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Abstract—In the context of system testing on Hardware-in-the-
Loop (HiL) test benches, performing functional tests on electrical
control units (ECUs) comes with various challenges. Especially
planning the execution of test cases for a test cycle and nightly
batch runs is cumbersome. In order to support the test managers,
this work proposes an adaptable and flexible test management
assistance system. Therefore, a set of requirements for such an
assistance system have been identified and proposed solutions
from the literature have been recalled. Out of those, software
agents appear to be a suitable method for building up the
framework of the assistance system. The framework proposed
in this paper is divided into two phases: static prioritization
of test scripts and dynamic execution ordering. The agents of
the former phase aggregate relevant available data from various
sources to calculate a test script priority. In the latter the agents
negotiate to solve the resource allocation problem for test scripts
on test benches. In addition, test logs are taken into account at
run-time for reprioritization. Finally, an industrial use case from
the automotive industry is taken as an example to discuss the
applicability and current obstacles on the way to application and
qualitative evaluation of the expected benefits are discussed.

Index Terms—Agent-Based Systems; Planning, Scheduling and
Coordination; Task Planning

I. INTRODUCTION

THE organization of testing activities and in particular
the execution planning for nightly execution are based

on experienced test managers. They combine a multitude
of aspects and information from various sources (including
informal ones) in order to come up with a somewhat optimal
test execution plan. One conversant example is system testing
in the automotive domain, where multiple ECUs (electronic
control unit) are combined and the aim of testing is the
assessment of the fulfillment of required functionality, it turns
out to be a challenging endeavor. The increase of software
within automotive environments and the subsequent increase
in complexity puts further strain on operators. The multitude
of functionalities within a system requires many test cases,
while the available testing resources, i.e. Hardware-in-the-
loop test benches (HiL), are limited. This is particularly
troublesome when the same testing resources are shared for
various tasks, i.e. commissioning of automated test scripts
during the day and their execution during the night. Note
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that we call test scripts executable programs that represent
requirement-based test cases, that consist of a sequence of
several action steps. Hence, using the available testing time as
effectively as possible increases the amount of executed test
scripts and, consequently, the chance of finding more faults in
the system under test (SUT).

A. Challenges

The main challenges test managers face is that manually
deciding what an optimal test execution plan would be is
almost impossible. As the scheduling and prioritization of test
scripts is done manually, the test manager is supposed to use
the testing time effectively, and at the same time consider
multiple aspects e.g. the required precondition system states
of test scripts successively executed, test bench configurations,
dependencies between test scripts and test actions potentially
leading to dependencies in the failure behavior.

Further challenges include gathering all necessary informa-
tion like changes in subsystems, requirement specifications
or bug fixes. The information is distributed among multiple
resources and might not be available in a structured document
or database but rather as tacit knowledge of specific experts
which might or might not be involved in the testing pro-
cess, e.g. developers. That already makes acquiring relevant
information as such a difficult venture considering that it
is distributed among multiple resources including informal
discussions. Hence, it is an additional challenge for defining an
optimal prioritization order given the fact that not all necessary
information is available.

Also the test environment itself is under constant develop-
ment or sometimes certain resources are unavailable, which
leads to the additional difficulty of reacting to the ongoing
changes. This results in additional constraints that need to be
considered in the execution order, in particular when there is
no test engineer available during the automatic execution.

During the system testing phase, HiLs offer a flexible
and easily adaptable test environment [1]. For example in
the context of vehicle on-board supply systems, such HiLs
are composed of various batteries and physical ECUs under
test embedded into mock-ups and simulation of unavailable
system parts. Test scripts are composed of three blocks:
pre-processing (setup), action and post-processing (teardown).
Whereas during pre-processing a HiL adopts a certain sys-
tem state, from which the actual requirement-based test is
performed, post-processing is necessary for the HiL to adopt
a well-defined system state (e.g. reset to idle) such that a
subsequent test script can be started. Note that due to their
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structure, all test scripts are self-contained and designed to be
independently executable. Thus, they can be executed in any
order and,apparently, the order of test cases has a significant
influence on the overall execution time if there are inert system
state parameters (such as the state of charge of a battery in
our use case).

To the best of our knowledge there exists no solution that
permits to fully tackle the the aforementioned issues. More
details on related work that partially address these challenges
are given in Sec. II.

B. Requirements

In order to develop a flexible, adaptive test management
assistance system, and to address the identified challenges, the
following set of requirements originate from discussions with
several test engineers from the industrial partner.

R1 - Prioritization of Test Scripts: With the increasing
amount of test scripts and limited testing time, the execution
of all available test scripts in one development cycle is a
challenging endeavor, which is still done mostly manually.
Test scripts that are more valuable should be prioritized. To
support this process, the assistance system should be able
to determine a value for each test script based on several
sources of information, whose availability might vary over
time. As the framework should be applicable to a variety of test
projects, where the available information varies in quality and
importance, the framework should provide a suitable means
for customization to the test managers’ preferences.

R2 - Scheduling of Test Scripts: In the context under
consideration, various variants of system configurations are
considered and there exists a link between test cases and those
configurations. Also, test cases require different system states
for their execution. Given that there are multiple configurable
test benches for which changing the configuration and system
state is time-consuming (if it is possible at all to automat-
ically change the configuration without the need for human
intervention), the challenge is to assign test scripts to suitable
test benches considering that, depending on the test bench’s
current system state, the preprocessing for test scripts varies.
Therefore, the assistance system should consider this adaption
and reconfiguration time.

R3 - Dynamic Adaption to Test Logs: It is possible during
testing that test system misbehavior results in failures other
than discovering actual functional defects. Since the test
execution generally is unsupervised, no operator is available
to handle such a case. Several cases should be considered.
Based on the hypothesis that a failure in one test case can
lead to failing similar ones too, a waste of time could be
prevented when dependent test cases on the failing one are
not executed. However, if a failure is encountered, it might
be useful to provoke similar failures with the help of similar
test cases in order to provide as much information as possible
to the test experts. Either way, based on the specific project
at hand, the assistance system should incorporate a dynamic
adaption strategy that considers new test logs acquired during
run-time for the scheduling.

R4 - Interaction with the Test Manager: Although the
framework should be able to act as independently as possible,
the knowledge and experience of the test manager might be
essential. This could be the case in particular when informa-
tion is unavailable or decisions have to be taken. Therefore,
the assistance system should allow interaction with the test
manager. Interaction comprises inquiring for data or decisions,
and displaying information on demand.

In the following, frameworks addressing similar challenges
found in the literature are discussed in Sec. II. There, the
concept of software agents is introduced and related works
regarding test case prioritization and scheduling are recalled.
In Sec. III, the proposed concept of the flexible, adaptive test
management system is presented in detail. Afterwards, the
applicability of the proposed concept to a specific industrial
use case is evaluated in Sec. IV and discuss further application
and development directions in Sec. V.

II. BACKGROUND AND RELATED WORKS

Based on the research questions (Sec. I-B), this section
evaluates related works. First, software agents and their use
in the context of testing are discussed (Sec. II-A), then other
approaches are presented addressing test case prioritization
(Sec. II-B) and scheduling (Sec. II-C). Finally, we introduce
a simplified test model used for data aggregation (Sec. II-D).

A. Software Agents in Testing

Software agents, hereafter referred to as agents, are suit-
able for decentralized, structurally variable and cooperative
systems, which have already found application in testing [2],
[3]. Various definitions for agents exist but in our work we
adhere to the view of Wooldridge and Jennings [4], where
an agent is seen as a goal-oriented, autonomous system that
is able to interact (sense, manipulate and communicate) with
the environment in which it is situated. There are two ways
to decompose a problem into agents: functional or physical
decomposition [5]. Whereas functional decomposition encap-
sulates certain functionalities in an agent, physical decompo-
sition distributes agents among physical components resulting
in a direct relationship of an agent and its associated physical
component. Approaches distributing different tasks, e.g. the
execution or the analysis of test cases, among agents are pro-
posed in [6]. The drawbacks of functional decomposition are
the high amount of shared state variables leading to unintended
interactions and inconsistencies [5]. Exemplary approaches
using physical decomposition are [2], [3]. Both consider test
case prioritization; however, test case scheduling among test
resources and test case dependencies are not considered.
In [7], the authors suggest an additional negotiation-based
test case scheduling. Test case agents allocate themselves
by negotiating with the test resource agents. Even though
physical decomposition defines distinct state variable sets
and thus enables only limited interactions between agents,
the distribution among physical components can quickly lead
to a complex management of agents and a communication
overhead [5].
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B. Test Case Prioritization

Test case prioritization is a broad field of research. The
authors in [8] performed a literature survey to identify the main
utilized influencing factors of prioritization approaches out of
which code and requirement coverage are the most commonly
chosen. Further frequently used approaches are based on the
execution time, the fault coverage and historical data. They
also identified that the combination of multiple prioritization
factors is a vital aspect for an efficient and effective test case
prioritization strategy.

Apart from coverage, several other requirements-based ap-
proaches have been proposed out of which a few are cited
here. For example, in [9], requirements are weighted based
on the amount of changes, the customer importance and
the complexity of requirements, which involves considerable
manual effort. In [10], dependencies between requirements are
used, allowing change propagation considerations.

Besides dependencies between requirements, other relations
between artifacts have also been used. In [11], for example,
dependencies between test cases, targeted software modules
and their underlying requirements are constructed. Similarly,
a system model and a test case model are related in [12].
More elaborate ontologies have been proposed recently e.g.
in [13], which provide dependencies between various sorts of
information present in test processes.

The system model contains the dependencies between test
benches, test cases, components and functionalities. The test
case model contains dependencies of test cases and their
respective test actions. Based on the test importance of test
components and the coverage of test actions, the prioritization
is calculated. Prerequisites of the approach are historical
test data, thorough knowledge of the test benches and their
respective components and functionalities and circumstantial
version management to know the changes of each release. The
authors in [14] prioritize test cases based on their dependencies
degree, which was manually elaborated. Another idea is to
apply data mining approaches for similarity measurements of
test cases. That way redundant and dependent test cases can
be identified. Several methods have been proposed relying
on similarity measurements [15], [16], [17]. There, test cases
are treated as continuous strings and different distance metric
methods are applied to measure the similarity between test
cases.

A common approach derives the prioritization order by
weighting the prioritization factors to obtain a priority [18].
A more complex approach employs fuzzy logic to represent
the expertise of the test manager and derive priorities [3],
[19]. The approach proposed by [20] considers the interference
of the prioritization factors. Subjective weighting is utilized
to calculate weights based on neighboring importance of the
objectives. Each objective is weighted based on the importance
compared to the other objectives. Even though the evaluation
shows the effectiveness of the proposed approach, a time-
consuming evaluation of the factor relations would be needed
in advance.

<<Requirement>>
Requirement

+ ID: Integer
+ Version: String
+ Change: Bool

<<TestScript>>
TestScript

+ Configuration: String
+ Change: Bool
+ Duration: Integer

<<TestOutcome>>
TestOutcome

+ Date: Date
+ DevelopmentStage: String
+ Result: String
+ ManualOverwrite: Bool

<<ActionStep>>
ActionStep

+ ID: Integer

<<Keyword>>
Keyword

+ ID: Integer

1..*
«contains»

+ Position: Integer
+ Parameter: String

1..* 1..* 1 0..*

Fig. 1. Test model for information aggregation

C. Test Case Scheduling

Test case scheduling addresses the challenge to find a
suitable test case for each test resource or vice versa. In [21],
this problem is tackled employing constrained programming.
Even though this approach provides promising results for
static distribution, dynamic distribution, i.e. new distribution
based on test results during the execution, is not considered.
In the field of shop floor production processes, agent-based
scheduling approaches are proposed. Instead of distributing
test cases on several test resources, different product tasks are
distributed among multiple production systems. Agents can
reduce product lateness by providing a dynamic negotiation
scheme. The authors in [22] present a dynamic scheduling
approach for Cyber-Physical Production Systems using the
Contract Net Protocol. They chose this protocol as it is
a mature mechanism due to its wide use and continuous
development. In [23], the authors propose a semi-centralized
approach extending the Contract Net Protocol. Compared
to a negotiation between an initiator and participants, the
extension introduces an additional manager. This manager
limits negotiation by proposing suitable participants to the
initiator with whom he can communicate.

D. Test Model

To aggregate the needed information and to tackle the
problem of data preparation, we establish a test model with
the modeling language UML. Our approach is inspired by
the definition of system and test models as proposed in
[11], [12]. Therein, the authors modeled test scripts and their
respective test actions to aggregate information about test
script dependencies. A simplified version of the test model
is displayed in Fig. 1, which only shows the dependencies
between requirements, test scripts, their containing test steps
and test results. A detailed test model is out of the scope
of this article introducing the framework, however a more
elaborate version geared to the ontology presented in [13]
will be considered during quantitative evaluation of the actual
implementation.

III. THE FLEXIBLE AND ADAPTIVE TEST MANAGEMENT
ASSISTANCE SYSTEM

The overall goal of the assistance system is an effective test
management. The system is a multi-agent system, which can
be divided into two phases (Fig. 2). The first phase deals with
test data from previous test cycles (Sec. III-A). An interface
for each resource extracts the relevant information. From this,
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Test 

Manager

User Interface 

Agent (UIA)

Test Information 

Resource

Static Prioritization Strategy (Sec. III-A)

• Extracting information before test cycle starts

• Calculating static priority

Test Bench

Test Management Assistance System

Dynamic Execution Order (Sec. III-B)

• Allocating test scripts to test benches

• Adapting dynamic priority

Fig. 2. Overview of the assistance system

a static priority is calculated to assess the value of a test
script. Based on the static priority, the second phase determines
an execution order for each test bench (Sec. III-B). Agents
allocate test scripts to test benches for execution and based on
the test logs acquired at run-time they dynamically adapt the
test script priority.

Additionally, the assistance system requires an interface
with the test manager (cf. R4). The test manager can intervene
in the execution process and provide his expertise, e.g. infor-
mation about how to proceed with failed results. We realize
this through a User Interface Agent (UIA), which reports the
results to the test manager (cf. Sec. III-C).

A. Static Prioritization

To determine a priority value for each test script, a set of
offline agents extract available information from adjacent data
stores. In the following, we describe briefly the different agents
and their tasks, which are displayed in Fig. 3. The Resource
Interface Agents (RIAs) establish the communication to and
extraction of information from adjacent systems, i.e. data
stores. They also monitor their respective target for changes.
We adopt the idea from the concept of interface agents in
[2] as this allows fast adaptability to resource changes. For
informal and undocumented information, the UIA takes over
for the communication to and information gathering from the
test manager. The Aggregation Agent (AA) then aggregates the
information collected by the RIAs and UIA and calculates the
static priority value.

In accordance with the findings in the literature, we iden-
tified four essential factors that play a role in prioritizing
test cases in functional testing that are considered for static
priority: namely, manual preference from the experienced test
manager, requirement changes and subsequent updates of test
scripts, historical data, and component changes. Fig. 4 shows
the factors and how they relate to each other. The Manual
Priority (MP) allows consideration of the valuable expertise of
the test manager (cf. R4). The Requirement Changes Priority
(RCP) comprises the importance of test scripts induced by
requirement changes. It also considers dependent requirements
and potentially necessary subsequent test script adaptions.
Consequently, those updated test scripts should be somewhat
more important than others. This might also vary depending on

Test Information 

Resource

Resource Interface 

Agent (RIA)

Aggregation Agent (AA)

Test 

Manager

User Interface 

Agent (UIA)

Static 

Prioritization 

Strategy

Static Priority 

Calculation

Dynamic Execution Order (Sec. III-B)

• Allocating test scripts to test benches

• Adapting dynamic priority

Fig. 3. Static prioritization strategy of the assistance system
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Fig. 4. Prioritization strategy

the severity of the requirement change, which again only the
test manager can provide as an input. The Historical Priority
(HP) integrates information about failure detection abilities
of test scripts. Therefore, a well-tended database of past test
executions and their outcomes and special occurrences is in-
dispensable. Error origins of failed tests must be identified and
registered. This allows excluding test system defects from the
priority calculation. The Component Priority (CP) examines
changes of test bench components. If a component underwent
some bug fixes for example, test scripts that are related to
this component are considered more important than others.
Depending on the availability of the change information,
the information could be extracted from a data store (e.g.
version management system) or is again requested from the
test manager. A prerequisite for the CP is a component model
and a mapping between components and test scripts and also
the severity of changes might influence the CP value.

Information Aggregation: Based on the acquired informa-
tion, the Test Script Priority (TSP) can then be calculated by
the AA. An intuitive approach is to calculate the weighted sum
of the aforementioned factors but other approaches applying
fuzzy logic are also imaginable (cf. [7]). The presented ap-
proach allows including the test manager’s knowledge about
the reliability and importance of each factor (cf. R4). An
advantage of the flexible framework we propose is that it is
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Coordinator Agent 
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Test Bench
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Test Bench  Agent 

(TBA)

Fig. 5. Dynamic execution ordering of the assistance system

easy to consider additional influences on the given factors,
replace test manager inquiries by rule-based automatic pro-
cedures, or even add new factors. One thinkable extension is
to include a separated priority factor for system states or test
script attributes.

B. Dynamic Execution Ordering

To determine a dynamic execution order, a set of online
agents allocate test scripts to test benches and dynamically
adapt their priority value based on test results. We describe
briefly the different agents and their tasks, which are displayed
in Fig. 5. Here, the physical decomposition allows an agent
to encapsulate specific goals and knowledge, and enables
unambiguous responsibility for a limited amount of variables
[7], which will prove to be beneficial.

One Test Script Agent (TSA) is assigned to each test script,
which store relevant metadata (cf. test model Sec. II-D), i.e.
the static priority calculated beforehand. Furthermore, they are
responsible for the communication and negotiation with other
agents. Particularly, this includes dynamically adapting the test
script priority at run-time as discussed in Sec. III-B2. Note that
it is also up to the TSA to reduce the priority to 0 once the
test script has been executed successfully if it is not required
to be executed again.

Test Bench Agents (TBAs) represent the interface to the
test benches similar as the RIAs do for data resources. This
is beneficial to ensure the flexibility especially for evolving
test environments, when the availability of resources changes
frequently. The TBAs monitor system state and status of their
respective test bench and are responsible for executing test
scripts. The overall goal of TBAs is maximizing the time
executing valuable test scripts. This means finding a trade-
off between adapting the system state required by test scripts
in order to execute them and the preparation time it takes to
do so. This effect is discussed in Sec. III-B1.

An additional Coordination Agent (CA) organizes the test
script allocation process. The CA bounds the communication
between the TBAs and TSAs and, thus, is expected to optimize
the time performance as shown in [23]. Setting a limit to the

maximum number of communicating agents mitigates the risk
of a communication overhead [5] due to a project-specific and
possible high amount of test scripts and test benches. The UIA
again takes over the communication with the test manager.

1) Negotiation-based Test Allocation: This section ad-
dresses the introduced scheduling problem motivated in R2.
The static and dynamic priority as well as the system state
and available execution time are considered for an effective
execution ordering. The proposed approach is inspired by the
proposal to apply negotiation mechanisms from [7].

A test cycle begins with a new development stage detected
on a test bench by the TBA. To assign the static priorities,
the CA communicates with the AA and instantiates the TSAs.
The proposed negotiation protocol (Fig. 6) is a modification
of the Contract Net Protocol extended with a coordinator from
[23]. For simplicity, the communication is limited to TSAs and
TBAs with a matching configuration.

alternative

<<Agent>>

Coordinator 

Agent (CA)

<<Agent>>

Test Script 

Agent 

(TSA)

<<Agent>>

Test Bench 

Agent 

(TBA)

callforParticipants()

propose(participants)

alternative Either message above the dashed line or 

below the dashed line is executed

Send messagemessage(variable)

callforProposal()

refuse()

propose(priority,initialstate,executions,time)

alternative

refuse()

accept()

inform(outcome)

Legend

Fig. 6. Negotiation protocol modeled in agentTool

The negotiation process starts when a new test session is
started. Initially the TBAs request the CA for participants to
find a set of suitable test scripts. The CA proposes a list with
TSA containing a matching configuration, based on which
TBAs call for proposals of the respective TSAs. A TSA refuses
a proposal from the TBA for example in case it is currently
executed on another test bench. Otherwise, if a TSA accepts, it
sends an offer including its priority value and required system
state. From all received offers, the TBA determines the test
script to be executed, finding the best trade-off between the
highest priority and the lowest required system state adaption
time. Thereafter, the TBA executes the test script and sends
the outcome back to the TSA.

2) Dynamic Prioritization Adaption: Based on the test logs
that a TSA receives from a TBA, it calculates a new dynamic
priority and informs other TSAs about special occurrences, i.e.
failed test actions. Hence, all dependent TSAs can adapt their
dynamic priority.

Consequently, the dynamic priority allows reacting to test
logs at run-time, which is motivated in R3. This is particularly
beneficial in the case that a certain test action fails. A test
action might represent an interaction with the SUT, e.g. a
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message is sent to a certain ECU. Now, it is possible that
the test action itself fails, e.g. the communication channel is
unavailable, leading to inconclusive test results. As a result,
other test scripts that contain the same test action could be
affected, which we account for by adjusting the prioritiza-
tion. This is beneficial to prevent unnecessary test executions
(with potentially inconclusive results) and can improve the
test execution efficiency [14]. Especially in the exemplary
case described here, a high probability of failure can be
predicted for other test scripts containing the same test action.
Thus, time is saved by not executing those dependent test
scripts. On the other hand, a dynamic prioritization can help
to localize faults. Executing test scripts with the same test
action or executing the respective test script on other test
benches can help localize the failure origin by providing more
(potentially) relevant information to the test engineers. As a
consequence, an appropriate dynamic prioritization strategy is
highly dependent on the project and the current status in a test
cycle.

For an error-prone test bench, the execution of a test script
dependent on failed ones may not be beneficial. As it is likely
that the test bench is the error origin, executing test scripts
with a high likelihood to fail would most probably result in
wasted execution time. However, a focus on localizing faults
might help to identify and fix those faster. Hence, it could be
more appropriate to execute the test script and depending test
scripts again on test benches with different configurations to
narrow down the error origin. Since up until now only the test
manager knows about existing defects and has the experience
to assess the current status, we introduce reprioritization modes
for them to chose from, which represent three different point
of views.

(1) A failed test script should be executed on other test
benches to support finding the error origin. The failed
one should not be executed on the same test bench
until the fault is identified. Hence, the test manager can
reason about an error origin based on test logs of various
executions on different test benches.

(2) A failed test script should be executed on other test
benches. Meanwhile, dependent test scripts should be
executed on the failed test bench1 to support finding the
error origin.

(3) The failed test script as well as all dependent test scripts
should not be executed until the fault is identified. Thus,
no execution time is wasted for test scripts with a high
failure likelihood. However, the testers perform their
investigation based on less information.

Depending on the chosen reprioritization mode, TSAs adapt
the priorities accordingly. Note that it is possible to assign
priorities depending on the test benches.

C. Reporting

At any time, a test manager can query the UIA in order to
receive information about the current status. Particularly after
the static prioritization (cf. Sec. III-A) and finally after the test

1The test bench on which the executed test script of interest has led to a
fail verdict.

execution run, the UIA provides a multitude of information.
As the UIA does currently not provide a self-containing GUI,
the information of interest can be accessed by querying the
UIA. In the use case, existing tools are used for processing
data or displaying relevant information to the test manager.

IV. DISCUSSION

The presented approach of an agent-based framework for
test management is discussed for an industrial use case. In this
section, we describe the applicability and further investigation
for an implementation in current test execution planning. The
availability of all required data is checked and the required
additional manual effort is assessed.

As described in Sec. III-A several data stores need to be
available in order to allow effectively prioritizing test cases
automatically. Particularly a test script design tool and a test
result management tool are indispensable. In addition, com-
munication with test benches and the databases are required
for the dynamic execution presented in Sec. III-B. Note that
the proposed framework is not dependent on specific tools
but on the functionality already provided by test automation
tools usually used in testing projects. In our use case, the
software tools ECU-TEST2, and the test result management
tool TEST-GUIDE3 are used. ECU-TEST contains the test
script implementations and controls the test execution on test
benches. The test logs are stored in a database that is accessed
by TEST-GUIDE. Requirement specifications are available
in a requirement management software. These specifications
include all tested requirements describing the functionality
of the vehicle on-board supply system. Consequently, the
prerequisites for applying the framework to the use case are
fulfilled. In the following the static prioritization is discussed
first and then the dynamic execution order.

A. Static Prioritization

Test scripts follow the precondition (setup), action and post-
condition (teardown) structure. Each of the blocks includes
several sequential action steps. The pre- and postcondition
blocks comprise several actions that lead the SUT (in fact the
whole test bench system) into a desired state. The precondition
block contains information about the test precondition state
and how the SUT is brought to it. Similarly, the postcondition
block resets the test bench to a state from which (any other)
subsequent test script can be executed.

Each action step itself represents high-level interactions
with the SUT, which can be divided into sub-procedures. A
common term for such a high-level interaction used in the
context of testing is keyword (or block), which contains the
implemented action step procedure that in turn can contain
keywords. Generally, keywords can be understood as function
calls and as such they might depend on passed parameters. In
addition, keywords are described with unambiguous comments
at the top-level. The keywords are stored in the test model
(Sec. II-D). From this, dependencies between test scripts can

2https://www.tracetronic.com/products/ecu-test/
3https://www.tracetronic.com/products/test-guide/
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be automatically constructed, which are useful for deriving the
requirement changes priority (RCP) and later during dynamic
re-prioritization.

Each test script contains predefined attributes, containing the
respective meta-data. Maintained attributes include the require-
ment specification ID, the estimated total execution duration,
and the required vehicle type and battery configuration. Par-
ticular to the automotive environment are so-called diagnostic
trouble codes (DTC), which also form part of the meta-data
set. The requirement IDs are used to derive dependencies
between the requirements and test scripts, which are useful
for deriving the RCP. We leverage the other attributes later.

As mentioned in Sec. III-A, a historic priority (HP) can only
be calculated if a well-tended database of past test executions
is available. Even though a test result management tool is used,
the data lacks the evaluation of failure causes. The prerequisite
for calculating a meaningful HP is a re-evaluation and clear-
ance of the historical data in order to eliminate all failure
causes other than actual defects in the SUT. Deriving the
component priority (CP) appears to be a particular challenge
as up to now no component model for the test benches exists
or is not kept up to date. Instead of using components, in the
project at hand they decided to form clusters of test scripts
with respect to so-called test topics. Unfortunately, there is
no automatic process in place nor proper documentation that
would allow determining changes with respect to the test
topics, which results in manual consultation of responsible
experts, aggregating the information and assigning a priority
value to each test topic manually. Fortunately, this is feasible
in the proposed approach.

B. Dynamic Execution Order

Up until now, at the end of a work day, test experts collect
test scrips in a list such that they are performed sequentially
one test case after another. The test scripts are selected and
ordered based on experience and maybe some rules of thumb.
The test bench agent (TBA) makes use of the precondition
information when it determines the required time for a system
state change. A first guess for the expected change duration is
the sum of the duration of each test action in the precondition,
which apparently depends on the current system state in
particular for inert system state parameters like the state of
charge of a battery. Furthermore, the TBA could forecast the
postcondition state and initiate negotiations with TSAs for
subsequent executions in advance and parallel to the current
execution, which is currently not considered in the framework.

In the project at hand, it is the case that sometimes a
component of the test environment fails, which leads to many
unsuccessful test executions. In other words, once the compo-
nent fails, all subsequent test scripts in the list fail, resulting in
wasted execution time and diagnostic effort for test engineers.
Thus, it is considered beneficial to apply the negotiation-based,
dynamic allocation procedure proposed in this paper in order
to react to such component failures adequately. But given the
fact that up until now failures are not thoroughly evaluated
and no information about possible failure causes are kept in
the data base, the dynamic prioritization cannot be applied yet.

On the other hand, by experience the DTC is helpful to localize
faults, e.g. in case a test script execution fails, it is helpful to
execute other test scripts with the same DTC. Consequently,
an additional data store with special information about DTCs
could prove useful for the re-prioritization.

C. Reporting

According to R4 (cf. Sec. I-B, it is not only important
that the test manager can provide important (and necessary)
information for the static prioritization via the UIA but it is
equally important that the UIA reports relevant information
back to the test manager in a suitable way. As mentioned in
Sec. III-C the UIA does not provide a GUI itself but allows to
connect to existing tools, such as the test result management
tool used here.

D. Qualitative Expected Benefits

The presented framework permits to reduce test runs with
inconclusive results (cf. Sec. III-B2), which in turn leads to a
reduced time of analysis and result interpretation after nightly
batch runs. The test engineers working actively on the project
the use case is based on, stated that they spend on average 2
hours per day reevaluating failed test runs and consequently on
test execution planning preparing the next nightly batch run.
One test manager responsible for one system aspect (out of
various), for which around 200 test cases exist, stated that she
spends between 2 and 3 days selecting the test cases which
should be executed (sometimes multiple times) in an upcoming
test cycle, which last for 4 to 6 weeks. On such lengthy test
cycles, being able to react dynamically to inconclusive tests
is of particular interest. In terms of potential hours saved,
the expected benefits of our approach can be estimated as at
least half of the total hours spent on test case selection and
execution planning by the proposed framework, namely static
prioritization and dynamic execution ordering. In addition, it
is expected that by reprioritizing test cases as reaction to test
outcomes within the nightly batch run, less inconclusive test
runs will be observed leading to additional saving in terms of
reevaluating work. Note that the expected benefits presented
here are in fact general to all testing processes that are faced
with manual test selection and execution planning.

Within this section it is shown that the framework is appli-
cable to an industrial setting with certain boundary conditions
due to availability of data. Despite the unavailability of for
example a component model, the test script priority (TSP) can
be calculated with the help of additional information provided
by the test manager. On the other hand, additional information
sources have been identified, e.g. DTCs, which can easily
be integrated into the data aggregation and thus extend the
proposed framework. It is crucial for the static prioritization
to set up a well-tended database and re-evaluate the test
results if this information is to be considered. Otherwise again
a test engineer would be needed to manually provide the
information. Overall, a substantial amount of manual work
is still necessary in that use case in order to fully exploit
the agent-based adaptive test management assistance system,
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however experts in the automotive field state that a substantial
amount of hours can be saved when having such an assistance
system in place.

V. CONCLUSION

In this paper, we propose an agent-based test management
assistance system, for which we have derived requirements
(Sec. I-B). It should be capable of prioritizing test scripts
such that a scheduling algorithm can make sure that the more
valuable test cases are executed. In addition, it should be
capable of dealing with unexpected events such as test system
misbehavior. Overall, the assistance system should support
human test managers and, thus, interaction and preferences
for the system should be possible.

The proposed assistance system can be divided into two
phases: static prioritization and dynamic execution order-
ing. Static prioritization (Sec. III-A) uses Resource Interface
Agents to extract relevant information from various sources,
which are provided in the form of prioritization factors to
the Aggregation Agent. The Aggregation Agent then calcu-
lates a static priority based on the provided information by
weighing the different factors according to the test managers
preferences. Generally, the proposed framework allows to
hand-over tasks such as the prioritization factor calculation
to autonomous agents. In practice, it remains a challenge to
do so as much information is not available or at least not
in a machine-readable format. Thus, a User Interface Agent
queries a human expert for such inputs. Starting from the static
priority, an adaptive execution order is determined (Sec. III-B).
The execution order is derived by negotiations between Test
Script Agents and Test Bench Agents. Once test benches
execute test scripts, the test logs are reported to the respective
Test Script Agents, which in turn dynamically adapt their
priority values according to a re-prioritization mode chosen
by the test manager. As each Test Script Agent represents one
Test Script, in the event of special occurrences, related Test
Script Agents are informed such that they also dynamically
adapt their priorities.

We illustrated the applicability of the proposed framework
in Sec. IV in context of HiL-testing in the automotive domain.
We do not limit the framework to the automotive context. On
the contrary we suggest that it should be equally applicable
to other testing contexts as well. However, we also point out
that in the presented use case not all information that has
been identified as useful for the framework was available. This
results in a substantial amount of manual work required to
apply the proposed assistance system in terms of information
manually provided by the test manager. Nonetheless, the
proposed framework has the potential to increase the effective-
ness of test management processes by reducing manual work
on recurrent tasks such as execution planning. A thorough
evaluation in particular of the quantitative effectiveness of
the dynamic execution ordering is part of further research
work. Therein, it should also be investigated if fuzzy logic
is more suitable for deriving static priorities. Moreover, it
should be investigated how to deal with unexpected test system
misbehavior, which was faced rather frequent in the use case.

Thus, a method that automatically recognizes misbehavior and
reacts to it appropriately would be highly beneficial.
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