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Abstract

This work aims at providing algorithms for balance control of legged, torque-controlled
humanoid robots. A humanoid robot normally uses the feet for locomotion. This work
extends this paradigm by addressing the challenge of multi-contact balancing, which allows
a humanoid robot to exploit an arbitrary number of contacts to support itself. One of
the main aspects is the solution of the wrench distribution problem, which arises from
the resulting closed kinematic chain. Using multiple contacts for support increases the
size of the support polygon, which in turn leads to an increased robustness of the stance
and to an increased kinematic workspace of the robot. Both are important features for
facilitating a transition of humanoid robots from science to real-world applications, where
they are confronted with several challenging scenarios, such as climbing stairs and ladders,
traversing debris, handling heavy loads, or working in confined spaces.

The developed framework also addresses the challenge of whole-body control by allowing
a humanoid robot not only to maintain balance but also to interact with its environment,
as e. g. by carrying or manipulating objects. Of course, the forces and torques arising from
the interaction task must be considered by the balancing and/or support task to avoid
falling.

The whole-body control framework is generalized by combining the techniques for multi-
contact balancing with multi-objective control, which allows for a more generic task defini-
tion. Kinematic and dynamic conflicts between the tasks are resolved via a prioritization.
For instance, the generalization allows for support contacts not only at the end-effectors
(hands and feet) but at arbitrary locations on the body of the robot, such as the knees,
pelvis, backpack, shoulders, or the elbows. This ability is essential for operating a hu-
manoid robot in confined spaces, where there might be not enough space to completely
“unfold” the limbs to rely on hands and feet only.

The developed control framework implements a compliant balancing behavior in order
to ensure safety in case of accidental collisions between robot and environment or be-
tween robot and human. Furthermore, the framework employs passivity-based methods
to achieve robustness with respect to external disturbances.

The performance and versatility of the developed whole-body control framework was
demonstrated in numerous experiments and in the context of the EU-project COMANOID,
which addressed the challenge of introducing humanoid robots into aircraft manufacturing.
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vi Cartesian velocities of task frame Ti
vi,d Desired velocities of the task frame Ti
ẋc Translational velocity of the CoM frame C

ẋi Translational velocity of task frame Ti
xc Position of the CoM frame C

xc,d Desired position of the CoM frame C

xi Position of task frame Ti
xi,d Desired position of the task frame Ti

21





CHAPTER 1

Introduction

This chapter provides an introduction to the topic of whole-body control for multi-contact
balancing of humanoid robots. Sections 1.1 and 1.2 describe the context and the challenges
addressed in this work. Section 1.3 presents the achieved contributions with respect to
the state of the art. The connection between the outline of this work and the previous
publications is established in Section 1.4.

1.1 Motivation

Thanks to their versatility, humanoid robots can be employed in a large variety of ap-
plications, such as service robotics, industrial manufacturing, disaster scenarios, or space
travel. In general, the use cases involve tasks that are monotone, exhausting, physically
demanding, or dangerous for humans, which emphasizes the need for robotic solutions.
The applications usually take place in environments explicitly designed for humans. Thus,
it is a logical consequence to design the robots in a humanoid shape, such that they can
use the same facilities and tools as humans. For this reason, science has taken an increas-
ing interest in humanoid robotics over the past few years. For instance, the US Defense
Advanced Research Projects Agency (DARPA) organized the DARPA Robotics Challenge
(DRC), in which numerous international teams participated. The finals of the competition
took place in 2015 and comprised several tasks from the context of a disaster scenario,
such as driving a car, opening doors, traversing debris, and closing a valve [Spenko et al.,
2018]. In 2011, the US National Aeronautics and Space Administration (NASA) sent a
humanoid robot, called Robonaut 2, to the International Space Station (ISS). The mission
objective was to explore the possibility of using humanoid robots for supporting astronauts
inside and outside of ISS [Diftler et al., 2012]. The German Aerospace Center (DLR) in-
vestigates the potential of employing humanoid robots as service robots in the health care
sector in the form of the research project SMiLE [Smile, Vogel et al., 2018]. DLR also
participated in the EU-project COMANOID [Comanoid, Kheddar et al., 2019], which ad-
dressed the challenge of introducing humanoid robots into aircraft manufacturing. A more
detailed overview of the use case and the research activities conducted in the context of
COMANOID are provided in Section 9.3.
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1 Introduction

The field of humanoid robotics can be divided into robots with wheels and robots with
legs. In general, humanoid robots with legs are considered to be more versatile and dexter-
ous, as they can deal with obstacles and cluttered terrain, such as ladders, stairs, gravel,
ditches, or debris. Another method of classification is offered by the low-level joint technol-
ogy: In general, humanoid robots with position-controlled joints require less effort regard-
ing the hardware design of the joint units. But humanoid robots with torque-controlled
joints have the advantage of automatically adjusting their limbs to the environment, which
is beneficial in challenging or unknown terrain. For instance, this feature is demonstrated
in Section 6.1.3 with the torque-controlled humanoid robot TORO, developed by DLR,
balancing on a pile of gym mats. The safety aspect is another advantage of torque-control:
If a humanoid robot is sent into a completely or partially unknown environment, e. g. dur-
ing a disaster scenario, then collisions between robot and environment are most likely to
occur. If the robot is supposed to share the same workspace with a human co-worker,
then there is also the potential of a collision between human and robot. In both cases,
torque-control allows for the operation of a humanoid robot in a compliant and robust
way to avoid damages or injuries to the robot, the environment, and the human.

Traditionally, a humanoid robot utilizes only the feet for locomotion for reasons of ma-
neuverability. The field of multi-contact balancing generalizes the problem by allowing
for an arbitrary number of contacts with the environment to gain a more robust stance
in challenging terrain, such as rocks, ladders, or debris. Note that the contacts can be
located arbitrarily on the body of the robot including the hands, elbows, shoulders, back-
pack, pelvis, knees, or feet. Using multiple contacts to support the robot features several
advantages: The weight of the robot is distributed to a larger contact surface, which can
reduce the sinking on soft terrain. Furthermore, the load can be (re-)distributed between
the contacts if one of them is about to be overloaded. Multiple contacts also allow for the
generation of internal stress, which is required for chimney climbing, for instance. But
most important, using multiple contacts for balancing increases the size of the support
polygon (SP) and therefore the kinematic workspace of the robot as well as the robustness
of the stance in rough terrain.

For the reasons outlined above, this work focuses on torque-controlled humanoid robots
with legs. The provided control algorithms implement a compliant and robust balancing
behavior using multiple contacts for supporting the robot.

1.2 Problem Description

Ordinary industrial robots are usually mounted to the environment via a flange at their
base. The forces and torques that are necessary to support and move the robot are
transmitted via this flange to the environment. Thus, the kinematics and dynamics of an
industrial robot are usually described via a so-called fixed-base model. In contrast to that,
the field of humanoid robotics mainly utilizes a model description featuring a floating-base,
which means that one central body of the robot structure (usually the pelvis or the trunk)
is selected as the root or base of the kinematic chain. The base is only connected to the
environment via six virtual Cartesian joints, which do not allow for any transmission of
forces or torques. Thus, the robot must utilize its limbs to support itself by bringing them
into contact with the environment. Fig. 1.1 shows an exemplary scenario, where the robot
exploits the right knee and the left foot for support.

As already mentioned, this work aims at providing algorithms for balance control of
humanoid robots in multi-contact scenarios. From a technical point of view, using multi-
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1.2 Problem Description

CoM

Figure 1.1: Example of a humanoid robot performing several whole-body tasks while bal-
ancing on multiple contacts. The resulting closed kinematic chain is given in
orange. The end-effector and CoM wrenches are represented by red arrows.
The trajectories of the center of mass and the left hand are given in green.

ple contacts to support the robot creates a closed kinematic chain, as shown in Fig. 1.1.
The consequence is the so-called Wrench Distribution Problem (WDP), which states that
the overall wrench that is required to support the robot can be arbitrarily distributed to
the contacts. Note that all feasible solutions of the WDP must respect the properties of
each contact in order to avoid an unintentional lift-off, sliding, or tilting. According to
[Kumar and Waldron, 1988] and [Ott et al., 2011], the problem of multi-contact balancing
and multi-fingered grasping are fundamentally similar: As shown in Fig. 1.2, both fields
require the distribution of a desired overall wrench to the available contacts. In balanc-
ing, the desired overall wrench for supporting the robot gets distributed to the available
contacts, while in grasping, the overall wrench on the object gets distributed to the finger
contacts. Therefore, it is possible to interchange methods for describing and solving the
WDP between the field of balancing and grasping. For instance, the concept of virtual
linkage was introduced by Williams and Khatib [1993] for grasping and is used by Sentis
[2010] for multi-contact balancing. A method for processing the contact properties was
first formulated by Hirai [1991], Borst et al. [2003] for multi-fingered grasping and later
transferred by Caron et al. [2015] to humanoid balancing.
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F res
obj

F i

F i

(a) The CLASH hand developed by DLR
[Friedl et al., 2018].

F res
sup

F i
F i

(b) The humanoid robot TORO developed by
DLR (see Chapter 5).

Figure 1.2: Analogy between the problem of multi-fingered grasping and multi-contact
balancing: The overall wrench on the object (F res

obj) or respectively on the
humanoid (F res

sup) is distributed to the contact wrenches F i.

Besides solving the WDP, a humanoid robot is also supposed to perform several other
meaningful tasks, as exemplary shown in Fig. 1.1. For instance, a humanoid robot must
be able to perform a quasi-static or dynamic motion with its body. Furthermore, it must
be capable of manipulating objects, such as carrying a tool or closing a valve. All these
tasks require the generation of forces and torques, which must be considered in the WDP
to properly counteract them. Note that there can be a kinematic or dynamic conflict
between the tasks. For instance, the robot does not feature enough joints for fulfilling all
tasks at the same time. Thus, this work incorporates methods from the field of multi-
objective control [Dietrich, 2016] to establish a prioritization of the tasks. The latter plays
an important role if the support contacts are not only located at the end-effectors but also
at arbitrary locations on the robot’s body. From a different perspective, a humanoid robot
can be interpreted as a tree of several serial kinematic chains on top of a closed kinematic
loop. The latter is formed by the support contacts and features a redundancy in the space
of the contact wrenches leading to the WDP. The serial kinematic chains can feature a
kinematic redundancy, which is mitigated by prescribing multiple control objectives/tasks
and prioritizing them. Thus, the control approaches presented in this work are from the
field of Whole-Body Control (WBC), as they consider not only the support contacts but
the complete body of the robot.

This works aims at providing control algorithms for robust and compliant balancing of
humanoid robots. A compliant behavior is important to safely operate a humanoid robot
in the case of accidental collisions with the environment or with humans. For this reason,
most of the presented control approaches are passive or passivity-based. The passivity
framework allows for modelling dynamic systems from an energetic point of view, where
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components can exchange energy via power ports. In this case, the robot (plus controller)
can be regarded as a subsystem that is connected via a power port to the environment
or to a human, respectively. If the subsystem is passive, then the robot can only emit
a limited amount of energy, which implies a certain robustness with respect to external
disturbances (see also [Stramigioli, 2015]).

It is worth mentioning that the presented control approaches do not explicitly regulate
the end-effector wrenches of the robot. This would not only require additional force-
torque sensors at the end-effectors, but also introduce additional sensor noise into the
control loop. Furthermore, the end-effector wrenches can be directly computed from the
joint torques and vice versa, which would contradict the causality of the control loop.
Instead, the presented control algorithms only regulate the state of the robot (position
and velocity), whereas the commanded end-effector wrenches are used as a virtual control
input. Of course, this can lead to a deviation between the commanded and actual end-
effector wrenches. However, the presented experiments involving the humanoid robot
TORO developed by DLR show that the deviations are insignificant, which emphasizes
the validity and robustness of the proposed control approaches.

1.3 State of the Art and Contributions

A straightforward way to combine balancing with an interaction task is to consider sepa-
rately the upper and the lower body of a humanoid robot. In general, the upper body is
operated in a compliance mode to perform the intended manipulation task, while the lower
body of the robot generates the required support. The modular design allows for a flexible
combination of upper and lower body controllers. However, the forces and torques arising
from the manipulation task must be taken into account by the lower body controller to gen-
erate sufficient support. For instance, [Ibanez et al., 2012] proposed a ZMP-based (Zero
Moment Point) balancing controller in combination with a position-based controller for
the upper body. The balancer utilizes preview control and is equipped with a disturbance
input to account for the arising manipulation wrenches. We presented a similar approach
in [Ott et al., 2013] for kinesthetic teaching in combination with interaction-aware bal-
ancing (see Section 8.1). Here, the wrenches from the upper body are estimated via a
momentum-based disturbance observer known from manipulator control [De Luca et al.,
2006], which allows for a completely independent design of the upper and lower body
control strategy.

More versatile approaches originate from the field of whole-body control by consider-
ing all the Degrees of Freedom (DoFs) of a humanoid robot. The field can be divided
into control strategies employing inverse dynamics and passivity-based approaches. Let
us first consider the branch based on inverse dynamics. Here, a vector of desired joint
accelerations is obtained from a task formulation, which can also involve a prioritization,
as discussed below. The desired accelerations are mapped to joint torques via the inverted
dynamics equation of the robot. Often, the concept is combined with PD-control at the
joint-level for stabilizing the desired joint positions and velocities. The desired torques
computed from inverse dynamics are incorporated into the joint-level control loop in the
form of a feedforward control action. Representative works from this field can be found
in [Mistry et al., 2010], [Righetti et al., 2013], and [Herzog et al., 2016], for instance.

Passivity-based approaches allow for the analysis and design of the robotic system from
an energetic perspective. Here, the task formulation provides a set of desired task forces
and/or torques, which are mapped to the commanded joint torques via their respective Ja-
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cobian matrices. A passivity-based approach for compliant balancing of humanoid robots
was first proposed in [Hyon et al., 2007] by computing suitable ground applied forces,
which are mapped to joint torques. The concept was reused by Ott et al. [2011] exploit-
ing the insight that the problem of balancing and grasping are conceptually similar (see
Fig. 1.2). In [Henze et al., 2016b], we extended the work of Ott et al. [2011] to a whole-
body control framework by adding a) the ability to handle multiple contacts, b) interaction
tasks for manipulation, and c) a feedforward control. The latter allows for the execution
of dynamic trajectories and results in a structure of the closed-loop system similar to
classical PD+ control [Paden and Panja, 1988, Whitcomb et al., 1993]. Furthermore, we
enriched the framework with a concept for passivity control on movable and deformable
surfaces [Henze et al., 2018]. Most of the works from the field of humanoid robotics as-
sume that the floor is static, or that the dynamics of the floor is known (e. g. [Sentis,
2010, Mistry et al., 2010, Righetti et al., 2013, Herzog et al., 2016]). But in order to op-
erate the robot on a large variety of floors, we exploit the concept of passivity to make
as few assumptions as possible on the floor dynamics. In particular, the framework is
combined with methods from the field of Passivity Observer-Passivity Control (PO-PC)
by [Hannaford and Ryu, 2002] and equipped with energy tanks [Franken et al., 2011]. Be-
sides this, we extended our framework in [Abi-Farraj et al., 2019] with an automatic CoM
tasks, which allows the robot to perform high-force interaction tasks. Recently, another
passivity-based approach was proposed by Hirayama et al. [2018] for walking on uneven
terrain.

Often, whole-body control (based on inverse dynamics as well as passivity-based) is
combined with multi-objective control to achieve a prioritization of tasks. Methods for
fixed-base manipulators are known from [Nakamura et al., 1987], [Hollerbach and Suh,
1987], or [Dietrich et al., 2015]. In humanoid robotics, the approaches can be divided into
the following categories: a) orthogonal decomposition, b) hierarchical quadratic program-
ming, and c) null space projection techniques. For instance, the approach by Mistry et al.
[2010] utilizes a QR-decomposition of the constraint Jacobian matrix to achieve an ana-
lytically correct inverse dynamics formulation. The decomposition was later reused by
Righetti et al. [2013] to minimize contact forces. Two representative works from the cat-
egory of hierarchical programming are given by [Escande et al., 2014] and [Herzog et al.,
2016]. Here, numerical methods are employed to solve the inverse dynamics problem
in a hierarchical way. Null space projection techniques are used in [Sentis, 2010] and
[Henze et al., 2016a], for instance. Here, the hierarchy is implemented by projecting the
forces and torques of one task onto the null space of all other tasks with a higher prior-
ity level. In [Henze et al., 2016a], we were able to demonstrate a dynamic decoupling of
the tasks after integrating multi-objective control [Dietrich, 2016] into our passivity-based
whole-body control framework. In [Henze et al., 2017], we discovered that the combined
framework can be exploited to generalize the concept of multi-contact balancing. In par-
ticular, the combined framework allows the robot to support itself not only with the hands
and feet but also with arbitrary contacts on the robot’s body, such as the knees, pelvis,
backpack, shoulders, or the elbows. Apart from that, relatively little work has been pre-
sented to explicitly consider arbitrary contacts on the body of the robot. For instance, the
approaches [Sentis, 2010, Mistry et al., 2010, Righetti et al., 2013] control the constrained
motion of the robot by accounting for the physical contact constraints, but the works do
not explicitly consider contacts with arbitrary locations. A framework based on inverse
dynamics combined with an orthogonal projection was presented by Aghili and Su [2016].
The approach presented in [Farnioli et al., 2016] is derived from a quasi-static analysis
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and tested on a humanoid robot with elastic joints. Although the latter two approaches
are designed to theoretically handle contacts scattered all over the body of the robot, this
particular aspect has not been validated in the demonstrated experiments.

By nature, the fields of multi-contact planning and multi-contact control are closely
related, which allows for the exchange of knowledge and methods. For instance, a power-
ful multi-contact motion planner was presented by Bouyarmane and Kheddar [2012]. The
planner first computes a set of feasible contact configurations and afterwards generates the
contact transitions and corresponding whole-body motions. In [Bouyarmane et al., 2012],
the planner was applied to several disaster response tasks using simulations of three dif-
ferent robot platforms. Another planning algorithm is presented by Murooka et al. [2015],
which is capable of obtaining an optimal posture for interaction tasks that require large
forces and torques. For instance, the robot can use its own body weight to push a heavy
object by leaning against it, as shown in Fig. 6.16. However, Murooka et al. [2015] only
consider the ZMP for evaluating the feasibility of the stance. A more general criterion
for describing the feasible support wrenches originates from the field of grasping [Hirai,
1991, Borst et al., 2003] using polyhedral convex cones. The concept was then trans-
fered by Caron et al. [2015] to humanoid balancing and used for multi-contact planning
in [Caron and Nakamura, 2015]. We applied the concept in [Abi-Farraj et al., 2019] to
instantaneous control by deriving an automatic task for the Center of Mass (CoM) that
moves the robot into an optimal posture for generating the high interaction forces.

In summary, this work presents a framework for balance control of legged humanoid
robots in multi-contact scenarios. It advances the state of the art by providing several
theoretical contributions to the field as well as an extensive experimental evaluation of the
presented methods. A list of the main contributions is given below:

� Extension of the work by Ott et al. [2011] into a passivity-based framework (see
[Henze et al., 2016b])

– for whole-body control by incorporating interaction tasks,

– for multi-contact balancing by allowing for an arbitrary number of contacts,

– and for the tracking case by incorporating feedforward terms.

� Passivity control for balancing on movable and deformable surfaces [Henze et al.,
2018].

� Automatic CoM task for performing high-force interaction tasks [Abi-Farraj et al.,
2019].

� Generalization of the whole-body control framework by integrating hierarchical multi-
objective control [Henze et al., 2016a]. The latter features a task prioritization,
which leads to a dynamic decoupling of the tasks.

� Transfer of the generalized framework to balancing in confined spaces by allowing
for arbitrary contact locations on the body of the robot [Henze et al., 2017].

� Extensive experimental evaluation of the whole-body control framework.

� Demonstration of the performance and versatility of the whole-body control frame-
work in various applications including planning [Werner et al., 2016, Sundaram et al.,
2018], teleoperation [Porges et al., 2019, Abi-Farraj et al., 2018], and industrial manu-
facturing [Kheddar et al., 2019].
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1.4 Publications and Outline

The research findings in this work resulted in five journal articles, ten conference pub-
lications, and two invited talks in the relevant robotic journals and conferences. The
publications are decorated with three awards and two nominations as award finalists. A
list of the publications that are incorporated into this monograph is given below:

Journal Publications

� B. Henze, A. Dietrich, and C. Ott. An approach to combine balancing with hierarchical
whole-body control for legged humanoid robots. IEEE Robotics and Automation Letters, 1
(2):700 – 707, 2016a. (Award Winning1)

� B. Henze, M. A. Roa, and C. Ott. Passivity-based whole-body balancing for torque-controlled
humanoid robots in multi-contact scenarios. Int. J. of Robotics Research, 35(12):1522 – 1543,
2016b. (Award Winning1)

� B. Henze, R. Balachandran, M. A. Roa, C. Ott, and A. Albu-Schäffer. Passivity analysis and
control of humanoid robots on movable ground. IEEE Robotics and Automation Letters, 3
(4):3457 – 3464, 2018.

� F. Abi-Farraj, B. Henze, C. Ott, P. R. Giordano, and M. A. Roa. Torque-based balancing for
a humanoid robot performing high-force interaction tasks. IEEE Robotics and Automation
Letters, 4(2):2023 – 2030, 2019.

� A. Kheddar, S. Caron, P. Gergondet, A. Comport, A. Tanguy, C. Ott, B. Henze, G. Mesesan,
J. Englsberger, M. A. Roa, P.-B. Wieber, F. Chaumette, F. Spindler, G. Oriolo, L. Lanari,
A. Escande, K. Chappellet, F. Kanehiro, and P. Rabaté. Humanoid robots in aircraft manu-
facturing - the Airbus use-cases. IEEE Robotics and Automation Magazine, 26(4):30 – 45,
2019. (Award Winning2)

Conference Publications

� C. Ott, B. Henze, and D. Lee. Kinesthetic teaching of humanoid motion based on whole-body
compliance control with interaction-aware balancing. In IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, pages 4615 – 4621, 2013.

� B. Henze, C. Ott, and M. A. Roa. Posture and balance control for humanoid robots in multi-
contact scenarios based on model predictive control. In IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, pages 3253 – 3258, 2014a.

� B. Henze, A. Werner, M. A. Roa, G. Garofalo, J. Englsberger, and C. Ott. Control applica-
tions of TORO - a torque controlled humanoid robot. In IEEE-RAS Int. Conf. on Humanoid
Robots, pages 841 – 841, 2014b. (Award Winning3)

� J. Englsberger, A. Werner, C. Ott, B. Henze, M. A. Roa, G. Garofalo, R. Burger, A. Beyer,
O. Eiberger, K. Schmid, and A. Albu-Schäffer. Overview of the torque-controlled humanoid
robot TORO. In IEEE-RAS Int. Conf. on Humanoid Robots, pages 916 – 923, 2014.

� A. Werner, B. Henze, D. A. Rodriguez, J. Gabaret, O. Porges, and M. A. Roa. Multi-contact
planning and control for a torque-controlled humanoid robot. In IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, pages 5708 – 5715, 2016.

� B. Henze, A. Dietrich, M. A. Roa, and C. Ott. Multi-contact balancing of humanoid robots
in confined spaces: Utilizing knee contacts. In IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, pages 679 – 704, 2017. (Award Finalist4)

1Winner of the Best WBC-Video Award 2016 (IEEE-RAS Technical Committee on Whole-Body Control).
2Winner of the IEEE Robotics and Automation Magazine Best Paper Award 2020.
3Winner of the Best Video Award at IEEE-RAS Int. Conf. on Humnaoid Robots 2014.
4Finalist for the Best Paper Award on Safety, Security, and Rescue Robotics (in memory of Motohiro
Kisoi) at IEEE/RSJ Int. Conf. on Intelligent Robots and Systems 2017.
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� F. Abi-Farraj, B. Henze, A. Werner, M. Panzirsch, C. Ott, and M. A. Roa. Humanoid
teleoperation using task-relevant haptic feedback. In IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, pages 5010 – 5017, 2018. (Award Finalist5)

� A. M. Sundaram, B. Henze, O. Porges, Z.-C. Marton, and M. A. Roa. Autonomous bipedal
humanoid grasping with base repositioning and whole-body control. In IEEE-RAS Int. Conf.
on Humanoid Robots, pages 395 – 402, 2018.

� B. Henze, M. A. Roa, A. Werner, A. Dietrich, C. Ott, and A. Albu-Schäffer. Experiments
with human-inspired behaviors in a humanoid robot: Quasi-static balancing using toe-off
motion and stretched knees. In IEEE Int. Conf. on Robotics and Automation, pages 2510 –
2516, 2019.

� O. Porges, M. Connan, B. Henze, A. Gigli, C. Castellini, and M. A. Roa. A wearable, ultra-
light interface for bimanual teleoperation of a compliant, whole-body-controlled humanoid
robot. In IEEE Int. Conf. on Robotics and Automation, 2019. URL www.youtube.com/

watch?v=YLEUBFu5qgI. Accessed September 13th, 2019.

Invited Talks

� B. Henze. Model-based posture control for a torque-controlled humanoid robot. In The Int.
Symposium on Wearable Robotics, special session on Biorobotics Approaches to Understand
and Restore Human Balance, Pisa, Italy, October 19th, 2018. (Invited talk).

� B. Henze. Hierarchical whole-body control for humanoid robots. In IEEE Int. Conf. on
Robotics and Automation, workshop on Continuous Management and Scheduling of Multiple
Simultaneous Prioritized Tasks for Redundant Robots, Montréal, Canada, Mai 24th, 2019.
(Invited talk).

Besides the main contributions, two book chapters [Ott et al., 2017, Roa et al., 2018], two
journal articles [Ott et al., 2015, 2016], and eight conference publications [Garofalo et al.,
2015, Werner et al., 2017, 2018, Mesesan et al., 2017, Lakatos et al., 2019, Olivieri et al.,
2019, Rossini et al., 2019, Garćıa-Haro et al., 2019] have been co-authored, which are re-
lated to the topic but not incorporated into this manuscript.

The connection between the publications and the outline of this work is established in
Fig. 1.3. Chapter 3 provides two models: one for describing the floating-base dynamics
of a humanoid robot and one for characterizing the properties of the support contacts.
Chapter 4 details the design of Cartesian compliances, which are used throughout the
work to implement a compliant balancing behavior. Chapter 5 introduces the reader to
the hardware design of the humanoid robot TORO, which is used for evaluating the perfor-
mance of the presented control concepts. The proposed framework for whole-body control
is given in Chapters 6 and 7. Section 6.1 introduces the basic concept of the framework
as well as the numeric method that is used for solving the wrench distribution problem.
Sections 6.3 to 6.5 present three extensions addressing the tracking case, passivity on mov-
able ground, and interaction tasks with high forces. Chapter 7 generalizes the whole-body
control framework by combining it with multi-objective control. The resulting prioritiza-
tion facilitates a dynamic decoupling of the control tasks and allows humanoid robots to
balance in confined spaces by exploiting arbitrary contacts on the robot’s body. Chapter 8
presents two control approaches from the field of Model Predictive Control (MPC), which
are both based on reduced dynamic models. The relevance and versatility of the devel-
oped framework for whole-body control is demonstrated in Chapter 9 in the form of several
applications from the field of planning, teleoperation, and industrial manufacturing.
5Finalist for the Best Paper Award on Safety, Security, and Rescue Robotics (in memory of Motohiro
Kisoi) at IEEE/RSJ Int. Conf. on Intelligent Robots and Systems 2018.
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Figure 1.3: Outline of the manuscript and relation of the main aspects to the publications.
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CHAPTER 2

Notation

This work is based on the following notation:

� Scalars are denoted with regular characters, such as a, α, V , or Ψ.

� Vectors are denoted by bold lower case characters, such as vc or τ . The only
exception are wrenches F = ( fT τT )T , which are a combination of a Cartesian
force f ∈ R3 and torque τ ∈ R3.

� Matrices are denoted by bold upper case characters, such as M or Λ.

� Round and square brackets are used to combine symbols into vectors and matri-
ces, respectively. For instance, a vector is given by f = ( fx fy fz )T and a matrix
by J = [Ad J ′ ].

� The Euclidean norm of a vector is denoted by ‖•‖, as for instance ‖g0‖ =
√
gT0 g0.

In general, vectors and matrices can be expressed with respect to the base vectors of any
arbitrary frame. In order to indicate the choice of base vectors, the notation is extended
by a leading superscript: For instance, Aλ and Bλ indicate that the vector λ is given with
respect to the base vectors of frame FA or FB, respectively. For simplicity of notation,
all position, velocity, force, and torque vectors are expressed in world coordinates, that is
with respect to the base vectors of the world frame W, unless otherwise mentioned. The
superscript W• will be dropped.
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CHAPTER 3

Modeling

3.1 Rigid Body Transformations

This section provides a brief summary on rigid body transformations, which will be used
later to discuss the so-called wrench distribution problem (see Section 3.3). Let us consider
two arbitrary frames FA and FB in six-dimensional Cartesian space attached to a rigid
body (see Fig. 3.1). The position and orientation of both frames relative to a common
world frame W are denoted by xA ∈ R3, RA ∈ SO(3) and xB ∈ R3, RB ∈ SO(3),
respectively. The linear and angular velocities of frame FA and FB relative to the world
frame W are given by χA ∈ R3, ωA ∈ R3 and χB ∈ R3, ωB ∈ R3. Both can be stacked
into the six-dimensional Cartesian velocities

vA =

(
χA
ωA

)
and vB =

(
χB
ωB

)
. (3.1)

The forces and torques acting on FA and FB are given by fA ∈ R3, τA ∈ R3 and fB ∈ R3,
τB ∈ R3, respectively. Analogously to the velocities, the forces and torques can be stacked
into the wrenches

FA =

(
fA
τA

)
and FB =

(
fB
τB

)
. (3.2)

W

FA

FB

xa
xb

xab

F a
F b

Figure 3.1: Frames FA and FB located on a rigid body.
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3.1.1 Body Coordinates

If the translational and rotational velocities are expressed in body frame, which means
with respect to the base vectors of FA and FB, then they can be computed via

AχA = RT
A(W ẋA), BχB = RT

B(W ẋB),

S(AωA) = RT
AṘA, S(BωB) = RT

BṘB.
(3.3)

Here, the operator S(•) denotes the cross product matrix according to Definition 3.1.

Definition 3.1 (Cross product matrix S(λ)). Let λ = ( λTx λTy λTz )T be an arbitrary vector
in R3. The cross product matrix S(λ) ∈ R3×3 is defined as

S(λ) =




0 −λz λy
λz 0 −λx
−λy λx 0


 .

Note that the cross product matrix S(λ) is skew-symmetric, that is S(λ) = −S(λ)T and
S(−λ) = S(λ)T hold.

The velocities of frame FA can be mapped to frame FB via

(
AχA
AωA

)

︸ ︷︷ ︸
AvA

= Ad(RAB,
AxAB)

(
BχA
BωA

)

︸ ︷︷ ︸
BvB

(3.4)

with Ad(•, ?) denoting the adjoint matrix according to Definition 3.2. The matrix RAB =
RT
ARB and the vector AxAB = RT

A(WxB − WxA) describe the orientation and position
of FB relative to FA, expressed using the base vectors of FA.

Definition 3.2 (Adjoint matrix Ad(R,x)). Let R ∈ SO(3) and x ∈ R3 be an arbitrary
rotation matrix and an arbitrary position vector. Then, the adjoint matrix is defined as

Ad(R,x) =

[
R S(x)R
0 R

]

based on the cross product matrix S(•) according to Definition 3.1. The inverse is given
by Ad(R,x)−1 = Ad(RT ,−RTx).

The transpose of the adjoint matrix can be used to map forces and torques from
frame FA to frame FB via

(
BfB
BτB

)

︸ ︷︷ ︸
BFB

= Ad(RAB,
AxAB)T

(
AfA
AτA

)

︸ ︷︷ ︸
AFA

. (3.5)

Note that the wrenches are expressed in FA and FB, respectively.
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3.2 Robot Dynamics

3.1.2 World Coordinates

If the translational and rotational velocities are expressed in world coordinates W, then
they can be computed via

WχA = W ẋA, WχB = W ẋB,

S(WωA) = ṘAR
T
A, S(WωB) = ṘBR

T
B.

(3.6)

The velocities of frame FA can be mapped to frame FB via
(WχA
WωA

)

︸ ︷︷ ︸
WvA

=

[
I S(WxAB)
0 I

]

︸ ︷︷ ︸
Ad(I,WxAB)

(WvB
WωB

)

︸ ︷︷ ︸
WvB

. (3.7)

As the velocities are all in world coordinates, they do not need to be rotated. Consequently,
the mapping can be considered a special case of the adjoint matrix with the identity
matrix I as relative rotation. Note that the vector WxAB = WxB −WxA is also given in
world coordinates.

The transpose of the adjoint matrix can again be used to map forces and torques from
frame FA to frame FB via

(WfB
WτB

)

︸ ︷︷ ︸
WFB

= Ad(I,WxAB)T
(WfA
WτA

)

︸ ︷︷ ︸
WFA

. (3.8)

Note that the forces and torques are all expressed in world frame W.
For simplicity of notation, all position, velocity, force, and torque vectors

will be expressed in world coordinates, that is with respect to the base vectors
of the world fame W, unless otherwise mentioned. The superscript W• will be
dropped.

3.2 Robot Dynamics

Humanoid robots resemble the shape and appearance of a human, which usually leads to
a design featuring a torso, arms, legs, and a head. The robot can use the limbs to support
itself with respect to the environment but also to interact with it, e. g. for manipulating
an object. From a mathematical point of view, a humanoid robot consists of a group of
rigid bodies, which are linked to each other via joints. In order to be able to formulate
the equations of motion, one of the bodies needs to be selected as the root or base of the
kinematic chain. In the literature, there are two basic descriptions featuring either a fixed
or a floating base. In the case of a fixed base, one of the bodies that is in contact with the
environment to support the robot is defined as the root or base of the kinematic chain.
Although it is easier to use a fixed-base model for motion planing [Werner et al., 2012],
this has the disadvantage that the body serving as base is not allowed to move with respect
to the environment. The latter makes it difficult to use the model for locomotion, which
requires a repetitive attaching and detaching of the limbs. For this particular reason,
models featuring a floating base are more common in literature (see e. g. [Righetti et al.,
2013, Sentis, 2010, Herzog et al., 2016]). Here, a central body of the humanoid robot,
such as the hip or the torso, is selected as the root of the kinematic chains representing
the limbs. This section introduces several floating-base models, which will be used in
Chapters 6, 7, and 8 to derive the discussed concepts for balance control.
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contact frame

contact frame
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Figure 3.2: Floating base model of a humanoid robot.

3.2.1 Floating Base Dynamics

Considering the humanoid robot TORO (see Chapter 5), the body representing the hip
is selected as the base of the kinematic chain. The state of the floating base is described
by the position xb ∈ R3 and orientation Rb ∈ SO(3) of the base frame B relative to the
world frame W (see Fig. 3.2). The corresponding linear and angular velocities ẋb ∈ R3

and ωb ∈ R3 are stacked into the vector vc = ( ẋTb ωTb )T . Note that xb, ẋb, and ωb are
expressed in world coordinates. Based on the n ∈ N joint angles q ∈ Rn, the dynamics of
the humanoid robot is given by

M

(
v̇b
q̈

)
+C

(
vb
q̇

)
+ g =

(
0
τ

)
+ τ ext (3.9)

with M ∈ R(6+n)×(6+n) denoting the inertia matrix and C ∈ R(6+n)×(6+n) the Corio-
lis/centrifugal matrix. Note that M − 2C is a skew-symmetric matrix [Ott, 2008], which
is strongly related to the passivity properties of the robot. The influence of gravity is
represented by the vector g ∈ R6+n. The joint torques generated by the actuators are
denoted by τ ∈ Rn, while the generalized external forces are given by τ ext ∈ R6+n.

Depending on the application, a legged humanoid robot has to fulfill several tasks sim-
ultaneously. An obvious task is to stabilize the CoM to maintain balance. Another two
important tasks are to support itself or to interact with the environment. For these pur-
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3.2 Robot Dynamics

poses, the robot features several task relevant points, which can be distributed all over
the hull of the robot including feet, hands, knees, and elbows, for instance. Each of these
points is characterized by a task frame Ti given by a position xi ∈ R3 and an orientation
Ri ∈ SO(3) with respect to the world frameW. The overall number of task frames is given
by ψ ∈ N. The corresponding translational and rotational velocities are given by ẋi ∈ R3

and ωi ∈ R3, which can be stacked into vi = ( ẋTi ωTi )T . The task wrench F i = ( fTi τTi )T

combines the forces f i ∈ R3 and torques τ i ∈ R3 that act on Ti. Note that xi and F i are
expressed in world coordinates.

The Cartesian velocities of each task frame are given by

vi =
[
Adi J ′i

]
︸ ︷︷ ︸

Ji

(
vb
q̇

)
. (3.10)

based on the Jacobian matrix J i ∈ R6×(6+n). According to Section 3.1, the adjoint
matrixAdi = Ad(I,xib) with xib = xb−xi describes a rigid body transformation between
the task frame Ti and the base frame B. Therefore, it correlates a motion of the base vb
with a motion of the task frame given by vi. A motion of the robot in joint space is taken
into account by the Sub-Jacobian J ′i ∈ R6×n.

A subset of the task frames can be used by the robot to support itself by establishing
contact with the environment and generating suitable contact wrenches. This task1 will
be referred to below as the “support task” and the associated frames as “support frames”,
“contact frames” or just “contacts”. Another important task is to interact with the envi-
ronment by manipulating an object, or by applying desired wrenches on the environment,
as for example for pulling a lever. In order to fulfill this “interaction task”, the robot
can use the remaining task frames Ti, which are not already occupied by the supporting
task2. The frames concerned will be called “interaction frames” for the remainder of this
work. The difference between the interaction and the support task is that the interac-
tion wrenches are prescribed by the assignment of the robot, while the necessary support
wrenches can be chosen freely to some extend by the controller. Note that the interaction
frames can also be used to lift and reposition end-effectors of the robot in order to enable
locomotion. To formalize this task assignment, let us consider the following numbering
of the task frames Ti: The first ψsup ∈ N task frames will be assigned to the supporting
task with 1 ≤ i ≤ ψsup. The remaining ψint ∈ N0 task frames will be associated with the
interaction task by ψsup + 1 ≤ i ≤ ψ with ψ = ψsup + ψint. Based on this notation, the
task velocities can be combined into

vsup =



v1
...

vψsup


 =

[
Adsup J ′sup

]
︸ ︷︷ ︸

Jsup

(
vb
q̇

)
(3.11)

and

vint =



vψsup+1

...
vψ


 =

[
Adint J ′int

]
︸ ︷︷ ︸

J int

(
vb
q̇

)
(3.12)

1Note that this task was called “balancing task” (subscript “bal”) in previous publications [Henze et al.,
2016a,b, 2017].

2Note that it is also possible to operate the robot without any interaction task leading to ψsup = ψ. But
this case will not be considered for simplicity of notation
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3 Modeling

with

Adsup =



Ad1

...

Adψsup


 , J sup =



J ′1
...

J ′ψsup


 (3.13)

and

Adint =



Adψsup+1

...

Adψ


 , J int =



J ′ψsup+1

...

J ′ψ


 . (3.14)

If all generalized external forces exclusively act on the task frames Ti, then τ ext becomes

τ ext =

[
J sup

J int

]T (
F ext

sup

F ext
int

)
(3.15)

with the task wrenches F ext
i ∈ R6 stacked into

F ext
sup =



F ext

1
...

F ext
ψsup


 and F ext

int =



F ext
ψsup+1

...
F ext
ψ


 . (3.16)

Note that the controllers that will be presented in Chapters 6, 7, and 8 utilize the com-
manded task wrenches F i ∈ R6 as a virtual control input instead of the control torque τ .
The commanded task wrenches are analogously stacked into

F sup =



F 1
...

F ψsup


 and F int =



F ψsup+1

...
F ψ


 . (3.17)

3.2.2 Centroidal Dynamics

As the location of the CoM is crucial for balancing, Hyon et al. [2007] proposed using the
Center of Mass (CoM) of the robot instead of the hip as base for the dynamic model.
Therefore, we introduced a frame C in [Henze et al., 2016b], which has the same position
xc ∈ R3 as the CoM and the same orientation Rc = Rb as the hip of the robot. The
linear and angular velocities ẋc ∈ R3 and ωc = ωb are stacked into vc = ( ẋTc ωTc )T . Note
that xc, ẋc, and ωc are expressed in world coordinates. The transformation obtained by
replacing ẋb and ωb with ẋc and ωc is given by



ẋc

ωc

q̇


 =



I −S(xbc) J bc
0 I 0
0 0 I




︸ ︷︷ ︸
T cb



ẋb
ωb
q̇


 . (3.18)

Here, xbc = xc − xb denotes the lever arm between the CoM and the base frame B, given
in W. The Jacobian J bc = ∂xbc/∂q is needed to take into account the relative motion

40



3.2 Robot Dynamics

between frames C and B. The inverse transformation T cb = T−1
bc is given by



ẋb
ωb
q̇


 =



I S(xbc) −J bc
0 I 0
0 0 I




︸ ︷︷ ︸
T bc



ẋc

ωc

q̇


 . (3.19)

Applying T bc to the dynamic model (3.9) leads to

[
M cc M cq

MT
cq Mqq

]

︸ ︷︷ ︸
M

(
v̇c

q̈

)

︸ ︷︷ ︸
ν̇

+C

(
vc

q̇

)

︸ ︷︷ ︸
ν

+

(
mg0

0

)

︸ ︷︷ ︸
g

=

(
0
τ

)

︸ ︷︷ ︸
u

+τ ext (3.20)

with the transformed inertia and Coriolis matrix M = T TbcMT bc and C = T TbcCT bc +
T TbcM

d
dtT bc. Note that M−2C is a skew-symmetric matrix [Ott, 2008], which is strongly

related to the passivity properties of the robot. The inertia matrix M ∈ R(6+n)×(6+n) can
be decomposed into M cc ∈ R6×6, Mqq ∈ Rn×n, and M cq ∈ R6×n. The vector ν ∈ R6+n

denotes the generalized velocities of the robot combining vc and q̇. The scalar m ∈ R
denotes the overall mass of the robot, while g0 ∈ R6 represents the vector of gravitational
acceleration3. The structure of g = T Tbcg and M results from the choice of C as base
frame [Hyon et al., 2007, Ott et al., 2011, Henze et al., 2016b]. The vector of generalized
external forces τ ext transforms into τ ext = T Tbcτ ext. In Chapter 7, the vector u ∈ R6+n is
used as a virtual control input.

Applying the transformation T bc to (3.11) and (3.12) yields

vsup =
[
Adsup J ′sup

]
︸ ︷︷ ︸

Jsup

(
vc

q̇

)

︸ ︷︷ ︸
ν

(3.21)

and

vint =
[
Adint J ′int

]
︸ ︷︷ ︸

J int

(
vc

q̇

)

︸ ︷︷ ︸
ν

(3.22)

with Adsup = AdsupT
T
bc and J ′sup = J ′supT

T
bc. To simplify the notation even further, vsup

and vint are combined into

v =

(
vsup

vint

)
=
[
Ad J ′

]
︸ ︷︷ ︸

J

(
vb
q̇

)

︸ ︷︷ ︸
ν

(3.23)

leading to Ad = [ (Adsup)T (Adint)
T ]T and J ′ = [ (J ′sup)T (J ′int)

T ]T . The commanded as
well as the external task wrenches are analogously stacked into F = ( F Tsup F Tint )T and
F ext = ( (F ext

sup)T (F ext
int )T )T , respectively. If all external forces and torques exclusively act

on the task frame Ti, then (3.15) becomes

τ ext = JTF ext =

[
AdTsup AdTint

(J ′sup)T (J ′int)
T

](
F ext

sup

F ext
int

)
. (3.24)

3Note that g0 ∈ R6 is six-dimensional and comprises the translational and rotational DoFs of Cartesian
space.
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3.3 Wrench Distribution Problem

As can be seen in (3.24), the external task wrenches F ext
sup and F ext

int are mapped via the
transpose of the stacked adjoint matrices Adsup and Adint onto the CoM wrench. The
mapping onto the n joint torques is provided by the transpose of J ′sup and J ′int.

The mapping of the external support wrenches via AdTsup ∈ R6×6ψsup is surjective but
not injective for more than one contact (mapping from 6 +ψsup onto 6 coordinates). As a
consequence, there exists a large set of external contact wrenches F ext

sup that result in the
same overall support wrench

F res,ext
sup = AdTsup F

ext
sup. (3.25)

Although the above equation is formulated for the external contact wrenches, the same
phenomenon exists for the contact wrenches F sup commanded by the controller

F res
sup = AdTsup F sup, (3.26)

as detailed in Chapters 6, 7, and 8. In order to generate a desired overall wrench F res
sup at

the CoM for balancing, the controller can choose the commanded contact wrenches F sup

from a set of feasible solutions, which is bounded by the contact model, as detailed below
in Section 3.4. This challenge is commonly known as the so-called Wrench Distribution
Problem (WDP). Note that the overall support wrench F res

sup ∈ R6 acts on the center

of mass frame C. Therefore, the adjoint matrices stacked into AdTsup = [AdT1 ... AdTψsup ]
can be considered as a rigid body transformation shifting each contact wrench to the
center of mass. In the literature, several names are used to refer to the mapping AdTsup

such as “Contact Map”, “Graps Matrix”, or “Stance Matrix”. The term “Grasp Matrix”
originates from the observation that balancing and grasping are fundamentally similar (see
Fig. 1.2) both exhibiting the wrench distribution problem [Ott et al., 2011].

As the Contact Map AdTsup is surjective but not injective for more than one contact, the
mapping features a null space, which can be used by the robot to redistribute load from
one contact to another and/or to generate internal stress between the contacts. Note that
in mechanical engineering, the term “internal stress” is directly linked to the deformation
of elastic objects [Gross et al., 2018]. As the robot model does not feature any elastic
elements and the contacts may also be rigid, it is difficult to provide a precise scientific
definition of internal stress in this particular context. But in colloquial terms, we will
consider internal stress as contact wrenches that do not contribute to the overall wrench
at the center of mass. Therefore, our usage of the term “internal stress” is linked to the
null space of the Contact Map AdTsup.

Generating internal stress appears to be counterproductive at first glance, as it increases
the contact wrenches and therefore the joint torques. But the controller can use internal
stress to ensure that the contact wrenches satisfy the contact model, which is detailed
below in Section 3.4. As an example, Fig. 3.3 shows a scenario in which the robot uses
internal stress to balance on a ridge. To ensure that the contact wrenches lie within their
respective friction cone, the controller pushes the feet against the ridge. As the horizontal
components of the contact wrenches cancel out, they can be considered as internal stress.
By contrast, the vertical components of F i add up to the overall wrench F res

sup on the
center of mass.
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Figure 3.3: Internal stress while balancing on a ridge.

3.4 Contact Model

One essential problem in humanoid balancing is that the supporting contacts are not fixed
to the environment as it is the case for robots with a fixed base. If a humanoid robot applies
unsuitable wrenches at the supporting contacts, they can unintentionally lift off, tilt or
start to slide. A common way of dealing with this problem is to provide the controller
with a model of the contact properties, which restricts the commanded contact wrenches
to an admissible set of values. This section presents the contact model which is used by
the controllers in Chapters 6, 7, and 8. Similar contact models have been formulated in
literature, as for example in [Audren et al., 2014, Lee and Goswami, 2010, Kojima et al.,
2015, Sentis, 2010, Stephens and Atkeson, 2010b, Wensing et al., 2013, Wieber, 2006].

For convenience of notation, all quantities related to the contact model are
expressed in Ti instead of the world frame W, which will be indicated by the
superscript i•.

3.4.1 The General Case of a Flat and Unilateral Contact

For simplicity, let us consider a flat contact area Si ⊂ R2 (which is a subset of two-
dimensional Cartesian space), as shown in Fig. 3.4. The contact frame Ti is defined such
that the z-axis is perpendicular to the contact area Si. Furthermore, let us decompose the
commanded contact wrench iF i into its elements iF i = ( fx fy fz τx τy τz )T .
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Figure 3.4: Model of a flat contact.

To prevent the contact from lifting off, the unilaterality of the contact must be considered
by restricting the perpendicular contact force fi,z via

fi,z ≥ fmin
i,z (unilaterality) (3.27)

to be above a minimum value of fmin
i,z ≥ 0. In most of the literature, fmin

i,z is set to zero
(e. g. [Kao et al., 2016, Audren et al., 2014, Kojima et al., 2015]). However, based on the
practical experience of the author, choosing fmin

i,z > 0 leads to an increased robustness
against an unintentional lift-off. One reason for this is joint friction, which can cause
the actual contact wrenches to differ from the commanded values. To avoid an explicit
measurement of contact forces and torques, the controller invokes the contact model on
the commanded contact wrenches and not on the actual ones. Therefore, selection of the
contact model parameters so that they are slightly more conservative than theoretically
necessary is recommended.

Another relevant quantity for contact stability is the so-called Center of Pressure (CoP),
which represents a point pi ∈ R2 in the same plane as the contact area Si [Popovic et al.,
2005, Vukobratović, 2004, Sardain and Bessonnet, 2004]. The pressure inside a contact
surface can be described by a vector field σ(x, y) ∈ R perpendicular to Si with (x, y) ∈ Si
(see Fig. 3.4). Integrating over the contact area leads to the overall normal force

fi,z =

∫

Si
σ(x, y) ds (3.28)

and to the tangential torques

τi,x =

∫

Si
y σ(x, y) ds

τi,y =

∫

Si
−xσ(x, y) ds.

(3.29)

Definition 3.3 (Center of Pressure (CoP)). The center of pressure ipi ∈ R2 (CoP) is
defined as the centroid of the vector field σ(x, y) ∈ R and is given by

ipi =

∫

Si
σ(x, y)

(
x
y

)
ds

∫
Si σ(x, y) ds

. (3.30)

The center of pressure can also be regarded as the point ipi = ( pi,x pi,y )T in the same plane
as Si, to which the contact wrench iF i must be shifted such that the tangential torques τi,x
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and τi,y vanish (see Fig. 3.4). Computing the sum of torques about the x- and y-axis of Ti
leads to the definition

pi,x = +τi,y/fi,z

pi,y = −τi,x/fi,z
(3.31)

of the CoP as a function of the contact wrench iF i.

By definition, the center of pressure ipi ∈ conv(Si) cannot leave the convex hull of the
contact area Si. If the CoP reaches the convex hull, the danger exists that the contact
might start to tilt [Popovic et al., 2005]. To prevent this, the contact wrenches commanded
by the controller need to be restricted such that the commanded CoP lies within the convex
hull of the contact area:

ipi ∈ conv(Si) (center of pressure). (3.32)

Slipping of the contacts can be avoided by considering a static friction model. For
instance, translational friction can be described by the well-known Coulomb model (see
e. g. [Kao et al., 2016, Prattichizzo and Trinkle, 2016]), which limits the tangential forces
via √

f2
i,x + f2

i,y ≤ µtrans,i fi,z (trans. friction) (3.33)

using the non-negative friction coefficient µtrans,i ∈ R. There are several models origi-
nating from the field of multi-fingered grasping that account not only for translational
but also for rotational friction constraining the perpendicular torque τi,z [Kao et al.,
2016, Prattichizzo and Trinkle, 2016, Howe et al., 1988]. But these models are usually not
applied to balancing control because they are often based on the assumption of a rather
limited contact area such as a fingertip. Therefore, the models are not capable of transmit-
ting tangential torques (τi,x and τi,y) although this is a mandatory feature for considering
the center of pressure given Definition 3.3.

3.4.2 Approximation for Rectangular Contacts

The contact model presented in Section 3.4.1 is nonlinear, which increases the effort
for numerical optimization algorithms to solve the wrench distribution problem. As a
consequence, most of the relevant literature approximates the contact area with poly-
gons or rectangles (e. g. [Audren et al., 2014, Lee and Goswami, 2010, Kojima et al., 2015,
Stephens and Atkeson, 2010b, Wensing et al., 2013]). Although polygons are more gen-
eral, the assumption of rectangular contact surfaces is sufficient for most humanoid robots.

Let us consider a rectangular contact, as shown in Fig. 3.5, with the x-axis pointing to
the front, the y-axis to the left, and the z-axis to the top of Si. The unilaterality constraint

fi,z ≥ fmin
i,z (unilaterality) (3.34)

can be adopted from the discussion on general contacts (3.27).

Due to the rectangular shape of Si, the constraint on the center of pressure (3.32)
simplifies to

pmin
i,x ≤ pi,x ≤ pmax

i,x

pmin
i,y ≤ pi,y ≤ pmax

i,y

(3.35)
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Figure 3.5: Flat and rectangular contact.
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Figure 3.6: Quadratic pyramid inscribed in the friction cone.

with pmin
i,x , p

max
i,x , pmin

i,y , p
max
i,y ∈ R specifying the physical dimensions. Inserting (3.31) leads

to the formulation

pmin
i,x fi,z ≤ +τi,y ≤ pmax

i,x fi,z

pmin
i,y fi,z ≤ −τi,x ≤ pmax

i,y fi,z
(center of pressure) (3.36)

relating the tangential torques τi,x and τi,y with fi,z.
Many other works (e. g. [Audren et al., 2014, Lee and Goswami, 2010, Kojima et al.,

2015, Stephens and Atkeson, 2010b, Wensing et al., 2013]) only consider translational fric-
tion to avoid the problem of combining translational with rotational friction (see Sec-
tion 3.4.1). To obtain a linear model for describing translational friction, (3.33) is usually
approximated by a quadratic pyramid, which is inserted into the friction cone, as shown
in Fig. 3.6. Choosing the friction parameter of the pyramid as µ̃i = (1/

√
2)µtrans,i allows

considering the x- and y-direction independently of each other [Henze et al., 2016b]:

|fi,x| ≤ µ̃i fi,z
|fi,y| ≤ µ̃i fi,z

(trans. friction) (3.37)

This work extends the standard friction model (3.37) by also considering rotational
friction. The extended model is derived by parameterizing the contact wrench iF i using
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(a) Parameterization using base vectors.
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(b) Friction pyramids located at the front and in the back of
the contact area Si.

(c) Foot of the humanoid robot TORO.

Figure 3.7: Friction model including rotation and translation.

the concept of base vectors (see Section 3.5 for a comparison of the different methods
of parameterization). Despite (3.31), the center of pressure can also be parameterized
via a set of normal force vectors fi,z,j , which are located at the corners of the contact
area, as shown in Fig. 3.7a. Here, the index j ∈ [1 . . . ni,corners] is used to enumerate
the ncorners corners of the contact area. To account for unilaterality and to maintain the
CoP inside of Si, the forces are assumed to be non-negative via fi,z,j ≥ 0. Furthermore,
it is assumed that each corner is subject to a friction pyramid limiting the tangential
forces fi,x,j and fi,y,j at the corners. Therefore, the bounds on fi,x,j and fi,y,j limit the
transmittable contact forces fi,x and fi,y as well as the contact torque τi,z. Note that
the mapping from the corner forces to the contact wrench is surjective but not injective
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for contacts featuring more than two corners. This means that the forces at the corners
cannot be uniquely determined from the contact wrench. To resolve the mapping, we will
restrict our considerations to contacts whose length is greater than their width. In this
case rotational friction will be dominated by the length of the contact, while the width
can be neglected. Therefore, the contact is modeled with a friction pyramid located in the
front and in the back of the contact as shown in Fig. 3.7b. This assumption is inspired by
the geometry of the human foot, which is longer than wide. For instance, the feet of the
humanoid robot TORO (see Chapter 5 and Fig. 3.7c) have a length of 21 cm and a width
of 9.5 cm and thus fall into this particular category of contacts.

Computing the sum of torques about the front and the back of the contact area (see
Fig. 3.7b) leads to

fi,z,front (pmax
i,x − pmin

i,x ) = fi,z (−pmin
i,x )− τi,y,

fi,z,back (pmax
i,x − pmin

i,x ) = fi,z (pmax
i,x ) + τi,y,

(3.38)

and

fi,y,front (pmax
i,x − pmin

i,x ) = fi,y (−pmin
i,x ) + τi,z,

fi,y,back (pmax
i,x − pmin

i,x ) = fi,y (pmax
i,x )− τi,z.

(3.39)

Solving for fi,y,front, fi,z,front, fi,y,back, fi,z,back and inserting into

|fi,y,front| ≤ µ̃i fi,z,front

|fi,y,back| ≤ µ̃i fi,z,back

(3.40)

yields
∣∣fi,y (−pmin

i,x ) + τi,z
∣∣ ≤ µ̃i fi,z (−pmin

i,x )− µ̃i τi,y∣∣fi,y (pmax
i,x )− τi,z

∣∣ ≤ µ̃i fi,z (pmax
i,x ) + µ̃i τi,y

(rot. friction) (3.41)

with (pmax
i,x −pmin

i,x ) > 0 describing the length of the contact. Note that adding the two lines
from (3.41) and exploiting the triangle inequality leads to the second line of (3.37). There-
fore, the second line of (3.37) may be omitted for the contact model, as it is redundant
to (3.41).

In order to rewrite the contact model into a form that can be more easily processed by
numerical algorithms, (3.34), (3.36), the first line of (3.37), and (3.41) are stacked into a
linear contact model of the form iAi

iF i ≤ bi:



0 0 −1 0 0 0
0 0 pmin

i,x 0 −1 0

0 0 −pmax
i,x 0 1 0

0 0 pmin
i,y 0 1 0

0 0 −pmax
i,y 0 −1 0

1 0 −µ̃i 0 0 0
−1 0 −µ̃i 0 0 0
0 −pmin

i,x µ̃i p
min
i,x 0 µ̃i 1

0 pmin
i,x µ̃i p

min
i,x 0 µ̃i −1

0 pmax
i,x −µ̃i pmax

i,x 0 −µ̃i −1

0 −pmax
i,x −µ̃i pmax

i,x 0 −µ̃i 1




︸ ︷︷ ︸
iAi




fi,x
fi,y
fi,z
τi,x
τi,y
τi,z




︸ ︷︷ ︸
iF i

≤




−fmin
i,z

0
0
0
0
0
0
0
0
0
0




︸ ︷︷ ︸
ibi

. (3.42)

Note that the superscript of iAi indicates that the corresponding wrench iF i is expressed
in the local contact frame Ti.
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3.4.3 Approximation for Point Contacts with Fixed Orientation

A humanoid robot can also use contacts for support in situations where the model of a
flat and rectangular contact from Section 3.4.2 does not apply. For example, Fig. 3.8a
shows the hand of the robot TORO. As can be seen, the surface of the palm is rather
buckled, which makes it difficult to model. The robot can also use the front edge of the
feet to balance while performing a toe-off motion during stair climbing (see Fig. 3.8b). In
the latter case, the rectangular contact of the foot degenerates to a line contact, which in
theory could still transmit forces and torques in five Degrees of Freedom (DoFs). A toe-off
motion can significantly increase the abilities of the robot, as discussed in Section 9.1.
However, based on the practical experiences of the author, a toe-off motion is usually
performed in situations with little perpendicular force fi,z. As a result, the emerging
line contact is rather unreliable with regard to transmitting forces and torques via the
remaining DoFs.

(a) Left hand of the humanoid
robot TORO.

(b) Edge contact of a foot during
toe-off motion.

Figure 3.8: Examples of supporting contacts that are modeled as points.

For this reason, it is recommended that these contacts are modeled as a single point,
which is located at the origin of the contact frame Ti. The z-axis of the frame is still
perpendicular to the contact surface, but the contact is only allowed to transmit forces
in the direction of fi,z. As fi,x = fi,y = τi,x = τi,y = τi,z = 0 are restricted to zero, only
unilaterality must be taken into account by the contacts model:

fi,z ≥ fmin
i,z (unilaterality). (3.43)

Therefore, the contact model can be rewritten as



0 0 −1 0 0 0
1 0 0 0 0 0
−1 0 0 0 0 0
0 1 0 0 0 0
0 −1 0 0 0 0
0 0 0 1 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 −1 0
0 0 0 0 0 1
0 0 0 0 0 −1




︸ ︷︷ ︸
iAi




fi,x
fi,y
fi,z
τi,x
τi,y
τi,z




︸ ︷︷ ︸
iF i

≤




−fmin
i,z

0
0
0
0
0
0
0
0
0
0




︸ ︷︷ ︸
ibi

(3.44)

again leading to a linear inequality of the form iAi
iF i ≤ bi.
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3.5 Overview of the Parameterizations of the Wrench
Distribution Problem

A review of the relevant literature reveals that there are several methods for parameterizing
the wrench distribution problem. A comparison of the most common techniques is given
in Table 3.1.

Table 3.1: Methods for parameterizing the wrench distribution problem.

Parameterization Examples Properties

Contact wrenches [Audren et al., 2014] ⊕ minimal representation
[Henze et al., 2016b] 	 indirect param. of int. stress
[Kojima et al., 2015]
[Ott et al., 2011]
[Stephens and Atkeson, 2010a]

Base vectors [Hyon and Cheng, 2006] 	 redundant representation
[Lee and Goswami, 2010] 	 indirect param. of int. stress

⊕ easy param. of constraints

Virtual linkage [Williams and Khatib, 1993] ⊕ minimal representation
[Sentis, 2010] ⊕ direct param. of int. stress

	 limited scalability

The straightforward way to parameterize the wrench distribution problem is to use the
contact wrenches as decision variable in the optimization problem, as in [Audren et al.,
2014, Henze et al., 2016b, Kojima et al., 2015, Stephens and Atkeson, 2010a]. One advan-
tage of this method is that the contact wrenches represent a minimal set of coordinates
for describing the distribution of wrenches between the contacts. However, the question
which portion of the contact wrenches contributes to the overall wrench at the center of
mass and which portion can be considered as internal stress can only be answered after
analyzing the contact map AdTsup from (3.24).

Another common method is to use base vectors to parameterize the wrench distribution
problem [Hyon and Cheng, 2006, Lee and Goswami, 2010]. Hyon and Cheng [2006] define
a perpendicular force fi,z,j at each corner of the contact similar to Fig. 3.7a. The advantage
of this formulation is that the constraints for unilaterality of the contact (3.34) and the cen-
ter of pressure (3.36) can be easily ensured by requiring that fi,z,j ≥ 0 ∀j = 1 . . . ni,corners

(in the case of fmin
i,z = 0). However, the base vectors lead to a redundant or non-minimal

set of coordinates for describing the wrench distribution. As before, internal stress can
only be indirectly parameterized.

The concept of virtual linkage was introduced by Williams and Khatib [1993] for multi-
fingered grasping and manipulation of objects. In [Sentis, 2010], it is used for balance
control of humanoid robots. The concept proposes a net of virtual links that interconnects
the contacts with each other, as shown in Fig. 3.9. The number of contacts determines
the number of DoFs per link. For example in the case of three contacts, each virtual link
provides one translational and three rotational DoFs. The advantage of the concept is
that the forces and torques of these virtual joints directly relate to the internal stress,
which allows an intuitive parameterization of the latter. Therefore, the contact wrenches
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Two contacts

DoFs per link:
-3x translation
-3x rotation

Three contacts

DoFs per link:
-1x translation
-3x rotation

Four contacts

DoFs per link:
-1x translation
-2x rotation

Figure 3.9: Parameterization of the wrench distribution based on the concept of virtual
linkage.

can be parameterized via

F sup =
[
(AdTsup)# E

]( F res
sup

τ internal
sup

)
(3.45)

as a function of the overall resulting wrench F resulting
sup = AdTsup F sup and the generalized

forces of the virtual links τ internal
sup ∈ R6(ψsup−1). Here, (AdTsup)# denotes a pseudo-inverse

of AdTsup and E ∈ R6ψsup×6(ψsup−1) a mapping for the internal stress4. The disadvantage
of the concept is that every contact change requires a modification of the connections
inside the net (see Fig. 3.9), which makes it cumbersome to implement. Besides this, the
complexity of the net grows with the number of contacts. Therefore, the advantage of an
intuitive parameterization of internal stress only holds for a small number of contacts.

Considering the properties of the methods presented in Table 3.1, this work uses contact
wrenches to parameterize the wrench distribution problem because it features a minimal
representation and allows a simple implementation of the optimization problem.

3.6 Feasibility of the Overall Support Wrench

The forces and torques that each contact is able to transmit are limited by the contact
model, as detailed in Section 3.4. As a consequence, the overall wrench that the contacts
can generate is limited and also poses an important quantity for planing and control. For
balancing on flat and horizontal ground floors, the concept of the support polygon and
the ZMP is introduced in [Vukobratović, 2004]:

Definition 3.4 (Zero Moment Point (ZMP) [Popovic et al., 2005]). For balancing on
flat and horizontal floor, the Zero Moment Point (ZMP) is defined as the point on the
surface of the ground to which the overall contact wrench F res

sup must be shifted such that
the horizontal torques vanish. However, a torque about the vertical axis can still exist,
which is why Sardain and Bessonnet [2004] introduced the more precise term “Zero tipping
Moment Point”.

4Note that in [Williams and Khatib, 1993], E is used to map only internal forces to the contacts, while
the mapping including internal torques is more complicated. For simplicity of notation, E will be used
for describing the mapping of both internal forces and torques.
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p

F res
sup

Figure 3.10: Support polygon (blue) on flat and horizontal ground floor. The combined
CoP p or ZMP is given in green.

Definition 3.5 (Support Polygon (SP)). Let SSP denote the set of CoM locations xc for
which the given contact configuration allows static balancing without violating the contact
model. The Static Support Area or Support Polygon (SP) is the projection of SSP onto the
horizontal plane of the world frame W.

Popovic et al. [2005] showed that the ZMP coincides with the combined CoP for hori-
zontal and flat ground surfaces. The combined CoP can be obtained analogously to (3.30)
by computing the integral over all contact surfaces S = S1 ∪ . . . ∪ Sψsup . On a flat and
horizontal floor, the support polygon is given by the convex hull of the contact areas Si
(for fmin

i,z = 0), as shown in Fig. 3.10. The overall support wrench F res
sup is said to be

feasible5 if the corresponding ZMP/ CoP is located inside the support polygon and the
following assumptions are fulfilled:

� The horizontal forces within F res
sup can be generated with the given contact configu-

ration and contact model.

� The magnitude of the force within F res
sup can be generated with the given contact

configuration and contact model.

� The vertical torque within F res
sup can be generated with the given contact configura-

tion and contact model.

A more accurate criterion originates from the field of grasping [Hirai, 1991, Borst et al.,
2003] using polyhedral convex cones for describing the contact model. The concept was
then transfered by Caron et al. [2015] to humanoid balancing. Note that the criterion
addresses the general case of multiple contact surfaces with arbitrary locations and orien-
tations.

According to [Ziegler, 2007], a polyhedron P in Rd can be defined as the intersection
of m ∈ N closed half spaces. Each half space is characterized by an inequality aTH,jλ ≤ bH,j
with λ,aH,j ∈ Rd and bH,j ∈ R for i = j . . .m. Note that each inequality represents a
face of the polyhedron P. Combining aH,j and bH,j into the matrix AH ∈ Rm×d and the
vector bH ∈ Rm leads to the following definition:

Definition 3.6 (H-representation of a polyhedron [Ziegler, 2007]). A Polyhedron P ⊆ Rd
can be denoted as

P(AH, bH) = {λ : AHλ ≤ bH} (3.46)

for some AH ∈ Rm×d and bH ∈ Rm, which is called H-representation.

5The term “stability” is often used to describe the feasibility of the contact wrenches. To avoid confusions,
this work will use the term “stability” only in the sense of Lyapunov stability [Slotine and Lee, 1991].

52



3.6 Feasibility of the Overall Support Wrench

Despite the H-representation, a polyhedron can also be written as a combination of the
convex hull of a finite point set V finite ∈ Rd×m′ and the cone generated by a finite set of
vectors V cone ∈ Rd×m′′ :

Definition 3.7 (V-representation of a polyhedron [Ziegler, 2007]). A Polyhedron P ⊆ Rd
can be denoted as

P(Vfinite,Vcone) = conv(Vfinite)⊕ cone(Vcone) (3.47)

for some Vfinite ∈ Rd×m′ and Vcone ∈ Rd×m′′, which is called V-representation.

The operator ⊕ denotes the so-called “Minkowsi-” or “vector sum”, which allows the
summation of two vector sets V1,V2 ⊆ Rd according to:

Definition 3.8 (Minkowski-Sum [Ziegler, 2007]). The Minkowski-sum of two set of vectors
V1,V2 ⊆ Rd is defined as

V1 ⊕ V2 = {λ1 + λ2 : λ1 ∈ V1,λ2 ∈ V2} . (3.48)

A powerful property of polyhedra is the Minkowski-Weyl-Theorem, which states that
the H-and V-representation describe the same polyhedron:

Theorem 3.1 (Minkowski-Weyl-Duality [Ziegler, 2007]). A subset P ⊆ Rd is a sum of a
convex hull of a finite set of points plus a conical combination of vectors (V-polyhedron)

P(Vfinite,Vcone) = conv(Vfinite)⊕ cone(Vcone) (3.49)

for some Vfinite ∈ Rd×m′ and Vcone ∈ Rd×m′′ if and only if it is an intersection of closed
halfspaces (H-polyhedron)

P(AH, bH) = {λ : AHλ ≤ bH} (3.50)

for some AH ∈ Rm×d and bH ∈ Rm.

With this knowledge on polyhedral geometry, the model of each contact (given by (3.42)
or (3.44)) can be written as a polyhedron Pi(iAi, bi) =

{
iF i : iAi

iF i ≤ bi
}
∀i = 1 . . . ψsup.

The procedure for computing the overall wrench from the individual polyhedron Pi is
schematically depicted in Fig. 3.11. The first step brings all contact models from their
respective contact frames Ti to a common static frame as the world frame W, for in-
stance. This can be achieved by shifting each contact wrench iF i from Ti to W (see
Section 3.1), which corresponds to multiplying iAi with Ad(I,xi)

T from the right. The
second step exploits the Minkowsi-Wyel-Duality (Theorem 3.1) to convert all contact
models from the H- to the V-representation. The latter permits combination of the in-
dividual polyhedra P(Vi,finite,Vi,cone) into one single polyhedron P(Vfinite,Vcone) via the
Minkowsi-Sum (Definition 3.8). Note that P(Vfinite,Vcone) specifies the set of overall
wrenches that are producible with the given contact configuration and contact model.
To facilitate a simple and fast evaluation, the resulting polyhedron is converted back to
the H-representation P(A, b).

A brute-force approach for testing if a desired overall wrench at the center of mass is
producible with the supporting contacts is to try to solve the wrench distribution problem
by the means detailed in Chapters 6, 7, and 8. If the numerical optimization is able to
find a solution, the wrench is producible. However, with this method it is only possible to
check if one particular wrench is feasible. It does not provide the complete set of producible
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Contact frame Ti World frame WWorld frame W

Pi(
iAi, bi) Pi(

iAi Ad(I,xi)
T , bi) Pi(Vi,finite,Vi,cone)

P(Vfinite,Vcone)P(A, b)

⊕ Minkowski-
sum

H-representation V-representation

Figure 3.11: Procedure for obtaining the set P of feasible vectors for the resulting support
wrench F res

sup from the contact models Pi.

overall wrenches as the method described in Fig. 3.11 does. The latter method requires
some numerical effort to convert the polyhedra from the V- into the H-representation and
vice versa. For example, this can be done using the cdd -library by Fukuda and Prodon
[1996], which is also available as part of the Multi-Parametric Toolbox 3.0 (MPT3) for
Matlab/Simulink [Herceg et al., 2013]. Nevertheless, the numerical effort needs only to be
invested once as long as all the involved frames (contact frames Ti and world frameW) are
stationary. This allows an offline computation of the resulting polyhedron P(A, b) as soon
as the contact configuration is known. Note that the obtained set of producible overall
wrenches P(A, b) is specified in the world frame. To check if a desired wrench given at the
CoM is feasible, it must be mapped toW via the transposed inverse adjoint Ad(I,xc)

−T ,
which yields

A Ad(I,xc)
−TF res

sup ≤ b. (3.51)

As the adjoint matrix depends on the configuration of the robot, it must be computed
online. However, multiplying A by Ad(I,xc)

T is inexpensive in terms of numerical effort.
As a consequence, the method presented in Fig. 3.11 is very efficient for performing a
large number of checks as is for instance required for planning or model predictive control.
In this work, the method is used to enable the humanoid robot TORO to lift and push
heavy loads, as detailed in Section 6.5. Recently, Orsolino et al. [2018] have proposed
an extension, which also includes torque limitations of the actuators. For the remainder
of this work, we make the assumption that the desired overall wrench at the center of
mass, which is required by the controllers presented in Chapters 6, 7 and 8, can always be
generated given the contact model (3.42):

Assumption 3.1 (Feasibility of the desired overall support wrench). The desired overall
support wrench F res

sup is always feasible with respect to the given contact configuration and
contact model.
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(a) Static balance of the CoM.
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(b) Converting Pτ into SSP.

Figure 3.12: Computation of the Support Polygon.

Furthermore, we make the assumption that the contact model is accurate enough to
ensure that the contacts do not lift off, tilt, or slide unintentionally:

Assumption 3.2 (Rigid contacts). The contact frames Ti do not move relative to the
contact surfaces Si attached to the environment.

The procedure shown in Fig. 3.11 also enables computation of a static support polygon
from P(A, b) for multiple contact surfaces with arbitrary locations and orientations, as
proposed in [Caron and Nakamura, 2015]. Let us consider the case in which the x- and
y-axis of the world frame W span the horizontal plane, as shown in Fig. 3.12a. According
to Definition 3.5, the support polygon comprises all CoM locations xc = ( xc,x xc,y xc,z )T ,
projected onto the x-y-plane ofW, that enable static balancing without violating P(A, b).
The wrench that needs to be applied at W in order to compensate for the gravity force of
the CoM is given by F = ( 0 0 m‖g0‖ τx τy 0 ). The torques

τx = −m ‖g0‖xc,y

τy = +m ‖g0‖xc,x
(3.52)

arise due to the lever arms xc,x and xc,y, respectively. As the torques τx and τy are limited
by P(A, b), the intersection

Pτ (Aτ , bτ ) = P(A, b) ∪ {F : fx = fy = τz = 0, fz = m ‖g0‖} (3.53)

is computed. The resulting polyhedron Pτ (Aτ , bτ ) is two-dimensional and specifies the
feasible torques about the x- and y-axis of W in the form of

Aτ

(
τx
τy

)
≤ bτ . (3.54)

Inserting (3.52) allows reformulating of Pτ as a function of the CoM locations xc,x and xc,y,
as schematically depicted in Fig. 3.12b:

m ‖g0‖Aτ

(
−xc,y

+xc,x

)
≤ bτ . (3.55)

Consequently, the static support polygon is given by

SSP =

{(
x
y

)
: m ‖g0‖Aτ

(
−xc,y

+xc,x

)
≤ bτ

}
(3.56)

limiting the projected CoM location xc on the horizontal plane of W.
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CHAPTER 4

Cartesian Compliance

This chapter defines a general Cartesian Compliance, which is used by the controllers
presented in Chapters 6 and 7. Let us consider an arbitrary frame FA in six-dimensional
Cartesian space, as shown in Fig. 4.1. The goal of a Cartesian compliance is to implement
a desired stiffness and damping between both frames by applying the wrenches F cpl

A ∈ R6

at FA and F cpl
D ∈ R6 at FD, respectively. The position and orientation of both frames

relative to the world frame W are denoted by xA ∈ R3, RA ∈ SO(3) and xD ∈ R3,
RD ∈ SO(3), respectively. The velocities of both frames are given by vA = ( ẋTA ωTA )T

and vB = ( ẋTD ωTD )T with

S(ωA) = ṘAR
T
A

S(ωD) = ṘDR
T
D

(4.1)

according to (3.6). Note that all position and velocity vectors are expressed in world

coordinates as also are the wrenches F cpl
A and F cpl

D . The control error is defined as

xDA = xA − xD
RDA = RT

DRA,
(4.2)

which results in the Cartesian velocity

vDA =

(
ẋDA
ωDA

)
= vA − vD. (4.3)

A Cartesian Compliance consists of a positive definite potential function V K(xDA,RDA)
∈ R and a negative definite power dissipation PD(xDA,RDA, ẋDA,ωDA) ∈ R, which can
be interpreted as the combination of a six-dimensional spring with a six-dimensional
damper. The stiffness is deduced independently for translation and rotation in Sections 4.1
and 4.2. The damping term is defined in Section 4.3 simultaneously governing translation
and rotation. An overview of the architecture is given in Table 4.1. The respective stiffness
matrices Ktrans,Krot ∈ R3×3 as well as the damping matrix D′ ∈ R6×6 are assumed to be
symmetric, constant, and positive definite. The parameter matrices are given with respect
to the axes of a reference frame Fref, whose orientation is given by Rref ∈ SO(3). Usually,
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4 Cartesian Compliance

W

FAFD

xA
xD

FAFD

Figure 4.1: Cartesian compliance connecting frame FA with FD.

Table 4.1: Architecture of a Cartesian compliance.

Potential Wrench at
Derivation or Power FA FD

Trans. stiffness Section 4.1 V K,trans F cpl,K,trans
A F cpl,K,trans

D

Rot. stiffness Section 4.2 V K,rot F cpl,K,rot
A F cpl,K,rot

D

Damping Section 4.3 PD F cpl,D
A F cpl,D

D

the reference frame is selected to be identical to either W, FA, or FD. If a moving frame
is selected as reference (FA or FD), then the parameter matrices become time variant as
soon as they are rotated from Fref into world frame W (see Table 4.2). The associated
rotational velocity ωref ∈ R3 is given by

S(ωref) = ṘrefR
T
ref. (4.4)

Combining the wrenches of each element leads to the total wrench of the Cartesian com-
pliance

F cpl
A = F cpl,K,trans

A + F cpl,K,rot
A + F cpl,D

A

F cpl
D = F cpl,K,trans

D + F cpl,K,rot
D + F cpl,D

D

(4.5)

acting on frame FA and FD, respectively. An overview of the generated wrenches is given
in Table 4.1.

The translational and rotational stiffnesses are defined by two non-negative poten-
tials V K,trans(xDA,RDA) ∈ R and V K,rot(xDA,RDA) ∈ R as a function of the control
errors xDA and RDA, which serve as a storage function for the elastic deformation en-
ergy. The generated wrenches are determined by the differential of V K,trans(xDA,RDA)

Table 4.2: Overview of the Parameterization of a Cartesian compliance.

Size Parameter in Fref Parameter in W
Trans. stiffness R3×3 Ktrans RrefKtransR

T
ref

Rot. stiffness R3×3 Krot RrefKrotR
T
ref

Damping R6×6 D′ D = diag(Rref,Rref)D
′ diag(Rref,Rref)

T
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4 Cartesian Compliance

and V K,rot(xDA,RDA) with respect to the position and orientation of the frames FA
and FD. To circumvent the problem of deriving the potential functions with respect
to a rotation matrix, the wrenches can also be expressed as the derivatives of V̇ K,trans

and V̇ K,rot with respect to the velocities vA, vD, and vW :

F cpl,K,trans
A = −∂V̇ K,trans/∂vA F cpl,K,rot

A = −∂V̇ K,rot/∂vA

F cpl,K,trans
D = −∂V̇ K,trans/∂vD F cpl,K,rot

D = −∂V̇ K,rot/∂vD.
(4.6)

Consequently, computing the time derivatives

V̇ K,trans = −vTA F cpl,K,trans
A − vTD F cpl,K,trans

D

V̇ K,rot = −vTA F cpl,K,rot
A − vTD F cpl,K,rot

D

(4.7)

allows identification of the wrenches acting on FA and FD.
Various approaches for designing the damping of a Cartesian compliance can be found,

as for instance methods based on a diagonalization or factorization of the system dy-
namics [Albu-Schäffer et al., 2004]. For simplicity, this work focuses on a damping design
featuring constant damping matrices D′ ∈ R6×6 (with respect to Fref) implementing vis-
cous damping. The damping elements are derived in Section 4.3 by defining a non-positive
rate of dissipated energy

PD = vTA F
cpl,D
A + vTD F

cpl,D
D (4.8)

leading to the associated wrenches on FA and FD.
The wrenches generated by the stiffness elements are deduced in Sections 4.1 and 4.2.

The overview in Table 4.3 reveals that the wrenches F cpl,K,trans
D and F cpl,K,rot

D acting on FD
are connected via a mapping ΩAD ∈ R6×6 to the wrenches F cpl,K,trans

A and F cpl,K,rot
A acting

on frame FA. The damping design in Section 4.3 facilitates the same mapping, which yields

F cpl
D = −ΩT

ADF
cpl
A (4.9)

for the combined wrench on FA and FD. The mapping ΩAD ∈ R6×6 is specified in Table 4.4
depending on the selected reference frame. Consequently, a Cartesian compliance can be
formulated in more general terms as

F cpl
A = −(∇V K)T −D (vA −ΩADvD)

F cpl
D = +ΩT

AD (∇V K)T + ΩT
ADD (vA −ΩADvD)

(4.10)

with ∇V K denoting the differential ∇V K = ∂V̇ K/∂vA of the overall (positive definite)
potential V K = V K,trans + V K,rot. The damping term is abbreviated with the positive
definite damping matrix D = diag(Rref,Rref)D

′ diag(Rref,Rref)
T , which consists of the

constant matrix D′ rotated from the reference frame Fref to the world frame W. The
power balance of the compliance simplifies to

V̇ K = − vTA F cpl
A︸ ︷︷ ︸

port at FA

− vTD F cpl
D︸ ︷︷ ︸

port at FD

− (vA −ΩADvD)T D (vA −ΩADvD)︸ ︷︷ ︸
dissipation

,
(4.11)

by inserting (4.5) and (4.10) into (4.7). The first two terms represent the power ports of
the compliance, which allow the exchange of energy with both frames FA and FD. The
third term represents the power PD = −(vA −ΩADvD)T D (vA −ΩADvD) ≤ 0, which is
dissipated by damping.
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4.1 Translational Stiffness

Table 4.4: Mapping between the wrenches generated by a Cartesian compliance.

Parameters in ... frame W frame FA frame FD
ΩAD = . . .

[
I 0
0 RAR

T
D

]
Ad(I,xAD) Ad(I,xAD)

A Cartesian compliance can be visualized, for instance, in the form of a bond-graph
[Duindam et al., 2009] or an electrical circuit, as shown in Fig. 4.2. If the compliance is
considered as a two-port system (Fig. 4.2a), then the power ports in (4.11) are given on the
left- and right-hand side of the circuit. The deformation energy is stored in the capacitor
representing the potential function V K . The resistor represents the power dissipation PD

via the damping term. In most cases, the desired frame or set point is specified via
software, which means that only the wrench F cpl

A needs to be implemented, while F cpl
D can

be omitted. This simplification means that the two-port system of Fig. 4.2a can be reduced
to a single-port system, as shown in Fig. 4.2b. The only power port that remains is the
one at frame FA. A motion of the set point/desired frame is represented by the current
source on the right-hand side of the circuit. As a consequence, the set point, represented
by the only active component inside the circuit, can be used to inject or remove energy
from the Cartesian compliance.

F
c
p
l

A

F
c
p
l

D

vA vDΩADvD

v
A
−

Ω
A
D
v
D

VK

D
ΩAD

(a) Two-port system.

F
c
p
l

A

vA

Ω
A
D
v
D

v
A
−

Ω
A
D
v
D VK

D

(b) One-port system.

Figure 4.2: Cartesian compliance represented as an electrical network.

4.1 Translational Stiffness

Let us define the elastic potential for deriving the translational stiffness as

V K,trans =
1

2
xTDA

(
RrefKtransR

T
ref

)
xDA (4.12)

with the time derivative

V̇ K,trans = ẋTDA
(
RrefKtransR

T
ref

)
xDA + xTDA

(
ṘrefKtransR

T
ref

)
xDA

= ẋTDA
(
RrefKtransR

T
ref

)
xDA + xTDA S(ωref)

(
RrefKtransR

T
ref

)
xDA

= ẋTDA
(
RrefKtransR

T
ref

)
xDA − ωTref S(xDA)

(
RrefKtransR

T
ref

)
xDA

(4.13)
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Fref

V K,trans = const

xDA

ωref

−∇V K,trans

Figure 4.3: Translational stiffness with an elliptical potential.

considering (4.4). Inserting (4.3) yields

V̇ K,trans = ẋTA
(
RrefKtransR

T
ref

)
xDA

− ẋTD
(
RrefKtransR

T
ref

)
xDA

− ωTref S(xDA)
(
RrefKtransR

T
ref

)
xDA.

(4.14)

Comparing (4.14) with (4.7) reveals that the translational stiffness generates a force act-
ing on the frames FA and FD, but also on the reference frame. The latter vanishes
if Ktrans equals a scaled identity matrix because of S(xDA)

(
RrefKtransR

T
ref

)
xDA =

S(xDA)xDA = 0. This effect can be explained by Fig. 4.3. If Ktrans is chosen differently,
the contour lines of the potential V K,trans no longer represent a sphere in three dimensional
space. Rotating the reference frame also rotates the contour lines, which results in a change
of V K,trans for a constant control error xDA. This change of the energy stored inside the
spring is transferred via the power port ωTref τ

cpl,K,trans
ref resulting in a torque τ cpl,K,trans

ref on
the reference frame.

If the reference frame is chosen to be W, then Rref = I holds and ωref = 0 because of
the world frame being stationary. The wrenches can be identified as

F cpl,K,trans
A =

(
−Ktrans xDA

0

)

F cpl,K,trans
D =

(
Ktrans xDA

0

) (4.15)

by comparing (4.14) with (4.7). If the reference frame is chosen to be FA (Rref = RA,
ωref = ωA), then the wrenches can be identified as

F cpl,K,trans
A =

(
−
(
RAKtransR

T
A

)
xDA

S(xDA)
(
RAKtransR

T
A

)
xDA

)

F cpl,K,trans
D =

((
RAKtransR

T
A

)
xDA

0

) (4.16)

by comparing (4.14) with (4.7). If the reference frame is chosen to be FD (Rref = RD,
ωref = ωD), then the wrenches can be identified as

F cpl,K,trans
A =

(
−
(
RDKtransR

T
D

)
xDA

0

)

F cpl,K,trans
D =

( (
RDKtransR

T
D

)
xDA

S(xDA)
(
RDKtransR

T
D

)
xDA

) (4.17)
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4.2 Rotational Stiffness

W

FAFD

(a) Ktrans in FA.

W

FAFD

(b) Ktrans in FD.

W

FAFD

(c) Ktrans in W.

Figure 4.4: Physical Interpretation of a translational stiffness featuring a diagonal Ktrans.

by comparing (4.14) with (4.7).

A physical interpretation of these results is given in Fig. 4.4. In the case of a diagonal
stiffness matrixKtrans, both frames are connected via a series of uniaxial springs represent-
ing the diagonal entries (or eigenvalues) of Ktrans. If Ktrans is specified in frame FA (see
Fig. 4.4a), then the axes of the springs are aligned with the base vectors of FA. This can
be interpreted as a mechanism holding the uniaxial springs, which is attached to a virtual
body carrying frame FA. Frame FD is connected to the mechanism via a rotational joint.
Therefore, all forces acting on FD are balanced by a force and a torque on FA, as indicated
by (4.16). The case of Ktrans being specified in frame FD can be analogously explained
using the mechanism shown in Fig. 4.4b. If Ktrans is expressed in the world frame, the
mechanism becomes more complicated, as shown in Fig. 4.4c. The set of uniaxial springs
is connected to the frames FA and FD via rotational joints. The orientation of the springs
is ensured via a connection with the world frame blocking a rotational motion. Of course,
the connection with the world frame can transmit loads in the form of a torque. However,
this torque does not contribute to the power balance of the translational stiffness because
the world frame is not moving.

4.2 Rotational Stiffness

In [Ott et al., 2011] and [Henze et al., 2016b], the rotational stiffness is defined via a
positive definite potential function based on the quaternion representation of the rotation
error RDA. Adapting the potential energy to our requirements and notation yields

V K,rot = 2~ηT RT
DRrefKrotR

T
refRD ~η (4.18)
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4 Cartesian Compliance

with η and ~η denoting the scalar and the vector part of the unit quaternion η repre-
senting RDA. It was shown by Zhang and Fasse [2000] that the potential can also be
formulated by using the trace of the rotation matrix RDA directly. Although both formu-
lations lead to the same wrench, a numerical analysis conducted by the author of this work
revealed that the matrix potential features a higher numeric precision for small rotation
errors RDA ≈ I. In preparation of the next steps, let us first introduce the following
identities:

Theorem 4.1. Let A ∈ Rn×m and B ∈ Rm×n be two arbitrary matrices. Then the
following identity holds [Gruber, 2013]:

tr(AB) = tr(BA). (4.19)

Theorem 4.2. Let A = [ a1...an ] ∈ Rn×n and B = [ b1...bn ] ∈ Rn×n be two arbitrary
matrices. Then the following identity holds [Gruber, 2013]:

tr(ATB) =

n∑

j=1

aTj bj. (4.20)

Theorem 4.3. Let A ∈ Rn×n and B ∈ Rn×n be two arbitrary matrices. Then the
following identity holds [Zhang and Fasse, 2000]:

tr(AB) = tr(sy(A) sy(B)) + tr(as(A) as(B)) (4.21)

with sy(A) = 1
2(A+AT ) and as(A) = 1

2(A−AT ) denoting the symmetric and asymmetric
part of a matrix. If A = AT is symmetric and B = −BT skew-symmetric, this simplifies
to tr(AB) = 0.

As shown by Zhang and Fasse [2000], the potential function (4.18) can also be formu-
lated using the trace of the rotation matrix RDA

V K,rot = − tr
(
RT
DA (RT

DRref K̃ RT
refRD)

)
+ tr(K̃)

= − tr
(
RT
A (Rref K̃ RT

ref)RD

)
+ tr(K̃)

(4.22)

considering (4.2). The proof that (4.18) and (4.22) are identical is given in Appendix 11.1.
The term K̃ = 1

2 tr(Krot)I −Krot denotes the so-called “co-stiffness matrix”, which is
constant, symmetric, and expressed in the same coordinates asKrot. Again, Rref is used to
rotate the co-stiffness matrix K̃ from the reference frame Fref into the world frameW. The
term tr(K̃) represents a constant offset to ensure the positive definiteness of the potential,
as shown in Appendix 11.1. According to [Fasse, 1997], the potential energy can be
interpreted as a measure of misalignment between the base vectors of RA = [ rA,1 rA,2 rA,3 ]
and RD = [ rD,1 rD,2 rD,3 ]. This becomes obvious if (4.22) is reformulated as

V K,rot = − tr
(
RT
A (Rref K̃ RT

ref)RD

)
+ tr(K̃)

= −
3∑

j=1

rTA,j (Rref K̃ RT
ref) rD,j + tr(K̃)

(4.23)

using Theorem 4.2. The rotated co-stiffness matrix (Rref K̃ RT
ref) serves as a weighting

factor for penalizing the misalignment between rA,j and rD,j .
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4.2 Rotational Stiffness

Computing the time derivative of (4.22) using (4.1) and (4.4) yields

V̇ K,rot =− tr
(
Ṙ
T
A (Rref K̃ RT

ref)RD

)
− tr

(
RT
A (Ṙref K̃ RT

ref)RD

)

− tr
(
RT
A (Rref K̃ Ṙ

T
ref)RD

)
− tr

(
RT
A (Rref K̃ RT

ref) ṘD

)

= + tr
(
RT
A S(ωA) (Rref K̃ RT

ref)RD

)

− tr
(
RT
A S(ωref) (Rref K̃ RT

ref)RD

)

+ tr
(
RT
A (Rref K̃ RT

ref)S(ωref)RD

)

− tr
(
RT
A (Rref K̃ RT

ref)S(ωD)RD

)
.

(4.24)

Theorem 4.1 allows reordering of the matrices into

V̇ K,rot = + tr
(
S(ωA) (Rref K̃ RT

ref)RDR
T
A

)

− tr
(
S(ωref) (Rref K̃ RT

ref)RDR
T
A

)

+ tr
(
S(ωref)RDR

T
A (Rref K̃ RT

ref)
)

− tr
(
S(ωD)RDR

T
A (Rref K̃ RT

ref)
)

.

(4.25)

Exploiting Theorem 4.3 with as(S(•)) = S(•) and sy(S(•)) = 0 leads to

V̇ K,rot = + tr
(
S(ωA) as(RrefK̃ RT

refRDR
T
A)
)

− tr
(
S(ωref) as(RrefK̃ RT

refRDR
T
A)
)

+ tr
(
S(ωref) as(RDR

T
ARrefK̃ RT

ref)
)

− tr
(
S(ωD) as(RDR

T
ARrefK̃ RT

ref)
)

.

(4.26)

It can be easily verified that (4.7) can be rewritten as

V̇ K,rot =
1

2
tr
(
S(ωA)S(τ cpl

A )
)

+
1

2
tr
(
S(ωD)S(τ cpl

D )
)

, (4.27)

which allows it to be compared with (4.26). If the reference frame is chosen to be W
(Rref = I, ωref = 0), then the torques can be identified as

S(τ cpl,K,rot
A ) = +2 as(K̃ RDR

T
A) = +K̃ RDR

T
A −RAR

T
D K̃

S(τ cpl,K,rot
D ) = −2 as(RDR

T
A K̃) = −RDR

T
AK̃ + K̃ RAR

T
D

= −
(
RAR

T
D

)T (
K̃ RDR

T
A −RAR

T
D K̃

) (
RAR

T
D

)
(4.28)

by comparing (4.26) with (4.27). If the reference frame is chosen to be FA (Rref = RA,
ωref = ωA), then the torques can be identified as

S(τ cpl,K,rot
A ) = +2 as(RD K̃ RT

A)

S(τ cpl,K,rot
D ) = −2 as(RD K̃ RT

A)
(4.29)
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4 Cartesian Compliance

by comparing (4.26) with (4.27). If the reference frame is chosen to be FD (Rref = RD,
ωref = ωD), then the torques can be identified as

S(τ cpl,K,rot
A ) = +2 as(RD K̃ RT

A)

S(τ cpl,K,rot
D ) = −2 as(RD K̃ RT

A)
(4.30)

by comparing (4.26) with (4.27). In conclusion, the rotational stiffness generates torques
acting on the frames FA and FD, which can be assembled from the cross product ma-
trix S(•) in (4.28), (4.29), or (4.30), respectively.

4.3 Damping

The derivation of the stiffness in Sections 4.1 and 4.2 revealed that the wrenches F cpl,K,trans
A

and F cpl,K,rot
A are connected to F cpl,K,trans

D and F cpl,K,rot
D via the mapping ΩAD specified

in Table 4.4. To simplify the notation of the following chapters, the damping is designed
such that it features the same mapping. In contrast to the stiffness terms, the damping is
designed for translation and rotation simultaneously.

Let us define the dissipated power for deducing the translational damping as

PD =− (vA −ΩAD vD)T
[
Rref 0
0 Rref

]
D′
[
Rref 0
0 Rref

]T
(vA −ΩAD vD)

=− vTA
[
Rref 0
0 Rref

]
D′
[
Rref 0
0 Rref

]T
(vA −ΩAD vD)

+ vTD ΩT
AD

[
Rref 0
0 Rref

]
D′
[
Rref 0
0 Rref

]T
(vA −ΩAD vD)

(4.31)

taking (4.3) into consideration. If the reference frame is chosen to be W (Rref = I), then
the wrenches can be identified as

F cpl,D
A = −D′ (vA −ΩAD vD)

F cpl,D
D = ΩT

ADD
′ (vA −ΩAD vD)

(4.32)

by comparing (4.31) with (4.8). If the reference frame is chosen to be FA (Rref = RA),
then the wrenches can be identified as

F cpl,D
A = −

[
RA 0
0 RA

]
D′
[
RA 0
0 RA

]T
(vA −ΩAD vD)

F cpl,D
D = ΩT

AD

[
RA 0
0 RA

]
D′
[
RA 0
0 RA

]T
(vA −ΩAD vD)

(4.33)

by comparing (4.31) with (4.8). If the reference frame is chosen to be FD (Rref = RD),
then the wrenches can be identified as

F cpl,D
A = −

[
RD 0
0 RD

]
D′
[
RD 0
0 RD

]T
(vA −ΩAD vD)

F cpl,D
D = ΩT

AD

[
RD 0
0 RD

]
D′
[
RD 0
0 RD

]T
(vA −ΩAD vD)

(4.34)

by comparing (4.31) with (4.8).
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CHAPTER 5

Torque-Controlled Humanoid Robot TORO

The control approaches presented in this work are designed for the humanoid robot TORO,
but can also be deployed on other humanoid robots featuring torque-controlled joints
and multiple limbs. Quadrupeds are also a potential target platform, as the approaches
from Chapters 6 and 7 are able to handle an arbitrary number of contacts. In this work,
the control approaches are evaluated through several experiments with the humanoid
Robot TORO developed by the German Aerospace Center (DLR). An overview of the
system architecture is given below; further details can be found in [Henze et al., 2014b,
Englsberger et al., 2014, Ott et al., 2017].

5.1 Hardware Description

The TOrque-controlled humanoid RObot TORO shown in Fig. 5.1 has been developed
by the German Aerospace Center (DLR) for conducting research on walking and multi-
contact balancing [Henze et al., 2014b, Englsberger et al., 2014]. In the current version,
TORO features 39 degrees of freedom in total, a height of 1.74 m, and a weight of 76.4 kg
The 25 joints located in the legs, arms, and hip are based on the technology of the DLR-
KUKA LBR (Lightweight robot arm), and can be operated both in position and torque-
controlled mode [Albu-Schäffer et al., 2007]. The neck comprises two DoFs, which are
implemented with position-controlled servo motors by DYNAMIXEL. The robot has two
prosthetic hands from Touch Bionics (i-limb ultra), each providing six DoFs.

In terms of sensing, TORO features position and torque sensors in each joint based
on the LBR technology. Besides this, TORO is equipped with two 6-axis force-torque
sensors (FTS), which are located between the feet and the ankles (see Fig. 5.1) in order
to measure the contact wrenches acting on the feet. Furthermore, the chest contains
an Inertial Measurement Unit (IMU) that provides the orientation, angular velocity, and
linear acceleration of the torso. The head contains three camera systems for localization
and object detection.

To obtain an autonomous operation, all data processing and controls are done on-board:
The low-level joint control is incorporated into the electronics of each LBR joint module
[Albu-Schäffer et al., 2007]. The high-level control is executed on a real-time computer in
the backpack, which provides an Intel(R) Core(TM) i7-4700EQ CPU with four cores and
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Figure 5.1: Overview of the kinematics and the main components of TORO.

utilizes the operating system Linux with the PREEMPT RT patch. The second computer
in the backpack is used for several supplementary tasks without a real-time requirement,
such as the communication with the hands or the neck servo motors. The third computer
is located in the head and is reserved for vision processing. In addition to the computers,
the backpack also contains two batteries that can power the complete robot for roughly
one hour, allowing for a completely autonomous operation of the system.

During the experiments presented in this work, all 25 LBR joints are operated in torque-
controlled mode, which allows the robot to resolve the wrench distribution problem arising
from balancing on multiple contacts (see Section 3.3). The only exception is the experiment
presented in Section 8.1, where the lower body is position-controlled. Although the head
is considered for computing the dynamic model (3.20), it is not actively used for controls.
In fact, the two servos motors are only utilized for orienting the cameras of the head. The
DoFs in the hands allow for the opening and closing of the fingers in order to perform
grasping operations such as picking up an object or holding onto a handrail. Note that
all experiments presented in this work assume a unilateral point contact for the hands
according to Section 3.4.3. In case the presented control approaches are not evaluated in
experiment but in simulation, the latter is conducted with OpenHRP by Kanehiro et al.
[2002].

The proposed control approaches are implemented in Matlab/Simulink, using qpOASES
(version 2.0) by Ferreau et al. [2008, 2014] for solving the constraint quadratic optimiza-
tion problem (cQP) presented in Chapters 6, 7, and 8. The controller is computed
at a rate of 1 kHz, while the low-level joint controller is executed at a speed of 3 kHz
[Albu-Schäffer et al., 2007]. Videos of the experiments can be found on the YouTube chan-
nel of the Institute of Robotics and Mechatronics at DLR [RMC] or can be downloaded
from the publishers of the corresponding contributions.
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5.2 Base Frame Estimation

5.2 Base Frame Estimation

The performance of a balancing controller is directly linked to the quality of the infor-
mation provided on the state of the floating base of the robot. This section presents an
algorithm, which we first reported in [Henze et al., 2016b] for estimating the state of the
base frame B using kinematic information and data from the IMU located in TORO ’s
chest (see Fig. 5.1). As soon as the state of the base frame B (here the hip) is known,
one can compute the state of the center of mass frame C, as detailed in Section 3.2.2. In
contrast to [Stelzer et al., 2012, Bloesch et al., 2013] who proposed Kalman filters for state
estimation, our method [Henze et al., 2016b] targets the direct (lag-free) estimation of the
base frame and its velocity from contact information, kinematics, and IMU measurements.

Let us assume that all support contacts (i = 1 . . . ψsup) are in contact with a rigid
environment, which leads to v̇sup = vsup = 0 (see Assumption 3.2). Furthermore, it is
assumed that the poses of all contacts given by xi and Ri are well-known with respect
to the world frame W. Then, each contact (xi, Ri) can be used to compute exactly one
estimate for the base frame B by using the kinematic information of the robot (q, q̇).
Each estimation provides a value for xb, ẋb, Rb and ωb, representing the whole state
of the base frame. Another estimate for Rb and ωb is provided by an on-board IMU
attached to the base of the robot. In order to reduce the influence of uncertainties and
measurement noise, the information provided by the different data sources (contacts and
IMU) is averaged according to the scheme sketched in Fig. 5.2. The method consists of
four steps that sequentially compute Rb, ωb, xb and ẋb, in this order.

The computation of Rb comprises two steps: First, the estimates provided by the con-
tacts are averaged based on Appendix 11.2. Here, αi ∈ [0, 1] with

∑ψ
i=1 αi = 1 represent

the weights that determine the influence of each contact on the resulting mean orienta-
tion. The result is then combined with the base orientation estimated by the on-board
IMU. As the IMU is operated in a rather noisy environment in terms of electromagnetic
interference, it is not possible to evaluate the earth’s magnetic field properly. Thus, the
orientation measured by the IMU can show a drift about the vertical axis of the world
frame. In order to remove the drift, the estimation provided by the IMU and the average
provided by the contacts are both decomposed into two consecutive rotations1. The first
one, Rver, is a rotation about the vertical axis of the world frame W. The second one,
Rhor, is a rotation about an axis lying in the horizontal plane of W. The horizontal rota-
tions are averaged based on the weight αIMU ∈ [0, 1] (see Appendix 11.2) that determines
the trust given to the IMU data. Then, the result is composed with the vertical estimate
provided by the kinematics in order to provide an estimate for the overall orientation Rb

of the base frame. The vertical rotation provided by the IMU is not processed any further
because it is compromised by the aforementioned drift.

The computation of ωb consists of two analogous steps: First, the estimates provided
by the contacts are averaged based on the weights αi, which can be used to specify the
confidence in each contact. Afterwards, the result is averaged with the estimation of ωb
provided by the IMU using the weight αIMU. The computation of xb and ẋb is much sim-
pler, as the only relevant source of information is the kinematics. For both computations,
the estimates are averaged based on the weights αi.

1This decomposition was previously used in [Fritsch et al., 2013] for attitude control in quadrotor heli-
copters.
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Figure 5.2: Algorithm used for estimating the state of the base frame [Henze et al., 2016b].

In order to increase accuracy, the algorithm shown in Fig. 5.2 computes Rb, ωb, xb,
and ẋb in this exact order. For instance, computing the estimate for ωb from the contact
information requires the base orientation Rb. To minimize a propagation of errors, the
computation of ωb utilizes the averaged base orientation instead of the individual estimates
provided by kinematics or the IMU. Analogously, the averaged angular velocity ωb is used
for computing xb and ẋb.

By adapting the weights αi and αIMU, the algorithm can consider the reliability of each
type of sensor information. If the parameter αIMU is set to αIMU = 1, then the algorithm
only uses the information about the orientation provided by the IMU. This corresponds
to the assumption of the balancing contacts being point contacts. The opposite scenario
is αIMU = 0, which causes the algorithm to rely exclusively on the kinematic information.
This corresponds to the assumption of non-rotating contact surfaces. Besides this, if one
contact surface lifts off from the environment, then the corresponding weight must be set
to αi = 0.
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5.2 Base Frame Estimation

Table 5.1: Parameterization of the base frame estimation used for the experiments pre-
sented in Chapters 6 and 7.

Available Contacts Parameters
FootR FootL KneeR KneeL αFootR αFootL αKneeR αKneeL

yes yes optional optional 0.5 0.5 0 0
yes no optional optional 1 0 0 0
No yes optional optional 0 1 0 0

no no yes yes 0 0 0.5 0.5
no no yes no 0 0 1 0
no no no yes 0 0 0 1

For instance, the experiments presented in Chapters 6 and 7 only evaluate the infor-
mation on the orientation provided by the IMU (αIMU = 1) in order to obtain a higher
robustness against uncertainties of the floor (see e. g. the experiment in Fig. 6.5). The
contacts are only used to obtain information on the translation of the base. The experi-
ments do not evaluate the hand contacts (αHandR = αHandL = 0) because they are not
very reliable due to the uneven surface of the palm (see Fig. 3.8a). Instead, the algorithm
exploits the contacts at the feet or the knees, as shown in Table 5.1. However, the contacts
at the feet are preferred due to a higher robustness.

Note that the algorithm presented above requires xi and Ri to be known. During the
initialization of the controller, one can choose the world frame arbitrarily but fixed to the
environment, thus leading to an initial xi and Ri. In case of repositioning an end-effector
or contact, xi and Ri must be updated before the balancing contact is used again for
estimating the base frame. To achieve this, the pose of the contacts relative to the world
frame W can be measured by using the estimation of the base frame B provided by the
other contacts and the IMU. Of course, the corresponding weight must be set to αi = 0
until the update is completed.
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CHAPTER 6

Whole-Body Control for Multi-Contact Balancing

The presented control framework for passivity-based multi-contact balancing originates
from the works of Ott et al. [2011], who developed a balancing controller for torque-
controlled, legged robots. The controller by Ott et al. [2011] features a Cartesian compli-
ance at the center of mass for stabilizing the robot and utilizes the legs for generating the
required support. We extended the concept in [Henze et al., 2016b] such that the formu-
lation does not only comprise the legs but also the arms of the robot, which yields to the
presented framework for Whole-Body Control (WBC) of humanoid robots. The frame-
work allows the robot to either use the end-effectors to generate the required support or
to interact with the environment (see support and interaction end-effectors as introduced
in Section 3.2.1).

Besides the generalization of the framework, we proposed several extensions to the
whole-body controller in [Henze et al., 2016b, 2018, Abi-Farraj et al., 2019], which are
compiled into this chapter. The extension to hierarchical whole-body balancing reported
in [Henze et al., 2016a, 2018] is presented separately in Chapter 7.

For instance, Section 6.1 presents the basic concept of the whole-body controller for the
regulation case (MCB), which is extended to the tracking case in Section 6.3 (MCB+).
For both, the passivity and stability properties are discussed assuming a stationary ground
floor. The basic controller is extended in Section 6.4 (MCB-PC) in order to guarantee
passivity even on movable and deformable surfaces using the methods from the field of
Passivity Observer-Passivity Control (PO-PC). A method for handling interaction tasks
with high forces is presented in Section 6.5 (MCB-ACT) utilizing a suitable motion of
the CoM as compensation. The properties and performance of the control framework
are discussed for each variant in the corresponding sections with the help of experiments
conducted with the humanoid robot TORO (see Chapter 5).

6.1 Basic Concept (MCB)

The main goal of the presented control framework is to enable a humanoid robot to
maintain balance while performing a manipulation or interaction task. For this purpose,
it is assumed that all task frames are exclusively located at the end-effectors. Consequently,
the ψ end-effectors can be divided into the group of supporting end-effectors (1 ≤ i ≤ ψsup)
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Figure 6.1: Overview of the architecture of the MCB control framework.

and interaction end-effectors (ψsup + 1 ≤ i ≤ ψ). A method that can also handle task
frames located all over the robot’s body is presented in Chapter 7. As the presented
framework is able to balance on multiple contacts, it will be called Multi-Contact Balancing
controller (MCB) for the remainder of this manuscript. The controller consists of two
different components, as shown in Fig. 6.1: The upper branch shows the multi-contact
balancing controller for stabilizing the center of mass location, the hip orientation, and the
Cartesian pose of each interaction end-effector. In order to achieve this, several Cartesian
compliances generate a suitable set of wrenches, which are distributed to the end-effectors
and then mapped to the joint torques. The second component is a compliant null space
controller that stabilizes the redundant kinematics of the robot by generating torques that
are projected onto the null space. The torques of both components are added and applied
to the robot.

6.1.1 Controller Derivation

In order to maintain balance, the controller features a Cartesian compliance that stabilizes
the CoM frame C at a predefined location xc,d ∈ R3 and orientation Rc,d ∈ SO(3), which
e. g. can be provided by an external planning algorithm, as discussed in Section 6.6. As
already mentioned in Section 3.2.2, the CoM frame C has the same orientation Rc = Rb

as the hip, which ultimately means that the CoM compliance stabilizes the CoM location
and hip orientation. The wrench1 generated by the CoM compliance is given by

F cpl
c = −(∇V K

c )T −Dc ∆vc (6.1)

based on definition (4.10). The associated potential and damping matrix are denoted by
V K

c ≥ 0 and Dc ≥ 0, respectively. The velocity error is compressed into

∆vc = vc −Ωc vc,d (6.2)

1Note that the definition of a Cartesian compliance according to Chapter 4 features an opposite sign
compared to the definition used in [Henze et al., 2016b].
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with vc,d ∈ R6 denoting the desired Cartesian velocities of frame C. As the basic version of
the whole-body balancer is designed for the regulation case, vc,d equals zero. Analogously,
each interaction end-effector (ψsup + 1 ≤ i ≤ ψ) is stabilized by a Cartesian compliance
based on a given desired position xi,d ∈ R3 and orientation Ri,d ∈ SO(3). The corre-
sponding desired velocities are denoted by vi,d ∈ R6, which can be assumed to be zero for
the regulation case. Based on definition (4.10), the generated wrench is given by

F cpl
i = −(∇V K

i )T −Di ∆vi (6.3)

with ∆vi = vi −Ωi vi,d for all i satisfying (ψsup + 1) ≤ i ≤ ψ. The associated potential
and damping matrix are denoted by V K

i ≥ 0 and Di ≥ 0, respectively. For simplicity of
notation, the wrenches of the interaction compliances are stacked analogously to (3.17)
into

F cpl
int =




F cpl
(ψsup+1)

...

F cpl
ψ


 = −




(∇V K
(ψsup+1))

T

...
(∇V K

ψ )T




︸ ︷︷ ︸
(∇V Kint)T

−



Dψsup+1 . . . 0

...
. . .

...
0 . . . Dψ




︸ ︷︷ ︸
Dint




∆v(ψsup+1)
...

∆vψ



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∆vint

(6.4)
with V K

int = V K
(ψsup+1) + . . .+ Vψ. The velocity errors are combined into




∆v(ψsup+1)
...

∆vψ




︸ ︷︷ ︸
∆vint

=



v(ψsup+1)

...
vψ


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︸ ︷︷ ︸
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−




Ω(ψsup+1) . . . 0
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

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Ωint



v(ψsup+1),d

...
vψ,d




︸ ︷︷ ︸
vint

. (6.5)

The basic idea of the balancing controller is to use the support end-effectors to generate
suitable contact wrenches F sup that counteract the influence of gravity and the wrenches
of the CoM and interaction compliances. The first line of the system dynamics (3.20) and
of the mapping (3.24) suggests formulating this relationship via

AdTsup F sup = mg0 + F cpl
c +AdTint F

cpl
int . (6.6)

The right-hand side describes the wrench at the CoM frame C required for gravity com-
pensation and the Cartesian compliances. The left-hand side represents the wrench at
the CoM resulting from the support contacts. This equation is a direct consequence of
the fact that the DoFs of the center of mass are not actuated due to the floating base.
Instead, the support contacts must be used to generate the required wrench at the CoM.
Thus, condition (6.6) will be referred to as the “underactuation constraint”.

The balancing controller can be derived by formulating a desired dynamics for the
closed-loop system:

M

(
v̇c

q̈

)
+C

(
vc

q̇

)
=

(
F cpl

c

0

)
+

[
AdTsup

(J ′sup)T

]
(−F sup) +

[
AdTint

(J ′int)
T

]
F cpl

int + τ ext. (6.7)

The Cartesian compliance stabilizing the CoM frame C is directly applied at the CoM coor-
dinates. The desired or commanded end-effector wrenches are mapped via the transpose of
their respective Jacobian matrix to the configuration space, as suggested by (3.24). For in-

stance, the interaction compliances F cpl
int are mapped via the transpose of J int = [Adint J ′int ].
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The negative support wrenches (−F sup) are mapped analogously via the transpose of
J sup = [Adsup J ′sup ]. The negative sign in front of F sup might seem unusual at first glance,
but can be explained by comparing (6.7) with the system dynamics (3.20), which yields
the control law (

mg0 + F cpl
c

−τ

)
=

[
AdTsup AdTint

(J ′sup)T (J ′int)
T

](
F sup

−F cpl
int

)
. (6.8)

It can be easily verified, that the negative sign is necessary for the first line of the control
law to satisfy the underactuation condition (6.6). Another explanation is offered in Fig. 6.2:
It is customary in compliance control to define the commanded end-effector wrench as
the wrench that the robot exerts on the last body of the kinematic chain [Ott, 2008].
Consequently, the external and the commanded wrench are in equilibrium if and only
if F cpl

int = −F ext
int holds. However in balance control, the commanded contact wrench is

usually perceived as a wrench that the contact exerts on the robot, which is also known as
the Ground Reaction Force (GRF), as mentioned e. g. in [Wensing et al., 2013, Hyon et al.,
2007]. Therefore, the commanded and the external contact wrench are in equilibrium if
and only if F sup = F ext

sup holds.

As already mentioned in Section 3.3, the Contact Map AdTsup ∈ R6×6ψsup is subjective
but not injective for more than one contact (6ψsup > 6). Therefore, the controller can
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select F sup from a set of feasible solutions to generate the required overall wrench at the
center of mass, which is also known as the wrench distribution problem. This redundancy
in the space of the contact wrenches F sup can be resolved by computing the following
Constrained Quadratic Optimization Problem (cQP):

F opt = argmin
F

(
1

2
δTc Qcδc +

1

2
δTsupQsupδsup +

1

2
δTintQintδint

)
(6.9)

minimizing the residua

δc = AdT F −mg0 − F cpl
c (6.10)

δsup = F sup − F def
sup (6.11)

δint = F int + F cpl
int (6.12)

with respect to the inequality constraints

AiF i ≤ bi ∀ i = 1 . . . ψsup (6.13)

BτF ≤ τmax. (6.14)

Here, the commanded end-effector wrenches are stacked into F = ( F Tsup F Tint )T . The
residua within the cost function (6.9) are weighted with the symmetric and positive semi-
definite matrices Qc ∈ R6×6, Qsup ∈ R6ψsup×6ψsup , and Qint ∈ R6ψint×6ψint . The first
residuum (6.10) implements the underactuation condition (6.6). The second one (6.11)
regularizes the contact wrenches F sup to a default wrench distribution F def

sup ∈ R6ψsup ,
which is ideally provided by an external planning algorithm as part of the reference tra-
jectory (see Section 6.6). If there is no trajectory available, then F def

sup can also be set

manually. In this case, F def
sup and Qsup serve as tuning parameters for shifting the load be-

tween the support end-effectors. The third residuum (6.12) substitutes F cpl
int in (6.6) with

F cpl
int = −F int. The inequality constraint (6.13) ensures that all contact wrenches F sup sat-

isfy the contact model detailed in Section 3.4. A model of the actuators is given by (6.14)
limiting the maximum joint torque to τmax ∈ Rn using Bτ ∈ Rn×ψ .

Formulating (6.12) and (6.10) as soft constraints instead of hard constraints features
several advantages regarding the implementation, as discussed in Section 6.7. Besides
the practical aspects, the above formulation allows for a prioritization of the residua or
optimization objectives via the weighting matricesQc, Qsup, andQint (see Table 6.1). The
contact model (6.13) can be considered as the objective with the highest priority, as it will
always be satisfied by F . By choosing Qc � Qint � Qsup, the residuum δsup becomes the
goal with the lowest priority level. This means that the commanded contact wrenches F sup

will deviate from the default wrench distribution F def
sup if it is necessary for fulfilling δc ≈ 0

Table 6.1: Prioritization of the optimization objectives within the cQP.

Priority level Objective

1 (highest) AiF i ≤ bi and BτF ≤ τmax

2 δc ≈ 0
3 δint ≈ 0
4 (lowest) δsup ≈ 0
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and δint ≈ 0. By adjusting the weights inside Qsup, one can specify how much each

end-effector is allowed to deviate from F def
sup. If the optimization cannot find a solution

satisfying the contact model without violating the objectives δc ≈ 0 and δint ≈ 0, one of
them will be sacrificed to render the optimization problem feasible again. Sacrificing δc ≈ 0
or δint ≈ 0 corresponds to a modification of the required overall wrench at the center of
mass (right-hand side of (6.6)) such that the counteracting support wrench (left-hand side
of (6.6)) becomes feasible with respect to the contact model. It is debatable whether δc ≈ 0
or δint ≈ 0 should be sacrificed first, but as the CoM is crucial for balancing, it is probably
recommendable to assign the higher priority to the residuum δc (see Table 6.1).

Note that using the weighting matrices Qc, Qsup, and Qint does not result in a strict
prioritization of the optimization objectives in contrast to methods from the field of hier-
archical optimization. Here, the cQP is decomposed into a series of optimizations, each
representing one of the objectives. In order to achieve a prioritization, each objective is
projected onto the null space of all other objectives with a higher priority. The advan-
tage of this method is that the series of optimizations can be solved sequentially, which
is used for example in [Escande et al., 2014, Herzog et al., 2016] for planning and control
of humanoid robots. But as the task assignment of the end-effectors changes (e. g. dur-
ing locomotion), the size of the individual optimizations must be adjusted online. For
this particular reason, this work utilizes a non-strict hierarchy implemented via weighting
matrices because it allows for a formulation of the cQP (see Section 6.7.2), featuring a
constant size, which is independent of the task assignment. Furthermore, the weights can
be exploited to implement a smooth contact transition, as shown in Section 6.7.3.

For the remainder of this work, we make the following assumption to simplify the
discussion of the controller properties:

Assumption 6.1 (Fulfillment of δc ≈ 0 and δint ≈ 0). The residua δc and δint of the
constrained quadratic optimization problem (cQP) are always sufficiently fulfilled, such
that δc ≈ 0 and δint ≈ 0 hold.

This assumption implies that the commanded support wrenches F sup always comply
with their respective contact model (6.13) and actuator limitations (6.14). Thus, there
is no need for the optimization to violate the soft constraints (6.10) or (6.12). As a
consequence, it is always possible to generate the required overall support wrench F res

sup,
as demanded by Assumption 3.1.

Remark 6.1. Another interesting property is revealed if the wrench distribution problem
is solved without considering the contact model or the actuator limitations. If we assume
that the residua (6.10) and (6.12) are entirely fulfilled as in Assumption 6.1, then the
optimization (6.9) simplifies to

F opt
sup = argmin

F sup

1

2

(
F sup − F def

sup

)T
Qsup

(
F sup − F def

sup

)
(6.15)

with respect to the underactuation constraint (6.6). The analytical solution of (6.15) is
given by

F opt
sup = (Adsup)Qsup+,T

(
mg0 + F cpl

c +AdTint F
cpl
int

)
+N sup F

def
sup (6.16)

with (Adsup)Qsup+ =
(
AdTsupQ

−1
supAdsup

)−1
AdTsupQ

−1
sup denoting the weighted pseudoin-

verse of the contact map AdTsup. The associated null space projector is represented by

N sup = I−(Adsup)Qsup+,T AdTsup. The pseudoinverse distributes the desired overall wrench
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6.1 Basic Concept (MCB)

at the CoM to the contacts without creating internal stress (see Section 3.3). Therefore,
the distribution via the pseudoinverse can be considered a “minimal solution”. The default
wrench distribution F def

sup acts in the null space of the Contact Map AdTsup and can be used
to a) shift load from one end-effector to another and b) artificially generate internal stress.

After the end-effector wrenches F opt are computed via the constrained quadratic op-
timization using the upper part of the control law (6.8), the lower part is exploited to
compute the control torques via

τ = −(J ′)TF opt. (6.17)

Note that this basic version of the passivity-based whole-body controller does not require
an inversion of the Jacobian matrix, which makes it robust against singularities and re-
dundant kinematics. A motion in the kinematic null space can be regulated by adding a
null space controller, as shown in Section 6.2 (see also Fig. 6.1).

6.1.2 Properties of the Controller

End-Effector Wrenches

The purpose of the contact model presented in Section 3.4 is to prevent the support-
ing end-effectors from unintentionally loosing contact with the environment. Therefore,
the basic version of the whole-body controller (MCB) accounts for the contact model
via (6.13). However, the controller invokes the contact model on the commanded contact
wrenches F sup although the stability of the contacts depends on the external or actual
support wrenches F ext

sup. Thus, a more detailed analysis of the end-effector wrenches and
the static equilibrium of the controller appears to be in order.

If the soft constraints (6.10) and (6.12) are exactly satisfied by the optimization (see
Assumption 6.1), the closed-loop dynamics of the system is given by (6.7). If we further-
more assume that all external forces and torques act solely at the end-effectors as in (3.24),
then (6.7) becomes

M

(
v̇c

q̈

)
+C

(
vc

q̇

)
=

(
F cpl

c

0

)
+

[
AdT

(J ′)T

](−F sup + F ext
sup

F cpl
int + F ext

int

)
. (6.18)

Let us first consider the static case of (6.18) with v̇c = vc = 0 and q̈ = q̇ = 0:

0 =

(
F cpl

c

0

)
+

[
AdT

(J ′)T

](−F sup + F ext
sup

F cpl
int + F ext

int

)
. (6.19)

If the Sub-Jacobian matrix J ′ is of full row-rank excluding singular configurations, one
can conclude that

F sup = F ext
sup (6.20)

and
F cpl

int = −F ext
int (6.21)

must hold. Reinserting (6.20) and (6.21) into (6.19) leads to

F cpl
c = 0 (6.22)

considering that the stacked adjoint matrix Ad is always of rank six. The relation (6.21)
implies that in steady state, the external interaction wrenches F ext

int are balanced by the
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6 Whole-Body Control for Multi-Contact Balancing

interaction compliances F cpl
int . Therefore, the interaction end-effectors can show a steady

state error according to (6.4) with vi = vi,d = 0, which is caused by F ext
int . Besides this,

one can conclude from (6.22) that the center of mass frame C coincides with its desired
configuration even in the presence of F ext

int due to (6.1) with vc = vc,d = 0. Relation (6.20)
is a rather important property because it states that the external contact wrenches F ext

sup

match the commanded ones F sup in steady-state. Thus, the contact model successfully
prevents the tilting, sliding, or lift-off of the contacts in the case of static or quasi-static
balancing, although it is invoked on the commanded wrenches F sup and not on external
(actual) ones F ext

sup. If the robot is performing a more dynamic motion, (6.18) implies
that F ext

sup can deviate from F sup and cause the support end-effectors to lose contact even
despite F sup satisfying the contact model.

If the dynamic motion is caused by an external disturbance, then this problem can
only be remedied by applying the contact model to the actual contact wrenches. The
latter requires an explicit measurement of F ext

sup, although this can can cause secondary
problems regarding causality or additional measurement noise, which is introduced into the
controller. For this reason, this work applies the contact model only to the commanded
and not to the actual contact wrenches. But if a dynamic trajectory is commanded
to the robot, which means that the robot deliberately performs a dynamic motion, the
discrepancy between F sup and F ext

sup can be avoided by equipping the controller with
additional feedforward terms, as shown in Section 6.3 (MCB+ controller).

Passivity on Stationary Ground

The passivity of the closed-loop system (6.7) can be shown following [Ott, 2008, Khalil,
2014] by considering the kinetic energy of the robot plus the potential energy of the
compliances

V =
1

2
νTMν + V K

c + V K
int (6.23)

as positive definite storage function. Computing the time derivative and inserting the
closed-loop dynamics (6.7) yields

V̇ = νTMν̇ +
1

2
νTṀν + V̇ K

c + V̇ K
int

= νT
{
−Cν +

(
F cpl

c

0

)
+

[
AdT

(J ′)T

](−F sup

F cpl
int

)
+ τ ext

}

+
1

2
νTṀν + V̇ K

c + V̇ K
int.

(6.24)

Exploiting the fact that Ṁ − 2C is skew-symmetric [Ott, 2008] allows for a simplification
of V̇ into

V̇ = νT
{(
F cpl

c

0

)
+

[
AdT

(J ′)T

](−F sup

F cpl
int

)
+ τ ext

}
+ V̇ K

c + V̇ K
int

= vTc F
cpl
c − vTsupF sup + vTintF

cpl
int + νTτ ext + V̇ K

c + V̇ K
int

(6.25)

considering (3.21) and (3.22). Inserting (6.1) and (6.4) with vc,d = 0 and vint,d = 0 for
the regulation case yields

V̇ = −∇Vc vc − vTc Dc vc + V̇ K
c

−∇Vint vint − vTintDint vint + V̇ K
int

− vTsupF sup + νTτ ext.

(6.26)
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The latter can be simplified to

V̇ = −vTc Dc vc − vTintDint vint︸ ︷︷ ︸
≤0

−vTsupF sup + νTτ ext︸ ︷︷ ︸
port

(6.27)

considering V̇c = ∇Vc vc and V̇int = ∇Vint vint. If we assume that the robot is balancing on
a non-movable and non-deformable floor, then the term vTsup F sup vanishes due to vsup = 0
(see Assumption 3.2). Thus,

V̇ ≤ νTτ ext (6.28)

holds, which proves the passivity of the closed-loop system (6.7) with respect to the power
port ( vTc q̇T ) τ ext based on the definition given by Khalil [2014]. The port represents
the energy transfer between the robot and the environment as, for instance, a human
disturbing the robot.

Note that the above analysis applies to the desired closed-loop dynamics (6.7), which
implies that the soft constraints (6.10) and (6.12) are exactly fulfilled, as demanded by
Assumption 6.1. A passivity and stability analysis of the case where the soft constraints are
not exactly fulfilled would be considerably more cumbersome. In this case, the constraints
will affect the quality of the task fulfillment according to their corresponding priorities
(see Table 6.1), which would lead to a different closed-loop dynamics.

Stability on Stationary Ground

Asymptotic stability of the closed-loop dynamics (6.7) can be shown following the Invariant
Set Theorem presented in [Slotine and Lee, 1991, Khalil, 2014], which requires V̇ ≤ 0 for
the autonomous closed-loop system.

Theorem 6.1 (Local Invariant Set Theorem [Slotine and Lee, 1991]). Consider the au-
tonomous system ẋ = f(x) with f(x) continuous, and let V (x) be a scalar function with
continuous first partial derivatives. Assume that

� for some l ≥ 0, the region Xl defined by V (x) ≤ l is bounded

� and V̇ (x) ≤ 0 for all x in Xl.

Let R be the set of all points within Xl where V̇ (x) = 0, and M be the largest invariant
set in R. Then, every solution x(t) originating in Xl tends to M as t→∞.

For simplicity, let us exclude singular configurations and redundant kinematics from our
considerations. Furthermore, let us assume that the residua δc and δint are sufficiently ful-
filled (see Assumption 6.1). The closed-loop dynamics (6.7) becomes autonomous if there
are no external loads acting on the robots except for the external contact wrenches F ext

sup.
Then (6.27) becomes

V̇ = −vTc Dc vc − vTintDint vint + νTτ ext

= −vTc Dc vc − vTintDint vint + νTJTsupF
ext
sup

= −vTc Dc vc − vTintDint vint + vTsupF
ext
sup

= −vTc Dc vc − vTintDint vint ≤ 0.

(6.29)

considering (3.21), a stationary floor (vsup = 0), and Assumption 3.2. The time deriva-

tive V̇ only vanishes if ν =
(
vTc vTint

)T
= 0 and if singular configurations and redundant
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kinematics are excluded from the considerations. Thus, the set R contains all points in
the states space of the system (6.7) with ν = 0. Inserting this into (6.7) reveals

Mν̇ =

(
F cpl

c

0

)
+

[
AdT

(J ′)T

](
F ext

sup − F sup

F cpl
int

)
. (6.30)

The largest invariant set M within R is given by ν = 0 and ν̇ = 0. In order for ν̇ to
vanish, F sup = F ext

sup and F cpl
int = 0 must hold because of the Sub-Jacobian matrix J ′ being

of full rank (no singularities and redundancies). Furthermore, one can conclude from the
upper part of (6.30) that F cpl

c = 0 must hold as well. It can be concluded from (6.1)

and (6.4) that F cpl
c and F cpl

int only vanish if the CoM frame C and all interaction frames Ti
coincide with their desired configurations or if they show a rotation error of 180°. If we
also exclude configurations with a rotation error of 180°, then the largest invariant setM
within R is given by the static desired configuration of the robot. Consequently, the
closed-loop system tends to the desired configuration as t→∞.

6.1.3 Experimental Evaluation

The performance of the MCB control framework was evaluated in [Henze et al., 2016b]
using the torque-controlled humanoid robot TORO developed at DLR. A brief description
of the robot hardware is given in Chapter 5.

Redundancy in the Wrench Distribution

The first experiment demonstrates the influence of the constrained quadratic optimization
problem (6.9) to (6.14) on the wrench distribution [Henze et al., 2016b]. The setup of the
experiment is shown in Fig. 6.3a, where the robot is using the right hand and both feet
as supporting end-effectors. The left hand is assigned to the interaction task. The robot
is commanded into two different configurations by shifting the CoM 17 cm to the right
or 10 cm to the left. The recorded telemetry data in Fig. 6.3b reveals that the CoM position
shows a static control error of less than 0.03 m due to joint friction. However, this could
be counteracted by adding an integral term to the CoM compliance (6.1). The combined
center of pressure of both feet pFeet also shows a good congruence of the commanded
and measured values, which is an indicator that the external contact wrenches F ext

sup are
sufficiently close to the commanded ones F sup.

The most interesting aspect of this experiment is the influence of the CoM position on
the wrench distribution. If the CoM is shifted to the left, the right hand cannot contribute
to supporting the robot because of the unilateral contact (the hand is not closed). Instead,
the optimization commands the minimal allowed contact force fmin

HandR,y = 20 N according
to Section 3.4. As a result, the CoP of the feet is shifted 10 cm to the left to support the
robot’s weight. Note that the CoP is not located directly under the CoM because of the
torque that the right hand introduces about the x-axis of the world frame W.

If the robot moves to the right, the optimization can exploit the additional hand contact
by generating a force of fHandR,y = 65 N. Due to the high lever arm of the hand (height
of 1.42 m above floor), the hand can completely counteract the torque, which the CoM
displacement induces about the x-axis ofW. As a result, the CoP of the feet stays centered
at pFeet,y = 0 cm. This observation is remarkable, as the CoM is shifted further to the
right (17 cm) than to the left (10 cm).
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Figure 6.3: Exploiting the redundancy in the wrench distribution: The right hand con-
tributes to the required overall support wrench F res

sup depending on the CoM
position.
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In summary, the controller can exploit the redundancy in the wrench distribution prob-
lem to obtain an optimal distribution of contact wrenches according to the cost func-
tion (6.9). In doing so, the optimization must respect the contact model (6.13) limiting
the contribution of each contact to the overall support wrench F res

sup. To achieve the re-
quired F res

sup nevertheless, the controller can exploit the redundancy by redistributing the
wrenches between the contacts.

Balancing while Performing an Interaction Task

This experiment shows the capability of the whole-body balancer to maintain balance
while performing an interaction task [Henze et al., 2016b]. As shown in Fig. 6.4a, the
robot TORO stands in front of a table, from which it lifts up a box of bottles. The
weight of the box is 12.2 kg, which corresponds to 16% of the robot mass (76.4 kg). In
this particular setup, the hands are assigned to the interaction task and thereby governed
by the Cartesian compliance (6.4). In order to lift the box, the desired position of both
hand compliances (xHandR,d and xHandL,d) are slowly raised by 10 cm. A feedforward
force (fdef

HandR,z = fdef
HandL,z = 62 N) is simultaneously added to each hand compliance to

compensate for the weight of the box.

As can be seen in Fig. 6.4c, lifting the box has almost no effect on the CoM frame C: the
control error increases only by 0.7 cm for the translation and by 1.0 ° for the orientation.
This observation can be explained by analyzing the underactuation condition (6.6): The
contact wrenches F opt

sup are always chosen such that they are equal to the right-hand side

of (6.6), which includes the commanded interaction wrenches F opt
int . In other words, the

feet counteract the wrenches generated by the hand compliances. The same conclusion can
be drawn from Section 6.1.2, studying the static equilibrium of the closed-loop dynamics:
One can conclude from (6.1) that (6.22) only holds if ∆xc = 0 and ∆Rc = I. Thus, the
control error for the CoM frame C must be zero even in the presence of the interaction
wrenches F cpl

int .

Besides this, the box introduces a torque about the y-axis of the world frame W, which
is counteracted by shifting the combined CoP of the feet 4.1 cm to the front. Note that
the weight that the robot can lift using the MCB controller (see Section 6.1) is limited by
the CoP constraints of the feet (see Fig. 6.4b). Although a weight of 12.2 kg represents a
considerable payload, the abilities of the robot can be extended even further by using the
control approach presented in Section 6.5 (MCB-ACT). The same experiment is repeated
in Section 6.5.3 for the MCB-ACT control approach.

Balancing on Compliant Support

As discussed in Section 6.1.2, the basic version of the presented control framework (MCB)
is passive and stable under the assumption of a stationary ground floor. We presented
an experiment in [Henze et al., 2016b] testing the robustness of the proposed control ap-
proach against uncertainties in the contact surface deliberately violating the above-named
assumption. To generate a soft, compliant support, the robot TORO is positioned on
three layers of gym mats2, as shown in Fig. 6.5a. After the controller is initialized, the
robot receives a kick from the left side resulting in the perturbation of the CoM position
shown in Fig. 6.5b.

2The gym mats have a size of 2 m × 2 m × 8 cm, and are made of a compound foam with a density
of 20 kg/m3.
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The robot counteracts the disturbance in the frontal plane mainly by shifting its weight
from one leg to the other, instead of changing the center of pressure of each foot (pFootR,y

and pFootL,y). The observed effect is caused by the choice of the weighting matrix Qsup

in [Henze et al., 2016b], which penalizes the foot torques more than the foot forces. For
balancing in the sagittal plane, the controller does not have any other choice than using the
foot torques. Thus, the CoPs of both feet (pFootR,x and pFootL,x) exhibit a high excitation
covering the whole length of the feet. The strength of the kick brings the robot to the
limit of feasible balancing: At 0.5 s, the vertical force of the left foot (fFootL,z) almost
reaches the lower limit of fmin

FootL,z = 50 N. The corresponding commanded CoP pFootL

moves to the front-right corner of the foot indicated by pFootL,x = pmax
FootL,x = +13 cm and

pFootL,y = pmin
FootL,y = −4.5 cm. The latter causes the heel of the left foot to lift off such

that only the front part of the left foot is in contact with the mattresses (see Fig. 6.5a).
The difficulty in balancing on a compliant support lies in the unmodeled dynamics of

the ground floor: The material of the support must be deformed first before the desired
contact wrench can be generated. Therefore, the vertical contact forces show a temporary
deviation between the commanded and the measured values of up to 83 N for the right
and 111 N for the left leg (see Fig. 6.5c). Also, the CoP positions exhibit a strong devia-
tion between command and measurement. According to the sensor readings, the CoP of
the right foot even leaves the contact area at t = 1.5 s, which appears to be impossible
according to Definition 3.3. However, the force-torque sensor for measuring the contact
wrench is not located at the sole of the foot but at the ankle (see Fig. 5.1). Although
the computation of the CoP accounts for the additional lever arm, dynamic effects can
still impair the measurement. The recorded video (see YouTube-channel [RMC] of the
Institute of Robotics and Mechatronics) shows that the feet are constantly moving during
the whole experiment. In particular, the right foot has a high acceleration at t = 1.5 s,
which might cause the inertia of the right foot to influence the measurement.

The algorithm presented in Section 5.2 for estimating the state of the base/hip frame B,
is one of the key elements for achieving a robust balancing behavior. Due to the com-
pliant support, the feet are constantly moving in order to adapt the support surface. By
using only the IMU signal (αIMU = 1 in Section 5.2), the estimated orientation of the
base Rb becomes independent of the foot motion. The influence on the base position xb
is minimized by averaging the translational information provided by the kinematics of the
right and left leg (αFootR = αFootL = 1 and αHandR = αHandL = 0 in Section 5.2). Note
that Fig. 6.5 shows the position of the CoM that was computed online by the robot us-
ing the estimation algorithm. The estimated CoM location is also used for control, which
demonstrates the robustness of the presented approach with respect to unmodeled contact
dynamics.
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Figure 6.4: Lifting a 12.2 kg box from a table: The robot maintains the CoM position by
compensating for the additional load with its feet.
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Figure 6.5: Balancing on compliant support: The perturbation of the robot is caused by
a kick from the left.
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6.2 Null Space Controller

As the basic version of the multi-contact balancing framework (MCB) presented in Sec-
tion 6.1 regulates the configuration of the robot in Cartesian or task coordinates, there
might exist a null space within the configuration space of the robot. To prevent a drift
within the null space, a conventional null space controller is added by Henze et al. [2016b]
to the control scheme, as shown in Fig. 6.1. Instead of commanding the joint torque τ
in (6.17) directly to the robot, it is superimposed with a joint compliance τ cpl

pose ∈ Rn
according to

τ ′ = τ +Nnull τ
cpl
pose. (6.31)

The null space projector Nnull = I − (J ′)T (J ′)Mqq+,T is computed from the dynamically
consistent pseudoinverse

(J ′)Mqq+ = M−1
qq (J ′)T

(
(J ′)Mqq (J ′)T

)−1
, (6.32)

as given in [Dietrich, 2016]. The weighting matrix consists of Mqq in (3.20), which is the
block of the inertia matrix M correlating with a motion in joint space. Note that the
null space projector Nnull is computed from the Sub-Jacobian matrix J ′ instead of the
complete Jacobian J = [Ad J ′ ] (see (3.23)). Although this is a rather heuristic choice,
several experiments have revealed that it leads to a very robust behavior of the robot even
in challenging situations [Henze et al., 2019, Werner et al., 2016]. A theoretically correct
approach is presented in Chapter 7 in the form of a framework for hierarchical whole-body
control. See also the discussion in Section 7.2.2 on the relation between the hierarchical
framework and the MCB controller.

The torque τ cpl
pose ∈ Rn in (6.31) is provided by a PD-controller

τ cpl
pose = −Kpose (q − qd)−Dpose q̇. (6.33)

stabilizing the desired joint configuration qd, which can be specified by an external plan-
ning algorithm, for instance. The stiffness and damping matrices Kpose ∈ Rn×n and
Dpose ∈ Rn×n are symmetric and positive definite.

6.3 The Tracking Case: Following Dynamic Trajectories
(MCB+)

The basic version of the whole-body controller (MCB) presented in Section 6.1 is designed
for the regulation case, which enables static balancing or quasi-static locomotion on mul-
tiple contacts. To account for more dynamic motions, the basic version was extended in
[Henze et al., 2016b] with additional feedforward terms (see Fig. 6.6) for tracking a dy-
namic trajectory. As the resulting closed-loop dynamics shows a similar structure as in
PD+ control, the extended approach will be called MCB+ controller for the remainder of
this work.

6.3.1 Controller Derivation

The extended framework consists of three branches, as shown in Fig. 6.6: The feedback
control loop is identical to the basic MCB controller (cf. Fig. 6.1). The additional feedfor-
ward terms (shown in green in Fig. 6.6) are used to follow a dynamic trajectory. In order
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Figure 6.6: Overview of the architecture of the MCB+ control framework extended to the
tracking case.

to handle robots with redundant kinematics or singular configurations, the framework is
also equipped with the null space controller presented in Section 6.2.

In order to deduce the tracking terms as proposed in [Henze et al., 2016b], the dynamic
model (3.20) is transfered into task coordinates, which requires the Sub-Jacobian matrix J ′

to be square and invertible. However, this assumption is only required for the feedforward
terms and not for the feedback loop. If the Sub-Jacobian matrix J ′ is singular or not
square, then the task space can be augmented with additional coordinates, as shown e. g.
in [Ott, 2008], such that the augmented Jacobian matrix is invertible again. But for the
sake of simplicity, we will restrict our theoretical considerations to J ′ being square and
invertible. To use the feedforward terms for redundant robots and singular configurations
nevertheless, we propose the use of a damped pseudoinverse, as discussed in (6.53).

Based on the assumption that Sub-Jacobian matrix J ′ is square and invertible, the joint
velocities q̇ are replaced in the dynamic model (3.20) with the Cartesian velocities v of
the task or end-effector frames. The corresponding transformation TTS to task space is
defined by (

vc

v

)
=

[
I 0
Ad J ′

]

︸ ︷︷ ︸
TTS

(
vc

q̇

)
, (6.34)

which allows for the formulation of the inverse transformation T−1
TS as

(
vc

q̇

)
=

[
I 0

−(J ′)−1Ad (J ′)−1

]

︸ ︷︷ ︸
T−1

TS

(
vc

v

)
. (6.35)

Applying the inverse transformation T−1
TS to the dynamic model (3.20) leads to a formu-

lation of the robot dynamics in task coordinates

Λ

(
v̇c

v̇

)
+ µ

(
vc

v

)
+

(
mg0

0

)

︸ ︷︷ ︸
g

=

[
−AdT
I

]
(J ′)−Tτ + T−TTS τ ext (6.36)
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with Λ = T−TTSMT−1
TS and µ = T−TTSCT

−1
TS + T−TTSM

d
dt(T

−1
TS) denoting the Cartesian

inertia and Coriolis matrix. It can be easily verified that the gravity vector g = T−TTS g is
invariant under the transformation T−1

TS.

As in [Henze et al., 2016b], the desired closed-loop dynamics can be defined as

Λ




∆v̇c

∆v̇sup

∆v̇int


+ µ




∆vc

∆vsup

∆vint


 =



F cpl

c

−F sup

F cpl
int


+ T−TTS τ ext (6.37)

with ∆vc, ∆vsup, and ∆vint denoting the deviation from the desired trajectory. The
velocity errors of the CoM ∆vc and the interaction end-effectors ∆vint are already defined
in (6.2) and (6.5), respectively. Let us analogously define the velocity error for the support
task as 


∆v1

...
∆vψsup




︸ ︷︷ ︸
∆vsup

=



v1
...

vψsup




︸ ︷︷ ︸
vsup

−




Ω1 . . . 0
...

. . .
...

0 . . . Ωψsup




︸ ︷︷ ︸
Ωsup



v1,d

...
vψsup,d




︸ ︷︷ ︸
vsup

. (6.38)

Note that the actual velocities of the support contacts vsup as well as the desired ones vsup,d

are zero in the case of a stationary and rigid ground surface leading to ∆vsup = 0. The

compliances F cpl
c and F cpl

int are defined according to (6.1) and (6.4) based on the desired
configurations and velocities given by the trajectory. Analogously to (6.7), the right-hand
side of (6.37) also contains the negative support wrenches (−F sup). Note that the structure
of (6.37) is inspired by a PD+ control of an ordinary fixed-base robotic manipulator, which
is well-known in control theory [Paden and Panja, 1988, Whitcomb et al., 1993].

Comparing the desired closed-loop behavior (6.37) with the robot dynamics (6.36) yields

Λ Ω



v̇c,d

v̇sup,d

v̇int,d


+ (µΩ + Λ Ω̇)



vc,d

vsup,d

vint,d


+



mg0

0
0


 =



−AdTsup −AdTint

I 0
0 I


 (J ′)−Tτ +



−F cpl

c

F sup

−F cpl
int


 (6.39)

representing the control law. The matrices Ωc, Ωsup, and Ωint are combined into the block
diagonal matrix Ω = blkdiag(Ωc,Ωsup,Ωint). Note that F sup and τ are the remaining
free variables in (6.39), which can be determined by exploiting the structure of (6.39):
Analogously to Section 6.1, an optimization is used first to compute the end-effector
wrenches representing the external load condition of the robot. Then the control torques τ
are computed characterizing the internal load inside the robot structure.

To obtain F sup, the control law (6.39) is partitioned into

Λu Ω



v̇c,d

v̇sup,d

v̇int,d


+ (µu Ω + Λu Ω̇)



vc,d

vsup,d

vint,d


+mg0 =−AdT (J ′)−Tτ − F cpl

c (6.40)

Λl Ω



v̇c,d

v̇sup,d

v̇int,d


+ (µl Ω + Λl Ω̇)



vc,d

vsup,d

vint,d


 = (J ′)−Tτ +

(
F sup

−F cpl
int

)
(6.41)
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with Λu ∈ R6×6+6ψ, Λl ∈ R6ψ×6+6ψ, µu ∈ R6×6+6ψ, and µl ∈ R6ψ×6+6ψ originating
from Λ = [ ΛT

u ΛT
u ]T and µ = [ µTu µTu ]T . Eliminating the common variable (J ′)Tτ yields

F ff +mg0 + F cpl
c = AdT

(
F sup

−F cpl
int

)
. (6.42)

Note that the above equation corresponds to the underactuation condition (6.6), which
has been extended with a feedforward wrench

F ff =
(
Λu +AdT Λl

)
Ω



v̇c,d

v̇sup,d

v̇int,d


+

(
µu Ω + Λu Ω̇ +AdT µl Ω +AdT Λl Ω̇

)


vc,d

vsup,d

vint,d




(6.43)
accounting for the dynamic effects of the desired trajectory on the CoM. Consequently,
the end-effector wrenches F opt can be obtained by extending the constrained quadratic
optimization problem in Section 6.1 with F ff:

F opt = argmin
F

(
1

2
δTc Qcδc +

1

2
δTsupQsupδsup +

1

2
δTintQintδint

)
(6.44)

minimizing the residua

δc = AdT F −mg0 − F cpl
c − F ff (6.45)

δsup = F sup − F def
sup (6.46)

δint = F int + F cpl
int (6.47)

with respect to the inequality constraints

AiF i ≤ bi ∀ i = 1 . . . ψsup (6.48)

BτF ≤ τmax. (6.49)

After computing the end-effector wrenches F opt, the corresponding joint torques

τ = −(J ′)TF opt + τff (6.50)

can be obtained by multiplying (6.41) with (J ′)T . Here,

τff = (J ′)TΛl Ω



v̇c,d

v̇sup,d

v̇int,d


+ (J ′)T

(
µl Ω + Λl Ω̇

)


vc,d

vsup,d

vint,d


 (6.51)

represents another feedforward term accounting for the dynamics of the desired trajectory
in joint space. Note that the MCB controller, which is presented in Section 6.1 for the
regulation case, can be considered a special case of the MCB+ controller addressing the
tracking case. The only difference is given by the additional tracking terms F ff and τff,
as shown in Fig. 6.6. Note that only the feedforward terms require the inverse of the
Sub-Jacobian J ′ to compute the Cartesian inertia Λ and Coriolis matrix µ. In contrast,
the feedback loop, which corresponds to the MCB controller for the regulation case (see
Section 6.1), is robust against singularities and redundant kinematics. To achieve a similar
robustness for the feedforward terms, the inverse Sub-Jacobian (J ′)−1 in (6.35) can be
replaced with a generalized damped pseudoinverse

(J ′)+ρ =
(
(J ′)T (J ′) + ρ2I

)−1
(J ′)T (6.52)
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with ρ ∈ R denoting the damping factor. A motion in the kinematic null space can be
regulated by adding a null space controller, as shown in Section 6.2 (see also Fig. 6.6). The
choice of the damping ρ in (J ′)+ρ is a compromise between robustness against singularities
and the accuracy of the solution. As already mentioned, one could also use the task
space augmentation method [Ott, 2008] to deal with J ′ not being invertible. But for the
sake of simplicity, we will use the more heuristic approach in the form of the damped
pseudoinverse (6.52). It can be seen from (6.42) and (6.50) that this approximation only
affects the feedforward control action (F ff and τff) and not the feedback control. Thus,
the tracking behavior of the overall controller might deteriorate if the robot is close to a
singularity, but the feedback loop remains unaffected.

6.3.2 Properties of the Controller

End-Effector Wrenches

A problem of the MCB controller presented in Section 6.1 is that the commanded con-
tact wrenches F ext

sup can deviate from the actual ones F sup during dynamic motions (see
Section 6.1.2), which can be reduced by adding the tracking terms F ff and τff. If As-
sumption 6.1 holds and singular configurations and redundant robots are excluded from
the configurations, then the closed-loop dynamics is given by (6.37). Furthermore, if we
assume that all external forces and torques act solely at the end-effectors as in (3.24), then
the closed-loop behavior (6.37) becomes

Λ




∆v̇c

∆v̇sup

∆v̇int


+ µ




∆vc

∆vsup

∆vint


 =




F cpl
c

−F sup + F ext
sup

F cpl
int + F ext

int


 (6.53)

due to T−TTS [Ad (J ′) ]T =
[

0
I

]
. Considering the equilibrium given by ∆v̇c = ∆vc = 0,

∆v̇sup = ∆vsup = 0, and ∆v̇int = ∆vint = 0 leads to the conclusion that

F cpl
c = 0 (6.54)

F sup = F ext
sup (6.55)

F cpl
int = F ext

int (6.56)

must hold. Again, the commanded interaction wrenches are balanced by the external
ones leading to a static control error according to (6.4) with ∆vi = 0. The center of mass
coincides with the desired CoM frame according to (6.1) with ∆vc = 0 even in the presence
of F ext

int . Furthermore, the actual contact wrenches F ext
sup match the commanded ones F sup,

which legitimatizes invoking the contact model (6.48) on F sup instead of F ext
sup. However,

this only holds in the case of an equilibrium, which means that the robot is exactly following
the desired trajectory. If the robot deviates from the desired trajectory, (6.53) implies
that F ext

sup can differ from F sup and cause the support end-effectors to lose contact. In
conclusion, there is still the danger that the supporting end-effectors migh unintentionally
lose contact if the robot is performing a dynamic motion due to an unknown external
disturbance. But if the robot is performing a deliberate dynamic motion by following
a desired trajectory, the feedforward terms in Section 6.3.1 ensure that the difference
between F sup and F ext

sup is sufficiently small.

94



6.3 The Tracking Case: Following Dynamic Trajectories (MCB+)

Passivity and Stability on Stationary Ground

As the MCB+ controller presented in Section 6.3.1 is designed for the tracking case, the
desired trajectory can inject and remove an arbitrary amount of energy into the controller
and the robot. Thus, it is not possible to reuse the same storage function V as in Sec-
tion 6.1.2. Instead, the passivity of the closed-loop system (6.37) can be shown by using
the positive definite storage function

V =
1

2




∆vc

∆vsup

∆vint



T

M




∆vc

∆vsup

∆vint


+ V K

c + V K
int (6.57)

in [Paden and Panja, 1988], which serves as a metric for the deviation of the robot from
the desired trajectory. Computing the time derivative, inserting the closed-loop dynam-
ics (6.37), and exploiting the property that Λ̇− 2µ is skew-symmetric [Ott, 2008] yields

V̇ =




∆vc

∆vsup

∆vint



T

Λ




∆v̇c

∆v̇sup

∆v̇int


+

1

2




∆vc

∆vsup

∆vint



T

Λ̇




∆vc

∆vsup

∆vint


+ V̇ K

c + V̇ K
int

=




∆vc

∆vsup

∆vint



T 
−µ




∆vc

∆vsup

∆vint


+



F cpl

c

−F sup

F cpl
int


+ T−TTS τ ext





+
1

2




∆vc

∆vsup

∆vint



T

Λ̇




∆vc

∆vsup

∆vint


+ V̇ K

c + V̇ K
int

=




∆vc

∆vsup

∆vint



T 

F cpl

c

−F sup

F cpl
int


+




∆vc

∆vsup

∆vint



T

T−TTS τ ext + V̇ K
c + V̇ K

int.

(6.58)

Inserting the Cartesian compliances (6.1) and (6.4) leads to

V̇ = −∇Vc ∆vc −∆vTc Dc ∆vc + V̇ K
c

−∇Vint ∆vint −∆vTintDint ∆vint + V̇ K
int

−∆vTsupF sup +




∆vc

∆vsup

∆vint



T

T−TTS τ ext,

(6.59)

which can be simplified to

V̇ = −∆vTc Dc ∆vc −∆vintDint ∆vint︸ ︷︷ ︸
≤0

−∆vTsupF sup +




∆vc

∆vsup

∆vint



T

T−TTS τ ext

︸ ︷︷ ︸
port

(6.60)

considering V̇c = ∇Vc ∆vc and V̇int = ∇Vint ∆vint. If we assume that the robot is balanc-
ing on a non-movable and non-deformable floor, then the term ∆vTsupF sup vanishes due
to ∆vsup = 0 (see Assumption 3.2). Thus,

V̇ ≤




∆vc

∆vsup

∆vint



T

T−TTS τ ext (6.61)
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holds, which proves the passivity of the closed-loop system (6.37) with respect to the power
port ( ∆vTc ∆vTsup ∆vTint ) (T−TTS τ ext) based on the definition given by Khalil [2014]. The port
represents the energy transfer between the robot and the environment, such as when a
human disturbs the robot.

The stability of the controller can be shown by following [Paden and Panja, 1988]. Note
that the matrices Λ and µ in (6.36) can be written as a function of the control error (∆xc,
∆xi, ∆Rc, ∆Ri, ∆vc, ∆vi) and of the desired trajectory (xc,d, xi,d, Rc,d, Ri,d, vc,d,
vi,d). Therefore, standard invariance principles are not applicable because the closed-loop
dynamics (6.37) is time-variant. However, Paden and Panja [1988] showed asymptotic sta-
bility for a PD+ controller based on the Matrosov-Theorem. Moreover, Whitcomb et al.
[1993] used strict Lyapunov functions to show asymptotic stability. If we assume that the
floor is rigid and stationary, ∆vsup = 0 can be exploited to bring (6.37) into the required
form. Applying the transformation




∆vc

∆vsup

∆vint


 =



I 0
0 0
0 I




︸ ︷︷ ︸
T red

(
∆vc

∆vint

)
(6.62)

to the closed-loop system (6.37) results in

Λred

(
∆v̇c

∆v̇int

)
+ µred

(
∆vc

∆vint

)
=

(
F cpl

c

F cpl
int

)
+ T TredT

−T
TS τ ext. (6.63)

In order to follow the proof in [Paden and Panja, 1988], the autonomous system with
T TredT

−T
TS τ ext = 0 needs to be considered. Note that in general τ ext 6= 0 due to the external

contact wrenches F ext
sup. But the influence of F ext

sup is removed by the transformation T red

discarding the Cartesian coordinates of the support end-effectors. Note that (6.57) can be
used as a Lyapunov function leading to

V̇ ≤
(

∆vc

∆vint

)T
T TredT

−T
TS τ ext = 0 (6.64)

by applying T red to (6.61).
The above analysis applies to the desired closed-loop dynamics (6.37), which implies that

the soft constraints (6.45) and (6.47) are exactly fulfilled, as demanded by Assumption 6.1.
A passivity and stability analysis of the case where the soft constraints are not exactly
fulfilled would be considerably more cumbersome. In this case, the constraints will affect
the quality of the task fulfillment according to their corresponding priorities (see Table 6.1),
which would lead to a different closed-loop dynamics. Furthermore, the analysis only holds
for the case of the Sub-Jacobian matrix J ′ being square and invertible excluding redundant
robots and singular configurations. An analysis of the case that J ′ is not invertible using,
for instance, the task space augmentation method [Ott, 2008] would be considerably more
cumbersome.

6.3.3 Experimental Evaluation

The performance of the MCB+ control framework was evaluated in [Henze et al., 2016b]
using the torque-controlled humanoid robot TORO developed at DLR. A brief description
of the robot hardware is given in Chapter 5.
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As shown in Fig. 6.7a, the humanoid robot TORO balances with both feet on the
ground, while the arms are operated in interaction mode. The robot is supposed to follow
a dynamic trajectory, which moves the CoM along the y-axis of the world frame W. The
trajectory consists of a sinusoidal signal for the desired CoM position with a frequency
of 1/3 Hz. Within the first 5 s, the amplitude of the signal is linearly increased from 0 cm
to 6 cm, held constant for 10 s, and then decreased to 0 cm again within the last 5 s of the
experiment.

The results of the experiment can be found in Fig. 6.7b: If the motion is performed
using the MCB controller (see Section 6.1), that means without feedforward terms, then
the horizontal CoM position shows an overshoot of up to 2.5 cm. Using the MCB+ control
approach from Section 6.3, which in contrast features feedforward terms, reduces the
tracking error significantly to less than 0.7 cm. Besides this, the feedforward terms also
reduce the contact wrenches by 14% and 12% for the right and left leg, respectively.
However, the effect becomes even more apparent by analyzing the center of pressure of
each foot. Here, the excitation of the CoPs is reduced by 50% for the right and by 59%
for the left foot. In any case, both controllers are able to maintain balance following the
trajectory with an amplitude of 6 cm.

The experiment was repeated in a second run with an increased amplitude of 8 cm, as
shown in Fig. 6.7c. Because of the stronger excitation, the MCB controller (no feedforward
terms) is no longer able to maintain the balance of the robot. As can be seen in Fig. 6.7c,
the vertical contact force of the left foot reaches its minimum of fmin

FootL,z = 50 N at t = 5.1 s.
In addition, the CoPs of both feet reach the boundary of the respective contact area at
t = 5.1 s and t = 5.7 s. Consequently, the MCB controller is no longer capable of generating
the required overall support wrench F res

sup to follow the trajectory. As shown in Fig. 6.7a,
both feet start to tilt to the right, which causes the robot to fall over. In contrast to the
MCB controller (no feedforward terms), the MCB+ controller (with feedforward terms) is
able to follow the trajectory without loosing balance even for an amplitude of 8 cm. The
MCB+ controller again shows a decent tracking performance with an error of 0.9 cm for
the CoM position.

t = 5.1 s

xc,y

W
x

y

z

(a) Setup of the experiment.
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(c) Behavior for a maximum amplitude of 8 cm.

Figure 6.7: Comparison of the tracking behavior using the MCB and the MCB+ controller:
The trajectory consists of a sinusoidal signal with a frequency of 1/3 Hz.
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6 Whole-Body Control for Multi-Contact Balancing

6.4 Passivity Control on Movable and Deformable Ground
(MCB-PC)

The passivity of the whole-body balancing framework is shown in Sections 6.1 (MCB)
and 6.3 (MCB+) for the regulation as well as for the tracking case. Both analyses were
conducted under the assumption of a static ground surface. As a by-product, the balancing
capabilities on a deformable ground surface were also demonstrated in [Henze et al., 2016b]
or Section 6.1.3, respectively, although the passivity of the controller is not specifically
formalized for this particular scenario. Also, many other works assume that the ground
floor is static or that the dynamics of the floor is known (e. g. [Sentis, 2010, Mistry et al.,
2010, Righetti et al., 2013, Herzog et al., 2016]). However, to make the control approach
robust against a large variety of support surfaces, the concept of passivity can be exploited
to make as few assumptions on the floor as possible.

The basic version of the balancing framework (MCB, Section 6.1) was extended in
[Henze et al., 2018] by modifying the controller such that the combination of floor, robot,
and controller remains passive even if the floor surface is movable and deformable. The
modifications require the assumptions that

� the ground floor is passive itself

� and stiff enough to carry the weight of the robot.

Note that Assumption 3.2 still holds, which postulates that the balancing end-effectors
never detach unintentionally from the ground floor although the latter is movable and
deformable.

Stramigioli [2015] recently showed that for every active controller, an environment can
be found that destabilizes the closed-loop system even if the environment is passive. Con-
sequently, there is no guarantee that the basic version of our control framework (see Sec-
tion 6.1) will remain stable on a movable and deformable support surface. In [Henze et al.,
2018], we employed the concept of Passivity Observer-Passivity Control (PO-PC) as pre-
sented by Hannaford and Ryu [2002] to passivate the closed-loop system. Thus, the pre-
sented framework will be called Multi-Contact Balancer with Passivity Control (MCB-PC)
for the remainder of the manuscript. Passivation is made less conservative by exploiting
the concept of energy tanks [Franken et al., 2011] in Section 6.4.4.

6.4.1 Problem Description

The problem of ensuring passivity on movable and deformable ground surfaces already
becomes apparent in (6.27): The term νTτ ext represents the power port with which the
robot can exchange energy with the environment, such as a human disturbing the robot,
or, in this particular case, a movable or deformable ground floor. However, the problem
does not originate from the power port, but rather from the term vTsupF sup in (6.27). The
latter can be conceived as an active element inside the controller, which can dissipate
(vTsupF sup > 0) but also inject energy into the controller (vTsupF sup < 0). In the case of a
rigid and stationary ground floor, as assumed in (6.27), the active element vanishes due
to vsup = 0. However, if the floor is movable or deformable, then the active element can
compromise passivity.

The basic idea of the control strategy can be motivated with the simplified example
shown in Fig. 6.8, in which a humanoid robot is standing with both feet on a moving
platform. Using the compliant whole-body controller from Section 6.1 (MCB), the center
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Figure 6.8: Example of a humanoid robot balancing on a moving platform.

of mass frame C as well as the interaction end-effectors (the hands in this case) are stabi-
lized by their associated compliances (6.1) and (6.4) with respect to the stationary world
frame W. The feet are used as supporting end-effectors to carry the robot by generating
suitable contact wrenches F sup.

Let us first consider the situation where the platform is moving upward: In order to
maintain the position of the CoM and of the hands relative to the world frame W, the
robot must retract the legs. The term vTsupF sup in (6.27) becomes positive, which means
that the active element dissipates power. Therefore, the system remains passive.

If the ground floor is moving downwards, the robot must extend the legs to maintain
the CoM and hand positions. Now, the term vTsupF sup in (6.27) becomes negative, which

means that the active element injects power. Thus, the negative semi-definiteness of V̇ ≤ 0
and therefore passivity can no longer be guaranteed. In order to ensure passivity of the
closed-loop system (floor + robot + controller) nevertheless, the following control strategy
is proposed in [Henze et al., 2018]:

If the controller is about to become active (vTsupF sup < 0), the robot shall move the
setpoints/desired configurations of the CoM and the interaction compliances to dissipate
the same amount of power as injected by vTsupF sup. A logical choice for the motion of the
setpoints is to let the CoM and the hands follow the motion of the ground floor, similar
to a person riding an elevator. If the term vTsupF sup in (6.27) is positive, the power can

101



6 Whole-Body Control for Multi-Contact Balancing

either be dissipated by doing nothing or used to move the setpoints back into their initial
configuration. The latter is again inspired by the elevator example.

6.4.2 Controller Derivation

The solution for movable and deformable floors (MCB-PC) reuses the basic version of
the whole-body controller (MCB) from Section 6.1 with minor modifications. On top of
the MCB controller, there are two additional modules, as shown in Fig. 6.9, for ensuring
passivity: The first one implements an “admittance type” passivity control by moving the
setpoints of the CoM and the interaction compliances. It also realizes an “impedance type”
passivity control by modifying the gravity compensation of the controller. The second
module facilitates an “impedance type” passivity control by adjusting a variable damper.
The latter is part of a relative compliance that connects the support end-effectors with
each other. As detailed in this section, the admittance type is used to passivate the group
motion of the support contacts, while the impedance type is applied to the relative motion.
According to Fig. 6.9, both modules violate causality by modifying and evaluating the com-
manded end-effector wrenches F opt at the same time. The work by Hannaford and Ryu
[2002] on PO-PC also includes a time-discrete implementation that resolves the causality
problem. But for reasons of simplicity, in [Henze et al., 2018] we inserted a unit delay
(not shown in Fig. 6.9) to approximate the solution by Hannaford and Ryu [2002]. The
use of energy tanks for rendering the method less conservative is detailed in Section 6.4.4.
In order to handle robots with a redundant kinematics or in singular configurations, the
framework is also equipped with the null space controller presented in Section 6.2.

The controller reuses the compliances for the CoM and the interaction end-effectors
according to (6.1) and (6.4), respectively. But in contrast to Section 6.1, the desired
velocities vc,d and vint,d can be different from zero to facilitate a motion of the setpoints
(see Fig. 6.9). Furthermore, the gravity compensation is altered such that it can be
disabled via a binary parameter σg = {0, 1}. The latter can be used to accelerate the
center of mass during a downward motion of the support contacts. This results in a
modified version

AdTsup F sup = σgmg0 + F cpl
c +AdTint F

cpl
int . (6.65)

of the underactuation constraint (6.6). The compliance wrenches F cpl
c and F cpl

int are
distributed to the supporting contacts by solving the same constrained quadratic opti-
mization problem (6.9) to (6.14) as before. Of course, the residuum (6.10) is replaced
with δc = AdT F − σgmg0 − F cpl

c to account for the modified underactuation condi-
tion (6.65). In contrast to Section 6.1, the control torques are computed via

τ = −(J ′)TF opt + (J ′sup)TETτ cpl
RM (6.66)

rather than via (6.17). The second term establishes a relative compliance based on the con-
cept of virtual linkage connecting the support contacts with each other (see Section 3.5 and

[Williams and Khatib, 1993]). The vector of generalized torques τ cpl
RM ∈ R6(ψsup−1) issued

by the relative compliance is mapped via the transpose of the matrix E ∈ R6ψsup×6(ψsup−1)

from the space of the virtual linkage to contact forces3 and then via (J ′sup)T to joint space.

The basic idea behind τ cpl
RM is to stabilize the relative motion of the support end-effectors.

3Note Williams and Khatib [1993] define the matrix E such that it maps only internal forces to the
contacts, while the mapping including internal torques is more complicated. For simplicity of notation,
this work will use E for describing the mapping of both internal forces and torques.
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Figure 6.9: Overview of the architecture of the MCB-PC control framework extended to
movable and deformable support surfaces.

As we have learned from the introductory example shown in Fig. 6.8, a motion of the
setpoints can be used to dissipate the power that is injected by a group motion of the
support end-effectors. The latter is generally conceived as a rigid body motion of the
end-effectors maintaining their relative posture. If the relative posture of the end-effectors
changes, then this is considered a relative motion. As a relative motion of the support
contacts can also inject energy, the relative compliance

τ cpl
RM = −(∇V K

RM)T − (DRM +Dvar
RM)vRM (6.67)

is used to dissipate the injected power. The relative stiffness is represented by the positive
definite potential V K

RM ∈ R. The default damping is given the constant and positive
definite matrix DRM ∈ R6(ψsup−1)×6(ψsup−1). The semi-positive definite matrix Dvar

RM ∈
R6(ψsup−1)×6(ψsup−1) represents an additional variable damper, which can be used to damp
out the energy that is injected by the active element vTsupF

opt
sup into the relative motion. The

velocities of the virtual linkage are given by vRM = E J ′supq̇ with vRM ∈ R6(ψsup−1). The

advantage of using the concept of virtual linkage is that τ cpl
RM does not alter the resulting

overall support wrench (see Section 3.5). Therefore, it does not need to be considered

by the residuum δc in (6.10). However, τ cpl
RM affects the support wrenches F opt

sup, which

can lead to a violation of the contact model. A solution would be to consider τ cpl
RM inside

the constrained quadratic optimization (6.9) to (6.14) to ensure that the contact model is
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respected. But then the contact model could modify τ cpl
RM, which would be problematic

regarding the passivation of the system.

In the previous sections, the passivity analysis was conducted by formulating the dy-
namics of the closed-loop system comprising the controller and the robot. As the floor
was assumed to be stationary, it was not necessary to incorporate its dynamics into the
closed-loop system. The MCB-PC control approach, presented in this section, explicitly
extends the passivity considerations from stationary to movable and deformable ground
surfaces. But, the intention of the approach is to make as little assumptions on the floor as
possible. Therefore, the dynamic equation of the floor is considered unknown. Instead, the
passivity consideration first focuses on the subsystem containing only the controller and
the robot. Afterwards, the passivity analysis will be extended to the complete closed-loop
system combining controller, robot and the ground floor. The dynamics of the subsystem,
which contains the dynamics of the controller and of the robot,

Mν̇ +Cν +

(
(1− σg)mg0

0

)
=

(
F cpl

c

(J ′sup)TETτ cpl
RM

)
+ JT

(−F opt
sup

F cpl
int

)
+ τ ext (6.68)

can be obtained by inserting (6.66) and (6.65) into (3.20) under the assumption that the
soft constraints (6.10) and (6.12) are exactly fulfilled (see Assumption 6.1).

The rules for moving the setpoints via vc,d and vint,d, disabling gravity compensation
via σg, and for modulating the variable damper Dvar

c can be derived as follows: Let us
consider

V =
1

2
νTMν +mgT0 xc︸ ︷︷ ︸

Vg(xc)

+V K
c + V K

int + V K
RM (6.69)

as a candidate for a storage function. The first two terms represent the physical energy
storages of the robot, i. e. inertia and gravity. The remaining terms represent the energy
storages of the compliances inside the controller: The potentials V K

c , V K
int, and V K

RM are
introduced by compliances for the CoM, the interaction end-effectors, and the relative feet
motion, respectively. Note that the potential (6.69) has no lower bound due to Vg(xc),
which is addressed at the end of this section.

Computing the time derivative, inserting the dynamics of the subsystem (6.68) and
accounting for the skew-symmetry of Ṁ − 2C [Ott, 2008] yields

V̇ = νTMν̇ +
1

2
νTṀν + V̇ K

c + V̇ K
int + V̇ K

RM + mgT0 vc

= vTc F
cpl
c + q̇T (J ′sup)TETτ cpl

RM − νTJTsupF
opt
sup + νTJTintF

cpl
int

+ V̇ K
c + V̇ K

int + V̇ K
RM + σgmg

T
0 vc + νTτ ext.

(6.70)

Considering (3.21), (3.22), and vRM = E J ′supq̇ simplifies V̇ to

V̇ = vTc F
cpl
c + vTintF

cpl
int + vTRMτ

cpl
RM

+ V̇ K
c + V̇ K

int + V̇ K
RM

+ σgmg
T
0 vc − vTsupF

opt
sup + νTτ ext.

(6.71)

Considering V̇ K
c = ∆vTc (∇V K

c )T , V̇ K
int = ∆vTint(∇V K

int)
T , V̇ K

RM = ∆vTRM(∇V K
RM)T and
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inserting (6.1), (6.4), (6.67) yields

V̇ = vTc F
cpl
c + vTintF

cpl
int + vTRMτ

cpl
RM

− vTc F cpl
c + vTc,d ΩT

c F
cpl
c −∆vTc Dc ∆vc

− vTintF
cpl
int + vTint,d ΩT

intF
cpl
int −∆vTintDint ∆vint

− vTRMτ
cpl
RM − vTRMDRM vRM

+mgT0 vc − vTsupF
opt
sup + νTτ ext

= vTc,d ΩT
c F

cpl
c + vTint,d ΩT

intF
cpl
int − vTRMD

var
RM vRM

+ σgmg
T
0 vc − vTsupF

opt
sup + νTτ ext

−∆vTc Dc ∆vc︸ ︷︷ ︸
≤0

−∆vTintDint ∆vint︸ ︷︷ ︸
≤0

−vTRMDRM vRM︸ ︷︷ ︸
≤0

.

(6.72)

As the last three terms are semi-negative definite, we can conclude that

V̇ ≤ vTc,d ΩT
c F

cpl
c + vTint,d ΩT

intF
cpl
int − vTRMD

var
RM vRM + σgmg

T
0 vc

−vTsupF
opt
sup︸ ︷︷ ︸

Pact

+νTτ ext︸ ︷︷ ︸
port

(6.73)

must hold. The last term represents the port for exchanging energy between the environ-
ment and the subsystem containing the controller and the robot. The latter comprises
the floor but also a human disturbing the robot. In order to make the closed-loop system
passive, it is necessary to render (6.73) into V̇ ≤ νTτ ext by compensating with vc,d, vint,d,
σg, and Dvar

RM for the power Pact = −vTsupF
opt
sup, which is injected by the active element.

Note that the power Pact can be injected into the group motion as well as into the relative
motion. The power injected into the group motion can be influenced by moving the set-
points of the CoM and interaction compliances via vc,d and vint,d and by disabling gravity
compensation via the parameter σg. The power of the relative motion can be manipulated
via the variable damper Dvar

RM, which is part of the relative compliance (6.67). Therefore,
it is necessary to split the injected power Pact into a part corresponding to a group motion
and into a relative motion of the support contacts. Based on the discussion in Section 3.3,
this can be achieved by splitting the commanded support wrench F opt

sup ∈ R6ψsup into the
overall support wrench F res

sup ∈ R6 and into internal stress via

F opt
sup = (AdTsup)W sup+AdTsup F

opt
sup︸ ︷︷ ︸

F res
sup

+
(
I − (AdTsup)W sup+AdTsup

)
F opt

sup︸ ︷︷ ︸
internal stress

(6.74)

with
(AdTsup)W sup+ = W−1

supAdsup

(
AdTsupW

−1
supAdsup

)−1
(6.75)

denoting the weighted pseudoinverse of AdTsup. The positive definite weighting matrix

W sup ∈ R6ψsup×6ψsup specifies which portion of F opt
sup is considered as part of the overall sup-

port wrench F res
sup and which portion as internal stress. The logical choice is to chooseW sup

equal to the weighting matrix Qsup, which is used in the constrained quadratic optimiza-
tion (6.9) to (6.14) for solving the wrench distribution problem. This choice allows us to
split the injected power

Pact = (−vsup)T (AdTsup)Qsup+F res
sup︸ ︷︷ ︸

PGM

+ (−vsup)T
(
I − (AdTsup)Qsup+AdTsup

)
F opt

sup︸ ︷︷ ︸
PRM

(6.76)
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into PGM and PRM related to the group and the relative motion of the support contacts,
respectively. Furthermore, PGM can be split into

PGM = (−vsup)T (AdTsup)Qsup+σgmg0︸ ︷︷ ︸
P gGM

+ (−vsup)T (AdTsup)Qsup+(F cpl
c +AdTint F

cpl
int)

︸ ︷︷ ︸
P cpl
GM

(6.77)

by inserting the modified underactuation condition (6.65) with F res
sup = AdTsup F sup (see

Section 3.3). Here, P gGM and P cpl
GM denote the power of the group motion due to gravity

compensation and the Cartesian compliances (CoM + Interaction), respectively. Inserting
this segmentation into (6.73) yields

V̇ ≤ (Ωc vc,d)T (F cpl
c ) + (Ωint vint,d)TF cpl

int + vTc σgmg0 + P cpl
GM + P gGM

− vTRMD
var
RM vRM + PRM

+ νTτ ext,

(6.78)

where the first line corresponds to the group motion, the second to the relative motion,
and the third to the port with the environment.

In order to compensate for PGM, we propose a combination of an “impedance” and an
“admittance type” passivity control. The former is implemented by adjusting the gravity
compensation of the controller via the parameter σg. The latter by moving the setpoints
of the CoM and the interaction end-effectors appropriately. In general, there is an infinite
amount of possibilities to combine a CoM motion with a motion of the hands. But for
reasons of simplicity, in [Henze et al., 2018] we proposed moving both in a coordinated
manner, as if they were connected by a single rigid body. Other choices are also possible,
although they can lead to a singular problem: For example, compensating for P cpl

GM is not
possible if F cpl

c is close to zero, because this would require an infinite velocity vc,d. To
avoid this problem, the setpoint velocities are chosen as if they were connected by a single
rigid body. Incorporating this condition via Ωint vint,d = Adint Ωc vc,d into (6.78) results
in

V̇ ≤ (Ωc vc,d)T (F cpl
c +AdTint F

cpl
int) + vTc σgmg0 + P gGM + P cpl

GM

− vTRMD
var
RM vRM + PRM

+ νTτ ext.

(6.79)

In order to compensate for the activity of the group motion PGM, one has to choose vc,d

and σg such that

(Ωc vc,d)T (F cpl
c +AdTint F

cpl
int) + vTc σgmg0 + P gGM + P cpl

GM =
(
Ωc vc,d − (Adsup)Qsup+vsup

)T (
F cpl

c +AdTint F
cpl
int

)
+

(
vc − (Adsup)Qsup+vsup

)
(σgmg0) ≤ 0

(6.80)

holds with P gGM and P cpl
GM according to (6.77). This condition can be ensured by selecting

the setpoint velocity for the CoM and the interaction compliances according to

Ωc vc,d =





0 if P cpl
GM ≤ 0 ∧ dT ḋ ≥ 0

(Adsup)Qsup+ vsup if P cpl
GM ≤ 0 ∧ dT ḋ < 0

(Adsup)Qsup+ vsup if P cpl
GM > 0

(6.81)
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and by disabling the gravity compensation according to

σg =

{
1 if P gGM ≤ 0

0 if P gGM > 0.
(6.82)

Note that the expression (Adsup)Qsup+ vsup in (6.81) can be interpreted as a weighted

mean value of the contact velocities. If P cpl
GM > 0, then the active element injects power

into the group motion. The controller compensates for the injected power by moving the
setpoints at the computed mean velocity of the ground floor, as motivated in Section 6.4.1.
If P cpl

GM ≤ 0, there is no need to move the setpoints, as the active element drains power
from the group motion. However, if the setpoints have been moved before, the controller
can use P cpl

GM to bring the setpoints back into their initial configuration via the second
line of (6.81). For this, a measure d ∈ R6 of the distance between the current and the
initial setpoint of the CoM is introduced. But the setpoints are only moved if the motion
decreases the distance d. Otherwise, the power P cpl

GM is dissipated by the active element
without commanding a motion of the setpoints (see first line of (6.81)). The strategy,
which is given in (6.82) temporarily disables the gravity compensation of the controller
if P gGM ≤ 0 in order to let the robot drop due to the existing gravitational field.

In order to compensate for the activity of the relative motion PRM in (6.79), we proposed
an “impedance type” passivity control in [Henze et al., 2018] by adjusting the variable
damping matrix Dvar

RM according to

Dvar
RMvRM =

{
0 if PRM ≤ 0

−
(
I −Adsup(Adsup)Qsup+

)
F opt

sup if PRM > 0.
(6.83)

If PRM > 0, then the active element injects power into the relative motion, which is
compensated for by activating the damper Dvar

RM accordingly. If PRM ≤ 0 then the active
element drains energy from the relative motion, which allows for a deactivation of the vari-
able damper. Note that (6.83) never becomes singular because the relative power PRM = 0
if the relative velocity vRM = 0 (see (6.76)). Thus, a suitable matrix Dvar

RM always exists
to compensate for PRM.

Note that it is not possible to show the passivity of the subsystem containing the con-
troller and the robot. Although (6.81), (6.82), and (6.83) ensure that

V̇ ≤ νTτ ext (6.84)

holds, the storage function V does not feature a lower bound due to Vg(xc,d) in (6.69). For
this reason, the passivity considerations must be extended to incorporate the properties
of the ground floor. The latter is assumed to be passive itself, which means that there
exists a positive definite storage function Vfloor(Hsup,i) ∈ R, which is a function of the
homogeneous transformations of the support contacts Hsup,i. Furthermore, Vfloor(Hsup,i)
satisfies

V̇floor ≤ −vTsupF
ext
sup (6.85)

with vTsupF
ext
sup representing the power port, which allows for an energy transfer between

the floor and the robot. Combining V̇floor with (6.69) yields the total potential function

Vtot = Vfloor + V

= Vfloor + Vg(xc) +
1

2
νTMν + V K

c + V K
int + V K

RM

(6.86)
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comprising the floor, the robot, and the controller. An obvious requirement to stabilize
the robot on a movable surface is the assumption that the environment can support the
weight of the robot. This is formalized with the condition

Vfloor(Hsup,i) + Vg(xc) > −κ ∈ U (6.87)

with the scalar κ > 0. This condition is subject to the constraint U , which limits the
maximum distance between the support contacts and the CoM to be within the kinematic
limits of the robot. Under this assumption, the total potential Vtot is bounded from below
and qualifies as a candidate storage function for the passivity analysis.

In order to complete the passivity analysis, we have to show that V̇tot is smaller or equal
to the power transferred via a power port [Khalil, 2014]. Computing V̇tot yields

V̇tot = V̇floor + V̇ ≤ −vTsupF
ext
sup + νTτ ext (6.88)

considering (6.84) and (6.85). Let us split τ ext = JTsupF
ext
sup+τ dist into the external support

wrenches F ext
sup and into the vector τ dist ∈ R6+n. The latter comprises all remaining

external disturbances, such as a human perturbing the robot. This partition allows for
the isolation of the energy flow between the robot and the floor from the rest, which leads
to

V̇tot ≤ vTsupF
ext
sup + νTJTsupF

ext
sup + νTτ dist = νTτ dist (6.89)

considering (3.21). Thus, one can conclude that the combined system containing the
controller, the robot, and the floor is passive with respect to the power port νTτ dist based
on the definition given by Khalil [2014].

6.4.3 Simplification of the Control Strategy for the Group Motion

The previous section uses two independent power ports to compensate for the activity
of the group motion. The first power port is given by (Ωc vc,d)T (F cpl

c +AdTint F
cpl
int) and

administered by (6.81) to compensate for P cpl
GM. The second port is given by (vc)

T (σgmg0)
and administered by (6.82) to compensate for P gGM. The control strategy can be simplified
under the assumption that the CoM and the interaction compliance show a sufficient
tracking, such that only a single power port is required to passivate the group motion.

Besides this aspect, the strategy presented in the previous section results in a chattering
of the contact wrenches F sup. Especially, the temporary deactivation of the gravity com-
pensation according to (6.82) has a significant impact on the amplitude of the chattering.
In the case of the humanoid robot TORO, the gravity compensation has to counteract a
weight of 76.4 kg (see Chapter 5). In contrast to that, the simplified strategy presented in
this section does not disable the gravity compensation at all (σg is always set to σg = 1),
which results in a less “aggressive” behavior of the controller.

Let us revise (6.80) by first adding Ωc(vc,d−vc,d) = 0 and then exploiting the modified
underaction condition (6.65) with AdTsup F sup = F res

sup:

0 ≥
(
Ωc vc,d − (Adsup)Qsup+vsup

)T (
F cpl

c +AdTint F
cpl
int

)

+
(
vc + Ωc(vc,d − vc,d)− (Adsup)Qsup+vsup

)
(σgmg0)

=
(
Ωc vc,d − (Adsup)Qsup+vsup

)T (
F cpl

c +AdTint F
cpl
int + σgmg0

)

+ (vc −Ωc vc,d) (σgmg0)

=
(
Ωc vc,d − (Adsup)Qsup+vsup

)T (
F res

sup

)
+ (vc −Ωc vc,d)︸ ︷︷ ︸

≈0

(σgmg0) .

(6.90)
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If we assume a sufficient tracking of the CoM and interaction compliances, then the last
term in (6.90) can be neglected. Therefore, it is only necessary to move the setpoints
according to

Ωc vc,d =





0 if PGM ≤ 0 ∧ dT ḋ ≥ 0

(Adsup)Qsup+ vsup if PGM ≤ 0 ∧ dT ḋ < 0

(Adsup)Qsup+ vsup if PGM > 0

(6.91)

to compensate for the power PGM =
(
(Adsup)Qsup+ vsup

)T (
F res

sup

)
, which is injected into

the group motion by the active element according to (6.76). Temporarily disabling the
gravity compensation is no longer required, which means that the parameter σg can be
set permanently to σg = 1.

6.4.4 Energy Tanks

The method proposed in Section 6.4.2 ensures the passivity of the closed-loop system
(controller + robot + floor) at every time step the controller is executed. In order to be
less conservative, in [Henze et al., 2018] we proposed extending the control scheme with
energy tanks [Franken et al., 2011], which allows the controller to become active for a
short period of time, as long as the same amount of energy is dissipated afterwards. Note
that the extension is designed for the simplified version of the control strategy given in
Section 6.4.3.

Let us first address the power PGM involved in the group motion of the support con-
tacts. Based on the practical experience of Henze et al. [2018] it is recommended to use
six separate energy tanks for every DoF of the group motion to ensure that no activity
of one DoF is canceled or “masked” by the dissipation of another DoF. Of course im-
plementing six separate tanks can make the controller more conservative than necessary.
The energy level TGM,k ∈ R of each tank features a lower and an upper bound such that
0 ≤ TGM,k < Tmax

GM,k ∀k = 1 . . . 6 holds. If a tank is within these boundaries, the fill level
changes according to

ṪGM,k = (βact,k
GM + βdrain,k

GM ) ∀k = 1 . . . 6 (6.92)

with βact,k
GM , βdrain,k

GM ∈ R representing two power ports. The first one is directly connected

to the active element via βact,k
GM =

(
(Adsup)Qsup+ vsup

)
k

(
F res

sup

)
k

to monitor the injected
energy. If the group motion becomes passive according to the first line of (6.91), then
the port is used to refill the tank. If the level reaches the upper limit Tmax

GM,k, the tank
saturates, which means that the energy drained from the controller is dissipated. In case
the tank reaches the lower limit of zero, the second port βdrain,k

GM = (−Ωc vc,d)k
(
F res

sup

)
k

opens, which is connected to the setpoints via

(Ωc vc,d)k =





0 if TGM,k > 0

0 if TGM,k = 0 ∧ βact,k
GM ≤ 0 ∧ dkḋk ≥ 0(

(Adsup)Qsup+ vsup

)
k

if TGM,k = 0 ∧ βact,k
GM ≤ 0 ∧ dkḋk < 0(

(Adsup)Qsup+ vsup

)
k

if TGM,k = 0 ∧ βact,k
GM > 0.

(6.93)

In other words, the second port drains as much power from the controller as the first
port injects into it, such that the level of the tank does not sink below zero ensuring the
overall passivity of the closed-loop system. Note that the setpoints of the CoM and the
interaction end-effectors are only adjusted according to the second and third line of (6.91)
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if the energy level of the associated tank equals zero. Thus, the initial fill level of the
tanks can be interpreted as a tuning parameter, which specifies how much energy the
controller may inject via βact,k

GM before passivity is enforced by opening the second port

βdrain,k
GM . In conclusion, the MCB-PC controller is identical to the MCB version presented

in Section 6.1 as long as the energy tanks are filled. Thus, the energy tanks allow for
full balancing capabilities for a short period of time until they are depleted and the robot
switches to a “passive mode” by adjusting the setpoints.

Analogously, an energy tank TRM,k ∈ R can be defined for each DoF involved in the rela-
tive motion of the support contacts. The saturation limits are given by 0 ≤ TRM,k < Tmax

RM,k.
If the energy level of the tank is within the boundaries, TRM,k changes according to

ṪRM,k = (βact,k
RM + βdrain,k

RM ) ∀k = 1 . . . 6 (6.94)

with the first port βact,k
RM = (vsup)k

(
(I − (AdTsup)Qsup+AdTsup)F opt

sup

)
k

monitoring the active

element. The second port βdrain,k
RM = (vRM)k (Dvar

RM vRM)k is connected to the variable
damper via

(Dvar
RMvRM)k =





0 if TRM,k > 0

0 if TRM,k = 0 ∧ βdrain,k
RM ≤ 0(

−
(
I −Adsup(Adsup)Qsup+

)
F opt

sup

)
k

if TRM,k = 0 ∧ βdrain,k
RM > 0.

(6.95)
The first port is permanently connected to the active element, while the second port is
used to drain energy from the controller via the variable damper Dvar

RM . Again, the energy
is dissipated once the tank reaches the upper limit Tmax

RM,k. If the level of TRM,k reaches

zero, the second port βdrain,k
RM opens in order to drain the same amount of power as injected

via βact,k
RM .

6.4.5 Experimental Evaluation

The performance of the presented MCB-PC control framework for movable and deformable
support surfaces was evaluated in [Henze et al., 2018] using the torque-controlled hu-
manoid robot TORO. A brief description of the robot hardware is given in Chapter 5.
Although the control strategy presented in Section 6.4.2 provides a passivation of the
group and the relative motion of the support contacts, previous experiments revealed
that the group motion shows the biggest influence on passivity, while the relative mo-
tion can be neglected. Thus, the relative compliance (6.67) was permanently disabled for
the presented experiments. Furthermore, the control strategy of the group motion was
implemented on the basis of the simplifications in Section 6.4.3, as previous experiments
revealed a sufficient tracking for the CoM and the interaction compliances.

Verification of the Control Strategy

The first experiment evaluates the effectiveness of the control strategy proposed in Sec-
tion 6.4.3. For this, the robot TORO is placed with the left foot on a rocker board,
which can be flipped manually by a human, as shown in Fig. 6.10a. The right foot of
the robot rests on a pedestal. The algorithm for estimating the state of the base frame
(see Section 5.2) was configured such that the information on the orientation is entirely
provided by the on-board IMU (αIMU = 1) and the one on the translation by the right
foot (αFootR = 1, αFootL = αHandR = αHandL = 0). The rocker board can induce a vertical
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Figure 6.10: Comparison of the MCB and the MCB-PC controller for a vertical foot mo-
tion.
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Figure 6.11: Comparison of the MCB and the MCB-PC controller balancing on a mixed
type of surfaces.
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Figure 6.12: Influence of the energy tanks while balancing on a compliant support.
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motion of the left foot, which corresponds to a superposition of a group and a relative
motion.

Fig. 6.10b compares the behavior of the robot using the MCB version of the control
framework (see Section 6.1) with the extension for movable and deformable support sur-
faces (MCB-PC). For both, the rocker board is flipped twice inducing two consecutive up
and down movements of the left foot. As can be seen in Fig. 6.10b, the MCB controller
successfully stabilizes the height of the CoM and the hands above the ground, despite
some minor deviations. However, if we take a look at the energy

∫
q̇Tτ dt, which is trans-

fered between the controller and the robot, one can see that the MCB controller injects an
overall amount of 11.4 J into the robot during the two motions. Note that the controller
can only store energy in the potentials V K

c and V K
int of the Cartesian compliances, as the

relative compliance was permanently disabled. As the control error of the Cartesian com-
pliances is approximately zero before and after the two motions (t = 0 s and t = 12 s), one
can conclude that the injected energy must originate from the active element (6.76) inside
the MCB controller.

If the experiment is repeated with the MCB-PC approach, Fig. 6.10b shows that the
controller moves the setpoints of the CoM and the hands according to (6.91): During
the first upward motion at t = 22.9 s, the active element Pact dissipates energy from the
controller. Thus, the MCB-PC controller shows the same behavior as the MCB controller
before by maintaining the height of the CoM and the hands (first line of (6.91)). But during
the following downward motion, Pact is about to inject energy into the controller, which is
prevented by lowering the CoM and the hands simultaneously (third line of (6.91)). During
the second upward motion, Pact becomes dissipative again. Thus, the MCB-PC controller
utilizes the power of Pact to lift the setpoints back again to their initial height (second line
of (6.91)). It is noteworthy that the setpoints perform a vertical motion of 2.8 cm, which
is exactly half of the amplitude of the left foot. This observation can be explained by
interpreting (Adsup)Qsup+ vsup in (6.91) as a weighted mean value of the foot velocities.
As the right foot is not moving, only 50% of the motion of the left foot is mapped to
the CoM and the hands. If we take a look at the energy transfered between controller
and robot

∫
q̇Tτ dt, one can see that the MCB-PC controller drains an overall amount

of 37 J from the robot. As the control error of the compliances within the controller
are approximately zero before and after the experiment (t = 20 s and t = 35 s), one can
conclude that the drained energy must be dissipated by the controller, which proves the
effectiveness of the proposed MCB-PC control strategy. Note that strictly speaking, the
assumption of a passive floor (see Section 6.4) does not hold in this particular scenario
because of a human flipping the rocker board. However, this inadequacy does not diminish
the main observation of the experiment that the MCB-PC controller drains energy from
the robot and dissipates it to ensure passivity in contrast to the simple MCB approach.

Importance of Passivity Control

The next experiment demonstrates the importance of passivity control. Stramigioli [2015]
recently showed that for every active controller one can find an environment that desta-
bilizes the controller even if the environment is passive. In order to verify this statement,
the robot TORO was placed with the left foot on three layers of gym mats, as shown
in Fig. 6.11a. The right foot was used to estimate the base frame resting on a pedestal
(αFootR = 1, αFootL = αHandR = αHandL = 0 in Section 5.2).

If the MCB version of the control framework (see Section 6.1) is used to operate the
robot, the latter exhibits an increasing oscillation, as shown in Fig. 6.11b. The oscillation
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involves the translation of the CoM in x-direction and the orientation of the left foot
about the y-axis of the world frame W. As the amplitude keeps increasing up to 2.6 cm
and 10° respectively, the experiment is aborted at t = 20 s. The observed instability can
be explained by analyzing the energy transfer between controller and robot

∫
q̇Tτ dt. As

can be seen in Fig. 6.11b, the MCB controller periodically injects energy into the robot
and thereby destabilizes it.

Fig. 6.11b also reveals that the energy transfer into the robot is negligible if the robot
is operated using the MCB-PC controller, which features the extension for movable and
deformable ground surfaces. Although there is also a slight oscillation, the amplitude stays
within reasonable limits.

Application of Energy Tanks

This section evaluates the possibility to make the MCB-PC control approach less conser-
vative by using energy tanks, as proposed in Section 6.4.4. For this purpose, the robot
is placed on three layers of gym mats, as shown in Fig. 6.12a. At the beginning of the
experiment, the three energy tanks for the translation of the group motion are at their
maximum level of 3 J, 0.2 J, and 5 J, respectively. Therefore, the MCB-PC controller ex-
hibits the same balancing behavior as the basic MCB controller in Section 6.1 until the
tank in y-direction reaches zero at t = 5 s. After that, the power port βdrain,y

GM in (6.92)
is opened, which causes the CoM and the CoP to move 1.1 cm to the side. However, the
stance of the robot is wide enough, such that the movement of CoM and CoP does not
compromise balancing. After t = 25 s, the energy tank in x-direction is depleted as well,
which causes the CoM and the CoP to start drifting to the front. As soon as both reach
the frontal boundary of the support polygon at pmax

Feet,x = 13 cm, the robot shuts itself down
and falls to the front.

In summary, the extended MCB-PC control concept ensures the passivity of the closed-
loop system by moving the setpoints of the CoM and the hands in concert with the ground
floor. However, this can also have negative effects, as the CoM can approach the border
of the support polygon. In the presented experiment, the stance of the robot was wide
enough, such that a motion of the CoM to the side does not pose a problem, in contrast
to the x-direction where the size of the support polygon is rather limited.

6.5 Balancing while Performing High-Force Interaction Tasks
(MCB-ACT)

As shown in Section 6.1.3, the basic version of the whole-body controller (MCB) can
already carry a significant amount of load, such as a 12.2 kg box in this case. As can
be seen in Fig. 6.4, the center of mass maintains its location during the lift, while the
center of pressure moves to the front of the feet to counteract the weight of the box. As
a consequence, the length of the feet limits the additional weight that the robot is able
to carry without falling over. In more general terms, the magnitude of the interaction
wrenches, which the robot is able to apply at the environment, is limited by the contact
model (6.13) imposed on the support contacts. In order to overcome this restriction, we
extended the basic MCB controller in [Abi-Farraj et al., 2019] by allowing the controller
to move the CoM automatically, such that the support wrenches F sup satisfy the contact
model. For instance, this enables the robot to lean forward in order to push a heavy
object, as demonstrated in Fig. 6.16a. The whole-body control approach presented in this

115



6 Whole-Body Control for Multi-Contact Balancing

VP

mg0

CoM
Compliance

Interaction
Compliance

Null Space
Compliance

W
re
n
ch

D
is
tr
ib
u
ti
o
n

−(J ′)T

Nnull

p
la
n
n
er

mix

FP
c

F cpl
c

F cpl
int

τ cpl
pose

F opt

τ

x
i,
d
,
R

i,
d

q
,
q̇

Figure 6.13: Overview of the architecture of the MCB-ACT control framework extended
for high-force interaction tasks. The “mix”-block combines both input signals
by selecting the horizontal forces from FPc and the rest from F cpl

c + mg0

according to (6.101).

section will be called Multi-Contact Balancer with Automatic CoM Task (MCB-ACT) for
the remainder of the manuscript. A repetition of the experiment where TORO is carrying
a box revealed that the payload can be increased from 12.2 kg to 25 kg, which corresponds
to nearly a third of the robot’s weight (see Fig. 6.15).

6.5.1 Controller Derivation

The MCB-ACT controller presented in [Abi-Farraj et al., 2019] utilizes the polyhedron of
feasible wrenches introduced in Section 3.6 to find an optimal CoM position as a function
of the commanded interaction wrenches F cpl

int . Fig. 6.13 offers a more detailed overview of
the control architecture: The polyhedron P(A, b) is used to define a potential VP(F int,xc),
which drives the horizontal translation of the center of mass, such that the robot can utilize
its own weight to counteract the interaction wrenches F cpl

int . For instance, this allows
the robot to lean against an object in order to push it, as demonstrated in Fig. 6.16.
The remaining four CoM coordinates are governed by the Cartesian compliance (6.1).
The wrenches generated by the potential VP(F int,xc) and by the CoM compliance are
combined and fed to the constrained quadratic optimization problem (6.9) to (6.14) in
order to be distributed to the end-effectors. The mapping of F opt to the joint torque τ
is done via (6.17). The interaction end-effectors are again stabilized by the Cartesian

compliance (6.4) generating F cpl
int . In order to handle robots with a redundant kinematics

or in singular configurations, the framework is also equipped with the null space controller
presented in Section 6.2.

Under the assumption that all contact frames are stationary with respect to the world
frame W, the polyhedron of feasible wrenches P(A, b) is computed using the procedure
depicted in Fig. 3.11. Note that the polyhedron is given in the H-representation leading
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to (3.51). As the resulting support wrench F res
sup = AdTsup F sup acts on the CoM frame C, it

is shifted to the world frame W via Ad(I,xc)
−T leading to F res

sup,W = Ad(I,xc)
−TF res

sup.

Consequently, the polyhedron P(A, b) =
{
F res

sup,W : AF res
sup,W ≤ b

}
describes the set of

feasible wrenches acting on the world frame. Note that P(A, b) is constant for a given
contact configuration.

Let the kth face of P(A, b) be given by
{
F res

sup,W : aTk F
res
sup,W ≤ bk

}
. Based on the

assumption that the robot starts from a feasible configuration (see Assumption 3.1), one
can define a distance measure dk ∈ R

dk(F
res
sup,W) =

bk − aTk F res
sup,W

‖ak‖
≥ 0 (6.96)

from the current resulting support wrench F res
sup,W (shifted to W) to the kth face of the

polyhedron P(A, b). Note that the distance measure dk is unique and scale invariant,
although there is an infinite number of possibilities to express P(A, b). However, it is
assumed that there are no duplicate faces in P(A, b).

On the other hand, F res
sup,W can be formulated as a function of the CoM position xc by

multiplying the underactuation condition (6.6) with Ad(I,xc)
−T to shift it from the CoM

to the world frame W:

Ad(I,xc)
−T AdTsup F sup = Ad(I,xc)

−T
(
mg0 + F cpl

c +AdTint F
cpl
int

)

Ad(I,xc)
−T F res

sup = Ad(I,xc)
−T
(
mg0 + F cpl

c +AdTint F
cpl
int

)

F res
sup,W = Ad(I,xc)

−T
(
mg0 + F cpl

c

)
+AdTint,W F

cpl
int

(6.97)

with Adint,W = AdintAd(I,xc). Note that the potential VP and the CoM compliance
are designed independently of each other, which is why F cpl

c can be neglected in (6.97).
Although a combined design would account for a possible coupling between VP and the
compliance, it would also be considerably more cumbersome. Let us consider the case
where the x- and y-axis of the world frame W span the horizontal plane, as shown
in Fig. 3.12a. Then the above equation can be simplified by exploiting the structure
of g0 = ( 0 0 ‖g0‖ 0 0 0 )T in combination with xc = ( xc,x xc,y xc,z )T and Definition 3.2:

F res
sup,W = AdTint,W F

cpl
int +Ad(I,xc)

−T mg0

= AdTint,W F
cpl
int +m ‖g0‖




0
0
1
xc,y

−xc,x

0




.
(6.98)

Note that the wrench F res
sup,W is a function of the commanded interaction wrenches F cpl

int

and the CoM position in the horizontal plane of the world frame W. As the commanded
interaction wrenches F cpl

int are prescribed by the task at hand, the only remaining control-
lable variables are xc,x and xc,y.

The support contacts can only generate the required wrench F sup if and only if dk ≥ 0 ∀k.
In order to enforce this condition, a potential VP ∈ R can be defined encoding the prox-
imity of the resulting support wrench F res

sup to the faces of P(A, b). The potential needs
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to be a monotone function that grows to infinity as dk tends to zero. In [Abi-Farraj et al.,
2019], the potential was empirically chosen as

VP(xc,x, xc,y) =
∑

k

1

dk(xc,x, xc,y)
. (6.99)

Due to the convexity of P(A, b), a gradient control law

FPc = −kP
∂VP(xc,x, xc,y)

∂
(
xc,x xc,y

)T = −kP m ‖g0‖
(∑

k

aTk
d2
k ‖ak‖

)




0 0
0 0
0 0
0 −1
1 0
0 0




(6.100)

can be formulated to regulate the center of mass location in the horizontal plane of W
with kP ∈ R denoting a positive tuning parameter. Note that both FPc and F cpl

c in (6.4)
are six-dimensional vectors. But FPc is supposed to control the horizontal translation of
the CoM, while F cpl

c covers the remaining DoFs. Therefore, both need to be mixed into

F c = diag(1, 1, 0, 0, 0, 0)FPc − diag(0, 0, 1, 1, 1, 1)(∇V K
c )T −Dcvc, (6.101)

which is then fed to the constrained quadratic optimization problem (6.9) to (6.14), as
shown in Fig. 6.13.

6.5.2 Reacting to Contact Transitions

In order to facilitate contact transitions, a humanoid robot must be capable of attaching
and detaching end-effectors to/from the environment. A procedure for swapping end-
effectors between the support and interaction task is discussed in Section 6.7.3. But as
we know from Section 3.6, a change in the contact configuration has a direct influence
on the size and shape of the support polygon SSP. In order to keep the CoM within the
support polygon during a contact switch, the MCB-ACT controller in Section 6.5.1 can
be adapted as shown in [Abi-Farraj et al., 2019].

Let us consider a contact switch by changing the task assignment according to the pro-
cedure described in Section 6.7.3 without actually moving the respective end-effector.
Furthermore, let us denote the polyhedron of feasible wrenches before and after the
contact switch with Pbefore = P(Abefore, bbefore) and Pafter = P(Aafter, bafter), respec-
tively. The potentials for both polyhedra are analogously given by VP,before(xc,x, xc,y)
and VP,after(xc,x, xc,y) based on (6.99). One can obtain an optimal CoM position for both
polyhedra by solving

(
xbefore

c,x

xbefore
c,y

)
= argmin

(xc,x xc,y )T
VP,before(xc,x, xc,y) (6.102)

and

(
xafter

c,x

xafter
c,y

)
= argmin

(xc,x xc,y )T
VP,after(xc,x, xc,y). (6.103)
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Figure 6.14: The overall support wrench F res
sup moves from Pbefore to Pafter during a contact

transition.

Note that both optimal positions depend on the interaction wrenches F cpl
int , as can be seen

from (6.99) with (6.96) and (6.98). Thus, the optimal CoM positions must be recomputed

online if there is a change of F cpl
int .

If the CoM moves quasi-statically from one location (6.102) to another (6.103), the con-
tacts must generate the overall support wrench F res

sup,W(xc,x, xc,y) according to (6.98) in
order to support the weight of the robot. To ensure the feasibility of F res

sup,W(xc,x, xc,y) dur-
ing the transition, both polyhedra Pbefore and Pafter must overlap, as shown in Fig. 6.14.
However, it is possible that the start and/or the end point of the transition are outside
of the intersection Pbefore ∩ Pafter. Therefore, the potentials VP,before and VP,after are not
properly defined during the entire transition, which prohibits a direct interpolation be-
tween VP,before and VP,after to move the CoM from the optimal position (6.102) to (6.103).
Instead, in [Abi-Farraj et al., 2019] we proposed interpolating between (6.102) and (6.103)
and stabilizing the resulting CoM position with another potential4. Note that the polyhe-
dra Pbefore and Pafter are convex, but not necessarily the union Pbefore ∪Pafter. Therefore,
a linear interpolation between (6.102) and (6.103) could cause the required overall sup-
port wrench F res

sup,W(xc,x, xc,y) to leave the union Pbefore ∪ Pafter, which in turn would
lead to the robot falling. In order to prevent that, a via-point ( xviac,x x

via
c,y ) is introduced

with F res
sup,W(xvia

c,x, x
via
c,y) ∈ Pbefore ∩ Pafter (see Fig. 6.14).

In order to drive the center of mass from the optimal position (6.102) to (6.103), one
can define a quadratic potential

Vsw =
1

2

{(
xipol

c,x

xipol
c,y

)
−
(
xc,x

xc,y

)}T {(
xipol

c,x

xipol
c,y

)
−
(
xc,x

xc,y

)}
, (6.104)

which stabilizes the CoM at ( xipolc,x xipolc,y )T . The latter is a position that is obtained from
a piecewise linear interpolation starting from the optimal position (6.102) via ( xviac,x x

via
c,y )

to (6.103). Analogously to (6.101), the wrench to be applied at the center of mass is given
by

F sw
c = −ksw

∂Vsw(xc,x, xc,y)

∂
(
xc,x xc,y

)T , (6.105)

4The interpolation proposed in [Abi-Farraj et al., 2019] is formulated for the overall support wrench, but
is equivalent to the algorithm presented in this section thanks to (6.98).
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6 Whole-Body Control for Multi-Contact Balancing

which is then mixed with the CoM compliance (6.1) into

F sw
c = −diag(1, 1, 0, 0, 0, 0)F sw

c − diag(0, 0, 1, 1, 1, 1)(∇V K
c )T −Dcvc. (6.106)

If we furthermore assume that (6.101) successfully stabilizes the CoM at the optimal
position before the contact transition ( xopt,beforec,x xopt,beforec,y )T , then switching from the con-
troller (6.101) to (6.106) will not cause a discontinuity in the wrench applied at the center
of mass. The same holds for switching back to (6.101) after the interpolation process.

6.5.3 Experimental Evaluation

We evaluated the performance of the presented MCB-ACT control framework, which is
designed for interaction tasks with high forces, in [Abi-Farraj et al., 2019] using the torque-
controlled humanoid robot TORO developed at DLR. A brief description of the robot
hardware is given in Chapter 5.

Balancing while Lifting a Box

This experiment is a repetition of the one presented in Fig. 6.4, where TORO lifts a
heavy box with both hands. Its purpose is to discuss the difference between the basic
MCB controller (see Section 6.1) and the MCB-ACT extension to large interaction forces
(see Section 6.5). As in the previous experiment, the robot TORO balances with both
feet on the ground floor, as shown in Fig. 6.15a. But instead of TORO picking up the box
from a table, it is handed over by a human operator. Furthermore, the weight of the box
was increased from 12.2 kg to 25 kg, which corresponds to nearly a third of the robot’s
weight of 76.4 kg.

At the beginning and at the end of the experiment, the center of mass coincides with the
center of pressure, as predicted by theory. However, as soon as the box is handed to the
robot (3.3 s < t < 6.5 s), it induces a static displacement of the hand compliances, which
causes the generated interaction wrenches to rise to fHandR,z + fHandL,z = 262 N in total.
In order to counteract the interaction wrench, the MCB-ACT controller moves the CoM
by 10 cm to the back, as shown in Fig. 6.15a to 6.15c, while the CoP maintains its location
in the center of the feet. Note that the measured and commanded CoP are remarkably
close to each other, which emphasizes the quality of the control concept.

fHandR,z

+
fHandL,z

WW
xx yy

zz

(a) Setup of the experiment.
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(c) Trajectory of the CoM and the CoP relative to the support polygon SSP (yellow). The
contact areas of the feet SFootR and SFootL are given in gray.

Figure 6.15: Lifting a 25 kg box handed over by a human: The robot shifts the CoM to
the back to counteract the additional load.
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6 Whole-Body Control for Multi-Contact Balancing

In contrast to the basic MCB controller (see Section 6.1), the MCB-ACT extension
moves the CoM instead of the CoP, which increases the producible interaction wrenches
significantly. Here, the limitations are no longer given by the size of the support poly-
gon SSP but by the strength of the arms. Note that in this scenario, the arms of the robot
must be rather stretched to carry this amount of weight to avoid overloading the elbow
joints.

Balancing while Pushing a Table

This experiment shows another application of whole-body control for pushing a heavy
table, which combines balancing, support, and interaction. For this purpose, the robot
TORO stands in front of a table, as shown in Fig. 6.16a, with an additional weight on
top of it. The push is initiated by commanding the setpoints for the hand compliances
by 25 cm to the front. Fig. 6.16b shows the hand forces during the push, which reach a
magnitude of 79.5 N and 60.8 N. The resulting interaction wrenches are counteracted by
the robot by shifting its CoM by 16.8 cm to the front. In other words, the robot leans
against the table in order to push it. Other than the CoM, the combined CoP of the feet
roughly remains at its initial location in x-direction. Note that the posture of the robot
is asymmetric, which causes the CoM and CoP to move slightly to the side as well.

Fig. 6.16c shows the motion of the CoM xc and the CoP pFeet in relation to the support
polygon SSP. As can be seen, the CoP roughly stays in the middle of the support polygon.
The CoM moves to the front and even leaves the support polygon to allow the robot to
lean against the table during the push.

Contact Switching

This experiment illustrates the reaction of the robot to contact switches using the algo-
rithm presented in Section 6.5.2. As shown in Fig. 6.17, the humanoid robot TORO is
placed next to a support structure for the right hand. At the beginning of the experiment
(t = 0 s), both feet are assigned to the support task, while both hands are operated in
interaction mode. The right arm is slowly stretched until the hand touches the handle of
the support structure. At t = 2.35 s, the task assignment of the right hand is changed

fHandR,x+
fHandL,x

WW
xx

yy

zz

t = 0 s t = 20 s

(a) Setup of the experiment.
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Figure 6.16: Pushing a heavy table: The robot shifts the CoM to the front in order to lean
against the table.
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6 Whole-Body Control for Multi-Contact Balancing

from interaction to support, which causes the support polygon SSP to change as depicted
in Fig. 6.17. As a consequence, the algorithm presented in Section 6.5.2 shifts the center
of mass xc by 6.6 cm to the right in order to reach the new optimal position xafter

c (see
Section 6.5.2). From t = 8.4 s to t = 13 s, the algorithm prepares the robot to lift the
right foot by shifting the CoM back to the left (xc,y = 1.5 cm). This motion is triggered
by providing the algorithm at t = 8.4 s with the upcoming task assignment specifying the
left foot and the right hand as support contacts. The actual contact switch takes place
at t = 13 s. Although the contact configuration at the beginning (FootR + FootL) and at
the end of the experiment (FootL + HandR) are fundamentally different, they lead to a
similar support polygon SSP as shown at the bottom of Fig. 6.17. Therefore, one could
say that in this particular scenario, the right hand can be used to replace the support of
the right foot.
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Figure 6.17: Motion of the CoM in consequence of a contact switch: The top row shows
the contact configuration of the robot (red markers). The row at the bottom
visualizes the contact configuration assumed by the algorithm to determine
the optimal CoM position (yellow: support polygon SSP; gray: contact areas
SFootR and SFootL).
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6.6 Interface for Providing Inputs from External Sources

We have demonstrated several times that the framework for whole-body balancing on
multiple contacts can be interfaced with various external components such as algorithms
for path planning [Werner et al., 2016, Sundaram et al., 2018] or input devices for tele-
operation [Abi-Farraj et al., 2019, Porges et al., 2019]. Of course, the variants of the
multi-contact balancer presented in Sections 6.1 to 6.5 require a different interface de-
pending on the provided features and internal architecture. However, the interface for
the multi-contact balancer extended to the tracking case (MCB+, see Section 6.3) can be
considered as the most general one.

The interface for the MCB+ controller is given in Table 6.2: It expects a desired trajec-
tory for the CoM and the interaction end-effectors consisting of a desired setpoint (position
and orientation), velocity, and acceleration. The desired configuration of the robot can be
provided to the null space controller detailed in Section 6.2 via the vector of desired joint
angles qd. If there is no information available on the desired configuration in joint space,
qd can also be set to the initial configuration, although this can reduce the performance of
the robot, as qd might not match the setpoints for the Cartesian compliances. In order to
adjust the controller to the task at hand, the compliances can be parameterized via their
respective stiffness and damping matrices (see Table 6.2 and Chapter 4). For example, if
the robot is supposed to pick up a sphere from a table, they should be chosen rather high
to provide a sufficient accuracy of the hand position. In contrast, the rotational stiffness
can be lowered, as the grasp orientation is irrelevant for this particular scenario.

The constrained quadratic optimization problem expects the vector F def
sup, which specifies

a default wrench distribution for the support contacts. It can be used in combination with
the weighting matrix Qsup to shift the load between the support end-effectors. Ideally,

F def
sup is also provided by an external planning algorithm, but it can also be set manually if

there is no input source available. The latter might slightly decrease the performance of the
robot in some situations but will not compromise the overall functionality. Besides Qsup,
the cQP also requires the parameters Ai and bi describing the model of each support
contact. If the contact properties change over time, for example, due to locomotion, the
contact model must be repetitively updated by the external planning tool.

Table 6.2: Parameters and input signals of the MCB+ controller.

Module Input Parameter Comment

CoM compliance xc,d, Rc,d Ktrans
c , Krot

c , D′c
Int. compliances xi,d, Ri,d Ktrans

i , Krot
i , D′i ∀ψsup < i ≤ ψ

Feedforward terms vc,d, v̇c,d vi, v̇i ∀ψsup < i ≤ ψ
Null space controller qd
cQP F def

sup Qsup, Ai, bi ∀ 1 ≤ i ≤ ψsup

6.7 Implementation

This section presents and discusses several aspects of the constrained quadratic optimiza-
tion (6.9) to (6.14) and (6.44) to (6.49), which facilitate a simple but efficient implemen-
tation. For instance, Section 6.7.1 proposes a method for increasing the robustness of
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F cpl
sup

F opt
sup

F opt
supF opt

sup
F opt
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slippageslippage

Figure 6.18: Influence of a Cartesian compliance at the support contact on the wrench
distribution. Left: Wrench distribution without compliance. Right: Wrench
distribution with compliance.

the support contacts. Section 6.7.2 discusses the advantages of formulating the optimiza-
tion problem using soft constraints regarding the computational effort and the possibility
to adjust the task assignment online. A procedure for changing the task assignment is
presented in Section 6.7.3.

6.7.1 Increasing the Robustness of the Supporting Contacts

Assumption 3.2 states that the support end-effectors do not move relative to their respec-
tive contact area Si to simplify the discussion on the controller properties. However, the
possibility that the support end-effectors unintentionally lose contact can never be entirely
ruled out in practice. One of the reasons can be uncertainties in the contact model or the
fact that the contact model is invoked on the commanded instead of the actual contact
wrenches. Consequently, there are situations in which F ext

sup can deviate from F sup, as
discussed in Sections 6.1.2 and 6.3.2.

In order to increase the robustness of the contacts, in [Henze et al., 2016b] we proposed
subjecting not only the interaction end-effectors but also the support end-effectors to a
Cartesian compliance, which can be achieved by modifying (6.11) or (6.46) according to

δsup = F sup − (F def
sup + F cpl

sup). (6.107)

The wrench F cpl
sup ∈ R6ψsup is computed analogously to (6.4) and superimposed with

the default wrench distribution F def
sup ∈ R6ψsup . As discussed in Remark 6.1, the vector

(F def
sup + F cpl

sup) serves as a regularization term, which influences the wrench distribution in

the null space of the contact map AdTsup. An example of the effect is shown in Fig. 6.18:
Let us consider the case in which the robot uses both legs as support end-effectors. Fur-
thermore, let the left foot be slipping over the ground floor due to an uncertainty in the
contact model. In other words, the commanded wrench F sup overloads the left contact
causing the latter to move. The compliance issues a wrench F cpl

sup to counteract the result-

ing control error. As F cpl
sup functions as a regularization term, it causes the optimization

to shift some of the load from the left to the right foot. This means that the compliance
reduces the load on the left foot to prevent it from slipping any further. Of course, this
method is only applicable if the remaining contacts (here the right foot) can take over the
additional load.
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6.7 Implementation

Note that the described method is not able to stabilize the contact if the connection with
the floor is completely lost and the end-effector is in midair. However, from an empirical
point of view, it has proven itself to increase the robustness against lift-off, slipping, and
tilting, especially in challenging situations such as stair climbing (see e. g. [Werner et al.,
2016]). The stabilizing effect of the compliance also increases the robustness during contact
transitions.

6.7.2 Formulation of the Constrained Quadratic Optimization

Formulating the contained quadratic optimization (cQP) for solving the wrench distribu-
tion problem given in (6.9) to (6.14) or in (6.44) to (6.49) features several advantages
regarding the implementation:

If the optimization problem is formulated such that it only comprises the support end-
effectors, then the size of the cQP would change at every contact transition. However,
incorporating the interaction task via the soft constraint (6.12) or (6.47) creates an opti-
mization problem of constant size. In particular, the cQP comprises 6(ψsup + ψint) = 6ψ
optimization variables, which is determined by the overall number of end-effectors ψ. Be-
sides this, the notion in this work assumes a certain numbering of the end-effectors for
reasons of simplicity, such that the first ψsup end-effectors are assigned to the support task
and the remaining ψint to the interaction task (see Section 3.2.1). Therefore, a change
in the task assignment would require a reordering of the end-effectors, which is rather
cumbersome to implement. However, introducing the interaction task via the soft con-
straint (6.12) or (6.47) allows for a formulation of the optimization problem using a fixed
(task independent) numbering of the end-effectors. Thus, the task assignment of the end-
effectors can be swapped easily between the support and the interaction task without
causing any structural changes to the cQP. The latter is important to enable an attaching
and detaching of the end-effectors from the environment to facilitate contact transitions.
This effect becomes visible if the optimization (6.9) to (6.14) or (6.44) to (6.49) is expressed
in a more general form

F opt = argmin
F

(
1

2
δTc Qcδc +

1

2
δTQδ

)
(6.108)

minimizing the residua

δc = AdT F −mg0 − F cpl
c − F ff (6.109)

δ = F − (F def + F cpl) (6.110)

with respect to the inequality constraints

AiF i ≤ bi ∀ i = 1 . . . ψ (6.111)

BτF ≤ τmax. (6.112)

The residuum δ ∈ R6ψ comprises all end-effectors of the robot based on a fixed numbering.
In order to specify the assignment of a particular end-effector, the corresponding values
within the weighting matrix Q ∈ R6ψ×6ψ must be set either to the values of the support
or the interaction task. The vector of default wrenches F def ∈ R6ψ can be used to specify
the default wrench distribution for the support contacts or a feedforward wrench for the
interaction end-effectors, respectively. The compliance wrench F cpl ∈ R6ψ comprises the
Cartesian compliances for the interaction task (6.4) as well as the ones in Section 6.7.1 for
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Interaction Task

Support Task

Close contact:
Interpolate F def

i from 0
to ( 0 0 fmin

i,z 0 0 0 )T

Activate Contact Model:
Set bi from ∞ to
value of support task

Reduce Task Priority:
Interpolate Qi from interaction to sup-
port task

Adjust Default Distribution:

Interpolate F def
i from ( 0 0 fmin

i,z 0 0 0 )T

to value of support task

Release contact:
Interpolate F def

i from
( 0 0 fmin

i,z 0 0 0 )T to 0

Deactivate Contact Model:
Set bi from value of
support task to ∞

Increase Task Priority:
Interpolate Qi from support to interac-
tion task

Adjust Default Distribution:

Interpolate F def
i from value of support

task to ( 0 0 fmin
i,z 0 0 0 )T

Figure 6.19: Procedure for switching contacts.

increasing the robustness of the support contacts. The contact model (6.111) is computed
for all end-effectors (i = 1 . . . ψ) although it is rendered ineffective for the interaction task
by setting the respective vector to bi → ∞ (or an unrealistic high value). In summary,
the above formulation features the same functionality as (6.9) to (6.14) or (6.44) to (6.49).
However, a change in the task assignment does not require any structural changes of the
cQP. Instead, the formulation allows for an online adaptation of the task assignment by
modifying the parameters of the cQP. An algorithm for updating the task assignment to
switch contacts is presented in Section 6.7.3.

Another advantage of formulating (6.109) and (6.110) as soft constraints instead of
hard constraints is a reduction of computation time. In Henze et al. [2016b], we were able
to reduce the computation time by 30% using qpOASES (version 2.0) by Ferreau et al.
[2008, 2014] to solve the cQP on the real-time computer of the humanoid robot TORO
(see Chapter 5).

6.7.3 Procedure for Contact Transition

As already mentioned in Section 6.7.2, the task assignment can be changed by modifying
the parameters of the constrained quadratic optimization problem (6.108) to (6.112). But,
as the support and the interaction task require a different wrench at the end-effector, an
instantaneous update of the parameters would result in a jump of the joint torques τ ,
which is undesirable from a hardware perspective. In order to obtain a smooth transi-
tion, Fig. 6.19 sketches an algorithm for the continuous fading of the parameters of the
optimization problem.
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6.7 Implementation

For instance, let us consider the case that the ith end-effector is transfered from the inter-
action to the support task. As a first step, the corresponding default wrench F def

i ∈ R6 is
interpolated from F def

i = 0 to F def
i = ( 0 0 fmin

i,z 0 0 0 )T in order to respect the unilaterality
of the contact (see Section 3.4). As a result, the end-effector is pressed against the envi-
ronment thanks to the minimum perpendicular force fmin

i,z ≥ 0. As F def
i is superimposed

with the compliance wrench F cpl
i ∈ R6 according to (6.110), the end-effector is stabilized

until the default wrench has reached fmin
i,z . After that, the contact model (6.111) can be

activated instantaneously by setting bi from bi =∞ to the value specified by Section 3.4.
If we assume that the compliance F cpl

i only shows a minimal control error, activating the
contact model on the end-effector wrench F opt

i will only cause an insignificant discontinuity
in F opt

i . The third step is used to continuously lower the task weight Qi ∈ R6×6 from the
values for the interaction task to the ones for the support task (see Table 6.1), which allows
for an increasing deviation of the end-effector wrench F opt

i from F def
i = ( 0 0 fmin

i,z 0 0 0 )T .

As a last step, the F def
i is continuously ramped from F def

i = ( 0 0 fmin
i,z 0 0 0 )T to the desired

wrench distribution for the support task. As the default wrench F def
i is superimposed

with the Cartesian compliance F cpl
i , the end-effector is stabilized during all phases of the

transition leading to an increased robustness.

129





CHAPTER 7

Combining Multi-Contact Balancing with
Hierarchical Whole-Body Control

Dietrich [2016] developed a framework for hierarchical multi-objective control of wheeled
humanoid robots. A representative of this class of robots is the humanoid robot Rollin’
Justin developed by DLR [Borst et al., 2009], which consists of a moving platform with
an upper body on top, as shown in Fig. 7.1a. The upper body comprises 17 DoFs not
counting the hands and the neck. The platform is governed by an underlying velocity
controller, which provides a torque interface for controlling the Cartesian motion of the
base (two translational and one rotational DoFs). This abstraction results in a formulation
of the system dynamics, which shows the same structure as a fixed base robot, although
strictly speaking Rollin’ Justin features a moving base. Considering the three DoFs of the
platform and the 17 DoFs of the upper body creates a highly redundant serial kinematic
chain. In order to deal with the kinematic redundancy, the framework by Dietrich [2016]
allows for the definition of a stack of multiple control objectives for the upper body,
such as the Cartesian end-effector pose, the pose in joint space, or singularity avoidance.
Often the control objectives or control tasks comprise more DoFs than the robot, which
is resolved by assigning a priority level to each control objective resulting in a hierarchical
task execution.

The humanoid robot TORO (see Chapter 5) was developed to conduct research on
the field of balancing and locomotion, which requires a floating base description of the
robot. If the robot is balancing on multiple contacts, the supporting limbs form a closed
kinematic chain, as shown in Fig. 7.1b. The resulting redundancy in the space of the
contact wrenches is also known as the wrench distribution problem, as introduced in
Section 3.3. The control framework presented in Chapter 6 allows for the solving of the
WDP via a constrained quadratic optimization. The latter features a hierarchy as well;
but the objectives are defined in wrench space, which affects the task execution in the case
of problems with the contact model or the actuator constraints. A comparison of both
approaches is given in Table 7.1.

Both control approaches are combined in [Henze et al., 2016a] into a unified framework,
which handles serial as well as closed kinematic chains (see Fig. 7.1c). The framework
features two hierarchies of different types: The first one addresses the serial kinemat-
ics by defining multiple control objectives. The objectives are prioritized via null space
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(a) Humanoid robot Rollin’ Justin featur-
ing a serial kinematic chain originating
from a fixed base.

(b) Humanoid robot TORO featuring a
closed kinematic chain due to multi-
ple contacts.
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(c) Combining multi-objective control with multi-contact balancing.

Figure 7.1: Basic concept of the presented framework.

Table 7.1: Overview of both control frameworks.

Multi-objective control Multi-contact control
[Dietrich, 2016] (Chapter 6)

Purpose multiple control objectives balancing on multiple contacts
Target of hierarchy serial kinematics closed kinematic chain
Type of robot fixed base floating base
Implementation null space projectors numerical optimization
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7.1 Multi-Objective Control for Fixed Base Robots

projectors, which can be computed analytically. To incorporate the inequality constraints
describing the contact model and the actuator limits, the cQP is solved numerically. Thus,
the combined framework minimizes the computational effort by reducing the usage of nu-
merical methods. The combined framework will be called Hierarchical Multi-Contact
Balancing controller (HMCB) for the remainder of the manuscript.

Combining the multi-contact balancing controller presented in Chapter 6 with hierar-
chical multi-objective control adds two more features to the abilities of the robot:

1. The combined framework implements a dynamic decoupling of the tasks [Henze et al.,
2016a], such that low priority tasks do not disturb tasks with a high priority level.
For instance, this feature can be beneficial if the robot carries a glass of water while
performing a motion with the CoM while walking.

2. Furthermore, the combined framework allows for the employment of humanoid robots
in confined spaces, where the available space limits the motion capabilities of the
rather bulky limbs. For this reason, the robot should be able to support itself with
contacts scattered all over the body instead of relying only on the feet and the hands.
Adding possible contact points to the knees, elbows, the pelvis, or the backpack pro-
vides the robot with an enhanced support polygon and therefore with a more robust
stance for performing the interaction task. The challenge of balancing in confined
spaces arises from the additional contacts, which constrain the motion of the robot to
a submanifold of the contact constraint. The information on the contact constraints
is incorporated into the controller by projecting all other tasks onto the null space of
the Jacobian matrix describing the support task, which in turn enables the support
task to provide a suitable set of contact wrenches [Henze et al., 2017]. For instance,
another projection technique for two priority levels is presented in [Aghili and Su,
2016], which leads to similar results.

This chapter is structured as follows: Section 7.1 revisits the approach presented in
[Dietrich, 2016, Dietrich et al., 2018] for multi-objective control of robots with a fixed
base. The latter is combined in Section 7.2 with the framework for multi-contact balancing
presented in Chapter 6. Section 7.3 presents the application to confined spaces.

7.1 Multi-Objective Control for Fixed Base Robots

This section gives a brief introduction to the framework presented in [Dietrich, 2016,
Dietrich et al., 2018] for hierarchical multi-objective control of fixed base robots. Based
on n ∈ N joint angles, the dynamics of a robot with a fixed base is given by

M̃q̈ + C̃q̇ + g̃ = τ︸︷︷︸
ũ

+τ̃ ext (7.1)

with M̃ ∈ Rn×n denoting the inertia and C̃ ∈ Rn×n the Coriolis/centrifugal matrix. Note
that M̃ − 2C̃ is a skew-symmetric matrix [Ott, 2008], which is strongly related to the
passivity properties of the robot. The influence of gravity is considered by g̃ ∈ Rn. The
joint torques generated by the actuators are denoted by τ ∈ Rn, while the generalized
external forces are given by τ̃ ext ∈ Rn. In preparation of the next section, ũ = τ is
defined as a virtual control input.

The framework can handle an arbitrary number of r ∈ N tasks or control objectives.
Each one of them is characterized by a set of task coordinates xtaskk = f taskk

(q) ∈ Rmk
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∀1 ≤ k ≤ r, which are a function of q and show a task dimension of mk ∈ N. In
total, the tasks can feature more DoFs than the robot (

∑r
k=1mk ≥ n), which requires a

prioritization of the tasks or control objectives. The notation in [Dietrich, 2016] is chosen
such that k = 1 represents the task with the highest and k = r the task with the lowest
priority level. Each task outputs a desired control action in the form of a generalized task
wrench F ctrl

taskk
(q, q̇) ∈ Rmk , which can be used to implement various functionalities, such

as a joint compliance, a Cartesian compliance, or a repulsive potential field for singularity
avoidance. The associated task velocities are given by

vtaskk = ẋtaskk = J taskk q̇ ∀1 ≤ k ≤ r (7.2)

with the task Jacobian matrix J taskk = ∂f taskk
(q)/∂q.

The basic idea of the hierarchy is that a task at priority level k may disturb all lower
priority tasks (k + 1 . . . r) but not the tasks with a higher level (1 . . . k − 1). Thus, task k
must be executed in the null space of the Jacobian matrices of the tasks 1 . . . (k−1), which
can be formalized via

Jaug
taskk−1

ZT
taskk

= 0 ∀2 ≤ k ≤ r. (7.3)

Here, Jaug
taskk−1

represents the so-called “augmented Jacobian matrix”

Jaug
taskk−1

=



J task1

...
J taskk−1


 , (7.4)

which gathers the Jacobian matrices of the tasks 1 to k − 1. Note that the augmented
Jacobian of the last task level Jaug

taskr
is assumed to be of full column-rank, such that

the sum of all tasks covers the whole workspace of the robot [Dietrich et al., 2018]. The
matrix Ztaskk ∈ Rmk×n in (7.3) represents a full row-rank “null space base matrix”,
which spans the null space of Jaug

taskk−1
(see [Dietrich, 2016] for details on the computation

of Ztaskk).
For each task, the set of task velocities vtaskk corresponds to a subset of the joint

velocities q̇. The subsets of two or more tasks can overlap with each other if the sum of
the task dimensionalities exceeds the number of joints (

∑r
k=1mk > n). In other words,

there can be kinematic conflicts between two or more tasks. In order to remedy this
overlap, Dietrich [2016] introduced the concept of local null space velocities

v̆taskk = J̆ taskk q̇ ∀1 ≤ k ≤ r, (7.5)

which span a subspace of the original task velocities vtaskk . The mapping

J̆ taskk =




J task

1 if k = 1(
ZtaskkM̃ZT

taskk

)−1
ZtaskkM̃ if 2 ≤ k ≤ r

(7.6)

provides a dynamically consistent null space projection according to [Dietrich, 2016]. As

task k = 1 is not restricted by any other task, J̆
task
1 equals J task

1 . Note that the “hierarchy-
consistent Jacobian matrix” J̆ ∈ Rn×n in

v̆ =



v̆task1

...
v̆taskr


 = J̆ q̇ =



J̆ task1

...

J̆ taskr


 q̇ (7.7)
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is of full rank, which means that the vector v̆ ∈ Rn describes the full velocity state of the
robot. According to [Dietrich, 2016], the inverse is given by

J̆
−1

=
[
JM̃+

task1
ZT

task2
. . . ZT

taskr

]
(7.8)

with

JM̃+
task1

= M̃
−1
JTtask1

(
J task1 M̃

−1
JTtask1

)−1
(7.9)

denoting the dynamically consistent pseudo-inverse of J task1 .
In order to implement the task hierarchy, [Dietrich, 2016] proposes the following control

law:

ũ = g̃ + τ̃µ +
r∑

k=1

JTtaskk
ZtaskkJ

T
taskk

F ctrl
taskk

= g̃ + τ̃µ +
r∑

k=1

N taskkJ
T
taskk

F ctrl
taskk

.

(7.10)

The task torques are first mapped to joint space via the transpose of J taskk and then via
the null space projector

N taskk = I − JTaugk−1
JM̃+,T

augk−1
∀2 ≤ k ≤ r (7.11)

to the control input ũ. The vector τ̃µ ∈ Rn is used to cancel out several coupling terms
within the Coriolis/centrifugal matrix C̃ (see [Dietrich, 2016] for details). If the motion
of the robot is sufficiently slow, τ̃µ may also be omitted.

Inserting the control law (7.10) with (7.7) into the model of the fixed base robot (7.1)
yields to the closed-loop dynamics:




Λ̆1 0 . . . 0

0 Λ̆2 . . . 0
...

...
. . .

...

0 0 . . . Λ̆r




︸ ︷︷ ︸
Λ̆

˙̃v +




µ̆1 0 . . . 0
0 µ̆2 . . . 0
...

...
. . .

...
0 0 . . . µ̆r




︸ ︷︷ ︸
µ̆

ṽ +




F ctrl
task1

Ztask2J
T
task2

F ctrl
task2

...

ZtaskrJ
T
taskrF

ctrl
taskr


 = J̆

−T
τ̃ ext.

(7.12)
Note that (7.12) indicates a decoupled behavior of the tasks due to the block-diagonal
structure of the transformed inertia Λ̆ and Coriolis matrix µ̆. As the local velocities v̆taskk

depend on Jaug
taskk−1

, the velocities of a task can be disturbed by task velocities with a higher

priority level, but not vice versa. The equilibrium of the closed-loop dynamics (7.12) is
asymptotically stable, as shown in [Dietrich, 2016] by means of conditional stability. The
experiments presented in [Dietrich, 2016] suggest that the closed-loop system exhibits a
cascaded convergence starting with the convergence of the task on priority level k = 1,
followed by level k = 2, through to priority level k = r.

Another interesting aspect of (7.12) is the influence of external forces. If all external

forces τ̃ ext act solely on the task coordinates, then J̆
−T
τ̃ ext becomes

J̆
−T
τ̃ ext = J̆

−T (
Jaug

taskr

)T
F̃ ext =




I JM̃+,T
task1

JTtask2
. . . JM̃+,T

task1
JTtaskr

0 Ztask2J
T
task2

. . . Ztask2J
T
taskr

...
...

. . .
...

0 0 . . . ZtaskrJ
T
taskr



F̃

ext
task (7.13)
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with F̃
ext
task ∈ R

∑r
k=1mk . It can be verified that J̆

−T (
Jaug

taskr

)T
represents an upper triangu-

lar matrix, which implies that the external forces of task k can disturb tasks with a higher
priority level. This coupling is contrary to the actual task hierarchy, but a direct conse-
quence of the dynamic decoupling. Hypothetically speaking, this effect can be remedied

by explicitly measuring the external forces F̃
ext
task and compensating for the coupling. But

this would cause the well-known problems regarding causality and additional measurement
noise. The effect of this coupling on the closed-loop system is studied in Section 7.2.3 in
the form of an experiment with the humanoid robot TORO.

7.2 Transfer to Robots with a Floating Base (HMCB)

The hierarchical control framework by Dietrich [2016] is combined in [Henze et al., 2016a]
with the approach for multi-contact balancing (MCB) presented in Section 6.1. A schematic
overview of the resulting HMCB controller is given in Fig. 7.2. The combined framework
(HMCB) can comprise an arbitrary number of user-defined tasks, although there are two
restrictions that are mandatory for balancing: The hierarchy must contain a task

� for stabilizing the center of mass and

� for generating suitable contact wrenches F sup to support the robot.

It is important that the support task is located at the highest priority level, such that
no other task can interfere with the generation of the necessary overall support wrench
F res

sup = AdTsup F sup. Table 7.2 presents three examples for potential task hierarchies. The
respective task wrenches and task Jacobian matrices are defined in Table 7.3. The variants
“CoM over Int” and “Int over CoM” were studied in [Henze et al., 2016a] regarding the
dynamic decoupling of the tasks. Another variant was proposed in [Henze et al., 2017] to
operate the robot in confined spaces (see Section 7.3). As detailed in Section 7.2.2, the
last column of Table 7.3 provides a hierarchy that is equivalent to the control approach
presented in Chapter 6 for multi-contact balancing.

7.2.1 Controller Derivation

Let us recall (3.20), which describes the dynamic model of a humanoid robot featuring a
floating base. Applying (7.10) to the dynamics (3.20) results in the control law

u =

(
0
τ

)
= τµ + g + JTsup(−F sup) +

r∑

k=2

N taskkJ
T
taskk

F ctrl
taskk

= τµ + g +
[
JTsup N task2J

T
task2

. . . N taskrJ
T
taskr

]
︸ ︷︷ ︸

Ξ




−F sup

F ctrl
task2
...

F ctrl
taskr




︸ ︷︷ ︸
F ctrl

task

(7.14)

with J task1 = J sup representing the task Jacobian matrix of the support task at prior-
ity level k = 1. The negative sign in front of F sup accounts for the definition of con-
tact wrenches, as explained in Section 6.1.1. The Jacobian matrices of the other tasks
can be chosen according to Table 7.2, for instance. The CoM task listed in Table 7.3
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Figure 7.2: Overview of the architecture of the HMCB control framework.

Table 7.2: Exemplary task hierarchies for whole-body balancing [Henze et al., 2016a,b,
2017].

Priority “CoM over Int” “Int over CoM” Confined Spaces Multi-Contact
level (HMCB) (HMCB) (HMCB) Balancing (MCB)

1 Support Support Support Sup. + CoM + Int.
2 CoM Interaction CoM + Int. “Posture”
3 Interaction CoM Posture –
4 Posture Posture – –

Table 7.3: Definition of the task Jacobian matrices and the task wrenches for the tasks
listed in Table 7.2.

Support CoM Interaction CoM + Int. Sup. + CoM + Int. Posture

J taskk J sup Jc J int

[
Jc

J int

] 

J sup

Jc

J int


 Jpose

F ctrl
taskk

−F sup F cpl
c F cpl

int

(
F cpl

c

F cpl
int

) 

−F sup

F cpl
c

F cpl
int


 τ cpl

pose
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features a compliance F cpl
c according to (6.1). The associated task Jacobian is given

by Jc = [ I6×6 06×n ] mapping F cpl
c to the CoM coordinates. The posture task comprises

a joint compliance τ cpl
pose according to (6.33) to stabilize the posture of the robot in joint

space. The corresponding task Jacobian matrix is given by Jpose = [ 0n×6 In×n ]. Note
that the presented framework features a generic method to define the tasks, which al-
lows for an arbitrary location of the frames of the support and interaction task on the
body of the robot (knees, elbows, shoulders etc.). The mapping between the stacked
task wrenches F ctrl

task ∈ R
∑r
k=1mk and the virtual control input u is provided by the ma-

trix Ξ ∈ R(6+n)×∑r
k=1mk .

Analogously to (6.8), the control law (7.14) can be partitioned into the CoM and the
joint coordinates according to

(
0
τ

)
=

(
τµ,u
τµ,l

)
+

(
mg0

0

)
+

[
Ξu

Ξl

]
F ctrl

task (7.15)

with τµ,u ∈ R6, τµ,l ∈ Rn and Ξu ∈ R6×∑r
k=1mk , Ξl ∈ Rn×

∑r
k=1mk . In order to account

for the underactuation of the base, the support wrenches F sup in F ctrl
task must be chosen

such that
0 = τµ,u +mg0 + Ξu F

ctrl
task (7.16)

holds at all times. Thus, (7.16) can be regarded as the underactuation condition for the
hierarchical case analogously to (6.6).

As introduced in Section 3.3, the support task comprises the wrench distribution prob-
lem since the contact map AdTsup ∈ R6×6ψsup within Ξu is subjective but not injective for
more than one contact (msup > 6). Therefore, the controller can select F sup analogously
to Chapter 6 from a set of feasible solutions to generate the required overall wrench F res

sup

at the center of mass. This redundancy in the space of the contact wrenches F sup can be
resolved by computing the following constrained quadratic optimization problem (cQP):

F opt
task = argmin

F task

(
1

2
δTsupQsupδsup +

1

2

r∑

k=2

δTtaskk
Qtaskk

δtaskk

)
(7.17)

minimizing the residua

δsup = F sup − F def
sup (7.18)

δtaskk = F taskk − F ctrl
taskk

∀ k = 2 . . . r (7.19)

with respect to the underactuation condition (7.16) and the inequality constraints

AiF i ≤ bi ∀ i = 1 . . . ψsup (7.20)

BτF ≤ τmax. (7.21)

The residua within the cost function (7.17) are weighted with the symmetric and positive
semi-definite matricesQsup ∈ R6ψsup×6ψsup andQtask,k ∈ Rmk×mk . The first residuum (7.18)

regularizes the contact wrenches F sup to a default wrench distribution F def
sup ∈ R6ψsup ,

which is ideally provided by an external planning algorithm as part of the reference tra-
jectory. If there is no trajectory available, then F def

sup can also be set manually to shift

the load between the support contacts. The remaining residua (7.19) substitute F ctrl
taskk

in the control law (7.14) with F ctrl
ctrlk

= F taskk . The inequality constraint (7.20) ensures
that all contact wrenches F sup satisfy the contact model detailed in Section 3.4. A model
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of the actuators is given by (7.21) limiting the maximum joint torque to τmax ∈ Rn
using Bτ ∈ Rn×ψ .

The presented HMCB approach implements two different hierarchies: The first one
addresses the serial kinematic chain of the robot by prioritizing multiple control objectives
using null space projectors. As shown in Sections 7.2.3 and 7.3, this feature can be used
to achieve a dynamic decoupling of the tasks as well as to resolve kinematic conflicts, as
they occur, for example, in overconstrained contact configurations. The second hierarchy
originates from the wrench distribution problem of the support task dealing with the closed
kinematic chain. The employed optimization tries to keep the support wrenches F sup

as close as possible to F def
sup by minimizing (7.18). But the optimization also comprises

the residua of the remaining tasks (7.19). The values within Qtask2
to Qtaskr must be

chosen significantly higher than the ones in Qsup such that the residua (7.19) are always
sufficiently fulfilled unless they are in conflict with the contact model (7.20) or the actuator
limitations (7.20). In that case, the weighting matrices Qtask2

to Qtaskr specify which
tasks will be sacrificed first in order to allow the controller to generate the required overall
support wrench F res

sup nevertheless. In summary, the presented framework combines the
two hierarchies from Chapter 6 and [Dietrich, 2016]. The one responsible for the serial
kinematics is resolved via null space projectors, which is a rather efficient method in terms
of computational effort. The hierarchy addressing the closed kinematic chain involves a
numeric optimization in order to deal with the inequality constraints of the contact and
the actuator model. Thus, the computational effort is minimized by reducing the usage
of numerical methods. For the remainder of this work, we make the following assumption
to simplify the discussion of the controller properties:

Assumption 7.1 (Fulfillment of δtaskk ≈ 0 ∀2 ≤ k ≤ r). The residua of the cQP are
always sufficiently fulfilled, such that δtaskk ≈ 0 ∀2 ≤ k ≤ r holds.

After the task wrenches F opt
task are computed via the constrained quadratic optimization

using the upper part of the control law (7.14), the lower part is exploited to compute the
control torques via

τ = τµ,l + Ξl F
opt
task. (7.22)

Inserting the controller (7.15) into the model (3.20) yields the closed-loop dynamics

Λ̆




v̇sup
˙̆vtask2

...
˙̆vtaskr


+ µ̆




vsup

v̆task2

...
v̆taskr


+




−F sup

Ztask2J
T
task2

F ctrl
task2

...

ZtaskrJ
T
taskrF

ctrl
taskr


 = J̆

−T
τ ext (7.23)

according to (7.12). If we consider the static case under the assumption that all external
loads τ ext exclusively act on the task wrenches, then (7.23) becomes




−F sup

Ztask2J
T
task2

F ctrl
task2

...

ZtaskrJ
T
taskrF

ctrl
taskr


 =




I JM+,T
sup JTtask2

. . . JM+,T
sup JTtaskr

0 Ztask2J
T
task2

. . . Ztask2J
T
taskr

...
...

. . .
...

0 0 . . . ZtaskrJ
T
taskr







F ext
sup

F ext
task2
...

F ext
taskr


 (7.24)

based on (7.13). Note that (7.23) and (7.24) only hold if the soft constraints (7.19) are
exactly fulfilled as demanded by Assumption 7.1. An analysis of the case where the
soft constraints are not exactly fulfilled would be considerably more cumbersome. In
this case, the constraints will affect the quality of the task fulfillment according to their
corresponding weights Qtaskk

leading to a different closed-loop dynamics.
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7.2.2 Link to the MCB Control Approach for Multi-Contact Balancing

The MCB control scheme, which is presented in Section 6.1 for whole-body balancing on
multiple contacts, can be considered a special case of the hierarchical balancing controller
(HMCB) introduced in Section 7.2. As shown in Table 7.2, the MCB controller can be
replicated by combining the CoM, the support, and the interaction task together at priority
level k = 1. This is possible because the MCB controller assumes that the frames of the
support and interaction tasks are solely located at the end-effectors. Thus, there are no
kinematic conflicts between the CoM, the support, and the interaction task if the robot is
in a non-singular configuration, which facilitates a kinematic coexistence of all Cartesian
tasks.

The task at level k = 2 is given by the joint compliance τ cpl
pose according to (6.33) in

order to stabilize the posture of the robot in joint space. But instead of using

u = τµ + g +



J sup

Jc

J int



T 

−F sup

F cpl
c

F cpl
int


+Npose J

T
pose τ

cpl
pose (Section 7.2) (7.25)

according to (7.14), the MCB-controller from Section 6.1 employs

u = g +



J sup

Jc

J int



T 

−F sup

F cpl
c

F cpl
int


+ JTposeNnull τ

cpl
pose (Section 6.1) (7.26)

based on (6.8) and (6.31). As can be seen, the MCB-approach does not feature the
generalized torque τµ for canceling several coupling terms within the Coriolis/centrifugal
matrix C. Thus, the MCB controller does not offer a dynamic decoupling between task
level k = 1 and k = 2. Furthermore, the mapping of the posture task τ cpl

pose to the virtual
control input u is different: Despite the order of the task Jacobian matrix and the null
space projector, the MCB controller uses

Nnull = I −
[
J sup

J int

]T [
J sup

J int

]Mqq+,T

(7.27)

according to (6.31), instead of

Npose = I −



J sup

Jc

J int



T 

J sup

Jc

J int



M+,T

(7.28)

according to (7.14).

In summary, the MCB control approach presented in Section 6.1 can be considered a
special case of the hierarchical framework (HMCB) presented in Section 7.2, where the
tasks of priority level k = 1 are defined such that they can coexist. The main difference
lies in the posture task at priority level k = 2. Although the hierarchical framework
(HMCB) provides more features, several experiments revealed that the MCB controller
is slightly more robust, especially in extreme and difficult situations [Henze et al., 2019,
Werner et al., 2016].
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7.2.3 Experimental Evaluation

The performance of the combined control framework (HMCB) was tested in [Henze et al.,
2016a] using the torque-controlled humanoid robot TORO developed at DLR. A brief
description of the robot hardware is given in Chapter 5. The evaluation is based on
two exemplary hierarchies, which are listed as “CoM over Int” and “Int over CoM” in
Table 7.2. Both hierarchies consist of four priority levels comprising a task for support,
CoM, interaction, and the pose in joint space. The difference between both is that the
priority of the CoM and the interaction task is swapped. The hierarchy “Int over CoM”
can be motivated with a scenario in which a humanoid robot is supposed to walk while
carrying an object, such as a glass of water. In order to prevent the motion of the CoM
from dynamically affecting the interaction task, the latter is assigned to a higher priority
level (k = 2) than the CoM task (k = 3). The other hierarchy “CoM over Int” is motivated
by scenarios that require a high accuracy of the CoM task, for instance, when the robot
is supposed to traverse a narrow bridge without falling. Therefore, the CoM task is
given a higher priority (k = 2) than the interaction task at priority level k = 3. The
MCB control framework for multi-contact balancing (see Section 6.1) serves as a reference
for the evaluation.

Dynamic Decoupling

Two pairs of simulation and experiment were conducted in [Henze et al., 2016a] to verify
the dynamic decoupling offered by the HMCB approach. The setup for the simulations
and the experiments is shown in Fig. 7.3a and 7.3b. The first pair implements a motion of
the CoM to study the effect on the interaction task represented by the hands. According
to theory, the hierarchical approach using the task order “Int over CoM” should prevent
the interaction task from being disturbed by a motion of the CoM. In contrast to that, the
hierarchy “CoM over Int” as well as the MCB approach (see Section 6.1) should exhibit
a coupling from the CoM onto the interaction task. For evaluation, a simulation was
conducted in which a vertical step of 5 cm is commanded for the desired CoM position. As
can be seen in Fig. 7.3c, the hierarchical controller “Int over CoM” shows, as expected, a

W
x y

z

(a) Setup of the simulation: Jump in the
CoM position (orange) and jump in the
hand positions (green).

W
x y

z

(b) Setup of the experiment: Trajectory of
the CoM orientation (orange) and tra-
jectory of the hand positions (green).
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Figure 7.3: Simulations and experiments comparing the dynamic decoupling of the MCB
and the HMCB framework.

143



7 Combining Multi-Contact Balancing with Hierarchical Whole-Body Control

significantly smaller control error for the position and orientation of the right hand. The
performance of the hierarchical controller “CoM over Int” is worse than the multi-contact
balancer (MCB), but still comparable. Furthermore, we conducted an experiment where a
continuous trajectory was commanded to the robot to trigger a dynamic motion rotating
the CoM frame C. Note that a rotation of the CoM frame corresponds to a rotation of the
hip due to the definition of C in Section 3.2.2. The commanded CoM rotation consists of
a sinusoidal trajectory with a frequency of 0.5 Hz. As shown in Fig. 7.3e, the amplitude
was linearly increased from 0° to 15°, held constant, and decreased again within 5 s each.
The difference between the hierarchical approach “Int over CoM” and the multi-contact
balancer (MCB) is not as evident as in the simulation. But both perform better than the
controller “CoM over Int”.

The second pair of simulation and experiment addresses the inverse coupling by com-
manding a motion of the interaction end-effectors and studying the effect on the CoM (see
Fig. 7.3a and 7.3b). Here, it is expected that the controller “CoM over Int” performs best
due to the high priority of the CoM task. In simulation, a step was commanded to the
robot to increase the desired height of both hands by 10 cm to cause a vertical disturbance
for the CoM task. As can be seen in Fig. 7.3d, the hierarchical approach “CoM over Int”
exhibits a significantly smaller control error than the other controllers. In the conducted
experiment, a continuous trajectory was commanded to the interaction compliances caus-
ing a complementary vertical motion of the hands to inflict a rotational coupling on the
hip or the CoM frame C, respectively. The sinusoidal signal features a frequency of 0.6 Hz
and an amplitude of 25 cm, as shown in Fig. 7.3f. Again, the amplitude was linearly in-
creased, held constant, and decreased within 5 s each. As a result, the controller “CoM
over Int” outperforms the other ones regarding the translational error of the CoM. For the
orientation error of the CoM frame C, all three approaches show a similar performance.
The reason is that the inertial effect that the hands have on the robot torso is relatively
small compared to the effect of joint friction.

The difference between simulation and experiment can be explained, among others,
with modeling errors concerning the inertia matrix of the robot and with joint friction
that generates additional coupling between the CoM and the interaction end-effectors.

Influence of External Forces

Another experiment was conducted in [Henze et al., 2016a] to study the static influence of
external interaction wrenches on the CoM task. For this, additional weights of 5 kg each
were attached to the right and left hand of the robot, as shown in Fig. 7.4a. The resulting
translational and rotational control errors of the CoM frame C are given in Fig. 7.4b. As
can be seen, the MCB controller presented in Section 6.1 is not affected by the additional
weights, which was already discussed in Section 6.1.2 and proven in the experiment given
in Fig. 6.4. The behavior of the hierarchical controllers can be explained by analyzing the
static case of the closed-loop dynamics (7.24). Applying (7.24) for both hierarchies and
isolating the CoM task yields

Zc J
T
c F

cpl
c = Zc J

T
c F

ext
c +Zc J

T
int F

ext
int (“CoM over Int”) (7.29)

and

Zc J
T
c F

cpl
c = Zc J

T
c F

ext
c (“Int over CoM”). (7.30)
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If we consider the hierarchy “Int over CoM”, the wrench of the CoM compliance F cpl
c is

not affected by the external interaction wrench F ext
int . As a consequence, the hierarchy

“Int over CoM” shows a negligible control error, similar to the MCB controller. If we
consider the hierarchy “CoM over Int”, then F ext

int is mapped to F cpl
c according to (7.29).

Thus, the CoM compliance shows a steady state error of 2.3 cm and 1.5°, respectively.

This observation is caused by J̆
−T (

Jaug
taskr

)T
in (7.13) being an upper triangular matrix,

which is a direct consequence of the dynamic decoupling, as discussed in Section 7.1.
Hypothetically speaking, this effect can be remedied by explicitly measuring the external
interaction forces F ext

int and compensating for the coupling; but this would cause the well-
known problems regarding causality and additional measurement noise.

5 kg5 kg

W
x y

z

(a) Setup of the experiment: The red arrows represent the applied external
forces.
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Figure 7.4: Experiment comparing the influence of external disturbances of the MCB and
the HMCB framework.
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7.3 Transfer to Confined Spaces

In [Henze et al., 2017], we addressed the challenge of operating humanoid robots in con-
fined spaces by extending the HMCB framework presented in Section 7.2. So far, we have
only considered cases where the frames of the support and the interaction task are located
at the end-effectors of the robot (see Chapter 6). But due to the limited maneuverability in
confined spaces, the robot needs to be able to exploit contacts (or task frames in general)
that might be located arbitrarily on the robot structure and not only at the end-effectors.
Thus, this section extends our considerations to scenarios where the contact and interac-
tion frames can be scattered all over the surface of the robot, as schematically depicted in
Fig. 7.5.

7.3.1 Theoretical Background

As a consequence of the additional contacts, the motion of the robot is restricted to a
submanifold of its original workspace (green dashed lines in Fig. 7.5c) because of the
physical contact constraint. The latter demands that the support contacts are at rest
(0 = vsup = J sup ν) based on Assumption 3.2, which can be incorporated into the
HMCB framework by defining a hierarchy similar to the example given in Table 7.2 and 7.3
[Henze et al., 2017]. It is important that the highest priority level of the hierarchy consists
of the support task. Previously we have justified this decision with the accessibility of the
support wrenches F sup (see Section 7.2). But the support task can also be interpreted as
the physical contact constraint given by 0 = vsup = J sup ν. Thus, the support task can be
considered a task, which is always converged by definition due to v̇sup = vsup = 0. The de-
coupled closed-loop dynamics (7.23) reveals that all other tasks are mapped onto the null
space of the physical contact constraint via their respective null space base matrix Ztaskk .
The remaining tasks can be chosen arbitrarily according to the target application of the
robot. We proposed an example in [Henze et al., 2017], where the CoM and the interac-
tion task are both combined at priority level k = 2 (see Table 7.2). As the interaction
frames in [Henze et al., 2017] are defined at the end-effectors, the CoM and the interaction
task do not cause any kinematic conflict, which allows for pooling at the same priority
level. The lowest priority level (k = 3) is given by a joint compliance τ cpl

pose to stabilize the
configuration of the robot in joint space in the case of a redundant kinematics and/or a
singular configuration.

Another important aspect of balancing in confined spaces is that the additional contacts
might result in an overdetermined contact configuration. In other words, the robot might
not feature a sufficient number of joints to generate all contact wrenches independently
of one another. Thus, it can happen that the external contact wrenches F ext

sup deviate
from the commanded ones F sup and, in the worst case, violate the contact model given
in Section 3.4, which ultimately can cause the robot to fall. In order to avoid that, let us
discuss the contact configurations in which the robot is able to command a suitable set
of contact wrenches by studying the static case of the desired closed-loop dynamics (7.24)
for the task hierarchy given in Table 7.2. Isolating the first line of (7.24) with F ext

int = 0
and τ ext

pose = 0 yields

F sup = JM+,T
sup JTsup F

ext
sup. (7.31)

As can be seen, J sup must be of full rank to ensure F sup = F ext
sup. Fig. 7.5a and Fig. 7.5b

show two examples of an overdetermined contact configuration leading to a rank deficiency
of J sup. In Fig. 7.5a, the contacts II and III are redundant since both act on the shank
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I

II

III

IV

(a) Redundant support
wrenches (red) due
to contacts II and III.

I

II

IV

(b) Redundant support
wrenches (red) due
to contacts I and II.

I

II

IV

(c) Statically indetermi-
nate contact configu-
ration.

Figure 7.5: Examples of contact configurations with external wrenches acting all over the
body of the robot. The green lines represent the manifold to which the CoM
and the interaction points are constrained by the support contacts.

of the robot. In Fig. 7.5b, the redundancy is given between the contacts I and II in the
form of forces parallel to the shank. Such an overdetermined contact configuration can be
remedied via two methods:

1. The contacts can be redefined as shown in Fig. 7.5c, such that J sup is of full rank
representing a statically indeterminate contact configuration.

2. The knowledge of the controller can be augmented with a model for the elasticity of
the environment and/or the robot structure, such that it is mathematically possible
to distinguish between the individual contact wrenches. However, the knowledge on
the environment can be limited depending on the application scenario.

For the remainder of this work, we always assume a statically indeterminate contact con-
figuration leading to J sup being of full rank.

A similar problem can arise from the external interaction wrenches F ext
int . Analyzing

again the first line of the static closed-loop system (7.24) for τ ext
pose = 0 yields

F sup = JM+,T
sup JTsup︸ ︷︷ ︸

I

F ext
sup + JM+,T

sup JTint F
ext
int . (7.32)

In the case of a statically indeterminate contact configuration, JM+,T
sup JTsup simplifies to the

identity matrix. As can be seen, a deviation between F sup and F ext
sup can occur if F ext

int has a
component that is perpendicular to the submanifold introduced by the contact condition
(0 = vsup = J sup ν). In that case, the term JM+,T

sup JTint F
ext
int is nonzero. In simpler

terms, the robot does not feature a sufficient number of DoFs, such that the problematic
part of F ext

int can cause a deformation of the interaction compliances. Thus, the external
interaction wrench F ext

int is not detected by the robot and therefore not considered in the
wrench distribution problem, although F ext

int influences F ext
sup. Thus, the computed wrench
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distribution F sup can deviate from the actual one F ext
sup. Such a situation is shown in

Fig. 7.5c involving the interaction wrench F ext
int and contact IV: The component of F ext

int that
is parallel to the forearm is directly routed to contact IV without causing any deformation
of the robot. Thus, the contact wrench in IV is directly influenced by F ext

int without
any notion of the robot. A similar situation is studied in an experiment presented in
Section 7.3.2. Of course, this problem does not only exist in confined spaces, but it gains
more and more importance with a higher number of contacts constraining the robot, which
is characteristic of confined spaces. Remedy could be provided by explicitly measuring the
interaction wrenches via additional sensors, such as a force/torque sensor or a tactile skin,
although this would cause secondary problems regarding causality or additional sensor
noise.

7.3.2 Experimental Evaluation

The capabilities of the HMCB control framework in the context of confined spaces was
demonstrated in [Henze et al., 2017] using the torque-controlled humanoid robot TORO
developed at DLR. A brief description of the robot hardware is given in Chapter 5. The
evaluation is based on the hierarchy listed in Table 7.2 consisting of three priority levels.
The first level (k = 1) comprises the support contacts, while the second level (k = 2) com-
bines the CoM and the interaction compliances. The third level consists of a compliance
in joint space in order to stabilize the posture of the robot. The first three experiments
utilize the knees as point contacts based on the contact model given in Section 3.4.3 (point
contact). The latter enables the knees to generate a unilateral contact force perpendicu-
lar to the shin of the robot. The last experiment demonstrates balancing exclusively on
knees, which requires the exploitation of all six DoFs of the knee contacts according to
the contact model given in Section 3.4.2.

Extending the Support Polygon

The first experiment presented in [Henze et al., 2017] demonstrates an application from
the field of industrial manufacturing, where the robot is supposed to perform an assembly
task within the fuselage of an aircraft. As shown in Fig. 7.6a, the robot stands in front
of a section of the fuselage and has to reach for the hull with the hands. However,
the robot is only able to shift the CoM to the frontal edge of the support polygon SSP

given by the convex hull of the feet, which limits the reach of the arms. In order to
overcome this restriction, the robot lowers the center of mass until the knees establish
contact with a support structure mounted to the hull. As previously mentioned, the
knees are modeled as point contacts generating only unilateral forces KneeRfKneeR,z and
KneeLfKneeL,z perpendicular to the shin. (Note that the leading superscript indicates that
the forces are specified in the knee frames TKneeR and TKneeL according to the notation
introduced in Section 3.1.) Because of the additional contacts, the robot can now shift
the CoM even further to the front, leaving the convex hull spanned by the feet, which
significantly increases the reach of the arms.

The recorded telemetry data is given in Fig. 7.6b. Note that the fuselage is equipped
with additional uniaxial force sensors to measure the contact forces at the knees, which are
only used for validation purposes and by the feedback controller. The recorded data reveals
that the contact forces computed by the optimization (fKneeR and fKneeL) match quite
well with the forces obtained by the sensors (f ext

KneeR and f ext
KneeL), which is an indicator

for the validity of the presented control approach. The knees of the robot start to touch
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the fuselage at t = 4.6 s, which causes a spike in the measured force of the left knee due
to the impact. At t = 6 s, the knees are added to the set of the support contacts, which
causes the knee forces to rise from 0 N (deactivated state) to their minimum contact force
of KneeRfmin

KneeR,z = KneeLfmin
KneeL,z = 50 N given by the unilaterality constraint according to

Section 3.4.3. The procedure for contact switching is sketched in Section 6.7.3. Afterwards,
the robot starts to move the CoM to the front, which causes the knee forces to rise up
to ‖fKneeR‖ = 138 N and ‖fKneeL‖ = 136 N, respectively. Note that also the position of
the combined center of pressure pFeet, which is obtained from the measured foot wrenches,
changes throughout the experiment. First, the CoP of the feet moves 4.5 cm to the front
following the motion of the CoM. After the knee contacts are added to the cQP, the CoP
moves to the back to counteract the minimum contact forces for the knees. As soon as the
forces in the knees rise, the CoP of the feet moves back to the origin of the world frameW
located underneath the ankles (see Fig. 7.6b). This effect is caused by the cQP (7.17)
to (7.21), which is configured such that mainly contact forces are generated instead of
contact torques. Despite supporting the weight of the robot, the additional knee contacts
generate a torque about the y-axis of the world frameW, which the robot no longer needs
to counteract with the feet. The additional knee contacts allow the robot to shift the CoM
up to xc,x = 20.5 cm, which is 7.5 cm in front of the convex hull of the feet characterized
by pmax

Feet,x = 13 cm. The slight difference between the commanded and measured CoM
position can be explained by the fact that the CoM is commanded on a straight line,
whereas the actual CoM can only move on the submanifold determined by the contact
constraint (see Fig. 7.6a).

The effect of the additional knee contacts on the support polygon SSP is shown in
Fig. 7.6c. Before the knee contacts are added to the cQP at t = 6 s, the support polygon
comprises the full length of the feet. The width is smaller than the outer edge of the feet
because of the minimum contact force fFootR,z = fFootL,z = 50 N. As soon as the knee
contacts are added to the wrench distribution problem, SSP extends significantly to the
front, such that the leading edge is almost 30 cm in front of the world frame W. Note
that the leading edge even extends beyond the knees xKneeR and xKneeL because of the
friction in the foot surfaces of µ̃ = 0.4. The trailing edge also moves to the front due to
the minimum contact force of the knees (KneeRfKneeR,z = KneeRfKneeL,z = 50 N). But this
effect does not compromise balancing, as the controller precautionarily moves the CoM to a
position that lies inside the support polygon both before and after the contact transition.
Note that the width of the support polygon is further reduced by the minimum knee
forces KneeRfKneeR,z = KneeRfKneeL,z = 50 N. In summary, the additional knee contacts
extend the support polygon to the front and therefore increase the operating range of
the CoM and the hands, which ultimately enables the robot to fulfill the designated
assembly task. The advantage of this feature was demonstrated in the context of aircraft
manufacturing, as presented in Section 9.3.

Influence of External Forces

The second experiment presented in [Henze et al., 2017] illustrates the influence of external
interaction forces F ext

int on the contact wrenches F ext
sup, as discussed in Section 7.3.1. The

robot is placed in front of the fuselage with both knees in contact, as in the experiment
before. Instead of performing an autonomous motion, several external disturbances are
manually applied to the robot (see Fig. 7.7a). In the first half of the experiment (t < 11 s),
a vertical force is applied twice to the hands of the robot (1st: 71 N, 2nd: 78 N). As can

be seen from Fig. 7.7b, the wrenches generated by the interaction compliances F cpl
HandR
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and F cpl
HandL are immediately counteracted by the support wrenches comprising the feet

and the knees. Note that the commanded contact wrenches match the measured ones
quite well despite minor discrepancies due to sensor calibration. As explained in Sec-
tion 7.3.1, the additional knee contacts constrain the motion of the hip but not of the
hands. Thus, the applied external force results in a deflection of the hand compliances.
The produced compliance wrench is in turn taken into account by the optimization com-
puting the wrench distribution for the support contacts. As a consequence, the difference
between the computed contact wrenches F sup and the actual ones F ext

sup is sufficiently
small.

In the second half of the experiment (t > 11 s), the external force is applied twice at
the hip in the direction parallel to the thigh. As the robot cannot move in this particular
direction, the HMCB controller does not become aware of the disturbance and thus does
not adjust the commanded wrench distribution. But the actual contact forces change
significantly since the thigh transfers the external disturbance directly to the knee contacts.
As a consequence, there is a significant difference of up to 236 N between the commanded
contact wrenches F sup and the actual ones F ext

sup. This illustrates that the problem of
non-detectable external forces increases in the case of confined spaces, as discussed in
Section 7.3.1.

Replacing one Foot with a Knee

The third experiment presented in [Henze et al., 2017] brings the robot into a highly asym-
metric pose, as shown in Fig. 7.8a. The robot starts with both feet on the ground (phase I)
and brings the right hand in contact with a support structure during phase II, which is
required for lifting the right foot in phase III. In phase IV, the knee is bent to the back
and placed on top of an uniaxial force sensor screwed to the support structure. Again, the
additional sensor is only used for verification and not for controlling the robot. In phase V,
the right hand is removed from the structure and the robot balances only on the left foot
and the right knee. Note that in this experiment, the optimization assumes a point con-
tact (see Section 3.4.3) for the right knee, generating only a unilateral force KneeRfKneeR,z

perpendicular to the shin. (Note that the leading superscript indicates that the forces are

External force sensor
(for validation only)

W x

y

z

KneeRfKneeR,z

KneeLfKneeL,z

(a) Setup of the experiment. Additional force sensors are only mounted on the
aircraft fuselage for validation purposes.
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Figure 7.6: The support polygon is extended by the additional contacts at the knees in
order to increase the reach of the arms.
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(a) Setup of the experiment. The red arrows represent the applied external forces.

0 5 10 15 20
0

50

100

0 5 10 15 20
0

200

400

0 5 10 15 20

700

800

900

‖f
H
a
n
d
R
‖+

‖f
H
a
n
d
L
‖
[N

]
‖f

K
n
e
e
R
‖+

‖f
K
n
e
e
R
‖
[N

]

f
F
o
o
tR

,z
+

f
F
o
o
tR

,z
[N

]

time t [s]

commanded
measuredI II

(b) Contact forces at the hands, the knees, and the feet.

Figure 7.7: Influence of external wrenches on the support contacts.
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(a) Motion sequence during the experiment.
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Figure 7.8: The humanoid robot TORO robot lifts its right foot and places its right knee
on the support structure.
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specified in the knee frame TKneeR according to the notation introduced in Section 3.1.)
Analogously, the right hand is also assumed to be a point contact generating only forces
perpendicular to the palm.

The recorded data is shown in Fig. 7.8b: The hand contact is activated at t = 7 s,
which causes the force at the right hand to rise from approximately zero (commanded
force by the hand compliance) to the minimum contact force of fmin

HandR,y = 20 N. Since
the robot does not close the hand, the contact is treated as an unilateral contact. When
the right foot is lifted, the load on the left leg increases from fFootL,z = 474 N to 810 N,
which corresponds to the total weight of the robot. The force at the right hand increases
to values between fHandR,y = 25 N and 50 N to counteract the torque that is induced
about the x-axis of W by the distance between the CoM and the left foot. Note that
in this scenario, the right hand is oriented such that the generated force acts parallel
to the y-axis of the world frame W (see Fig. 7.8a). As soon as the right knee hits the
support structure at t = 20 s, the impact creates a spike in the measured knee force.
Adding the right knee to the set of support contacts reduces the contact force at the right
hand again to its minimum of fmin

HandR,y = 20 N. In this configuration, the robot can both
utilize the right hand and the right knee to counteract the torque induced by the left foot
about the x-axis of W. But the constrained quadratic optimization (7.17) to (7.21) is
configured to distribute the load preferably to the knee (KneeRfKneeR,z = 120 N) in order
to reduce the stress on the hand. Of course, this also reduces the load on the left foot
to fFootL,z = 705 N, as the right knee contributes to supporting the weight of the robot.
In summary, this experiment demonstrates that using the right knee for supporting the
robot is more efficient than using the right hand because the knee can also contribute to
carrying the weight of the robot, whereas the right hand can only be used to stabilize the
CoM horizontally.

Balancing Solely on Knees

The last experiment presented in [Henze et al., 2017] demonstrates the ability of the
HMCB control framework to balance a humanoid robot solely on its knees, as shown
in Fig. 7.9a. As both feet are in the air, the algorithm for estimating the state of the
base/hip frame in Section 5.2 solely relies on the knee contacts and IMU measurements1.
The world frame W is defined as shown in Fig. 7.9a, with the origin being located in the
middle of both knees. The cQP (7.17) to (7.21) assumes the knees as rectangular contacts
based on the model given in Section 3.4.2, each featuring a full six-dimensional contact
wrench. In theory, the contacts would allow the controller to generate a six-dimension
overall support wrench F res

sup at the center of mass. But the null space projectors in (7.14)

restrict the compliances F cpl
c , F cpl

int , and τ cpl
pose (see Table 7.2) to the subset of wrenches

that can actually be generated with the joints of the robot. Note that TORO has a flat
area of 3 cm by 18 cm at the top of the shin, which is used as a rectangular contact surface
(SKneeR and SKneeL) during the experiment. Starting from the initial configuration, the
robot is disturbed by manually pulling and pushing the backpack, as shown in Fig. 7.9a.
The results are given in Fig. 7.9b showing the motion of several prominent points in the
saggital plane of the robot. Note that the right knee does not move due to the contact
constraint 0 = vsup = J sup ν. The right hand and the right foot manage to maintain their
desired location throughout the experiment, as the robot features enough DoFs to achieve
both tasks. But due to the constrained kinematics, the hip and the CoM are restricted

1αIMU = 1, αKneeR = αKneeL = 0.5, αFootR = αFootL = 0, and αHandR = αHandL = 0.
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7.3 Transfer to Confined Spaces

to a motion on a circular trajectory with the knee joints as central point, as shown in
Fig. 7.9b. Note that the manually induced motion exploits the full range of admissible
CoP locations provided by the knee contacts (pmin

KneeR,x ≤ pKneeR,x ≤ pmax
KneeR,x).

W
x

y

z

(a) Setup of the experiment. The red arrow represents the applied disturbance.
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(b) Trajectory of several prominent points in the sagittal
plane of the robot.

Figure 7.9: The humanoid robot TORO balances solely on its knees.
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CHAPTER 8

Balance Control based on Reduced Dynamic Models

This section focuses on Model Predictive Control (MPC) for the balance control of hu-
manoid robots. The basic idea of MPC is to choose the current control input such that
the system shows an optimal behavior for a given time horizon, which ranges from the
current to a future point in time. For this purpose, the future trajectory of the system is
predicted and optimized based on the dynamic model of the plant. As the optimization
often involves numerical methods, computational costs represent one of the limiting factors
of MPC. As a consequence, many works on MPC in humanoid robotics resort to reduced
dynamic models to decrease the numerical effort [Audren et al., 2014, Ibanez et al., 2012,
Kajita et al., 2003, Wieber, 2006]. In contrast to the dynamic model presented in Sec-
tion 3.2.2, which governs the whole body of the robot, reduced models usually focus on
the center of mass dynamics only. Although reduced models only approximate the actual
dynamics of the robot, MPC has the advantage of being able to react in advance to future
events in the reference trajectory.

8.1 Interaction Aware Balancing via LIPM

We developed a balancing controller in [Ott et al., 2013] based on the Linear Inverted
Pendulum Model (LIPM) and Model Predictive Control. The architecture of the pre-
sented framework is schematically shown in Fig. 8.1. In order to allow for a modular
design, the balancing controller only regulates the lower body of the robot, while the
upper body can be subjected to another controller. For instance, we used a compliance
controller for the upper body in [Ott et al., 2013] to facilitate the kinesthetic teaching
of a motion to the robot. The external forces and torques arising during the teaching
and manipulation process are estimated by a disturbance observer and provided to the
balance controller via a disturbance input F obsv

int . The balance controller outputs a de-
sired ZMP position pFeet, which is implemented by a position-based ZMP controller, as
in [Krause et al., 2012]. The presented approach is inspired by [Ibanez et al., 2012], where
a Cart-Table Model [Kajita et al., 2003] is used to derive the MPC controller.

The section is structured as follows: The model of the linear inverted pendulum is
introduced in Section 8.1.1. The disturbance observer and the balance controller are
detailed in Section 8.1.2 and Section 8.1.3. The ZMP controller is briefly reviewed in
Section 8.1.4.
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Figure 8.1: Overview of the architecture of the interaction aware balancer.

8.1.1 Linear Inverted Pendulum Model

While balancing and walking on a flat and horizontal floor, the dynamics of a humanoid
robot is dominated by the horizontal translation of the center of mass. Based on this in-
sight, Kajita et al. [2001] derived the Linear Inverted Pendulum Model (LIPM) from the
general dynamic model (3.20) by isolating the CoM dynamics, incorporating the assump-
tion of a constant height, and neglecting the angular momentum of the robot about the
CoM. Alternatively, the model can also be derived by analyzing the angular momentum
about the world frame W. Without loss of generality, let us define W such that the origin
is located on the floor surface underneath the setpoint of the CoM. The orientation of the
world frame is chosen such that the x- and y-axis are parallel to the floor, as shown in
Fig. 8.2. Furthermore, the LIPM requires the following assumptions:

� It is assumed that only the feet serve as support contacts. As the floor is flat and
horizontal, one can compute a combined center of pressure pFeet ∈ R3 from both
contact wrenches F sup, which lies on the surface of the floor.

� Furthermore, it is assumed that each one of the support wrenches stays well within
the contact model given in Section 3.4, such that it can be omitted. Note that
this assumption is more restrictive than Assumption 3.1, which states that only
the combined support wrench F res

sup must be feasible. In contrast to the control
approaches presented in Chapters 6 and 7, the controller derived in this section
cannot redistribute the load between the contacts if one of them is close to an
overload.

The angular momentum Lc ∈ R3 of the CoM about the world frame W is given by

Lc = mxc,z



−ẋc,y

ẋc,x

0


 (8.1)

with xc,z denoting the height of the inverted pendulum. Note that the angular momentum
of the robot about the CoM is neglected. Assuming a constant height, the conservation
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Figure 8.2: Linear Inverted Pendulum Model (LIPM).

of angular momentum [Gross et al., 2014] states that

L̇c = mxc,z



−ẍc,y

ẍc,x

0


 = S(pFeet)f

res
sup + S(xc)




0
0

−m ‖g0‖


+ τLIPM

dist (8.2)

with the right-hand side specifying the sum of all torques aboutW. The cross-product ma-
trix S(•) is given in Definition 3.1. Note that the external forces and torques acting on the
robot are split into the overall support force f res

sup and into a torque τLIPM
dist = ( τLIPM

dist,x τLIPM
dist,y 0 )T

about the origin of W comprising the external disturbances. The above equation can be
simplified into

mxc,z

(
−ẍc,y

ẍc,x

)
= m ‖g0‖

(
xc,y − pFeet,y

−xc,x + pFeet,x

)
+

(
τLIPM

dist,x

τLIPM
dist,y

)
(8.3)

by omitting the third line and considering that f res
sup,z = m ‖g0‖. Reordering finally leads

to the Linear Inverted Pendulum Model (LIPM)

(
ẍc,x

ẍc,y

)
= ω2

0

{(
pFeet,x

pFeet,y

)
−
(
xc,x

xc,y

)}
+

1

mxc,z

(
τLIPM

dist,y

−τLIPM
dist,x

)
(8.4)

with ω0 =
√
‖g0‖ /xc,z denoting the eigenfrequency of the LIPM. Note that (8.4) extends

the LIPM by Kajita et al. [2001] with the additional disturbance input τLIPM
dist .

8.1.2 Disturbance Observer

There are several methods for obtaining the external disturbances acting on a humanoid
robot: For instance, the disturbance can be explicitly measured by using additional force-
torque sensors if the exact location of the disturbance is known. If the disturbance is
caused by an upper body controller as in [Ott et al., 2013], then it could also be estimated

from the forces and torques commanded to the upper body (e. g. from F cpl
int in the case of a

Cartesian compliance). However, to be independent of additional sensors or information on
the upper body controller, in [Ott et al., 2013] we suggested employing a momentum-based
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disturbance observer as proposed by De Luca et al. [2006]. The outline of the observer is
given in Fig. 8.3.

The generalized momentum of the complete robot is given by χ = Mν ∈ R6+n consid-
ering all 6 + n DoF of the robot. The time derivative

χ̇ = CTν − g +

(
0
τ

)
+ τ ext

= CTν − g +

(
0
τ

)
+ JTsup F

ext
sup + τ dist

(8.5)

can be computed by exploiting the robot dynamics (3.20) and the passivity property
Ṁ = C +CT [Ott, 2008]. Note that the generalized vector of external forces and torques
τ ext = JTsup F

ext
sup + τ dist is split into the wrench at the support end-effectors F ext

sup and
into the vector of external disturbances τ dist ∈ R6+n similar to (3.24). It is assumed that
the quantities τ , F ext

sup, and ν can be directly measured or derived from measurements in
contrast to τ dist, which is to be reconstructed by the observer. Note that in the case of
the humanoid robot TORO, F ext

sup can be obtained from the force-torque sensors in the
feet and τ from the torque sensors in each joint (see Chapter 5). Based on an estimated
disturbance τ obsv

dist ∈ R6+n, we can compute the time derivative

χ̇obsv = CTν − g +

(
0
τ

)
+ JTsup F

ext
sup + τ obsv

dist (8.6)

of the estimated momentum χ̇obsv ∈ R6+n. The derivative χ̇obsv can be integrated over
time and compared to the actual generalized momentum χ = Mν, which is based on a
measurement of ν. The resulting error is fed back using the diagonal and positive definite
gain matrix Kobsv ∈ R(6+n)×(6+n) according to

τ obsv
dist = Kobsv {χ− χobsv}

= Kobsv

{
Mν −

∫ t

0
χ̇obsv(t) dt− χobsv(0)

}

= Kobsv

{
Mν −

∫ t

0

(
CTν − g +

(
0
τ

)
+ JTsup F

ext
sup + τ obsv

dist

)
dt− χobsv(0)

}
.

(8.7)
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8.1 Interaction Aware Balancing via LIPM

By inserting (8.5) and (8.6) into (8.7), it can be verified that the observer shows a sta-
ble first-order dynamics τ̇ obsv

dist = Kobsv

(
τ dist − τ obsv

dist

)
. Thus, τ obsv

dist represents a filtered
estimate for the generalized vector τ dist of external disturbances [De Luca et al., 2006].

If we assume that the external disturbances exclusively act on the interaction end-
effectors of the robot (in many cases the hands), then

τ obsv
dist = JTint F

obsv
int (8.8)

relates τ obsv
dist to the estimated interaction wrenches F obsv

int (see also (3.24)). Thus, the latter
can be obtained via

F obsv
int = J

Qobsv+,T
int τ obsv

ext (8.9)

using the weighted pseudoinverse J
Qobsv+
int = Q−1

obsv J
T
int

(
J intQobsv J

T
int

)−1
.

8.1.3 Controller Derivation

In order to employ Model Predictive Control, we discretized the LIPM (8.4) in [Ott et al.,
2013] using the Euler polygonal method [Bronshtein et al., 2015] leading to




xc,x [l + 1]
xc,y [l + 1]
ẋc,x [l + 1]
ẋc,y [l + 1]




︸ ︷︷ ︸
ζ̂[l+1]

=




1 0 T 0
0 1 0 T

ω2
0T 0 1 0
0 ω2

0T 0 1




︸ ︷︷ ︸
Â[l]




xc,x [l]
xc,y [l]
ẋc,x [l]
ẋc,y [l]




︸ ︷︷ ︸
ζ̂[l]

+




0 0
0 0

−ω2
0T 0

0 −ω2
0T




︸ ︷︷ ︸
B̂[l]

(
pFeet,x [l]
pFeet,y [l]

)

︸ ︷︷ ︸
û[l]

+




0 0
0 0
0 T/(mxc,z)

−T/(mxc,z) 0




︸ ︷︷ ︸
Ê[l]

(
τLIPM

dist,x

τLIPM
dist,y

)

︸ ︷︷ ︸
ê[l]

(8.10)

based on the sampling rate T ∈ R. Note that all quantities are given as a function • [l] of
the current time step l ∈ N0. The evolution of the system state ζ̂ [l] is characterized by
the matrix Â [l]. The control input û [l] and the disturbance input ê [l] are mapped via
the matrices B̂ [l] and Ê [l] to ζ̂ [l + 1].

In order to predict the behavior of the LIPM, the system state ζ̂ [l] must be predicted
for the next N ∈ N time steps. As the matrices Â [l], B̂ [l], and Ê [l] are constant, the
prediction can be obtained by iteratively inserting (8.10) into itself, which leads to



ζ̂ [l + 1]

...

ζ̂ [l +N ]




︸ ︷︷ ︸
ζ̂

=



Â [l]

...

Â [l]N




︸ ︷︷ ︸
Â

ζ̂ [l] +




B̂ [l] . . . 0
...

. . .
...

Â [l]N−1 B̂ [l] . . . B̂ [l]




︸ ︷︷ ︸
B̂




û [l]
...

û [l +N − 1]




︸ ︷︷ ︸
û

+




Ê [l] . . . 0
...

. . .
...

Â [l]N−1 Ê [l] . . . Ê [l]




︸ ︷︷ ︸
Ê




ê [l]
...

ê [l +N − 1]




︸ ︷︷ ︸
ê

.

(8.11)
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The goal of the controller is to minimize the quadratic cost function

ûopt = argmin
û

1

2
ζ̂
T
Qζ̂ ζ̂ +

1

2
ûT Qû û+

1

2
δTê Qê δê (8.12)

with respect to the extrapolated dynamics (8.11) and the constraints

δê = B̂ û+ Ê ê, (8.13)

ζ̂ [l +N ] = ζ̂end. (8.14)

The weighting matrices Qζ̂ ∈ R4N×4N , Qû ∈ R2N×2N , and Qê ∈ R2N×2N are symmetric

and positive definite. An error of the state vector ζ̂ is weighted with Qζ̂ , while the control

input û is penalized with Qû. The terminal constraint (8.14) enforces the stability of the
closed-loop system (see [Maciejowski, 2002]).

The disturbance rejection of the controller can be parameterized via the weighting ma-
trix Qê and the soft constraint (8.13). The latter demands a static equilibrium between
the position pFeet of the CoP and the disturbance τLIPM

dist over the full length of the pre-
diction. For instance, let us consider the case of an external force that acts at the CoM
pointing to the back of the robot. To compensate for the resulting torque τLIPM

dist , the
controller will move the CoP to the back, as shown in Fig. 8.2. Note that only the dis-
turbance observer from Section 8.1.2 only provides τLIPM

dist for the current point in time,
whereas future disturbances are unknown. Thus, a disturbance model is used to predict
future disturbances by assuming that the disturbance is constant over the complete time
span of the prediction (ê [l +N ] = . . . = ê [l]).

Note that the vector ûopt contains the feedforward control input from the current point
in time l until the end of the prediction l + N . In order to obtain the control law,
the feedback loop must be closed by extracting the current control input ûopt [l] and
recomputing it at every time step. Note that the optimization problem (8.12) to (8.14)
can be solved analytically due to the absence of inequality constraints, which results in a
control law of the form

ûopt [l] = K ζ̂ ζ̂ [l] +Kend ζ̂end +K ê ê [l] . (8.15)

As the gain matrices K ζ̂ ∈ R2×4, Kend ∈ R2×4 and K ê ∈ R2×2 are constant, the opti-
mization can be solved offline.

The asymptotic stability of the resulting closed-loop dynamics can be shown by applying
[Maciejowski, 2002, Theorem 6.1], which requires a terminal constraint for the optimization
problem and a feasible solution. Since there always exists a feasible solution for (8.12)
to (8.14), the presented controller is asymptotically stable.

If we assume that the external disturbances act solely on the interaction end-effectors
(here the hands), then

ê [l] =

(
τLIPM

dist,x

τLIPM
dist,y

)
= diag(1, 1, 0, 0, 0, 0) Ad(I,xc)

T AdTint F
obsv
int (8.16)

can be computed from F obsv
int in (8.9). Here, the transpose of AdintAd(I,xc) is used to

map F obsv
int via the CoM frame C to the world frame W. The diagonal selection matrix is

used to isolate the torque about the x- and y-axis of W.
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8.1 Interaction Aware Balancing via LIPM

8.1.4 Position-Based ZMP Controller

The presented ZMP controller by Krause et al. [2012] is used to convert the desired ZMP
position pFeet resulting from the balance controller in Section 8.1.3 into a desired joint
position commanded to the lower body of the robot (see Fig. 8.1). The actual ZMP po-
sition pext

Feet can be obtained from the six-dimensional force-torque sensors in the feet of
TORO (see Chapter 5). Under the assumption of a linear inverted pendulum model (8.4)
for the center of mass dynamics, the ZMP can be related to an equivalent force vec-
tor ( fextc,x fextc,y ) on the CoM:

(
f ext

c,x

f ext
c,y

)
= m

(
ẍc,x

ẍc,y

)
= mω2

0

{(
pext

Feet,x

pext
Feet,y

)
−
(
xc,x

xc,y

)}
+

1

xc,z

(
τLIPM

dist,y

−τLIPM
dist,x

)
. (8.17)

It is well-established that a position-based force set point regulator can be implemented
by an integral control action [Roy and Whitcomb, 2002]

(
xc,d,x

xc,d,y

)
= KZMP

∫ t

0

{(
fc,d,x

fc,d,y

)
−
(
f ext

c,x

f ext
c,y

)}
dt+

(
xc,d,x(t = 0)
xc,d,y(t = 0)

)
(8.18)

with KZMP ∈ R2×2 denoting a positive definite gain matrix and ( fc,d,x fc,d,y )T a vector of
desired horizontal forces on the CoM. Inserting (8.17) for the actual and the desired force
yields

(
xc,d,x

xc,d,y

)
= mω2

0 KZMP

∫ t

0

{(
pFeet,x

pFeet,y

)
−
(
pext

Feet,x

pFeet,yext

)}
dt+

(
xc,d,x(t = 0)
xc,d,y(t = 0)

)
, (8.19)

which can be converted via inverse kinematics into a command for the desired joint posi-
tion qlower of the lower body.

Wx
y

z

(a) Setup of the experiment.
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(b) Control error with the consideration of external disturbances (K ê 6= 0).
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(c) Control error without the consideration of external disturbances (K ê = 0).

Figure 8.4: Comparison of the control error with and without the consideration of external
disturbances.

8.1.5 Experimental Evaluation

To evaluate the presented balancing controller, we reported on an experiment in [Ott et al.,
2013] with the humanoid robot TORO (see Section 5). The balancing controller was in
charge of the lower body, while the upper body was regulated by a Cartesian compliance
controller, which stabilized the position and orientation of the hands with respect to the
hip of the robot. To obtain a reproducible force generation, the robot was placed in
front of a table (see Fig. 8.4a), which served as a stationary obstacle for the arms. By
commanding both hands 9 cm to the front (relative to the hip), the robot was programmed
to push against the table, hold the commanded position for 5 s, and then move back again.
This experiment was conducted once for the balancing controller, taking into account the
external forces resulting from the contact with the table (K ê 6= 0) and once without
accounting for the external forces (K ê = 0).
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8.2 Balancing using a Locked Inertia Model

The results are shown in Fig. 8.4b and 8.4c: The excursion of the combined CoP pFeet

is higher for K ê 6= 0 than for K ê = 0, which is consistent with the observation that the
contact force is higher as well. Note that the force resulting from the position difference
of CoP and CoM must be equal to the contact force. The most important fact is that
the CoM moves about 1.5 cm to the front if K ê 6= 0 in contrast to 3.0 cm to the back
if K ê = 0. This means that by taking the disturbances into account, the influence on the
CoM can be reduced significantly.

8.2 Balancing using a Locked Inertia Model

This section presents a control approach reported in [Henze et al., 2014a] based on MPC,
which requires the optimization problem to be solved online. Using the complete dynamic
model (3.20) for the prediction would consume a lot of computational power, therefore a
simpler conceptual model is employed to speed up the prediction process. Let us assume
that both support and interaction end-effectors maintain their posture with respect to the
world frame W. The dynamics of the robot is approximated via the Locked Inertia Model
[Murray, 1997, Nenchev et al., 2019], which only considers the DoFs of the CoM frame C
and neglects the DoFs in joint space. In other words, the robot is considered one single
rigid body. Thus, the general dynamic model (3.20) can be reduced to

M cc v̇c = mg0 +AdTsup F sup (8.20)

by isolating the DoFs of the CoM frame C and omitting negligible terms, that is the
Coriolis/centrifugal effects and M cq. Furthermore, it is assumed that all task frames Ti
are located at the end-effectors as in Chapter 6. Besides, all end-effectors are used to
support the robot, which leads to Ψsup = Ψ and Ψint = 0. The associated support
wrenches F sup ∈ R6Ψsup are used as control input to stabilize the CoM frame C.

An overview of the architecture of the presented controller is given in Fig. 8.5. The
MPC balancer can be combined with the Null space controller presented in Section 6.2 to
deal with singular configurations and/or redundant kinematics.
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Figure 8.5: Overview of the architecture of the balancing controller based on the locked
inertia model.
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8 Balance Control based on Reduced Dynamic Models

8.2.1 Controller Derivation

In order to prepare the discretization of the reduced model (8.20), let us describe the
configuration of the CoM frame C with a vector ξc = ( xTc φTc )T , which combines the CoM
position xc with φc ∈ R3 describing the orientation of C in Euler angles. Note that Euler
angles represent a minimal parameterization, although it is not singularity free [Shuster,
1993]. The exact location of the singularity in SO(3) depends on the order and axis of
the basic rotations forming the three Euler angles. We decided in [Henze et al., 2014a] to
use the consecutive roll-pitch-yaw notation of the Euler angles, which shows a singularity
for a pitch angle of ±90°. However, any other notation is also admissible as long as
there is sufficient distance between the expected CoM orientation φc and the singularity.
As φc(Rc) is a function of the rotation matrix Rc, a linear mapping φ̇c = Φ′c(φc)ωc

with Φ′c(φc) ∈ R3×3 can be found linking φ̇c with the angular velocity ωc [Shuster, 1993].
Let us generalize the mapping in the form of ξ̇c = Φ(ξc)vc connecting ξ̇c with the six-
dimensional Cartesian velocity vc. Based on this notation, the continuous model (8.20)
can be discretized in time using the Euler polygonal method [Bronshtein et al., 2015] with
T ∈ R denoting the sampling rate:

(
ξc [l + 1]
vc [l + 1]

)

︸ ︷︷ ︸
ζ̂[l+1]

=

[
I T Φc [l]
0 I
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Â[l]

(
ξc [l]
vc [l]

)
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+

[
0

TM−1
cc [l]AdT [l]

]

︸ ︷︷ ︸
B̂[l]

F sup [l]︸ ︷︷ ︸
û[l]

+

(
0

TM−1
cc [l] g0

)

︸ ︷︷ ︸
ĉ[l]

(8.21)

Again, • [l] indicates that all quantities are a function of the current time step l ∈ N0. To
provide the controller with a prediction for the next N ∈ N0 time steps, the state vector
is extrapolated to
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ĉ
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(8.22)

which includes the assumption that Φc [l], M cc [l], and Ad [l] are constant during the time
span of the prediction. This assumption can be justified by a sufficiently short prediction
horizon with respect to the motion of the robot.

The MPC algorithm minimizes the difference between the predicted state ζ̂ and a desired
state vector ζ̂d ∈ R6N as well as the difference between û and a desired future input
ûd ∈ R6N by solving the following constrained quadratic optimization problem (cQP):

ûopt = argmin
û

(
1

2
δT
ζ̂
Qζ̂δζ̂ +

1

2
δTûQûδû

)
(8.23)
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8.2 Balancing using a Locked Inertia Model

minimizing the residua

δζ̂ = ζ̂ − ζ̂d (8.24)

δû = û− ûd (8.25)

with respect to the extrapolated dynamics (8.22) and to the inequality constraints

Ai [l] F i [l] ≤ bi [l] ∀ i = 1 . . . ψsup, ∀ l = 1 . . . N , (8.26)

Bτ [l] F [l] ≤ τmax ∀ l = 1 . . . N . (8.27)

The residua for the state vector δζ̂ and for the control input δû are penalized via the

symmetric and positive definite weighting matrices Qζ̂ ∈ R6N×6N and Qû ∈ R6N×6N ,

respectively. Note that the control input û ∈ R6N comprises all end-effector wrenches F [l]
for the complete time span of the prediction (l . . . l+N). The vector û and the weighting
matrix Qû can be used analogously to Section 6.1 to achieve the following tasks:

� Providing a default wrench distribution F def
sup [l] ∀l . . . l + N to the support end-

effectors to regularize the wrench distribution.

� Ensuring that the wrenches of the support end-effectors match the Cartesian com-
pliances F cpl

int [l] ∀l . . . l+N . The latter requires F cpl
int not only for the current but also

for the future time steps, which can be remedied by assuming that F cpl
int is constant

during the time span of the prediction.

The inequality constraints (8.26) and (8.27) ensure the contact model for all support
contacts and the actuator limitations during the complete time span of the prediction.

Note that the vector ûopt contains the feedforward control input from the current point
in time l until the end of the prediction l + N . In order to close the feedback loop, the
current control input ûopt [l] is extracted from ûopt and applied to the joints of the robot
via

τ [l] = −(J ′ [l])T ûopt [l] (8.28)

analogously to (6.17).

8.2.2 Evaluation in Simulation

In [Henze et al., 2014a], we reported on simulation results involving the humanoid robot
TORO (see Chapter 5) to evaluate the presented controller. As shown in Fig. 8.6a, the
scenario comprises the robot TORO standing in front of a wall using the hands and the
feet as supporting contacts. The hands are considered point contacts, whereas the feet are
able to transmit a complete six-dimensional wrench (see Section 3.4). The MPC controller
comprises N = 10 time steps, which are T = 50 ms apart from each other, such that the
prediction covers a time span of 0.5 s in total.

Two instantaneous jumps in the desired position and orientation of the CoM frame C
are commanded to the robot to test the response of the system. The results are shown in
Fig. 8.6b. The first step occurs at t = 1 s, setting the desired CoM position 5 cm to the
front. The controller reacts to the jump in ζ̂d by continuously moving the actual CoM to
the new setpoint. What is interesting here is that the controller starts to react 0.5 s before
the actual jump in ζ̂d takes place, which corresponds exactly to the length of the prediction.
In order to accelerate, the controller moves the combined CoP of the feet pFeet first to
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8 Balance Control based on Reduced Dynamic Models

the front and then to the back to decelerate again. In order to generate the acceleration,
the controller also lowers the contact forces in both hands to approximately 9 N each,
although ûd specifies a default contact force of 15 N. The steady state is reached at
t = 2.5 s. The second jump occurs in the signal for the desired pitch angle of the CoM/hip
at t = 3.5 s. Again, the controller reacts to the change in the desired position exactly 0.5 s
prior to the actual jump in ζ̂d. The steady state is reached 2.5 s afterwards. Note that
the “oscillations” that can be seen in the plots of the hand forces are caused by the fact
that the controller is executed at a rate of 1 ms, whereas the points in time used for the
prediction are 50 ms apart from each other. This means that the vector ζ̂d containing the
commanded step inputs changes every 50 ms.

The reason for validating the controller in simulation and not on the actual robot is
the required computing power. The constrained quadratic optimization problem (8.23)
to (8.27) comprises N ·Ψ ·6 = 240 variables considering N = 10 time steps and Ψ = 4 end-
effectors with six DoFs each. As a consequence, it was not possible to execute the con-
troller in real-time on the computers of TORO. One method for reducing the compu-
tational effort could be the polyhedron of feasible support wrenches introduced in Sec-
tion 3.6. The MPC algorithm optimizes the trajectory for the center of mass frame C
such that the required contact forces are feasible with respect to the contact model (8.26).
But in order to validate the contact model, it is not necessary to explicitly compute the
wrench distribution. Instead, it is sufficient to check whether the required overall support
wrench F res

sup = AdTsup F sup lies within the polygon of feasible support wrenches. Thus,

it is only necessary to compute the explicit wrench distribution ûopt [l] for the current
time step in the prediction in order to obtain the control torques τ [l] via (8.28). For
all other/future time steps, it is sufficient to check the feasibility of the trajectory via
the resulting support wrench. Thus, the size of the constrained quadratic optimization
problem can be reduced from N · Ψ · 6 = 240 to 1 · Ψ · 6 + (N − 1) · 6 = 60 variables.
Note that computing the polygon of feasible wrenches also requires some computational
effort. However, the polyhedron is constant for a given contact configuration and must be
computed only once, which can also be done offline if the contact configuration is known
in advance.
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(a) Setup of the simulation.
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(b) Motion of the robot and hand forces during the simulation.

Figure 8.6: Simulated response to a step in the desired CoM position and hip orientation.
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CHAPTER 9

Applications

This chapter reports on several applications in which the control framework from Chap-
ters 6 and 7 was used to facilitate a whole-body motion of the humanoid robot TORO
(see Chapter 5) while balancing. The applications demonstrate that the whole-body con-
trollers can be integrated into the software ecosystem of a humanoid robot, which features
a multitude of components besides the balancing controller, such as vision and planning.
The variety of applications emphasizes the versatility and the robustness of the developed
whole-body control approaches.

The chapter is structured as follows: Section 9.1 presents two scenarios, where the
balancing controller was combined with planning and vision algorithms to facilitate au-
tonomous grasping or stair climbing. In Section 9.2, the whole-body balancer is combined
with different types of input devices to teleoperate the humanoid robot TORO. Section 9.3
shows TORO in a real-world scenario from the field of aircraft manufacturing.

9.1 Combining Planning with Whole-Body Balancing

To employ humanoid robots for disaster scenarios or in the field of industrial manufactur-
ing, it is essential that the robots show a certain level of autonomy, which can be achieved
by combining whole-body control with planning and perception. This section presents
the works of Sundaram et al. [2018] and Werner et al. [2016], where the MCB controller
from Section 6.1 was combined with planning and perception algorithms for autonomous
grasping and multi-contact stair climbing, respectively. The MCB controller was extended
in [Henze et al., 2019] to increase the achievable stair height from 5 cm to 18 cm, which
corresponds to an ordinary staircase in Germany [DIN e.V., 2016].

9.1.1 Autonomous Grasping

Sundaram et al. [2018] presented an integrated pipeline for generating autonomous grasp-
ing behaviors with humanoid robots. The pipeline comprises several components for pro-
cessing visual information, planning, and control, as shown in the system overview in
Fig. 9.1. The presented scenario involves the humanoid robot TORO autonomously ap-
proaching and picking up an object from a table (see Fig. 9.2a). For this purpose, the
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Figure 9.1: Overview of the integrated pipeline for autonomous grasping with humanoid
robots.

robot first localizes the table via its on-board cameras using AprilTags [Olson, 2011]
attached to the table. The subsequent approach utilizes visual odometry and ORB-
SLAM2 [Mur-Artal and Tardós, 2017] for localization and a ZMP-based walking con-
troller [Englsberger et al., 2011] for locomotion. As soon as the final position with re-
spect to the table is reached, the framework enters the manipulation phase by visu-
ally recognizing and classifying the objects on the tabletop as a set of primitive geome-
tries [Büttner et al., 2016]. The latter is used by the grasp planner to synthesize a set
of parametric grasps, which are filtered and evaluated based on a reachability analysis
by Porges et al. [2014]. If no feasible grasps can be found, then the framework performs
a repositioning of the base by providing an adjusted goal to the walking controller. The
adjusted goal is selected from a set of predefined base positions, which are ranked based
on the reachability of the computed grasps at these positions. Otherwise, a sorted list of
grasps is handed over to trajectory planning, which tries to compute a feasible, quasi-static
trajectory starting with the preferred grasp from the list. If no feasible trajectory can be
found for any of the grasps, then the framework can again trigger a repositioning of the
base. To reduce the complexity of the trajectory planning, the algorithm considers only
a subsystem of the robot kinematics. For this application, TORO always uses the right
hand to grasp the object, which is why the reduced kinematic chain comprises all six DoFs
of the right arm and the joint located between the torso and the pelvis (see Chapter 5).
Here, the pelvis serves as a fixed base of the kinematic model. The left arm and the
legs are irrelevant for the grasping process and are thereby omitted. Thus, the planning
problem is reduced to an ordinary 7-DoF robot with a serial kinematic chain and a fixed
base.

After the planning is completed, the desired trajectory is executed on the robot using the
whole-body controller (MCB) presented in Section 6.1, which coordinates the motion of
the right hand with the rest of the body to hold the balance. The communication between
planner and controller is established via the interface described in Section 6.6. The feet
are configured as supporting contacts, while the hands are assigned to the interaction
task. As the planning process is conducted in joint space, the desired trajectory is post-
processed via forward kinematics to provide the Cartesian goals for the CoM and hand
compliances of the MCB controller. The accompanying null space compliance is directly
provided with the trajectory in joint space. As the planning algorithm assumes a stationary
pelvis, the desired trajectory comprises an intentional motion of the center of mass, which
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(a) Grasp execution using the MCB controller.
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(b) Trajectory of the CoM and the hip relative to the support polygon SSP (yellow).
The contact areas of the feet SFootR and SFootL are given in gray.

Figure 9.2: The humanoid robot TORO autonomously picking up an object from a table.
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can potentially compromise balancing if the CoM leaves the support polygon. To avoid
this, the validity of the CoM position is verified before executing the trajectory, which is
aborted in case of an invalid CoM location. But according to the empirical experience
of Sundaram et al. [2018], the CoM always stays well inside the support polygon for the
feasible grasps within the reachable workspace of a single arm of TORO . For instance,
Fig. 9.2b shows the location of the CoM with respect to the support polygon SSP. Even
though there was an external disturbance (manual push) applied to the hip of the robot
during the trajectory execution, the desired and the actual CoM location (xc,d and xc)
kept a sufficient distance to the borders of the support polygon. The same holds for the
CoP pFeet of the feet. Thus, using a fixed pelvis for planning is a valid assumption for this
particular scenario.

9.1.2 Stair Climbing

Another combination of planning and multi-contact control was reported in [Werner et al.,
2016] for quasi-static stair climbing of humanoid robots. As shown in Fig. 9.4, the scenario
involves a hand rail on the left side of the robot to gain additional support. An overview of
the components forming the integrated pipeline of the framework is given in Fig. 9.3. First,
the humanoid robot TORO perceives the terrain in front of it with the on-board cameras
(see Section 5). The perception system is able to isolate obstacles and potential stepping
locations from the acquired scene. Furthermore, it builds a map of the environment that
can be dynamically extended as the robot moves forward. The next step consists of a
reachability analysis (similar to [Porges et al., 2014]) that isolates the stepping locations
that are kinematically feasible given the current contact configuration, joint limitations,
and static balancing. Once the reachable locations have been identified, the module for
contact planning computes an optimal stepping sequence using a graph-based approach.
Note that perception and contact planning only provide the contact sequence for the
feet, while the hand contacts are manually defined for reasons of simplicity. The next
component in the pipeline is a path planning algorithm based on CBiRRT [Berenson et al.,
2009], which is able to handle the closed kinematic chain arising from the multi-contact
scenario. The algorithm computes a quasi-static trajectory for bringing the robot from
one contact configuration to the next one accounting for joint limitations, self-collisions,
environment-collisions, kinematic singularities, and static balance. After the robot has
taken a step, the multi-contact planner can trigger an update of the capability map and
the contact planning to account for the new contact configuration and the terrain ahead.
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Manual
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MCB
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Figure 9.3: Overview of the integrated pipeline for stair climbing.
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Figure 9.4: The humanoid robot TORO climbing stairs with a height of 5 cm.
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Figure 9.5: Impact of a toe-off motion on the joint torque of the front knee.

Finally, the quasi-static trajectory is handed over to the MCB controller presented in
Section 6.1 to allow for a robust and compliant execution of the whole-body trajectory.
The communication between the multi-contact planner and the controller is established via
the interface described in Section 6.6. Note that stair climbing involves the attaching and
detaching of contacts, which means that the task assignment of the end-effectors (support
or interaction) changes during the motion sequence. Thus, the interface from Section 6.6
is extended with means of specifying and updating the task assignment online based on
the procedure for contact switching described in Section 6.7.3.

One of the limiting factors during quasi-static stair climbing is the maximum torque that
can be delivered by the knee joints. As shown in Fig. 9.5a, the length of the rear leg limits
the height of the hip, which causes a significant flexion of the front leg. The flexion in turn
correlates with the lever arm between the knee joint and the contact force of the front leg.
Moreover, the robot has to shift its entire weight to the front leg in order to detach the rear
foot. Thus, the combination of high load and high lever arm causes a significant torque in
the knee joint of the front leg. For this reason, the humanoid robot TORO was only able
to master stairs with a height of 5 cm during the experiments reported in [Werner et al.,
2016]. The corresponding motion sequence is shown in Fig. 9.4. In order to overcome
this limitation, we extended the MCB controller in [Henze et al., 2019] to allow for toe-off
motions, as shown in Fig. 9.6.

The advantage of performing a toe-off motion with the rear foot is that it extends the
effective length of the rear leg, and therefore the kinematic capability of the robot. As
shown in Fig. 9.5b, this extension allows the robot to increase the height of the hip, which
reduces the knee flexion of the front leg. This in turn results in a shorter lever arm and
consequently in a lower torque in the knee. In order to analyze this effect, a simulation
study was conducted in [Henze et al., 2019] with TORO climbing stairs of 28 cm width
and without toe-off motion. Without toe-off, the required torque in the knee reached 96 %
of the maximum torque possible at this joint, which is too close to the limit to be executed
on the actual robot, considering joint friction and measurement noise. By performing the
toe-off motion, the knee torque can be reduced to 76 % of the maximum torque, which
leaves enough margin for executing the motion on the actual robot. Therefore, climbing
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(a) Motion sequence. The toe-off motion is performed during phase IV and IX.
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Figure 9.6: The humanoid robot TORO climbing stairs with a height of 18 cm.
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stairs of this particular height (28 cm) is only possible by using a toe-off motion to extend
the length of the rear leg.

In order to implement toe-off motions, we modified the MCB controller by shifting and
rotating the end-effector frames of the feet as shown in Fig. 9.6b. During flat contact, the
end-effector frame is located in its default configuration Ti underneath the ankle, with the
x-axis pointing to the front and the z-axis being perpendicular to the sole of the foot. To
incline the foot, the frame is first moved by an offset dtoe

i ∈ R to the front edge of the
contact area. Afterwards, the frame is rotated by an angle βtoe

i ∈ R, such that the z-axis
is no longer perpendicular to the sole but to the floor. In theory, the resulting line contact
is able to transmit forces in x-, y-, and z-direction, as well as torques about the x- and
z-axis. However, it is questionable if the contact is stable enough to provide those forces
and torques, because an inclination of the foot usually takes place in situations with rather
low vertical load. Therefore, in [Henze et al., 2019] we proposed modeling the contact as
a point contact according to Section 3.4.3. Thus, the translational z-direction is assigned
to the balancing task, while the remaining five DoFs are allocated to the interaction task.
The five remaining DoFs are therefore stabilized by a Cartesian compliance including the
inclination of the foot, which significantly increases the robustness against slipping and
tilting.

By incorporating toe-off motions into the MCB controller, we were able to increase the
kinematic capabilities of the robot by extending the effective length of the rear leg. This
leads to an increased hip height, which reduces the required joint torque in the front knee.
By including toe-off phases, we moved from negotiating stairs with a step height of 5 cm
and step length of 20 cm in [Werner et al., 2016] to stairs with a step height of 18 cm and
step length of 28 cm in [Henze et al., 2019], which corresponds to an ordinary staircase in
Germany [DIN e.V., 2016]. The corresponding motion sequence is shown in Fig. 9.6a.

9.2 Combining Teleoperation with Whole-Body Balancing

Teleoperation can be used to remotely control humanoid robots in environments that are
physically demanding or dangerous for humans, such as disaster scenarios or space explo-
ration. Besides this, the healthcare sector also provides several interesting applications for
teleoperation. For instance, teleoperation can allow medical personnel to remotely interact
with a patient via a humanoid robot. Furthermore, teleoperation can be used to increase
the quality of life for patients with mobility impairments by allowing them to operate a
humanoid robot like an avatar.

This section presents two exemplary applications where the MCB controller from Sec-
tion 6.1 was combined with two different human-machine interfaces for teleoperating the
humanoid robot TORO. Section 9.2.1 demonstrates a wearable input device for helping
patients with upper limb impairments to command the hands of TORO. Another input
device for controlling the arms is presented in Section 9.2.2, which provides haptic feed-
back to the user to inform her/him about the consequences of the commanded actions.
The setup is enriched with an automatic CoM task for moving the CoM in conjunction
with the hands to increase the workspace of the robot.

9.2.1 Bimanual Teleoperation using a Wearable, Ultralight Input Device

Gijsberts et al. [2014] demonstrated the use of a myoelectric human-machine interface for
teleoperating the humanoid robot TORO. Due to the lack of a whole-body controller at
that time, there was no coordination between the lower and the upper body of TORO.
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Figure 9.7: Overview of the framework for bimanual teleoperation of humanoid robots.

Furthermore, the interface only comprised the right arm of the robot. We extended the
framework in [Porges et al., 2019] by combining the input device with the whole-body
controller from Section 6.1 (MCB). This allows the operator to command both arms sim-
ultaneously, while the MCB controller ensures the balance of the robot in a compliant
and robust way (see Fig. 9.8). The improvements on the human-machine interface (HMI)
mainly address the wearability and usability of the input device.

As shown in Fig. 9.7, the interface comprises two Myo gesture control armbands by
Thalmic Labs to predict the finger actuation of the human operator via surface elec-
tromyography (sEMG). The sEMG data is processed on a Laptop using Incremental Ridge
Regression with Random Fourier Features in order to provide a command for the finger
configurations of TORO. The Cartesian poses of the operator’s hands are measured via
two Vive motion trackers by HTC. The tracking data is processed on the same Laptop
using the cross-platform game engine Unity developed by Unity Technologies. The meas-
ured Cartesian poses are provided to the robot in the form of the setpoints for the hand
compliances. For the experiment, the master system provides a combined data stream
at 50 Hz, which is transmitted via Wi-Fi to the humanoid robot TORO. The data stream
is processed by the MCB controller, which is executed at a rate of 1 kHz on the real-time
computer of TORO (see Chapter 5). The interface is completely wireless and light-weight
(about 180 g per arm), which gives the operator the freedom to move around.

The capabilities of the framework are demonstrated in [Porges et al., 2019] via several
complex daily-living tasks, which require a robust and dexterous two-handed manipulation.
The tasks include unscrewing a lid from a bottle, pouring fluid from a bottle into a cooking
pot, and holding a wireless phone while dialing a number. The video of the experiment can
also be found on the YouTube-channel [RMC] of the Institute of Robotics and Mechatronics.

9.2.2 Teleoperation using a Task-Relevant Haptic Interface.

In [Abi-Farraj et al., 2018], we presented another interface for teleoperating humanoid
robots, which can inform the operator about the consequences of the commanded actions
via haptic feedback. The interface is enhanced with an automatic task for the CoM to
increase the workspace of the humanoid robot. A schematic overview of the interface is
given in Fig. 9.9. The framework uses HUG [Sagardia et al., 2016] as an input device
on the master side. HUG is a haptic user interface developed by DLR that consists of
two DLR-KUKA Lightweight robot arms mounted on a column, as shown in Fig. 9.10.
Each arm features seven DoFs, a workspace of 1.1 m, and a nominal payload of 20 kg.
The humanoid robot TORO (see Chapter 5) is on the slave side, and it is controlled by
the MCB balancer presented in Section 6.1. Both sides are connected via the interface
detailed in Section 6.6.
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(a) Bimanual handling of a ball while balancing compliantly in the presence of
external disturbances (red arrow).

(b) Removing a lid from a cooking pot.

(c) Opening a fridge.

Figure 9.8: Bimanual Teleoperation of TORO using a wearable, ultralight input device.
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Figure 9.10: Teleoperating the humanoid robot TORO via the haptic user interface HUG.

The operator can move the hands of the slave by moving the end-effectors of the master
device. The Cartesian end-effector velocities are measured on the master side, integrated
into a desired pose for the left and the right hand, and transmitted via Wi-Fi to the
slave. Note that the software implementation comprises a “clutching mechanism”, which
allows the operator to disengage from the slave side and move the arms of the input device
(HUG) into a more convenient configuration without actually moving the slave (TORO).

To prevent the operator from bringing the slave robot into an undesirable configuration,
the input device (HUG) provides haptic feedback to the user. In particular, a positive
definite potential function

Vtele =
∑

k

V tele
SP (dk) + V tele

HandR(dHandR) + V tele
HandL(dHandL) (9.1)

is defined in [Abi-Farraj et al., 2018]. The first term encodes the distance dk ∈ R between
the CoM (projected onto the floor) and the edges of the support polygon SSP in order to
inform the user if the CoM approaches the border of SSP. The potentials V tele

HandR(dHandR)
and V tele

HandR(dHandL) evaluate the distance between the torso and the right or the left hand,
respectively. If the user tries to stretch the arms beyond a given maximum distance, the
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potentials are activated to inform the user about the kinematic limitation. Note that the
constraints are a design aspect that can be adapted depending on the slave system and
the application. Thus, Vtele encodes several constraints regarding the robot’s kinematic
and static balance. The wrenches derived from Vtele are fed back to the user via the input
device HUG.

To increase the workspace of the slave, the interface features a task for automatically
moving the center of mass frame C of TORO. As shown in Fig. 9.9, the CoM task consists
of two elements:

vc,d = Ad+ vd + JcN tele νtele (9.2)

with

vd =




vFootR,d

vFootL,d

vHandR,d

vHandL,d


 =




0
0

vHandR,d

vHandL,d


 . (9.3)

The first term maps the commanded hand velocities to the center of mass via the pseudoin-
verse Ad+ = (AdT Ad)−1AdT of the adjoint matrix Ad as defined in (3.23). This choice
can be motivated with (3.23), which maps vc to the end-effector velocities v via v = Ad vc

assuming q̇ = 0. Thus, vc,d in (9.2) can be interpreted as a “mean value” of the com-
manded end-effector velocities vd. Note that vFootR,d = 0 and vFootL,d = 0, as both feet
are in contact with the floor.

The second term in (9.2) drives the CoM frame C via the potential Vtele to prevent
the CoM from leaving the support polygon SSP or the arms from moving into a singular
configuration. The gradient of Vtele is used to compute a desired velocity νtele ∈ R6+n

in the configuration space of the humanoid robot. The null space projector N tele =
(I−JJ+) ∈ R(6+n)×(6+n) maps νtele to the null space of the end-effector task. The result
is then mapped via the center of mass Jacobian matrix Jc = [ I 0 ] ∈ R6×(6+n) to the
desired CoM velocity.

As soon as the slave robot is brought close to a singular arm configuration or to the
boundary of the support polygon, the operator is informed about these constraints via the
implemented force feedback. Note that the forces provided to the user increase the closer
the slave robot gets to the constraints. As a last resort, the “clutching mechanism” is used
to automatically sever the connection between master and slave such that the operator
cannot move the slave beyond the boundaries.

9.3 Real-World Applications: Employing Humanoid Robots in
Aircraft Manufacturing

The objective of the European research project COMANOID1 [Comanoid, Kheddar et al.,
2019] was to evaluate the potential of employing humanoid robots in aircraft manufactur-
ing. The consortium consisted of several research institutions from France, Italy, and
Germany, including the German Aerospace Center (DLR). The industrial partner was
represented by Airbus Group Innovations, which provided the use case and the testing
facilities for the final demonstration.

1European Union Research and Innovation Programme Horizon 2020, grant agreement number H2020-
ICT-645097 (COMANOID).
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Although several automation solutions have been introduced in aircraft manufacturing,
some phases of the process still require a significant amount of manual work. One of
the reasons is the challenging accessibility of several areas inside an aircraft, such as the
cargo hold. The EU-project COMANOID addressed the use case of gluing brackets (for
holding cables or pipes) onto the inner hull of an aircraft. As an airplane can contain
several ten thousands of these support elements, the task is repetitive and monotone, but
requires high precision due to the quality requirements in aviation industries. Many of the
brackets must be placed in rather unergonomic locations that require workers to kneel or
bend down, for instance. Thus, the task can be classified as a monotone low-added-value
task that subjects the worker to physical stress with the risk of repetitive strain injury.

The addressed scenario involved mounting the brackets on the cargo deck of an Airbus
A350 XWB. To conduct the final demonstrations under realistic conditions, Airbus Group
Innovations provided an exact replica of the cargo deck of the aircraft at the production
site in Saint-Nazaire (see Fig. 9.11a and Fig. 9.11c). Due to the limited height of the
cargo deck2, the workers (and humanoid robots) can only operate on the cargo deck in a
rather crouched posture, which again emphasizes the need for automation. The humanoid
robot and the human worker are supposed to share the same workspace, which demands for
robust and compliant balancing algorithms to ensure safety, such as the control frameworks
presented in Chapters 6 and 7. Furthermore, the robot must be able to enter the shop
floor via the same stairs as the workers. As the shop floor can be covered with tools,
cables, or other equipment, the robot must also be able to walk over rough terrain. Thus,
the task requires a high level of versatility and agility as provided by a legged humanoid
robot. In particular, the scenario involved the following steps:

1. Enter the shop floor via stairs.

2. Pick up a bracket from a dispenser on a table.

3. Enter the cargo deck of the aircraft and proceed to the final working position.

4. Position the bracket at the predefined location on the fuselage.

5. Exit the working area.

The humanoid robot TORO performed the stair climbing in the Lab of DLR using the
MCB balancer from Section 6.1. The negotiated stairs feature a height of 18 cm and a
step length of 20 cm, which corresponds to the stairs in the mockup at Saint-Nazaire.
The results are reported in Section 9.1.2. The second step (picking up the bracket) was
demonstrated at Saint-Nazaire, as shown in Fig. 9.11a. Again the MCB balancer was used
to coordinate grasping with the support and the balancing task during the whole-body
motion. The location of the bracket on the table was provided by the perception system of
TORO using AprilTags [Olson, 2011]. The locomotion inside the aircraft utilized a walking
controller based on the MCB+ balancer [Mesesan et al., 2019]. Here, it is important that
the robot keeps a crouched body-posture to respect the limited height of the cargo deck
of the aircraft.

The last step addresses the main focus of the EU-project COMANOID, which is on
multi-contact planning and control. As soon as the robot reaches the final working posi-
tion, it is supposed to glue the bracket at a predefined position on the inner hull of the

2Airbus S.A.S specifies a height of 1.76 m for the door of the forward cargo hold of the A350-900 and
A350-1000 [AIRBUS S.A.S., 2005].
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aircraft. However, the distance to the hull is so large that even human workers cannot
reach it directly. Instead, they have to lean forward using their hands for additional sup-
port. In order to increase the reach of the arms, the robot follows the human example by
including additional contacts into the balancing problem, such that the support polygon
is extended to the front. This in turn allows the robot to shift the CoM and thereby the
torso to the front, which increases the workspace of the arms such that the target location
on the hull can be reached. Note that the robot is not allowed to step on the hull to avoid
damage to the aircraft. However, the cargo hold features a set of struts on both sides
for reinforcing the structure of the aircraft. As they are of a robust design, the robot is
allowed to utilize the struts for gaining additional support.

In the context of the project, we developed two different strategies for mastering these
multi-contact tasks, which are both shown in Fig. 9.11. The first strategy was demon-
strated in the lab at DLR in a functional mockup of the A350 XWB cargo hold (see
Fig. 9.11b). The robot TORO grasps one of the struts with the right hand and leans to
the front to place the bracket with the left hand on the hull of the aircraft. Here, the
challenge is that the contact configuration is asymmetric, which results in an asymmetric
support polygon. For this reason, the robot moves the center of mass not only to the front
but also to the right, such that the CoM always stays on top of the support polygon. Note
that the CoM is shifted in front of the feet, which means that the robot would fall over with-
out the additional hand contact. The robot is operated using the multi-contact balancing
controller (MCB) presented in Section 6.1. A video of the demonstration can be found on
the YouTube channel of the Institute of Robotics and Mechatronics at DLR [RMC].

The second strategy was demonstrated at Saint-Nazaire using the more sophisticated
mockup of the A350 XWB cargo deck (see Fig. 9.11c). Here, the robot employs the knees
as additional contacts to extend the support polygon to the front. For this purpose, TORO
kneels on a portable bench similar to the assistive devices (e. g. stools and ladders) used
by human workers. Again, the robot shifts the center of mass in front of the feet, which
means that the robot would fall over without the additional knee contacts. In order to

bracket

target
location

struts

bench

(a) Picking up the bracket from a dispenser on a table.
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target
location

strut

(b) Positioning the bracket using the right hand as additional contact to enlarge the support
polygon.

target
location

struts

bench

(c) Positioning the bracket using both knees as additional contacts to enlarge the support
polygon.

Figure 9.11: Use case of the EU-project COMANOID.
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account for the kinematic constraints invoked by the knees, the hierarchical multi-contact
balancer (HMCB) presented in Chapter 7 is used in combination with the task hierarchy
for confined spaces (see Table 7.2). Note that the cargo deck represents a perfect example
for balancing in confined spaces, as TORO cannot move into a fully upright posture due
to the limited height of the ceiling.

In summary, we were able to prove that the whole-body control algorithms presented
in Chapters 6 and 7 can be used to robustly and compliantly operate humanoid robots in
multi-contact scenarios under realistic conditions, as in this case in aircraft manufactur-
ing.
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CHAPTER 10

Discussion and Conclusion

This work aims at providing algorithms for balance control of legged, torque-controlled
humanoid robots. A humanoid robot normally uses the feet for locomotion. This work
extends this paradigm by addressing the challenge of multi-contact balancing, which allows
a humanoid robot to exploit an arbitrary number of contacts to support itself. One of
the main aspects is the solution of the wrench distribution problem, which arises from
the resulting closed kinematic chain. Using multiple contacts for support increases the
size of the support polygon, which in turn leads to an increased robustness of the stance
and to an increased kinematic workspace of the robot. Both are important features for
facilitating a transition of humanoid robots from science to real-world applications, where
they are confronted with several challenging scenarios, such as climbing stairs and ladders,
traversing debris, handling heavy loads, or working in confined spaces.

The developed framework also addresses the challenge of whole-body control by allowing
a humanoid robot not only to maintain balance but also to interact with its environment,
as e. g. by carrying or manipulating objects. Of course, the forces and torques arising from
the interaction task must be considered by the balancing and/or support task to avoid
falling.

The whole-body control framework is generalized by combining the techniques for multi-
contact balancing with multi-objective control, which allows for a more generic task defini-
tion. Kinematic and dynamic conflicts between the tasks are resolved via a prioritization.
For instance, the generalization allows for support contacts not only at the end-effectors
(hands and feet) but at arbitrary locations on the robot’s body, such as the knees, pelvis,
backpack, shoulders, or the elbows. This ability is essential for operating a humanoid
robot in confined spaces, where there might be not enough space to completely “unfold”
the limbs to rely on hands and feet only.

The developed control framework implements a compliant balancing behavior in order
to ensure safety in case of accidental collisions between robot and environment or be-
tween robot and human. Furthermore, the framework employs passivity-based methods
to achieve robustness with respect to external disturbances.
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10 Discussion and Conclusion

In summary, the framework advances the state of the art by addressing the aspects
listed below:

� Extension of the work by Ott et al. [2011] into a passivity-based framework (MCB)

– for whole-body control by incorporating interaction tasks,

– and for multi-contact balancing by allowing for an arbitrary number of contacts.

� Incorporation of feedforward terms to allow for dynamic trajectories (MCB+).

� Passivity control for balancing on movable and deformable surfaces (MCB-PC).

� Automatic CoM task for performing high-force interaction tasks (MCB-ACT).

� Generalization of the whole-body control framework by integrating hierarchical multi-
objective control (HMCB). The latter allows for

– a dynamic decoupling of the tasks via a task prioritization,

– and balancing in confined spaces by allowing for arbitrary contact locations on
the body of the robot.

� Extensive experimental evaluation of the whole-body control framework.

� Demonstration of the performance and versatility of the whole-body control frame-
work in various applications including planning, teleoperation, and industrial manu-
facturing.

One of the above-mentioned applications was the EU-project COMANOID [Comanoid,
Kheddar et al., 2019], which addressed the challenge of introducing humanoid robots into
aircraft manufacturing. Other means of benchmarking the balancing and locomotion ca-
pabilities of humanoid robots are provided by the EU-project EUROBENCH [Eurobench]:
Torricelli et al. [2015] proposed a set of skills that are relevant for bipedal balancing and
locomotion. Fig. 10.1 shows an excerpt of the skills that are relevant for the scope of
the developed whole-body control framework. For this purpose, some of the categories are
summarized - in particular, the ones addressing surface inclinations and compliant terrain.
Furthermore, we summarized the categories for surface tilts and translations, such that
they comprise continuous as well as sudden surface motions. However, the category “High
Force Interaction” was added to the skill set to account for the MCB-ACT balancing
controller, presented in Section 6.5. Torricelli et al. [2015] proposed a classification of the
categories into two groups based on whether the environment is static or in motion. We
suggest a further subdivision of the latter group into passive and active environments. If
the environment is passive, then the motion of the robot causes a motion of the environ-
ment, such as in the category “Seesaw”. In case of an active environment, the causality
is reverted: Here, the environment inflicts external forces and torques on the robot that
in turn cause a motion of the robot, such as in the category “Pushes”. Note that the
categories “Body Sway Referenced Platform”, “Bearing Weight”, and “High Force In-
teraction” form another subgroup, where the robot generates forces and torques for the
purpose of deliberately manipulating the environment, in contrast to the other categories,
where the robot exploits the environment to gain support.

In the context of this work, we have demonstrated that the developed control framework
for whole-body balancing is able to master 12 out of the 13 categories given in Fig. 10.1,
including irregular terrain, stairs, and surface tilts and translations, for instance. The only
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Figure 10.1: Categories for benchmarking the balance performance of humanoid robots
(based on [Torricelli et al., 2015]).
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missing scenario “Body Sway Referenced Platform” demands that the robot maintains not
only its own balance but also the balance of the tiltable platform. This particular scenario
does not only deal with the underactuation of the robot’s base, but also with the un-
deractuation of the platform. Thus, the control strategy must be extended, for instance,
by utilizing the horizontal CoM motion to regulate the orientation of the platform. The
presented whole-body control framework could be a potential starting point for this ex-
tension, thanks to its feature of a general task description. Due to the challenging nature
of a “Body Sway Referenced Platform”, this category is an interesting method for bench-
marking the balancing capabilities of a humanoid robot. However, the practical relevance
of this particular scenario is limited.

In conclusion, the presented framework for whole-body control of humanoid robots
in multi-contact scenarios covers all the relevant categories of the benchmark given in
Fig. 10.1. Therefore, it facilitates the assignment of humanoid robots to challenging and
demanding tasks ranging from disaster scenarios and space and service robotics to indus-
trial manufacturing. This work also revealed several recommendations for future research
activities:

� In order to exploit the hands for multi-contact balancing, the robot kinematics must
allow the hands to adjust to the environment. The humanoid robot TORO only fea-
tures two joints in the wrist and forearm (see Chapter 5), which limits its capabilities
to rotate the hands freely in Cartesian space. A mechanical design that incorporates
three DoFs into the forearm (preferably with intersecting axes for mimicking a ball
joint) appears to be in clear advantage over the two-DoF design of TORO. Besides
this, the strength of TORO ’s arms is limited by the elbow joint, which can provide
a maximum torque of 40 Nm. Given a lever arm of approximately 0.4 m between
the elbow and the hand, the maximum force that the arms can deliver is limited
to roughly 100 N depending on the direction of the force. Although this range is
sufficient for many manipulation tasks, it represents one of the limiting factors in
multi-contact balancing. The arms can be employed to increase the robustness of the
stance as demonstrated multiple times in this work. However, they are not strong
enough to carry a relevant amount of the robot’s weight, which disqualifies TORO
for several multi-contact tasks, such as climbing. For these reasons, we recommend
revising the mechanical design of the arms regarding strength and kinematics for the
next generation of humanoid robots.

� In Chapter 7, the tasks are manually defined, of which several parts require the
knowledge of an expert. In order to provide humanoid robotics to the general pub-
lic, more generic methods for defining and switching tasks need to be investigated.
Online task transitions especially are still a challenging field from a theoretical point
of view.

� Thanks to Section 6.3 (MCB+), the framework enables humanoid robots to follow
dynamic trajectories. The next logical step is to exploit this feature for dynamic
walking, which is already under investigation by DLR.

� Many whole-body control frameworks require an explicit definition of the CoM task,
e. g. by defining a constant setpoint for the CoM location. However, restricting the
CoM to a static position reduces the kinematic capabilities of the robot (e. g. the
reach of the arms during grasping). Therefore, we suggest introducing automatic
CoM tasks into humanoid robotics that facilitate a suitable motion of the CoM,
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such as a free motion within the boundaries of the support polygon. This work
presented a potential approach in the form of Section 6.5 (MCB-ACT), where an
automatic CoM task was developed to account for high interaction forces. Another
possibility is to follow the teleoperation setup presented in Section 9.2.2, where a
potential is used to move the CoM in conjunction with the hands to avoid a singular
arm configuration.

� Many whole-body control frameworks assume that the supporting contacts do not
unintentionally detach from the environment, which is supposed to be prevented by
respecting the contact model. However, practical experience has shown that the
performance of the linear contact model presented in Section 3.4 can be unsatisfac-
tory under low perpendicular forces (fi,z ≈ fmin

i,z ). Thus, we suggest investigating
more sophisticated models for describing the contact properties. This work also pro-
vides several methods and procedures for increasing the robustness of the supporting
contacts against lifting off, tilting, or sliding (see Section 6.7.1 and Section 9.1.2).
However, these methods can only increase the robustness but are not able to stabi-
lize the robot if an unintentional detaching already occurred. As a consequence, we
recommend investigating further methods for detecting and reacting to misplaced
or detached contacts. Furthermore, the aspect of detached contacts is linked to the
problem of step recovery in multi-contact scenarios. Here, the challenge lies in the
number of contacts as well as in the complexity of the cluttered environment. Similar
problems have already been addressed in offline contact planning, but not in online
step recovery.

Although there are still many challenges in humanoid robotics, this work advanced
the state of the art by developing a whole-body control framework, which enables the
robust and compliant operation of humanoid robots in multi-contact scenarios. It con-
tributed to the field both with a thorough investigation of several theoretical aspects and
with an extensive experimental evaluation. The research effort culminated in the EU-
project Comanoid [Comanoid], where we were able to demonstrate the potential of in-
troducing humanoid robotics into aircraft manufacturing, which underlines the versatility
and maturity of the developed framework.
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CHAPTER 11

Appendix

11.1 Positive Definiteness of Matrix Potential

The procedure for converting the potential from the matrix into the quaternion formulation
is based on [Zhang and Fasse, 2000]: Let η and ~η be the scalar and vector part of the unit
quaternion η representing the rotation error RDA. According to [Shuster, 1993], RDA is
given by RDA =

(
η2 − ‖~η‖

)
I + 2~η~ηT + 2ηS(~η), which can be converted into

RDA = I − 2~ηT~ηI + 2~η~ηT + 2ηS(~η) (11.1)

exploiting the length of the unit quaternion 1 = η2 + ~ηT~η. Inserting RDA into (4.22)
yields

V K,rot =− tr
(

(I − 2~ηT~ηI + 2~η~ηT + 2ηS(~η) (RT
DRref K̃ RT

refRD)
)

+ tr(K̃)

=− tr
(
RT
DRref K̃ RT

refRD

)
+ tr(K̃)

+ 2 tr
(

(~ηT~η − ~η~ηT − ηS(~η)) (RT
DRref K̃ RT

refRD)
)

.

(11.2)

Considering tr(S(η)(RT
DRref K̃ RT

refRD)) = 0 due to Theorem 4.3, Theorem 4.1 leads to

V K,rot = + 2~ηT~η tr(K̃)

− 2 tr
(
~η~ηT (RT

DRref K̃ RT
refRD)

)
.

(11.3)

It can be easily verified that

tr
(
~η~ηT (RT

DRref K̃ RT
refRD)

)
= ~ηT (RT

DRref K̃ RT
refRD) ~η (11.4)

holds using Theorem 4.2, which leads to

V K,rot = 2~ηT
(

tr(K̃)− (RT
DRref K̃ RT

refRD)
)
~η. (11.5)

Inserting the definition of the co-stiffness matrix (see Section 4.2) simplifies V K,rot to

V K,rot = 2~ηT RT
DRrefKrotR

T
refRD ~η, (11.6)
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which is positive definite with respect to the vector part ~η. Thus, V K,rot is positive definite
with respect to the rotation matrix RDA:

V K,rot

{
= 0 if RDA = I

> 0 if RDA 6= I
. (11.7)

11.2 Averaging of Rotation Matrices

In [Gramkow, 2001], two methods are compared for computing the average of rotations
based on a representation via unit quaternions and via ration matrices. According to
Gramkow [2001] both methods yield a sufficient accuracy, but the one based on quater-
nions is simpler to compute than the one using rotation matrices. For this reason, we
propose averaging rotation matrices by first converting them into quaternions, comput-
ing the average in quaternion space, and then converting the result back into a rotation
matrix.

Let ηi be the unit quaternion representation of a set of general rotations Ri ∈ SO(3)
with i = 1 . . . n. The weighted average of the rotations can be computed according to

η =

∑n
i=1 αiηi

‖∑n
i=1 αiηi‖

(11.8)

based on the method presented in [Gramkow, 2001]. The weighting coefficients are repre-
sented by αi ∈ [0; 1] satisfying

∑n
i=1 αi = 1.

Note that Gramkow [2001] states that the method can potentially fail if the quaternions
are distributed all over the unit sphere of quaternion space. However, this can be avoided
by a) exploiting the fact that ηi and −ηi represent the same rotation in order to restrict
the quaternions to one half of the unit sphere and by b) assuming that the orientations
are relatively close to each other. The latter assumption holds in our case, as we average
several estimates of the orientation Rb, which probably show only a moderate variation.
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