 45) (Pastor et
al., 2016; Theunissen et al., 2014; Warrier et al., 2017). These clusters were
predominated by E8- and mTeSR™1-cultured cells, respectively, implying that they
were transcriptionally conditioned by these media.

mTeSR™1 medium contains several components including cholesterol and lipids,
that are not present in the E8 (Table 2). A previous study reported a switch in the
lipid metabolism between the naïve and primed states of hPSCs (Sperber et al.,
2015). A later study shows that, in contrast to the primed cells, E8 medium induces
a formative pluripotent state that is in between the naïve and primed states
(Cornacchia et al., 2019). These cells exhibit decreased DNMT3B and increased
NANOG expression, which parallel my findings, and downregulate TGF-β-related
genes. It is suggested that lipid availability has a role in naïve-to-primed transition,
and lipid deprivation might induce naïve-like features via suppression of
endogenous ERK. The same study reported increased propensity of E8-cultured
hPSCs for neuroectodermal differentiation over mesoderm or endoderm. This
supports the reported cases in my lab having difficulties in differentiating the E8-
cultured hPSCs towards mesoderm (e.g. cardiac) in comparison to mTeSR™1
(unpublished), and highlights the importance of matching the growth media to
different differentiation protocols (Lee et al., 2017).

Another interesting observation was the strong correlation of CCND1 expression
with NANOG (and ZFP42), although it is not a known marker for the ground-state
pluripotency. Human naïve hPSCs have a shorter G1 phase in comparison to the
primed cells (Coronado et al., 2013), and Cyclin D1 is known to function in G1/S
transition. Therefore, it is likely that increased CCND1 expression in the naïve-like
subpopulation relates to the higher proliferation rate of these cells.

4.3.3 Stimulation of the Wnt pathway with different inducers

In order to test whether different inducers that are used to activate the Wnt
pathway yield the same transcriptional outcomes (Loh et al., 2016; Mendjan et al.,
2014), I analyzed cell populations that emerge upon treating the hESCs with
recombinant Wnt3a (rWnt3a) protein, a small molecule inhibitor of GSK3
(CHIR99021), or ectopically expressing β-catenin for 0, 24 and 72 hours. Pairwise
gene correlations at 24 hours resulted in two main groups, regardless of the inducer.
The distribution of these transcripts in the developing mouse embryo (E6.5-E7.5)
resembled the distal and proximal regions (Figure 48, APPENDIX C), while the
pan-primitive streak markers GSC, EVX1, and MIXL1 correlated with both groups,
and MIXL1 was higher in the distal-like group. One of the two cell clusters at 24 h
in the tSNE plot expressed the genes related to both distal and proximal regions and
was enriched for CHIR-induced cells, and the second expressed distal-like genes only
and was enriched for β-catenin-induced cells. It can be speculated that this is
because β-catenin is downstream to the GSK3 in the cascade, therefore may not be
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able to activate all the Wnt-responsive genes. The cells isolated at 72 hours,
especially rWnt3a-induced ones, formed distinguishable clusters, too. A cell
subpopulation co-expressing endoderm markers SOX17 and FOXA2 emerged only
with rWnt3a-induction, possibly because Wnt3a, located upstream of the other two
inducers, could give rise to a more diverse set of progeny. This subpopulation was
absent in a replicate experiment though (APPENDIX D). One interesting
observation after 72 hours was that FOXA2 and MSX1 were mutually exclusive,
which localize to the floor plate (Lek et al., 2010) and the roof plate (Eggenschwiler
and Anderson, 2000) of the developing neural tube respectively, hence they are
possibly inversely regulated.

As an orthogonal validation, I checked the same set of genes at 72 hours in a bulk
RNA-Seq analysis of a replicate experiment (Figure 47). Notwithstanding a
significant degree of cellular heterogeneity in the single-cell data, majority of the
genes had very similar patterns with the bulk data. Importantly, β-catenin and
CHIR-inductions resembled each other but diverged from the rWnt3a, as mentioned
above.

In conclusion, activating the Wnt pathway using different inducers does not seem to
yield the same cell subpopulations. Supposedly, it should not be possible to adjust
the intracellular effective concentration of each inducer to the same levels, which
might partially account for these differences. Besides, as they are located at
different levels of the pathway, they should be involved in diverse feedback or
feedforward loops, which cannot generate the exact same outcomes when ectopically
activated. These inferences are based on only this experiment, therefore further
research would be required to reach more decisive conclusions. Nonetheless, they
confirm that BART-Seq is useful for gaining novel insights into gene expression
patterns or verifying the existing knowledge.

4.3.4 Bulk analyses

Besides single-cell transcriptomics, BART-Seq can be used for analyzing
transcriptomic or genomic targets in bulk samples as well. Here, I presented two
proof of concept experiments. One of the applications was screening the gDNA
samples from 96 breast cancer patients for the 10 founder mutations on the BRCA1
and BRCA2 genes, which resulted in 99% genotyping accuracy based on mutations
known from Sanger sequencing (Figure 49). Another application was screening the
transcriptional response of hepatocytes to a compound library as part of a
collaboration project with the pharmaceutical company AstraZeneca. We analyzed
17 target genes, some of which correlated well with the qPCR analysis of the same
samples (Figure 50). Nonetheless, it was not possible to derive nice dosage response
curves for most of the genes. We hypothesized that this was either a result of
incomplete lysis of the sampled cells, or inhibition of the PCR by the components in
the lysis buffer. Efficient amplification of spike-ins unlike the gene targets supports
the prior hypothesis. Due to the time restriction we could not pursue this project
further, yet it exemplified a potential application. Taken together, these
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experiments demonstrated that BART-Seq can substitute the conventional methods
such as Sanger sequencing or qPCR for high-throughput genomic or transcriptomic
screening, by reducing the costs and labor.

4.4 Advantages of BART-Seq

4.4.1 A targeted approach for quantitative -omics

The unbiased (global) scRNA-Seq techniques distribute the sequencing reads to
thousands of genes in thousands of cells, often leading to zero-inflated count
matrices, where the distinction between the unexpression and dropouts becomes
profoundly blurred. In that case, mathematical approaches are often required to
“estimate” the expression of the genes using the pooled read counts (Luecken and
Theis, 2019). While this level of information can accurately classify cell types, which
is adequate for many research questions, it may not suffice to explore the changes in
the expression levels of genes, when the gene of interest cannot be even detected at
times. Therefore, focusing the sequencing capacity to a small number of targets can
provide deeper and quantitative information. Here, I show that BART-Seq is highly
accurate in linear quantification of the template concentrations, down to single cell
levels (Figure 42), which outperforms the eminent technologies (CEL-Seq2/C1,
Drop-seq, MARS-seq, SCRB-seq, Smart-seq/C1, Smart-seq2) recently reviewed by
Ziegenhain et al. (2017) (Figure 43). There are also notable imaging based-
techniques such as MERFISH (Chen et al., 2015) or seqFISH (Shah et al., 2017),
which provides higher resolution information including localization of the
transcripts; yet, they are often laborious and expensive. Besides, they infer the
transcripts from hybridization of probes, like the qPCR-based Fluidigm Biomark,
whereas BART-Seq provides direct sequence information.

Methods exist for target enrichment by hybridization such as NimbleGen arrays
(Hodges et al., 2007) or RNA CaptureSeq (Mercer et al., 2014), which often require
high amounts of starting material. There are also methods based on multiplexed
PCR amplification (Blomquist et al., 2013; Herbold et al., 2015; Ståhlberg et al.,
2016; Ion AmpliSeq from Life Technologies), MIP-based methods using
circularizable probes (Tao et al., 2018), or parallel amplification of multiple targets
like the RainStorm platform (Tewhey et al., 2009). Nonetheless, these targeted
approaches are neither suited for amplifying small amounts of templates, such as
from single cells, nor for high degree of sample parallelization due to high costs or
technical limitations. One of the few methods for targeted scRNA-Seq is CytoSeq,
which combines oligo(dT) capturing with gene-specific primers to analyze 100+
genes (Fan et al., 2015). RAGE-Seq combines targeted nanopore sequencing of full-
length transcripts with the short-read sequencing (Singh et al., 2019), yet,
accessibility of third-generation sequencers might preclude its widespread usage for
the time being. Also, the quantitative range of these methods remains to be
determined. In conclusion, BART-Seq can offer targeted validation for specific
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research questions that require higher resolution information with quantitative
sensitivity.

4.4.2 Sequence coverage

Majority of the scRNA-Seq methods are based on tag counting (i.e. only 3’ or 5’ end
of transcripts) because they add the barcodes at the reverse transcription stage,
often to the poly(A) tails, which are used also to capture the transcripts (Table 1).
Yet, this does not allow analyzing the regions that are far from the transcript ends,
for example detecting different isoforms. There are only a few methods, such as
Smart-seq or RamDA-seq that can sequence whole transcripts (Hayashi et al., 2018;
Picelli et al., 2013). Even though BART-Seq does not offer full-length coverage, it
does not depend on the poly(A) tail because the barcodes are attached not to RT but
to PCR primers, which enables amplifying any part of the transcripts once they are
reverse transcribed simply using oligo(dT) primers, random hexamers, or even
barcoded primers directly. Thereby, it allows analyzing a wider range of transcripts
unlike the majority of the existing technologies, including lncRNAs that play
important roles in development and disease (Esteller, 2011).

4.4.3 An economical method

The existing scRNA-Seq technologies often require expensive instrumentation and
consumables (Macosko et al., 2015; Picelli et al., 2013; Zheng et al., 2017). Whereas
the droplet-based, microfluidic, or nanowell systems offer massive reduction of
reagents consumed per cell (Ziegenhain et al., 2017), the overall expenses turn out to
be still high due to non-customizable size and number of samples that can be
analyzed in parallel, each of which would require the use of different preparation
kits for every iteration of time point, treatment, and biological replicate (Macosko et
al., 2015; Zheng et al., 2017). In comparison, BART-Seq libraries are highly
versatile; they can consist of tens of samples or thousands of samples, only a few or
hundreds of different conditions can be assayed in parallel, which can be easily
adjusted by just up/downscaling the size of the barcode matrix based on the
experimental needs. This allows adjusting the sample size according to the available
budget. The full cost of analysis per sample (i.e. a single-cell or bulk gDNA/cDNA in
one well of a 384-well plate) is approximately 1 EUR including sequencing, which is
more affordable than many of the plate- or microfluidics-based approaches
(Ziegenhain et al., 2017).

4.4.4 Versatility and accessibility

BART-Seq has a simple workflow that can be performed with common laboratory
equipment and basic reagents, making it available to any research group with access
to a next-generation sequencing instrument. The barcode assembly and target
enrichment are straightforward, without any intermittent purification steps, which
is a plus for the robustness of quantification. The whole workflow takes
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approximately one week to complete, starting from barcode assembly till the
generation of count matrices.

As a plate-based technique, BART-Seq is not restricted with the cell sizes in a
certain range, unlike the droplet- or microfluidic-based techniques (Loh et al., 2016;
Macosko et al., 2015; Sanchez-Freire et al., 2012). It is possible to analyze single
cells isolated using different methods (e.g. LCM, FACS, single-cell printer), and bulk
samples or sensitive cells can simply be pipetted into the wells. Sample properties
can be indexed (e.g. fluorescent intensity, phenotype, patient ID) and linked to the
expression profiles or genotypes, an information that is often lost with the
techniques that utilize pools of cells and barcoded droplets. Another advantage of
being a plate-based method would be the presence of excess reagents per sample,
which can be speculated to be useful for capturing as many molecules as possible.

4.5 Limitations of BART-Seq

Just like any other technique, BART-Seq comes with certain limitations as well. As I
showed here in the form of barcode-primer combination effects, the efficiency of
primers is likely to have some degree of heterogeneity, even though they can be kept
within a negligible range by in silico pre-selection. Besides, the method is not fully
immune to the complications related to multiplex PCR, such as uneven efficiency of
amplification, non-specific products, or cross-hybridization of the pooled primers,
though the PrimerSelect tool minimizes them. The amplification-based nature of
BART-Seq may bring about questions regarding PCR artifacts, which is addressed
by other technologies using UMIs to tag and count the original mRNA molecules
(Table 1). Unless a two-step PCR is not implemented into BART-Seq, it is not
possible to include UMIs in the workflow, because the same primers that attach the
UMIs to the amplicons cannot be used for further amplification; as the UMI part
would not match in the next rounds of PCR. Considering the simplicity as the basic
merit of BART-Seq, attempting to synthesize such complex primers would abolish
this advantage. Given the close-to-perfect linear RNA quantification of the targets
down to picogram levels (Figure 42), absence of UMIs may be neglected.

Be it due to the thermodynamic restrictions in pooling numerous primers, or the
availability of PCR resources, there is a hypothetical limit to the number of primers
that can be multiplexed. More importantly, the more targets analyzed in parallel
are, the lower the average number of reads they would receive; besides the
possibility of a few over-efficient primers or highly abundant genes consuming the
majority of the reads, just like the unbiased methods. Even though it is hard to
specify an upper limit to multiplexing (e.g. 50-100), the expected yield of the
sequencing run and the desired average sequencing depth per target can be useful
references for making a decision.

Unlike the global techniques that can lead to novel discoveries on gene regulatory
networks, BART-Seq is a hypothesis-driven approach, in that, the list of targets to
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be analyzed must be known in advance. In essence, it can be considered a
sequencing-based version of a highly parallelized qPCR. This is not a limitation
though for the experiments that aim to assay a known set of loci, such as screening
for certain mutations, or CRISPR targets. Finally, BART-Seq is not yet an
automated method; hence requires a lot of hands on time.

Lastly, a minor concern regarding scRNA-Seq experiments would be the possibility
of amplification of the targets also from genomic DNA. I observed this with NANOG
primers, which generated amplicons in negligible amounts from a pseudogene
(NANOGP1) as well, i.e. 1-2% of the real amplicons. The pluripotency transcripts
assigned to fibroblasts might be partially caused by the same reason (Figure 44C).
In cases where accuracy is crucial, designing primers that span exons would be a
solution.

4.6 Further Applications

High-throughput sequencing of defined sets of transcripts could be very useful for
numerous studies that involve parallel analysis of massive arrays of samples. The
application areas include probing of mechanisms; single-cell analysis; validating and
complementing results obtained by genome-wide approaches, such as the Human
Cell Atlas Project (Regev et al., 2017); and screening in genome engineering, drug
development, and toxicology assays. I have already presented here a range of
possible BART-Seq applications. For example, it suits high-throughput targeted
genomics, as demonstrated by screening breast cancer patients. It can be useful for
the pharmaceutical industry for screening transcriptional response of certain genes
to a compound library cost-effectively, as we explored with the AstraZeneca project.
Also, it is convenient to assay in parallel tens or hundreds of different time points or
conditions, as exemplified on a smaller scale by the Wnt pathway stimulation
experiment.

Furthermore, BART-Seq can aid precision medicine by screening a large population
of individuals for the mutations that are known to influence the action of a certain
drug and personalize the treatments accordingly. We have not tested the method for
bacteria or viruses yet, but it might be useful for testing patient samples (e.g. blood,
mucous, urine), or other liquids for the presence of certain pathogens. Moreover,
BART-Seq can be combined with the CRISPR/Cas9 technology for probing the
introduced modifications in the targeted genomic loci and correlating them with the
transcriptional response of selected sets of genes, either at the clonal or single-cell
level. Besides, multiple primer pairs can be included in the same primer pool for
different transcript isoforms to study their regulation in changing physiological
conditions, for example during stem cell differentiation. Primer sets can include non-
poly(A) targets as well, such as lncRNAs. I can foresee that the possibilities to use
BART-Seq for highly parallelized targeted applications is much more than the
examples listed here.
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4.7 Conclusions

I focused this project into the development of the novel method BART-Seq, and its
applications. I optimized individual steps of the workflow to increase the efficiency
and reduce the costs, and implemented it for targeted transcriptomics, including
that of single cells. In parallel, I established, and also assisted the development of
bioinformatics tools for designing the experiments and analyzing the results.

BART-Seq overcomes many limitations of other targeted or single-cell sequencing
approaches, such as shallow coverage, lack of quantitativeness, or high costs. It is a
highly precise, inexpensive, simple, and scalable method that can be readily used by
any research group with basic laboratory equipment and reagents, and access to a
next-generation sequencing device. The accompanying bioinformatics tools are
available with open access to the scientific community.

To my knowledge, BART-Seq is the first targeted sequencing technology that is
applicable to both transcriptomics of single cells and genomics/transcriptomics of
bulk samples. Thereby, it will serve a practical alternative or a companion to the
existing technologies in a wide spectrum of research fields.
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APPENDIX A One-step RT+PCR

With an attempt to reduce the number of steps within the workflow, I ran a
preliminary experiment to see whether the reverse transcription and PCR can be
combined in a single reaction mixture. To this goal, I compared the reaction
containing all the components of reverse transcription and PCR (42% v/v ratio of
RT/PCR) to the regular two-step protocol (20% v/v ratio of RT/PCR). Among the
tested genes, the efficiency of B2M and OCT4 amplification was reduced when the
reactions are combined (RT+PCR), while LIN28A remained the same. Given that the
difference between the combined and decoupled reactions was only a few cycles in
this preliminary experiment, and because I hypothesize that the reduced efficiency
might be partially due to high RT/PCR v/v ratio, further enzyme concentrations and
volume ratios could be tested to see whether the combined reaction can be efficient
enough to replace the two-step protocol.

Combining reverse transcription and PCR in a single reaction. Comparison of the one-step -
(RT+PCR)- and two-step -(RT)+(PCR)- reverse transcription and PCR. Concentration of the reverse
transcriptase during reverse transcription and the template amounts in the PreAmp PCR were equal
in both reactions. Shades of the same colors indicate the technical replicates and error bars indicate the
qPCR replicates.
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APPENDIX B Validation of the mesoderm primer set with qPCR and
BART-Seq using bulk RNA samples

Mesoderm (Wnt stimulation) primers were used to pre-amplify bulk RNA samples
isolated at 0 h and 72 h of the Wnt pathway stimulation (Figure 46), which were
analyzed either with qPCR or BART-Seq.

Upper panels show the normalized reads from RNA samples that were aliquoted
(50 pg per well), barcoded with 10 different combinations, and analyzed with the
BART-Seq protocol together with single cells. Lower panels show the Ct values
obtained with qPCR using nested primers to analyze the pre-amplified bulk samples
from a biological replicate experiment. The two analyses displayed remarkably
similar patterns, which also resembled the previous bulk RNA-Seq results (Figure
47).
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APPENDIX C Additional data for the Wnt pathway stimulation
experiment

tSNE distribution of the rest of the genes not shown in (Figure 48):

Heatmaps of the pairwise gene correlations at 24 h for each treatment separately
(related to Figure 48):
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APPENDIX D Biological repetition of the Wnt stimulation experiment

Biological repetition of the Wnt stimulation experiment (Related to Figure 48).
Heatmap of the pairwise gene correlations at 24 h calculated based on single cells
from the three treatments (left) and two-dimensional representation (tSNE) of all
the single cells sampled at 0 h, 24 h, and 72 h, based on the expression of 19 genes
(right). The 72 h time point contains cells only from rWnt3a treatment due to the
loss of samples from the other two conditions. Distribution of some selected genes
underlying the tSNE plot is shown in the upper and lower panels.
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APPENDIX E Simplified R code for the correction & normalization of the
data

library(readxl)
library(reshape2)
library(MASS) # for glm
library(plyr) # For count

# Read the count matrix
dat = read_excel("./Raw Data/2019-02-14 NGS15 Read Counts Formatted.xlsx", sheet = "Lib1",
col_names = TRUE, col_types = NULL, na = "", skip = 0)

# Retrieve (all) the gene names and spike-in names
genes = colnames(dat)[min(grep("^B2M|^RNA|^ZFP42",colnames(dat))) :
max(grep("^B2M|^RNA|^ZFP42",colnames(dat)))]
spikes = colnames(dat)[grep("^RNA",colnames(dat))]

#--------------       CLEAN UP THE DATA          -----------------------------------------------------------

#--------------       Manual Clean-up
datclean = dat
columns = c("left","right","well.y","well.x","cell.count","cells","well.location")

# Subset the relevant columns and the spike-in part of the original data
spikes.all = data.frame(dat[c(columns,spikes)])

# Remove the very bad barcodes and very bad combination with genes: L28 (DNMT3B), L44 (LIN28A), R23
(POU5F1)
spikes.all = subset(spikes.all, !(left %in% c("L24","L47","L28","L44")))
spikes.all = subset(spikes.all, !(right %in% c("R23")))

# Melt the data frame
melted.spikes = melt(spikes.all,id.vars=columns, na.rm=TRUE)

#--------------       Determine the outliers that do not fit into the full model

# Full Model
mp2 = glm.nb(value ~ variable + left + right + cells + well.location + left:variable + right:variable, data =
melted.spikes)

melted.spikes$prd = predict.glm(mp2, melted.spikes, type="response") # Predictions
melted.spikes$res = abs(residuals(mp2))  # Absolute value of residuals
melted.spikes$rem = "no" # Remove? First set everything to "no"
melted.spikes$rem[melted.spikes$res > 2] = "yes" # Remove if the prediction is more than two-fold different

# Data without outliers
melted.spikes.filtered = subset(melted.spikes, rem == "no")[c(columns,"variable","value")]

# Full model again, without outliers
mp3 = glm.nb(value ~ variable + left + right + cells + well.location + left:variable + right:variable,

data = melted.spikes.filtered)

melted.spikes.filtered$prd = predict.glm(mp3, melted.spikes.filtered, type="response")
melted.spikes.filtered$res = abs(residuals(mp3))
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# Flag: completely remove a well if there were more than 2 NAs
Flags = subset(count(subset(melted.spikes, rem=="yes"), c("left","right")), freq > 2)
melted.spikes.2 = subset(melted.spikes, !paste0(left,right) %in%
paste0(Flags$left,Flags$right))[c(columns,"variable","value","rem")]

# Replace the remaining outliers with the predictions of the mp3
melted.spikes.2$prd = predict.glm(mp3, melted.spikes.2, type="response")
melted.spikes.2$value[which(melted.spikes.2$rem == "yes")] =
melted.spikes.2$prd[which(melted.spikes.2$rem == "yes")]

#--------------       MODEL & CORRECT FOR COMBINATION EFFECT          --------------------------------------

melted.spikes.3 = melted.spikes.2[c(columns,"variable","value")]
melted.spikes.3$value = round(melted.spikes.3$value, 0) # Since glm.nb requires integers, round the values

# Calculate the correction factor

# Model with interactions
mp1 = glm.nb(value ~ variable + left + right + left:variable + right:variable, data = melted.spikes.3)
# Model without interactions
mp0 = glm.nb(value ~ variable + left + right, data = melted.spikes.3)

melted.spikes.3$prd3 = predict.glm(mp3, melted.spikes.3, type="response") # Full predictions (filtered
model)
melted.spikes.3$prd1 = predict.glm(mp1, melted.spikes.3, type="response") # With interactions
melted.spikes.3$prd0 = predict.glm(mp0, melted.spikes.3, type="response") # Without interactions

# Correction factor: fold-change of the interactions relative to the average (division)
melted.spikes.3$fold = melted.spikes.3$prd1/melted.spikes.3$prd0

# Correct the read counts
melted.spikes.3$corF = melted.spikes.3$value/melted.spikes.3$fold

# Data frame of corrected spike-ins
corrected.spikes = dcast(melted.spikes.3, left + right + well.y + well.x + cell.count + cells + well.location
                         ~ variable, value.var="corF")

#--------------       NORMALIZE          -------------------------------------------------------------------

# Replace the spike-ins with corrected versions (only overlapping ones merged):
datclean = merge(dat[ ,-which(colnames(dat) %in% spikes)], corrected.spikes, by = columns)

datnormal = merge(datclean,dat[c("left","right",spikes)], by = c("left","right"), suffixes = c("","nc")) # Add back
the raw spike-ins

# Non-corrected spikes:
ncspikes = paste0(spikes,"nc")

# Calculate the normalization factor per well
datnormal$RNA_X = 2^rowMeans(log2(datnormal[spikes]+1))-1
min = median(datnormal$RNA_X, na.rm=TRUE)/5
max = median(datnormal$RNA_X, na.rm=TRUE)*5
datnormal = subset(datnormal, (min < RNA_X) & (RNA_X < max))
factor = datnormal$RNA_X / median(datnormal$RNA_X, na.rm=TRUE)

# Normalize the data
datnormal[c(genes,ncspikes,"RNA_X")] = datnormal[c(genes,ncspikes,"RNA_X")] / factor # Normalize
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APPENDIX F Barcode panel used for transcriptomics experiments

Barcode sequences used for transcriptomics experiments (CCA+Barcode+Linker)

Forward Barcodes (5'>3')
L01 CCACCTTCTCGATGCGCATTC L57 CCAGCCGGAATATGCGCATTC R27 CCACAGAGTCGAGCGTAACCT
L02 CCACCAGTAGCATGCGCATTC L58 CCACCAACCAGATGCGCATTC R28 CCAGCGAACCTAGCGTAACCT
L03 CCACCTAACGCATGCGCATTC L59 CCAGACCTTCCATGCGCATTC R29 CCACCTGTCGTAGCGTAACCT
L04 CCAGGCCGATTATGCGCATTC L60 CCACTTGCCTCATGCGCATTC R30 CCAGACCACACAGCGTAACCT
L05 CCACGTTCGTCATGCGCATTC L61 CCAGTGGCCAAATGCGCATTC R31 CCAAGGAGAGCAGCGTAACCT
L06 CCAGCCTGGTAATGCGCATTC L62 CCATCTAGGCCATGCGCATTC R32 CCATCACACCGAGCGTAACCT
L07 CCACCAGACGAATGCGCATTC L63 CCACGATTCGGATGCGCATTC R33 CCAAGCACCAGAGCGTAACCT
L08 CCAACGACACCATGCGCATTC L64 CCAGTCGTTCCATGCGCATTC R34 CCAGCCAGAACAGCGTAACCT
L09 CCAGCCTCTTGATGCGCATTC L65 CCAGAGAGGCTATGCGCATTC R35 CCAGATTGGCCAGCGTAACCT
L10 CCATACGGCACATGCGCATTC L66 CCAGCTCCGATATGCGCATTC R36 CCAAGCGGAGTAGCGTAACCT
L11 CCACTCCAGTCATGCGCATTC L67 CCAACTCCTCCATGCGCATTC R37 CCACCTCACCTAGCGTAACCT
L12 CCAAACGTCGGATGCGCATTC L68 CCACCTCCAAGATGCGCATTC R38 CCAACCTGCAGAGCGTAACCT
L13 CCAGTTGGAGCATGCGCATTC L69 CCAGGACTCGAATGCGCATTC R39 CCAGGCAAGCTAGCGTAACCT
L14 CCAACGAGCCTATGCGCATTC L70 CCAAGACTCCGATGCGCATTC R40 CCAGGAGAGGAAGCGTAACCT
L15 CCAGATCCAGGATGCGCATTC L71 CCACTCCGGTTATGCGCATTC R41 CCACCACTCGTAGCGTAACCT
L16 CCATCCTGGCTATGCGCATTC L72 CCACCACAGGTATGCGCATTC R42 CCATCAGCGAGAGCGTAACCT
L17 CCAGGTCCATGATGCGCATTC L73 CCACACCTACCATGCGCATTC R43 CCAACTCGTCGAGCGTAACCT
L18 CCACGGTGAGTATGCGCATTC L74 CCAACTCCGGAATGCGCATTC R44 CCACTTCGGACAGCGTAACCT
L19 CCACCAACTCCATGCGCATTC L75 CCAAACCTGGCATGCGCATTC R45 CCAGGAGTTCCAGCGTAACCT
L20 CCAAGGCCGAAATGCGCATTC L76 CCAGTCTGTCGATGCGCATTC R46 CCAGAGCAGTCAGCGTAACCT
L21 CCAGAGGCCTAATGCGCATTC L77 CCACCATCACGATGCGCATTC R47 CCAGAAGCCTCAGCGTAACCT
L22 CCATTCTCCGCATGCGCATTC L78 CCACGTTAGCCATGCGCATTC R48 CCAGGAGGAACAGCGTAACCT
L23 CCAGTGACCACATGCGCATTC L79 CCAGGAGCCTTATGCGCATTC R49 CCACACCTAGGAGCGTAACCT
L24 CCACTGTACGGATGCGCATTC L80 CCACCGGTATGATGCGCATTC R50 CCAGTGAGTCGAGCGTAACCT
L25 CCACCAGTGGTATGCGCATTC L81 CCAGGTCGATCATGCGCATTC R51 CCAGACAGGCAAGCGTAACCT
L26 CCAATAGCCGCATGCGCATTC L82 CCAACTGAGGCATGCGCATTC R52 CCATGCGGACTAGCGTAACCT
L27 CCACTAGCCTGATGCGCATTC L83 CCACCGGTGTTATGCGCATTC R53 CCAGCGTCCTAAGCGTAACCT
L28 CCACCTTAGGCATGCGCATTC L84 CCACTACTCCGATGCGCATTC R54 CCAACCGTCCAAGCGTAACCT
L29 CCACTACGGTCATGCGCATTC R55 CCACCAGGACTAGCGTAACCT

L30 CCAGAAGTCGCATGCGCATTC Reverse Barcodes (5'>3') R56 CCACTGACCGTAGCGTAACCT

L31 CCATCCACGACATGCGCATTC R01 CCAGCCACCTTAGCGTAACCT R57 CCACACACCTCAGCGTAACCT
L32 CCAGTCTGCCAATGCGCATTC R02 CCAGAACCACGAGCGTAACCT R58 CCACCAGCAAGAGCGTAACCT
L33 CCAGGAACTCCATGCGCATTC R03 CCACTCAGGCAAGCGTAACCT R59 CCAGGAGACCAAGCGTAACCT
L34 CCAACCGGTCTATGCGCATTC R04 CCAGTACAGCGAGCGTAACCT R60 CCAGCAGGATGAGCGTAACCT
L35 CCAACCGAGGTATGCGCATTC R05 CCACTCGAGCTAGCGTAACCT R61 CCATCGGATCGAGCGTAACCT
L36 CCACTGGCTACATGCGCATTC R06 CCAGCGACACAAGCGTAACCT R62 CCATCACCGTCAGCGTAACCT
L37 CCATCCTCCGTATGCGCATTC R07 CCAGTCATCGGAGCGTAACCT R63 CCATGTCGGAGAGCGTAACCT
L38 CCAGAGCTAGGATGCGCATTC R08 CCATGCCTCCAAGCGTAACCT R64 CCAACAGCTCGAGCGTAACCT
L39 CCAGCCACGTAATGCGCATTC R09 CCACCGATTCCAGCGTAACCT R65 CCACCACAACCAGCGTAACCT
L40 CCACGGTCTTCATGCGCATTC R10 CCAGCATAGGCAGCGTAACCT R66 CCATCCTCAGGAGCGTAACCT
L41 CCAGGTGTACCATGCGCATTC R11 CCAGACAGAGGAGCGTAACCT R67 CCATGGCGTTCAGCGTAACCT
L42 CCATCGGCTCAATGCGCATTC R12 CCACACCGGTAAGCGTAACCT R68 CCAGGTCAAGGAGCGTAACCT
L43 CCAAGTAGGCCATGCGCATTC R13 CCAGTGGAAGGAGCGTAACCT R69 CCATGGCACTGAGCGTAACCT
L44 CCAACCTCCTGATGCGCATTC R14 CCAGGATCCTCAGCGTAACCT R70 CCATCGACCAGAGCGTAACCT
L45 CCAAGACGGACATGCGCATTC R15 CCAGGACAGTGAGCGTAACCT R71 CCAAGCCAGCTAGCGTAACCT
L46 CCACGGTCCAAATGCGCATTC R16 CCATGTGGCGTAGCGTAACCT R72 CCATCTCGTGCAGCGTAACCT
L47 CCACGGTGACAATGCGCATTC R17 CCAGCGATCAGAGCGTAACCT R73 CCAAAGGCCTGAGCGTAACCT
L48 CCAGGCCTTCAATGCGCATTC R18 CCAACAAGGCCAGCGTAACCT R74 CCAATGCCTCGAGCGTAACCT
L49 CCAACCGGAACATGCGCATTC R19 CCACTCGGAGAAGCGTAACCT R75 CCACCATCGCAAGCGTAACCT
L50 CCACTCCTCTGATGCGCATTC R20 CCACAAGCTGCAGCGTAACCT R76 CCATTGAGGCGAGCGTAACCT
L51 CCACGTCGTTGATGCGCATTC R21 CCAGTCCACCAAGCGTAACCT R77 CCACCAAGCCTAGCGTAACCT
L52 CCAGAGGACGAATGCGCATTC R22 CCATCGAGGACAGCGTAACCT R78 CCAGTGGCTGAAGCGTAACCT
L53 CCAACGTTCCGATGCGCATTC R23 CCATCCGGCAAAGCGTAACCT R79 CCACCGAAGAGAGCGTAACCT
L54 CCAACTGGCCAATGCGCATTC R24 CCAGTCTCACGAGCGTAACCT R80 CCAGGACTAGCAGCGTAACCT
L55 CCAGTCGTAGCATGCGCATTC R25 CCAGATCGGCTAGCGTAACCT R81 CCACCGAACACAGCGTAACCT
L56 CCATTGTGGCCATGCGCATTC R26 CCAGGCGGATAAGCGTAACCT R82 CCAGAGTCCACAGCGTAACCT
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APPENDIX G Barcode panels used for genotyping experiments

Barcode squences used for BRCA
genotyping experiments
(CCA+Barcode+Linker)

Barcode sequences used for
protection group evaluation

(NNN+Barcode+Linker)

Forward Barcodes (5'>3') Reverse Barcodes (5'>3')

L01 CCATCCTCAGGTAGCGACGAG Barcode 1 NNNTTGCGCAGCCATACGACG

L02 CCACCGAACACTAGCGACGAG Barcode 2 NNNCGGACTAGCCATACGACG

L03 CCAACTGAGGCTAGCGACGAG Barcode 3 NNNCATTCGCGCCATACGACG

L04 CCACACCTAGGTAGCGACGAG Barcode 4 NNNTGCTCGACCCATACGACG

L05 CCACACACCTCTAGCGACGAG Barcode 5 NNNCGACTACGCCATACGACG

L06 CCATACGGCACTAGCGACGAG Barcode 6 NNNGCCGACAACCATACGACG

L07 CCAGATCCAGGTAGCGACGAG Barcode 7 NNNCTCTACGCCCATACGACG

L08 CCACCAGACGATAGCGACGAG Barcode 8 NNNCACGAGTGCCATACGACG

Reverse Barcodes (5'>3') Forward Barcodes (5'>3')

R01 CCAACGCGCTACCATACGACG Barcode A NNNGGATAGGCTAGCGACGAG

R02 CCAACGCTAGCCCATACGACG Barcode B NNNCCGACCTATAGCGACGAG

R03 CCAACTCCTCCCCATACGACG Barcode C NNNTGGAGACCTAGCGACGAG

R04 CCAGCGCATCTCCATACGACG Barcode D NNNAGCCGACTTAGCGACGAG

R05 CCACGGACAAGCCATACGACG Barcode E NNNCCTAGACCTAGCGACGAG

R06 CCACGGTCCAACCATACGACG Barcode F NNNTGGATGGCTAGCGACGAG

R07 CCAGGACGCAACCATACGACG Barcode G NNNCCAGATCCTAGCGACGAG

R08 CCAGACCTTCCCCATACGACG Barcode H NNNTGATCCGCTAGCGACGAG

R09 CCAAGGAGAGCCCATACGACG Barcode I NNNCTTCCGACTAGCGACGAG

R10 CCACCATCACGCCATACGACG Barcode J NNNTCCGATGCTAGCGACGAG

R11 CCACGGCAACACCATACGACG

R12 CCACGGAATGCCCATACGACG
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APPENDIX H Sample configuration file for the PrimerSelect tool

Primer3 File - http://primer3.sourceforge.net
P3_FILE_TYPE=settings

PRIMER_DNA_CONC=10.0
PRIMER_DNTP_CONC=0.6
PRIMER_EXPLAIN_FLAG=1
PRIMER_FIRST_BASE_INDEX=1
PRIMER_GC_CLAMP=0
PRIMER_INSIDE_PENALTY=-1.0
PRIMER_INTERNAL_DNA_CONC=50.0
PRIMER_INTERNAL_DNTP_CONC=0.0
PRIMER_INTERNAL_MAX_GC=80.0
PRIMER_INTERNAL_MAX_HAIRPIN_TH=47.00
PRIMER_INTERNAL_MAX_LIBRARY_MISHYB=12.00
PRIMER_INTERNAL_MAX_NS_ACCEPTED=0
PRIMER_INTERNAL_MAX_POLY_X=5
PRIMER_INTERNAL_MAX_SELF_ANY=12.00
PRIMER_INTERNAL_MAX_SELF_ANY_TH=47.00
PRIMER_INTERNAL_MAX_SELF_END=12.00
PRIMER_INTERNAL_MAX_SELF_END_TH=47.00
PRIMER_INTERNAL_MAX_SIZE=27
PRIMER_INTERNAL_MAX_TM=63.0
PRIMER_INTERNAL_MIN_GC=20.0
PRIMER_INTERNAL_MIN_QUALITY=0
PRIMER_INTERNAL_MIN_SIZE=18
PRIMER_INTERNAL_MIN_TM=57.0
PRIMER_INTERNAL_OPT_GC_PERCENT=50.0
PRIMER_INTERNAL_OPT_SIZE=20
PRIMER_INTERNAL_OPT_TM=60.0
PRIMER_INTERNAL_SALT_DIVALENT=1.5
PRIMER_INTERNAL_SALT_MONOVALENT=50.0
PRIMER_INTERNAL_WT_END_QUAL=0.0
PRIMER_INTERNAL_WT_GC_PERCENT_GT=0.0
PRIMER_INTERNAL_WT_GC_PERCENT_LT=0.0
PRIMER_INTERNAL_WT_HAIRPIN_TH=0.0
PRIMER_INTERNAL_WT_LIBRARY_MISHYB=0.0
PRIMER_INTERNAL_WT_NUM_NS=0.0
PRIMER_INTERNAL_WT_SELF_ANY=0.0
PRIMER_INTERNAL_WT_SELF_ANY_TH=0.0
PRIMER_INTERNAL_WT_SELF_END=0.0
PRIMER_INTERNAL_WT_SELF_END_TH=0.0
PRIMER_INTERNAL_WT_SEQ_QUAL=0.0
PRIMER_INTERNAL_WT_SIZE_GT=1.0
PRIMER_INTERNAL_WT_SIZE_LT=1.0
PRIMER_INTERNAL_WT_TM_GT=1.0
PRIMER_INTERNAL_WT_TM_LT=1.0
PRIMER_LIBERAL_BASE=1
PRIMER_LIB_AMBIGUITY_CODES_CONSENSUS=0
PRIMER_LOWERCASE_MASKING=0
PRIMER_MAX_END_GC=5
PRIMER_MAX_END_STABILITY=9.0
PRIMER_MAX_GC=70.0
PRIMER_MAX_HAIRPIN_TH=24.0
PRIMER_MAX_LIBRARY_MISPRIMING=12.00
PRIMER_MAX_NS_ACCEPTED=0
PRIMER_MAX_POLY_X=4
PRIMER_MAX_SELF_ANY=8.00
PRIMER_MAX_SELF_ANY_TH=45.0
PRIMER_MAX_SELF_END=3.00
PRIMER_MAX_SELF_END_TH=35.0
PRIMER_MAX_SIZE=29
PRIMER_MAX_TEMPLATE_MISPRIMING=12.00
PRIMER_MAX_TEMPLATE_MISPRIMING_TH=40.00
PRIMER_MAX_TM=66.0
PRIMER_MIN_3_PRIME_OVERLAP_OF_JUNCTION=4
PRIMER_MIN_5_PRIME_OVERLAP_OF_JUNCTION=7
PRIMER_MIN_END_QUALITY=0
PRIMER_MIN_GC=25.0
PRIMER_MIN_LEFT_THREE_PRIME_DISTANCE=3
PRIMER_MIN_QUALITY=0
PRIMER_MIN_RIGHT_THREE_PRIME_DISTANCE=3
PRIMER_MIN_SIZE=17

PRIMER_MIN_TM=60
PRIMER_NUM_RETURN=5
PRIMER_OPT_GC_PERCENT=50.0
PRIMER_OPT_SIZE=20
PRIMER_OPT_TM=63.0
PRIMER_OUTSIDE_PENALTY=0
PRIMER_PAIR_MAX_COMPL_ANY=8.00
PRIMER_PAIR_MAX_COMPL_ANY_TH=45.0
PRIMER_PAIR_MAX_COMPL_END=3.00
PRIMER_PAIR_MAX_COMPL_END_TH=35.0
PRIMER_PAIR_MAX_DIFF_TM=5.0
PRIMER_PAIR_MAX_LIBRARY_MISPRIMING=20.00
PRIMER_PAIR_MAX_TEMPLATE_MISPRIMING=24.00
PRIMER_PAIR_MAX_TEMPLATE_MISPRIMING_TH=70.00
PRIMER_PAIR_WT_COMPL_ANY=0.0
PRIMER_PAIR_WT_COMPL_ANY_TH=0.0
PRIMER_PAIR_WT_COMPL_END=0.0
PRIMER_PAIR_WT_COMPL_END_TH=0.0
PRIMER_PAIR_WT_DIFF_TM=0.0
PRIMER_PAIR_WT_IO_PENALTY=0.0
PRIMER_PAIR_WT_LIBRARY_MISPRIMING=0.0
PRIMER_PAIR_WT_PRODUCT_SIZE_GT=0.0
PRIMER_PAIR_WT_PRODUCT_SIZE_LT=0.0
PRIMER_PAIR_WT_PRODUCT_TM_GT=0.0
PRIMER_PAIR_WT_PRODUCT_TM_LT=0.0
PRIMER_PAIR_WT_PR_PENALTY=1.0
PRIMER_PAIR_WT_TEMPLATE_MISPRIMING=0.0
PRIMER_PAIR_WT_TEMPLATE_MISPRIMING_TH=0.0
PRIMER_PICK_ANYWAY=1
PRIMER_PICK_INTERNAL_OLIGO=0
PRIMER_PICK_LEFT_PRIMER=1
PRIMER_PICK_RIGHT_PRIMER=1
PRIMER_PRODUCT_MAX_TM=1000000.0
PRIMER_PRODUCT_MIN_TM=-1000000.0
PRIMER_PRODUCT_OPT_TM=0.0
PRIMER_PRODUCT_SIZE_RANGE=90-200 90-248 85-248 80-
248 75-248
PRIMER_QUALITY_RANGE_MAX=100
PRIMER_QUALITY_RANGE_MIN=0
PRIMER_SALT_CORRECTIONS=1
PRIMER_SALT_DIVALENT=6.0
PRIMER_SALT_MONOVALENT=25.0
PRIMER_SEQUENCING_ACCURACY=20
PRIMER_SEQUENCING_INTERVAL=250
PRIMER_SEQUENCING_LEAD=50
PRIMER_SEQUENCING_SPACING=500
PRIMER_TASK=generic
PRIMER_MUST_MATCH_THREE_PRIME=nnnna
PRIMER_THERMODYNAMIC_OLIGO_ALIGNMENT=1
PRIMER_THERMODYNAMIC_TEMPLATE_ALIGNMENT=0
PRIMER_TM_FORMULA=1
PRIMER_WT_END_QUAL=0.0
PRIMER_WT_END_STABILITY=0.0
PRIMER_WT_GC_PERCENT_GT=0.0
PRIMER_WT_GC_PERCENT_LT=0.0
PRIMER_WT_HAIRPIN_TH=0.0
PRIMER_WT_LIBRARY_MISPRIMING=0.0
PRIMER_WT_NUM_NS=0.0
PRIMER_WT_POS_PENALTY=0.0
PRIMER_WT_SELF_ANY=0.0
PRIMER_WT_SELF_ANY_TH=0.0
PRIMER_WT_SELF_END=0.0
PRIMER_WT_SELF_END_TH=0.0
PRIMER_WT_SEQ_QUAL=0.0
PRIMER_WT_SIZE_GT=1.0
PRIMER_WT_SIZE_LT=1.0
PRIMER_WT_TEMPLATE_MISPRIMING=0.0
PRIMER_WT_TEMPLATE_MISPRIMING_TH=0.0
PRIMER_WT_TM_GT=1.0
PRIMER_WT_TM_LT=1.0
=
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APPENDIX I Genotyping primers for protection group evaluation

The BRCA genotyping primers used in combination with NNN Barcodes
(APPENDIX G) for screening 5' trinucleotide protection groups

# Gene Targeted Locus on
Chromosome*

Amplicon
name

Amplicon
Size§ (bp) Primer Nested (sequencing) primer

sequence (5' > 3')

1 BRCA1  chr17: 43123944-
43124076 Amp1' 133

Forward CGTTGAAGAAGTACAAAATGTCA

Reverse AGGTCAATTCTGTTCATTTGCA

2 BRCA1 chr17: 43056890-
43057086 Amp2' 197

Forward GTCCAAAGCGAGCAAGAGAA

Reverse TGGTTGGGATGGAAGAGTGA

3 BRCA1 chr17: 43092572-
43092654 Amp3' 83

Forward AGGCAACGAAACTGGACTCA

Reverse TGATGGGAAAAAGTGGTGGTA

4 BRCA1 chr17: 43063766-
43063946 Amp4' 181

Forward GAGTTTGTGTGTGAACGGACA

Reverse GGTAACTCAGACTCAGCATCA

5 BRCA1 chr17: 43094438-
43094574 Amp5' 137

Forward CAGATGGGCTGGAAGTAAGGA

Reverse TAGGATTCTCTGAGCATGGCA

6 BRCA2 chr13: 32340412 +
32340606 Amp6' 195

Forward CGAACATTCAGACCAGCTCA

Reverse TCAAATTCCTCTAACACTCCCTTA

7 BRCA2 chr13: 32370880 +
32371097 Amp7' 218

Forward ACTGTGCCTGGCCTGATACAA

Reverse CATGTTCTTCAAATTCCTCCTGA

8 BRCA2 chr13: 32316504 +
32316691 Amp8' 188

Forward TTAAGACACGCTGCAACAAA

Reverse GGTTAACCTGCAAACGATGA

9 BRCA2 chr13: 32346866 +
32346962 Amp9' 97

Forward CTTTAGAGCCGATTACCTGTGTA

Reverse TCATTTATAAAAACGAGACTTTTCTCA

10 BRCA1 chr17: 43047589-
43047773 Amp10' 185

Forward AATGATGAAGTGACAGTTCCA

Reverse ACCAAACCCATGCAAAAGGA

* Based on the In-Silico PCR tool of UCSC Genome Browser
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APPENDIX J Pluripotency primers

Pluripotency and control genes selected for human pluripotent stem cells and
sequences of the primers designed to target them

# Gene Type Targeted Locus
on Chromosome§

Amplicon
Size§ (bp) Primer Nested (sequencing) primer

sequence  (5'>3')

1 B2M Housekeeping chr15: 44,715,652 -
44,717,620 92*

Forward CTGCCGTGTGAACCATGTGA

Reverse CGGCATCTTCAAACCTCCATGA

2 CCND1 Cell cycle chr11: 69,652,219 -
69,652,355 137

Forward CCAGCTCACGTCCAGGTTCA

Reverse CCCTCCCTGCACACACAACA

3 CCNE1 Cell cycle chr19: 29,817,487 -
29,820,778 132*

Forward ACACCCTCTTCTGCAGCCAA

Reverse TGTGTCGCCATATACCGGTCA

4 CER1 Differentiation chr9: 14,720,247 -
14,722,182 157*

Forward CAGTGCCCTTCAGCCAGACTA

Reverse GTGGTGAACTTGGCAGGCAA

5 DNMT3B Pluripotency chr20: 32,796,852 -
32,798,474 146*

Forward CTCTGTCAGACATGCCGGGA

Reverse TCCACACAGAAACACCGGCA

6 GAPDH Housekeeping chr12: 6,534,834 -
6,536,753 198 / 328*

Forward TGGGGAAGGTGAAGGTCGGA

Reverse GCTTCCCGTTCTCAGCCTTGA

7 LIN28A Pluripotency chr1: 26,429,287 -
26,429,385 99

Forward GTCAGGAGGCCAAGAAAGGGA

Reverse CAATCTTGTGGCCACTTTGACATAA

8 NANOG Pluripotency chr12: 7,795,613 -
7,795,789 177

Forward CGCCCTGCCTAGAAAAGACA

Reverse CAAAGCCTCCCAATCCCAAACA

9 POU5F1 Pluripotency chr6: 31,165,590 -
31,165,684 95

Forward TTGTCAGCTTCCTCCACCCA

Reverse ACGACCATCTGCCGCTTTGA

10 SOX2 Pluripotency chr3: 181,713,684 -
181,713,826 143

Forward ACGGTAGGAGCTTTGCAGGA

Reverse ACATTTTGATTGCCATGTTTATCTCGA

11 ZFP42 Pluripotency chr4: 188,004,620 -
188,004,709 90

Forward CCCCACAACATGTTTAAACTTAGCTA

Reverse CTCAAGCTATCCTCCTGCTTCA

12 RNA1 RNA spike-in - 95
Forward CGCCCCGAGAATATGCTGCA

Reverse CCCTCTCTACTTTGGCGCGA

13 RNA2 RNA spike-in - 179
Forward CCGTAGCCCCTCCGATGATA

Reverse CGCGTACCACCATTGCATCA

14 RNA6 RNA spike-in - 145
Forward CCAGGGGATGATTTCGGCCA

Reverse CGCTCTGGTGCCACGATCA

15 RNA8 RNA spike-in - 188
Forward TCCAGCAGTTTCAGCCAGCA

Reverse CAGGCGCTGCAACTGTGTTA

§ Based on the In-Silico PCR tool of UCSC Genome Browser
* Spans more than one exon
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APPENDIX K Mesoderm primers

Differentiation and control genes selected for the Wnt pathway stimulation
experiment and sequences of the primers designed to target them

# Gene Type Targeted Locus
on Chromosome§

Amplicon
Size§ (bp) Primer Nested (sequencing) primer

sequence  (5'>3')

1 CDX2 Paraxial/(pre-)somitic
mesoderm

chr13:27,963,357-
27,968,471 165*

Forward ACCAGATTTTAACCTGCCTCTCA

Reverse GCCAAGTGAAAACCAGGACGAAA

2 EOMES Lateral mesoderm chr3:27,717,015-
27,717,199 185

Forward CACCACCAAGTCCATCTGCAAAA

Reverse GCTGTCTCCTAGCAACTCCAGTA

3 EVX1 Pan-primitive streak chr7:27,247,384-
27,247,557 174

Forward CTCTCTCGGTATCTGGCGGTAAA

Reverse GAAGGCTCCCACTGGTATCTGAA

4 FOXA2 Endoderm chr20:22,581,785-
22,581,882 98

Forward CTTGCTCTCTCACTTGTCCTCGA

Reverse GTGTACTCCCGGCCCATTATGAA

5 GAPDH Housekeeping chr12:6,537,667-
6,537,857 191

Forward CCAGAACATCATCCCTGCCTCTA

Reverse CCGACGCCTGCTTCACCA

6 GSC Pan-primitive streak chr14:94,768,343-
94,768,542 200

Forward CCTCCCGGCTCTGTACACTA

Reverse ACCGGAGAAGAGGGAAGAGGA

7 HAND1 Lateral mesoderm chr5:154,475,054-
154,475,164 111

Forward TTGAGGTAGAAAAGGGTTGGGGA

Reverse AATAAAAGCTTTCCCTGTGTTGGA

8 HOXA1 Paraxial/(pre-)somitic
mesoderm

chr7:27,094,622-
27,095,261 175

Forward AGATCTTCACTTGGGTCTCGTTGA

Reverse GGGAAAGTTGGAGAGTACGGCTA

9 MESP1 Lateral mesoderm chr15:89,749,967-
89,750,152 186

Forward ATGGAGGGAGGGGCTGAGAA

Reverse CCCAAGTGACAAGGGACAACTGA

10 MIXL1 Pan-primitive streak chr1:226,226,914-
226,227,008 95

Forward CCACCTGCCTTCTGAAGTCTGA

Reverse ACAATAACAAGTGCTAAGGGTAATGGA

11 MSGN1 Paraxial /(pre-)somitic
mesoderm

chr2:17,816,616-
17,816,708 93

Forward CAGGGCCCTTTGAGCTGAATCA

Reverse CAGCTGGACAGGGAGAAGAAGAA

12 MSX1 Neural crest chr4:4,863,263-
4,863,396 134

Forward AGTTTCACCTCTTTGCTCCCTGA

Reverse TGCCCTCAGTTTCCCCATCTTTA

13 NANOG Pluripotency chr12:7,795,613-
7,795,789 177

Forward CGCCCTGCCTAGAAAAGACA

Reverse CAAAGCCTCCCAATCCCAAACA

14 NODAL Anterior primitive
streak

chr10:70,432,830-
70,432,955 126

Forward TTGCCCCTCTCTGTTTCTCCTTA

Reverse AAGAATGTGGGTGCCTCTGATGA

15 PAX3 Paraxial/(pre-)somitic
mesoderm

chr2:222,294,218-
222,295,544 101*

Forward CCTCTGCCTCCTTCCTCTCCA

Reverse AAACACCGTGCCGTCAGTGA

16 SOX17 Endoderm chr8:54,460,216-
54,460,332 117

Forward AGTTGGATTGTCAAAACCCTATTTCCA

Reverse ACACCCAGGACAACATTTCTTTGA

17 T Pan-primitive streak chr6:166,165,727-
166,166,648 171*

Forward CACCGCTATGAACTGGGTCTCA

Reverse GCTCCCGTCTCCTTCAGCAAA

18 TBX6 Paraxial/(pre-)somitic
mesoderm

chr16:30,086,220-
30,086,394 175

Forward GTGGTTCAGTACATGGGTTTGGA

Reverse CCTACTCGGCTGCATTTCTGGA

19 ZIC1 Neural crest chr3:147,414,157-
147,414,273 117

Forward TCCACGTCGACCTAACCCAATATTA

Reverse CAGGACATGAAACAACATTTTACTGCA

20 RNA1 RNA spike-in - 95
Forward CGCCCCGAGAATATGCTGCA

Reverse CCCTCTCTACTTTGGCGCGA

21 RNA2 RNA spike-in - 179
Forward CCGTAGCCCCTCCGATGATA

Reverse CGCGTACCACCATTGCATCA

22 RNA6 RNA spike-in - 181
Forward AGAGCTTCGAGATAGTGGGCAAA

Reverse AAAGTCTCTCCTCTTGGCCGAAA

§ Based on the In-Silico PCR tool of UCSC Genome Browser
* Spans more than one exon
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APPENDIX L BRCA genotyping primers

BRCA1 and BRCA2 loci analyzed in this study, and sequences of the primers
designed to target them

# Gene Mutation Amplicon
name

Amplicon
Size§ (bp) Primer Nested (sequencing) primer

sequence  (5'>3')

1 BRCA1 185delAG Amp1 127
Forward GCGTTGAAGAAGTACAAAATGTCA

Reverse TTCTGTTCATTTGCATAGGAGA

2 BRCA1 5382insC Amp2 200
Forward AAGGTCCAAAGCGAGCAAGA

Reverse TGGTTGGGATGGAAGAGTGA

3 BRCA1 p.Y978* Amp3 189
Forward CGAAACTGGACTCATTACTCCAAATA

Reverse CTCACTGTACTTGGAATGTTCTCA

4 BRCA1 p.A1708E Amp4 112
Forward GAGTTTGTGTGTGAACGGACA

Reverse GTGTTAAAGGGAGGAGGGGA

5 BRCA1 981delAT Amp5 135
Forward AGATGGGCTGGAAGTAAGGA

Reverse AGGATTCTCTGAGCATGGCA

6 BRCA2 c.6174delT Amp6 96
Forward AGTATAGGGAAGCTTCATAAGTCA

Reverse TGAAGCATCTGATACCTGGA

7 BRCA2 8765delAG Amp7 169
Forward TCTGGATTATACATATTTCGCAATGA

Reverse TCATATTAGAAATAACAATGTGTACCA

8 BRCA2 IVS2+1G>A Amp8 247
Forward CAAGCATTGGAGGAATATCGTA

Reverse ACGATGATTATGTTGTTAACTGGA

9 BRCA2 p.R2336P Amp9 191
Forward TAGAGCCGATTACCTGTGTA

Reverse TGAACAGCACTATAAAATACTACCA

10 BRCA1 p.P1812A Amp10 141
Forward AGTGACAGTTCCAGTAGTCCTA

Reverse TACATGCAGGCACCTTACCA

§ Based on the In-Silico PCR tool of UCSC Genome Browser
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APPENDIX M Patient samples analyzed with the BRCA genotyping assay

Anonymized patient samples analyzed using BRCA genotyping assay (APPENDIX
L), and previously identified mutations by Sanger sequencing

Sample
ID Mutation* Genotype Sample

ID Mutation* Genotype Sample
ID Mutation* Genotype

A01 Mut1 185delAG C09 Mut8 IVS2+1G>A F05 Mut2 5382insC
A02 Mut6 c.6174delT C10 --- n F06 Mut2 5382insC

A03 --- n C11 Mut10 p.P1812A F07 Mut7 8765delAG

A04 Mut9 p.R2336P C12 Mut2 5382insC F08 Mut2 5382insC
A05 Mut9 p.R2336P D01 Mut9 p.R2336P F09 --- ???
A06 Mut8 IVS2+1G <A D02 Mut3 p.Y978* F10 Mut6 c.6174delT

A07 --- n D03 Mut5 981delAT F11 Mut7 8765delAG

A08 Mut10 p.P1812A D04 Mut6 c.6174delT F12 Mut8 IVS2+1G <A

A09 Mut7 8765delAG D05 Mut2 5382insC G01 Mut4 p.A1708E
A10 Mut9 p.R2336P D06 Mut6 c.6174delT G02 Mut8 IVS2+1G>A
A11 --- n D07 Mut1 185delAG G03 Mut6 c.6174delT

A12 Mut6 c.6174delT D08 Mut1 185delAG G04 Mut2 5382insC
B01 Mut6 c.6174delT D09 Mut4 p.A1708E G05 Mut5 981delAT

B02 Mut4 p.A1708E D10 Mut1 185delAG G06 --- n

B03 Mut6 c.6174delT D11 Mut7 8765delAG G07 Mut8 IVS2+1G <A

B04 --- n D12 Mut9 p.R2336P G08 --- n

B05 Mut4 p.A1708E E01 Mut3 p.Y978* G09 Mut7 8765delAG

B06 Mut6 c.6174delT E02 Mut9 p.R2336P G10 Mut8 IVS2+1G <A

B07 Mut1 185delAG E03 Mut1 185delAG G11 Mut8 IVS2+1G <A

B08 Mut8 IVS2+1G <A E04 --- n G12 Mut10 p.P1812A
B09 Mut6 c.6174delT E05 --- n H01 Mut1 185delAG
B10 Mut6 c.6174delT E06 Mut6 c.6174delT H02 --- n
B11 Mut2 5382insC E07 Mut8 IVS2+1G <A H03 Mut4 p.A1708E
B12 --- n E08 Mut6 c.6174delT H04 Mut8 IVS2+1G <A

C01 --- n E09 Mut7 8765delAG H05 Mut2 5382insC
C02 Mut9 p.R2336P E10 Mut7 8765delAG H06 Mut9 p.R2336P
C03 Mut1 185delAG E11 Mut10 p.P1812A H07 Mut7 8765delAG

C04 Mut3 p.Y978* E12 --- n H08 --- n

C05 Mut3 p.Y978* F01 Mut7 8765delAG H09 Mut10 p.P1812A
C06 Mut7 8765delAG F02 Mut2 5382insC H10 Mut7 8765delAG

C07 Mut2 5382insC F03 Mut9 p.R2336P H11 Mut3 p.Y978*
C08 Mut7 8765delAG F04 Mut7 8765delAG H12 Mut7 8765delAG

* Mutation ID corresponds to the Amplicon name in the primer list (APPENDIX L)
   n: wild-type



– XV –

CURRICULUM VITAE

Education

2014 – 2020 Ph.D.: Technical University of Munich, Experimental Medicine
Helmholtz Center Munich, Institute of Stem Cell Research

2008 – 2010 M.Sc.: Sabancı University – Istanbul, Turkey
Biological Sciences and Bioengineering Program

2003 – 2008 B.Sc.: Bilkent University – Ankara, Turkey
Department of Molecular Biology and Genetics

2000 – 2003 Meram Science High School – Konya, Turkey

Research Experience

2013 Project Assistant, Vienna University of Technology, Austria
2009 ERASMUS Intern, Vienna University of Technology, Austria
2008 HHMI Summer Intern, Duke University, North Carolina, USA
2006 Summer Intern, Bilkent University, Turkey

List of Publications

Uzbas, F.; Opperer, F.; Sönmezer, C.; Shaposhnikov, D.; Sass, S.; Krendl, C.;
Angerer, P.; Theis, F. J.; Mueller, N. S.; Drukker, M. BART-Seq: cost-effective
massively parallelized targeted sequencing for genomics,
transcriptomics, and single-cell analysis. Genome Biology 2019, 20 (1), 155.
https://doi.org/10.1186/s13059-019-1748-6

Uzbas, F.; May, I. D.; Parisi, A. M.; Thompson, S. K.; Kaya, A.; Perkins, A. D.;
Memili, E. Molecular physiognomies and applications of adipose-derived
stem cells. Stem Cell Rev and Rep 2015, 11 (2), 298–308.
https://doi.org/10.1007/s12015-014-9578-0

Uzbas, F.; Sezerman, U.; Hartl, L.; Kubicek, C. P.; Seiboth, B. A homologous
production system for Trichoderma reesei secreted proteins in a
cellulase-free background. Appl Microbiol Biotechnol 2012, 93 (4), 1601–1608.
https://doi.org/10.1007/s00253-011-3674-8

Uzbaş, F. Trichoderma reesei as an expression system for homologous
production of individual cellulases. Thesis, 2010. Sabancı University,
Istanbul, Turkey.


	Abstract
	Zusammenfassung
	Acknowledgements
	List of Figures
	List of Tables
	List of Appendices
	Abbreviations
	1 INTRODUCTION
	1.1 Transcriptomics
	1.1.1 Analysis of gene expression
	1.1.1.1 Hybridization-based methods
	1.1.1.2 Sequencing-based methods
	1.1.1.2.1 First-generation (Sanger) sequencing
	1.1.1.2.2 Next-generation sequencing
	1.1.1.2.3 Third-generation sequencing
	1.1.1.2.4 Targeted sequencing


	1.1.2 Single-cell analysis
	1.1.2.1 Single-cell sequencing techniques
	1.1.2.1.1 Isolating single cells
	1.1.2.1.2 RNA capturing and amplification
	1.1.2.1.3 Analysis of single-cell sequencing data

	1.1.2.2 Alternative techniques for single-cell analysis


	1.2 Human Pluripotent Stem Cells
	1.2.1 Pluripotent stem cells, in vivo and in vitro
	1.2.2 Ground-state (naïve) and primed pluripotency
	1.2.3 Early lineage commitment

	1.3 Barcode Assembly for Targeted Sequencing (BART-Seq)
	1.3.1 A novel target enrichment and barcoding workflow
	1.3.2 Focus of the thesis


	2 MATERIALS & METHODS
	2.1 Materials
	2.2 Instruments
	2.3 Computational Tools
	2.4 Methods
	2.4.1 Design of barcode panels
	2.4.2 Primer design and optimization
	2.4.3 Design of primer sets
	2.4.4 Cell culture
	2.4.4.1 Growth media comparison
	2.4.4.2 Wnt/β-catenin pathway activation

	2.4.5 Single-cell sorting and cDNA synthesis
	2.4.5.1 Sorting
	2.4.5.2 cDNA synthesis
	2.4.5.3 Bulk RNA isolation
	2.4.5.4 RNA spike-ins

	2.4.6 Barcode assembly
	2.4.6.1 Klenow fill-in reaction
	2.4.6.2 Reverse complementary strand removal by Lambda exonuclease
	2.4.6.3 Pre-amplification PCR

	2.4.7 qPCR and melting curve analysis
	2.4.8 Next-generation sequencing
	2.4.8.1 Sample pooling and purification
	2.4.8.2 RNA-Seq library preparation and sequencing

	2.4.9 Demultiplexing of RNA-Seq reads to count matrices
	2.4.10 Classification of BRCA mutations
	2.4.11 Analysis of protection groups
	2.4.12 Data correction and normalization
	2.4.12.1 Correction of RNA spike-in reads
	2.4.12.2 Normalization of the data
	2.4.12.3 Well filtering in single-cell experiments
	2.4.12.4 Analysis of gene expression


	2.5 Availability of Data and Materials

	3 RESULTS
	3.1 Development and Optimization of the BART-Seq Workflow
	3.1.1 The principle of barcode-primer assembly
	3.1.2 A concept to analyze the efficiency of intermediate reactions by qPCR
	3.1.3 Barcode assembly
	3.1.3.1 Klenow reaction
	3.1.3.1.1 Concentration of oligonucleotides
	3.1.3.1.2 Klenow reaction duration

	3.1.3.2 Exonuclease reaction
	3.1.3.2.1 Comparison of T7 and Lambda exonucleases
	3.1.3.2.2 Exonuclease +/-
	3.1.3.2.3 Lambda reaction duration
	3.1.3.2.4 Protecting the barcode ends


	3.1.4 Reverse transcription
	3.1.4.1 RNase H treatment following reverse transcription
	3.1.4.2 Diluting and freeze-thawing reverse transcriptase

	3.1.5 Pre-amplification PCR
	3.1.5.1 Multiplexing
	3.1.5.2 Multiplex PCR master mix selection
	3.1.5.3 PCR master mix dilution
	3.1.5.4 Individual and total concentration of multiplexed primers
	3.1.5.5 Annealing temperature gradients
	3.1.5.6 RT/PCR ratio

	3.1.6 Next-generation sequencing
	3.1.7 Bioinformatics
	3.1.7.1.1 Demultiplexing the RNA-Seq reads to count matrices
	3.1.7.1.2 Merging the read pairs
	3.1.7.1.3 De-multiplexing read pairs separately

	3.1.7.2 Normalization of count matrices
	3.1.7.2.1 Barcode-primer combination effect
	3.1.7.2.2 Correction and normalization
	3.1.7.2.3 Empirical analysis of barcode efficiencies
	3.1.7.2.4 Computational analysis of barcode efficiencies



	3.2 Applications of BART-Seq
	3.2.1 Validation of the barcode assembly
	3.2.1.1 Co-amplification of genomic targets

	3.2.2 RNA quantification
	3.2.2.1 Pluripotency primer set
	3.2.2.2 Quantifying transcripts from bulk RNA
	3.2.2.3 Quantifying transcripts from cells

	3.2.3 Single-cell analyses
	3.2.3.1 Influence of maintenance media on the pluripotency state of hESCs
	3.2.3.2 Stimulation of the Wnt pathway in hESCs

	3.2.4 Bulk analyses
	3.2.4.1 Genotyping the patients for BRCA mutations
	3.2.4.2 Compound screening on hepatocytes



	4 DISCUSSION
	4.1 Development and Optimization of the BART-Seq Workflow
	4.1.1 Barcode assembly
	4.1.2 Reverse transcription
	4.1.3 Pre-amplification PCR

	4.2 Bioinformatics
	4.2.1 Primer design
	4.2.2 Demultiplexing the sequencing reads
	4.2.3 Using exogenous spike-ins for normalization and filtering
	4.2.4 Barcode-primer combination effect

	4.3 Applications of BART-Seq
	4.3.1 RNA quantification
	4.3.2 Influence of maintenance media on the pluripotency state of hESCs
	4.3.3 Stimulation of the Wnt pathway with different inducers
	4.3.4 Bulk analyses

	4.4 Advantages of BART-Seq
	4.4.1 A targeted approach for quantitative -omics
	4.4.2 Sequence coverage
	4.4.3 An economical method
	4.4.4 Versatility and accessibility

	4.5 Limitations of BART-Seq
	4.6 Further Applications
	4.7 Conclusions

	REFERENCES
	CURRICULUM VITAE

