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Abstract

This dissertation is motivated by the challenges arising in the analysis and synthesis of
large-scale stochastic cyber-physical systems (CPSs). In the past few years, stochastic
CPSs have received significant attentions as an important modeling framework describ-
ing many engineering systems and play significant roles in many real-life applications
including traffic networks, transportation systems, power grids, and so on. Automated
verification and policy synthesis for this type of complex stochastic systems to achieve
some high-level specifications, e.g., those expressed as linear temporal logic (LTL) for-
mulae, are inherently very challenging. In particular, providing automated synthesis of
correct-by-design controllers for stochastic CPSs is absolutely crucial in many safety-
critical applications such as automated highway driving.

In this respect, decomposition and abstraction are introduced as two key tools to
alleviate the computational complexity arising in the analysis of large-scale stochastic
CPSs. More specifically, one promising approach to deal with encountered difficulties
is to first employ abstractions of subsystems as a replacement of original ones, then
synthesize controllers for the abstract interconnected systems, and finally refine the
controllers back to the concrete models. Since the mismatch between the output of
the overall interconnected system and that of its abstraction is well-quantified, one can
guarantee that the concrete systems also satisfy the same specifications as the abstract
ones with guaranteed error bounds on their output trajectories.

The computational complexity in synthesizing controllers for large-scale stochastic
CPSs can be mitigated via abstractions in two consecutive stages. In the first stage,
one can abstract the original system by a simpler one with a lower dimension (infinite
abstraction). Then one can construct a finite abstraction (a.k.a. finite Markov decision
process (MDP)) as an approximate description of the reduced-order system in which
each discrete state corresponds to a collection of continuous states of the reduced-order
system. Since the final abstractions are finite, algorithmic machineries from Computer
Science are applicable to synthesize controllers enforcing high-level properties over the
original systems.

Unfortunately, construction of abstractions for large-scale CPSs in a monolithic man-
ner suffers severely from the so-called curse of dimensionality : the complexity exponen-
tially grows as the number of state variables increases. To relieve this issue, one promis-
ing solution is to consider the large-scale CPSs as an interconnected system composed of
several smaller subsystems, and provide a compositional framework for the construction
of abstractions for the given system using abstractions of smaller subsystems.

This dissertation provides novel compositional techniques to analyze and control large-
scale stochastic CPSs in an automated as well as formal fashion. In the first part of the
thesis, compositional infinite abstractions (model order reductions) of original systems
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Abstract

are studied with three different compositional techniques including classic small-gain,
max small-gain and dissipativity approaches. We show that the proposed max small-gain
approach is more general than the classic one since it does not require linear growth on
the gains of subsystems which is the case in the classic small-gain. We also show that
the provided approximation error via max small-gain does not change as the number of
subsystems grows since the proposed overall error is completely independent of the size of
the network, and is computed only based on the maximum error of subsystems instead
of being a linear combination of them which is the case in the classic small-gain and
dissipativity approaches. On the other hand, we discuss that the proposed dissipativity
technique is less conservative than the classic (or max) small-gain approach in the sense
that the provided dissipativity-type compositionality condition can enjoy the structure
of the interconnection topology and be potentially fulfilled independently of the number
or gains of subsystems.

In the second part of the thesis, compositional construction of finite MDPs as finite
abstractions of given (reduced-order) systems is studied with the same aforementioned
compositionality techniques. We show that if the original system is incremental input-to-
state stable (or incrementally passivable in the dissipativity setting), one can construct
finite MDPs of original systems for the general setting of nonlinear stochastic control sys-
tems. We also extend our results from control systems to switched ones whose switching
signals accept a dwell-time condition with multiple Lyapunov-like functions. Moreover,
we propose relaxed versions of small-gain and dissipativity approaches in which the sta-
bilizability of individual subsystems for providing the compositionality results is not
necessarily required. We then propose a compositional technique for the construction of
both infinite and finite abstractions in a unified framework via notions of approximate
probabilistic relations. We show that the unified compositional framework is less con-
servative than the two-step consecutive procedure that independently constructs infinite
and finite abstractions. We finally propose a novel model-free reinforcement learning
scheme to synthesize policies for unknown, continuous-space MDPs. We provide ap-
proximate optimality guarantees between unknown original models and that of their
finite MDPs. We discuss that via the proposed model-free learning framework not only
one can synthesize controllers for unknown stochastic systems, but also the curse of
dimensionality problem is remarkably mitigated.

In the last part of the thesis, we develop a software tool, called AMYTISS, in C++/O-
penCL that provides scalable parallel algorithms for (i) constructing finite MDPs from
discrete-time stochastic control systems and (ii) synthesizing controllers automatically
that satisfy complex logic properties including safety, reachability, and reach-avoid spec-
ifications. The software tool is developed based on theoretical results on constructing
finite abstractions, and can utilize high-performance computing platforms and cloud-
computing services to mitigate the effects of the state-explosion problem, which is al-
ways present in analyzing large-scale stochastic systems. This tool significantly improves
performances w.r.t. the computation time and memory usage by parallel execution in
different heterogeneous computing platforms including CPUs, GPUs and hardware ac-
celerators (e.g., FPGA). We show that this tool outperforms all existing tools available
in the literature.
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Zusammenfassung

Diese Dissertation ist motiviert durch die Herausforderungen, die sich in der Analyse
und Synthese von hochdimensionalen cyber-physikalischen Systemen (CPS) stellen. In
den letzten Jahren haben stochastische CPS erhebliche Aufmerksamkeit erhalten als
ein wichtiger Modellierungsrahmen, mit dem sich viele ingenieurstechnische Systeme
beschreiben lassen und der eine signifikante Rolle in vielen praxisorientierten Anwen-
dungen spielt, u.a. in Verkehrsnetzwerken, Transportsystemen, Stromnetzen usw. Au-
tomatische Verifikation und Synthese von Steuerungsstrategien für diese Art von kom-
plexen stochastischen Systemen mit dem Ziel bestimmte High-Level-Spezifikationen zu
erfüllen, z.B. solche, die durch Formeln der linearen temporalen Logik (LTL) ausgedrückt
werden, ist von Natur aus sehr anspruchsvoll. Speziell in vielen sicherheitskritischen
Anwendungen wie z.B. automatischen Verkehrssystemen ist es absolut essentiell, eine
automatische Synthese von nachweislich korrekt entworfenen Reglern für stochastische
CPS bereitzustellen.

Angesichts dessen werden die Dekomposition und Abstraktion eingeführt als zwei
wesentliche Werkzeuge, um die Rechenkomplexität in der Analyse von hochdimension-
alen stochastischen CPS zu verringern. Konkreter ist ein vielversprechender Ansatz,
um mit den auftretenden Schwierigkeiten umzugehen, dass man zuerst Abstraktionen
von Teilsystemen als Ersatz für die ursprünglichen Systeme zum Einsatz bringt, dann
Regler für die abstrakten vernetzten Systeme synthetisiert und schließlich die Regler so
verfeinert, dass sie auf die ursprünglichen Modelle angewendet werden können. Da der
quantitative Unterschied zwischen dem Ausgang des vernetzten Gesamtsystems und dem
der Abstraktion genau erfasst werden kann, kann man garantieren, dass die konkreten
Systeme und deren Abstraktionen dieselben Spezifikationen erfüllen mit garantierten
Fehlerschranken für ihre Ausgangstrajektorien.

Die Rechenkomplexität in der Synthese von Reglern für hochdimensionale stochastis-
che CPS kann durch Abstraktionen in zwei aufeinander folgenden Schritten verringert
werden. Im ersten Schritt kann man das ursprüngliche System durch ein einfacheres
mit kleinerer Dimension abstrahieren (unendliche Abstraktion). Dann kann man eine
endliche Abstraktion (auch als endliches Markov-Entscheidungsproblem (MDP) bekannt)
als approximative Beschreibung des ordnungsreduzierten Systems konstruieren, in dem
jeder diskrete Zustand mit einer Menge von kontinuierlichen Zuständen des ordnungsre-
duzierten Systems korrespondiert. Da die abschließenden Abstraktionen endlich sind,
lassen sich Algorithmen der Informatik zur Synthetisierung von Reglern anwenden, die
High-Level-Spezifikationen der ursprünglichen Systeme erzwingen.

Leider ist die Konstruktion von Abstraktionen für hochdimensionale CPS auf mono-
lithische Art stark vom sogenannten Fluch der Dimensionalität betroffen: Die Kom-
plexität wächst mit der Anzahl der Zustandsvariablen exponentiell an. Eine vielver-
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Zusammenfassung

sprechende Lösung um dies abzumildern besteht darin, das hochdimensionale CPS als
eine Vernetzung von mehreren kleineren Teilsystemen zu betrachten und ein kompo-
sitionelles Framework für die Konstruktion von Abstraktionen des gegebenen Systems
bereitzustellen, das Abstraktionen kleinerer Teilsysteme verwendet.

Diese Dissertation liefert neue kompositionelle Methoden zur Analyse und Steuerung
hochdimensionaler stochastischer CPS auf eine sowohl automatisierte als auch formale
Art. Im ersten Teil der Arbeit werden kompositionelle unendliche Abstraktionen (Mod-
ellordnungsreduktionen) von Originalsystemen mit Hilfe dreier verschiedener komposi-
tioneller Methoden untersucht, darunter klassisches Small-Gain, max-Small-Gain und
Dissipativitätsansätze. Wir beweisen, dass der vorgestellte max-Small-Gain-Ansatz all-
gemeiner ist als der klassische, da er kein lineares Wachstum der Gains der Teilsys-
teme erfordert, was beim klassischen Small-Gain-Ansatz der Fall ist. Wir zeigen auch,
dass sich der Approximationsfehler beim max-Small-Gain-Ansatz nicht ändert, wenn die
Anzahl der Teilsysteme wächst, da der Gesamtfehler vollständig unabhängig von der
Größe des Netzwerks ist und allein auf dem maximalen Fehler der Teilsysteme basierend
berechnet wird statt als Linearkombination dieser Fehler wie es beim klassischen und
beim Dissipationsansatz der Fall ist. Andererseits erörtern wir, dass die vorgeschla-
gene Dissipationsmethode weniger konservativ ist als der klassische (oder max-) Ansatz
in dem Sinne, dass die bereitgestellte dissipativitätsartige Kompositionalitätsbedingung
die Struktur der Vernetzungstopologie nutzen und potentiell unabhängig von der Anzahl
der Teilsysteme oder deren Gains erfüllt sein kann.

Im zweiten Teil der Arbeit wird die kompositionelle Konstruktion von endlichen MDPs
als endliche Abstraktionen von gegebenen (ordnungsreduzierten) Systemen untersucht
mit Hilfe derselben zuvor erwähnten kompositionellen Techniken. Unter der Voraus-
setzung, dass das Ursprungssystem inkrementell Eingangs-Zustands-stabil (oder inkre-
mentell passivierbar in einem Dissipativitätssetting) ist, beweisen wir, dass sich endliche
MDPs von den Usprungssystemen im allgemeinen Setting von nichtlinearen stochastis-
chen Kontrollsystemen konstruieren lassen. Wir bauen unsere Resultate außerdem von
Kontrollsystemen auf geschaltete Systeme aus, deren Schaltsignale eine Haltezeitbe-
dingung erfüllen, die mehrere Lyapunov-artige Funktionen beinhaltet. Darüberhinaus
stellen wir abgeschwächte Versionen von Small-Gain- und Dissipativitätsansätzen vor,
in denen die Stabilisierbarkeit von individuellen Teilsystemen nicht notwendigerweise
gefordert werden muss, um die kompositionellen Resultate zu erhalten. Dann stellen
wir eine kompositionelle Technik vor für die Konstruktion sowohl unendlicher als auch
endlicher Abstraktionen in einem vereinheitlichten Rahmen mit Hilfe von Begriffen ap-
proximativer probabilistischer Relationen. Wir beweisen, dass das vereinheitlichte kom-
positionelle Framework weniger konservativ ist als die Zwei-Schritt-Methode, die un-
abhängig voneinander unendliche und endliche Abstraktionen konstruiert. Schließlich
stellen wir einen neuen modellfreien Reinforcement-Learning-Entwurf vor, um Regelungss
trategien für unbekannte MDPs auf kontinuierlichen Räumen zu synthetisieren. Wir
liefern probabilistische Genauigkeitsgarantien zwischen unbekannten Orginial-Modellen
und deren endlichen MDPs. Wir erörtern, dass man mit Hilfe des modellfreien Learning-
Frameworks nicht nur Regler für unbekannte stochastische Systeme synthetisieren kann,
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sondern dass auch das Problem des Fluches der Dimensionalität erheblich abgeschwächt
wird.

Im letzten Teil der Arbeit entwickeln wir ein Software-Tool, genannt AMYTISS, in
C++/OpenCL, das skalierbare parallele Algorithmen liefert für (i) die Konstruktion
endlicher MDPs von zeitdiskreten stochastischen Kontrollsystemen und (ii) die automa-
tische Synthetisierung von Reglern, die komplexe Logikeigenschaften erfüllen, u.a. Sicher
heits-, Erreichbarkeits- und Erreichbarkeits-Ausweich-Spezifikationen. Das Software-
Tool wird basierend auf theoretischen Resultaten zur Konstruktion endlicher Abstraktio-
nen entwickelt und kann High-Performance-Rechenplattformen und Cloud-Computing-
Dienste nutzen, um die Auswirkungen des Zustands-Explosions-Problems abzuschwächen,
das in der Analyse von hochdimensionalen stochastischen Systemen stets auftritt. Dieses
Werkzeug verbessert die Performance hinsichtlich der Rechenzeit und des Speicherbe-
darfs signifikant durch paralleles Rechnen auf verschiedenen heterogenen Rechenplat-
tformen, die CPUs, GPUs und Hardware-Beschleuniger beinhalten (z.B. FPGA). Wir
zeigen, dass dieses Werkzeug alle existierenden Werkzeuge übertrifft, die in der Literatur
zu finden sind.
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a, â Initial conditions
A System matrix
b Slope coefficient
B External input matrix
B(X) Borel sigma-algebra on state space
C1 External output matrix
C2 Internal output matrix
D Internal input matrix
E Column vector corresponding to nonlinear term
E Conditional expectation
f Transition map
F Row vector corresponding to nonlinear term
FΩ Sigma-algebra on Ω comprising subsets of Ω as events
h1 External output map
h2 Internal output map
H̄ Function from X → U
In Identity matrix in Rn×n
Id Identity function
k Time step
K Feedback matrix

L̃ Laplacian matrix of an undirected graph
L1, L2 Column vectors in interface map
m Integer number as dimension of external input
M Coupling matrix

M̃ Positive-definite matrix
n Integer number as dimension of state

xxxi



LIST OF SYMBOLS

nx Cardinality of state set
nw Cardinality of internal input set
nν Cardinality of external input set
N Number of subsystems
p̄ Integer number as dimension of internal input

P̃ Matrix in Rn×n̂ employed for order reduction
PΩ Probability measure
q1 Integer number as dimension of external output
q2 Integer number as dimension of internal output
R Noise matrix

T̃ Room temperature
Td Maximum finite time step

T̃ei Outside temperatures

T̃h Heater temperature
Tx Conditional stochastic kernel
U External input set
U Collections of sequences {ν(k) : Ω→ U, k ∈ N}
V Stochastic simulation function
w Internal input variable
w̄ Internal input representative point
W Internal input set
W Collections of sequences {w(k) : Ω→W, k ∈ N}
x State variable
x̄ State representative point
X State set
y1 External output variable
y2 Internal output variable
Y 1 External output set
Y 2 Internal output set
0n Column vector with all elements equal to zero
1n Column vector with all elements equal to one
α, α̂, α̃, α, α K∞ functions
β Conduction factor between external environment and room i
γ, γ̂i K∞ functions

δ̂ Closeness bound
δ̄ State discretization parameter
δ Function of x and x̂ taking values in interval [0, b]

δ̃f K∞ function
∆̄ Maximum degree of graph
ε Confidence bound
η Conduction factor between rooms i± 1 and room i
θ External input discretization parameter
θ̄ Conduction factor between heater and room i

xxxii



LIST OF SYMBOLS

κ, κ K∞ functions
λmin(M) Minimum eigenvalue of symmetric matrix M
λmax(M) Maximum eigenvalue of symmetric matrix M
λ̄ K∞ function
µ̄ Internal input discretization parameter
ν External input variable
ν̄ External input representative point
π Positive contract in Young’s inequality
Π̄M Class of all Markov policies
Πx Quantization map for state
Πw Quantization map for internal input
ρ Spectral radius
ρint, ρext K∞ ∪ {0} functions
ρ̄n Universally measurable stochastic kernels
σ K∞ function
σ̄ Standard deviation of noise
ς Sequence of i.i.d. random variables
Σ Original (concrete) stochastic systems

Σ̂ (In)Finite abstract systems
τ Sampling time
ϕ Nonlinear term
Ω Sample space

Syntactically Co-Safe LTL

AP Set of atomic propositions
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Ã System matrix of auxiliary system

B̃ External input matrix of auxiliary system

D̃ Internal input matrix of auxiliary system

f̃ Transition map of auxiliary system
Ma Coupling matrix of auxiliary system

R̃ Noise matrix of auxiliary system
w Internal input variable of auxiliary system

W̃ Internal input set of auxiliary system
η̃ K∞ and concave function
ς̃ Vector containing noise terms
Σaux M-sampled (auxiliary) system

xxxiv



LIST OF SYMBOLS

Approximate Probabilistic Relations

cν̂ Positive constant as an upper bound of abstract external input
cς Positive constant as an upper bound of ςT ς

F̃1i, F̃2i Symmetric matrices in S-procedure
g̃1i, g̃2i Vectors in S-procedure

h̃1i, h̃2i Real numbers in S-procedure
L̄T Borel measurable stochastic kernel
L̄ Lifting
N Normal distribution
r Index for reduced-order version of original model
R Relation that relates x ∈ X with y ∈ Y if (x, y) ∈ R
Rx Relation between states
Rw Relation between internal inputs
R̄δ δ-lifted relation

X−1
2 Chi-square inverse cumulative distribution function with 2 degrees of freedom

δd(·
∣∣ c) Dirac delta distribution centered at c

ε Precision for states
εw Precision for internal inputs
µc Mean

Σ̃ Covariance matrix

Model-Free Reinforcement Learning

fa Transition map
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1 Introduction

1.1 Motivation

Cyber-physical systems (CPSs) are complex networked models combining both cyber
(computation and communication) and physical components, which tightly interact with
each other in a feedback loop. In the past few years, stochastic CPSs have received
significant attentions as an important modeling framework describing many engineering
systems and play significant roles in many real-life applications including traffic networks,
transportation systems, power grids, and so on. Most stochastic CPSs are of hybrid
nature: discrete dynamics model computation parts including hardware and software,
and continuous dynamics model control systems. Automated verification and policy
synthesis for this type of complex models to achieve some high-level specifications, e.g.,
those expressed as linear temporal logic (LTL) formulae [Pnu77], are inherently very
challenging. In particular, the ability to handle the interaction between continuous and
discrete dynamics is a prerequisite for providing a rigorous formal framework for the
automated verification and synthesis of stochastic CPSs.

Since the complexity induced by the aforementioned interaction often makes it dif-
ficult to obtain analytical results, the verification and policy synthesis for stochastic
CPSs are often addressed by methods of (in)finite abstractions. More precisely, since
the closed-form characterization of synthesized policies for stochastic CPSs is not avail-
able, a suitable approach is to approximate original (concrete) models by simpler ones
with possibly lower dimensional or finite state spaces. A crucial step is to provide formal
guarantees during this approximation phase such that the analysis or synthesis on ab-
stract models can be refined back over original ones. Stochastic simulation functions are
then employed as Lyapunov-like functions defined over the Cartesian product of state
spaces of two systems to relate trajectories of abstract systems to those of original ones
such that the mismatch between two systems remains within some guaranteed error
bounds.

The computational complexity in synthesizing controllers for stochastic CPSs can be
alleviated via abstractions in two consecutive stages. In the first stage, original systems
can be abstracted by simpler ones with lower dimensions (model order reductions).
Then one can employ infinite abstractions as a replacement of concrete systems, perform
analysis and synthesis over abstract models, and finally carry the results back (via an
interface map) over concrete systems. Since the mismatch between outputs of original
systems and those of their infinite abstractions are well-quantified, one can guarantee
that concrete systems also satisfy the same specifications as abstract ones with quantified
error bounds.
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In the second stage of the abstract procedure, one can construct finite abstractions
(a.k.a. finite Markov decision processes (MDPs)) as approximate descriptions of (reduced-
order) systems in which each discrete state corresponds to a collection of continuous
states of (reduced-order) systems. Since the final abstractions are finite, algorithmic
machineries from computer science [BK08] are applicable to synthesize controllers over
concrete systems enforcing complex logic properties including safety, reachability, reach-
avoid, etc.

In order to make the approaches provided by (in)finite abstractions applicable to net-
works of interacting systems, compositional abstraction-based techniques are proposed
in the past few years. In particular, construction of (in)finite abstractions for large-scale
stochastic CPSs in a monolithic manner suffers severely from the so-called curse of di-
mensionality. To mitigate this issue, one promising solution is to consider the large-scale
complex system as an interconnected system composed of several smaller subsystems,
and provide a compositional framework for the construction of (in)finite abstractions for
the given interconnected system using abstractions of smaller subsystems.

1.2 Research Goals and Original Contributions

In this dissertation, we propose novel compositional techniques for automated verifica-
tion and control of large-scale stochastic CPSs. In the first part of the thesis, we discuss
compositional infinite abstractions (model order reductions) of concrete systems using
three different compositional techniques including classic small-gain, max small-gain and
dissipativity approaches. We demonstrate that the proposed max small-gain approach is
more general than the classic one since it does not require linear growth on the gains of
subsystems which is the case in the classic small-gain. We also prove that the proposed
approximation error using max small-gain does not change as the number of subsystems
grows. This issue is due to the fact that the proposed overall error is completely inde-
pendent of the size of the network, and is computed only based on the maximum error
of subsystems instead of being a linear combination of them which is the case in the
classic small-gain and dissipativity approaches. On the other hand, we discuss that the
proposed dissipativity technique is less conservative than the classic (or max) small-gain
approach in the sense that the provided dissipativity-type compositional condition can
enjoy the structure of the interconnection topology and be potentially fulfilled indepen-
dently of the number or gains of subsystems. It should be noted that we do not put
any restriction on the sources of uncertainties in concrete and abstract systems meaning
that the noise of the abstraction can be completely independent of that of the concrete
system. Thus our results in this thesis are more general than the ones available in the
literature (e.g., [Zam14, ZRME17]), where the noises in concrete and abstract systems
are assumed to be the same. This means the abstraction has access to the noise of the
concrete system, which is a strong assumption.

In the second part of the thesis, compositional finite MDPs as finite abstractions of
given (reduced-order) systems are studied with the same aforementioned compositional
techniques. We show that if the original system is incrementally input-to-state stable
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(or incrementally passivable in the dissipativity setting), one can construct finite MDPs
of original systems for the general setting of nonlinear stochastic control systems. We
also propose novel frameworks for the construction of finite MDPs for some particular
classes of nonlinear stochastic systems whose nonlinearities satisfy a slope restriction or
(in a more general form) an incremental quadratic inequality. We extend our results
from control systems to switched ones whose switching signals accept dwell-time condi-
tion with multiple Lyapunov-like functions. Moreover, we propose relaxed versions of
small-gain and dissipativity approaches in which the stabilizability of individual sub-
systems for providing the compositionality results is not necessarily required. We also
propose a compositional technique for the construction of both infinite and finite ab-
stractions in a unified framework via notions of approximate probabilistic relations. We
show that the unified compositional framework is less conservative than the two-step
consecutive procedure that independently constructs infinite and finite abstractions. We
finally propose a novel model-free reinforcement learning framework to synthesize poli-
cies for unknown, continuous-space MDPs. We provide probabilistic closeness guarantees
between unknown original models and that of their finite MDPs. We discuss that via
the proposed model-free learning framework not only one can synthesize controllers for
unknown stochastic systems, but also the curse of dimensionality problem is remarkably
mitigated.

In the last part of the thesis, we develop a software tool in C++/OpenCL, called
AMYTISS, for designing correct-by-construction controllers of large-scale discrete-time
stochastic systems. This software tool provides scalable parallel algorithms that allow
to (i) construct finite MDPs from discrete-time stochastic control systems, and (ii) syn-
thesize controllers satisfying complex logic properties including safety, reachability, and
reach-avoid specifications. AMYTISS is developed based on theoretical results on con-
structing finite abstractions by employing high-performance computing platforms and
cloud-computing services to alleviate the effects of the state-explosion problem, which
is always the case in analyzing large-scale stochastic systems. This tool significantly
improves performances w.r.t. the computation time and memory usage by parallel exe-
cution in different heterogeneous computing platforms including CPUs, GPUs and hard-
ware accelerators (e.g., FPGA). To the best of our knowledge, AMYTISS is the only tool
of this kind for the stochastic systems that is able to utilize these types of compute units,
simultaneously. We show that this tool outperforms all existing tools available in the
literature.

It should be noted that in different parts throughout the thesis, to demonstrate the
effectiveness of our proposed results, we apply the proposed techniques to real-world ap-
plications. In particular, we apply our results to the temperature regulation in a circular
building and construct compositionally a finite abstraction of a big network containing
many rooms. We employ the constructed finite abstractions as substitutes to composi-
tionally synthesize policies regulating the temperature in each room for a bounded time
horizon. We also apply our approaches to a road traffic network in a circular cascade ring
composed of different cells, and construct compositionally a finite MDP of the network.
We utilize the constructed abstraction as a substitute to compositionally synthesize poli-
cies keeping the density of the traffic lower than some bounded level per cell. We also
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apply our proposed model-free reinforcement learning as well as parallel algorithms in
the last chapter to a 3-dimensional autonomous vehicle and a 7-dimensional nonlinear
model of a BMW 320i car by synthesizing autonomous parking controllers.

1.3 Outline of the Thesis

This dissertation is divided into 6 chapters, the first of which is the current introduction.
The rest is structured as follows:

Chapter 2 presents some mathematical notations and preliminaries, and also basic
notions from control theory that will be frequently used throughout the thesis.

Chapter 3 studies compositional infinite abstractions with three different composi-
tionality approaches including classic small-gain, max small-gain, and dissipativity ap-
proaches. The results of this chapter are respectively presented based on [LSMZ17,
LSZ20c, LSZ19c].

Chapter 4 discusses compositional construction of finite abstractions with the same
compositional techniques (as the previous chapter) as well as their relaxed versions. This
chapter also includes the results extended to stochastic switched systems. Compositional
infinite and finite abstractions in a unified framework are also proposed in this chapter
using approximate probabilistic relations. Finally, a novel reinforcement learning scheme
to synthesize policies for unknown continuous-space MDPs is proposed. The results
of this chapter are respectively presented based on [LSZ18b, LSZ18a, LSZ20c, LZ19b,
LSZ20a, LSZ18c, LZ19a, LZ20, LSZ19d, LZ19c, LSZ20b, LSZ19a, LSZ19b, LSS+20].

Chapter 5 provides a software tool by proposing novel scalable parallel algorithms
and efficient distributed data structures for constructing finite MDPs of large-scale
discrete-time stochastic systems and automating the computation of their correct-by-
construction controllers, given high level specification such as safety, reachability, and
reach-avoid. The results of this chapter are presented based on [LKSZ20a, LKSZ20b].

Chapter 6 summarizes the results of this thesis and outlines potential directions for
the future research.

For more clarity of exposition, Chapters 3, 4, 5 follow a common structure. They
start with an introduction including a description of the problem addressed, a brief
literature review, and a statement of the contributions made. The developed techniques
are detailed in subsequent sections, followed by a section illustrating their efficiency on
different case studies. The chapters are concluded with a summary section.
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2 Mathematical Notations, Preliminaries
and Basic Notions in Control Theory

2.1 Notations

The following notations are employed throughout the thesis. The sets of nonnegative and
positive integers are denoted by N := {0, 1, 2, . . .} and N≥1 := {1, 2, 3, . . .}, respectively.
Moreover, the symbols R, R>0, and R≥0 denote, respectively, the sets of real, positive
and nonnegative real numbers. For any set X we denote by 2X the power set of X that
is the set of all subsets of X. Given N vectors xi ∈ Rni , ni ∈ N≥1, and i ∈ {1, . . . , N},
we use x = [x1; . . . ;xN ] to denote the corresponding vector of dimension

∑
i ni. Any n-

dimensional hyper-rectangle (a.k.a. hyper interval) is characterized by two corner vectors
xlb, xub ∈ Rn and we denote it by [[xlb, xub]] := [xlb,1, xub,1]×[xlb,2, xub,2]×· · ·×[xlb,n, xub,n].
We denote by ‖ · ‖ and ‖ · ‖2 the infinity and Euclidean norms, respectively. Given any
a ∈ R, |a| denotes the absolute value of a. Symbols In, 0n, and 1n denote the identity
matrix in Rn×n and the column vector in Rn×1 with all elements equal to zero and one,
respectively. The identity function and composition of functions are denoted by Id and
symbol ◦, respectively.

Given a symmetric matrix M , the minimum and maximum eigenvalues of M are
respectively denoted by λmin(M) and λmax(M). We also denote by diag(a1, . . . , aN )
a diagonal matrix in RN×N with diagonal matrix entries a1, . . . , aN starting from the
upper left corner. Given a matrix A in Rn×m, A(:, b) denotes the b-th column of A
including the all rows, and A(b, :) the other way around. Given functions fi : Xi → Yi,
for any i ∈ {1, . . . , N}, their Cartesian product

∏N
i=1 fi :

∏N
i=1Xi →

∏N
i=1 Yi is defined

as (
∏N
i=1 fi)(x1, . . . , xN ) = [f1(x1); . . . ; fN (xN )]. For any set A, we denote by AN the

Cartesian product of a countable number of copies of A, i.e., AN =
∏∞
k=0 A. Given

sets X and Y , a relation R ⊆ X × Y is a subset of the Cartesian product X × Y
that relates x ∈ X with y ∈ Y if (x, y) ∈ R, which is equivalently denoted by xRy.
Given a measurable function f : N → Rn, the (essential) supremum of f is denoted by
‖f‖∞ := (ess)sup{‖f(k)‖, k ≥ 0}. A function γ : R≥0 → R≥0, is said to be a class K
function if it is continuous, strictly increasing, and γ(0) = 0. A class K function γ(·) is
said to be a class K∞ if γ(r)→∞ as r →∞.

2.2 Preliminaries

We consider a probability space (Ω,FΩ,PΩ), where Ω is the sample space, FΩ is a sigma-
algebra on Ω comprising subsets of Ω as events, and PΩ is a probability measure that
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assigns probabilities to events. We assume that random variables introduced in the thesis
are measurable functions of the form X : (Ω,FΩ) → (SX ,FX). Any random variable
X induces a probability measure on its space (SX ,FX) as Prob{A} = PΩ{X−1(A)} for
any A ∈ FX . We often directly discuss the probability measure on (SX ,FX) without
explicitly mentioning the underlying probability space and the function X itself.

A topological space S is called a Borel space if it is homeomorphic to a Borel subset of
a Polish space (i.e., a separable and completely metrizable space). Examples of a Borel
space are Euclidean spaces Rn, its Borel subsets endowed with a subspace topology
as well as hybrid spaces. Any Borel space S is assumed to be endowed with a Borel
sigma-algebra, which is denoted by B(S). We say that a map f : S → Y is measurable
whenever it is Borel measurable.

2.3 Discrete-Time Stochastic Control Systems

In this thesis, we consider stochastic control systems in discrete time (dt-SCS) defined
formally as follows.

Definition 2.3.1. A discrete-time stochastic control system (dt-SCS) is characterized
by the tuple

Σ = (X,U,W, ς, f, Y 1, Y 2, h1, h2), (2.3.1)

where:

• X ⊆ Rn is a Borel space as the state space of the system. We denote by (X,B(X))
the measurable space with B(X) being the Borel sigma-algebra on the state space;

• U ⊆ Rm is a Borel space as the external input space of the system;

• W ⊆ Rp̄ is a Borel space as the internal input space of the system;

• ς is a sequence of independent and identically distributed (i.i.d.) random variables
from a sample space Ω to the measurable space (Vς ,Fς)

ς := {ς(k) : (Ω,FΩ)→ (Vς ,Fς), k ∈ N},

• f : X×U×W×Vς → X is a measurable function characterizing the state evolution
of the system;

• Y 1 ⊆ Rq1
is a Borel space as the external output space of the system;

• Y 2 ⊆ Rq2
is a Borel space as the internal output space of the system;

• h1 : X → Y 1 is a measurable function as the external output map that maps a
state x ∈ X to its external output y1 = h1(x);

• h2 : X → Y 2 is a measurable function as the internal output map that maps a
state x ∈ X to its internal output y2 = h2(x).
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2.3 Discrete-Time Stochastic Control Systems

For given initial state x(0) ∈ X and input sequences ν(·) : N→ U and w(·) : N→W ,
the evolution of the state of dt-SCS Σ can be written as

Σ :


x(k + 1) = f(x(k), ν(k), w(k), ς(k)),
y1(k) = h1(x(k)),
y2(k) = h2(x(k)),

k ∈ N. (2.3.2)

We associate respectively to U and W the sets U and W to be collections of sequences
{ν(k) : Ω → U, k ∈ N} and {w(k) : Ω → W, k ∈ N}, in which ν(k) and w(k) are
independent of ς(t) for any k, t ∈ N and t ≥ k. For any initial state a ∈ X, ν(·) ∈ U ,
and w(·) ∈ W, the random sequences xaνw : Ω × N → X, y1

aνw : Ω × N → Y 1 and
y2
aνw : Ω × N → Y 2 that satisfy (2.3.2) are respectively called the solution process and

external and internal output trajectories of Σ under an external input ν, an internal
input w, and an initial state a. System Σ is called finite if X,U,W are finite sets and
infinite otherwise.

Remark 2.3.2. The above definition can be generalized by allowing the set of valid
external inputs to depend on the current state and internal input of the system, i.e.,
to include {U(x,w)

∣∣x ∈ X,w ∈ W} in the definition of dt-SCS, which is a family of
non-empty measurable subsets of U with the property that

K := {(x, ν, w) : x ∈ X, w ∈W, ν ∈ U(x,w)},

is measurable in X × U ×W . For the succinct presentation of the results, we assume
in this thesis that the set of valid external inputs is the whole external input space:
U(x,w) = U for all x ∈ X and w ∈W , but the obtained results are generally applicable.

Remark 2.3.3. Note that we employ the term “internal” for inputs and outputs of
subsystems that are affecting each other in the interconnection: an internal output of
a subsystem affects an internal input of another subsystem. We utilize the term “ex-
ternal” for inputs and outputs that are not employed for the sake of constructing the
interconnection. Properties of the interconnected system are specified over external out-
puts. The main goal is to synthesize external inputs to satisfy desired properties over
external outputs.

In this thesis, we are ultimately interested in investigating discrete-time stochastic
control systems without internal inputs and outputs. In this case, the tuple (2.3.1)
reduces to (X,U, ς, f, Y, h) and dt-SCS (2.3.2) can be re-written as

Σ :

{
x(k + 1) = f(x(k), ν(k), ς(k)),
y(k) = h(x(k)),

k ∈ N, (2.3.3)

where f : X × U × Vς → X. The interconnected control systems, defined later, are also
a class of control systems without internal signals, resulting from the interconnection of
dt-SCSs having both internal and external inputs and outputs.

7
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2.4 Infinite Markov Decision Processes

A dt-SCS Σ in (2.3.1) can be equivalently represented as an infinite Markov decision
process (MDP) [Kal97, Proposition 7.6, pp. 122]

Σ = (X,U,W, Tx, Y
1, Y 2, h1, h2), (2.4.1)

where the map Tx : B(X)×X × U ×W → [0, 1], is a conditional stochastic kernel that
assigns to any x ∈ X, ν ∈ U , and w ∈ W , a probability measure Tx(·

∣∣x, ν, w) on the
measurable space (X,B(X)) so that for any set A ∈ B(X),

P(x(k + 1) ∈ A
∣∣x(k), ν(k), w(k)) =

∫
A
Tx(dx(k + 1)

∣∣x(k), ν(k), w(k)).

For given inputs ν(·), w(·), the stochastic kernel Tx captures the evolution of the state
of Σ and can be uniquely determined by the pair (ς, f) from (2.3.2).

Remark 2.4.1. All the dynamical models we are using in this thesis (the original model,
the abstract model with a lower-dimensional state space, and the abstract model with a
finite space) can be seen as MDPs. The first two are MDPs with continuous spaces, and
the last one is a finite state MDP. We always use finite MDP to refer to a constructed
abstract model with a finite state space.

2.5 Markov Policy

Given the dt-SCS in (2.3.1), we are interested in Markov policies to control the system
defined as follows.

Definition 2.5.1. A Markov policy for the dt-SCS Σ in (2.3.1) is a sequence ρ̄ =
(ρ̄0, ρ̄1, ρ̄2, . . .) of universally measurable stochastic kernels ρ̄n [BS96], each defined on the
input space U given X×W and such that for all (xn, wn) ∈ X×W , ρn(U(xn, wn)

∣∣ (xn, wn))
= 1. The class of all Markov policies is denoted by Π̄M .

2.6 Discrete-Time Stochastic Switched Systems

We consider stochastic switched systems in discrete-time (dt-SS) throughout the thesis
formalized in the following definition.

Definition 2.6.1. A discrete-time stochastic switched system (dt-SS) is characterized
here by the tuple

Σ = (X,P,P,W, ς,F, Y 1, Y 2, h1, h2), (2.6.1)

where:

• X ⊆ Rn is a Borel space as the state space of the system. We denote by (X,B(X))
the measurable space with B(X) being the Borel sigma-algebra on the state space;
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• P = {1, . . . ,m} is the finite set of modes;

• P is a subset of S(N, P ) which denotes the set of functions from N to P ;

• W ⊆ Rp̄ is a Borel space as the internal input space of the system;

• ς is a sequence of independent and identically distributed (i.i.d.) random variables
from a sample space Ω to the measurable space (Vς ,Fς)

ς := {ς(k) : (Ω,FΩ)→ (Vς ,Fς), k ∈ N},

• F = {f1, . . . , fm} is a collection of vector fields indexed by p. For all p ∈ P ,
the map fp : X ×W × Vς → X is a measurable function characterizing the state
evolution of the system;

• Y 1 ⊆ Rq1
is a Borel space as the external output space of the system;

• Y 2 ⊆ Rq2
is a Borel space as the internal output space of the system;

• h1 : X → Y 1 is a measurable function as the external output map that maps a
state x ∈ X to its external output y1 = h1(x);

• h2 : X → Y 2 is a measurable function as the internal output map that maps a
state x ∈ X to its internal output y2 = h2(x).

The evolution of the state of Σ, for a given initial state x(0) ∈ X, an input sequence
w(·) : N→W and a switching signal p(k) : N→ P , is described by

Σ :


x(k + 1) = fp(k)(x(k), w(k), ς(k)),

y1(k) = h1(x(k)),
y2(k) = h2(x(k)),

k ∈ N. (2.6.2)

2.7 Incremental Input-to-State Stability

Definition 2.7.1. A dt-SCS Σ = (X,U,W, ς, f, Y 1, Y 2, h1, h2) is called incrementally
input-to-state stable if there exists a function V : X ×X → R≥0 such that ∀x, x′ ∈ X,
∀ν, ν ′ ∈ U , ∀w,w′ ∈W , the following two inequalities hold:

α(‖x− x′‖) ≤ V (x, x′) ≤ α(‖x− x′‖), (2.7.1)

and

E
[
V (f(x, ν, w, ς), f(x′, ν ′, w′, ς))

∣∣x, x′, ν, ν ′, w, w′]− V (x, x′)

≤ −κ̄(V (x, x′)) + ρ̄int(‖w − w′‖) + ρ̄ext(‖ν − ν ′‖), (2.7.2)

for some α, α, κ̄ ∈ K∞,and ρ̄int, ρ̄ext ∈ K∞ ∪ {0}.

Remark 2.7.2. Note that Definition 2.7.1 is a stochastic counterpart of the incremental
ISS Lyapunov functions defined for discrete-time deterministic systems in [TRK18].
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2.8 Incremental Passivability

Definition 2.8.1. A dt-SCS Σ = (X,U,W, ς, f, Y 1, Y 2, h1, h2) is called incrementally
passivable if there exist functions H̄ : X → U and V : X × X → R≥0 such that
∀x, x′ ∈ X, ∀ν ∈ U , ∀w,w′ ∈W , the inequalities

α(‖h1(x)− h1(x′)‖) ≤ V (x, x′), (2.8.1)

and

E
[
V (f(x, H̄(x) + ν, w, ς), f(x′, H̄(x′) + ν, w′, ς))

∣∣x, x′, ν, w,w′]− V (x, x′)

≤ −κ̄(V (x, x′)) +

[
w − w′

h2(x)− h2(x′)

]T X̄:=︷ ︸︸ ︷[
X̄11 X̄12

X̄21 X̄22

] [
w − w′

h2(x)− h2(x′)

]
, (2.8.2)

hold for some α, κ̄ ∈ K∞, and the matrix X̄ of an appropriate dimension.
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3 Infinite Abstractions (Reduced-Order
Models)

3.1 Introduction

Computational complexity in synthesizing controllers for stochastic CPSs can be allevi-
ated via abstractions in two consecutive stages. In the first phase, original systems can
be abstracted by simpler ones with lower dimensions (model order reductions). Then one
can employ infinite abstractions as a replacement of original systems, perform analysis
and synthesis over abstract models, and finally carry the results back (via an interface
map) over concrete systems. Since the mismatch between outputs of original systems
and those of their infinite abstractions is well-quantified, one can guarantee that con-
crete systems also satisfy the same specifications as abstract ones with guaranteed error
bounds. Unfortunately, construction of abstractions for large-scale CPSs in a mono-
lithic manner suffers severely from the curse of dimensionality. To relieve this issue,
one promising solution is to consider the large-scale CPSs as an interconnected system
composed of several smaller subsystems, and provide a compositional framework for the
construction of abstractions for the given system using abstractions of smaller subsys-
tems. This chapter is concerned with providing different compositional approaches for
the construction of infinite abstractions for large-scale discrete-time stochastic control
systems.

3.1.1 Related Literature

3.1.1.1 Infinite Abstraction Techniques

In the past few years, there have been some results on the construction of infinite ab-
stractions for stochastic systems. Existing results include infinite approximation tech-
niques for jump-diffusion systems [JP09], and infinite-horizon properties over discrete-
time stochastic models with continuous-state spaces [TA11]. Compositional construction
of infinite abstractions is discussed in [ZRME17] using small-gain type conditions. An
(in)finite abstraction technique for synthesis of stochastic control systems is recently
discussed in [NSZ19].

3.1.1.2 Temporal Logic Verification and Synthesis

There have been also several results on the verification and synthesis of stochastic sys-
tems over high-level properties expressed as LTL formulae such as safety, reachability
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or more complex properties denoted by omega-regular languages. In this respect, a pol-
icy refinement of general Markov decision processes via approximate similarity relations
is initially proposed in [HSA17], and then generalized to synthesize policies for robust
satisfaction of specifications in [HS18, HS19]. Formal controller synthesis of stochastic
systems via control barrier certificates for LTL properties over finite traces is presented
in [JSZ19]. Maximally safe Markov policies of abstract finite-space models to design sub-
optimal policies for original continuous-space systems are proposed in [Sou14, Chapter
5]. An optimal control synthesis approach is proposed in [TMKA17] in which the prob-
ability of a given event is either maximized or minimized over a controlled discrete-time
Markov process model.

A new approach for the automated synthesis of safe and robust PID controllers for
stochastic hybrid systems is proposed in [SPB+17]. An automated synthesis of digital
controllers with formal safety guarantees for systems with nonlinear dynamics, noisy
output measurements, and stochastic disturbances is recently presented in [SSP+19].
Optimal control policies satisfying temporal logic specifications for a team of robots
moving in a stochastic environment are proposed in [CDB12, DCB17]. A general frame-
work to synthesize controllers satisfying signal temporal logic specifications for piece-
wise affine systems subject to stochastic uncertainties is provided in [MSH+17]. These
specifications are encoded as chance constraints and a method for designing model
predictive controllers under such constraints is proposed in [FMPS17, FMPS19]. An
application of these logic specifications in controlling wastewater systems is studied
in [FSMOM18, FSMOM17]. An efficient and safe exploration algorithm for Markov
decision processes with unknown transition models is developed in [BMAS19].

A reinforcement learning framework for the controller synthesis of unknown MDPs
satisfying omega-regular objectives is proposed in [HPS+19a]. Measurability and safety
verification of stochastic hybrid systems are discussed in [FHH+11]. A framework for an-
alyzing probabilistic safety and reachability problems for discrete-time stochastic hybrid
systems is proposed in [KDS+11, DKS+13]. A controller design scheme for stochas-
tic hybrid systems satisfying specifications described by a finite automata is provided
in [KSL13]. A probabilistic approach for the control of stochastic systems subject to LTL
formula over a set of linear predicates in the state of the system is presented in [LAB09].
Computational methods for stochastic control systems with metric interval temporal
logic specifications are proposed in [FT15]. A strategy synthesis for stochastic games
with multiple long-run objectives is presented in [BKTW15]. A controller synthesis
framework in turn-based stochastic games with both a qualitative LTL constraint and
a quantitative discounted-sum objective is studied in [WT16]. A temporal logic control
for stochastic linear systems using an abstraction refinement of probabilistic games is
discussed in [SKC+17].

3.1.2 Contributions

In this chapter, we provide three different compositional methodologies (i.e., classic
small-gain, max small-gain, and dissipativity approaches) for the construction of infinite
abstractions for networks of stochastic control systems. The proposed techniques lever-
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age sufficient small-gain and dissipativity type conditions to establish the composition-
ality results which rely on relations between subsystems and their infinite abstractions
described by the existence of stochastic simulation functions. This type of relations
enables us to compute the probabilistic error between the interconnection of concrete
subsystems and that of their infinite abstractions. As a consequence, one can utilize the
proposed results here to solve particularly safety/reachability problems over abstract
interconnected systems and then carry the results back over concrete interconnected
ones.

In the first part of this chapter, we leverage sufficient classic small-gain type conditions
for the compositional quantification of the probabilistic distance between the intercon-
nection of stochastic control subsystems and that of their infinite abstractions. We also
provide a framework for the construction of infinite abstractions for the class of linear
stochastic systems. Moreover, we consider a finite-horizon invariant specification and
show how a synthesized policy for the abstract system can be refined to a policy for
the original system while providing a guarantee on the probability of the satisfaction.
It should be noted that we do not put any restriction on the sources of uncertainties
in the concrete and abstract systems. Thus our results are more general than the ones
obtained by [Zam14, ZRME17], where the noises in the concrete and abstract systems
are assumed to be the same. This means the abstraction has access to the noise of
the concrete system which is a strong assumption. We demonstrate the effectiveness of
the proposed results by constructing an infinite abstraction (totally 4 dimensions) of an
interconnection of four discrete-time linear stochastic control subsystems (together 100
dimensions) in a compositional fashion.

In the second part of the chapter, we propose a max small-gain condition and show
that it is more general than the classic one since it does not require any linear growth
on the gains of the subsystems which is the case in the classic small-gain approach. We
also show that the approximation error provided by the max small-gain is completely
independent of the size of the network, and is computed only based on the maximum
error of subsystems instead of being a linear combination of them which is the case in
the classic small-gain approach. Accordingly, the overall error computed by the max
small-gain does not change as the number of subsystems grows. We also extend our
proposed construction scheme (in the first part) from linear systems to a particular class
of nonlinear stochastic systems whose nonlinearities satisfy a slope restriction.

In the last part of the chapter, we provide a compositional approach using an intercon-
nection matrix and joint dissipativity-type properties of subsystems and their abstrac-
tions. We show that the proposed compositionality conditions can enjoy the structure
of interconnection topology and be potentially satisfied regardless of the number or
gains of subsystems. We also provide a construction framework for the same nonlinear
class of stochastic systems. Finally, we extend our specification from the finite-horizon
invariant to a fragment of linear temporal logic known as syntactically co-safe linear
temporal logic (scLTL) [KV01]. In particular, given such a co-safe LTL specification
over the concrete system, we construct an epsilon-perturbed specification over the ab-
stract system whose probability of satisfaction gives a lower bound for the probability of
satisfaction in the concrete domain. We demonstrate the effectiveness of the proposed
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results by constructing an abstraction (totally 3 dimensions) of an interconnection of
three discrete-time nonlinear stochastic control subsystems (together 222 dimensions) in
a compositional fashion such that the compositionality condition does not require any
constraint on the number or gains of subsystems. We also employ the constructed ab-
straction as a substitute to synthesize a controller enforcing a syntactically co-safe LTL
specification.

3.2 Classic Small-Gain Approach

In this section, we provide a compositional framework for the construction of infinite
abstractions via a classic small-gain approach for dt-SCS defined in Definition 2.3.1.
Our abstraction scheme is based on a notion of so-called stochastic simulation functions,
using which one can quantify the distance between original interconnected stochastic
control systems and that of their abstractions in a probabilistic setting. Accordingly,
the infinite abstraction, which is itself a discrete-time stochastic control system with a
lower dimension, performs as a substitute in the controller design process. In particular,
one can utilize the proposed results here to solve particularly safety/reachability prob-
lems over the abstract interconnected systems and then carry the results back over the
concrete interconnected ones.

We derive sufficient classic small-gain type conditions for the compositional quantifi-
cation of the probabilistic distance between the interconnection of stochastic control
subsystems and that of their abstractions. We then focus on the class of discrete-time
linear stochastic control systems with independent noises in the abstract and concrete
subsystems. For this class of systems, we propose a computational scheme to construct
infinite abstractions together with their corresponding stochastic simulation functions.
Moreover, we consider a finite-horizon invariant specification and show how a synthesized
policy for the abstract system can be refined back to a policy for the original system
while providing a guarantee on the probability of satisfaction. We demonstrate the ef-
fectiveness of the proposed results by constructing an abstraction (totally 4 dimensions)
of an interconnection of four discrete-time linear stochastic control subsystems (together
100 dimensions) in a compositional fashion.

3.2.1 sum-Type Stochastic Pseudo-Simulation and Simulation Functions

In this subsection, we first introduce a notion of so-called sum-type stochastic pseudo-
simulation functions (sum-type SPSF) for discrete-time stochastic control systems with
both internal and external inputs and outputs and then define sum-type stochastic sim-
ulation functions (sum-type SSF) for systems with only external inputs and outputs.
These two definitions will be employed to quantify the closeness of two interconnected
dt-SCS.

Remark 3.2.1. Simulation functions are Lyapunov-like functions defined over the Carte-
sian product of state spaces, which relate the state trajectory of the abstract system to the
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state trajectory of the original one such that the mismatch between two systems remains
within some guaranteed error bounds.

Definition 3.2.2. Consider two dt-SCS Σ = (X,U,W, ς, f, Y 1, Y 2, h1, h2) and Σ̂ =
(X̂, Û ,W, ς̂, f̂ , Y 1, Y 2, ĥ1, ĥ2) with the same internal input, and internal and external
output spaces. A function V : X × X̂ → R≥0 is called a sum-type stochastic pseudo-

simulation function (sum-type SPSF) from Σ̂ to Σ if

• ∃α ∈ K∞ such that

∀x ∈ X,∀x̂ ∈ X̂, ∀i ∈ {1, 2}, α(‖hi(x)− ĥi(x̂)‖2) ≤ V (x, x̂), (3.2.1)

• ∀x ∈ X, x̂ ∈ X̂, ν̂ ∈ Û , and ∀ŵ ∈ Ŵ , ∃ν ∈ U such that ∀w ∈W

E
[
V (x(k + 1), x̂(k + 1))

∣∣x(k)=x, x̂(k)= x̂, ν(k)=ν, ν̂(k)= ν̂, w(k)=w, ŵ(k)= ŵ
]

− V (x, x̂) ≤ −κ(V (x, x̂)) + ρint(‖w − ŵ‖2) + ρext(‖ν̂‖2) + ψ, (3.2.2)

for some κ ∈ K∞, ρint, ρext ∈ K∞ ∪ {0}, and ψ ∈ R≥0.

We utilize the notation Σ̂ �sum
SPSF Σ if there exists a sum-type SPSF V from Σ̂ to Σ,

in which the control system Σ̂ is considered as an abstraction of the concrete (original)
system Σ.

Remark 3.2.3. The second condition in Definition 3.2.2 implicitly implies the existence
of a function ν = νν̂(x, x̂, ν̂, ŵ) for the satisfaction of (3.2.2). This function is called the
interface function and can be employed to refine a synthesized policy ν̂ for Σ̂ to a policy
ν for Σ.

In this section, we study interconnected discrete-time stochastic control systems with-
out internal inputs and outputs, resulting from the interconnection of discrete-time
stochastic control subsystems having both internal and external signals. Thus we modify
the above definition for systems without internal inputs and outputs by eliminating all
the terms related to w, ŵ.

Definition 3.2.4. Consider two dt-SCS Σ = (X,U, ς, f, Y, h) and Σ̂ = (X̂, Û , ς̂ , f̂ , Y, ĥ)
with the same output spaces. A function V : X×X̂ → R≥0 is called a sum-type stochastic

simulation function (sum-type SSF) from Σ̂ to Σ if

• ∃α ∈ K∞ such that

∀x ∈ X,∀x̂ ∈ X̂, α(‖h(x)− ĥ(x̂)‖2) ≤ V (x, x̂), (3.2.3)

• ∀x ∈ X, x̂ ∈ X̂, ν̂ ∈ Û , ∃ν ∈ U such that

E
[
V (x(k + 1), x̂(k + 1))

∣∣x(k) = x, x̂(k) = x̂, ν(k) = ν, ν̂(k) = ν̂
]
− V (x, x̂)

≤ −κ(V (x, x̂)) + ρext(‖ν̂‖2) + ψ, (3.2.4)

for some κ ∈ K∞, ρext ∈ K∞ ∪ {0}, and ψ ∈ R≥0.
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We call Σ̂ an abstraction of Σ, and denote by Σ̂ �sum
SSF Σ if there exists a sum-type

SSF V from Σ̂ to Σ.

Remark 3.2.5. Note that conditions (3.2.1), (3.2.2), (3.2.3), and (3.2.4) roughly speak-
ing guarantee that if the concrete system and its abstraction start from two close initial
conditions, then their outputs remain close (in terms of the expectation) after one step.
This type of conditions is closely related to the ones in the notions of (bi)simulation
relations [Tab09].

In order to show the usefulness of the sum-type SSF in comparing output trajectories of
two dt-SCS in a probabilistic setting, we need the following technical lemma borrowed
from [Kus67, Theorem 3, pp. 86] with some slight modifications for the finite-time
horizon, and also [Kus67, Theorem 12, pp. 71] for the infinite-time horizon.

Lemma 3.2.6. Let Σ = (X, ς, f, Y, h) be a dt-SCS with the transition map f : X×Vς →
X.
i) Finite-time horizon: Assume there exist V : X → R≥0 and constants 0 < κ̂ < 1 and
ψ̂ ∈ R≥0 such that

E
[
V (x(k + 1))

∣∣x(k) = x
]
≤ κ̂V (x) + ψ̂.

Then for any random variable a as the initial state of the dt-SCS, the following inequity
holds:

P

{
sup

0≤k≤Td
V (x) ≥ ε

∣∣ a} ≤ δ̂,
δ̂ :=

{
1− (1− V (a)

ε )(1− ψ̂
ε )Td , if ε ≥ ψ̂

κ̂ ,

(V (a)
ε )(1− κ̂)Td + ( ψ̂κ̂ε)(1− (1− κ̂)Td), if ε < ψ̂

κ̂ .

ii) Infinite-time horizon: Assume there exists a nonnegative V : X → R≥0 such that

E
[
V (x(k + 1))

∣∣x(k) = x
]
− V (x) ≤ 0.

Function V satisfying the above inequality is called nonnegative supermartingale. Then
for any random variable a as the initial state of the dt-SCS, the following inequity holds:

P

{
sup

0≤k<∞
V (x) ≥ ε

∣∣ a} ≤ V (a)

ε
.

Now by employing Lemma 3.2.6, we provide one of the main results of this section.

Theorem 3.2.7. Let Σ = (X,U, ς, f, Y, h) and Σ̂ = (X̂, Û , ς̂ , f̂ , Y, ĥ) be two dt-SCS with
the same output spaces. Suppose V is a sum-type SSF from Σ̂ to Σ, and there exists
a constant 0 < κ̂ < 1 such that the function κ ∈ K∞ in (3.2.4) satisfies κ(r) ≥ κ̂r
∀r ∈ R≥0. For any external input trajectory ν̂(·) ∈ Û that preserves Markov property

for the closed-loop Σ̂, and for any random variables a and â as the initial states of the
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two dt-SCS, there exists an input trajectory ν(·) ∈ U of Σ through the interface function
associated with V such that the following inequality holds:

P

{
sup

0≤k≤Td
‖yaν(k)− ŷâν̂(k)‖2 ≥ ε

∣∣ a, â} ≤ δ̂, (3.2.5)

δ̂ :=

1−
(
1− V (a,â)

α(ε)

)(
1− ψ̂

α(ε)

)Td , if α (ε) ≥ ψ̂
κ̂ ,(V (a,â)

α(ε)

)
(1− κ̂)Td +

( ψ̂
κ̂α(ε)

)
(1− (1− κ̂)Td), if α (ε) < ψ̂

κ̂ ,

provided that there exists a constant ψ̂ ≥ 0 satisfying ψ̂ ≥ ρext(‖ν̂‖∞) + ψ.

Proof. Since V is a sum-type SSF from Σ̂ to Σ, we have

P

{
sup

0≤k≤Td
‖yaν(k)− ŷâν̂(k)‖2 ≥ ε

∣∣ a, â}

= P

{
sup

0≤k≤Td
α (‖yaν(k)− ŷâν̂(k)‖2) ≥ α(ε)

∣∣ a, â}

≤ P

{
sup

0≤k≤Td
V (xaν(k), x̂âν̂(k)) ≥ α(ε)

∣∣ a, â} . (3.2.6)

The equality holds due to α being a K∞ function. The inequality is also true due to
the condition (3.2.3) on the sum-type SSF V . The results follow by applying the first
part of Lemma 3.2.6 to (3.2.6) with some slight modification and utilizing the inequality
(3.2.4).

Remark 3.2.8. Note that since every infinity norm is upper bounded by an Euclidean
norm, one can readily show that the provided results in Theorem 3.2.7 are also valid in
the case of having the infinity norm (cf. Section 3.3).

The results shown in Theorem 3.2.7 provide a closeness of output behaviours of two
systems in the finite-time horizon. We can extend the result to an infinite-time horizon
using the second part of Lemma 3.2.6 given that ψ̂ = 0 as stated in the following
corollary.

Corollary 3.2.9. Let Σ and Σ̂ be two dt-SCS with the same output spaces. Suppose
V is a sum-type SSF from Σ̂ to Σ such that ρext(·) ≡ 0 and ψ = 0. For any external
input trajectory ν̂(·) ∈ Û preserving Markov property for the closed-loop Σ̂, and for any
random variables a and â as the initial states of the two dt-SCS, there exists ν(·) ∈ U
of Σ through the interface function associated with V such that the following inequality
holds:

P

{
sup

0≤k<∞
‖yaν(k)− ŷâ0(k)‖2 ≥ ε

∣∣ a, â} ≤ V (a, â)

α (ε)
.
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Proof. Since V is a sum-type SSF from Σ̂ to Σ with ρext(·) ≡ 0 and ψ = 0, for any
x(k) ∈ X and x̂(k) ∈ X̂ and any ν̂(k) ∈ Û , there exists ν(k) ∈ U such that

E
[
V (x(k + 1), x̂(k + 1))

∣∣x(k), x̂(k), ν(k), ν̂(k)
]
− V ((x(k), x̂(k))

≤ −κ(V (x(k), x̂(k)),

showing that V (xaν(k), x̂âν̂(k)) is a nonnegative supermartingale [Kus67, Chapter 1] for
any initial conditions a and â and inputs ν, ν̂. Following the same reasoning as in the
proof of Theorem 3.2.7, we have

P

{
sup

0≤k<∞
‖yaν(k)− ŷâν̂(k)‖2 ≥ ε

∣∣ a, â}

= P

{
sup

0≤k<∞
α
(
‖yaν(k)− ŷâν̂(k)‖2

)
≥ α(ε)

∣∣ a, â}

≤ P

{
sup

0≤k<∞
V (xaν(k), x̂âν̂(k)) ≥ α(ε)

∣∣ a, â} ≤ V (a, â)

α(ε)
,

where the last inequality is due to the nonnegative supermartingale property as presented
in the second part of Lemma 3.2.6.

Remark 3.2.10. Note that ψ = 0 is possible potentially if concrete and abstract systems
are both continuous-space but possibly with different dimensions and share the same
multiplicative noise. Depending on the dynamic, function ρext(·) can be identically zero
(cf. Case study 3.2.4).

The sum-type SSF defined before can be employed to guarantee an upper bound on the
probability of the maximum difference in output trajectories. In particular, we consider
a finite-horizon invariant specification and show how a synthesized policy for the abstract
system can be refined to a policy for the original one while providing a guarantee on the
probability of satisfaction. This idea can be utilized in conjunction with the stochastic
safety/reachability analysis of systems, which is discussed next.

Suppose V is a sum-type SSF from Σ̂ to Σ. Then for any input strategy ν̂ of the
system Σ̂, there exists an input strategy ν of Σ such that the following probability is
bounded:

P

{
sup

0≤k≤Td
‖yaν(k)− ŷâν̂(k)‖2 ≥ ε

∣∣ a, â} ≤ δ̂,
with δ̂ being defined in Theorem 3.2.7 based on ε and Td. Given the unsafe set A1 for
Σ, we can construct another set A2, which is the ε neighborhood of A1, i.e.,

A2 = {y′
∣∣ ∃y ∈ A1, ‖y′ − y‖2 ≤ ε}.

Now, we can provide the following corollary.
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Corollary 3.2.11. Suppose V is a sum-type SSF from Σ̂ to Σ. For any input ν̂(·) there
exists ν(·) such that the following inequality holds:

P{∃k ≤ Td, yaν(k) ∈ A1} ≤ P{∃k ≤ Td, ŷâν̂(k) ∈ A2}+ δ̂.

Proof. Denote the events E1 := {∃k ≤ Td, yaν(k) ∈ A1} and E2 := {∃k ≤ Td, ŷâν̂(k) ∈
A2}. Then we have

P{E1} = P{E1 ∩ E2}+ P{E1 ∩ Ē2} ≤ P{E2}+ P{E1 ∩ Ē2},

where Ē2 is the complement of E2. Notice that the term P{E1 ∩ Ē2} is bounded by δ̂ due
to the above results, which concludes the proof.

3.2.2 Compositionality Results

In this subsection, we analyze networks of control systems and show how to construct
their abstractions together with the corresponding sum-type SSF by employing sum-type
SPSF of subsystems. We consider here Σ as the original dt-SCS and Σ̂ as its infinite
abstraction with (potentially) a lower dimension.

3.2.2.1 Interconnected Stochastic Control Systems

Consider a complex stochastic control system Σ composed of N ∈ N≥1 stochastic control
subsystems Σi as

Σi = (Xi, Ui,Wi, ςi, fi, Y
1
i , Y

2
i , h

1
i , h

2
i ), i ∈ {1, · · · , N}, (3.2.7)

with partitioned internal inputs and outputs as

wi =
[
wi1; . . . ;wi(i−1);wi(i+1); . . . ;wiN

]
,

y2
i =

[
y2
i1; . . . ; y2

i(i−1); y
2
i(i+1); . . . ; y

2
iN

]
, (3.2.8)

and also its internal output function

h2
i =

[
h2
i1; . . . ;h2

i(i−1);h
2
i(i+1); . . . ;h

2
iN

]
. (3.2.9)

In particular, we assume that the dimension of wij is equal to the dimension of y2
ji. If

there is no connection from stochastic control subsystem Σi to Σj , then we assume that
the connecting output function is identically zero for all arguments, i.e., h2

ij ≡ 0. Now,
we define the interconnected stochastic control systems as the following.

Definition 3.2.12. Consider N ∈ N≥1 stochastic control subsystems Σi = (Xi, Ui,Wi, ςi,
fi, Y

1
i , Y

2
i , h

1
i , h

2
i ), i ∈ {1, · · · , N}, with the input-output configuration as in (3.2.8) and

(3.2.9). The interconnection of Σi for any i ∈ {1, · · · , N}, is the interconnected stochas-
tic control system Σ = (X,U, ς, f, Y, h), denoted by Ics(Σ1, . . . ,ΣN ), such that X :=
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∏N
i=1Xi, U :=

∏N
i=1 Ui, f :=

∏N
i=1 fi, Y :=

∏N
i=1 Y

1
i , and h =

∏N
i=1 h

1
i , subjected to the

following constraint:

∀i, j ∈ {1, · · · , N}, i 6= j : wij = y2
ji, Y 2

ji ⊆Wij . (3.2.10)

An example of the interconnection of two concrete control subsystems Σ1 and Σ2 is
illustrated in Figure 3.1.

Ics(Σ1,Σ2)

Σ1

Σ2

y1
1ν1

y1
2

ν2

y2
12

w21 y2
21

w12

Figure 3.1: Interconnection of two concrete stochastic subsystems Σ1 and Σ2.

3.2.2.2 Compositional Abstractions of Interconnected Control Systems

We assume that we are given N stochastic control subsystems as in (3.2.7) together with
their corresponding abstractions Σ̂i = (X̂i, Ûi,Wi, ς̂i, f̂i, Y

1
i , Y

2
i , ĥ

1
i , ĥ

2
i ) with a sum-type

SPSF Vi from Σ̂i to Σi. To prove the main compositionality result of the section, we
raise the following classic small-gain assumption.

Assumption 3.2.13. For any i, j ∈ {1, · · · , N}, i 6= j, there exist K∞ functions γ̂i and
constants λ̂i ∈ R>0 and δ̂ij ∈ R≥0 such that for any s ∈ R≥0

κi(s) ≥ λ̂iγ̂i(s), (3.2.11)

h2
ji ≡ 0 =⇒ δ̂ij = 0, (3.2.12)

h2
ji 6≡ 0 =⇒ ρinti((N − 1)α−1

j (s)) ≤ δ̂ij γ̂j(s), (3.2.13)

where αj, κi, and ρinti represent the corresponding K∞ functions of Vi appearing in

Definition 3.2.2. Prior to presenting the next theorem, we define Λ̂ := diag(λ̂1, . . . , λ̂N ),
∆̂ := {δ̂ij}, where δ̂ii = 0 ∀i ∈ {1, · · · , N}, and Γ̂(s) := [γ̂1(s1); . . . ; γ̂N (sN )], where s =
[s1; . . . ; sN ]. In the next theorem, we leverage the classic small-gain Assumption 3.2.13
to quantify the error between the interconnection of stochastic control subsystems and
that of their infinite abstractions in a compositional way.

Theorem 3.2.14. Consider the interconnected stochastic control system Σ = Ics(Σ1, . . . ,
ΣN ) induced by N ∈ N≥1 stochastic control subsystems Σi. Suppose that each stochastic

control subsystem Σi admits an abstraction Σ̂i with the corresponding sum-type SPSF Vi.
If Assumption 3.2.13 holds and there exists a vector µ ∈ RN>0 such that the inequality

µT (−Λ̂ + ∆̂) < 0 (3.2.14)
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is also met, then

V (x, x̂) :=
N∑
i=1

µiVi(xi, x̂i)

is a sum-type SSF function from Σ̂ = Ics(Σ̂1, . . . , Σ̂N ) to Σ = Ics(Σ1, . . . ,ΣN ).

Proof. We first show that (3.2.3) in Definition 3.2.4 holds. For any x := [x1; . . . ;xN ]
and x̂ := [x̂1; . . . ; x̂N ], one acquires

‖h(x)− ĥ(x̂)‖2 ≤
N∑
i=1

‖h1
i (xi)− ĥ1

i (x̂i)‖2

≤
N∑
i=1

α−1
i (Vi(xi, x̂i)) ≤ β̂(V (x, x̂)),

with function β̂ : R≥0 → R≥0 defined for all s ∈ R≥0 as

β̂(s) := max
{∑N

i=1 α
−1
i (si)

∣∣ si≥ 0,
∑N

i=1 µisi = s
}
.

It is not hard to verify that function β̂(·) defined above is a K∞ function. By taking the
K∞ function α(s) := β̂−1(s), ∀s ∈ R≥0, one obtains

α(‖h(x)− ĥ(x̂)‖2) ≤ V (x, x̂),

satisfying inequality (3.2.3). Now we show that (3.2.4) holds, as well. Consider any
x = [x1; . . . ;xN ], x̂ = [x̂1; . . . ; x̂N ], and ν̂ = [ν̂1; . . . ; ν̂N ]. By applying the following
inequality

ρinti(s1 + · · ·+ sN−1) ≤
N−1∑
i=1

ρinti((N − 1)si), (3.2.15)

which is valid for any ρinti ∈ K∞∪{0}, and any si ∈ R≥0, i ∈ {1, · · · , N}, one can obtain
the chain of inequalities in (3.2.17). By defining

κ(s) := min
{
− µT (−Λ̂ + ∆̂)Γ̂(V (x, x̂))

∣∣µTV (x, x̂) = s
}
,

ρext(s) := max
{ N∑
i=1

µiρexti(si)
∣∣ si≥ 0, ‖[s1; . . . ; sN ]‖2 = s

}
,

ψ :=

N∑
i=1

µiψi, (3.2.16)

where V (x, x̂) = [V1(x1, x̂1); . . . ;VN (xN , x̂N )], the condition (3.2.4) is also satisfied.
Then V is a sum-type SSF function from Σ̂ to Σ, which completes the proof.
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E
[ N∑
i=1

µiVi(xi(k + 1), x̂i(k + 1))
∣∣x, x̂, ν̂]− N∑

i=1

µiVi(xi, x̂i)

=
N∑
i=1

µiE
[
Vi(xi(k + 1), x̂i(k + 1))

∣∣x, x̂, ν̂]− N∑
i=1

µiVi(xi, x̂i)

=

N∑
i=1

µiE
[
Vi(xi(k + 1), x̂i(k + 1))

∣∣xi, x̂i, ν̂i]− N∑
i=1

µiVi(xi, x̂i)

≤
N∑
i=1

µi
(
− κi(Vi(xi, x̂i)) + ρinti(‖wi − ŵi‖2) + ρexti(‖ν̂i‖2) + ψi

)
≤

N∑
i=1

µi
(
− κi(Vi(xi, x̂i)) + ρinti(

N∑
j=1,i 6=j

‖wij − ŵij‖2) + ρexti(‖ν̂i‖2) + ψi
)

=
N∑
i=1

µi
(
− κi(Vi(xi, x̂i)) + ρinti(

N∑
j=1,i 6=j

‖y2
ji − ŷ2

ji‖2) + ρexti(‖ν̂i‖2) + ψi
)

≤
N∑
i=1

µi
(
− κi(Vi(xi, x̂i)) +

N∑
j=1,i 6=j

ρinti((N − 1)‖y2
ji − ŷ2

ji‖2) + ρexti(‖ν̂i‖2) + ψi
)

=
N∑
i=1

µi
(
− κi(Vi(xi, x̂i)) +

N∑
j=1,i 6=j

ρinti((N − 1)‖h2
j (xj)− ĥ2

j (x̂j)‖2) + ρexti(‖ν̂i‖2)+ψi
)

≤
N∑
i=1

µi
(
− κi(Vi(xi, x̂i)) +

N∑
j=1,i 6=j

ρinti((N − 1)α−1
j (Vj(xj , x̂j))) + ρexti(‖ν̂i‖2) + ψi

)
≤

N∑
i=1

µi
(
− λ̂iγ̂i(Vi(xi, x̂i)) +

N∑
j=1,i 6=j

δ̂ij γ̂j(Vj(xj , x̂j)) + ρexti(‖ν̂i‖2) + ψi
)

= µ>(−Λ̂ + ∆̂)Γ̂(V1(x1, x̂1); . . . ;VN (xN , x̂N )) +
N∑
i=1

µiρexti(‖ν̂i‖2) +
N∑
i=1

µiψi.

(3.2.17)

Remark 3.2.15. A vector µ ∈ RN>0 satisfying µT (−Λ̂ + ∆̂) < 0 exists if and only if the

spectral radius of Λ̂−1∆̂ is strictly less than one [DIW11]. In this case if ∆̂ is irreducible,
µ can be chosen as a left eigenvector of −Λ̂ + ∆̂ corresponding to the largest eigenvalue,
which is real and negative by the Perron-Frobenius theorem [Axe94].

Remark 3.2.16. If ρinti satisfies the triangle inequality ρinti(a+ b) ≤ ρinti(a) + ρinti(b)
for all nonnegative values of a and b, the inequality 3.2.15 can be reduced to the following
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less conservative inequality:

ρinti(s1 + · · ·+ sN−1) ≤
N−1∑
i=1

ρinti(si),

and consequently, the condition 3.2.13 reduces to

h2
ji 6≡ 0 =⇒ ρinti(α

−1
j (s)) ≤ δ̂ij γ̂j(s).

3.2.3 Construction of sum-type SPSF

3.2.3.1 Discrete-Time Linear Stochastic Control Systems

In this subsection, we focus on a class of discrete-time linear stochastic control systems
defined as

Σ :


x(k + 1) = Ax(k) +Bν(k) +Dw(k) +Rς(k),
y1(k) = C1x(k),
y2(k) = C2x(k),

(3.2.18)

where the additive noise ς(k) is a sequence of independent random vectors with multi-
variate standard normal distributions (i.e., mean zero and covariance matrix identity).
We use the tuple Σ = (A,B,C1, C2, D,R) to refer to the class of systems in (3.2.18).
Here, we provide conditions under which a candidate V is a sum-type SPSF facilitating
the construction of an infinite abstraction Σ̂.

Assumption 3.2.17. Assume that there exist a matrix K and a positive-definite matrix
M̃ such that the matrix inequalities, ∀i ∈ {1, 2},

CiTCi � M̃, (3.2.19)

(1 + π)(A+BK)T M̃(A+BK)− M̃ � −κ̂M̃ , (3.2.20)

hold for some positive constants π and 0 < κ̂ < 1.

We employ the following quadratic function

V (x, x̂) = (x− P̃ x̂)T M̃(x− P̃ x̂), (3.2.21)

where P̃ ∈ Rn×n̂ is a matrix of an appropriate dimension. Assume that the equalities,
∀i ∈ {1, 2},

AP̃ = P̃ Â−BQ (3.2.22)

D = P̃ D̂ −BS (3.2.23)

CiP̃ = Ĉi, (3.2.24)

hold for some matricesQ and S of appropriate dimensions and potentially with the lowest
possible n̂. In the next theorem, we show that under the aforementioned conditions V
in (3.2.21) is a sum-type SPSF from Σ̂ to Σ.
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Theorem 3.2.18. Let Σ = (A,B,C1, C2, D,R) and Σ̂ = (Â, B̂, Ĉ1, Ĉ2, D̂, R̂) be two
discrete-time linear stochastic control subsystems with two independent additive noises.
Suppose that there exist matrices M̃ , K, P̃ , Q, and S satisfying (3.2.19), (3.2.20),
(3.2.22), (3.2.23), and (3.2.24). Then V defined in (3.2.21) is a sum-type SPSF from Σ̂
to Σ.

Proof. Here we show that ∀x ∈ X, ∀x̂ ∈ X̂, ∀ν̂ ∈ Û , ∀ŵ ∈ Ŵ , ∃ν ∈ U , ∀w ∈ W , such
that V satisfies ‖Cix− Ĉix̂‖22 ≤ V (x, x̂), i ∈ {1, 2}, and

E
[
V (x(k + 1), x̂(k + 1))

∣∣x(k) = x, x̂(k) = x̂, ν̂(k) = ν̂, w(k) = w, ŵ(k) = ŵ
]
− V (x, x̂)

≤ −κ̂(V (x, x̂)) + (1 +
2

π
+
π

2
)‖
√
M̃D‖22‖w − ŵ‖22

+ (1 +
2

π
+

2

π
)‖
√
M̃(BR̃− P̃ B̂)‖22‖ν̂‖22 + Tr

(
RT M̃R+ R̂T P̃ T M̃P̃ R̂

)
. (3.2.25)

According to (3.2.24), we have ‖Cix− Ĉix̂‖22 = (x− P̃ x̂)TCiTCi(x− P̃ x̂). By applying
(3.2.19), it can be easily verified that ‖Cix − Ĉix̂‖22 ≤ V (x, x̂) holds ∀x ∈ X, ∀x̂ ∈ X̂.
Now, we show the inequality (3.2.25). Given any x, x̂, ν̂, and ŵ, we choose ν via the
following linear interface function:

ν = νν̂(x, x̂, ν̂, ŵ) := K(x− P̃ x̂) +Qx̂+ R̃ν̂ + Sŵ, (3.2.26)

for some matrix R̃ of an appropriate dimension. By employing equations (3.2.22),
(3.2.23), and the definition of the interface function in (3.2.26), we simplify

Ax+Bνν̂(x, x̂, ν̂, ŵ) +Dw − P̃ (Âx̂+ B̂ν̂ + D̂ŵ) +
(
Rς − P̃ R̂ς̂

)
to (A+BK)(x− P̃ x̂) +D(w − ŵ) + (BR̃− P̃ B̂)ν̂ +

(
Rς − P̃ R̂ς̂

)
. One obtains

E
[
V (x(k + 1), x̂(k + 1))

∣∣x(k) = x, x̂(k) = x̂, ν̂(k) = ν̂, w(k) = w, ŵ(k) = ŵ
]
− V (x, x̂)

= (x− P̃ x̂)T
[
(A+BK)T M̃(A+BK)− M̃

]
(x− P̃ x̂) + ‖

√
M̃D(w − ŵ)‖22

+
[
2(x− P̃ x̂)T (A+BK)T

]
M̃
[
D(w − ŵ)

]
+
[
2(w − ŵ)TDT

]
M̃
[
(BR̃− P̃ B̂)ν̂

]
+
[
2(x− P̃ x̂)T (A+BK)T

]
M̃
[
(BR̃− P̃ B̂)ν̂

]
+ ‖
√
M̃(BR̃− P̃ B̂)ν̂‖22

+ Tr
(
RT M̃R+ R̂T P̃ T M̃P̃ R̂

)
.

Using Young’s inequality [You12] as ab ≤ π
2a

2 + 1
2π b

2, for any a, b ≥ 0 and any π > 0, and
by employing Cauchy-Schwarz inequality and (3.2.20), one obtains the following upper
bound:

E
[
V (x(k + 1), x̂(k + 1))

∣∣x(k) = x, x̂(k) = x̂, ν̂(k) = ν̂, w(k) = w, ŵ(k) = ŵ
]
− V (x, x̂)

≤ −κ̂(V (x, x̂)) + (1 +
2

π
+
π

2
)‖
√
M̃D‖22‖w − ŵ‖22

+ (1 +
2

π
+

2

π
)‖
√
M̃(BR̃− P̃ B̂)‖22‖ν̂‖22 + Tr

(
RT M̃R+ R̂T P̃ T M̃P̃ R̂

)
.
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Hence the proposed V in (3.2.21) is a sum-type SPSF from Σ̂ to Σ, which completes the
proof. Note that the K∞ functions κ, α, ρint, and ρext, in Definition 3.2.2 associated
with the sum-type SPSF in (3.2.21) are α(s) := s2, κ(s) := κ̂s, and ρint(s) := (1 + 2

π +
π
2 )‖
√
M̃D‖22s2, ρext(s) := (1 + 2

π + 2
π )‖
√
M̃(BR̃ − P̃ B̂)‖22s2, ∀s ∈ R≥0. Moreover, the

positive constant ψ in (3.2.2) is ψ = Tr
(
RT M̃R+ R̂T P̃ T M̃P̃ R̂

)
.

Remark 3.2.19. One can readily verify from the result of Theorem 3.2.18 that choosing
R̂ equal to zero results in a smaller constant ψ and, hence, a more closeness of subsystems
and their abstractions. Observe that this is not the case when one assumes the noises of
the concrete subsystem and its abstraction are the same as in [Zam14, ZRME17].

Remark 3.2.20. Note that the results in Theorem 3.2.18 do not impose any condition
on matrix B̂ and, therefore, it can be chosen arbitrarily. As an example, one can choose
B̂ = In̂ which makes the abstract system Σ̂ fully actuated and consequently the synthesis
problem over it much easier.

Remark 3.2.21. Since Theorem 3.2.18 does not impose any condition on matrix R̃, we
choose R̃ to minimize function ρext for V as suggested in [GP09]. The following choice
for R̃

R̃ = (BT M̃B)−1BT M̃P̃ B̂. (3.2.27)

minimizes ρext.

3.2.4 Case Study

Here, we demonstrate the effectiveness of the proposed results for an interconnected
system consisting of four discrete-time linear stochastic control subsystems, i.e., Σ =
Ics(Σ1,Σ2,Σ3,Σ4). The interconnection scheme of Σ with four external inputs and two
outputs is illustrated in Figure 3.2. As seen, the internal output of Σ1 (resp. Σ2) is
connected to the internal input of Σ4 (resp. Σ3) and the internal output of Σ3 (resp.
Σ4) is connected to the internal input of Σ1 (resp. Σ2).

The system matrices are given by

Ai = I25, Bi = I25, C
1T
i = 0.1125, Ri = 0.01125,

for i ∈ {1, 2, 3, 4}. The internal input and output matrices are also given by:

C2T
14 = C2T

23 = C2T
31 = C2T

42 = 0.1125,

D13 = D24 = D32 = D41 = 0.1125.

In order to construct an infinite abstraction for Ics(Σ1,Σ2,Σ3,Σ4), we construct an
infinite abstraction Σ̂i of each individual subsystem Σi, i ∈ {1, 2, 3, 4}. We first fix κ̂
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Σ3

Σ4

Σ1

Σ2

y1
3

y1
4

ν1

ν2

ν3

ν4

y2
31

y2
42

y2
14

y2
23

Figure 3.2: The interconnected system Σ = Ics(Σ1,Σ2,Σ3,Σ4).

and π for each subsystem, and then determine the matrices M̃ and K such that (3.2.19)
and (3.2.20) hold for i ∈ {1, 2, 3, 4}:

M̃i = I25, Ki = −0.95I25, κ̂i = 0.98, πi = 0.99.

We continue with determining other matrices such that (3.2.22), (3.2.23), and (3.2.24)
hold:

P̃i = 125, Qi = 125, Si = −0.003125,

for i ∈ {1, 2, 3, 4}. Accordingly, the matrices of abstract subsystems are computed as:

Âi = 2, Ĉi = 2.5, D̂i = 0.096,

for i ∈ {1, 2, 3, 4}. Note that here R̂i, i ∈ {1, 2, 3, 4}, are considered zero in order to
reduce the constant ψi for each Vi as discussed in Remark 3.2.19. Moreover, B̂i is chosen
1 and we compute R̃i, i ∈ {1, 2, 3, 4}, using (3.2.27) as R̃i = 125. The interface function
for i ∈ {1, 2, 3, 4} follows by (3.2.26) as:

νi = −0.95I25(xi − 125x̂i) + 125x̂i + 125ν̂i − 0.003125ŵi.

Hence, Theorem 3.2.18 holds and Vi(xi, x̂i) = (xi−125x̂i)
T M̃i(xi−125x̂i) is a sum-type

SPSF from Σ̂i to Σi satisfying conditions (3.2.1) and (3.2.2) with αi(s) = s2, κi(s) =
0.98s, ρexti(s) = 0, ρinti(s) = 0.88s2, ∀s ∈ R≥0, and ψi = 0.0025, for i ∈ {1, 2, 3, 4}. We

now proceed with Theorem 3.2.14 to construct a sum-type SSF from Σ̂ to Σ. Assumption
3.2.13 holds with γ̂i(s) = s and

∆̂ =


0 0 0.88 0
0 0 0 0.88
0 0.88 0 0

0.88 0 0 0

, Λ̂ =


0.98 0 0 0

0 0.98 0 0
0 0 0.98 0
0 0 0 0.98

.
Additionally, one can readily verify that a vector µ ∈ R4

>0 exists here since the spectral

radius of Λ̂−1∆̂ is strictly less than one [DIW11]. By choosing vector µ as µ = 14, the
function

V (x, x̂) = V1(x1, x̂1) + V2(x2, x̂2) + V3(x3, x̂3) + V4(x4, x̂4),
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is a sum-type SSF from Ics(Σ̂1, Σ̂2, Σ̂3, Σ̂4) to Ics(Σ1,Σ2,Σ3,Σ4) satisfying conditions
(3.2.3) and (3.2.4) with α(s) = s2, κ(s) = 0.1s, ρext(s) = 0, ∀s ∈ R≥0, and ψ = 0.01. If

the initial states of the interconnected systems Σ and Σ̂ are started from zero, one can
readily verify that the norm of the error between outputs of Σ and of Σ̂ will not exceed
1 with a probability at least 90% computed by the sum-type SSF V using inequality
(3.2.5) for Td = 10, i.e.,

P(‖yaν(k)− ŷâν̂(k)‖2 ≤ 1, ∀k ∈ [0, 10]) ≥ 0.9.

3.3 max Small-Gain Approach

In this section, we propose a compositional methodology for the construction of infinite
abstractions based on max small-gain conditions. We show that the new compositional
framework is more general than the classic one proposed in the previous section since
the provided max small-gain condition does not require a linear growth on the gains of
the subsystems which is the case in the classic version. Moreover, we show that the
provided approximation error via the max small-gain does not change as the number of
subsystems grows since the proposed overall error (i.e., ψ) is completely independent of
the size of the network (i.e., N), and is computed only based on the maximum error of
subsystems (i.e., ψi) instead of being a linear combination of them which is the case in
the classic small-gain approach.

3.3.1 max-Type Stochastic Pseudo-Simulation and Simulation Functions

Here, for dt-SCS with both internal and external inputs and outputs, we first introduce
the notion of max-type stochastic pseudo-simulation functions (max-type SPSF). We
then define the notion of max-type stochastic simulation functions (max-type SSF) for
dt-SCS without internal signals. Although the former definition is employed to quantify
the closeness of two dt-SCS, the latter is specifically utilized for the interconnected dt-
SCS.

Definition 3.3.1. Consider two dt-SCS Σ = (X,U,W, ς, f, Y 1, Y 2, h1, h2) and Σ̂ =
(X̂, Û ,W, ς, f̂ , Y 1, Y 2, ĥ1, ĥ2), with the same internal input, and internal and external
output spaces. A function V : X × X̂ → R≥0 is called a max-type stochastic pseudo-

simulation function (max-type SPSF) from Σ̂ to Σ if there exist functions α, κ ∈ K∞,
with κ < Id, ρint, ρext ∈ K∞ ∪ {0}, and a constant ψ ∈ R≥0, such that

•

∀x ∈ X,∀x̂ ∈ X̂, ∀i ∈ {1, 2}, α(‖hi(x)− ĥi(x̂)‖) ≤ V (x, x̂), (3.3.1)

• and for all x ∈ X, x̂ ∈ X̂, ν̂ ∈ Û there exists ν ∈ U such that ∀ŵ ∈ Ŵ , ∀w ∈W ,

E
[
V (f(x, ν, w, ς), f̂(x̂, ν̂, ŵ, ς))

∣∣x, x̂, ν, ν̂, w, ŵ]
≤ max

{
κ(V (x, x̂)), ρint(‖w − ŵ‖), ρext(‖ν̂‖), ψ

}
. (3.3.2)
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We denote Σ̂ �max
SPSF Σ if there exists a max-type SPSF V from Σ̂ to Σ, and call the

control system Σ̂ an abstraction of the concrete (original) system Σ.

Remark 3.3.2. As a comparison, the notion of max-type SPSF here is equivalent to
the sum-type defined in Definition 3.2.2 such that the existence of one implies that of
the other one. However, the upper bound in (3.3.2) is in the max form, whereas the one
in (3.2.2) is in the additive form.

Definition 3.3.1 can also be stated for systems without internal signals as the following
definition.

Definition 3.3.3. Consider two dt-SCS Σ = (X,U, ς, f, Y, h) and Σ̂ = (X̂, Û , ς, f̂ , Y, ĥ)
without internal and external signals. A function V : X× X̂ → R≥0 is called a max-type

stochastic simulation function (max-type SSF) from Σ̂ to Σ if

• there exists α ∈ K∞ such that

α(‖h(x)− ĥ(x̂)‖) ≤ V (x, x̂), ∀x ∈ X, x̂ ∈ X̂, (3.3.3)

• and for all x ∈ X, x̂ ∈ X̂, ν̂ ∈ Û , there exists ν ∈ U such that

E
[
V (f(x, ν, ς), f̂(x̂, ν̂, ς))

∣∣x, x̂, ν, ν̂] ≤ max
{
κ(V (x, x̂)), ρext(‖ν̂‖), ψ

}
, (3.3.4)

for some κ ∈ K∞ with κ < Id, ρext ∈ K∞ ∪ {0}, and ψ ∈ R≥0.

We call Σ̂ an abstraction of Σ, and denote by Σ̂ �max
SSF Σ if there exists a max-type

SSF V from Σ̂ to Σ.
Now one can utilize Theorem 3.2.7 and show how the max-type SSF can be employed

to compare output trajectories of two interconnected dt-SCS (without internal signals)
in a probabilistic sense. Note that this theorem holds for the setting here since the max
form of SSF here implies the additive form proposed in (3.2.2).

3.3.2 Compositionality Results

In this subsection, we analyze networks of stochastic control subsystems and discuss how
to construct their infinite abstractions together with the max-type SSF based on corre-
sponding max-type SPSF of their subsystems. Suppose we are given N concrete stochas-
tic control subsystems (3.2.7) with their input-output configuration similar to (3.2.8) and
(3.2.9), where their corresponding infinite abstractions are

Σ̂i = (X̂i, Ûi,Wi, ςi, f̂i, Y
1
i , Y

2
i , ĥ

1
i , ĥ

2
i ).

Moreover, we assume there exists a max-type SPSF Vi from Σ̂i to Σi with the correspond-
ing functions and constants denoted by αi, κi, ρinti, ρexti, and ψi as in Definition 3.3.1.
Now we raise the following max small-gain assumption that is essential for proposing the
compositionality result in this section.
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Assumption 3.3.4. Assume that K∞ functions κij defined as

κij(s) :=

{
κi(s), if i = j,

ρinti(α
−1
j (s)), if i 6= j,

satisfy
κi1i2 ◦ κi2i3 ◦ · · · ◦ κir−1ir ◦ κiri1 < Id (3.3.5)

for all sequences (i1, . . . , ir) ∈ {1, . . . , N}r and r ∈ {1, . . . , N}.

Remark 3.3.5. Note that the max small-gain condition (3.3.5) is a standard one in
studying the stability of large-scale interconnected systems via ISS Lyapunov functions
[DRW07, DRW10]. This condition is automatically satisfied if each κii is less than
identity (κii < Id, ∀i ∈ {1, . . . , N}). Although this condition should be satisfied for all
possible sequences (i1, . . . , ir) ∈ {1, . . . , N}r, r ∈ {1, . . . , N}, it allows some subsystems
to compensate the undesirable effects of other subsystems in the interconnected network
such that it is satisfied.

The max small-gain condition (3.3.5) implies the existence of K∞ functions σi > 0
[Rüf10, Theorem 5.5] satisfying

max
i,j

{
σ−1
i ◦ κij ◦ σj

}
< Id, i, j = {1, . . . , N}. (3.3.6)

In the next theorem, we show that if Assumption 3.3.4 holds and maxi σ
−1
i is concave

(in order to employ Jensen’s inequality), then we can compute the mismatch between the
interconnection of stochastic control subsystems and that of their infinite abstractions
in a compositional fashion.

Theorem 3.3.6. Consider the interconnected dt-SCS Σ = Ics(Σ1, . . . ,ΣN ) induced by
N ∈ N≥1 stochastic control subsystems Σi. Suppose that each Σi admits an infinite

abstraction Σ̂i together with a corresponding max-type SPSF Vi. If Assumption 3.3.4
holds and maxi σ

−1
i for σi as in (3.3.6) is concave, then a function V (x, x̂) defined as

V (x, x̂) := max
i

{
σ−1
i (Vi(xi, x̂i))

}
, (3.3.7)

is a max-type SSF from Σ̂ = Ics(Σ̂1, . . . , Σ̂N ) to Σ = Ics(Σ1, . . . ,ΣN ).

Proof. We first show that for some K∞ function α, SSF V in (3.3.7) satisfies the in-
equality (3.3.3). For any x = [x1; . . . ;xN ] ∈ X and x̂ = [x̂1; . . . ; x̂N ] ∈ X̂, one gets

‖h(x)− ĥ(x̂)‖ = max
i

{
‖h1

i (xi)− ĥ1
i (x̂i)‖

}
≤ max

i

{
α−1
i (Vi(xi, x̂i))

}
≤ β̂ (max

i

{
σ−1
i (Vi(xi, x̂i))

}
) = β̂(V (x, x̂)),

where β̂(s) = maxi

{
α−1
i ◦ σi(s)

}
for all s ∈ R≥0, which is a K∞ function and (3.3.3)

holds with α = β̂−1.

29



3 Infinite Abstractions (Reduced-Order Models)

E
[
V (f(x, ν, ς), f̂(x̂, ν̂, ς))

∣∣x, x̂, ν̂]
= E

[
max
i

{
σ−1
i (Vi(fi(xi, νi, wi, ςi), f̂i(x̂i, ν̂i, ŵi, ςi)))

} ∣∣x, x̂, ν̂]
≤ max

i

{
σ−1
i (E

[
Vi(fi(xi, νi, wi, ςi), f̂i(x̂i, ν̂i, ŵi, ςi))

∣∣x, x̂, ν̂])}
= max

i

{
σ−1
i (E

[
Vi(fi(xi, νi, wi, ςi), f̂i(x̂i, ν̂i, ŵi, ςi))

∣∣xi, x̂i, ν̂i])}
≤ max

i

{
σ−1
i (max{κi(Vi(xi, x̂i)), ρinti(‖wi − ŵi‖), ρexti(‖ν̂i‖), ψi})

}
= max

i

{
σ−1
i (max{κi(Vi(xi, x̂i)), ρinti(max

j,j 6=i
{‖wij − ŵij‖}), ρexti(‖ν̂i‖), ψi})

}
= max

i

{
σ−1
i (max{κi(Vi(xi, x̂i)), ρinti(max

j,j 6=i
{‖y2

ji − ŷ2
ji‖}), ρexti(‖ν̂i‖), ψi})

}
= max

i

{
σ−1
i (max{κi(Vi(xi, x̂i)), ρinti(max

j,j 6=i
{‖h2

j (xj)− ĥ2
j (x̂j)‖}), ρexti(‖ν̂i‖), ψi})

}
≤ max

i

{
σ−1
i (max{κi(Vi(xi, x̂i)), ρinti(max

j,j 6=i
{α−1

j (Vj(xj , x̂j))}), ρexti(‖ν̂i‖), ψi})
}

= max
i,j

{
σ−1
i (max{κij(Vj(xj , x̂j)), ρexti(‖ν̂i‖), ψi})

}
= max

i,j

{
σ−1
i (max{κij ◦ σj ◦ σ−1

j (Vj(xj , x̂j)), ρexti(‖ν̂i‖), ψi})
}

≤ max
i,j,l

{
σ−1
i (max{κij ◦ σj ◦ σ−1

l (Vl(xl, x̂l)), ρexti(‖ν̂i‖), ψi})
}

= max
i,j

{
σ−1
i (max{κij ◦ σj(V (x, x̂)), ρexti(‖ν̂i‖), ψi})

}
= max

{
κ(V (x, x̂)), ρext(‖ν̂‖), ψ

}
. (3.3.9)

We continue with showing (3.3.4), as well. Let κ(s) = maxi,j{σ−1
i ◦ κij ◦ σj(s)}. It

follows from (3.3.6) that κ < Id. Since maxi σ
−1
i is concave, one can readily get the

chain of inequalities in (3.3.9) using Jensen’s inequality, and by defining ρext, and ψ as

ρext(s) :=

{
maxi{σ−1

i ◦ ρexti(si)},
s.t. si≥ 0, ‖[s1; . . . ; sN ]‖ = s,

ψ := max
i
σ−1
i (ψi). (3.3.8)

Note that κ and ρext in (3.3.9) belong to K∞ and K∞ ∪ {0}, respectively, due to their
definition provided above. Hence, V is a max-type SSF from Σ̂ to Σ which completes
the proof.

Remark 3.3.7. As seen, the proposed overall error (i.e., ψ) in (3.3.8) is completely
independent of the size of the network (i.e., N), and is computed only based on the
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maximum error of subsystems (i.e., ψi) instead of being a linear combination of them
which is the case in (3.2.16). Accordingly, the provided approximation error in (3.2.5)
via the proposed max small-gain approach does not change as the number of subsystems
grows.

We emphasize that the proposed max small-gain condition (3.3.5) is more general than
the classic one provided in Assumption 3.2.13 since it does not require linear growth on
the gains of subsystems which is the case in Assumption 3.2.13. We provide the following
example for a detailed comparison.

Example 3.3.8. Consider the following system:

Σ :

{
x1(k + 1) = a1x1(k) + b1

√
|x2(k)|+ ς1(k),

x2(k + 1) = a2x2(k) + b2g(x1(k)) + ς2(k),

where 0 < a1 < 1, 0 < a2 < 1, b1, b2 ∈ R, and the function g satisfies the following
quadratic Lipschitz assumption: there exists an L ∈ R>0 such that: |g(x) − g(x′)| ≤
L |x− x′|2 for all x, x′ ∈ R. One can readily verify that functions V1(x1, x̂1) = |x1 − x̂1|
and V2(x2, x̂2) = |x2− x̂2| are sum-type SPSF from subsystems x1 and x2 to themselves,
respectively. Here, one cannot come up with gain functions that globally satisfy Assump-
tion 3.2.13. In particular, this assumption requires existence of K∞ functions being upper
bounded by linear ones and lower bounded by quadratic ones which is impossible to satisfy
globally. On the other hand, the proposed small-gain condition (3.3.5) is still applicable
here showing that V (x, x̂) := max{σ−1

1 ◦ V1(x1, x̂1), σ−1
2 ◦ V2(x2, x̂2)} is a max-type SSF

from Σ to itself, for some appropriate σ1, σ2 ∈ K∞ (with concave max1 σ
−1
1 , max2 σ

−1
2 )

satisfying (3.3.6) which is guaranteed to exist if |b1|
√
|b2|L < 1 and |b2|(b1L )2 < 1.

Therefore the max small-gain condition (3.3.5) is much more general than the classic
one proposed in Assumption 3.2.13.

Now in the next subsection, we extend our proposed construction scheme (in the
previous section) from linear systems to a particular class of nonlinear stochastic systems
whose nonlinearities satisfy a slope restriction. We impose conditions on the dt-SCS Σ
enabling us to find a max-type SPSF from its infinite abstraction Σ̂ to Σ. The required
conditions are presented via some matrix inequalities.

3.3.3 Construction of max-type SPSF

3.3.3.1 Stochastic Control Systems with Slope Restrictions on Nonlinearity

Here, we focus on a specific class of discrete-time nonlinear stochastic control systems
Σ and a quadratic max-type SPSF V in the form of (3.2.21). The class of nonlinear
systems is given by

Σ :


x(k + 1) = Ax(k) + Eϕ(Fx(k)) +Bν(k) +Dw(k) +Rς(k),
y1(k) = C1x(k),
y2(k) = C2x(k),

(3.3.10)
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where the additive noise ς(k) is a sequence of independent random vectors with multi-
variate standard normal distributions, and ϕ : R→ R satisfies

0 ≤ ϕ(c)− ϕ(d)

c− d
≤ b, ∀c, d ∈ R, c 6= d, (3.3.11)

for some b ∈ R>0 ∪ {∞}.
We use the tuple Σ = (A,B,C1, C2, D,E, F,R, ϕ) to refer to the class of nonlinear

systems of the form (3.3.10).

Remark 3.3.9. If E is a zero matrix or ϕ in (3.3.10) is linear including the zero function
(i.e., ϕ ≡ 0), one can remove or push the term Eϕ(Fx) to Ax, and consequently the
nonlinear tuple reduces to the linear one Σ = (A,B,C1, C2, D,R). Then, every time
we mention the tuple Σ = (A,B,C1, C2, D,E, F,R, ϕ), it implicitly implies that ϕ is
nonlinear and E is nonzero.

Remark 3.3.10. Although the lower bound in (3.3.11) is zero, one can also assume
(3.3.11) with some nonlinear functions ϕ with a nonzero lower bound, e.g., a ∈ R. In this
case, one can make a change of coordinate and define a new function ϕ̃(r) := ϕ(r)− ar
which satisfies (3.3.11) with ã = 0 and b̃ = b− a, and rewrite (3.3.10) as

Σ :


x(k + 1) = Ãx(k) + Eϕ̃(Fx(k)) +Bν(k) +Dw(k) +Rς(k),
y1(k) = C1x(k),
y2(k) = C2x(k),

where Ã = A+ aEF .

Remark 3.3.11. We restrict ourselves here to systems with a single nonlinearity as
in (3.3.10) for the sake of simple presentation. However, it would be straightforward to
show similar results for systems with multiple nonlinearities as

Σ :

x(k + 1) = Ax(k) +
∑M̄

i=1Eiϕi(Fix(k)) +Bν(k) +Dw(k) +Rς(k),
y1(k) = C1x(k),
y2(k) = C2x(k),

where ϕi : R→ R satisfies (3.3.11) for some bi ∈ R>0 ∪ {∞}, for any i ∈ {1, . . . , M̄}.

In order to show that V in (3.2.21) is a max-type SPSF from Σ̂ to Σ, we require the
following key assumption on Σ.

Assumption 3.3.12. Assume that for some constant 0 < κ̂ < 1, there exist matrices
M̃ � 0, K, and L1 of appropriate dimensions such that the matrix inequality (3.3.12)
holds. Note that the left-hand side matrix in (3.3.12) is symmetric, as well.

Remark 3.3.13. Note that for any linear system Σ = (A,B,C1, C2, D,R), stabilizabil-
ity of the pair (A,B) is sufficient to satisfy Assumption 3.3.12 in where matrices E, F ,
and L1 are identically zero.
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[
(1 + 2/π)(A+BK)T M̃(A+BK) (A+BK)T M̃(BL1 + E)

∗ (1 + 2/π)(BR̃− P̃ B̂)T M̃(BR̃− P̃ B̂)

]
�
[
κ̂M̃ −F T
−F 2

b

]
(3.3.12)

Now, we provide one of the main results of this section showing conditions under which
V in (3.2.21) is a max-type SPSF from Σ̂ to Σ.

Theorem 3.3.14. Let Σ and Σ̂ be two stochastic control subsystems. Suppose Assump-
tion 3.3.12 holds and there exist matrices P̃ , Q, S, and L2 of appropriate dimensions
such that one has, ∀i ∈ {1, 2},

AP̃ = P̃ Â−BQ, (3.3.13a)

E = P̃ Ê −B(L1 − L2), (3.3.13b)

D = P̃ D̂ − B̂S, (3.3.13c)

R = P̃ R̂, (3.3.13d)

F̂ = FP̃ , (3.3.13e)

Ĉi = CiP̃ . (3.3.13f)

Then function V defined in (3.2.21) is a max-type SPSF from Σ̂ to Σ.

Proof. Here we first show that ∀x, ∀x̂, ∀ν̂, ∃ν, ∀w, and ∀ŵ, V satisfies λmin(M)
λmax(CiTCi)

‖Cix−
Ĉix̂‖2 ≤ V (x, x̂) and then

E
[
V (f(x, ν, w, ς), f̂(x̂, ν̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ]
≤ max

{
(1− (1− π̃)κ̃)(V (x, x̂)), (1 + δ̃)(

1

κ̃π̃
)(p̄(1 + 2π + 1/π))‖

√
M̃D‖22‖w − ŵ‖2,

(1 + 1/δ̃)(
1

κ̃π̃
)(m(1 + 3π))‖

√
M̃(BR̃− P̃ B̂)‖22‖ν̂‖2

}
.

According to (3.3.13f), we have ‖Cix − Ĉix̂‖2 ≤ nλmax(CiTCi)‖x − P̃ x̂‖2, and simi-
larly λmin(M̃)‖x − P̃ x̂‖2 ≤ (x − P̃ x̂)T M̃(x − P̃ x̂). Then one can readily verify that

λmin(M̃)
nλmax(CiTCi)

‖Cix − Ĉix̂‖2 ≤ V (x, x̂) holds ∀x, ∀x̂, implying that the inequality (3.3.1)

holds with α(s) = λmin(M̃)
nλmax(CiTCi)

s2 for any s ∈ R≥0. We proceed with showing that the

inequality (3.3.2) holds, as well. Given any x, x̂, and ν̂, we choose ν via the following
interface function:

ν = νν̂(x, x̂, ν̂) := K(x− P̃ x̂) +Qx̂+ R̃ν̂ + Sŵ + L1ϕ(Fx)− L2ϕ(FP̃ x̂), (3.3.14)
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for some matrix R̃ of an appropriate dimension. By employing the equations (3.3.13a)-
(3.3.13e), and also the definition of the interface function in (3.3.14), we simplify

Ax+ Eϕ(Fx) +Bν(x, x̂, ν̂) +Dw

− P̃ (Âx̂+ Êϕ(F̂ x̂) + B̂ν̂ + D̂ŵ) + (Rς − P̃ R̂ς)

to

(A+BK)(x− P̃ x̂) +D(w − ŵ) + (BR̃− P̃ B̂)ν̂

+ (BL1 + E)(ϕ(Fx)− ϕ(FP̃ x̂)). (3.3.15)

From the slope restriction (3.3.11), one obtains

ϕ(Fx)− ϕ(FP̃ x̂) = δ(Fx− FP̃ x̂) = δF (x− P̃ x̂), (3.3.16)

where δ is a function of x and x̂ and takes values in the interval [0, b]. Using (3.3.16),
the expression in (3.3.15) reduces to

((A+BK) + δ(BL1 + E)F )(x− P̃ x̂) +D(w − ŵ) + (BR̃− P̃ B̂)ν̂.

Using Young’s inequality [You12] as cd ≤ π
2 c

2 + 1
2πd

2, for any c, d ≥ 0 and any π > 0, by
employing Cauchy-Schwarz inequality, the matrix inequality (3.3.12), and by defining

Z =

[
x− P̃ x̂

δF (x− P̃ x̂)

]
, one can obtain the chain of inequalities in (3.3.17) in order to get

an upper bound. Hence the proposed V in (3.2.21) is a max-type SPSF from Σ̂ to
Σ, which completes the proof. Note that the last inequality in (3.3.17) is derived by
applying Theorem 1 in [SGZ18]. The functions α, κ ∈ K∞, and ρint, ρext ∈ K∞ ∪ {0}
in Definition 3.3.1 associated with V in (3.2.21) are defined as α(s) = λmin(M̃)

nλmax(CiTCi)
s2,

κ(s) := (1− (1− π̃)κ̃) s, ρint(s) := (1 + δ̃)( 1
κ̃π̃ )(p̄(1 + 2π + 1/π))‖

√
M̃D‖22 s2, ρext(s) :=

(1 + 1/δ̃)( 1
κ̃π̃ )(m(1 + 3π))‖

√
M̃(BR̃− P̃ B̂)‖22 s2, ∀s ∈ R≥0 where κ̃ = 1− κ̂, 0 < π̃ < 1,

and δ̃ > 0. Moreover, the positive constant ψ in (3.3.2) is equal to zero.

3.4 Dissipativity Approach

In this section, we provide a compositional approach for the construction of infinite
abstractions from dt-SCS using an interconnection matrix and joint dissipativity-type
properties of subsystems and their abstractions. We show that the proposed compo-
sitionality conditions can enjoy the structure of the interconnection topology and be
potentially satisfied regardless of the number or gains of subsystems. We also provide
an abstract-construction framework for the same nonlinear class of stochastic systems
in (3.3.10). Finally, we extend our specification from the finite-horizon invariant to a
fragment of linear temporal logic known as syntactically co-safe linear temporal logic
(scLTL) [KV01]. In particular, given such a co-safe LTL specification over the concrete
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E
[
V (f(x, ν, w, ς), f̂(x̂, ν̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ]
= (x− P̃ x̂)T

[
((A+BK) + δ(BL1 + E)F )T M̃((A+BK) + δ(BL1 + E)F )

]
(x− P̃ x̂)

+ 2
[
(x−P̃ x̂)T ((A+BK)+δ(BL1+E)F )T

]
M̃
[
D(w − ŵ)

]
+2
[
(x− P̃ x̂)T ((A+BK)

+ δ(BL1 + E)F )T
]
M̃
[
(BR̃− P̃ B̂)ν̂

]
+ 2
[
(w − ŵ)TDT

]
M̃
[
(BR̃− P̃ B̂)ν̂

]
+ ν̂T (BR̃− P̃ B̂)T M̃(BR̃− P̃ B̂)ν̂ + (w − ŵ)TDT M̃D(w − ŵ)

≤ ZT
[
(1 + 2/π)(A+BK)T M̃(A+BK) (A+BK)T M̃(BL1 + E)

∗ (1 + 2/π)(BR̃− P̃ B̂)T M̃(BR̃− P̃ B̂)

]
Z

+ p̄(1 + 2π + 1/π)‖
√
M̃D‖22‖w − ŵ‖2 +m(1 + 3π)‖

√
M̃(BR̃− P̃ B̂)‖22‖ν̂‖2

≤ ZT
[
κ̂M̃ −F T
−F 2

b

]
Z + p̄(1 + 2π + 1/π)‖

√
M̃D‖22‖w − ŵ‖2

+m(1 + 3π)‖
√
M̃(BR̃− P̃ B̂)‖22‖ν̂‖2

= κ̂V (x, x̂)− 2δ(1− δ/b)(x−P̃ x̂)TF TF (x−P̃ x̂) + p̄(1 + 2π + 1/π)‖
√
M̃D‖22‖w − ŵ‖2

+m(1 + 3π)‖
√
M̃(BR̃− P̃ B̂)‖22‖ν̂‖2

≤ κ̂V (x, x̂) + p̄(1 + 2π + 1/π)‖
√
M̃D‖22‖w − ŵ‖2 +m(1 + 3π)‖

√
M(BR̃−P̃ B̂)‖22‖ν̂‖2

≤ max
{

(1− (1− π̃)κ̃)(V (x, x̂)), (1 + δ̃)(
1

κ̃π̃
)(p̄(1 + 2π + 1/π))‖

√
M̃D‖22‖w − ŵ‖2,

(1 + 1/δ̃)(
1

κ̃π̃
)(m(1 + 3π))‖

√
M̃(BR̃− P̃ B̂)‖22‖ν̂‖2

}
. (3.3.17)

system, we construct an epsilon-perturbed specification over the abstract system whose
probability of satisfaction gives a lower bound for the probability of satisfaction in the
concrete domain. We demonstrate the effectiveness of the proposed results by construct-
ing an abstraction (totally 3 dimensions) of an interconnection of three discrete-time
nonlinear stochastic control subsystems (together 222 dimensions) in a compositional
fashion such that the compositionality condition does not require any constraint on the
number or gains of the subsystems. We employ the constructed abstraction as a sub-
stitute to synthesize a controller enforcing a syntactically co-safe LTL specification. It
should be also noted that we again do not put any restriction on the sources of un-
certainties in the concrete and abstract systems. Then the noises in the concrete and
abstract systems are independent from each other.

3.4.1 Stochastic Storage Functions

In this subsection, we introduce a notion of so-called stochastic storage functions (SStF)
for the discrete-time stochastic control systems with both internal and external inputs
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and outputs which is adapted from the notion of storage functions from dissipativity
theory [AMP16].

Definition 3.4.1. Consider two dt-SCS Σ = (X,U,W, ς, f, Y 1, Y 2, h1, h2) and Σ̂ =
(X̂, Û , Ŵ , ς̂, f̂ , Y 1, Ŷ 2, ĥ1, ĥ2) with the same external output spaces. A function V : X ×
X̂ → R≥0 is called a stochastic storage function (SStF) from Σ̂ to Σ if there exist
α, κ ∈ K∞, ρext ∈ K∞ ∪ {0}, some matrices G, Ĝ,H of appropriate dimensions, and
some symmetric matrix X̄ of an appropriate dimension with conformal block partitions
X̄ij, i, j ∈ {1, 2}, such that for any x ∈ X and x̂ ∈ X̂, one has

•

α(‖h1(x)− ĥ1(x̂)‖2) ≤ V (x, x̂), (3.4.1)

• and ∀x ∈ X ∀x̂ ∈ X̂ ∀ν̂ ∈ Û ∃ν ∈ U such that ∀ŵ ∈ Ŵ ∀w ∈W one obtains

E
[
V (x(k + 1), x̂(k + 1))

∣∣x(k)=x, x̂(k)= x̂, ν(k)=ν, ν̂(k)= ν̂, w(k)=w, ŵ(k)= ŵ
]

− V (x, x̂) ≤ −κ(V (x, x̂)) + ρext(‖ν̂‖2) + ψ

+

[
Gw − Ĝŵ

h2(x)−Hĥ2(x̂)

]T X̄:=︷ ︸︸ ︷[
X̄11 X̄12

X̄21 X̄22

] [
Gw − Ĝŵ

h2(x)−Hĥ2(x̂)

]
, (3.4.2)

for some ψ ∈ R≥0.

We use the notation Σ̂ �SStF Σ if there exists an SStF V from Σ̂ to Σ, in which Σ̂ is
considered as an abstraction of the concrete system Σ.

Remark 3.4.2. The last term in the inequality (3.4.2) is interpreted in dissipativity
theory as the supply rate [AMP16]. Here we choose this function to be quadratic which
results in tractable compositional conditions in the form of linear matrix (in)equalities
(cf. (3.4.3)).

For the dt-SCS without internal signals (including interconnected dt-SCS), the above
notion reduces to the sum-type SSF as in Definition 3.2.4. Now one can utilize the results
of Theorem 3.2.7 and show how the sum-type SSF can be employed to compare output
trajectories of two interconnected dt-SCS (without internal signals) in a probabilistic
sense.

3.4.2 Compositionality Results

In this subsection, we first provide a formal definition of an interconnection between
discrete-time stochastic control subsystems.

Definition 3.4.3. Consider N ∈ N≥1 stochastic control subsystems Σi=(Xi, Ui,Wi, ςi, fi,
Y 1
i , Y

2
i , h

1
i , h

2
i ), ∀i ∈ {1, . . . , N}, and a static matrix M of an appropriate dimension

defining the coupling of these subsystems. The interconnection of Σi for any i∈{1, . . . , N},
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is the interconnected stochastic control system Σ=(X,U, ς, f, Y, h), denoted by Icd(Σ1, . . . ,
ΣN ), such that X :=

∏N
i=1Xi, U :=

∏N
i=1 Ui, f :=

∏N
i=1 fi, Y :=

∏N
i=1 Y

1
i , and

h =
∏N
i=1 h

1
i , with the internal variables constrained by:

[w1; . . . ;wN ] = M [h2
1(x1); . . . ;h2

N (xN )].

Assume that we are given N stochastic control subsystems Σi = (Xi, Ui,Wi, ςi, fi, Y
1
i ,

, Y 2
i , h

1
i , h

2
i ) together with their corresponding abstractions Σ̂i=(X̂i, Ûi, Ŵi, ς̂i, f̂i, Y

1
i , Ŷ

2
i ,

ĥ1
i , ĥ

2
i ) with the SStF Vi from Σ̂i to Σi. We use αi, κi, ρexti, Hi, Gi, Ĝi, X̄i, X̄

11
i , X̄12

i ,
X̄21
i , and X̄22

i to denote the corresponding functions, matrices, and their conformal block
partitions appearing in Definition 3.4.1. In the next theorem, as one of the main results
of the section, we quantify the error between the interconnection of stochastic control
subsystems and that of their abstractions in a compositional way.

Theorem 3.4.4. Consider the interconnected stochastic control system Σ = Icd(Σ1, . . . ,ΣN )
induced by N ∈ N≥1 stochastic control subsystems Σi and the coupling matrix M . Sup-

pose stochastic control subsystems Σ̂i are abstractions of Σi with the corresponding SStF
Vi. If there exist µi > 0, i ∈ {1, . . . , N}, and the matrix M̂ of an appropriate dimension
such that the matrix (in)equalities[

GM
Iq̃

]T
X̄cmp

[
GM
Iq̃

]
� 0, (3.4.3)

GMH = ĜM̂ , (3.4.4)

are satisfied, where q̃ =
∑N

i=1 q
2
i and q2

i are dimensions of internal outputs of subsystems
Σi, and

G := diag(G1, . . . , GN ), Ĝ := diag(Ĝ1, . . . , ĜN ), H := diag(H1, . . . ,HN ), (3.4.5)

X̄cmp :=



µ1X̄
11
1 µ1X̄

12
1

. . .
. . .

µNX̄
11
N µNX̄

12
N

µ1X̄
21
1 µ1X̄

22
1

. . .
. . .

µNX̄
21
N µNX̄

22
N


, (3.4.6)

then

V (x, x̂) :=
N∑
i=1

µiVi(xi, x̂i), (3.4.7)

is a sum-type SSF from the interconnected control system Σ̂ = Icd(Σ̂1, . . . , Σ̂N ), with the
coupling matrix M̂ , to Σ.

Note that the matrix X̄cmp in (3.4.6) has zero matrices in all its empty entries.
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Proof. We first show that the inequality (3.2.3) holds for some K∞ function α. For any
x = [x1; . . . ;xN ] ∈ X and x̂ = [x̂1; . . . ; x̂N ] ∈ X̂, one gets:

‖h(x)− ĥ(x̂)‖2 = ‖[h1
1(x1); . . . ;h1

N (xN )]− [ĥ1
1(x̂1); . . . ; ĥ1

N (x̂N )]‖2

≤
N∑
i=1

‖h1
i (xi)− ĥ1

i (x̂i)‖2 ≤
N∑
i=1

α−1
i (Vi(xi, x̂i)) ≤ β̂(V (x, x̂)),

with the function β̂ : R≥0 → R≥0 defined for all r ∈ R≥0 as

β̂(r) := max
{∑N

i=1 α
−1
i (si)

∣∣ si≥ 0,
∑N

i=1 µisi = r
}
.

It is not hard to verify that the function β̂(·) defined above is a K∞ function. By taking
the K∞ function α(r) := β̂−1(r), ∀r ∈ R≥0, one obtains

α(‖h(x)− ĥ(x̂)‖2) ≤ V (x, x̂),

satisfying the inequality (3.2.3). Now we prove that the function V in (3.4.7) satisfies
the inequality (3.2.4), as well. Consider any x = [x1; . . . ;xN ] ∈ X, x̂ = [x̂1; . . . ; x̂N ] ∈ X̂,
and ν̂ = [ν̂1; . . . ; ν̂N ] ∈ Û . For any i ∈ {1, . . . , N}, there exists νi ∈ Ui, conse-
quently, a vector ν = [ν1; . . . ; νN ] ∈ U , satisfying (3.4.2) for each pair of subsystems
Σi and Σ̂i with the internal inputs given by [w1; . . . ;wN ] = M [h2

1(x1); . . . ;h2
N (xN )] and

[ŵ1; . . . ; ŵN ] = M̂ [ĥ2
1(x̂1); . . . ; ĥ2

N (x̂N )]. Then we have the chain of inequalities in (3.4.9)
using conditions (3.4.3) and (3.4.4), and by defining κ(·), ρext(·), and ψ as

κ(r) := min
{ N∑
i=1

µiκi(si)
∣∣ si≥ 0,

N∑
i=1

µisi = r
}
,

ρext(r) := max
{ N∑
i=1

µiρexti(si)
∣∣ si≥ 0, ‖[s1; . . . ; sN ]‖2 = r

}
,

ψ :=
N∑
i=1

µiψi. (3.4.8)

Note that κ and ρext in (3.4.9) belong to K∞ and K∞ ∪ {0}, respectively, because of
their definitions provided above. Hence, we conclude that V is a sum-type SSF from Σ̂
to Σ.

Remark 3.4.5. Linear matrix inequality (LMI) (3.4.3) with G = I is similar to the
LMI studied by [AMP16, Chapter 2] as a compositional stability condition based on the
dissipativity theory. As discussed by [AMP16], the LMI holds independently of the num-
ber of subsystems in many physical applications with specific interconnection structures
including communication networks, flexible joint robots, power generators, and so on.
We refer the interested readers to [AMP16] for more details on the satisfaction of this
type of LMI.
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E
[ N∑
i=1

µiVi(xi(k + 1), x̂i(k + 1))
∣∣x(k) = x, x̂(k) = x̂, ν̂(k) = ν̂

]
−

N∑
i=1

µiVi(xi, x̂i)

=
N∑
i=1

µiE
[
Vi(xi(k + 1), x̂i(k + 1))

∣∣xi(k) = xi, x̂i(k) = x̂i, ν̂i(k) = ν̂i

]
−

N∑
i=1

µiVi(xi, x̂i)

≤
N∑
i=1

µi
(
− κi(Vi(xi, x̂i)) + ρexti(‖ν̂i‖2) + ψi

+

[
Giwi − Ĝiŵi

h2
i (xi)−Hiĥ

2
i (x̂i)

]T [
X̄11
i X̄12

i

X̄21
i X̄22

i

] [
Giwi − Ĝiŵi

h2
i (xi)−Hiĥ

2
i (x̂i)

] )
=

N∑
i=1

−µiκi(Vi(xi, x̂i)) +
N∑
i=1

µiρexti(‖ν̂i‖2) +
N∑
i=1

µiψi

+



G1w1 − Ĝ1ŵ1
...

GNwN − ĜN ŵN
h2

1(x1)−H1ĥ
2
1(x̂1)

...

h2
N (xN )−HN ĥ

2
N (x̂N )



T

X̄cmp



G1w1 − Ĝ1ŵ1
...

GNwN − ĜN ŵN
h2

1(x1)−H1ĥ
2
1(x̂1)

...

h2
N (xN )−HN ĥ

2
N (x̂N )


=

N∑
i=1

−µiκi(Vi(xi, x̂i)) +
N∑
i=1

µiρexti(‖ν̂i‖2) +
N∑
i=1

µiψi

+


GM

 h
2
1(x1)

...
h2
N (xN )

− ĜM̂
 ĥ

2
1(x̂1)

...

ĥ2
N (x̂N )


h2

1(x1)−H1ĥ
2
1(x̂1)

...

h2
N (xN )−HN ĥ

2
N (x̂N )



T

X̄cmp


GM

 h
2
1(x1)

...
h2
N (xN )

− ĜM̂
 ĥ

2
1(x̂1)

...

ĥ2
N (x̂N )


h2

1(x1)−H1ĥ
2
1(x̂1)

...

h2
N (xN )−HN ĥ

2
N (x̂N )


=

N∑
i=1

−µiκi(Vi(xi, x̂i)) +

N∑
i=1

µiρexti(‖ν̂i‖2) +

N∑
i=1

µiψi

+

 h2
1(x1)−H1ĥ

2
1(x̂1)

...

h2
N (xN )−HN ĥ

2
N (x̂N )


T [
GM
Iq̃

]T
X̄cmp

[
GM
Iq̃

] h2
1(x1)−H1ĥ

2
1(x̂1)

...

h2
N (xN )−HN ĥ

2
N (x̂N )


≤

N∑
i=1

−µiκi(Vi(xi, x̂i)) +

N∑
i=1

µiρexti(‖ν̂i‖2) +

N∑
i=1

µiψi

≤−κ (V (x, x̂))+ρext(‖ν̂‖2)+ψ. (3.4.9)
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ĀT M̃Ā ĀT M̃Z ĀT M̃ B̄ ĀT M̃R̄
∗ ZT M̃Z ZT M̃ B̄ ZT M̃R̄
∗ ∗ B̄T M̃ B̄ B̄T M̃R̄
∗ ∗ ∗ R̄T M̃R̄



�


κ̂M̃ + C2T X̄22C2 C2T X̄21 −F T 0

X̄12C2 X̄11 0 0
−F 0 2

b 0

0 0 0 k̃R̄T M̃R̄

 (3.4.11)

Remark 3.4.6. One can relax condition (3.4.4) and employ the linear least square
approach instead of solving the equality exactly. In this case, an additional error resulting
from the least square approach is added to ψ in (3.4.8).

3.4.3 Construction of SStF

3.4.3.1 Stochastic Control Systems with Slope Restrictions on Nonlinearity

In this subsection, we focus on the nonlinear class of discrete-time stochastic control
systems defined in (3.3.10) together with quadratic stochastic storage functions V in
the form of (3.2.21), and provide an approach on the construction of their abstractions.
In order to show that V in (3.2.21) is an SStF from Σ̂ to Σ, we require the following
assumption on Σ.

Assumption 3.4.7. Let Σ = (A,B,C1, C2, D,E, F,R, ϕ). Assume that for some con-
stants 0 < κ̂ < 1 and k̃ > 0, there exist matrices M̃ � 0, K, L1, Z, G, X̄11, X̄12, X̄21,
and X̄22 of appropriate dimensions such that the matrix equality

D = ZG, (3.4.10)

and the inequality (3.4.11) hold with Ā = (A+BK), B̄ = (BL1 + E), R̄ = (BR̃− P̃ B̂).

Remark 3.4.8. Note that for any linear system Σ = (A,B,C1, C2, D,R), stabilizability
of the pair (A,B) is sufficient to satisfy Assumption 3.4.7 in where matrices E, F , and
L1 are identically zero [AM07, Chapter 4].

Now, we provide one of the main results of this section showing under which conditions
V in (3.2.21) is an SStF from Σ̂ to Σ.

Theorem 3.4.9. Let Σ = (A,B,C1, C2, D,E, F,R, ϕ) and Σ̂ = (Â, B̂, Ĉ1, Ĉ2, D̂, Ê, F̂ , R̂,
, ϕ) be two stochastic control subsystems with the same external output space. Suppose
Assumption 3.4.7 holds and there exist matrices P̃ , Q, H, L2, and Ĝ of appropriate
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dimensions such that

AP̃ = P̃ Â−BQ, (3.4.12a)

C1P̃ = Ĉ1, (3.4.12b)

X̄12C2P̃ = X̄12HĈ2, (3.4.12c)

X̄22C2P̃ = X̄22HĈ2, (3.4.12d)

F̂ = FP̃ , (3.4.12e)

E = P̃ Ê −B(L1 − L2), (3.4.12f)

P̃ D̂ = ZĜ, (3.4.12g)

hold. Then, function V defined in (3.2.21) is an SStF from Σ̂ to Σ.

Proof. We first show that ∀x, ∀x̂, ∀ν̂, ∃ν, ∀ŵ, and ∀w, V satisfies λmin(M̃)
λmax(C1TC1)

‖C1x −
Ĉ1x̂‖22 ≤ V (x, x̂) and then

E
[
V (x(k + 1), x̂(k + 1)

∣∣x(k) = x, x̂(k) = x̂, ν̂(k) = ν̂, w(k) = w, ŵ(k) = ŵ
]
− V (x, x̂)

≤ −(1− κ̂)(V (x, x̂)) + k̃‖
√
M̃(BR̃− P̃ B̂)‖22‖ν̂‖22 + Tr

(
RT M̃R+ R̂T P̃ T M̃P̃ R̂

)
+

[
Gw − Ĝŵ

h2(x)−Hĥ2(x̂)

]T [
X̄11 X̄12

X̄21 X̄22

] [
Gw − Ĝŵ

h2(x)−Hĥ2(x̂)

]
.

According to (3.4.12b), we have ‖C1x − Ĉ1x̂‖22 = (x − P̃ x̂)TC1TC1(x − P̃ x̂). Since
λmin(C1TC1)‖x − P̃ x̂‖22 ≤ (x − P̃ x̂)TC1TC1(x − P̃ x̂) ≤ λmax(C1TC1)‖x − P̃ x̂‖22, and
similarly, λmin(M̃)‖x − P̃ x̂‖22 ≤ (x − P̃ x̂)T M̃(x − P̃ x̂) ≤ λmax(M̃)‖x − P̃ x̂‖22, it can be

readily verified that λmin(M̃)
λmax(C1TC1)

‖C1x− Ĉ1x̂‖22 ≤ V (x, x̂) holds ∀x, ∀x̂, implying that the

inequality (3.4.1) holds with α(s) = λmin(M̃)
λmax(C1TC1)

s2 for any s ∈ R≥0. We proceed with

showing that the inequality (3.4.2) holds, as well. Given any x, x̂, and ν̂, we choose ν
via the following interface function:

ν = νν̂(x, x̂, ν̂) := K(x− P̃ x̂) +Qx̂+ R̃ν̂ + L1ϕ(Fx)− L2ϕ(FP̃ x̂), (3.4.13)

for some matrix R̃ of an appropriate dimension. By employing the equations (3.4.10),
(3.4.12a), (3.4.12e), (3.4.12f) and also the definition of the interface function in (3.4.13),
we simplify

Ax+ Eϕ(Fx) +Bνν̂(x, x̂, ν̂) +Dw

− P̃ (Âx̂+ Êϕ(F̂ x̂) + B̂ν̂ + D̂ŵ) + (Rς − P̃ R̂ς̂)

to

(A+BK)(x− P̃ x̂) + Z(Gw − Ĝŵ) + (BR̃− P̃ B̂)ν̂

+ (BL1 + E)(ϕ(Fx)− ϕ(FP̃ x̂)) + (Rς − P̃ R̂ς̂). (3.4.14)
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From the slope restriction (3.3.11), one obtains

ϕ(Fx)− ϕ(FP̃ x̂) = δ(Fx− FP̃ x̂) = δF (x− P̃ x̂), (3.4.15)

where δ is a function of x and x̂ and takes values in the interval [0, b]. Using (3.4.15),
the expression in (3.4.14) reduces to

((A+BK) + δ(BL1 + E)F )(x− P̃ x̂) + Z(Gw − Ĝŵ)

+ (BR̃− P̃ B̂)ν̂ + (Rς − P̃ R̂ς̂).

Using Cauchy- Schwarz inequality, (3.4.11), (3.4.12c), and (3.4.12d), one can obtain the
chain of inequalities in (3.4.16) in order to reach an upper bound. Hence, the proposed
V in (3.2.21) is an SStF from Σ̂ to Σ, which completes the proof.

Note that conditions (3.4.12) hold as long as the geometric conditions V-18 to V-23
in [ZA18] hold. The functions α ∈ K∞, κ ∈ K, ρext ∈ K∞ ∪ {0}, and the matrix

X̄ in Definition 3.4.1 associated with the SStF in (3.2.21) are α(s) = λmin(M̃)
λmax(C1TC1)

s2,

κ(s) := (1− κ̂)s, ρext(s) := κ̃‖
√
M̃(BR̃− P̃ B̂)‖22s2, ∀s ∈ R≥0, where R̃ is a matrix of an

appropriate dimension employed in the interface map (3.4.13), and X̄ =

[
X̄11 X̄12

X̄21 X̄22

]
.

Moreover, the positive constant ψ in (3.4.2) is ψ = Tr
(
RT M̃R+ R̂T P̃ T M̃P̃ R̂

)
.

The relation (3.2.5) lower bounds the probability such that the Euclidean distance
between any output trajectory of the abstract model and the corresponding one of the
concrete model remains close and is different from the probabilistic version discussed
for finite state, discrete-time labeled Markov chains by [DLT08a], which hinges on the
absolute difference between transition probabilities over sets covering the state space.
However, one can still employ the results in Theorem 3.2.7 and design controllers for
abstractions and refine them to concrete systems while providing the probability of
satisfaction over the concrete domain. In particular, we extend our specification from
the finite-horizon invariant to a fragment of linear temporal logic known as syntacti-
cally co-safe linear temporal logic (scLTL) [KV01]. We discuss given such a co-safe LTL
specification over the concrete system, how one can construct an epsilon-perturbed spec-
ification over the abstract system whose probability of satisfaction gives a lower bound
for the probability of satisfaction in the concrete domain.

3.4.4 Probability of Satisfaction for Properties Expressed as scLTL

Consider a dt-SCS Σ = (X,U, ς, f, Y, h) and a measurable target set T̄ ⊂ Y . We say
that an output trajectory {y(k)}k≥0 reaches a target set T̄ within the time interval
[0, Td] ⊂ N, if there exists a k ∈ [0, Td] such that y(k) ∈ T̄ . This bounded reaching of T̄
is denoted by ♦≤Td{y ∈ T̄ } or briefly ♦≤Td T̄ . For Td → ∞, we denote the reachability
property as ♦T̄ , i.e., eventually T̄ . For a dt-SCS Σ with policy ρ̄, we want to compute
the probability that an output trajectory reaches T̄ within the time horizon Td ∈ N,
i.e., P(♦≤Td T̄ ). The reachability probability is the probability that the target set T̄ is
eventually reached and is denoted by P(♦T̄ ).
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E
[
V (x(k + 1), x̂(k + 1)

∣∣x(k) = x, x̂(k) = x̂, ν̂(k) = ν̂, w(k) = w, ŵ(k) = ŵ
]
− V (x, x̂)

= (x− P̃ x̂)T
[
((A+BK) + δ(BL1 + E)F )T M̃((A+BK) + δ(BL1 + E)F )

]
(x− P̃ x̂)

+ 2
[
(x− P̃ x̂)T ((A+BK) + δ(BL1 + E)F )T

]
M̃
[
Z(Gw − Ĝŵ)

]
+ 2
[
(x− P̃ x̂)T ((A+BK) + δ(BL1 + E)F )T

]
M̃
[
(BR̃− P̃ B̂)ν̂

]
+ 2
[
(Gw − Ĝŵ)TZT

]
M̃
[
(BR̃− P̃ B̂)ν̂

]
+ ν̂T (BR̃− P̃ B̂)T M̃(BR̃− P̃ B̂)ν̂

+ (Gw − Ĝŵ)TZT M̃Z(Gw − Ĝŵ) + Tr
(
RT M̃R+ R̂T P̃ T M̃P̃ R̂

)
− V (x, x̂)

=


x− P̃ x̂
Gw − Ĝŵ
δF (x− P̃ x̂)

ν̂


T 
ĀT M̃Ā ĀT M̃Z ĀT M̃ B̄ ĀT M̃R̄
∗ ZT M̃Z ZT M̃ B̄ ZT M̃R̄
∗ ∗ B̄T M̃ B̄ B̄T M̃R̄
∗ ∗ ∗ R̄T M̃R̄




x− P̃ x̂
Gw − Ĝŵ
δF (x− P̃ x̂)

ν̂


+ Tr

(
RT M̃R+ R̂T P̃ T M̃P̃ R̂

)
− V (x, x̂)

≤


x− P̃ x̂
Gw − Ĝŵ
δF (x− P̃ x̂)

ν̂


T 

κ̂M̃ + C2T X̄22C2 C2T X̄21 −F T 0
X̄12C2 X̄11 0 0
−F 0 2

b 0

0 0 0 k̃R̄T M̃R̄




x− P̃ x̂
Gw − Ĝŵ
δF (x− P̃ x̂)

ν̂


+ Tr

(
RT M̃R+ R̂T P̃ T M̃P̃ R̂

)
− V (x, x̂)

= −(1− κ̂)(V (x, x̂))− 2δ(1− δ

b
)(x− P̃ x̂)TF TF (x− P̃ x̂) + k̃‖

√
M̃(BR̃− P̃ B̂)ν‖22

+

[
Gw − Ĝŵ

C2x−HĈ2x̂

]T [
X̄11 X̄12

X̄21 X̄22

] [
Gw − Ĝŵ

C2x−HĈ2x̂

]
+ Tr

(
RT M̃R+ R̂T P̃ T M̃P̃ R̂

)
≤ −(1− κ̂)(V (x, x̂)) + k̃‖

√
M̃(BR̃− P̃ B̂)‖22‖ν̂‖22

+

[
Gw − Ĝŵ

C2x−HĈ2x̂

]T [
X̄11 X̄12

X̄21 X̄22

] [
Gw − Ĝŵ

C2x−HĈ2x̂

]
+ Tr

(
RT M̃R+ R̂T P̃ T M̃P̃ R̂

)
.

(3.4.16)

More complex properties can be described using the temporal logic. Consider a set of
atomic propositions AP and the alphabet Σa := 2AP . Let ω = ω(0), ω(1), ω(2), . . . ∈ ΣN

a

be an infinite word, that is, a string composed of letters from Σa. Of interest are atomic
propositions that are relevant to the dt-SCS via a measurable labeling function L from
the output space to the alphabet as L : Y → Σa. Output trajectories {y(k)}k≥0 ∈ Y N

can be readily mapped to the set of infinite words ΣN
a , as

ω = L({y(k)}k≥0) := {ω ∈ ΣN
a |ω(k) = L(y(k))}.
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Consider LTL properties with syntax [BK08]

φ ::= true | p | ¬φ |φ1 ∧ φ2 |©φ |φ1 U φ2.

Let ωk = ω(k), ω(k + 1), ω(k + 2), . . . be a subsequence (postfix) of ω, then the satis-
faction relation between ω and a property φ, expressed in LTL, is denoted by ω � φ
(or equivalently ω0 � φ). The semantics of the satisfaction relation are defined recur-
sively over ωk and the syntax of the LTL formula φ. An atomic proposition p ∈ AP
is satisfied by ωk, i.e., ωk � p, iff p ∈ ω(k). Furthermore, ωk � ¬φ if ωk 2 φ and we
say that ωk � φ1 ∧ φ2 if ωk � φ1 and ωk � φ2. The next operator ωk � ©φ holds
if the property holds at the next time instance ωk+1 � φ. We denote by ©j , j ∈ N,
j times composition of the next operator. With a slight abuse of the notation, one
has ©0φ = φ for any property φ. The temporal until operator ωk � φ1 U φ2 holds if
∃i ∈ N : ωk+i � φ2, and ∀j ∈ N :0 ≤ j < i, ωk+j � φ1. Based on these semantics, opera-
tors such as disjunction (∨) can also be defined through the negation and conjunction:
ωk � φ1 ∨ φ2 ⇔ ωk � ¬(¬φ1 ∧ ¬φ2).

Remark 3.4.10. Note that in this subsection, the satisfaction relation � changes by
varying the labeling functions L. In the following, we employ subscript for |= to show its
dependency on the labeling functions.

We are interested in a fragment of LTL properties known as syntactically co-safe linear
temporal logic (scLTL) [KV01]. This fragment is defined in the following definition.

Definition 3.4.11. An scLTL over a set of atomic propositions AP has syntax

φ ::= true | p | ¬p |φ1 ∧ φ2 |φ1 ∨ φ2 |©φ |φ1 U φ2 |♦φ,

with p ∈ AP .

Even though scLTL formulas are defined over infinite words (as in LTL formulae),
their satisfaction is guaranteed in the finite time [KV01]. Any infinite word ω ∈ ΣN

a

satisfying an scLTL formula φ has a finite word ωf ∈ Σn
a , n ∈ N, as its prefix such that

all infinite words with prefix ωf also satisfy the formula φ. We denote the language of
such finite prefixes associated with an scLTL formula φ by Lf (φ).

In the remainder, we consider scLTL properties since their verification can be per-
formed via a reachability property over a finite state automaton [KV01, BYG17]. For
this purpose, we introduce a class of models known as deterministic finite-state automata
(DFA).

Definition 3.4.12. A DFA is a tuple Aφ = (Q`, q0,Σa, Fa, t), where Q` is a finite set
of locations, q0 ∈ Q` is the initial location, Σa is a finite set (a.k.a. alphabet), Fa ⊆ Q`
is a set of accept locations, and t : Q` × Σa → Q` is a transition function.

A finite word composed of letters of the alphabet, i.e., ωf = (ωf (0), . . . , ωf (n)) ∈ Σn+1
a ,

is accepted by a DFA Aφ if there exists a finite run q = (q(0), . . . , q(n+ 1)) ∈ Qn+2
` such

that q(0) = q0, q(i+1) = t(q(i), ωf (i)) for all 0 ≤ i ≤ n, and q(n+1) ∈ Fa. The accepted
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language of Aφ, denoted L(Aφ), is the set of all words accepted by Aφ. For every scLTL
property φ, cf. Definition 3.4.11, there exists a DFA Aφ such that

Lf (φ) = L(Aφ).

As a result, the satisfaction of the property φ now becomes equivalent to the reaching
to the accept locations in the DFA. We use the DFA Aφ to specify properties of dt-SCS
Σ = (X,U, ς, f, Y, h) as follows. Recall that L : Y → Σa is a given measurable function.
To each output y ∈ Y , it assigns the letter L(y) ∈ Σa. Given a policy ρ̄, we can define
the probability that an output trajectory of Σ satisfies an scLTL property φ over the
time horizon [0, Td], i.e., P(ωf ∈ L(Aφ) s.t. |ωf | ≤ Td+ 1), with |ωf | denoting the length
of ωf [DLT08a].

The following example provides an automaton associated with a reach-avoid specifi-
cation.

Example 3.4.13. Consider two measurable sets S̄, T̄ ⊂ Y as the safe and target sets,
respectively. We present the DFA for the specification (S̄ U T̄ ), which requires the output
trajectories to reach the target set T̄ while remaining in the safe set S̄. Note that we
do not assume these two sets being disjoint. Consider the set of atomic propositions
AP = {S̄, T̄ } and the alphabet Σa = {∅, {S̄}, {T̄ }, {S̄, T̄ }}. Define the labeling function
as

L(y) =


{S̄} =: a, if y ∈ S̄\T̄ ,
{T̄ } =: b, if y ∈ T̄ ,
∅ =: c, if y /∈ S̄ ∪ T̄ .

As can be seen from the above definition of the labeling function L, it induces a partition
over the output space Y as

L−1(a) = S̄\T̄ , L−1(b) = T̄ , L−1(c) = Y \(S̄ ∪ T̄ ).

Note that we have indicated the elements of Σa with lower-case letters for the ease of
notation. The specification (S̄ U T̄ ) can be equivalently written as (aU b) with the associ-
ated DFA depicted in Figure 3.3. This DFA has the set of locations Q` = {q0, q1, q2, q3},
the initial location q0, and accepting location Fa = {q2}. Thus output trajectories of a
dt-SCS Σ satisfy the specification (aUb) if and only if their associated words are accepted
by this DFA.

In the rest of this section, we focus on the computation of the probability of ω ∈
L(Aφ) over bounded intervals. In other words, we fix a time horizon Td and compute

P(ω(0)ω(1) . . . ω(Td) ∈ L(Aφ)). Suppose Σ and Σ̂ are two dt-SCS for which the results of
Theorem 3.2.7 hold. Consider a labeling function L defined on their output space and an
scLTL specification φ with DFA Aφ. In the following, we show how to construct a DFA

Aφ̂ of another specification φ̂ and a new labeling function Lε such that the satisfaction

probability of φ̂ by output trajectories of Σ̂ and labeling function Lε give a lower bound
on the satisfaction probability of φ by output trajectories of Σ and the labeling function
L.
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q0 q1 q2

q3

a

b

a

b

c
c

fa; b; cg

fa; b; cg

Figure 3.3: DFA Aφ of the reach-avoid specification (a U b).

Consider the labeling function L : Y → Σa. The new labeling function Lε : Y → Σ̄a is
constructed using the ε-perturbation of subsets of Y . Define for any Borel measurable
set A ⊂ Y , its ε-perturbed version Aε as the largest measurable set satisfying

Aε ⊆ {y ∈ A
∣∣ ‖ȳ − y‖ ≥ ε for all ȳ ∈ Y \A}.

Remark that the set Aε is just the largest measurable set contained in the ε-deflated
version of A and without loss of generality we assume it is nonempty. Then Lε(y) = L(y)
for any y ∈ ∪a∈Σa [L

−1(a)]ε, otherwise Lε(y) = φ◦.
Consider the DFA Aφ = (Q`, q0,Σa, Fa, t). The new DFA

Aφ̂ = (Q̄`, q0, Σ̄a, Fa, t̄) (3.4.17)

will be constructed by adding one absorbing location qabs and one letter φ◦ as Q̄` :=
Q` ∪{qabs} and Σ̄a := Σa ∪{φ◦}. The initial and accept locations are the same with Aφ.
The transition relation is defined, ∀q ∈ Q̄`, ∀a ∈ Σ̄a, as

t̄(q, a) :=


t(q, a), if q ∈ Q`, a ∈ Σa,

qabs, if a = φ◦, q ∈ Q̄`,
qabs, if q = qabs, a ∈ Σ̄a.

In other words, we add an absorbing state qabs and all the states will jump to this
absorbing state with the label φ◦. As an example, the modified DFA of the reach-avoid
specification in Figure 3.3 is plotted in Figure 3.4.

In the next lemma, we employ the new labeling function to relate the satisfaction of
specifications by output trajectories of two dt-SCS.

Lemma 3.4.14. Suppose two observed sequences of output trajectories for two dt-SCS
Σ and Σ̂ satisfy the inequality

sup
0≤k≤Td

‖y(k)− ŷ(k)‖2 < ε,
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q0 q1 q2

q3

a

b

a

b

c
c

fa; b; cg

φ◦

φ◦

φ◦φ◦

qabs

fa; b; cg

fa; b; c;φ◦g

Figure 3.4: Modified DFA Aφ̂ of the specification (a U b).

for some time bound Td and ε > 0. Then y(·) �L φ if ŷ(·) �Lε φ̂ over the time inter-
val [0, Td] with labeling functions L and Lε, and the modified specification φ̂ defined in
(3.4.17).

Proof. Suppose ŷ(·) �Lε φ̂ over the time interval [0, Td]. According to the construction of
DFA Aφ̂, qabs is an absorbing state and not an accepting state, thus Lε(ŷ(k)) 6= φ◦, ∀k ∈
[0, Td]. Then Lε(ŷ(k)) ∈ Σa, ∀k ∈ [0, Td]. Assume Lε(ŷ(k)) = a then ŷ(k) ∈ [L−1(a)]ε.
Since we know that

sup
0≤k≤Td

‖y(k)− ŷ(k)‖2 < ε,

then according to the definition of ε-perturbed sets, y(k) ∈ L−1(a) which gives L(y(k)) =
a. Thus L(y(·)) = Lε(ŷ(·)) and having ŷ(·) �Lε φ̂ guarantees y(·) �L φ due to the
particular construction of φ̂.

Next theorem presents the core result of this subsection.

Theorem 3.4.15. Suppose Σ and Σ̂ are two dt-SCS for which the inequality (3.2.5)
holds with the pair (ε, δ̂) and any time bound Td. Suppose a specification φ and a labeling
function L are defined for Σ. The following inequality holds for the labeling function Lε

on Σ̂ and the modified specification φ̂:

P(ŷ(·) �Lε φ̂)− δ̂ ≤ P(y(·) �L φ), (3.4.18)

where the satisfaction is over the time interval [0, Td].

Proof. According to Lemma 3.4.14, y(·) 2L φ results in ŷ(·) 2Lε φ̂ over the time interval
[0, Td] or

sup
0≤k≤Td

‖y(k)− ŷ(k)‖2 ≥ ε.
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Then

P(y(·) 2L φ) ≤ P(ŷ(·) 2Lε φ̂) +

≤δ̂︷ ︸︸ ︷
P( sup

0≤k≤Td
‖y(k)− ŷ(k)‖2 ≥ ε),

⇒ 1− P(y(·) �L φ) ≤ 1− P(ŷ(·) �Lε φ̂) + δ̂,

⇒ P(ŷ(·) �Lε φ̂)− δ̂ ≤ P(y(·) �L φ),

which completes the proof.

In order to get an upper bound for P(y(·) �L φ), we need to define for any Borel
measurable set A ⊂ Y , its (−ε)-perturbed version A−ε as the smallest measurable set
satisfying

A−ε ⊇ {y ∈ Y
∣∣ ∃ȳ ∈ A with ‖ȳ − y‖ < ε}.

Remark that the set A−ε is just the smallest measurable set containing the ε-inflated
version of A.

A new labeling map L−ε : Y → 2Σa is constructed using the (−ε)−perturbation of
subsets of Y as

L−ε(y) :=
{
a ∈ Σa

∣∣ y ∈ [L−1(a)]−ε
}
. (3.4.19)

Theorem 3.4.16. Suppose Σ and Σ̂ are two dt-SCS for which the inequality (3.2.5)
holds with the pair (ε, δ̂) and any time bound Td. Suppose a specification φ and a labeling
function L are defined for Σ. The following inequality holds for the labeling function L−ε

defined in (3.4.19) on Σ̂:

P(y(·) �L φ) ≤ P(ŷ(·) �L−ε φ) + δ̂, (3.4.20)

where the satisfaction is over the time interval [0, Td], and the probability in the right-
hand side is computed for having ŷ(·) �L−ε φ for any choice of non-determinism intro-
duced by the labeling map L−ε.

The proof is similar to that of Theorem 3.4.15, and is omitted here.

In contrast with the inequality (3.4.18), the specification φ is the same in both sides
of (3.4.20). The non-determinism originating from L−ε in the right-hand side of (3.4.20)
can be pushed to the DFA representation of φ, by constructing a finite automaton that
is non-deterministic.

In the next subsection, we demonstrate the effectiveness of the proposed results by
constructing an abstraction (totally 3 dimensions) of an interconnected system consisting
of three nonlinear stochastic control subsystems (together 222 dimensions) in a compo-
sitional fashion. We employ the constructed abstraction as a substitute to synthesize a
controller enforcing a syntactically co-safe linear temporal logic specification.
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3.4.5 Case Study

Consider a discrete-time nonlinear stochastic control system Σ satisfying

Σ :

{
x(k + 1) = Ḡx(k) + ϕ(x(k)) + ν(k) +Rς(k),
y(k) = Cx(k),

(3.4.21)

for some matrix Ḡ = (In − τL̃) ∈ Rn×n where L̃ is the Laplacian matrix of an undi-
rected graph with sampling time 0 < τ < 1/∆̄, where ∆̄ is the maximum degree of the
graph [GR01]. Moreover, R = diag(0.0071n1 . . . , 0.0071nN ), ς(k) = [ς1(k); . . . ; ςN (k)],
ϕ(x) = [1n1ϕ1(F1x1(k)); . . . ;1nNϕN (FNxN (k))], where n =

∑N
i=1 ni, ϕi(x) = sin(x),

and Fi = [1; 0; · · · ; 0]T ∈ Rni ∀i ∈ {1, . . . , N}, and C has the block diagonal struc-
ture as C = diag(C1

1 , . . . , C
1
N ), where C1

i ∈ Rq1
i×ni ,∀i ∈ {1, . . . , N}. We partition x as

x = [x1; . . . ;xN ] and ν as ν = [ν1; . . . ; νN ], where xi, νi ∈ Rni . Now, by introducing
Σ = (Ini , Ini , C

1
i , Ini , Ini ,1ni , Fi, 0.0071ni , ϕi) satisfying

Σ :


xi(k + 1) = xi(k) + 1niϕi(Fixi(k)) + νi(k) + wi(k) + 0.0071niςi(k),
y1
i (k) = C1

i xi(k),
y2
i (k) = xi(k),

one can readily verify that Σ = Icd(Σ1, . . . ,ΣN ), where the coupling matrix M is given
by M = −τL̃. Our goal is to aggregate each xi into a scalar-valued x̂i, governed by
Σ̂i = (0.5, 1, Ĉ1

i , 1, 1, 0.1, 1, 0, ϕi) which satisfies

Σ̂i :


x̂i(k + 1) = 0.5x̂i(k) + 0.1ϕi(x̂i(k)) + ν̂i(k) + ŵi(k),

ŷ1
i (k) = Ĉ1

i x̂i(k),
ŷ2
i (k) = x̂i(k),

where Ĉ1
i = C1

i 1ni . Note that here R̂i, ∀i ∈ {1, . . . , N}, are considered zero in order
to reduce constants ψi for each Vi as discussed in Remark 3.2.19. One can readily
verify that, for any i ∈ {1, . . . , N}, conditions (3.4.10) and (3.4.11) are satisfied with
M̃i = Ini , κ̂i = 0.95, κ̃i = 1, bi = 1, Ki = (λ′i − 1)Ini , λ

′
i = 0.5, Zi = Gi = Ini ,

L1i = −1ni , R̃ = 1ni , X̄
11 = Ini , X̄

22 = 0ni , and X̄12 = X̄21 = λ′iIni . Moreover, for any
i ∈ {1, . . . , N}, P̃i = 1ni satisfies conditions (3.4.12) with Qi = −0.51ni , L2i = −0.11ni ,
and Hi = Ĝi = 1ni . Hence, the function Vi(xi, x̂i) = (xi − 1ni x̂i)T (xi − 1ni x̂i) is an
SStF from Σ̂i to Σi satisfying the condition (3.4.1) with αi(s) = 1

λmax(CT1iC1i)
s2 and the

condition (3.4.2) with κi(s) := 0.05s, ρexti(s) = 0, ∀s ∈ R≥0, Gi = Ini , Hi = 1ni , and

X̄i =

[
Ini λ′iIni
λ′iIni 0ni

]
, (3.4.22)

where the input νi is given via the interface function in (3.4.13) as

νi = (λ′i − 1)(xi − 1ni x̂i)− 0.51ni x̂i + 1ni ν̂i − 1niϕi(Fixi) + 0.11niϕi(Fi1ni x̂i).

Now, we look at Σ̂ = Icd(Σ̂1, . . . , Σ̂N ) with a coupling matrix M̂ satisfying the condi-
tion (3.4.4) as follows:

− τL̃ diag(1n1 , . . . ,1nN ) = diag(1n1 , . . . ,1nN )M̂. (3.4.23)
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Note that the existence of M̂ satisfying (3.4.23) for the graph Laplacian τL̃ means that
the N subgraphs form an equitable partition of the full graph [GR01]. Although this
restricts the choice of a partition in general, for the complete graph any partition is
equitable.

Choosing µ1 = · · · = µN = 1 and using X̄i in (3.4.22), matrix X̄cmp in (3.4.6) reduces
to

X̄cmp =

[
In λ′In
λ′In 0n

]
,

where λ′ = λ′1 = · · · = λ′N = 0.5, and the condition (3.4.3) reduces to[
−τL̃
In

]T
X̄cmp

[
−τL̃
In

]
= τ2L̃T L̃− λ′τL̃− λ′τL̃T = τL̃(τL̃− 2λ′In) � 0,

without requiring any restrictions on the number or gains of the subsystems with τ =
0.9/(n − 1). In order to show the above inequality, we used L̃ = L̃T � 0 which is
always true for Laplacian matrices of undirected graphs. Now, one can readily verify
that V (x, x̂) =

∑n
i=1(xi − 1ni x̂i)T (xi − 1ni x̂i) is a sum-type SSF from Σ̂ to Σ satisfying

conditions (3.2.3) and (3.2.4).
For the sake of simulation, we assume L̃ is the Laplacian matrix of a complete graph

as

L̃ =


n− 1 −1 · · · · · · −1
−1 n− 1 −1 · · · −1
−1 −1 n− 1 · · · −1
...

. . .
. . .

...
−1 · · · · · · −1 n− 1


n×n

. (3.4.24)

We fix N = 3, n = 222, ni = 74, and C1
i = [1; 0; . . . ; 0]T , i ∈ {1, 2, 3}. By using the

inequality (3.2.5) and starting the interconnected systems Σ and Σ̂ from initial states
−131222 and −1313, respectively, we guarantee that the distance between outputs of Σ
and Σ̂ will not exceed ε = 1 during the time horizon Td = 10 with a probability at least
90%, i.e.,

P (‖yaν(k)− ŷâν̂(k)‖2 ≤ 1, ∀k ∈ [0, 10]) ≥ 0.9.

Let us now synthesize a controller for Σ via the abstraction Σ̂ to enforce a specification,
defined by the following scLTL formula (cf. Definition 3.4.11):

$ =

Td∧
j=0

©j
(
S̄ ∧

( 3∧
i=1

(¬Āi)
))
∧3T̄1 ∧3T̄2, (3.4.25)

which requires that any output trajectory y of the closed-loop system evolves inside the
set S̄, avoids sets Āi, i ∈ {1, 2, 3}, indicated with blue boxes in Figure 3.5, over the
bounded time interval [0, Td], and visits each T̄i, i ∈ {1, 2}, indicated with red boxes in
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Figure 3.5: The specification with closed-loop output trajectories of Σ (black one) and Σ̂ (red
one). The sets S̄, Āi, i ∈ {1, 2, 3}, and T̄i, i ∈ {1, 2} are given by: S̄ = [−14, 14]3,
Ō1 = [−10,−6] × [6, 10] × [10, 10], Ō2 = [−5, 5]3, and Ō3 = [6, 10] × [−10,−6] ×
[10, 10], T̄1 = [−10,−6]× [−10,−6]× [−10,−6] and T̄2 = [6, 10]× [6, 10]× [6, 10].

Figure 3.5. We want to satisfy $ over the bounded time interval [0, 10], i.e., Td = 10.
We use SCOTS [RZ16] to synthesize a controller for Σ̂ to enforce (3.4.25). In the synthesis
process, we restrict the abstract inputs ν̂1, ν̂2, ν̂3 to [−4, 4]. We also set the initial states
of Σ to xi = P̃ix̂i, so that Vi(xi, x̂i) = 0. A realization of closed-loop output trajectories
of Σ and Σ̂ is illustrated in Figure 3.5. Also, several realizations of the norm of the
error between outputs of Σ and Σ̂ are illustrated in Figure 3.6. In order to have some
more practical analysis on the provided probabilistic bound, we also run Monte Carlo
simulation of 10000 runs. In this case, one can statistically guarantee that the distance
between outputs of Σ and Σ̂ is always less than or equal to 0.05 with the same probability,
(i.e., at least 90%). This issue is expected and the reason is due to the conservatism
nature of Lyapunov-like techniques (simulation functions), but with the gain of having
a formal guarantee on the output trajectories rather than an empirical one. Note that
it would not have been possible to synthesize a controller using SCOTS for the original
222-dimensional system Σ, without the 3-dimensional intermediate approximation Σ̂.
Moreover, we have intentionally dropped the noise of the abstraction and employed
SCOTS here to show that if the concrete system possesses some stability property and
the noises of two systems are additive and independent, it is actually better to construct
and employ the non-stochastic abstraction since the non-stochastic abstraction is closer
that the stochastic version (as discussed in Remark 3.2.19).
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Figure 3.6: A few realizations of the norm of the error between outputs of Σ and of Σ̂, e.g.,
‖y − ŷ‖2, for Td = 10.

3.5 Summary

In this chapter, we have proposed compositional infinite abstractions (model order reduc-
tions) of original systems with three different compositional techniques including classic
small-gain, max small-gain and dissipativity approaches. We showed that the proposed
max small-gain approach is more general than the classic one since it does not require
any linear growth on the gains of subsystems which is the case in the classic small-
gain. We also showed that the provided approximation error via the max small-gain
does not change as the number of subsystems grows since the proposed overall error is
completely independent of the size of the network, and is computed only based on the
maximum error of subsystems instead of being a linear combination of them which is the
case in classic small-gain and dissipativity approaches. On the other hand, we discussed
that the proposed dissipativity technique is less conservative than the classic (or max)
small-gain approach in the sense that the provided dissipativity-type compositional con-
dition can enjoy the structure of the interconnection topology and be potentially fulfilled
independently of the number or gains of subsystems.

We have also extended our proposed construction scheme from linear to a particu-
lar class of nonlinear stochastic systems whose nonlinearities satisfy a slope restriction.
Moreover, we extended our specification from a finite-horizon invariant to a fragment of
linear temporal logic known as syntactically co-safe linear temporal logic (scLTL). We
proved that given such a co-safe LTL specification over the concrete system, how one can
construct an epsilon-perturbed specification over the abstract system whose probability
of satisfaction gives a lower bound for the probability of satisfaction in the concrete
domain. It should be noted that we did not put any restriction on the sources of un-
certainties in concrete and abstract systems meaning that the noise of the abstraction
could be completely independent of that of the concrete system. We showed that our re-
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sults are more general than the ones available in the literature (e.g., [Zam14, ZRME17]),
where the noises in concrete and abstract systems are assumed to be the same.
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4 Finite Abstractions (Finite Markov
Decision Processes)

4.1 Introduction

Construction of finite abstractions was introduced in recent years as a promising method
to reduce the complexity of controller synthesis problems in particular for enforcing com-
plex logical properties. In the second phase of the abstract procedure, one can construct
finite abstractions (a.k.a. finite Markov decision processes (MDPs)) as approximate
descriptions of (reduced-order) systems in which each discrete state corresponds to a
collection of continuous states of (reduced-order) systems. Since final abstractions are
finite, algorithmic machineries from Computer Science [BK08] are applicable to synthe-
size controllers over concrete systems enforcing complex logic properties. This chapter
is concerned with providing compositional approaches for the construction of finite ab-
stractions for large-scale discrete-time stochastic systems. We also propose a composi-
tional technique for the construction of both infinite and finite abstractions in a unified
framework via notions of approximate probabilistic relations. We show that the unified
compositional framework is less conservative than the two-step consecutive procedure
that independently constructs infinite and finite abstractions.

4.1.1 Related Literature

4.1.1.1 Finite Abstraction Techniques

There have been several results, proposed in the past few years, on the construction
of finite abstractions for stochastic systems. Finite abstractions are initially employed
in [APLS08] for the formal synthesis of discrete-time stochastic systems. An adaptive
and sequential gridding scheme is proposed in [SA11, SA13a] that abstracts the system
to a finite-state Markov chain. The main goal of the proposed algorithm is to make
the discretization approach applicable to systems with larger dimensions. The approach
generally relies on continuity of the stochastic kernel associated to the system and the
error is a linear function of discretization parameters.

An approximation algorithm is proposed in [SA12a] with an error that depends on
higher orders of discretization parameters. The continuity assumption is further re-
laxed in [SA12b, SA14b] by quantifying the discretization error for systems that have
both deterministic and stochastic dynamics. Extension of the techniques to the formal
abstraction-based policy synthesis is discussed in [TMKA13, Sou14]. Finite bisimilar
abstractions for incrementally stable stochastic switched systems, randomly switched
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stochastic systems, and for incrementally stable stochastic control systems without dis-
crete dynamics are respectively discussed in [ZAG15], [ZA14], and [ZMEM+14].

The use of abstraction techniques for modeling population of dynamical systems
is studied in [SA15a, KES+13]. Construction of a finite stochastic dynamical model
as the aggregation of temperature dynamics of a collection of thermostatically con-
trolled loads is presented in [SA13b, SA15a] for discrete-time dynamics and in [SGE+14]
for continuous-time dynamics. An abstraction framework for mapping a discrete-time
stochastic system to an interval-valued Markov chain and mapping a switched discrete-
time stochastic system to a bounded-parameter Markov decision process is proposed
in [LAB15]. A method to generate finite Markovian abstractions for discrete-time linear
stochastic systems evolving in full dimensional polytopes is provided in [LAB12]. An
efficient abstraction framework for formal analysis and control synthesis of discrete-time
stochastic hybrid systems with linear dynamics is developed in [CLL+19]. Safety veri-
fication of continuous-space Markov processes with jumps is studied in [SMA16] using
discrete abstractions.

4.1.1.2 Compositional Techniques

In order to make the approaches provided by finite abstractions applicable to networks of
interacting systems, compositional techniques are proposed in the past few years. Com-
positional construction of finite abstractions for discrete-time stochastic control systems
is presented in [SAM15, SAM17] using dynamic Bayesian networks. A compositional
strategy synthesis for stochastic games with multiple objectives is provided in [BKW18].
Compositional probabilistic verification via an assume-guarantee framework based on
multi-objective probabilistic model checking is investigated in [KNPQ13] for finite sys-
tems.

4.1.1.3 Stochastic Similarity Relations

Stochastic similarity relations are employed to relate the probabilistic behavior of con-
crete models to that of their abstractions. These similarities can be presented in the
context of stochastic simulation, bisimulation, exact, and approximate relations. Sim-
ilarity relations over finite-state stochastic systems have been studied, either via ex-
act notions of probabilistic (bi)simulation relations [LS91], [SL95] or approximate ver-
sions [DLT08b], [DAK12]. Similarity relations for models with general, uncountable
state spaces have been also proposed in the literature. These relations either depend
on stability requirements on model outputs via martingale theory or contractivity anal-
ysis [JP09], [ZMEM+14] or enforce structural abstractions of a model [DGJP04] by
exploiting continuity conditions on its probability laws [Aba13], [AKNP14]. A new no-
tion of approximate similarity relation is recently proposed in [HSA17, HS18] that takes
into account both the deviation in the stochastic evolution and in outputs of the two
systems.
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4.1.1.4 Control Barrier Certificates

In order to deal with the computational complexity arising with the construction of finite
abstractions, there have also been discretization-free approaches based on control barrier
certificates, proposed in recent years. Discretization-free approaches based on barrier
certificates for stochastic hybrid systems are initially proposed in [PJP07], and then
extended for the probabilistic safety verification and finite-time regional verification in
[HCL+17], and [ST12], respectively. Temporal logic verification of stochastic systems
via control barrier certificates and its extension for formal synthesis are respectively
presented in [JSZ18] and [JSZ19]. Recently, verification and control for a finite-time
safety of stochastic systems via barrier functions are discussed in [SDC19].

4.1.1.5 Stability Verification of Large-Scale Systems

There have been also some results in the context of the stability verification of large-
scale non-stochastic systems via finite-step Lyapunov-type functions. Nonconservative
small-gain conditions based on finite-step Lyapunov functions are originally introduced
in [AP98]. Nonconservative dissipativity and small-gain conditions for stability anal-
ysis of interconnected systems are proposed in [GL12, NR14]. Stability analysis of
large-scale discrete-time systems via finite-step storage functions is discussed in [GL15].
Moreover, nonconservative small-gain conditions for closed sets using finite-step ISS
Lyapunov functions are presented in [NGG+18]. Recently, compositional construction
of finite abstractions via relaxed small-gain conditions for discrete-time non-stochastic
systems is discussed in [NSWZ18]. The proposed results in [NSWZ18] employ finite-
step ISS Lyapunov functions and their compositionality framework is only applicable to
non-stochastic systems.

4.1.1.6 Learning Techniques

Reinforcement learning (RL) [SB18] is an approach to sequential decision making in
which agents rely on reward signals to choose actions aimed at achieving prescribed ob-
jectives. Model-free RL [SLW+06] refers to a class of techniques that are asymptotically
space-efficient because they do not construct a full model of the environment. These
techniques include classic algorithms like TD(λ) [Sut88] and Q-learning [Wat89] as well
as their extensions to deep neural networks such as deep deterministic policy gradi-
ent (DDPG) [LHP+15] and neural-fitted Q-iterations [Rie05]. Model-free reinforcement
learning has achieved performance comparable to that of human experts in video and
board games [Tes95, MKS+15, SHM+16]. This success has motivated extensions of RL to
the control of safety-critical systems [LHP+15, LFDA16] in spite of a lack of theoretical
convergence guarantees of RL for general continuous-state spaces [DSL+17].

4.1.2 Contributions

In the first part of this chapter, we provide max small-gain type conditions for the
compositional quantification of the probabilistic distance between the interconnection
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of stochastic control subsystems and that of their finite abstractions. We show that if
original systems are incrementally input-to-state stable, one can construct finite MDPs
for the general setting of nonlinear stochastic control systems. We also show that for
the same nonlinear class of stochastic control systems proposed in the previous chapter,
the aforementioned incrementally ISS property can be readily verified by some easier to
check matrix inequalities. We demonstrate the effectiveness of the proposed results by
applying our approaches to a fully connected network of 20 nonlinear subsystems (totally
100 dimensions). We construct finite MDPs from their reduced-order versions proposed
in the previous chapter (together 20 dimensions) with guaranteed error bounds on their
output trajectories. We also apply the proposed results to the temperature regulation
in a circular building and construct compositionally a finite abstraction of a network
containing 1000 rooms. We employ the constructed finite abstractions as substitutes
to compositionally synthesize policies regulating the temperature in each room for a
bounded time horizon.

We then extend our results to stochastic switched systems whose switch signals accept
dwell-time with multiple Lyapunov functions. We show that under standard assumptions
ensuring the incremental input-to-state stability of switched systems (i.e., existence of
common incremental ISS Lyapunov functions, or multiple incremental ISS Lyapunov
functions with dwell-time), one can construct finite MDPs for the general setting of
nonlinear stochastic switched systems. To demonstrate the effectiveness of our proposed
results, we first apply our approaches to a road traffic network in a circular cascade ring
composed of 200 cells, and construct compositionally a finite MDP of the network. We
employ the constructed finite abstractions as substitutes to compositionally synthesize
policies keeping the density of the traffic lower than 20 vehicles per cell. We benchmark
our proposed results against the ones available in the literature. We also provide some
discussions on the memory usage and computation time in the construction of finite
MDPs for this case study in both monolithic and compositional manners, and compare
the results in a table for different ranges of the state discretization parameter. We show
that the proposed compositional approach in this work remarkably reduces the curse
of dimensionality problem in constructing finite MDPs. We then apply our proposed
techniques to a fully interconnected network of 500 nonlinear subsystems (totally 1000
dimensions), and construct their finite MDPs with guaranteed error bounds. We provide
simulation results for this case study to have a more practical analysis on the proposed
probabilistic bounds.

In the second part of the chapter, we first propose the dissipativity approach as our
compositional framework for the construction of finite MDPs from stochastic control
systems and provide the corresponding results. We utilize the incremental passivability
property of original systems and propose an approach to construct finite MDPs for the
general setting of nonlinear stochastic control systems. We apply our proposed results
to the temperature regulation in a network of 200 rooms such that the compositionality
condition does not require any constraint on the number or gains of the subsystems.
We also illustrate the effectiveness of our results on an example of fully interconnected
network. We benchmark our results against the compositional abstraction technique of
[SAM15] which is based on construction of finite MDPs via dynamic Bayesian networks.
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We then generalize our results to stochastic switched systems with multiple supply
rates and multiple storage functions accepting dwell-time. We also enlarge the class
of systems for the construction of finite MDPs by adding time-varying nonlinearities
to the dynamics satisfying an incremental quadratic inequality, whereas the provided
results in the first part of the chapter only handle the class of nonlinearities satisfying
slope restrictions. We also relax one of the compositionality conditions proposed for
stochastic control systems in the previous part that was implicit, without providing
a direct method for satisfying it. We relax this condition at the cost of incurring an
additional error term, but benefiting from choosing quantization parameters of internal
input sets freely. We apply our proposed techniques to a fully interconnected network of
100 nonlinear subsystems (totally 200 dimensions), and also a road traffic network in a
circular cascade ring composed of 50 cells.

In the third and forth parts of the chapter, we propose relaxed versions of max small-
gain and dissipativity approaches and provide a less conservative framework in the sense
that the stabilizability of individual subsystems for establishing the compositional re-
sults, required in all previous parts, is not here necessarily required. We also provide the
probabilistic closeness guarantee between interconnected stochastic autonomous systems
and that of their finite Markov chains (MCs) for the whole state trajectory. We quantify
that if the state discretization parameter is small enough, the sampled MC will be close
enough to the original system for the all time instances. We apply our proposed results
to different case studies including three networks with unstabilizable subsystems, and a
fully interconnected network of 500 nonlinear subsystems.

We then propose a compositional approach for the construction of (in)finite abstrac-
tions using notions of approximate probabilistic relations. The abstraction framework
is based on δ-lifted relations, using which one can quantify the distance in probability
between the interconnected original systems and that of their abstractions. This new
approximate relation unifies compositionality results in the literature by incorporating
the dependencies between state transitions explicitly and by allowing abstract models to
have either finite or infinite state spaces. In particular, we focus on the nonlinear class of
stochastic control systems satisfying slope restrictions and construct their abstractions
using both the model order reduction and the space discretization in a unified framework.
We show that the unified compositional scheme is less conservative than the two-step
consecutive procedure that independently constructs infinite and finite abstractions.

Finally, we propose a novel reinforcement learning framework to synthesize policies for
unknown, continuous-space MDPs. This scheme enables one to apply model-free, off-the-
shelf reinforcement learning algorithms for finite MDPs to compute optimal strategies
for the corresponding continuous-space MDPs without explicitly constructing the finite-
state abstraction. The proposed approach is based on abstracting the process with a
finite MDP with unknown transition probabilities, synthesizing strategies over the ab-
stract MDP, and then mapping the results back over the concrete continuous-space MDP
with bounded approximation guarantees. The system properties of interest belong to the
co-safe LTL, and the synthesis requirement is to maximize the probability of satisfaction
within a given bounded time horizon. A key contribution here is to leverage the classical
convergence results for the reinforcement learning on finite MDPs and provide control
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strategies maximizing the probability of satisfaction over the unknown, continuous-space
MDPs by providing probabilistic closeness guarantees.

4.2 max Small-Gain Approach

In this section, we provide a compositional methodology for the construction of finite ab-
stractions for the both stochastic control and switched systems. The proposed technique
leverages sufficient max small-gain type conditions to establish the compositionality re-
sults which rely on relations between subsystems and their finite abstractions described
by the existence of max-type stochastic simulation functions.

4.2.1 Stochastic Control Systems

We first consider the stochastic control systems defined in (2.3.1) and the max-type SPSF
and SSF in Definitions 3.3.1, 3.3.3. We present a computational scheme to construct
finite MDPs together with their corresponding max-type SPSF for concrete models or
their reduced-order versions. We then show that if original systems are incrementally
input-to-state stable, one can construct finite MDPs for the general setting of nonlinear
stochastic control systems. We also show that for the same nonlinear class of stochastic
control systems defined in (3.3.10), the aforementioned incrementally ISS property can
be readily verified by some easier to check matrix inequalities. We demonstrate the
effectiveness of the proposed results by applying our approaches to a fully connected
network of 20 nonlinear subsystems (totally 100 dimensions). We construct finite MDPs
from their reduced-order versions (together 20 dimensions) proposed in Section 3.3 of
the previous chapter with guaranteed error bounds on their output trajectories.

We also apply the proposed results to a temperature regulation in a circular building
and construct compositionally a finite abstraction of a network containing 1000 rooms.
We employ the constructed finite abstractions as substitutes to compositionally synthe-
size policies regulating the temperature in each room for a bounded time horizon. Note
that we provide the compositional frameworks for infinite and finite abstractions in the
previous and this chapters separately since one may be interested in employing one of
the proposed results. In addition, if construction of infinite abstractions provided in
the previous section is not possible for some given dynamics, one can readily utilize the
proposed results for finite abstractions (without performing the model order reduction)
which is always possible as in this chapter.

In the next subsection, we show how to construct finite Markov decision processes
(MDPs) from concrete models (or their reduced-order versions) as finite abstractions of
original systems.

4.2.1.1 Finite Abstractions of dt-SCS

In this subsection, we approximate a dt-SCS Σ with a finite Σ̂ using Algorithm 1. This
algorithm adapted from [SAM15] with some modifications presents this approximation.
To construct such a finite approximation, we assume the state and input sets of the
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dt-SCS Σ are restricted to compact subsets over which we are interested to perform
synthesis. The rest of the state sets can be considered as single absorbing states in both
Σ and Σ̂. In order to make the notation easier, we assume this procedure is already
applied to the system and eliminate the absorbing states from the presentation.

Algorithm 1 first constructs a finite partition from the state set X and input sets U,W .
Then representative points x̄i ∈ Xi, ν̄i ∈ Ui, and w̄i ∈Wi are selected as abstract states
and inputs. Transition probabilities in the finite MDP Σ̂ are also computed according
to (4.2.1). The output maps ĥ1, ĥ2 are the same as h1, h2 with their domain restricted
to finite state set X̂ (cf. Step 7) and the output sets Ŷ 1, Ŷ 2 are the image of X̂ under
h1, h2 (cf. Step 6).

Algorithm 1 Abstraction of dt-SCS Σ by a finite MDP Σ̂

Require: Input dt-SCS Σ =
(
X,W,U, Tx, Y

1, Y 2, h1, h2
)

1: Select finite partitions of sets X,U,W as X = ∪nxi=1Xi, U = ∪nνi=1Ui, W = ∪nwi=1Wi

2: For each Xi,Ui, and Wi, select single representative points x̄i ∈ Xi, ν̄i ∈ Ui, w̄i ∈Wi

3: Define X̂ := {x̄i, i = 1, ..., nx} as the finite state set of MDP Σ̂ with external and
internal input sets Û := {ν̄i, i = 1, ..., nν} Ŵ := {w̄i, i = 1, ..., nw}

4: Define the map Ξ : X → 2X that assigns to any x ∈ X, the corresponding partition
set it belongs to, i.e., Ξ(x) = Xi if x ∈ Xi for some i = 1, 2, . . . , nx

5: Compute the discrete transition probability matrix T̂x for Σ̂ as

T̂x(x′
∣∣x, ν, w) = Tx(Ξ(x′)

∣∣x, ν, w), (4.2.1)

for all x, x′ ∈ X̂, ν ∈ Û , w ∈ Ŵ
6: Define output spaces Ŷ 1 := h1(X̂), Ŷ 2 := h2(X̂)
7: Define output maps ĥ1 := h1|X̂ and ĥ2 := h2|X̂

Ensure: Output finite MDP

Σ̂ = (X̂, Û , Ŵ , T̂x, Ŷ
1, Ŷ 2, ĥ1, ĥ2) (4.2.2)

In the following theorem, we give a dynamical representation of the finite MDP.

Theorem 4.2.1. Given a dt-SCS Σ =
(
X,U,W, ς, f, Y 1, Y 2, h1, h2

)
, the finite MDP Σ̂

constructed in Algorithm 1 can be represented as

Σ̂ = (X̂, Û , Ŵ , ς, f̂ , Ŷ 1, Ŷ 2, ĥ1, ĥ2), (4.2.3)

where f̂ : X̂ × Û × Ŵ × Vς → X̂ is defined as

f̂(x̂, ν̂, ŵ, ς) = Πx(f(x̂, ν̂, ŵ, ς)), (4.2.4)

and Πx : X → X̂ is the map that assigns to any x ∈ X, the representative point x̄ ∈ X̂
of the corresponding partition set containing x. The initial state of Σ̂ is also selected
according to x̂0 := Πx(x0) with x0 being the initial state of Σ.
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Proof. It is sufficient to show that (4.2.1) holds for the dynamical representation of Σ̂ in
(4.2.3) and that of Σ. For any x, x′ ∈ X̂, ν ∈ Û and w ∈ Ŵ ,

T̂x(x′
∣∣x, ν, w) = P(x′ = f̂(x, ν, w, ς))

= P(x′ = Πx(f(x, ν, w, ς))) = P(f(x, ν, w, ς) ∈ Ξ(x′)),

where Ξ(x′) is the partition set with x′ as its representative point as defined in Step 4
of Algorithm 1. Using the probability measure ϑ(·) of random variable ς, we can write

T̂x(x′
∣∣x, ν, w) =

∫
Ξ(x′)

f(x, ν, w, ς)dϑ(ς) = Tx(Ξ(x′)
∣∣x, ν, w),

which completes the proof.

Dynamical representation provided by Theorem 4.2.1 uses the map Πx : X → X̂ that
assigns to any x ∈ X, the representative point x̄ ∈ X̂ of the corresponding partition set
containing x. This map satisfies the inequality

‖Πx(x)− x‖ ≤ δ̄, ∀x ∈ X, (4.2.5)

where δ̄ := sup{‖x − x′‖, x, x′ ∈ Xi, i = 1, 2, . . . , nx} is the discretization parameter.
We use this inequality in the next subsection for the compositional construction of finite
MDPs.

Remark 4.2.2. Note that the proposed bound in (4.2.5) is valid for any type of norms
provided that the state discretization parameter δ̄ is defined based on the corresponding
norm.

Remark 4.2.3. We started from the concrete continuous-space dt-SCS as in (2.3.1),
constructed its representation as a continuous-space MDP as presented in (2.4.1), then
employed Algorithm 1 to construct a finite MDP (4.2.2) from the continuous-space
MDP (2.4.1), and finally transformed it back to a finite-space dt-SCS as in (4.2.3) as our
final abstract model (which is more common to be presented in this form for the control
community).

Remark 4.2.4. Note that we do not have any requirements for discretizing state, ex-
ternal, and internal input sets. However, the size of the state discretization parameter δ̄
appears in the formulated error as in (4.2.13) and (4.2.19): one can decrease the error
by reducing the state discretization parameter. We also do not have any constraint on
the shape of the partition elements in general in constructing finite MDPs. For the sake
of an easy implementation, one can consider partition sets as hyper-intervals and the
center of them as representative points.

In the next subsection, we provide an approach for the compositional synthesis of
interconnected dt-SCS.
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4.2.1.2 Compositionality Results

Here, we consider Σi = (Xi, Ui,Wi, ςi, fi, Y
1
i , Y

2
i , h

1
i , h

2
i ) as the original subsystems (or

their reduced-order versions constructed in the previous section) and Σ̂i as their finite
abstractions as constructed in Algorithm 1 given by the tuple

Σ̂i = (X̂i, Ûi, Ŵi, ςi, f̂i, Ŷ
1
i , Ŷ

2
i , ĥ

1
i , ĥ

2
i ),

with the input-output configuration similar to (3.2.8) and (3.2.9), where Ŵi ⊆ Wi,
Ŷ 1
i ⊆ Y 1

i , and Ŷ 2
i ⊆ Y 2

i . Moreover, we assume there exists the max-type SPSF Vi from

Σ̂i to Σi with the corresponding functions and constants denoted by αi, κi, ρinti, ρexti, and
ψi. In order to provide the compositionality result of this section for interconnected finite
systems, we first define the abstraction map Πwji on Wji that assigns to any wji ∈Wji,

a representative point w̄ji ∈ Ŵji of the corresponding partition set containing wji. The
mentioned map satisfies

‖Πwji(wji)− wji‖ ≤ µ̄ji, ∀wji ∈Wji, (4.2.6)

where µ̄ji is an internal input discretization parameter defined similar to δ̄ in (4.2.5).

Remark 4.2.5. Note that the condition (4.2.6) helps us to choose quantization parame-
ters of internal input sets freely at the cost of incurring an additional error term for the
overall network (i.e, ψ) which is formulated based on µ̄ji in (4.2.10). Moreover, the state
discretization parameter δ̄ appears in the formulated error for each subsystem (i.e, ψi)
as in (4.2.13) and (4.2.19). These two errors together affect the probabilistic closeness
guarantee provided in Theorem 3.2.7.

Now we define a notion of the interconnection applicable to finite MDPs.

Definition 4.2.6. Consider N ∈ N≥1 finite stochastic control subsystems Σ̂i = (X̂i, Ûi, Ŵi,

ςi, f̂i, Ŷ
1
i , Ŷ

2
i , ĥ

1
i , ĥ

2
i ), i ∈ {1, . . . , N}. The interconnection of Σ̂i is the finite intercon-

nected stochastic control system Σ̂ = (X̂, Û , ς, f̂ , Ŷ , ĥ), denoted by Îcs(Σ̂1, . . . , Σ̂N ), such
that X̂ :=

∏N
i=1 X̂i, Û :=

∏N
i=1 Ûi, f̂ :=

∏N
i=1 f̂i, Ŷ :=

∏N
i=1 Ŷ

1
i , and ĥ =

∏N
i=1 ĥ

1
i ,

subject to the following constraint:

∀i, j ∈ {1, . . . , N}, i 6= j : ŵji = Πwji(ŷ
2
ij), Πwji(Ŷ

2
ij) ⊆ Ŵji.

Now we raise the following max small-gain assumption similar to Assumption 3.3.4.

Assumption 4.2.7. Assume that there exist K∞ functions δ̃f , λ̄ such that (λ̄−Id) ∈ K∞
and K∞ functions κij defined as

κij(s) :=

{
κi(s), if i = j,

(Id + δ̃f ) ◦ ρinti ◦ λ̄ ◦ α−1
j (s), if i 6= j,

satisfy
κi1i2 ◦ κi2i3 ◦ · · · ◦ κir−1ir ◦ κiri1 < Id (4.2.7)
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for all sequences (i1, . . . , ir) ∈ {1, . . . , N}r and r ∈ {1, . . . , N}.
Similar to (3.3.6), the small-gain condition (4.2.7) implies the existence of K∞ func-

tions σi > 0 [Rüf10, Theorem 5.5], satisfying

max
i,j

{
σ−1
i ◦ κij ◦ σj

}
< Id, i, j = {1, . . . , N}. (4.2.8)

In the next theorem, we leverage the max small-gain Assumption 4.2.7 together with
the concavity assumption of maxi σ

−1
i to quantify the error between the interconnection

of stochastic control subsystems and that of their finite abstractions in a compositional
manner.

Theorem 4.2.8. Consider the interconnected dt-SCS Σ = Ics(Σ1, . . . ,ΣN ) induced by
N ∈ N≥1 stochastic control subsystems Σi. Suppose that each Σi admits a finite abstrac-

tion Σ̂i together with a max-type SPSF Vi. If Assumption 4.2.7 holds and maxi σ
−1
i for

σi as in (4.2.8) is concave, then the function V (x, x̂) defined as

V (x, x̂) := max
i

{
σ−1
i (Vi(xi, x̂i))

}
, (4.2.9)

is a max-type SSF from Σ̂ = Îcs(Σ̂1, . . . , Σ̂N ) to Σ = Ics(Σ1, . . . ,ΣN ).

Proof. We first show that the max-type SSF V in (4.2.9) satisfies the inequality (3.3.3)
for some K∞ function α. For any x = [x1; . . . ;xN ] ∈ X and x̂ = [x̂1; . . . ; x̂N ] ∈ X̂, one
gets

‖h(x)− ĥ(x̂)‖ = max
i

{
‖h1

i (xi)− ĥ1
i (x̂i)‖

}
≤ max

i

{
α−1
i (Vi(xi, x̂i))

}
≤ β̂ (max

i

{
σ−1
i (Vi(xi, x̂i))

}
) = β̂(V (x, x̂)),

where β̂(s) = maxi

{
α−1
i ◦ σi(s)

}
for all s ∈ R≥0, which is a K∞ function and (3.3.3)

holds with α = β̂−1.

We continue with showing (3.3.4). Let κ(s) = maxi,j{σ−1
i ◦ κij ◦ σj(s)}. It follows

from (4.2.8) that κ < Id. Since maxi σ
−1
i is concave, one can readily get the chain of

inequalities in (4.2.12) using Jensen’s inequality, the inequality (4.2.6), and by defining
ρext(·), and ψ as

ρext(s) :=

{
maxi{σ−1

i ◦ ρexti(si)}
s.t. si≥ 0, ‖[s1; . . . ; sN ]‖ = s

ψ := max
i
σ−1
i (Λi), (4.2.10)

where Λi := (Id+ δ̃−1
f )◦(ρinti◦λ̄◦(λ̄−Id)−1(maxj,j 6=i{µ̄ji})+ψi). Hence, V is a max-type

SSF from Σ̂ to Σ which completes the proof.
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Remark 4.2.9. Note that to show Theorem 4.2.8, we have employed the following in-
equalities: {

ρint(a+ b) ≤ ρint ◦ λ̄(a) + ρint ◦ λ̄ ◦ (λ̄− Id)−1(b),

a+ b ≤ max{(Id + δ̃f )(a), (Id + δ̃−1
f )(b)},

for any a, b ∈ R≥0, where ρint, δ̃f , λ̄, (λ̄− Id) ∈ K∞.

Remark 4.2.10. If ρinti, ∀i ∈ {1, . . . , N} are linear, κij and Λi reduce to, respectively,
κij = (Id + δ̃f ) ◦ ρinti ◦ α−1

j (s), and Λi := (Id + δ̃−1
f ) ◦ (ρinti ◦ (maxj,j 6=i{µ̄ji}) + ψi),∀i ∈

{1, . . . , N}, j 6= i.

Figure 4.1 schematically shows the results of Theorem 4.2.8.

4.2.1.3 Construction of max-type SPSF

4.2.1.3.1 General Setting of Nonlinear Stochastic Control Systems

In this subsection, we assume that the output map hi, i ∈ {1, 2}, satisfies the following
general Lipschitz assumption: there exists an α̃ ∈ K∞ such that ‖hi(x) − hi(x′)‖ ≤
α̃(‖x − x′‖) for all x, x′ ∈ X, and i ∈ {1, 2}. Note that this assumption on hi is not
restrictive provided that hi is continuous and one works on a compact subset of X. We
impose conditions on the infinite dt-SCS Σ enabling us to find a max-type SPSF from
its finite abstraction Σ̂, constructed as in the previous subsection, to Σ. The existence of
the max-type SPSF is established under the assumption that the original model (or its
reduced-order version) is incrementally input-to-state stable (δ-ISS) as in Definition 2.7.1.
Moreover, we need to raise the following assumption.

Assumption 4.2.11. Assume that there exists a function γ ∈ K∞ such that

V (x, x′)− V (x, x′′) ≤ γ(‖x′ − x′′‖), ∀x, x′, x′′ ∈ X. (4.2.11)

Remark 4.2.12. As shown in [ZMEM+14] and by employing the mean value theorem,
the inequality (4.2.11) is always satisfied for any differentiable function V restricted to a

compact subset of X×X. Note that if one chooses V = ((x−x′)T M̃(x−x′))
1
2 ,∀x, x′ ∈ X,

then γ(s) =
√
λmax(M̃)s, ∀s ∈ R≥0.

Now we show that under this mild condition, the function V is indeed a max-type
SPSF from Σ̂ to Σ.

Theorem 4.2.13. Let Σ be an incrementally input-to-state stable dt-SCS via a function
V as in Definition 2.7.1 and Σ̂ be its finite MDP constructed as in Algorithm 1. If
Assumption 4.2.11 holds, then V is a max-type SPSF from Σ̂ to Σ.

Proof. Given the Lipschitz assumption on hi, since Σ is incrementally input-to-state
stable, and from (2.7.1), ∀x ∈ X and ∀x̂ ∈ X̂, we get

‖hi(x)− ĥi(x̂)‖ ≤ α̃(‖x− x̂‖) ≤ β̂(V (x, x̂)),
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E
[
V (f(x, ν, ς), f̂(x̂, ν̂, ς))

∣∣x, x̂, ν̂]
= E

[
max
i

{
σ−1
i (Vi(fi(xi, νi, wi, ςi), f̂i(x̂i, ν̂i, ŵi, ςi)))

} ∣∣x, x̂, ν̂]
≤ max

i

{
σ−1
i (E

[
Vi(fi(xi, νi, wi, ςi), f̂i(x̂i, ν̂i, ŵi, ςi))

∣∣x, x̂, ν̂])}
= max

i

{
σ−1
i (E

[
Vi(fi(xi, νi, wi, ςi), f̂i(x̂i, ν̂i, ŵi, ςi))

∣∣xi, x̂i, ν̂i])}
≤ max

i

{
σ−1
i (max{κi(Vi(xi, x̂i)), ρinti(‖wi − ŵi‖), ρexti(‖ν̂i‖), ψi})

}
= max

i

{
σ−1
i (max{κi(Vi(xi, x̂i)), ρinti(max

j,j 6=i
{‖wij − ŵij‖}), ρexti(‖ν̂i‖), ψi})

}
= max

i

{
σ−1
i (max{κi(Vi(xi, x̂i)),ρinti(max

j,j 6=i
{‖y2

ji−ŷ2
ji+ŷ

2
ji−Πwji(ŷ

2
ji)‖}),ρexti(‖ν̂i‖), ψi})

}
≤ max

i

{
σ−1
i (max{κi(Vi(xi, x̂i)), ρinti(max

j,j 6=i
{‖y2

ji − ŷ2
ji‖+ ‖ŷji −Πwji(ŷji)‖}),

ρexti(‖ν̂i‖), ψi})
}

≤ max
i

{
σ−1
i (max{κi(Vi(xi, x̂i)), ρinti(max

j,j 6=i
{α−1

j (Vj(xj , x̂j)) + µ̄ji}), ρexti(‖ν̂i‖), ψi})
}

≤ max
i

{
σ−1
i (max{κi(Vi(xi, x̂i)), ρinti ◦ λ̄(max

j,j 6=i
{α−1

j (Vj(xj , x̂j))})

+ ρinti ◦ λ̄ ◦ (λ̄− Id)−1(max
j,j 6=i
{µ̄ji}), ρexti(‖ν̂i‖), ψi})

}
≤ max

i

{
σ−1
i (max{κi(Vi(xi, x̂i)),(Id+δ̃f )◦ρinti◦λ̄(max

j,j 6=i
{α−1

j (Vj(xj , x̂j))}), ρexti(‖ν̂i‖),Λi})
}

= max
i,j

{
σ−1
i (max{κij(Vj(xj , x̂j)), ρexti(‖ν̂i‖),Λi})

}
= max

i,j

{
σ−1
i (max{κij ◦ σj ◦ σ−1

j (Vj(xj , x̂j)), ρexti(‖ν̂i‖),Λi})
}

≤ max
i,j,l

{
σ−1
i (max{κij ◦ σj ◦ σ−1

l (Vl(xl, x̂l)), ρexti(‖ν̂i‖),Λi})
}

= max
i,j

{
σ−1
i (max{κij ◦ σj(V (x, x̂)), ρexti(‖ν̂i‖),Λi})

}
= max

{
κ(V (x, x̂)), ρext(‖ν̂‖), ψ

}
. (4.2.12)

where β̂ = α̃ ◦α−1, which satisfies (3.3.1) with α(s) := β̂−1(s) ∀s ∈ R≥0. Now by taking
the conditional expectation from (4.2.11), ∀x ∈ X,∀x̂ ∈ X̂, ∀ν̂ ∈ Û , ∀w ∈ W, ∀ŵ ∈ Ŵ ,
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ŵji

h1

i (xi)

h2

i (xi)ĥ2
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Figure 4.1: Compositionality results for constructing interconnected finite systems provided
that the condition (4.2.7) is satisfied.

we have

E
[
V (f(x, ν̂, w, ς), f̂(x̂, ν̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ]
− E

[
V (f(x, ν̂, w, ς), f(x̂, ν̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ]
≤ E

[
γ(‖f̂(x̂, ν̂, ŵ, ς)− f(x̂, ν̂, ŵ, ς)‖)

∣∣x, x̂, ν̂, w, ŵ],
where f̂(x̂, ν̂, ŵ, ς) = Πx(f(x̂, ν̂, ŵ, ς)). Using (4.2.5), the above inequality reduces to

E
[
V (f(x, ν̂, w, ς), f̂(x̂, ν̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ]
− E

[
V (f(x, ν̂, w, ς), f(x̂, ν̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ] ≤ γ(δ̄).

Employing (2.7.2), we get

E
[
V (f(x, ν̂, w, ς), f(x̂, ν̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ]
≤ V (x, x̂)− κ̄(V (x, x̂)) + ρ̄int(‖w − ŵ‖).

It follows that ∀x ∈ X,∀x̂ ∈ X̂, ∀û ∈ Û , and ∀w ∈W, ∀ŵ ∈ Ŵ ,

E
[
V (f(x, ν̂, w, ς), f̂(x̂, ν̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ]− V (x, x̂)

≤ −κ̄(V (x, x̂)) + ρ̄int(‖w − ŵ‖) + γ(δ̄).
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[
(1 + 2/π)(A+BK)T M̃(A+BK) (A+BK)T M̃E

∗ (1 + 2/π)ET M̃E

]
�
[
κ̂M̃ −F T
−F 2

b

]
(4.2.15)

Using the previous inequality and by employing the similar argument as the one in [SGZ18,
Theorem 1], one obtains

E
[
V (f(x, ν̂, w, ς), f̂(x̂, ν̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ]
≤ max

{
κ̃f (V (x, x̂)), ρ̃int(‖w − ŵ‖), γ̃(δ̄)

}
, (4.2.13)

where κ̃f = Id − (Id − π̃f ) ◦ κ, ρ̃int = (Id + δ̃f ) ◦ κ−1 ◦ π̃−1
f ◦ λ̄ ◦ ρ̄int, γ̃ = (Id + δ̃−1

f ) ◦
κ−1 ◦ π̃−1

f ◦ λ̄ ◦ (λ̄−Id)−1 ◦ γ where δ̃f , π̃f , λ̄, κ are some arbitrarily chosen K∞ functions

with Id − π̃f ∈ K∞, λ̄− Id ∈ K∞, Id − κ ∈ K∞, and κ ≤ κ̄. Then the inequality (3.3.2)
is satisfied with ν = ν̂, κ = κ̃f , ρint = ρ̃int, and ρext ≡ 0, and ψ = γ̃(δ̄). Hence, V is a

max-type SPSF from Σ̂ to Σ.

Now we provide similar results as in this subsection but tailored to the nonlinear class
of stochastic control systems (3.3.10). We show that inequalities (2.7.1) and (2.7.2) for
a candidate quadratic function V boil down to some matrix inequalities.

4.2.1.3.2 Stochastic Control Systems with Slope Restrictions on Nonlinear-
ity

Here, we focus on Σ in (3.3.10) and propose an approach to construct its finite abstraction
Σ̂ via a candidate quadratic function V as

V (x, x̂) = (x− x̂)T M̃(x− x̂), (4.2.14)

where M̃ is a positive-definite matrix of an appropriate dimension. In order to show
that V in (4.2.14) is a max-type SPSF from Σ̂ to Σ, we require the following assumption
on Σ.

Assumption 4.2.14. Assume that for some constant 0 < κ̂ < 1 and π > 0, there exist
matrices M̃ � 0, and K of appropriate dimensions such that the inequality (4.2.15)
holds.

Now we provide another main result of this section showing under which conditions
V in (4.2.14) is a max-type SPSF from Σ̂ to Σ.

Theorem 4.2.15. Assume the system Σ satisfies Assumption 4.2.14 and Ĉi = Ci, i ∈
{1, 2}. Let Σ̂ be its finite abstraction with the state discretization parameter δ̄. Then
function V defined in (4.2.14) is a max-type SPSF from Σ̂ to Σ.
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Proof. We first show that ∀x, ∀x̂, ∀ν̂, ∃ν, ∀w, and ∀ŵ, V satisfies λmin(M̃)
nλmax(CiTCi)

‖Cix −
Ĉix̂‖2 ≤ V (x, x̂) and then

E
[
V (f(x, ν, w, ς), f̂(x̂, ν̂, ŵ, ς))

∣∣x = x(k), x̂ = x̂(k), ν̂ = ν̂(k), w = w(k), ŵ = ŵ(k)
]

≤ max
{

(1− (1− π̃)κ̃)(V (x, x̂)), (1 + δ̃)(
1

κ̃π̃
)(p̄(1 + 2π + 1/π))‖

√
M̃D‖22‖w − ŵ‖2,

(1 + 1/δ̃)(
1

κ̃π̃
)(n(1 + 3π)λmax(M̃)) δ̄2

}
.

Since Ĉi = Ci, we have ‖Cix−Ĉix̂‖2 ≤ nλmax(CiTCi)‖x−x̂‖2, and similarly λmin(M̃)‖x−
x̂‖2 ≤ (x−x̂)T M̃(x−x̂). One can readily verify that λmin(M̃)

nλmax(CiTCi)
‖Cix−Ĉix̂‖2 ≤ V (x, x̂)

holds ∀x, ∀x̂, implying that the inequality (3.3.1) holds with α(s) = λmin(M̃)
nλmax(CiTCi)

s2 for

any s ∈ R≥0. We proceed with showing that the inequality (3.3.2) holds, as well. Given
any x, x̂, and ν̂, we choose ν via the following interface function:

ν = νν̂(x, x̂, ν̂) := K(x− x̂) + ν̂. (4.2.16)

By employing the definition of the interface function, we simplify

Ax+ Eϕ(Fx) +Bν(x, x̂, ν̂) +Dw +Rς

−Πx(Ax̂+ Eϕ(Fx̂) +Bν̂ +Dŵ +Rς)

to

(A+BK)(x− x̂) +D(w − ŵ) + E(ϕ(Fx)− ϕ(Fx̂)) + N̄ , (4.2.17)

where N̄ = Ax̂+Eϕ(Fx̂) +Bν̂+Dŵ+Rς −Πx(Ax̂+Eϕ(Fx̂) +Bν̂+Dŵ+Rς). From
the slope restriction (3.3.11), one obtains

ϕ(Fx)− ϕ(Fx̂) = δ(Fx− Fx̂) = δF (x− x̂), (4.2.18)

where δ is a function of x and x̂ and takes values in the interval [0, b]. Using (4.2.18),
the expression in (4.2.17) reduces to

((A+BK) + δEF )(x− x̂) +D(w − ŵ) + N̄ .

Using Young’s inequality [You12] as cd ≤ π
2 c

2 + 1
2πd

2, for any c, d ≥ 0 and any π > 0,
by employing Cauchy-Schwarz inequality and (4.2.15), and since{

‖N̄‖ ≤ δ̄,

N̄T M̃N̄ ≤ nλmax(M)δ̄2,

one can obtain the chain of inequalities in (4.2.19). Hence, the proposed V in (4.2.14) is
a max-type SPSF from Σ̂ to Σ, which completes the proof. Note that the last inequality
in (4.2.19) is derived by applying Theorem 1 in [SGZ18]. The functions α, κ ∈ K∞, and
ρint, ρext ∈ K∞∪{0} in Definition 3.3.1 associated with V in (4.2.14) are defined as α(s) =

λmin(M̃)
nλmax(CiTCi)

s2, κ(s) := (1−(1−π̃)κ̃) s, ρint(s) := (1+δ̃)( 1
κ̃π̃ )(p̄(1+2π+1/π))‖

√
M̃D‖22 s2,

ρext(s) := 0, ∀s ∈ R≥0 where κ̃ = 1 − κ̂, 0 < π̃ < 1, and δ̃ > 0. Moreover, the positive
constant ψ in (3.3.2) is ψ = (1 + 1/δ̃)( 1

κ̃π̃ )(n(1 + 3π)λmax(M̃)) δ̄2.
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E
[
V (f(x, ν, w, ς), f̂(x̂, ν̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ]
= (x− x̂)T

[
((A+BK) + δEF )T M̃((A+BK) + δEF )

]
(x−x̂)+2

[
(x−x̂)T ((A+BK)

+ δEF )T
]
M̃
[
D(w − ŵ)

]
+ 2
[
(x− x̂)T ((A+BK) + δEF )T

]
M̃E

[
N̄
∣∣x, x̂, ν̂, w, ŵ]

+ 2
[
(w − ŵ)TDT

]
M̃E

[
N̄
∣∣x, x̂, ν̂, w, ŵ]+ (w − ŵ)TDT M̃D(w − ŵ)

+ E
[
N̄T M̃N̄

∣∣x, x̂, ν̂, w, ŵ]
≤
[

x−x̂
δF (x−x̂)

]T [
(1 + 2/π)(A+BK)T M̃(A+BK) (A+BK)T M̃E

∗ (1 + 2/π)ET M̃E

][
x−x̂

δF (x−x̂)

]
+ p̄(1 + 2π + 1/π)‖

√
M̃D‖22‖w − ŵ‖2 + n(1 + 3π)λmax(M̃) δ̄2

≤
[

x− x̂
δF (x− x̂)

]T [
κ̂M̃ −F T
−F 2

b

] [
x− x̂

δF (x− x̂)

]
+ p̄(1 + 2π + 1/π)‖

√
M̃D‖22‖w − ŵ‖2

+ n(1 + 3π)λmax(M̃) δ̄2

= κ̂V (x, x̂)− 2δ(1− δ/b)(x− x̂)TF TF (x− x̂) + p̄(1 + 2π + 1/π)‖
√
M̃D‖22‖w − ŵ‖2

+ n(1 + 3π)λmax(M̃) δ̄2

≤ κ̂V (x, x̂) + (p̄(1 + 2π + 1/π))‖
√
M̃D‖22‖w − ŵ‖2 + n(1 + 3π)λmax(M̃) δ̄2

≤ max
{

(1− (1− π̃)κ̃)(V (x, x̂)), (1 + δ̃)(
1

κ̃π̃
)(p̄(1 + 2π + 1/π))‖

√
M̃D‖22‖w − ŵ‖2,

(1 + 1/δ̃)(
1

κ̃π̃
)(n(1 + 3π)λmax(M̃)) δ̄2

}
. (4.2.19)

Next proposition establishes a so-called transitivity property for the computation of
error bounds proposed in Theorem 3.2.7. This result is important especially when one
first constructs a reduced-order model (an infinite abstraction) of an original stochastic
system and then uses it to construct a finite MDP. The next proposition can provide the
overall error bound in this two-step abstraction scheme. We refer the interested readers
to Case study 4.2.1.4.1 for an application of this proposition.

Proposition 4.2.16. Suppose Σ1, Σ2, and Σ3 are three dt-SCS without internal signals.
For any external input trajectories ν1, ν2, and ν3 and for any random variables a1, a2,
and a3 as the initial states of the three dt-SCS, if

P

{
sup

0≤k≤Td
‖y1a1ν1(k)− y2a2ν2(k)‖ ≥ ε1

∣∣ a1, a2

}
≤ δ̂1,

P

{
sup

0≤k≤Td
‖y2a2ν2(k)− y3a3ν3(k)‖ ≥ ε2

∣∣ a2, a3

}
≤ δ̂2,
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for some ε1, ε2 > 0 and δ̂1, δ̂2 ∈]0 1[, then the probabilistic mismatch between output
trajectories of Σ1 and Σ3 is quantified as

P

{
sup

0≤k≤Td
‖y1a1ν1(k)− y3a3ν3(k)‖ ≥ ε1 + ε2

∣∣ a1, a2, a3

}
≤ δ̂1 + δ̂2.

Proof. By defining

A = {‖y1a1ν1(k)− y2a2ν2(k)‖ < ε1

∣∣ a1, a2, a3},
B = {‖y2a2ν2(k)− y3a3ν3(k)‖ < ε2

∣∣ a1, a2, a3},
C = {‖y1a1ν1(k)− y3a3ν3(k)‖ < ε1 + ε2

∣∣ a1, a2, a3},

we have P{Ā} ≤ δ̂1 and P{B̄} ≤ δ̂2, where Ā and B̄ are the complement of A and B,
respectively. Since P{A ∩ B} ≤ P{C}, we have

P{C̄} ≤ P{Ā ∪ B̄} ≤ P{Ā}+ P{B̄} ≤ δ̂1 + δ̂2.

Then

P

{
sup

0≤k≤Td
‖y1a1ν1(k)− y3a3ν3(k)‖ ≥ ε1 + ε2

∣∣ a1, a2, a3

}
≤ δ̂1 + δ̂2.

4.2.1.4 Case Studies

Here we first apply our provided techniques to a fully interconnected network of 20 non-
linear subsystems (totally 100 dimensions) as depicted in Figure 4.2 right, and construct
finite MDPs from their reduced-order versions (together 20 dimensions) with guaranteed
probabilistic error bounds on their output trajectories. We then apply our proposed
approaches to a temperature regulation in a circular building (cf. Figure 4.2 left) and
construct compositionally a finite abstraction of the network containing 1000 rooms. We
employ the constructed finite abstractions as substitutes to compositionally synthesize
policies regulating the temperature in each room for a bounded time horizon.

4.2.1.4.1 Nonlinear Fully Interconnected Network

In order to show the applicability of our approach to strongly interconnected networks
with nonlinear dynamics, we consider nonlinear dt-SCS defined in (3.4.21). We assume L̃
is the Laplacian matrix of a complete graph as in (3.4.24) and τ = 0.001. Moreover, R =
diag(1n1 , . . . ,1nN ), ς(k) = [ς1(k); . . . ; ςN (k)], ϕ(x)=[1n1ϕ1(F1x1(k)); . . . ;1nNϕN (FNxN

(k))] where n =
∑N

i=1 ni, ϕi(x) = sin(x), and F Ti =
[
0.1 0 · · · 0

]T ∈ Rni ∀i ∈
{1, . . . , N}. We partition x(k) as x(k) = [x1(k); . . . ;xN (k)] and ν(k) as ν(k) = [ν1(k); . . . ;
νN (k)], where xi(k), νi(k) ∈ Rni . Now, we introduce Σi as

Σi :


xi(k + 1) = Aixi(k) + 1niϕi(Fixi(k)) + νi(k) +Diwi(k) + 1niςi(k),
y1
i (k) = xi(k),
y2
i (k) = xi(k),
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Σ1

Σ2

Σ3 Σ4

Σ5

Σ1000 Σ1

Σ2

Σ3 Σ4

Σ5

Σ20

Figure 4.2: Left: A circular building in a network of 1000 rooms. Right: A fully interconnected
network of 20 nonlinear components (totally 100 dimensions).

where Ai = (Ini − τL̃i) with L̃i as in (3.4.24), wi(k) = [y1i; . . . ; y(i−1)i; y(i+1)i; . . . ; yNi],
i ∈ {1, . . . , N}, and

Di = −τ


−1 −1 · · · −1
−1 −1 · · · −1
...

. . .
...

−1 · · · −1 −1


ni×(n−ni)

, ∀i ∈ {1, . . . , N}.

We fix N = 20, n = 100, ni = 5, ∀i ∈ {1, . . . , N}. Then one can readily verify
that Σ = Ics(Σ1, . . . ,ΣN ). Our goal is to first aggregate each xi into a scalar-valued
x̂ri (index r signifies the reduced-order version of the original model), governed by Σ̂ri,
which satisfies:

Σ̂ri :


x̂ri(k + 1) = 0.5x̂ri(k) + 0.1ϕi(0.1x̂ri(k)) + ν̂ri(k) + D̂iŵri(k) + ςi(k),

ŷ1
ri(k) = Ĉ1

i x̂ri(k),

ŷ2
ri(k) = Ĉ2

i x̂ri(k),

where D̂i = 0.0011T95, Ĉ īi = 15, ī ∈ {1, 2}, and ŵri(k) ∈ R95. One can readily verify that,
for any i ∈ {1, . . . , N}, the condition (3.3.12) is satisfied with M̃i = I5, κ̂i = 0.003, πi = 1,
P̃i = 15, L1i = −15, R̃i = 15, bi = 1, and Ki as a 5 × 5 matrix with diagonal elements
−0.9, and off-diagonals −0.001. Moreover, for any i ∈ {1, . . . , N}, conditions (3.3.13)
are satisfied by L2i = −0.115, Qi = −0.415, and Si = 05×95. We fix the max-type
SPSF as in (3.2.21). By taking π̃i = 0.99, κ̃i = 0.99 and δ̃i = 0.1, ∀i ∈ {1, . . . , N},
one can verify that Vi(xi, x̂ri) = (xi − 15x̂ri)

T I5(xi − 15x̂ri) is a max-type SPSF from
Σ̂ri to Σi satisfying condition (3.3.1) with αi(s) = 1/5s2 and the condition (3.3.2) with
κi(s) = 0.99s, ρinti(s) = 0.2s2, ρexti(s) = 0, ∀s ∈ R≥0, and ψi = 0, where the input νi is
given via the interface function in (3.3.14) as

νi =−Ki(xi − 15x̂ri)− 0.415x̂ri + 15ν̂ri − 15ϕi(Fixi) + 0.115ϕi(Fi15x̂ri).

By taking σi(s) = s ∀i ∈ {1, . . . , N} , one can readily verify that the max small-gain
condition (3.3.5) and as a result condition (3.3.6) are satisfied. Hence, V (x, x̂r) =
maxi(xi − 15x̂ri)

T I5(xi − 15x̂ri) is a max-type SSF from Σ̂r = Ics(Σ̂r1, . . . , Σ̂rN ) to Σ
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satisfying conditions (3.3.3) and (3.3.4) with α(s) = 1/25s2, κ(s) = 0.99 s, ρext(s) = 0,
∀s ∈ R≥0, and ψ = 0.

Now we proceed with finding a max-type SPSF from the finite MDP Σ̂i to the
reduced-order model Σ̂ri. One can readily verify that, for any i ∈ {1, . . . , N}, the
condition (4.2.15) is satisfied with M̃i = 1, κ̂i = 0.009, πi = 1, Ki = −0.49, and
bi = 1. By taking π̃i = 0.99, κ̃i = 0.99 and δ̃i = 0.9 ∀i ∈ {1, . . . , N}, the func-
tion Vi(x̂ri, x̂i) = (x̂ri − x̂i)2 is a max-type SPSF from Σ̂i to Σ̂ri satisfying the condition
(3.3.1) with αi(s) = 1/5s2 and the condition (3.3.2) with κi(s) = 0.99s, ρinti(s) = 0.26s2,
ρexti(s) = 0, ∀s ∈ R≥0, and ψi = 8.42δ̄2, where the input νi is given via the interface
function in (4.2.16) as

ν̂ri =− 0.49(x̂ri − x̂i) + ν̂i.

By taking σi(s) = s ∀i ∈ {1, . . . , N} , one can readily verify that the small-gain
condition (4.2.7) and as a result the condition (4.2.8) are satisfied. Hence, V (x̂r, x̂) =
maxi(x̂ri − x̂i)2 is a max-type SSF from Σ̂ = Îcs(Σ̂1, . . . , Σ̂N ) to Σ̂r satisfying conditions
(3.3.3) and (3.3.4) with α(s) = 1/25s2, κ(s) = 0.99 s, ρext(s) = 0, ∀s ∈ R≥0, and
ψ = 8.42δ̄2.

By taking the state set discretization parameter δ̄ = 0.001, and starting the initial
states of the interconnected systems Σ from 0100, Σ̂r and Σ̂ from 020, and using Theorem
3.2.7 and Proposition 4.2.16, we guarantee that the mismatch between outputs of Σ and
Σ̂ will not exceed ε = 0.5, (ε1 = ε2 = 0.25), during the time horizon Td = 100 with the
probability at least 92%, , i.e.,

P(‖yaν(k)− ŷâν̂(k)‖ ≤ 0.5, ∀k ∈ [0, 100]) ≥ 0.92 .

Note that for the construction of finite abstractions, we have selected the center of
partition sets as representative points. Moreover, we assume Ŷ 2

ij = Ŵji, i.e., the overall

error in (4.2.10) reduces to ψ = maxi σ
−1
i (ψi).

In Figure 4.3 which is in the logarithmic scale, we have fixed δ̄ = 0.001 and plotted
the error (the upper bound of the probability in (3.2.5)) as a function of the number of
subsystems N and the confidence bound ε. As seen, ψ in (3.2.5) is independent of the
size of the network, and is computed only based on the maximum of ψi of subsystems
instead of being a linear combination of them which is the case in the classic small-gain
approach. Hence, by increasing the number of subsystems, the error does not change.

4.2.1.4.2 Room Temperature Network

Consider a network of n ≥ 3 rooms each equipped with a heater and connected circularly
(cf. Figure 4.2 left). The model of this case study is adapted from [MGW17] by including
the stochasticity in the model as the additive noise. The evolution of temperatures T̃
can be described by the interconnected linear dt-SCS

Σ :

{
T̃ (k + 1) = ĀT̃ (k) + θ̄T̃hν(k) + βT̃E + ς(k),

y(k) = T̃ (k),
(4.2.20)
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Figure 4.3: Fully interconnected network: Error bound in (3.2.5) provided by our approach
based on max small-gain conditions. Plot is in the logarithmic scale for a fixed
δ̄ = 0.001 and Td = 100. By increasing the number of subsystems, the error
provided in (3.2.5) does not change since the overall ψ is independent of the size of
the network (i.e., N), and is computed only based on the maximum ψi of subsystems
instead of being a linear combination of them which is the case in the classic small-
gain approach.

where Ā is a matrix with diagonal elements āii = (1− 2η − β − θ̄νi(k)), i ∈ {1, . . . , n},
off-diagonal elements āi,i+1 = āi+1,i = ā1,n = ān,1 = η, i ∈ {1, . . . , n − 1}, and all
other elements are identically zero. Parameters η, β, and θ̄ are conduction factors,
respectively, between rooms i±1 and the room i, between the external environment and
the room i, and between the heater and the room i. Moreover, T̃ (k) = [T̃1(k); . . . ; T̃n(k)],
ν(k) = [ν1(k); . . . ; νn(k)], ς(k) = [ς1(k); . . . ; ςn(k)], T̃E = [T̃e1; . . . ; T̃en], where T̃i(k) and
νi(k) are taking values in sets [19, 21] and [0, 0.6], respectively, for all i ∈ {1, . . . , n}.
Outside temperatures are the same for all rooms: T̃ei = −1 ◦C, ∀i ∈ {1, . . . , n}, and the
heater temperature T̃h = 50 ◦C. Let us consider the individual rooms as Σi described as

Σi :


T̃i(k + 1) = AiT̃i(k) + θ̄T̃hνi(k) +Diwi(k) + βT̃ei + ςi(k),

y1
i (k) = T̃i(k),

y2
i (k) = T̃i(k),

(4.2.21)

where Ai = āii, i ∈ {1, . . . , n}. One can readily verify that Σ = Ics(Σ1, . . . ,ΣN ) where
Di = [η; η]T , and wi(k) = [y2

i−1(k); y2
i+1(k)] (with y2

0 = y2
n and y2

n+1 = y2
1). Note that

since the dynamics of each room is scaler (no need to reduce the order), our objective
here is just to construct the finite abstraction of each room. First, we fix a max-type
SPSF as in (4.2.14). Since the dynamics of the system is linear, the condition (4.2.15)
reduces to

(1 + 2/πi)(Ai +BiKi)
T M̃i(Ai +BiKi) � κ̂iM̃i,

which is nothing more than the stabilizability of the temperature dynamic in the room
i. One can verify that this condition is satisfied with M̃i = 1, Ki = 0, πi = 1, κ̂i = 0.48
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Figure 4.4: Closed loop state trajectories of a representative room with different noise realiza-
tions in a network of 1000 rooms.

∀i ∈ {1, . . . , n}, and η = 0.1, β = 0.4, θ̄ = 0.5. Then function Vi(T̃i,
ˆ̃Ti) = (T̃i − ˆ̃Ti)

2

is a max-type SPSF from Σ̂i to Σi satisfying the condition (3.3.1) with αi(s) = s2 and
the condition (3.3.2) with κi(s) = 0.99s, ρinti(s) = 0.91s2, ρexti(s) = 0, ∀s ∈ R≥0, and
ψi = 7.6 δ̄2

i .

Now we check small-gain condition (4.2.7) that is required for the compositionality
result. By taking σi(s) = s, ∀i ∈ {1, . . . , n}, condition (4.2.7) and as a result condition
(4.2.8) are always satisfied without any restriction on the number of rooms. Hence,

V (T̃ , ˆ̃T ) = maxi(T̃i − ˆ̃Ti)
2 is a max-type SSF from Σ̂ to Σ satisfying conditions (3.3.3)

and (3.3.4) with α(s) = s2, κ(s) = 0.99 s, ρext(s) = 0, and ψ = 7.6 δ̄2.

We fix n = 1000 and set the state discretization parameter δ̄ = 0.005. The initial
states of the interconnected systems Σ and Σ̂ are selected as 2011000. Using Theorem
3.2.7, we guarantee that the distance between outputs of Σ and Σ̂ will not exceed ε = 0.5
during the time horizon Td = 100 with probability at least 98%, i.e.,

P(‖yaν̂(k)− ŷâν̂(k)‖ ≤ 0.5, ∀k ∈ [0, 100]) ≥ 0.98 . (4.2.22)

Let us now synthesize a controller for Σ via the abstraction Σ̂ such that the controller
maintains the temperature of any room in the comfort zone [19, 21]. We design a local
controller for the abstract subsystem Σ̂i, and then refine it back to the subsystem Σi using
the interface function. We employ the tool FAUST2 [SGA15] to synthesize controllers for
Σi by taking the external input discretization parameter as 0.04 and standard deviation
of the noise as 0.21, ∀i ∈ {1, . . . , n}. Closed-loop state trajectories of a representative
room with different noise realizations are illustrated in Figure 4.4.

Similarly, we have fixed δ̄ = 0.005 and plotted in Figure 4.5 the error between the
finite MDP Σ̂ and the concrete model Σ as a function of the number of subsystems N
and the confidence bound ε. As seen, by increasing the number of subsystems, the error
does not change since ψ in (3.2.5) is independent of the size of the network.
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Figure 4.5: Temperature control: Error bound in (3.2.5) provided by our approach based on
max small-gain conditions. Plot is in the logarithmic scale for a fixed δ̄ = 0.005, and
Td = 100. By increasing the number of subsystems, the error provided in (3.2.5)
does not change since the overall ψ is independent of the size of the network (i.e.,
N), and is computed only based on the maximum ψi of subsystems instead of being
a linear combination of them which is the case in the classic small-gain approach.

4.2.2 Stochastic Switched Systems

In this section, we extend the results of the precious section to stochastic switched
systems whose switch signals accept dwell-time with multiple Lyapunov functions. We
show that under standard assumptions ensuring the incremental input-to-state stability
of switched systems (i.e., existence of common incremental ISS Lyapunov functions, or
multiple incremental ISS Lyapunov functions with dwell-time), one can construct finite
MDPs for the general setting of nonlinear stochastic switched systems. To demonstrate
the effectiveness of our proposed results, we first apply our approaches to a road traffic
network in a circular cascade ring composed of 200 cells, and construct compositionally a
finite MDP of the network. We employ the constructed finite abstractions as substitutes
to compositionally synthesize policies keeping the density of the traffic lower than 20
vehicles per cell. We benchmark our proposed results against the ones available in the
literature. We also provide some discussions on the memory usage and computation
time in the construction of finite MDPs for this case study in both monolithic and
compositional manners, and compare the results in a table for different ranges of the
state discretization parameter. We show that the proposed compositional approach in
this work remarkably reduces the curse of dimensionality problem in constructing finite
MDPs. We then apply our proposed techniques to a fully interconnected network of 500
nonlinear subsystems (totally 1000 dimensions), and construct their finite MDPs with
guaranteed error bounds. We provide simulation results for this case study to have more
practical analysis on the proposed probabilistic bounds.

We should emphasize that extending the previous results from control systems to
switched ones is very challenging. We first need to provide an augmented framework for
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presenting each switched system with different modes with a single system covering all
modes (called global MDP in this chapter) whose external output trajectories are exactly
the same as those of original switched systems. We then continue with the new global
MDP to construct its finite abstraction and provide a probabilistic closeness between
the two systems. Moreover, the definition of simulation functions for switched systems
needs to be developed in order to encode the effect of discrete switching signals instead of
continuous inputs. We also need to define the dwell-time condition for switched systems
accepting multiple δ-ISS Lyapunov functions, and provide corresponding results for this
class of systems.

Consider the stochastic switched systems defined in Definition 2.6.1. We assume that
the signal p satisfies a dwell-time condition [Mor96] as defined in the next definition.

Definition 4.2.17. Consider a switching signal p : N→ P and define its switching time
instants as

Sp := {sk: k ∈ N≥1} .
Then p : N→ P has dwell-time kd ∈ N [Mor96] if elements of Sp ordered as s1 ≤ s2 ≤
s3 ≤ . . . satisfy s1 ≥ kd and sk+1 − sk ≥ kd, ∀k ∈ N≥1.

Remark 4.2.18. Note that the dwell-time in our setting is deterministic and always re-
spected by the controller designed using the finite MDP. More precisely, switching signals
in this work are control inputs and the main goal is to synthesize them with a specific
dwell-time such that outputs of original systems satisfy some high-level specifications
such as safety, reachability, etc. (cf. Case study 4.2.2.6.1). In existing works with a
stochastic dwell-time (e.g., [BDS05], [XLSM13]), switching signals are not control inputs
and are randomly changing in an adversarial manner.

For any p ∈ P , we use Σp to refer to the system (2.6.2) with the constant switching
signal p(k) = p for all k ∈ N. We assume that the output map hi, i ∈ {1, 2}, satisfies
the following general assumption: there exists an L ∈ K∞ such that ‖hi(x)− hi(x′)‖ ≤
L (‖x− x′‖) for all x, x′ ∈ X.

Remark 4.2.19. Note that our assumption on hi, i ∈ {1, 2}, with L ∈ K∞ is more
general than the standard Lipschitz condition in which L is a linear function (i.e.,
L (α) = Lα, for some nonnegative L). Moreover, this assumption on hi, i ∈ {1, 2} is
not restrictive provided that hi, i ∈ {1, 2} are continuous and one works on a compact
subset of X. More precisely, all uniformly continuous functions automatically satisfy
this assumption [Ran03].

Given the dt-SS in (2.6.1), we are interested in Markov policies similar to Defini-
tion 2.5.1 but for switched systems defined as follows.

Definition 4.2.20. A Markov policy for the dt-SS Σ in (2.6.1) is a sequence ρ̄ =
(ρ̄0, ρ̄1, ρ̄2, . . .) of universally measurable stochastic kernels ρ̄n [BS96], each defined on
P = {1, . . . ,m}, given X ×W . The class of all such Markov policies is denoted by Π̄M .

Since we are interested in studying interconnected dt-SS without internal signals,
the interconnected dt-SS is indicated by the simplified tuple (X,P,P, ς,F, Y, h) with
fp : X × Vς → X, ∀p ∈ P .
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4.2.2.1 Global Markov Decision Processes

In this subsection, we consider Σp,∀p ∈ P , as local MDPs and introduce the notion
of global Markov decision process as in the next definition. Note that this notion is
adapted from the definition of labeled transition systems defined in [BK08] and modified
to capture the stochastic nature of the system. This provides an alternative description
of switched systems enabling us to represent a switched system and its finite MDP in a
common framework.

Definition 4.2.21. Given a dt-SS Σ = (X,P,P,W, ς,F, Y 1, Y 2, h1, h2), we define the
associated global MDP G(Σ) = (X,U,W, ς,F,Y1,Y2,H1,H2), where:

• X = X × P × {0, . . . , kd − 1} is the set of states. A state (x, p, l) ∈ X means that
the current state of Σ is x, the current value of the switching signal is p, and the
time elapsed since the latest switching time instant saturated by kd is l;

• U = P is the set of external inputs;

• W = W is the set of internal inputs;

• ς is a sequence of i.i.d. random variables;

• F : X × U ×W × Vς → X is the one-step transition function given by (x′, p′, l′) =
F ((x, p, l), ν, w, ς) if and only if x′ = fp(x,w, ς), ν = p and the following scenarios
hold:

– l < kd − 1, p′ = p, and l′ = l + 1: switching is not allowed because the time
elapsed since the latest switch is strictly smaller than the dwell-time;

– l = kd − 1, p′ = p, and l′ = kd − 1: switching is allowed but no switch occurs;

– l = kd − 1, p′ 6= p, and l′ = 0: switching is allowed and a switch occurs;

• Y1 = Y 1 is the external output set;

• Y2 = Y 2 is the internal output set;

• H1 : X→ Y1 is the external output map defined as H1 (x, p, l) = h1(x);

• H2 : X→ Y2 is the internal output map defined as H2 (x, p, l) = h2(x).

We associate respectively to U and W the sets U and W to be collections of sequences
{ν(k) : Ω → U, k ∈ N} and {w(k) : Ω → W, k ∈ N}, in which ν(k) and w(k) are
independent of ς(t) for any k, t ∈ N and t ≥ k. We also denote the initial conditions of
p and l by p0 and l0 = 0.

Remark 4.2.22. Note that in the global MDP G(Σ) in Definition 4.2.21, we added two
additional variables p and l to the state tuple of the system Σ, in which l is a counter
that depending on its value allows or prevents the system from switching, and p acts as
a memory to record the input.
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Proposition 4.2.23. Global MDP G(Σ) in Definition 4.2.21 is itself an MDP and the
output trajectory of Σ defined in (2.6.2) can be uniquely mapped to an output trajectory
of G(Σ) and vice versa.

Proof. In order to show that the global MDP G(Σ) in Definition 4.2.21 is itself an MDP,
we need to elaborate on this issue that X is itself a Borel space. Since X defined in (2.6.1)
is a Borel space, one can readily verify that its Cartesian product by other discrete spaces
as X = X × P × {0, . . . , kd − 1} is also a Borel space [APLS08]. Then the global MDP
G(Σ) = (X,U,W, ς,F,Y1,Y2,H1,H2) can be equivalently represented as an MDP

G(Σ) = (X,U,W,Tx,Y1,Y2,H1,H2),

where the map Tx : B(X) × X × U ×W → [0, 1], is a conditional stochastic kernel that
assigns to any x ∈ X, ν ∈ U, and w ∈ W a probability measure Tx(·

∣∣x, ν, w) on the
measurable space (X,B(X)) so that for any set A ∈ B(X),

P(x(k + 1) ∈ A
∣∣x(k), ν(k), w(k)) =

∫
A
Tx(d(k + 1)

∣∣x(k), ν(k), w(k)).

Moreover,

(p′, l′) :=


(p, l + 1), if l < kd − 1,

(p, kd − 1), if l = kd − 1,

(6= p, 0), if l = kd − 1,

or equivalently,

ν :=

{
no switch, if l < kd − 1,

{1, 2, . . . ,m}, if l = kd − 1.

Then the global MDP G(Σ) in Definition 4.2.21 is itself an MDP. Now we elaborate
on the fact that output trajectories of Σ defined in (2.6.2) and of G(Σ) are equivalent.
Given an initial state x0, a switching signal p : N → P , an internal input w(·), and a
realization of the noise ς(·), one can uniquely map the output trajectory of Σ to an output
trajectory of G(Σ). Moreover, if we pick p0 ∈ P as the initial mode of the system and
l0 = 0, the output trajectory of G(Σ) can be uniquely projected to an output trajectory
of Σ. Then one can uniquely map the output trajectory of Σ to an output trajectory of
G(Σ) and vice versa, for the same initial conditions.

4.2.2.2 Finite Global MDPs

Here, we first formally define the finite abstraction of global MDPs as in the following
definition.

Definition 4.2.24. Given a global MDP G(Σ) = (X,U,W, ς,F,Y1,Y2,H1,H2) associ-
ated with Σ as in Definition 4.2.21, one can construct its finite abstraction as a finite
global MDP Ĝ(Σ̂) = (X̂, Û, Ŵ, ς, F̂, Ŷ1, Ŷ2, Ĥ1, Ĥ2), where:

79



4 Finite Abstractions (Finite Markov Decision Processes)

• X̂ = X̂ × P × {0, . . . , kd − 1} is the set of states;

• Û = U = P is the set of external inputs that remains the same as in the global
MDP;

• Ŵ = Ŵ is the set of internal inputs;

• ς is a sequence of i.i.d. random variables;

• F̂ : X̂ × Û × Ŵ × Vς → X̂ is the one-step transition function given by (x̂′, p′, l′) =
F̂ ((x̂, p, l), ν̂, ŵ, ς) if and only if x̂′ = f̂p(x̂, ŵ, ς) as defined similar to (4.2.4), ν̂ = p
and the following scenarios hold:

– l < kd − 1, p′ = p, and l′ = l + 1;

– l = kd − 1, p′ = p, and l′ = kd − 1;

– l = kd − 1, p′ 6= p, and l′ = 0;

• Ŷ1 = {H1(x̂, p, l)
∣∣ (x̂, p, l) ∈ X̂} is the external output set;

• Ŷ2 = {H2(x̂, p, l)
∣∣ (x̂, p, l) ∈ X̂} is the internal output set;

• Ĥ1 : X̂ → Ŷ1 is the external output map defined as Ĥ1 (x̂, p, l) = H1 (x̂, p, l) =
h1(x̂);

• Ĥ2 : X̂ → Ŷ2 is the internal output map defined as Ĥ2 (x̂, p, l) = H2 (x̂, p, l) =
h2(x̂).

In the next subsection, in order to provide an approach for compositional synthesis
of interconnected dt-SS, we define notions of augmented stochastic pseudo-simulation
and simulation functions. These two notions are employed to quantify the probabilistic
error between the global MDP and its finite abstraction and also their interconnection
without internal signals, respectively.

4.2.2.3 aug-Type Stochastic Pseudo-Simulation and Simulation Functions

Here we first introduce a notion of augmented stochastic pseudo-simulation functions
(aug-type SPSF) for dt-SS with internal inputs and outputs. We then define a notion of
augmented stochastic simulation functions (aug-type SSF) for switched systems without
internal signals. We employ these definitions mainly to quantify the closeness of the
global MDP and its finite abstraction.

Definition 4.2.25. Consider two global MDPs G(Σ) = (X,U,W, ς,F,Y1,Y2,H1,H2)
and Ĝ(Σ̂) = (X̂, Û, Ŵ, ς, F̂, Ŷ1, Ŷ2, Ĥ1, Ĥ2). A function V : X × X̂ → R≥0 is called an

augmented stochastic pseudo-simulation function (aug-type SPSF) from Ĝ(Σ̂) to G(Σ)
if there exist α ∈ K∞, 0 < κ < 1, ρint ∈ K∞ ∪ {0}, and a constant ψ ∈ R≥0 such that

• ∀(x, p, l) ∈ X, ∀(x̂, p, l) ∈ X̂, ∀i ∈ {1, 2},

α(‖Hi(x, p, l)− Ĥi(x̂, p, l)‖) ≤ V ((x, p, l), (x̂, p, l)), (4.2.23)
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• ∀(x, p, l) ∈ X,∀(x̂, p, l) ∈ X̂, ∀ν̂ ∈ Û, ∀w ∈W, ∀ŵ ∈ Ŵ,

E
[
V ((x′, p′, l′), (x̂′, p′, l′))

∣∣x, x̂, p, l, w, ŵ]
≤max

{
κV ((x, p, l), (x̂, p, l)), ρint(‖w − ŵ‖), ψ

}
, (4.2.24)

where the expectation operator E is with respect to ς under the one-step transition
of both global MDPs with ν = ν̂, i.e., (x′, p′, l′) = F ((x, p, l), ν̂, w, ς) and (x̂′, p′, l′) =
F̂ ((x̂, p, l), ν̂, ŵ, ς).

If there exists an aug-type SPSF V from Ĝ(Σ̂) to G(Σ), this is denoted by Ĝ(Σ̂) �aug
SPSF

G(Σ), and the system Ĝ(Σ̂) is called an abstraction of the concrete (original) global MDP
G(Σ).

Now, we modify the above notion for global MDPs without internal signals by eliminat-
ing all the terms related to w, ŵ which will be employed later for relating interconnected
global MDPs.

Definition 4.2.26. Consider two global MDPs G(Σ) = (X,U, ς,F,Y,H) and Ĝ(Σ̂) =
(X̂, Û, ς, F̂, Ŷ, Ĥ) without internal signals. A function V : X × X̂ → R≥0 is called an

augmented stochastic simulation function (aug-type SSF) from Ĝ(Σ̂) to G(Σ) if

• there exists α ∈ K∞ such that ∀(x, p, l) ∈ X, ∀(x̂, p, l) ∈ X̂,

α(‖H(x, p, l)− Ĥ(x̂, p, l)‖) ≤ V ((x, p, l), (x̂, p, l)), (4.2.25)

• ∀(x, p, l) ∈ X,∀(x̂, p, l) ∈ X̂, ∀ν̂ ∈ Û,

E
[
V ((x′, p′, l′), (x̂′, p′, l′))

∣∣x, x̂, p, l] ≤ max
{
κV ((x, p, l), (x̂, p, l)), ψ

}
, (4.2.26)

for some 0 < κ < 1, and ψ ∈ R≥0, where the expectation operator E is with
respect to ς under the one-step transition of both global MDPs with ν = ν̂, i.e.,
(x′, p′, l′) = F ((x, p, l), ν̂, ς) and (x̂′, p′, l′) = F̂ ((x̂, p, l), ν̂, ς).

If there exists an aug-type SSF V from Ĝ(Σ̂) to G(Σ), this is denoted by Ĝ(Σ̂) �aug
SSF

G(Σ), and Ĝ(Σ̂) is called an abstraction of G(Σ).
In order to show the usefulness of the aug-type SSF in comparing output trajectories

of two global MDPs (without internal inputs and outputs) in a probabilistic setting, we
need the following technical lemma borrowed from [Kus67, Theorem 3, pp. 86] with
some slight modifications adapted to stochastic switched systems.

Lemma 4.2.27. Let G(Σ) = (X,U, ς,F,Y,H) be a global MDP with the transition map
F : X × U × Vς → X. Assume there exist V : X → R≥0 and constants 0 < κ < 1, and
ψ ∈ R≥0 such that

E
[
V (x′, p′, l′)

∣∣x, p, l] ≤ κV (x, p, l) + ψ,
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where (x′, p′, l′) = F ((x, p, l), p, ς). Then for any random variable a as the initial state of
the underlying dt-SS, any initial mode p0, and l0 = 0 as the initial counter, the following
inequity holds:

P

{
sup

0≤k≤Td
V (x(k), p(k), l(k)) ≥ ε

∣∣ a, p0

}
≤ δ̂,

δ̂ :=

{
1− (1− V (a,p0,l0)

ε )(1− ψ
ε )Td , if ε ≥ ψ

κ ,

(V (a,p0,l0)
ε )(1− κ)Td + ( ψκε)(1− (1− κ)Td), if ε < ψ

κ .

Now by employing Lemma 4.2.27, we provide one of the results of the section.

Theorem 4.2.28. Let G(Σ) = (X,U, ς,F,Y,H) and Ĝ(Σ̂) = (X̂, Û, ς, F̂, Ŷ, Ĥ) be two
global MDPs without internal inputs. Suppose V is an aug-type SSF from Ĝ(Σ̂) to G(Σ).
For any random variables a and â as the initial states of the two dt-SS, any initial mode
p0, and for any external input trajectory ν̂(·) ∈ Û that preserves Markov property for the
closed-loop Ĝ(Σ̂), the following inequality holds:

P

{
sup

0≤k≤Td
‖yaν̂(k)− ŷâν̂(k)‖ ≥ ε

∣∣ a, â, p0

}
(4.2.27)

≤

{
1− (1− V ((a,p0,l0),(â,p0,l0))

α(ε) )(1− ψ
α(ε))Td , if α (ε) ≥ ψ

κ ,
V ((a,p0,l0),(â,p0,l0))

α(ε) (1− κ)Td + ψ
κα(ε)(1− (1− κ)Td), if α (ε) < ψ

κ .

Proof. For any (x, p, l) ∈ X, and (x̂, p, l) ∈ X̂, one gets

‖H(x, p, l)− Ĥ(x̂, p, l)‖ = ‖h(x)− ĥ(x̂)‖ = ‖y − ŷ‖.

Since V is an aug-type SSF from Ĝ(Σ̂) to G(Σ), we have

P
{

sup
0≤k≤Td

‖yaν̂(k)− ŷâν̂(k)‖ ≥ ε
∣∣ a, â, p0

}
= P

{
sup

0≤k≤Td
α (‖yaν̂(k)− ŷâν̂(k)‖) ≥ α(ε)

∣∣ a, â, p0

}
≤ P

{
sup

0≤k≤Td
V ((xaν̂(k), p(k), l(k), (x̂âν̂(k), p(k), l(k))) ≥ α(ε)

∣∣ a, â, p0

}
. (4.2.28)

The equality holds due to α being a K∞ function, and also the condition (4.2.25) on the
aug-type SSF V . By applying Lemma 4.2.27 to (4.2.28), utilizing the inequality (4.2.26),
and since

max
{
κV ((x, p, l), (x̂, p, l)), ψ

}
≤ κV ((x, p, l), (x̂, p, l)) + ψ,

one can readily acquire the results in (4.2.27).
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4.2.2.4 Compositionality Results

In this subsection, we analyze networks of stochastic switched subsystems by driving a
max small-gain condition and discuss how to construct their finite global MDPs together
with an aug-type SSF based on the aug-type SPSF of their subsystems.

4.2.2.4.1 Concrete Interconnected Stochastic Switched Systems

Suppose we are given N concrete stochastic switched subsystems Σi = (Xi, Pi,Pi,Wi, ςi,
Fi, Y

1
i , Y

2
i , h

1
i , h

2
i ), i ∈ {1, . . . , N} with their equivalent global MDPs G(Σi) = (Xi,Ui,Wi,

ςi,Fi,Y1
i ,Y2

i ,H1
i ,H2

i ), in which their internal inputs and outputs are partitioned as
in (3.2.8) and (3.2.9). Now, we are ready to define the interconnection of concrete
dt-SS Σi.

Definition 4.2.29. Consider N ∈ N≥1 dt-SS Σi = (Xi, Pi,Pi,Wi, ςi,Fi, Y
1
i , Y

2
i , h

1
i , h

2
i ),

with the input-output configuration as in (3.2.8) and (3.2.9). The interconnection of Σi,
∀i ∈ {1, . . . , N}, is the concrete interconnected dt-SS Σ = (X,P,P, ς,F, Y, h), denoted by
Iss(Σ1, . . . ,ΣN ), such that X :=

∏N
i=1Xi, P :=

∏N
i=1 Pi, P :=

∏N
i=1 Pi, F :=

∏N
i=1 Fi,

Y :=
∏N
i=1 Y

1
i , and h =

∏N
i=1 h

1
i , subjected to the following constraint:

∀i, j ∈ {1, . . . , N}, i 6= j : wji = y2
ij , Y 2

ij ⊆Wji.

Similarly, given global MDPs G(Σi) = (Xi,Ui,Wi, ςi,Fi,Y1
i ,Y2

i ,H1
i ,H2

i ), i ∈ {1, . . . , N},
one can also define the interconnection of concrete global MDPs G(Σi) as Iss(G(Σ1), . . . ,
G(ΣN )).

Now assume that any concrete global MDP G(Σi) = (Xi,Ui,Wi, ςi,Fi,Y1
i ,Y2

i ,H1
i ,H2

i ),

i ∈ {1, . . . , N}, admits an abstract global MDP Ĝ(Σ̂i) = (X̂i, Ûi, Ŵi, ςi, F̂i, Ŷ1
i , Ŷ2

i , Ĥ1
i , Ĥ2

i )

together with an aug-type SPSF Vi from Ĝ(Σ̂i) to G(Σi) with the corresponding func-
tions and constants denoted by αi, ρinti, κi and ψi as in Definition 4.2.25.

4.2.2.4.2 Compositional Abstractions of Interconnected Switched Systems

Now, we define a notion of the interconnection of abstract global MDPs Ĝ(Σ̂i) =
(X̂i, Ûi, Ŵi, ςi, F̂i, Ŷ1

i , Ŷ2
i , Ĥ1

i , Ĥ2
i ).

Definition 4.2.30. Consider N ∈ N≥1 abstract global MDPs Ĝ(Σ̂i) = (X̂i, Ûi, Ŵi, ςi, F̂i,
, Ŷ1

i , Ŷ2
i , Ĥ1

i , Ĥ2
i ), with the input-output configuration similar to (3.2.8) and (3.2.9). The

interconnection of Ĝ(Σ̂i), ∀i ∈ {1, . . . , N}, is the interconnected abstract global MDP
Ĝ(Σ̂) = (X̂, Û, ς, F̂, Ŷ, Ĥ), denoted by Îss(Ĝ(Σ̂1), . . . , Ĝ(Σ̂N )), such that X̂ :=

∏N
i=1 X̂i,

Û :=
∏N
i=1 Ûi, Ŷ :=

∏N
i=1 Ŷ1

i , Ĥ =
∏N
i=1 Ĥ1

i , and the map F̂ =
∏N
i=1 F̂i is the transition

function given by (x̂′, p′, l′) = F̂ ((x̂, p, l), ν̂, ŵ, ς) if and only if x̂′ = f̂p(x̂, ŵ, ς) as defined
similar to (4.2.4), ν̂ = p and the following scenarios hold for any i ∈ {1, . . . , N}:

• li < kdi − 1, p′i = pi, and l′i = li + 1;

• li = kdi − 1, p′i = pi, and l′i = kdi − 1;
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• li = kdi − 1, p′i 6= pi, and l′i = 0;

where x̂ = [x̂1; . . . ; x̂N ], ν̂ = [ν̂1; . . . ; ν̂N ], p = [p1; . . . ; pN ], l = [l1; . . . ; lN ], and subject to
the following constraint:

∀i, j ∈ {1, . . . , N}, i 6= j : ŵji = Πwji(ŷ
2
ij), Πwji(Ŷ

2
ij) ⊆ Ŵji.

Now we leverage the max small-gain Assumption 4.2.7 to quantify the error between
the interconnection of concrete global MDPs and that of their finite abstractions in a
compositional manner.

Theorem 4.2.31. Consider the interconnected global MDP G(Σ) = (X,U, ς,F,Y,H)
induced by N ∈ N≥1 global MDPs G(Σi). Suppose that each G(Σi) admits a finite

abstraction Ĝ(Σ̂i) together with an aug-type SPSF Vi. If Assumption 4.2.7 holds, then
the function V ((x, p, l), (x̂, p, l)) defined as

V ((x, p, l), (x̂, p, l)) := max
i

{
σ−1
i (Vi((xi, pi, li), (x̂i, pi, li)))

}
, (4.2.29)

for σi as in (4.2.8), is an aug-type SSF function from Îss(Ĝ(Σ̂1), . . . , Ĝ(Σ̂N )) to Iss(G(Σ1),
. . . ,G(ΣN )) provided that maxi σ

−1
i is concave.

Proof. We first show that the aug-type SSF V in (4.2.29) satisfies the inequality (4.2.25)
for some K∞ function α. For any (x, p, l) ∈ X, and (x̂, p, l) ∈ X̂, one gets

‖H(x, p, l)− Ĥ(x̂, p, l)‖ = max
i

{
‖H1

i (xi, pi, li)− Ĥ1
i (x̂i, pi, li)‖

}
≤ max

i

{
α−1
i (Vi((xi, pi, li), (x̂i, pi, li)))

}
≤ β̂ (max

i

{
σ−1
i (Vi((xi, pi, li), (x̂i, pi, li)))

}
)

= β̂(V ((x, p, l), (x̂, p, l))),

where β̂(s) = maxi

{
α−1
i ◦ σi(s)

}
for all s ∈ R≥0, which is a K∞ function and (4.2.25)

holds with α = β̂−1. We continue with showing that the inequality (4.2.26) holds,
as well. Let κ(s) = maxi,j{σ−1

i ◦ κij ◦ σj(s)}. It follows from (4.2.8) that κ < Id.
Since maxi σ

−1
i is concave, one can readily get the chain of inequalities in (4.2.31) using

Jensen’s inequality, the inequality (4.2.6), and by defining ψ as

ψ := max
i
σ−1
i (Λi), (4.2.30)

where Λi := (Id + δ̃−1
f ) ◦ (ρinti ◦ λ̄ ◦ (λ̄ − Id)−1(maxj,j 6=i{µ̄ji}) + ψi). Hence V is an

aug-type SSF from Ĝ(Σ̂) to G(Σ), which completes the proof.

Figure 4.6 schematically shows the results of Theorem 4.2.31.
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E
[
V ((x′, p′, l′), (x̂′, p′, l′))

∣∣x, x̂, p, l] = E
[

max
i

{
σ−1
i (Vi((x

′
i, p
′
i, l
′
i), (x̂

′
i, p
′
i, l
′
i)))
} ∣∣x, x̂, p, l]

≤ max
i

{
σ−1
i

(
E
[
Vi((x

′
i, p
′
i, l
′
i), (x̂

′
i, p
′
i, l
′
i))
∣∣x, x̂, p, l])}

= max
i

{
σ−1
i

(
E
[
Vi((x

′
i, p
′
i, l
′
i), (x̂

′
i, p
′
i, l
′
i))
∣∣xi, x̂i, pi, li])}

≤ max
i

{
σ−1
i (max{κiVi((xi, pi, li), (x̂i, pi, li)), ρinti(‖wi − ŵi‖), ψi})

}
= max

i

{
σ−1
i (max{κiVi((xi, pi, li), (x̂i, pi, li)), ρinti(max

j,j 6=i
{‖wij − ŵij‖}), ψi})

}
= max

i

{
σ−1
i (max{κiVi((xi, pi, li),(x̂i, pi, li)),ρinti(max

j,j 6=i
{‖y2

ji−ŷ2
ji+ŷ

2
ji−Πwji(ŷ

2
ji)‖}),ψi})

}
≤ max

i

{
σ−1
i (max{κiVi((xi, pi, li), (x̂i, pi, li)), ρinti(max

j,j 6=i
{‖H2

j (xj , pj , lj)− Ĥ2
j (x̂j , pj , lj)‖

+ ‖ŷ2
ji −Πwji(ŷ

2
ji)‖}), ψi})

}
≤ max

i

{
σ−1
i (max{κiVi((xi, pi, li), (x̂i, pi, li)), ρinti(max

j,j 6=i
{α−1

j (Vj((xj , pj , lj), (x̂j , pj , lj)))

+ µ̄ji}), ψi})
}

≤ max
i

{
σ−1
i (max{κiVi((xi, pi, li),(x̂i, pi, li)),ρinti◦λ̄(max

j,j 6=i
{α−1

j (Vj((xj , pj , lj),(x̂j , pj , lj)))})

+ ρinti ◦ λ̄ ◦ (λ̄− Id)−1(max
j,j 6=i
{µ̄ji}), ψi})

}
≤ max

i

{
σ−1
i max{κiVi((xi, pi, li), (x̂i, pi, li)), (Id + δ̃f )◦ρinti◦λ̄(max

j,j 6=i
{α−1

j (Vj((xj , pj , lj),

(x̂j , pj , lj)))}),Λi})
}

= max
i,j

{
σ−1
i max{κij(Vj((xj , pj , lj), (x̂j , pj , lj)),Λi})

}
= max

i,j

{
σ−1
i max{κij ◦ σj ◦ σ−1

j (Vj((xj , pj , lj), (x̂j , pj , lj))),Λi})
}

≤ max
i,j,j̄

{
σ−1
i max{κij ◦ σj ◦ σ−1

j̄
(Vj̄((xj̄ , pj̄ , lj̄), (x̂j̄ , pj̄ , lj̄))),Λi})

}
= max

i,j

{
σ−1
i max{κij ◦ σj(V ((x, p, l), (x̂, p, l))),Λi})

}
= max

{
κV ((x, p, l), (x̂, p, l)), ψ

}
. (4.2.31)

4.2.2.5 Construction of aug-type SPSF

In this subsection, we impose conditions on the concrete dt-SS Σ enabling us to find
an aug-type SPSF from the finite abstraction Ĝ(Σ̂) to G(Σ). The required conditions
are first presented in the general setting of nonlinear stochastic switched systems in the
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Figure 4.6: Compositionality results for constructing the interconnection of finite global MDPs
provided that the condition (4.2.7) is satisfied.

next subsection and then represented via some matrix inequality for a nonlinear class of
stochastic switched systems similar to (3.3.10).

4.2.2.5.1 General Setting of Nonlinear Stochastic Switched Systems

The aug-type SPSF from the finite global MDP Ĝ(Σ̂) to G(Σ) is established under the
assumption that original discrete-time stochastic switched subsystems Σp,∀p ∈ P, are
incrementally input-to-state stable (δ-ISS) similar to Definition 2.7.1 but adapted to
stochastic switched systems.

Definition 4.2.32. A dt-SS Σp is called incrementally input-to-state stable (δ-ISS) if
there exists a function Vp : X × X → R≥0 such that ∀x, x′ ∈ X, ∀w,w′ ∈ W , the
following two inequalities hold:

αp(‖x− x′‖) ≤ Vp(x, x′) ≤ αp(‖x− x′‖), (4.2.32)

and

E
[
Vp(fp(x,w, ς), fp(x

′, w′, ς))
∣∣x, x′, w, w′] ≤ κ̄pVp(x, x′) + ρ̄intp(‖w − w′‖), (4.2.33)

for some αp, αp ∈ K∞, 0 < κ̄p < 1, and ρ̄intp ∈ K∞ ∪ {0}.
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In order to construct an aug-type SPSF from the finite global MDP Ĝ(Σ̂) to G(Σ),
we need to raise the following assumptions. These assumptions are essential to show the
main result of this section in Theorem 4.2.36.

Assumption 4.2.33. There exists µ̃ ≥ 1 such that

∀x, x′ ∈ X, ∀p, p′ ∈ P, Vp(x, x
′) ≤ µ̃Vp′(x, x′). (4.2.34)

Remark 4.2.34. Assumption 4.2.33 is a standard one in switched systems accepting
multiple Lyapunov functions with dwell-time similar to the one appeared in [Lib03, equa-
tion (3.6)]. Note that if the function Vp is quadratic in the form of (4.2.40), there always

exists µ̃ ≥ 1 satisfying Assumption 4.2.33 as µ̃ = max(
λmax(M̃p)

λmin(M̃p′ )
,
λmax(M̃p′ )

λmin(M̃p)
),∀p, p′ ∈ P

(cf. Case study 4.2.2.6.5). If there exists a common Lyapunov function between all
modes, then µ̃ = 1 and V ((x, p, l), (x̂, p, l)) = V (x, x̂) (cf. Case study 4.2.2.6.1).

Assumption 4.2.35. Assume that ∀p ∈ P , there exists a function γp ∈ K∞ such that

Vp(x, x
′)− Vp(x, x′′) ≤ γp(‖x′ − x′′‖), ∀x, x′, x′′ ∈ X. (4.2.35)

Under Definition 4.2.32 and Assumptions 4.2.33 and 4.2.35, the next theorem shows
a relation between G(Σ) and Ĝ(Σ̂) via establishing an aug-type SPSF between them.

Theorem 4.2.36. Let Σ = (X,P,P,W, ς,F, Y 1, Y 2, h1, h2) be a switched system with
its equivalent global MDP G(Σ) = (X,U,W, ς,F,Y1,Y2,H1,H2). Consider the abstract
global MDP Ĝ(Σ̂) = (X̂, Û, Ŵ, ς, F̂, Ŷ1, Ŷ2, Ĥ1, Ĥ2) constructed as in Definition 4.2.24.
For any p ∈ P , let Σp be an incrementally input-to-state stable dt-SS via a function Vp
as in Definition 4.2.32, and Assumptions 4.2.33 and 4.2.35 hold. Let ε̄ > 1. If ∀p ∈ P ,
kd ≥ ε̄ ln(µ̃)

ln(1/κ̄p) + 1, then

V ((x, p, l), (x̂, p, l)) =
1

κ̄
l/ε̄
p

Vp(x, x̂), (4.2.36)

is an aug-type SPSF from Ĝ(Σ̂) to G(Σ).

Proof. Given the general assumption on hi, since Σp is incrementally input-to-state

stable, and from (4.2.32), ∀(x, p, l) ∈ X and ∀(x̂, p, l) ∈ X̂, we get

‖Hi(x, p, l)− Ĥi(x̂, p, l)‖ = ‖hi(x)− ĥi(x̂)‖ ≤ L (‖x− x̂‖)
≤ L ◦ α−1

p (V (x, x̂)) = L ◦ α−1
p (κ̄l/ε̄p V ((x, p, l), (x̂, p, l))).

Since 1

κ̄
l/ε̄
p

> 1, one can conclude that the inequality (4.2.23) holds with α(s) = minp{(L ◦

α−1
p (s))−1}, ∀s ∈ R≥0. Now we show that the inequality (4.2.24) holds, as well. By

taking the conditional expectation from (4.2.35), ∀x ∈ X,∀x̂ ∈ X̂, ∀p ∈ P,∀w ∈W, ∀ŵ ∈
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Ŵ , we have

E
[
Vp(fp(x,w, ς), f̂p(x̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ]
− E

[
Vp(fp(x,w, ς), fp(x̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ]
≤ E

[
γ(‖f̂p(x̂, ŵ, ς)− fp(x̂, ŵ, ς)‖)

∣∣x, x̂, ν̂, w, ŵ],
where f̂p(x̂, ν̂, ς) = Πx(fp(x̂, ŵ, ς)). Using (4.2.5), the above inequality reduces to

E
[
Vp(fp(x,w, ς), f̂p(x̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ]
− E

[
Vp(fp(x,w, ς), fp(x̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ] ≤ γp(δ̄).
Employing (4.2.33), we get

E
[
Vp(fp(x,w, ς), f̂p(x̂, ŵ, ς))

∣∣x, x̂, w, ŵ]
≤ κ̄pVp(x, x̂) + ρ̄intp(‖w − ŵ‖) + γp(δ̄). (4.2.37)

Now, in order to show that the function V in (4.2.36) satisfies (4.2.24), we should
consider the different scenarios as in Definition 4.2.24. For the first scenario (l < kd −
1, ‖fp(x̂, ŵ, ς)− f̂p(x̂, ŵ, ς)‖ ≤ δ̄, p′ = p, and l′ = l + 1), using (4.2.37) we have:

E
[
V ((x′, p′, l′), (x̂′, p′, l′))

∣∣x, x̂, p, l, w, ŵ]
=

1

κ̄
l′/ε̄
p′

E
[
Vp′(x

′, x̂′)
∣∣x, x̂, ν̂, w, ŵ]

=
1

κ̄
(l+1)/ε̄
p

E
[
Vp(fp(x,w, ς), f̂p(x̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ]
≤ 1

κ̄
(l+1)/ε̄
p

(
κ̄pVp(x, x̂) + ρ̄intp(‖w − ŵ‖) + γp(δ̄)

)
= κ̄

ε̄−1
ε̄

p V ((x, p, l), (x̂, p, l)) +
1

κ̄
(l+1)/ε̄
p

(
ρ̄intp(‖w − ŵ‖) + γp(δ̄)

)
≤ κ̄

ε̄−1
ε̄

p V ((x, p, l), (x̂, p, l)) +
1

κ̄
kd/ε̄
p

(
ρ̄intp(‖w − ŵ‖) + γp(δ̄)

)
;

Note that the last inequality here holds since l < kd − 1, and consequently, l + 1 < kd.
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For the second scenario (l = kd − 1, ‖fp(x̂, ŵ, ς) − f̂p(x̂, ŵ, ς)‖ ≤ δ̄, p′ = p, and l′ =
kd − 1), we have:

E
[
V ((x′, p′, l′), (x̂′, p′, l′))

∣∣x, x̂, p, l, w, ŵ]
=

1

κ̄
l′/ε̄
p′

E
[
Vp′(x

′, x̂′)
∣∣x, x̂, ν̂, w, ŵ]

=
1

κ̄
l/ε̄
p

E
[
Vp(fp(x,w, ς), f̂p(x̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ]
≤ 1

κ̄
l/ε̄
p

(
κ̄pVp(x, x̂) + ρ̄intp(‖w − ŵ‖) + γp(δ̄)

)
= κ̄pV ((x, p, l), (x̂, p, l)) +

1

κ̄
kd/ε̄
p

(
ρ̄intp(‖w − ŵ‖) + γp(δ̄)

)
≤ κ̄

ε̄−1
ε̄

p V ((x, p, l), (x̂, p, l)) +
1

κ̄
kd/ε̄
p

(
ρ̄intp(‖w − ŵ‖) + γp(δ̄)

)
;

Note that the last inequality holds since ε̄ > 1, and consequently, 0 < ε̄−1
ε̄ < 1.

For the last scenario (l = kd − 1, ‖fp(x̂, ŵ, ς) − f̂p(x̂, ŵ, ς)‖ ≤ δ̄, p′ 6= p, and l′ = 0),
using Assumption 4.2.33 we have:

E
[
V ((x′, p′, l′), (x̂′, p′, l′))

∣∣x, x̂, p, l, w, ŵ]
=

1

κ̄
l′/ε̄
p′

E
[
Vp′(x

′, x̂′)
∣∣x, x̂, ν̂, w, ŵ]

≤ µ̃E
[
Vp(fp(x,w, ς), f̂p(x̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ]
= µ̃κ̄(kd−1)/ε̄

p

1

κ̄
l/ε̄
p

E
[
Vp(fp(x,w, ς), f̂p(x̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ]
≤ µ̃κ̄(kd−1)/ε̄

p

1

κ̄
l/ε̄
p

(
κ̄pVp(x, x̂) + ρ̄intp(‖w − ŵ‖) + γp(δ̄)

)
≤ µ̃κ̄(kd−1)/ε̄

p κ̄pV ((x, p, l), (x̂, p, l)) + µ̃
(
ρ̄intp(‖w − ŵ‖) + γp(δ̄)

)
≤ κ̄

ε̄−1
ε̄

p V ((x, p, l), (x̂, p, l)) +
1

κ̄
kd/ε̄
p

(
ρ̄intp(‖w − ŵ‖) + γp(δ̄)

)
;

Note that ∀p ∈ P , µ̃κ̄
(kd−1)/ε̄
p ≤ 1 since ∀p ∈ P , kd ≥ ε̄ ln(µ̃)

ln(1/κ̄p) + 1. By employing a

similar argument as the one in [SGZ18, Theorem 1], and by defining κ̄ = maxp{κ̄
ε̄−1
ε̄

p },
ρ̄int(s) = maxp{ 1

κ̄
kd/ε̄
p

ρ̄intp(s)},∀s ∈ R≥0, and γ̄(δ̄) = maxp{ 1

κ̄
kd/ε̄
p

γ̄p(δ̄)}, the following

inequality

E
[
V ((x′, p′, l′), (x̂′, p′, l′))

∣∣x, x̂, p, l, w, ŵ]
≤ max

{
κ̃V ((x, p, l), (x̂, p, l)), ρ̃int(‖w − ŵ‖), γ̃

}
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holds for the all scenarios, where κ̃ = (1−(1− π̃)(1− κ̄), ρ̃int = (Id+ δ̃f )◦( 1
(1−κ̄)π̃ λ̄◦ ρ̄int),

γ̃ = (Id + δ̃−1
f ) ◦ ( 1

(1−κ̄)π̃ ◦ λ̄ ◦ (λ̄−Id)−1 ◦ γ̄) where δ̃f , λ̄, are some arbitrarily chosen K∞
functions with λ̄− Id ∈ K∞, and 0 < π̃ < 1, 1− κ̄ > 0. Then the inequality (4.2.24) is
satisfied with ν = ν̂, κ = κ̃, ρint = ρ̃int, and ψ = γ̃(δ̄). Hence V is an aug-type SPSF
from Ĝ(Σ̂i) to G(Σi) which completes the proof.

Remark 4.2.37. Note that if there exists a common Lyapunov function V : X ×X →
R≥0 between all switching modes (i.e., p = p′, ∀p, p′ ∈ P ) satisfying Definition 4.2.32
and Assumptions 4.2.33 and 4.2.35, then V ((x, p, l), (x̂, p, l)) = V (x, x̂) and Defini-
tions 4.2.25 and 4.2.26 reduce to Definitions 3.3.1 and 3.3.3 (cf. Case study 4.2.2.6.1).
Accordingly, the functions and constants α, κ̄, ρ̄int and γ̄ reduce to α(s) = (Lp◦α−1

p (s))−1,
ρ̄int(s) = ρ̄intp(s),∀s ∈ R≥0, and κ̄ = κ̄p, γ̄(δ̄) = γ̄p(δ̄).

Now we provide similar results in the next subsection but tailored to a particular class
of nonlinear stochastic switched systems.

4.2.2.5.2 Stochastic Switched Systems with Slope Restrictions on Nonlin-
earity

Here we focus on a specific class of discrete-time nonlinear stochastic switched systems
similar to (3.3.10) together with quadratic functions Vp, and provide an approach on
the construction of their finite global MDPs. The class of nonlinear switched systems is
given by

Σ :


x(k + 1) = Ap(k)x(k) + Ep(k)ϕp(k)(Fp(k)x(k)) +Bp(k) +Dp(k)w(k) +Rp(k)ς(k),

y1(k) = C1x(k),
y2(k) = C2x(k),

(4.2.38)

where the additive noise ς(k) is a sequence of independent random vectors with multi-
variate standard normal distributions, and ϕp : R→ R satisfies

0 ≤ ϕp(c)− ϕp(d)

c− d
≤ bp, ∀c, d ∈ R, c 6= d, (4.2.39)

for some bp ∈ R>0 ∪ {∞}.
We use the tuple

Σ = (A,B,C1, C2, D,E, F,R, ϕ),

to refer to the class of nonlinear switched systems of the form (4.2.38), where A =
{A1, . . . , Am}, B = {B1, . . . , Bm}, D = {D1, . . . , Dm}, E = {E1, . . . , Em}, F = {F1, . . . ,
Fm}, R = {R1, . . . , Rm}, ϕ = {ϕ1, . . . , ϕm}, for the finite set of P = {1, . . . ,m}.

We employ a quadratic function of the form

Vp(x, x̂) = (x− x̂)T M̃p(x− x̂), ∀p ∈ P, (4.2.40)
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where M̃p � 0 is a positive-definite matrix of an appropriate dimension. In order to

show that a nominated V employing Vp in (4.2.40) is an aug-type SPSF from Ĝ(Σ̂) to
G(Σ) associated with Σ, we raise the following assumption on Σ.

Assumption 4.2.38. Assume that there exist constants 0 < κ̄p < 1, πp ∈ R>0, and
matrix M̃p � 0 such that the following inequality holds:[

(1 + 2πp)A
T
p M̃pAp ATp M̃pEp

ETp M̃pAp (1 + 2πp)E
T
p M̃pEp

]
�
[
κ̄pM̃p −F Tp
−Fp 2/bp

]
. (4.2.41)

Remark 4.2.39. Note that for any linear system Σ = (A,B,C1, C2, D,R) with matri-
ces Ep and Fp being identically zero, matrices Ap being Hurwitz is sufficient to satisfy
Assumption 4.2.38.

Now we provide another main result of this section showing under which conditions a
nominated V using Vp in (4.2.40) is an aug-type SPSF from Ĝ(Σ̂) to G(Σ).

Theorem 4.2.40. Consider the global MDP G(Σ) associated with Σ = (A,B,C1, C2, D,
, E, F,R, ϕ) and Ĝ(Σ̂) as its finite abstraction with the state discretization parameter
δ̄. Let ε̄ > 1 and Ĉi = Ci, i ∈ {1, 2}. If Assumption 4.2.38 holds, and ∀p ∈ P ,

kd ≥ ε̄ ln(µ̃)
ln(1/κ̄p) + 1, then

V ((x, p, l), (x̂, p, l)) =
1

κ̄
l/ε̄
p

Vp(x, x̂), (4.2.42)

with Vp in (4.2.40) is an aug-type SPSF from Ĝ(Σ̂) to G(Σ).

Proof. Since Ĉi = Ci, we have ‖Hi(x, p, l)−Ĥi(x̂, p, l)‖ = ‖Cix−Ĉix̂‖2 ≤ nλmax(CiTCi)‖x
− x̂‖2, and similarly λmin(M̃p)‖x− x̂‖2 ≤ (x− x̂)T M̃p(x− x̂). One can readily verify that
λmin(M̃p)

nλmax(CiTCi)
‖Cix−Ĉix̂‖2 ≤ Vp(x, x̂) holds ∀x, ∀x̂, and consequently, 1

κ̄
l/ε̄
p

λmin(M̃p)
nλmax(CiTCi)

‖Cix

− Ĉix̂‖2 ≤ V ((x, p, l), (x̂, p, l)), ∀(x, p, l) ∈ X,∀(x̂, p, l) ∈ X̂. Since 1

κ̄
l/ε̄
p

> 1, one can

conclude that the inequality (4.2.23) holds with α(s) = minp{ λmin(M̃p)
nλmax(CiTCi)

} s2 for any

s ∈ R≥0. We proceed with showing that the inequality (4.2.24) holds, as well. We
simplify

Apx+ Epϕp(Fpx) +Bp +Dpw +Rpς

−Πx(Apx̂+ Epϕp(Fpx̂) +Bp +Dpŵ +Rpς)

to

Ap(x− x̂) +Dp(w − ŵ) + Ep(ϕp(Fpx)− ϕp(Fpx̂)) + N̄p, (4.2.43)

where N̄p = Apx̂+Epϕp(Fpx̂)+Bp+Dpŵ+Rpς−Πx(Apx̂+Epϕp(Fpx̂)+Bp+Dpŵ+Rpς).
From the slope restriction (4.2.39), one obtains

ϕp(Fpx)− ϕp(Fpx̂) = δp(Fpx− Fpx̂) = δpFp(x− x̂), (4.2.44)
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where δp is a constant and depending on x and x̂ takes values in the interval [0, bp].
Using (4.2.44), the expression in (4.2.43) reduces to

(Ap + δpEpFp)(x− x̂) +Dp(w − ŵ) + N̄p.

Using Young’s inequality [You12] as cd ≤ π
2 c

2 + 1
2πd

2, for any c, d ≥ 0 and any π > 0,
by employing Cauchy-Schwarz inequality and (4.2.41), and since

‖N̄p‖ ≤ δ̄, N̄T
p M̃pN̄p ≤ nλmax(M̃p)δ̄

2,

one can obtain the chain of inequalities in (4.2.46) including the different scenarios as in
Definition 4.2.24. By employing the similar argument as the one in [SGZ18, Theorem 1],

and by defining κ̄ = maxp{κ̄
ε̄−1
ε̄

p }, ρ̄int(s) = maxp{ 1

κ̄
kd/ε̄
p

p̄(1+πp+2/πp)‖
√
M̃pDp‖22}s2, ∀s

∈ R≥0, and γ̄ = maxp{ 1

κ̄
kd/ε̄
p

n(1 + 3/πp)λmax(M̃p)}δ̄2, the following inequality

E
[
V ((x′, p′, l′), (x̂′, p′, l′))

∣∣x, x̂, p, l, w, ŵ]
≤ max

{
κ̃V ((x, p, l), (x̂, p, l)), ρ̃int(‖w − ŵ‖), γ̃

}
(4.2.45)

holds for all the scenarios, where κ̃ = (1− (1− π̃)(1− κ̄), ρ̃int = (1+δ̃c)
(1−κ̄)π̃ ρ̄int, γ̃ = (1+1/δ̃c)

(1−κ̄)π̃ γ̄,

where π̃, δ̃c, can be arbitrarily chosen such that 0 < π̃ < 1, δ̃c > 0, 1 − κ̄ > 0. Then
the inequality (4.2.24) is satisfied with ν = ν̂, κ = κ̃, ρint = ρ̃int, and ψ = γ̃. Hence
V defined in (4.2.42) is an aug-type SPSF from Ĝ(Σ̂) to G(Σ), which completes the
proof.

Remark 4.2.41. If ∀p ∈ P , there exists a common V : X × X → R≥0 satisfies As-
sumption 4.2.38, then V, α, κ̄, ρ̄int and γ̄ reduce to the functions V ((x, p, l), (x̂, p, l)) =

V (x, x̂), α(s) =
λmin(M̃p)

nλmax(CTC)
s2, ρ̄int(s) = p̄(1 + πp + 2/πp)‖

√
M̃pDp‖22s2,∀s ∈ R≥0, and

constants κ̄ = κ̄p, γ̄ = n(1 + 3/πp)λmax(M̃p)δ̄
2.

Remark that µ̃ used in Theorem 4.2.40 is the one appearing in Assumption 4.2.33.
Given the quadratic form of Vp in (4.2.40), ∀p ∈ P , we can always choose µ̃ ≥ 1 satisfying
Assumption 4.2.33 as discussed in Remark 4.2.34.

4.2.2.6 Case Studies

In this subsection, to demonstrate the effectiveness of our proposed results, we first
apply our approaches to a road traffic network in a circular cascade ring composed
of 200 identical cells, each of which has the length of 500 meters with 1 entry and
1 way out, and construct compositionally a finite MDP of the network. We employ
the constructed finite abstraction as a substitute to compositionally synthesize policies
keeping the density of the traffic lower than 20 vehicles per cell. Finally, to show the
applicability of our results to switched systems accepting Multiple Lyapunov functions
with dwell-time, we apply our proposed techniques to a fully interconnected network of
500 nonlinear subsystems (totally 1000 dimensions) and construct their finite MDPs
with guaranteed error bounds on their probabilistic output trajectories.
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- First Scenario (l < kd − 1, ‖f(x̂, ŵ, ς)− f̂p(x̂, ŵ, ς)‖ ≤ δ̄, p′ = p, l′ = l + 1):

E
[
V ((x′, p′, l′), (x̂′, p′, l′))

∣∣x, x̂, p, l, w, ŵ] =
1

κ̄
l′/ε̄
p′

E
[
Vp′(x

′, x̂′)
∣∣x, x̂, ν̂, w, ŵ]

=
1

κ̄
(1+l)/ε̄
p

E
[
Vp(fp(x,w, ς), f̂p(x̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ]
=

1

κ̄
(1+l)/ε̄
p

(
(x−x̂)T

[
(Ap+δpEpFp)

T M̃p(Ap+δpEpFp)
]
(x−x̂)+(w−ŵ)TDT

p M̃pDp(w−ŵ)

+ 2
[
(x−x̂)T (Ap + δpEpFp)

T
]
M̃p

[
Dp(w−ŵ)

]
+2
[
(w−ŵ)TDT

p

]
M̃pE

[
N̄p

∣∣x, x̂, ν̂, w, ŵ]
+ 2
[
(x− x̂)T (Ap + δpEpFp)

T
]
M̃pE

[
N̄p

∣∣x, x̂, ν̂, w, ŵ]+ E
[
N̄T
p M̃pN̄p

∣∣x, x̂, ν̂, w, ŵ])
≤ 1

κ̄
(1+l)/ε̄
p

( [ x− x̂
δpFp(x− x̂)

]T [
(1 + 2πp)A

T
p M̃pAp ATp M̃pEp

∗ (1 + 2πp)E
T
p M̃pEp

] [
x− x̂

δpFp(x− x̂)

]
+ p̄(1 + πp + 2/πp)‖

√
M̃pDp‖22‖w − ŵ‖2 + n(1 + 3/πp)λmax(M̃p) δ̄

2
)

≤ 1

κ̄
(1+l)/ε̄
p

( [ x− x̂
δpFp(x− x̂)

]T [
κ̄pM̃p −F Tp
−Fp 2

bp

] [
x− x̂

δpFp(x− x̂)

]
+ p̄(1 + πp + 2/πp)‖

√
M̃pDp‖22‖w − ŵ‖2 + n(1 + 3/πp)λmax(M̃p) δ̄

2
)

=
1

κ̄
(1+l)/ε̄
p

(
κ̄p(Vp(x, x̂))− 2δp(1−

δ̄

bp
)(x− x̂)TF Tp Fp(x− x̂)

+ p̄(1 + πp + 2/πp)‖
√
M̃pDp‖22‖w − ŵ‖2 + n(1 + 3/πp)λmax(M̃p) δ̄

2
)

≤ κ̄
ε̄−1
ε̄

p V ((x, p, l), (x̂, p, l)) +
1

κ̄
kd/ε̄
p

(
p̄(1 + πp + 2/πp)‖

√
M̃pDp‖22‖w − ŵ‖2

+ n(1 + 3/πp)λmax(M̃p) δ̄
2
)
;

- Second Scenario (l = kd − 1, ‖f(x̂, ŵ, ς)− f̂p(x̂, ŵ, ς)‖ ≤ δ̄, p′ = p, l′ = kd − 1) :

E
[
V ((x′, p′, l′), (x̂′, p′, l′))

∣∣x, x̂, p, l, w, ŵ] =
1

κ̄
l′/ε̄
p′

E
[
Vp′(x

′, x̂′)
∣∣x, x̂, ν̂, w, ŵ]

=
1

κ̄
l/ε̄
p

E
[
Vp(fp(x,w, ς), f̂p(x̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ]
≤ κ̄pV ((x, p, l), (x̂, p, l)) +

1

κ̄
kd/ε̄
p

(
p̄(1 + πp + 2/πp)‖

√
M̃pDp‖22‖w − ŵ‖2

+ n(1 + 3/πp)λmax(M̃p) δ̄
2
)

≤ κ̄
ε̄−1
ε̄

p V ((x, p, l), (x̂, p, l)) +
1

κ̄
kd/ε̄
p

(
p̄(1 + πp + 2/πp)‖

√
M̃pDp‖22‖w − ŵ‖2

+ n(1 + 3/πp)λmax(M̃p) δ̄
2
)
;
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- Last Scenario (l = kd − 1, ‖f(x̂, ŵ, ς)− f̂p(x̂, ŵ, ς)‖ ≤ δ̄, p′ 6= p, l′ = 0):

E
[
V ((x′, p′, l′), (x̂′, p′, l′))

∣∣x, x̂, p, l, w, ŵ] =
1

κ̄
l′/ε̄
p′

E
[
Vp′(x

′, x̂′)
∣∣x, x̂, ν̂, w, ŵ]

= µ̃ E
[
Vp(fp(x,w, ς), f̂p(x̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ]
≤ µ̃κ̄(kd−1)/ε̄

p κ̄pV ((x, p, l), (x̂, p, l)) + µ̃
(
p̄(1 + πp + 2/πp)‖

√
M̃pDp‖22‖w − ŵ‖2

+ n(1 + 3/πp)λmax(M̃p) δ̄
2
)

≤ κ̄
ε̄−1
ε̄

p V ((x, p, l), (x̂, p, l)) +
1

κ̄
kd/ε̄
p

(
p̄(1 + πp + 2/πp)‖

√
M̃pDp‖22‖w − ŵ‖2

+ n(1 + 3/πp)λmax(M̃p) δ̄
2
)
. (4.2.46)

4.2.2.6.1 Road Traffic Network

In this subsection, we apply our results to a road traffic network in a circular cascade
ring which is composed of 200 identical cells, each of which has the length of 500 meters
with 1 entry and 1 way out, as schematically depicted in Figure 4.7. The model of this
case study is borrowed from [LCGG13] by including the stochasticity in the model as
the additive noise. The entry is controlled by a traffic light, that enables (green light)

Σ1 Σ2

.

Σ200

Road Traffic

Network

Traffic light

Σ1

.

.

Way out

Figure 4.7: Model of a road traffic network in a circular cascade ring composed of 200 identical
cells, each of which has the length of 500 meters with 1 entry and 1 way out.

or not (red light) the vehicles to pass. In this model the length of a cell is in kilometers
(0.5 [km]), and the flow speed of vehicles is 100 kilometers per hour ([km/h]). Moreover,
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during the sampling time interval τ = 6.48 seconds, it is assumed that 8 vehicles pass
the entry controlled by the green light, and one quarter of vehicles goes out on the exit of
each cell (the ratio denoted q̃). We want to observe the density of the traffic xi, given in
vehicles per cell, for each cell i of the road. The set of modes is Pi = {1, 2}, i ∈ {1, . . . , n}
such that

• mode 1 means the traffic light is red;

• mode 2 means the traffic light is green.

Note that here we only have traffic signals on the on-ramps. The dynamic of the
interconnected system is described by:

Σ :

{
x(k + 1) = Ax(k) +Bp(k) + ς(k),

y(k) = x(k),
(4.2.47)

where A is a matrix with diagonal elements aii = (1− τvi
l̃i
−q̃), i ∈ {1, . . . , n}, off-diagonal

elements ai+1,i = τvi
l̃i

, i ∈ {1, . . . , n−1}, a1,n = τvn
l̃n

, and all other elements are identically

zero. Moreover, Bp = [b1p1 ; . . . ; bnpn ], x(k) = [x1(k); . . . ;xn(k)], ς(k) = [ς1(k); . . . ; ςn(k)],
and

bipi =

{
0, if pi = 1,
8, if pi = 2.

Furthermore, the additive noise ς(k) is a sequence of independent random vectors with
multivariate standard normal distributions (i.e., mean zero and covariance matrix iden-
tity). Now by introducing the individual cells Σi described as

Σi :


xi(k + 1) = (1− τvi

l̃i
− q̃)xi(k) +Diwi(k) + bipi(k) + ςi(k),

y1
i (k) = xi(k),
y2
i (k) = xi(k),

(4.2.48)

where Di = τvi−1

l̃i−1
(with v0 = vn, l̃0 = l̃n) and wi(k) = y2

i−1(k) (with y2
0 = y2

n), one

can readily verify that Σ = Iss(Σ1, . . . ,ΣN ), equivalently Σ = Iss(G(Σ1), . . . , ,G(ΣN )).
Note that we consider sets Xi = Wi = [0 20], ∀i ∈ {1, . . . , n}. Since the dynamic of the
system is linear, condition (4.2.41) reduces to

(1 + 2πi)A
T
i M̃iAi � κ̄iM̃i,

which is nothing more than the stability of each cell i. Note that in this example
Vp = Vp′ ,∀p, p′ ∈ P (i.e., the common Lyapunov function). Then one can readily verify
that this condition is satisfied with M̃i = 1, πi = 0.85, κ̄i = 0.41 ∀i ∈ {1, . . . , n}, and the
function Vi(xi, x̂i) = (xi − x̂i)2 is an aug-type SPSF from Ĝ(Σ̂i) to G(Σi) satisfying the
condition (4.2.23) with αi(s) = s2 and the condition (4.2.24) with κi = 0.99, ρinti(s) =
0.72s2, ∀s ∈ R≥0, and ψi = 84.96 δ̄2

i .
Now we check the small-gain condition (4.2.7) that is required for the compositionality

result. By taking σi(s) = s, ∀i ∈ {1, . . . , n}, the condition (4.2.7) and as a result the
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condition (4.2.8) are always satisfied without any restriction on the number of cells.
Hence, V (x, x̂) = maxi(xi − x̂i)

2 is an aug-type SSF from Ĝ(Σ̂) to G(Σ) satisfying
conditions (4.2.25) and (4.2.26) with α(s) = s2, κ = 0.99, and ψ = 84.96 δ̄2.

We take the state and internal input discretization parameters as 0.02. Then we have
nxi = nwi = 1000. By taking the initial states of the interconnected systems Σ and Σ̂
as 101200, we guarantee that the distance between trajectories of Σ and of Σ̂ will not
exceed ε = 1 during the time horizon Td = 15 with the probability at least 88%, i.e.,

P(‖yaν̂(k)− ŷâν̂(k)‖ ≤ 1, ∀k ∈ [0, 15]) ≥ 0.88.

4.2.2.6.2 Compositional Controller Synthesis

Let us now synthesize a controller for Σ via the abstraction Ĝ(Σ̂) such that the safety
controller maintains the density of the traffic lower than 20 vehicles per cell. The idea
here is to first design a local controller for the abstraction Ĝ(Σ̂i), and then refine it
back to the system Σi. Consequently, the controller for the interconnected system Σ
would be a vector such that each of its components is the controller for systems Σi.
We employ here the software tool FAUST2 [SGA15] by doing some modifications to
accept internal inputs as disturbances, and synthesize a controller for Σ by choosing
the standard deviation of the noise σ̄i = 0.83, ∀i ∈ {1, . . . , n}. An optimal switch for
a representative cell in a network of N = 200 cells is plotted in Figure 4.8 top. The
optimal switch here is sub-optimal for each subsystem and is obtained by assuming that
other subsystems do not violate the safety specification. An optimal switch w.r.t. time
for a representative cell with different noise realizations is also illustrated in Figure 4.8
middle, with 10 different realizations. Moreover, closed-loop state trajectories of the
representative cell with different noise realizations are illustrated in Figure 4.8 bottom,
with 10 realizations.

4.2.2.6.3 Memory Usage and Computation Time

Now we discuss the memory usage and computation time of constructing finite MDPs
in both monolithic and compositional manners. The monolithic finite MDP would be
a matrix with the dimension of (nNxi × 2N ) × nNxi with nxi = 1000 and N = 200. By
allocating 8 bytes for each entry of the matrix to be stored as a double-precision floating
point, one needs a memory of 8×1000200×2200×1000200

109 ≈ 101252 GB for building the finite
MDP in the monolithic manner which is impossible in practice. Now we proceed with
the compositional construction of finite MDPs proposed in this thesis. The constructed
MDP for each subsystem here is a matrix with the dimension of (nxi × 2 × nwi) × nxi
with nxi = nwi = 1000. This has the memory usage of 8×1000×2×1000×1000

109 = 16 GB.
We can compute such a finite MDP with the software tool FAUST2, which takes 112
seconds on a machine with Windows operating system (Intel i7@3.6GHz CPU and 16
GB of RAM).

A comparison on the required memory for the construction of finite MDPs between
the monolithic and compositional manners for different state discretization parameters is
provided in Table 4.1. As seen, in order to provide even a very weak closeness guarantee
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Figure 4.8: Top: An optimal switch for a representative cell in a network of 200 cells. Middle:
An optimal switch w.r.t. time for a representative cell with different noise realiza-
tions. Bottom: Closed-loop state trajectories of a representative cell with different
noise realizations.

of 2% between trajectories of Σ and of Σ̂, the required memory in the monolithic fashion
is 10972 GB which is still impossible in practice. This implementation clearly shows
that the proposed compositional approach in this work significantly mitigates the curse
of dimensionality problem in constructing finite MDPs monolithically. In particular,
in order to quantify the probabilistic closeness between two networks Σ and Σ̂ via the
inequality (4.2.27) as provided in Table 4.1, one needs to only build finite MDPs of
individual subsystems (i.e., Σ̂i), construct an aug-type SPSF between each Σi and Σ̂i,
and then employ the proposed compositionality results of the section to build an aug-type
SSF between Σ and Σ̂.
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Table 4.1: Required memory for the construction of finite MDPs in both monolithic and com-
positional manners for different state discretization parameters.

δ̄ Closeness Σ̂i (GB) Σ̂ (GB)

0.01 97% 128 101372

0.02 88% 16 101252

0.03 75% 4.72 101181

0.04 60% 2 101131

0.05 44% 1.02 101092

0.06 30% 0.59 101061

0.07 19% 0.37 101033

0.08 11% 0.25 101011

0.09 5% 0.17 10990

0.1 2% 0.12 10972

4.2.2.6.4 Comparisons with DBN Approach of [SAM17]

We compare the probabilistic closeness guarantees provided by the results of this section
with that of [SAM17]. Note that our results are based on the max small-gain approach
while [SAM17] employs dynamic Bayesian network (DBN) to capture the dependencies
between subsystems. The comparison is shown in Figures 4.9-4.11 in the logarithmic
scale. In Figure 4.9, we have fixed ε = 1, σ̄i = 0.83, Td = 15, and plotted the error
as a function of the state discretization parameter δ̄ and the number of subsystems
N . As seen, by increasing the number of subsystems, our error provided in (4.2.27)
does not change since the overall ψ is independent of the size of the network (i.e.,
N), and is computed only based on the maximum ψi of subsystems instead of being
a linear combination of them which is the case in [SAM17]. In Figure 4.10, we have
fixed N = 200, ε = 1, Td = 15, and plotted the error as a function of δ̄ and the
standard deviation of the noise σ̄. Our error in (4.2.27) is independent of σ̄ while the
error in [SAM17] grows when σ̄ goes to zero. In Figure 4.11, we have fixed N = 200,
σ̄i = 0.83, Td = 15, and plotted the error as a function of δ̄ and ε. The error in [SAM17]
is independent of ε while our error increases when ε goes to zero.

In conclusion, the proposed approach in [SAM17] is more general than our setting here.
It does not require original systems to be incrementally input-to-state stable (δ-ISS) and
only the Lipschitz continuity of the associated stochastic kernels is enough for validity of
the results. The refinement does not require running the abstract systems and obtaining
the input according to an interface function. On the other hand, the abstraction error
in [SAM17] depends on the number of subsystems and also the Lipschitz constants of
the stochastic kernels associated with the system. Thus, our approach outperforms the
results in [SAM17] for large-scale stochastic systems with a small standard deviation of
the noise as long as the imposed assumptions are satisfied.
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Figure 4.9: Comparison of the probabilistic error bound in (4.2.27) provided by our approach
based on the max small-gain with that of [SAM17] based on DBN. Plots are in the
logarithmic scale for a fixed ε = 1, σ̄i = 0.83, and Td = 15.
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Figure 4.10: Comparison of the probabilistic error bound in (4.2.27) provided by our approach
based on max the small-gain with that of [SAM17] based on DBN. Plots are in
the logarithmic scale for a fixed N = 200, ε = 1, and Td = 15.

4.2.2.6.5 Switched Systems Accepting Multiple Lyapunov Functions with
Dwell-Time

In order to show the applicability of our results to switched systems accepting multiple
Lyapunov functions with dwell-time, we apply our proposed techniques to a fully in-
terconnected network of 500 nonlinear subsystems in the form of (4.2.38) (totally 1000
dimensions), as illustrated in Figure 4.12. The model of the system does not have a
common Lyapunov function because it exhibits unstable behaviors for different switching
signals [Lib03] (i.e., if one periodically switches between different modes, the trajectory
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Figure 4.11: Comparison of the probabilistic error bound in (4.2.27) provided by our approach
based on the max small-gain with that of [SAM17] based on DBN. Plots are in
the logarithmic scale for a fixed N = 200, σ̄i = 0.83, and Td = 15.

goes to infinity). The dynamic of the interconnected system is described by:

Σ :

{
x(k + 1) = Ap(k)x(k) +Bp(k) + ϕ(x(k)) +Rς(k),

y(k) = x(k),
(4.2.49)

where

Ap(k) =


Āpi Ã · · · · · · Ã

Ã Āpi Ã · · · Ã

Ã Ã Āpi · · · Ã
...

. . .
. . .

...

Ã · · · · · · Ã Āpi


n×n

,

Ã =

[
0.015 0

0 0.015

]
, Āpi =


[
0.05 0
0.9 0.03

]
, if pi = 1,[

0.02 −1.2
0 0.05

]
, if pi = 2.

Moreover, we choose R = diag(12, . . . ,12), ϕ(x) = [0.112ϕ1(0.11T2 x1(k)); . . . ; 0.112ϕN
(0.11T2 xN (k))], and ϕi(x) = sin(x), ∀i ∈ {1, . . . , N}. Note that functions ϕi sat-
isfy the condition (4.2.39) with bpi = 1. We fix here N = 500. Furthermore, Bp =
[b1p1 ; . . . ; bNpN ] such that

bipi =


[
−0.9
0.5

]
, if pi = 1,[

0.9
−0.2

]
, if pi = 2.
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Figure 4.12: A fully interconnected network of 500 nonlinear components (totally 1000 dimen-
sions).

We partition x(k) as x(k) = [x1(k); . . . ;xN (k)] and ς(k) as ς(k) = [ς1(k); . . . ; ςN (k)],
where xi(k), ςi(k) ∈ R2. Now, by introducing the individual subsystems Σi described as

Σi :


xi(k + 1) = Āpi(k)xi(k) + bipi(k) +Diwi(k) + 0.112ϕi(0.11

T
2 xi(k)) + 12ςi(k),

y1
i (k) = xi(k),
y2
i (k) = xi(k),

(4.2.50)

where

Di = [Ã; . . . ; Ã]T2×(n−2),

wi(k) = [y2
i1; . . . ; y2

i(i−1); y
2
i(i+1); . . . ; y

2
iN ], i ∈ {1, . . . , N},

one can readily verify that Σ = Iss(Σ1, . . . ,ΣN ), equivalently Σ = Iss(G(Σ1), . . . ,G(ΣN )).
One can also verify that, ∀i ∈ {1, . . . , N}, the condition (4.2.41) is satisfied with

for pi = 1 : M̃pi =

[
1.311 0.001
0.001 0.492

]
, κ̄pi = 0.7, πpi = 0.5,

for pi = 2 : M̃pi =

[
0.4 0.01
0.01 1.49

]
, κ̄pi = 0.7, πpi = 0.4.

By taking ε̄ = 1.75 and choosing µ̃ = 3.27, one can get the dwell-time kd = 7. Hence,
Vi((xi, pi, li), (x̂i, pi, li)) = 1

κ̄
l/1.75
pi

(xi−x̂i)T M̃ipi(xi−x̂i) is an aug-type SPSF from Ĝ(Σ̂i) to

G(Σi) satisfying the condition (4.2.23) with αi(s) = 0.2s2, ∀s ∈ R≥0, and the condition
(4.2.24) with κi = 0.99, ρinti(s) = 0.19s2, ∀s ∈ R≥0, and ψi = 2266 δ̄2

i .
Now we check small-gain condition (4.2.7) that is required for the compositionality

result. By taking σi(s) = s, ∀i ∈ {1, . . . , N}, the condition (4.2.7) and as a result the con-
dition (4.2.8) are satisfied. Hence, V ((x, p, l), (x̂, p, l)) = maxi{ 1

κ̄
l/1.75
pi

(xi− x̂i)T M̃ipi(xi−

x̂i)} is an aug-type SSF from Ĝ(Σ̂) to G(Σ) satisfying conditions (4.2.25) and (4.2.26)
with α(s) = 0.2s2, ∀s ∈ R≥0, κ = 0.99, and ψ = 2266 δ̄2.
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By taking the state discretization parameter δ̄i = 0.001, and choosing the initial states
of the interconnected systems Σ and Σ̂ as 11000, we guarantee that the distance between
trajectories of Σ and of Σ̂ will not exceed ε = 1 during the time horizon Td = 10 with
the probability at least 90%, i.e.,

P(‖yaν̂(k)− ŷâν̂(k)‖ ≤ 1, ∀k ∈ [0, 10]) ≥ 0.9.

4.2.2.6.6 Analysis on Probabilistic Closeness Guarantee

In order to have a practical analysis on the proposed probabilistic closeness guarantee, we
plotted in Figure 4.13 the probabilistic error bound provided in (4.2.27) in terms of the
state discretization parameter δ̄ and the confidence bound ε. As seen, the probabilistic
closeness guarantee is improved by either decreasing δ̄ or increasing ε. Note that the
constant ψ in (4.2.27) is formulated based on the state discretization parameter δ̄ as
in (4.2.46). It is worth mentioning that there are some other parameters in (4.2.27) such
as K∞ function α, and the value of SSF V at initial conditions a, â, p0, l0 which can also
improve the proposed bound for given values of Td and initial conditions of the system.
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Figure 4.13: Probabilistic error bound proposed in (4.2.27) based on δ̄ and ε. Plot is in the
logarithmic scale for Td = 10. The probabilistic closeness guarantee is improved by
either decreasing the state discretization parameter δ̄ or increasing the confidence
bound ε.

4.3 Dissipativity Approach

In this section, we provide a compositional methodology based on the dissipativity ap-
proach for the construction of finite abstractions for the both stochastic control and
switched systems. The proposed technique leverages the interconnection structure and
joint dissipativity-type properties of subsystems and their abstractions characterized via
stochastic storage functions. The provided compositionality conditions can enjoy the
structure of the interconnection topology and be potentially satisfied independently of
the number or gains of subsystems.
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4.3.1 Stochastic Control Systems

We first consider the stochastic control systems defined in (2.3.1) and the SStF and sum-
type SSF in Definitions 3.4.1, and 3.2.4 for quantifying the probabilistic error between
two dt-SCS (with both internal and external signals) and two interconnected dt-SCS
(without internal signals), respectively. We rewrite Theorem 3.4.4 as the compositional
results of this section to establish a sum-type SSF between Σ and its finite MDP Σ̂.

Theorem 4.3.1. Consider the interconnected stochastic control system Σ = Icd(Σ1, . . . ,
ΣN ) induced by N ∈ N≥1 stochastic control subsystems Σi and the coupling matrix

M . Suppose that each stochastic control subsystem Σi admits its finite abstraction Σ̂i

with the corresponding SStF Vi. Suppose conditions (3.4.3), and (3.4.4) are satisfied.
Then the weighted sum (3.4.7) is a sum-type SSF from the interconnected finite MDP
Σ̂ = Icd(Σ̂1, . . . , Σ̂N ), with coupling matrix M̂ , to Σ = Icd(Σ1, . . . ,ΣN ) if µi > 0,
i ∈ {1, . . . , N}, and the following inclusion holds:

M̂

N∏
i=1

Ŷ 2
i ⊆

N∏
i=1

Ŵi. (4.3.1)

The proof is similar to that of Theorem 3.4.4 and is omitted here.

Remark 4.3.2. Note that the condition (4.3.1) is not restrictive since Ŵi and Ŷ 2
i are

internal input and output sets of abstract subsystems Σ̂i, which are finite. Thus one can
readily choose internal input sets Ŵi such that

∏n
i=1 Ŵi := M̂

∏n
i=1 Ŷ

2
i which implicitly

implies a condition on the granularity of the discretization for sets Wi and Y 2
i . In other

words, the condition (4.3.1) is required for just having a well-posed interconnection.

4.3.1.1 Construction of SStF

In this subsection, we impose conditions on the infinite dt-SCS Σ enabling us to find
an SStF from its finite abstraction Σ̂ to Σ. The required conditions are first presented
in a general setting of nonlinear stochastic control systems in the next subsection and
then represented via some matrix inequality for linear stochastic control systems in
Subsection 4.3.1.1.2.

4.3.1.1.1 General Setting of Nonlinear Stochastic Control Systems

The stochastic storage function from the finite MDP Σ̂ to Σ is established under the
assumption that the original discrete-time stochastic control system Σ is incrementally
passivable as in Definition 2.8.1.

Remark 4.3.3. Note that Definition 2.8.1 implies that V is an SStF from system Σ
equipped with the state feedback controller H̄ to itself. This type of property is closely
related to the notion of so-called incremental stabilizability [Ang02, PTS09].
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In Subsection 4.3.1.1.2, we show that inequalities (2.8.1), (2.8.2) for a candidate
quadratic function V and linear stochastic control systems boil down to some matrix
inequality. Under Definition 2.8.1, the next theorem shows a relation between Σ and Σ̂,
constructed as in Algorithm 1, via establishing an SStF between them.

Theorem 4.3.4. Let Σ be an incrementally passivable dt-SCS via a function V as in
Definition 2.8.1 and Σ̂ be its finite MDP as in Algorithm 1. Assume that there exists a
function γ ∈ K∞ such that the condition (4.2.11) is satisfied. Then V is an SStF from
Σ̂ to Σ.

Proof. Since the system Σ is incrementally passivable, from (2.8.1), and since h1 = ĥ1,
∀x ∈ X and ∀x̂ ∈ X̂, we have

α(‖h1(x)− h1(x̂)‖2) = α(‖h1(x)− ĥ1(x̂)‖2) ≤ V (x, x̂),

satisfying (3.4.1) with α(s) := α(s) ∀s ∈ R≥0. Now by taking the conditional expectation
from (4.2.11), ∀x ∈ X,∀x̂ ∈ X̂, ∀ν̂ ∈ Û ,∀w ∈W, ∀ŵ ∈ Ŵ , we have

E
[
V (f(x, H̄(x) + ν̂, w, ς), f̂(x̂, ν̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ]
− E

[
V (f(x, H̄(x) + ν̂, w, ς), f(x̂, H̄(x̂) + ν̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ]
≤ E

[
γ(‖f̂(x̂, ν̂, ŵ, ς)− f(x̂, H̄(x̂) + ν̂, ŵ, ς)‖2)

∣∣ x̂, x̂, ν̂, w, ŵ],
where f̂(x̂, ν̂, ŵ, ς) = Πx(f(x̂, H̄(x̂)+ν̂, ŵ, ς)). Using (4.2.5), the above inequality reduces
to

E
[
V (f(x, H̄(x) + ν̂, w, ς), f̂(x̂, ν̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ]
− E

[
V (f(x, H̄(x) + ν̂, w, ς), f(x̂, H̄(x̂) + ν̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ] ≤ γ(δ̄).

Employing (2.8.2) and since h2 = ĥ2, we get

E
[
V (f(x, H̄(x) + ν̂, w, ς), f(x̂, H̄(x̂) + ν̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ]− V (x, x̂)

≤ −κ̂(V (x, x̂)) +

[
w − ŵ

h2(x)− ĥ2(x̂)

]T [
X̄11 X̄12

X̄21 X̄22

] [
w − ŵ

h2(x)− ĥ2(x̂)

]
.

It follows that ∀x ∈ X,∀x̂ ∈ X̂, ∀û ∈ U, and ∀w ∈W, ∀ŵ ∈ Ŵ ,

E
[
V (f(x, H̄(x) + ν̂, w, ς), f̂(x̂, ν̂, ŵ, ς)))

∣∣x, x̂, ν̂, w, ŵ]− V (x, x̂)

≤ −κ̂(V (x, x̂)) + γ(δ̄) +

[
w − ŵ

h2(x)− ĥ2(x̂)

]T [
X̄11 X̄12

X̄21 X̄22

] [
w − ŵ

h2(x)− ĥ2(x̂)

]
,

satisfying (3.4.2) with ψ = γ(δ̄), ν = H̄(x)+ ν̂, κ = κ̂, ρext ≡ 0, and G, Ĝ, H are identity
matrices of appropriate dimensions. Hence, V is an SStF from Σ̂ to Σ which completes
the proof.

Now we provide similar results as in this subsection but tailored to linear stochastic
control systems.
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4.3.1.1.2 Discrete-Time Linear Stochastic Control Systems

In this subsection, we focus on the linear class of discrete-time stochastic control systems
Σ as defined in (3.2.18) and quadratic functions V in (4.2.14). In order to show that V
in (4.2.14) is an SStF from Σ̂ to Σ, we require the following key assumption on Σ.

Assumption 4.3.5. Let Σ = (A,B,C1, C2, D,R). Assume that for some constants
0 < κ̂ < 1 and π > 0, there exist matrices M̃ � 0, K, X̄11, X̄12, X̄21, and X̄22 of
appropriate dimensions such that the following matrix inequality holds:

[
(1 + π)(A+BK)T M̃(A+BK) (A+BK)T M̃D

DT M̃(A+BK) (1 + π)DT M̃D

]
�
[
κ̂M̃ + C2T X̄22C2 C2T X̄21

X̄12C2 X̄11

]
.

(4.3.2)

Now we provide another main result of this section showing that under some conditions
V in (4.2.14) is an SStF from Σ̂ to Σ.

Theorem 4.3.6. Let Σ = (A,B,C1, C2, D,R) and Σ̂ be its finite MDP with the dis-
cretization parameter δ̄, and Ŷ1 ⊆ Y1. Suppose Assumption 4.3.5 holds, and C1 = Ĉ1,
C2 = Ĉ2. Then the function V defined in (4.2.14) is an SStF from Σ̂ to Σ.

Proof. Here we show that ∀x, ∀x̂, ∀ν̂, ∃ν, ∀ŵ, ∀w, V satisfies λmin(M̃)
λmax(C1TC1)

‖C1x−Ĉ1x̂‖22 ≤
V (x, x̂) and

E
[
V (f(x, ν, w, ς), f̂(x̂, ν̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ]− V (x, x̂)

≤ −(1− κ̂)(V (x, x̂)) + (1 + 2/π)λmax(M̃)δ̄2

+

[
w − ŵ

h2(x)− ĥ2(x̂)

]T [
X̄11 X̄12

X̄21 X̄22

] [
w − ŵ

h2(x)− ĥ2(x̂)

]
.

Since C1 = Ĉ1, we have ‖C1x−Ĉ1x̂‖22 = (x−x̂)TC1TC1(x−x̂). Since λmin(C1TC1)‖x−
x̂‖22 ≤ (x− x̂)TC1TC1(x− x̂) ≤ λmax(C1TC1)‖x− x̂‖22 and similarly λmin(M̃)‖x− x̂‖22 ≤
(x− x̂)T M̃(x− x̂) ≤ λmax(M̃)‖x− x̂‖22, it can be readily verified that λmin(M̃)

λmax(C1TC1)
‖C1x−

Ĉ1x̂‖22 ≤ V (x, x̂) holds ∀x, ∀x̂, implying that the inequality (3.4.1) holds with α(s) =
λmin(M̃)

λmax(C1TC1)
s2 for any s ∈ R≥0. We proceed with showing that the inequality (3.4.2)

holds, as well. Given any x, x̂, and ν̂, we choose ν via the interface function proposed
in (4.2.16). Then we simplify

Ax+Bνν̂(x, x̂, ν̂) +Dw +Rς −Πx(Ax̂+Bν̂ +Dŵ +Rς)

to
(A+BK)(x− x̂) +D(w − ŵ) + N̄ ,

where N̄ = Ax̂+Bν̂ +Dŵ +Rς −Πx(Ax̂+Bν̂ +Dŵ +Rς). Using Young’s inequality
[You12] as ab ≤ π

2a
2+ 1

2π b
2, for any a, b ≥ 0 and any π > 0, by employing Cauchy-Schwarz

inequality, C2 = Ĉ2, and since

‖N̄‖2 ≤ δ̄, N̄T M̃N̄ ≤ λmax(M̃)δ̄2,
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E
[
V (f(x, ν, w, ς), f̂(x̂, ν̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ]− V (x, x̂)

= (x− x̂)T (A+BK)T M̃(A+BK)(x− x̂) + 2(x− x̂)T (A+BK)T M̃D(w − ŵ)

+ (w − ŵ)TDT M̃D(w − ŵ) + 2(x− x̂)T (A+BK)T M̃E
[
N̄
∣∣x, x̂, ν̂, w, ŵ]

+ 2(w − ŵ)TDT M̃E
[
N̄
∣∣x, x̂, ν̂, w, ŵ]+ E

[
N̄T M̃N̄

∣∣x, x̂, ν̂, w, ŵ]− V (x, x̂)

≤
[
x− x̂
w − ŵ

]T [
(1 + π)(A+BK)T M̃(A+BK) (A+BK)T M̃D

DT M̃(A+BK) (1 + π)DT M̃D

] [
x− x̂
w − ŵ

]
+ (1 + 2/π)λmax(M̃)δ̄2 − V (x, x̂)

≤
[
x− x̂
w − ŵ

]T [
κ̂M̃ + C2T X̄22C2 C2T X̄21

X̄12C2 X̄11

] [
x− x̂
w − ŵ

]
+ (1 + 2/π)λmax(M̃)δ̄2 − V (x, x̂)

= −(1−κ̂)(V (x, x̂))+

[
w − ŵ

C2x− Ĉ2x̂

]T [
X̄11 X̄12

X̄21 X̄22

] [
w − ŵ

C2x− Ĉ2x̂

]
+(1+2/π)λmax(M̃)δ̄2.

(4.3.3)

one can obtain the chain of inequalities in (4.3.3). Then the inequality (3.4.2) is also
satisfied. Hence the proposed V in (4.2.14) is an SStF from Σ̂ to Σ, which completes
the proof. Note that functions α ∈ K∞, κ ∈ K, ρext ∈ K∞ ∪ {0}, and the matrix X̄

in Definition 3.4.1 associated with V in (4.2.14) are defined as α(s) = λmin(M̃)
λmax(C1TC1)

s2,

κ(s) := (1− κ̂)s, ρext(s) := 0, ∀s ∈ R≥0, and X̄ =

[
X̄11 X̄12

X̄21 X̄22

]
. Moreover, the positive

constant ψ in (3.4.2) is ψ = (1 + 2/π)λmax(M̃)δ̄2.

4.3.1.2 Case Studies

To demonstrate the effectiveness of our proposed approaches, we first apply our results to
the temperature regulation in a circular building containing 200 rooms by constructing
compositionally a finite abstraction of the network. Then, to show its applicability
to strongly connected networks, the results are illustrated on a network with a fully-
connected interconnection graph.

4.3.1.2.1 Room Temperature Network

In this subsection, we apply our results to the temperature regulation of n ≥ 3 rooms
with the interconnected network as defined in (4.2.20). By introducing Σi described
as (4.2.21), one can readily verify that Σ = Icd(Σ1, . . . ,ΣN ) where the coupling matrix
M is with elements mi,i+1 = mi+1,i = m1,n = mn,1 = 1, i ∈ {1, . . . , n − 1}, and all
other elements identically zero. One can also verify that, ∀i ∈ {1, . . . , n}, the condition
(4.3.2) is satisfied with M̃i = 1, Ki = 0, X̄11

i = η2(1 + πi), X̄
22
i = −3.38η(1 + πi),
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X̄12
i = X̄21

i = ηλ′i, where λ′i = 1−2η−β− θ̄νi(k), and selecting some appropriate values

for η, β, θ̄, κ̂i, πi, ∀i ∈ {1, . . . , n}. Hence, the function Vi(T̃i,
ˆ̃Ti) = (T̃i − ˆ̃Ti)

2 is an SStF
from Σ̂i to Σi satisfying the condition (3.4.1) with αi(s) = s2 and the condition (3.4.2)
with κi(s) := (1 − κ̂i)s, ρexti(s) = 0, ∀s ∈ R≥0, ψi = (1 + 2/πi)δ̄

2
i , Gi = Ĝi = Hi = 1,

and

X̄i =

[
η2(1 + πi) ηλ′i

ηλ′i −3.38η(1 + πi)

]
, (4.3.4)

where the input νi is given via the interface function in (4.2.16) as νi = ν̂i. Now we
look at Σ̂ = Icd(Σ̂1, . . . , Σ̂N ) with a coupling matrix M̂ satisfying the condition (3.4.4)
as M̂ = M . Choosing µ1 = · · · = µN = 1 and using X̄i in (4.3.4), the matrix X̄cmp in
(3.4.6) reduces to

X̄cmp =

[
η2(1 + π)In ηλ′In

ηλ′In −3.38η(1 + π)In

]
,

where λ′ = λ′1 = · · · = λ′N , π = π1 = · · · = πN , and accordingly the condition (3.4.3)
reduces to[

M
In

]T
X̄cmp

[
M
In

]
= η2(1 + π)MTM + ηλ′M + ηλ′MT − 3.38η(1 + π)In � 0,

without requiring any restrictions on the number or gains of the subsystems. In order to
satisfy the above inequality, we used M = MT , and 4η2(1 +π) + 4ηλ′−3.38η(1 +π) � 0
employing Gershgorin circle theorem [Bel65] which can be satisfied for appropriate values
of η, π and λ′. By choosing finite internal input sets Ŵi of Σ̂ such that

∏n
i=1 Ŵi =

M̂
∏n
i=1 X̂i, the condition (4.3.1) is also satisfied. Now, one can verify that V (T̃ , ˆ̃T ) =∑n

i=1(T̃i − ˆ̃Ti)
2 is a sum-type SSF from Σ̂ to Σ satisfying conditions (3.2.3) and (3.2.4)

with α(s) = s2, κ(s) := (1− κ̂)s, ρext(s) = 0, ∀s ∈ R≥0, and ψ = n(1 + 2/π)δ̄2.

To demonstrate the effectiveness of the proposed approach, we first fix n = 15. By
taking the state discretization parameter δ̄i = 0.005, and constants κ̂i = 0.99, πi =
0.05,∀i ∈ {1, . . . , n}, η = 0.1, β = 0.022, θ̄ = 0.05, one can readily verify that conditions
(3.4.3) and (4.3.2) are satisfied. Accordingly, by taking the initial states of the intercon-
nected systems Σ and Σ̂ as 20115, we guarantee that the distance between outputs of Σ
and of Σ̂ will not exceed ε = 0.63 during the time horizon Td = 10 with the probability
at least 90%, i.e.,

P(‖yaν̂(k)− ŷâν̂(k)‖2 ≤ 0.63, ∀k ∈ [0, 10]) ≥ 0.9 .

Let us now synthesize a controller for Σ via the abstraction Σ̂ such that the controller
maintains the temperature of any room in the safe set [19,21]. We employ here the
software tool FAUST2 [SGA15] to synthesize a controller for Σ by taking the external
input discretization parameter as 0.04, and the standard deviation of the noise σ̄i =
0.28, ∀i ∈ {1, . . . , n}. Closed-loop state trajectories of the representative room with
different noise realizations are illustrated in Figure 4.14. Policy ν and the associated
safety probability for a representative room in the network are respectively plotted in
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Figure 4.14: Closed-loop trajectories of a representative room with different noise realizations
in a network of 15 rooms.

Figures 4.15 and 4.16 as a function of the initial temperature of the room. Policy
ν is locally sub-optimal for each subsystem and is obtained by assuming that other
subsystems do not violate the safety specification. The synthesized policy ν is smoothly
decreasing from the maximum input 0.6 to the minimum 0 as temperature increases.
The maximum safety probability is around the center of the interval [19, 21], and its
minimums are at the two boundaries. Note that the oscillations appeared in Figures 4.15
and 4.16 are due to the state and input discretization parameters. We now compare the
guarantees provided by our approach and by [SAM15]. Note that our result is based
on the dissipativity approach while [SAM15] uses dynamic Bayesian network (DBN) to
capture the dependencies between subsystems. The comparison is shown in Figures 4.17
and 4.18 in the logarithmic scale. In Figure 4.17, we have fixed ε = 0.2 (cf. (3.2.5))
and plotted the error as a function of the discretization parameter δ̄ and the standard
deviation of the noise σ̄. Our error of (3.2.5) is independent of σ̄ while the error of
[SAM15] converges to infinity when σ̄ goes to zero. Thus our approach outperforms
[SAM15] for a smaller standard deviation of the noise. In Figure 4.18, we have fixed
σ̄ = 0.28 and plotted the error as a function of the discretization parameter δ̄ and the
confidence bound ε. The error in [SAM15] is independent of ε while our error increases
when ε goes to zero. Thus there is a trade-off between ε and δ̄ to get better bounds in
comparison with [SAM15].

In order to show the scalability of our approach, we increase the number of rooms
to n = 200. If we take the state discretization parameter δ̄i = 0.005, and constants
κ̂i = 0.99, πi = 0.98, ∀i ∈ {1, . . . , n}, η = 0.1, β = 0.4, θ̄ = 0.5, conditions (3.4.3) and
(4.3.2) are readily met. Moreover, if the initial states of the interconnected systems Σ
and Σ̂ are started from 201200, one can readily verify that the norm of the error between
outputs of Σ and of Σ̂ will not exceed 0.63 with the probability at least 90% for Td = 10.
Similarly, we synthesize a controller for Σ via the abstraction Σ̂ by taking the external
input discretization parameter as 0.04, and σ̄i = 0.21, ∀i ∈ {1, . . . , n}. Closed-loop state
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Figure 4.15: Policy ν for a representative room in a network of 15 rooms.
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Figure 4.16: Closed-loop safety probability of a representative room with the time horizon
Td = 10 in a network of 15 rooms.

trajectories of the representative room with different noise realizations are illustrated in
Figure 4.19.

4.3.1.2.2 Comparisons with Small-Gain Approach in Subsection 4.2.2

Since the road traffic network in (4.2.20) admits a common Lyapunov function, the
results proposed in Subsection 4.2.2 recover the ones here (as discussed in Remark 4.2.37)
by considering switching signals as discrete inputs. Then we make a comparison between
the both proposed results. The comparison is shown in Figure 4.20 in the logarithmic
scale. We have fixed ε = 1, Td = 15, and plotted the error as a function of δ̄ and the
number of subsystems N . By increasing the number of subsystems, the probabilistic
error bound does not change since the overall ψ is independent of N , and is computed
only based on the maximum of ψi of subsystems instead of being a linear combination of
them which is the case here. Nevertheless, for networks with small number of subsystems,
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Figure 4.17: Comparison of the error bound provided by the approach of this section based on
the dissipativity with that of [SAM15] based on DBN. Plots are in the logarithmic
scale for a fixed ε = 0.2 (cf. (3.2.5)).
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Figure 4.18: Comparison of the error bound provided by the approach of this section based on
the dissipativity with that of [SAM15] based on DBN. Plots are in the logarithmic
scale for a fixed noise standard deviation σ̄ = 0.28.

the proposed errors here are better than the ones provided in Subsection 4.2.2. This issue
is expected and the reason is due to the conservatism nature of the approach that we
employed in Subsection 4.2.2 ([SGZ18, Theorem 1]) to transfer the additive form of
pseudo-simulation functions to a max form (cf. (4.2.45)), but with the gain of providing
an overall error for the network only based on the maximum error of subsystems instead
of a linear combination of them.
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Figure 4.19: Closed-loop trajectories of a representative room with different noise realizations
in a network of 200 rooms.
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Figure 4.20: Comparison of the probabilistic error bound provided by this section based on the
dissipativity approach with that of Subsection 4.2.2 based on the max small-gain.
Plots are in the logarithmic scale for a fixed ε = 1, and Td = 15.

4.3.1.2.3 Fully Interconnected Network

In order to show the applicability of our approach to strongly connected networks, we
consider the following interconnected linear dt-SCS

Σ :

{
x(k + 1) = Ḡx(k) + ν(k) + ς(k),
y(k) = x(k),

with the matrix Ḡ = (In−τL̃) ∈ Rn×n where L̃ is the Laplacian matrix of an undirected
graph, and 0 < τ < 1/∆̄ with ∆̄ being the maximum degree of the graph [GR01]. We
expand the state x(k) = [x1(k); . . . ;xn(k)], the external input ν(k) = [ν1(k); . . . ; νn(k)],
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and the noise ς(k) = [ς1(k); . . . ; ςn(k)]. Now by defining Σi as

Σi :


xi(k + 1) = xi(k) + νi(k) + wi(k) + ςi(k),
y1
i (k) = xi(k),
y2
i (k) = xi(k),

one can verify that Σ = Icd(Σ1, . . . ,ΣN ) where the coupling matrix M is given by
M = −τL̃. One can also verify that, ∀i ∈ {1, . . . , n}, the condition (4.3.2) is satisfied
with M̃i = 1, Ki = −0.2, X̄11 = (1 + πi), X̄

22 = 0, X̄12 = X̄21 = λ′i, where λ′i = 1 +Ki,
and κ̂i = 0.99, πi = 0.55, ∀i ∈ {1, . . . , n}. Hence the function Vi(xi, x̂i) = (xi − x̂i)2

is an SStF from Σ̂i to Σi satisfying the condition (3.4.1) with αi(s) = s2 and the
condition (3.4.2) with κi(s) := (1 − κ̂i)s, ρexti(s) = 0, ∀s ∈ R≥0, ψi = (1 + 2/πi)δ̄

2
i ,

and Gi = Ĝi = Hi = 1. Now, we look at Σ̂ = Icd(Σ̂1, . . . , Σ̂N ) with a coupling matrix
M̂ satisfying the condition (3.4.4) by M̂ = M . Choosing µ1 = · · · = µN = 1, the matrix
X̄cmp in (3.4.6) reduces to

X̄cmp =

[
(1 + π)In λ′In
λ′In 0

]
,

where λ′ = λ′1 = · · · = λ′N , π = π1 = · · · = πN , and the condition (3.4.3) reduces to[
−τL̃
In

]T
X̄cmp

[
−τL̃
In

]
= (1 + π)τ2L̃T L̃− λ′τL̃− λ′τL̃T = τL̃((1 + π)τL̃− 2λ′In) � 0,

which is always satisfied without requiring any restrictions on the number or gains of the
subsystems. In order to show the above inequality, we used L̃ = L̃T � 0 which is always
true for Laplacian matrices of undirected graphs. By choosing finite internal input sets
Ŵi of Σ̂ such that

∏n
i=1 Ŵi = M̂

∏n
i=1 X̂i, the condition (4.3.1) is also satisfied. Now,

one can verify that V (x, x̂) =
∑n

i=1(xi − x̂i)2 is a sum-type SSF from Σ̂ to Σ satisfying
conditions (3.2.3) and (3.2.4) with α(s) = s2, κ(s) := (1 − κ̂)s, ρext(s) = 0, ∀s ∈ R≥0,
and ψ = n(1 + 2/π)δ̄2.

To illustrate the results, we assume L̃ is the Laplacian matrix of a complete graph
as in (3.4.24) and τ = 0.1. We fix n = 150, and the state discretization parameter
δ̄i = 0.005,∀i ∈ {1, . . . , n}. By using the sum-type SSF V and the inequality (3.2.5), and
taking the initial states of the interconnected systems Σ and Σ̂ as 201150, we guarantee
that the distance between outputs of Σ and of Σ̂ will not exceed ε = 0.63 during the
time horizon Td = 10 with the probability at least 90%.

4.3.2 Stochastic Switched Systems

In this subsection, we extend the results of the precious section to stochastic switched
systems whose switch signals accept dwell-time with multiple supply rates and multiple
storage functions. The proposed compositionality conditions here can enjoy the structure
of the interconnection topology and be potentially fulfilled independently of the number
or gains of the subsystems. We show that if a switched system is incremental passive
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(i.e., existence of a common incremental storage function, or multiple incremental storage
functions with dwell-time), one can construct finite MDPs of concrete models for the
general setting of nonlinear stochastic switched systems such that each switching mode
has its independent supply rate.

We also enlarge the class of systems for the construction of finite MDPs by adding
time-varying nonlinearities to the dynamics satisfying an incremental quadratic inequal-
ity, whereas the provided results in the previous sections only handle the class of non-
linearities satisfying slope restrictions. We show that for this class of nonlinear switched
systems, the aforementioned incremental passivity property can be readily verified by
some easier to check matrix inequalities. Moreover, we generalize the results of Sec-
tion 4.2.2 by allowing the noises of abstractions be completely independent of those of
concrete systems. We also relax the compositionality condition (4.3.1) that was implicit,
without providing a direct method for satisfying it. We relax this condition at the cost
of incurring an additional error term, but benefiting from choosing quantization param-
eters of internal input sets freely. Finally we apply our proposed techniques to a fully
interconnected network of 100 nonlinear subsystems (totally 200 dimensions), and also
the road traffic network in a circular cascade ring composed of 50 cells.

In this section, we assume that fp,∀p ∈ P , satisfies the following Lipschitz assumption:
there exists an Lp ∈ R≥0 such that ‖fp(x,w, ς)−fp(x,w, ς̂)‖2 ≤ Lp‖ς− ς̂‖2 for all x ∈ X,
w ∈W , ς ∈ Vς , ς̂ ∈ Vς̂ .

4.3.2.1 aug-Type Stochastic Storage and Pseudo-Storage Functions

We first introduce a notion of augmented stochastic storage functions (aug-type SStF) for
dt-SS with internal inputs and outputs. We then define a notion of augmented stochastic
pseudo-storage functions (aug-type SPStF) for switched systems without internal signals.
We employ these definitions mainly to quantify the closeness of interconnected global
MDPs and their finite abstractions.

Definition 4.3.7. Consider two global MDPs G(Σ) = (X,U,W, ς,F,Y1,Y2,H1,H2) and
Ĝ(Σ̂) = (X̂, Û, Ŵ, ς̂ , F̂, Ŷ1, Ŷ2, Ĥ1, Ĥ2) with internal inputs and outputs. A function V :
X × X̂ → R≥0 is called an augmented stochastic storage function (aug-type SStF) from

Ĝ(Σ̂) to G(Σ) if there exist α ∈ K∞, 0 < κ < 1, ψ ∈ R≥0, and a symmetric matrix X̄
with conformal block partitions X̄ij, i, j ∈ {1, 2}, such that

• ∀(x, p, l) ∈ X, ∀(x̂, p, l) ∈ X̂,

α(‖H1(x, p, l)− Ĥ1(x̂, p, l)‖2) ≤ V ((x, p, l), (x̂, p, l)), (4.3.5)

• ∀(x, p, l) ∈ X, ∀(x̂, p, l) ∈ X̂, ∀ν̂ ∈ Û,∀w ∈W,∀ŵ ∈ Ŵ,

E
[
V ((x′, p′, l′), (x̂′, p′, l′))

∣∣x, x̂, p, l, w, ŵ]
≤ κV ((x, p, l), (x̂, p, l)) + z̄T X̄z̄ + ψ, (4.3.6)
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where

z̄ =

[
w − ŵ

H2(x, p, l)− Ĥ2(x̂, p, l)

]
, X̄ =

[
X̄11 X̄12

X̄21 X̄22

]
,

and the expectation operator E is with respect to ς under the one-step transition of
both global MDPs with ν = ν̂, i.e., (x′, p′, l′) = F ((x, p, l), ν̂, w, ς) and (x̂′, p′, l′) =
F̂ ((x̂, p, l), ν̂, ŵ, ς̂).

If there exists an aug-type SStF V from Ĝ(Σ̂) to G(Σ), this is denoted by Ĝ(Σ̂) �aug
SStF

G(Σ), and the system Ĝ(Σ̂) is called an abstraction of the concrete (original) global
MDP G(Σ).

Now we modify the above notion for global MDPs without internal inputs and outputs
by eliminating all the terms related to w, ŵ which is employed in Theorem 4.2.28 for
relating interconnected systems.

Definition 4.3.8. Consider two global MDPs G(Σ) = (X,U, ς,F,Y,H) and Ĝ(Σ̂) =
(X̂, Û, ς̂ , F̂, Ŷ, Ĥ) without internal inputs and outputs. A function V : X × X̂ → R≥0 is

called an augmented stochastic pseudo-storage function (aug-type SPStF) from Ĝ(Σ̂) to
G(Σ) if

• there exists α ∈ K∞ such that ∀(x, p, l) ∈ X, ∀(x̂, p, l) ∈ X̂,

α(‖H(x, p, l)− Ĥ(x̂, p, l)‖2) ≤ V ((x, p, l), (x̂, p, l)), (4.3.7)

• ∀(x, p, l) ∈ X, ∀(x̂, p, l) ∈ X̂, ∀ν̂ ∈ Û,

E
[
V ((x′, p′, l′), (x̂′, p′, l′))

∣∣x, x̂, p, l] ≤ κV ((x, p, l), (x̂, p, l)) + ψ, (4.3.8)

for some 0 < κ < 1, and ψ ∈ R≥0, where the expectation operator E is with
respect to ς under the one-step transition of both global MDPs with ν = ν̂, i.e.,
(x′, p′, l′) = F ((x, p, l), ν̂, ς) and (x̂′, p′, l′) = F̂ ((x̂, p, l), ν̂, ς̂).

If there exists an aug-type SPStF V from Ĝ(Σ̂) to G(Σ), this is denoted by Ĝ(Σ̂) �aug
SPStF

G(Σ), and Ĝ(Σ̂) is called an abstraction of G(Σ). Now one can utilize Theorem 4.2.28
and compare output trajectories of two global MDPs (without internal inputs and out-
puts) in a probabilistic setting.

4.3.2.2 Compositionality Results

4.3.2.2.1 Interconnected Stochastic Switched Systems

Suppose we are given N concrete stochastic switched subsystems, Σi = (Xi, Pi,Pi,Wi,
ςi,Fi, Y

1
i , Y

2
i , h

1
i , h

2
i ), i ∈ {1, . . . , N}, with its equivalent global MDP G(Σi) = (Xi,Ui,Wi,

ςi,Fi,Y1
i ,Y2

i ,H1
i ,H2

i ). Now we provide a formal definition of the interconnection of con-
crete dt-SS Σi,∀i ∈ {1, . . . , N}.
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Definition 4.3.9. Consider N ∈ N≥1 dt-SS Σi = (Xi, Pi,Pi,Wi, ςi,Fi, Y
1
i , Y

2
i , h

1
i , h

2
i ),

and a matrix M defining the coupling between these subsystems. The interconnection
of Σi, ∀i ∈ {1, . . . , N}, is the concrete interconnected dt-SS Σ = (X,P,P, ς,F, Y, h),
denoted by Isd(Σ1, . . . ,ΣN ), such that X :=

∏N
i=1Xi, P :=

∏N
i=1 Pi, P :=

∏N
i=1 Pi,

F :=
∏N
i=1 Fi, Y :=

∏N
i=1 Y

1
i , and h =

∏N
i=1 h

1
i , with the internal inputs constrained

according to

[w1; . . . ;wN ] = M
[
h2

1(x1); . . . ;h2
N (xN )

]
. (4.3.9)

Similarly, given global MDPs G(Σi) = (Xi,Ui,Wi, ςi,Fi,Y1
i ,Y2

i ,H1
i ,H2

i ), i ∈ {1, . . . , N},
one can also define the interconnection of G(Σi) as Isd(G(Σ1), . . . ,G(ΣN )).

4.3.2.2.2 Compositional Abstractions of Interconnected Switched Systems

In order to provide compositionality results of the section, we utilize an abstraction map
Πw on W (defined similar to (4.2.6)) that assigns to any w ∈ W a representative point
w̄ ∈ Ŵ of the corresponding partition set containing w. Now we define a notion of the
interconnection of abstract global MDPs Ĝ(Σ̂i).

Definition 4.3.10. Consider N ∈ N≥1 abstract global MDPs Ĝ(Σ̂i) = (X̂i, Ûi, Ŵi, ς̂i, F̂i,
, Ŷ1

i , Ŷ2
i , Ĥ1

i , Ĥ2
i ). The interconnection of Ĝ(Σ̂i), ∀i ∈ {1, . . . , N}, is the interconnected

abstract global MDP Ĝ(Σ̂) = (X̂, Û, ς̂ , F̂, Ŷ, Ĥ), denoted by Îsd(Ĝ(Σ̂1), . . . , Ĝ(Σ̂N )), such
that X̂ :=

∏N
i=1 X̂i, Û :=

∏N
i=1 Ûi, Ŷ :=

∏N
i=1 Ŷ1

i , Ĥ =
∏N
i=1 Ĥ1

i , and the map F̂ =∏N
i=1 F̂i is the transition function given by (x̂′, p′, l′) = F̂ ((x̂, p, l), ν̂, ŵ, ς̂) if and only if

x̂′ = f̂p(x̂, ŵ, ς̂) as defined similar to (4.2.4), ν̂ = p and the following scenarios hold for
any i ∈ {1, . . . , N}:

• li < kdi − 1, p′i = pi, and l′i = li + 1;

• li = kdi − 1, p′i = pi, and l′i = kdi − 1;

• li = kdi − 1, p′i 6= pi, and l′i = 0;

where x̂ = [x̂1; . . . ; x̂N ], ν̂ = [ν̂1; . . . ; ν̂N ], p = [p1; . . . ; pN ], l = [l1; . . . ; lN ], and subject to
the following constraint:

[ŵ1; . . . ; ŵN ] = Πw(M̂
[
ĥ2

1(x̂1); . . . ; ĥ2
N (x̂N )

]
),

Πw(M̂

N∏
i=1

Ŷ 2
i ) ⊆

N∏
i=1

Ŵi, (4.3.10)

where M̂ is the coupling matrix between subsystems Σ̂i, ∀i ∈ {1, . . . , N}.

Remark 4.3.11. Note that the proposed condition (4.3.10) is less conservative than
the compositionality condition (4.3.1) presented in Theorem 4.3.1. In particular, the
proposed condition in (4.3.1) is an implicit one meaning that there is no direct way to
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satisfy it. Moreover, our compositionality framework here allows to choose quantization
parameters of internal input sets freely such that one can reduce the cardinality of the
internal input sets of finite abstractions. Although the compositionality condition (4.3.1)
presented in Theorem 4.3.1 is relaxed here to (4.3.10), our proposed compositionality
approach suffers from an additional error formulated in (4.3.15) based on µ̄̄µ̄µ.

In the next theorem, we provide sufficient conditions to quantify the error between the
interconnection of global MDPs and that of their finite abstractions in a compositional
manner.

Theorem 4.3.12. Consider the interconnected global MDP G(Σ) = (X,U, ς,F,Y,H)
induced by N ∈ N≥1 global MDPs G(Σi). Suppose that each G(Σi) admits a finite global

MDP Ĝ(Σ̂i) together with an aug-type SStF Vi. Then the function V ((x, p, l), (x̂, p, l))
defined as

V ((x, p, l), (x̂, p, l)) :=
N∑
i=1

µiVi((xi, pi, li), (x̂i, pi, li)), (4.3.11)

is an aug-type SPStF function from Îsd(Ĝ(Σ̂1), . . . , Ĝ(Σ̂N )) with the coupling matrix M̂ ,
to Isd(G(Σ1), . . . ,G(ΣN )), if µi > 0, i ∈ {1, . . . , N}, and there exists 0 < µ < 1 such

that (1 + µ) maxi(κi) < 1, and for all xi ∈ Xi, x̂i ∈ X̂i, i ∈ {1, . . . , N}:

‖H2
i (xi, pi, li)− Ĥ2

i (x̂i, pi, li)‖22 ≤
µiκi
µ

Vi((xi, pi, li), (x̂i, pi, li)), (4.3.12)

and

M = M̂, (4.3.13)[
M
In

]T
X̄cmp

[
M
In

]
� 0, (4.3.14)

where X̄cmp is as in (3.4.6).

Proof. We first show that the aug-type SPStF V in (4.3.11) satisfies the inequality (4.3.7)
for some K∞ function α. For any (x, p, l) ∈ X, and (x̂, p, l) ∈ X̂, one gets

‖H(x, p, l)− Ĥ(x̂, p, l)‖2 = ‖[H1
1(x1, p1, l1); . . . ;H1

N (xN , pN , lN )]

− [Ĥ1
1(x̂1, p1, l1); . . . ; Ĥ1

N (x̂N , pN , lN )]‖2

≤
N∑
i=1

‖H1
i (xi, pi, li)− Ĥ1

i (x̂i, pi, li)‖2

≤
N∑
i=1

α−1
i (Vi((xi, pi, li), (x̂i, pi, li)))

≤ β̂(V ((x, p, l), (x̂, p, l))),

with the function β̂ : R≥0 → R≥0 defined for all s ∈ R≥0 as
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β̂(s) := max
{∑N

i=1 α
−1
i (si)

∣∣ si≥ 0,
∑N

i=1 µisi = s
}
.

It is not hard to verify that the function β̂(·) defined above is a K∞ function. By
taking the K∞ function α(s) := β̂−1(s), ∀s ∈ R≥0, one can satisfy the inequality
(4.3.7). We continue with showing that the inequality (4.3.8) holds, as well. By defin-
ing [w̄1; . . . ; w̄N ] = M̂ [ĥ2

1(x̂1); . . . ; ĥ2
N (x̂N )], we have the chain of inequalities in (4.3.16)

using conditions (4.3.12), (4.3.13), (4.3.14) and by defining κ, ψ as

κ := max
{ N∑
i=1

(1 + µ)µiκisi
∣∣ si≥ 0,

N∑
i=1

µisi = 1, (1 + µ) max
i

(κi) < 1
}
,

ψ :=


∑N

i=1 µiψi +
‖µ̄̄µ̄µ‖22
µ2 λmax(P ) if X̄cmp ≤ 0,∑N

i=1 µiψi + ‖µ̄̄µ̄µ‖22( 1
µ2λmax(P ) + ρ(X̄cmp)) if X̄cmp > 0,

(4.3.15)

where P = X̄T
cmp

[
M
In

] [
M
In

]T
X̄cmp, µ̄̄µ̄µ = [µ̄1; . . . ; µ̄N ], and ρ is the spectral radius. Hence,

V is an aug-type SPStF from Ĝ(Σ̂) to G(Σ) which completes the proof.

Figure 4.21 schematically illustrates the result of this theorem.

4.3.2.3 Construction of aug-Type SStF

In this subsection, we impose conditions on the concrete dt-SS Σ enabling us to find
an aug-type SStF from the finite global MDP Ĝ(Σ̂) to G(Σ). The required conditions
are first presented in the general setting of nonlinear stochastic switched systems in the
next subsection and then represented via some matrix inequality for a particular class
of nonlinear stochastic switched systems whose nonlinearities satisfy an incremental
quadratic inequality in Subsection 4.3.2.3.2.

4.3.2.3.1 General Setting of Nonlinear Stochastic Switched Systems

The aug-type SStF from the finite global MDP Ĝ(Σ̂) to G(Σ) is established under the
assumption that original discrete-time stochastic switched subsystems Σp,∀p ∈ P, are
incremental passive as in the following definition. Note that this definition is similar to
Definition 2.8.1 but adapted for switched systems.

Definition 4.3.13. A dt-SS Σp is called incremental passive if there exists a storage
function Vp : X × X → R≥0 such that ∀x, x′ ∈ X, ∀w,w′ ∈ W , ∀p ∈ P , the following
two inequalities hold:

αp(‖h1(x)− h1(x′)‖2) ≤ Vp(x, x′), (4.3.17)
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E
[
V ((x′, p′, l′), (x̂′, p′, l′))

∣∣x, x̂, p, l] = E
[ N∑
i=1

µiVi((x
′
i, p
′
i, l
′
i), (x̂

′
i, p
′
i, l
′
i))
∣∣x, x̂, p, l]

=

N∑
i=1

µiE
[
Vi((x

′
i, p
′
i, l
′
i), (x̂

′
i, p
′
i, l
′
i))
∣∣xi, x̂i, pi, li]

≤
N∑
i=1

µi
(
κiVi((xi, pi, li), (x̂i, pi, li)) + ψi

+

[
wi − ŵi

H2
i (xi, pi, li)− Ĥ2

i (x̂i, pi, li)

]T [
X̄11
i X̄12

i

X̄21
i X̄22

i

] [
wi − ŵi

H2
i (xi, pi, li)− Ĥ2

i (x̂i, pi, li)

] )
=

N∑
i=1

µiκiVi((xi, pi, li), (x̂i, pi, li)) +

N∑
i=1

µiψi

+



w1 − ŵ1

...
wN − ŵN

h21(x1)− ĥ21(x̂1)
...

h2N (xN )− ĥ2N (x̂N )



T 

µ1X̄
11
1 µ1X̄

12
1

. . .
. . .

µN X̄
11
N µN X̄

12
N

µ1X̄
21
1 µ1X̄

22
1

. . .
. . .

µN X̄
21
N µN X̄

22
N





w1 − ŵ1

...
wN − ŵN

h21(x1)− ĥ21(x̂1)
...

h2N (xN )− ĥ2N (x̂N )


=

N∑
i=1

µiκiVi((xi, pi, li), (x̂i, pi, li)) +

N∑
i=1

µiψi

+



w1 − w̄1 + w̄1 − ŵ1

...
wN − w̄N + w̄N − ŵN

h21(x1)− ĥ21(x̂1)
...

h2N (xN )− ĥ2N (x̂N )



T

X̄cmp



w1 − w̄1 + w̄1 − ŵ1

...
wN − w̄N + w̄N − ŵN

h21(x1)− ĥ21(x̂1)
...

h2N (xN )− ĥ2N (x̂N )


=

N∑
i=1

µiκiVi((xi, pi, li), (x̂i, pi, li)) +

N∑
i=1

µiψi

+



M

 h
2
1(x1)

...
h2N (xN )

− M̂
 ĥ

2
1(x̂1)

...

ĥ2N (x̂N )


h21(x1)− ĥ21(x̂1)

...

h2N (xN )− ĥ2N (x̂N )



T

X̄cmp



M

 h
2
1(x1)

...
h2N (xN )

− M̂
 ĥ

2
1(x̂1)

...

ĥ2N (x̂N )


h21(x1)− ĥ21(x̂1)

...

h2N (xN )− ĥ2N (x̂N )



+



w̄1 − ŵ1

...
w̄N − ŵN

0N



T

X̄cmp



w̄1 − ŵ1

...
w̄N − ŵN

0N


+2



M

 h
2
1(x1)

...
h2N (xN )

− M̂
 ĥ

2
1(x̂1)

...

ĥ2N (x̂N )


h21(x1)− ĥ21(x̂1)

...

h2N (xN )− ĥ2N (x̂N )



T

X̄cmp



w̄1 − ŵ1

...
w̄N − ŵN

0N
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=

N∑
i=1

µiκiVi((xi, pi, li), (x̂i, pi, li)) +

N∑
i=1

µiψi

+

 h21(x1)− ĥ21(x̂1)
...

h2N (xN )− ĥ2N (x̂N )


T [

M
In

]T
X̄cmp

[
M
In

] h21(x1)− ĥ21(x̂1)
...

h2N (xN )− ĥ2N (x̂N )



+



w̄1 − ŵ1

...
w̄N − ŵN

0N



T

X̄cmp



w̄1 − ŵ1

...
w̄N − ŵN

0N


+ 2

 h21(x1)− ĥ21(x̂1)
...

h2N (xN )− ĥ2N (x̂N )


T [

M
In

]T
X̄cmp



w̄1 − ŵ1

...
w̄N − ŵN

0N



≤
N∑
i=1

µiκiVi((xi, pi, li), (x̂i, pi, li)) +

N∑
i=1

µiψi +



w̄1 − ŵ1

...
w̄N − ŵN

0N



T

X̄cmp



w̄1 − ŵ1

...
w̄N − ŵN

0N



+ µ2

 h21(x1)− ĥ21(x̂1)
...

h2N (xN )− ĥ2N (x̂N )


T  h21(x1)− ĥ21(x̂1)

...

h2N (xN )− ĥ2N (x̂N )



+
1

µ2



w̄1 − ŵ1

...
w̄N − ŵN

0N



T

X̄T
cmp

[
M
In

] [
M
In

]T
X̄cmp



w̄1 − ŵ1

...
w̄N − ŵN

0N


≤

N∑
i=1

µiκiVi((xi, pi, li), (x̂i, pi, li)) +

N∑
i=1

µiψi + ‖µ̄̄µ̄µ‖22σmax

(
X̄cmp

)
+ µ

N∑
i=1

µiκiVi((xi, pi, li), (x̂i, pi, li)) +
1

µ2
‖µ̄̄µ̄µ‖22λmax

(
X̄T
cmp

[
M
In

] [
M
In

]T
X̄cmp

)
≤ κV ((x, p, l), (x̂, p, l)) + ψ. (4.3.16)

and

E
[
Vp(fp(x,w, ς), fp(x

′, w′, ς))
∣∣x, x′, w, w′]

≤ κ̄pVp(x, x′) +

[
w − w′

h2(x)− h2(x′)

]T [
S11
p S12

p

S21
p S22

p

] [
w − w′

h2(x)− h2(x′)

]
, (4.3.18)
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Figure 4.21: Compositionality results provided that conditions (4.3.12), (4.3.13), and (4.3.14)
are satisfied.

for some αp,∈ K∞, 0 < κ̄p < 1, and matrices S11
p , S12

p , S21
p , and S22

p of appropriate
dimensions.

In order to construct an aug-type SStF from the finite global MDP Ĝ(Σ̂) to G(Σ), we
need to raise the following assumption.

Assumption 4.3.14. Assume that for constants κ̄p, p ∈ {1, . . . ,m} as appeared in

Definition 4.3.13, ε̄ > 1, and ∀l ∈ {0, . . . , kd − 2}, where kd ≥ ε̄ ln(µ̃)
ln(1/maxp{κ̄p}) + 1,

there exist matrices X̄11, X̄12, X̄21, and X̄22 of appropriate dimensions such that the
following inequality holds:

1

maxp{κ̄p}(1+l)/ε̄

m∑
p=1

[
S11
p S12

p

S21
p S22

p

]
≤
[
X̄11 X̄12

X̄21 X̄22

]
.

Under Definition 4.3.13 and Assumptions 4.2.33, 4.2.35 and 4.3.14, the next theorem
shows a relation between G(Σ) and Ĝ(Σ̂) via establishing an aug-type SStF between
them.

Theorem 4.3.15. Let Σ = (X,P,P,W, ς,F, Y 1, Y 2, h1, h2) be a switched system with
its equivalent global MDP G(Σ) = (X,U,W, ς,F,Y1,Y2,H1,H2). Consider the abstract
global MDP Ĝ(Σ̂) = (X̂, Û, Ŵ, ς̂ , F̂, Ŷ1, Ŷ2, Ĥ1, Ĥ2) constructed as in Definition 4.2.24.
For any p ∈ {1, . . . ,m}, let Σp be an incrementally passive dt-SS via a function Vp as
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in Definition 4.3.13. If Assumptions 4.2.33, 4.2.35 and 4.3.14 hold, then

V ((x, p, l), (x̂, p, l)) =
1

maxp{κ̄p}l/ε̄
m∑
p=1

Vp(x, x̂), (4.3.19)

is an aug-type SStF from Ĝ(Σ̂) to G(Σ).

Proof. Since Σp is incrementally passive, using (4.3.17), ∀(x, p, l) ∈ X and ∀(x̂, p, l) ∈ X̂,

and since ĥ1(x̂) = h1(x̂), we get

‖H1(x, p, l)− Ĥ1(x̂, p, l)‖2 = ‖h1(x)− ĥ1(x̂)‖2 = ‖h1(x)− h1(x̂)‖2
≤ α−1

p (V (x, x̂)) = α−1
p (κ̄l/ε̄p V ((x, p, l), (x̂, p, l))).

Since 1

κ̄
l/ε̄
p

> 1, one can conclude that the inequality (4.3.5) holds with α(s) = minp{αp(s)},
∀s ∈ R≥0. Now we show that the inequality (4.3.6) holds, as well. By taking the con-
ditional expectation from (4.2.35), ∀x ∈ X,∀x̂ ∈ X̂, ∀p ∈ P,∀w ∈ W, ∀ŵ ∈ Ŵ , we
have

E
[
Vp(fp(x,w, ς), f̂p(x̂, ŵ, ς̂))

∣∣x, x̂, ν̂, w, ŵ]− E[Vp(fp(x,w, ς), fp(x̂, ŵ, ς̂)) ∣∣x, x̂, ν̂, w, ŵ]
≤ E

[
γ(‖f̂p(x̂, ŵ, ς̂)− fp(x̂, ŵ, ς̂)‖2)

∣∣x, x̂, ν̂, w, ŵ],
where f̂p(x̂, ν̂, ς̂) = Πx(fp(x̂, ŵ, ς̂)). Using (4.2.5), the above inequality reduces to

E
[
Vp(fp(x,w, ς), f̂p(x̂, ŵ, ς̂))

∣∣x, x̂, ν̂, w, ŵ]
− E

[
Vp(fp(x,w, ς), fp(x̂, ŵ, ς̂))

∣∣x, x̂, ν̂, w, ŵ] ≤ γp(δ̄). (4.3.20)

Employing (4.2.35), one has

E
[
Vp(fp(x,w, ς), fp(x̂, ŵ, ς̂))

∣∣x, x̂, ν̂, w, ŵ]
≤ E

[
Vp(fp(x,w, ς), fp(x̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ]
+ E

[
γp(‖fp(x̂, ŵ, ς̂)− fp(x̂, ŵ, ς)‖2)

∣∣x, x̂, ν̂, w, ŵ]. (4.3.21)

Then using (4.3.21), one can rewrite (4.3.20) as

E
[
Vp(fp(x,w, ς), f̂p(x̂, ŵ, ς̂))

∣∣x, x̂, ν̂, w, ŵ]
≤ E

[
Vp(fp(x,w, ς), fp(x̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ]
+ E

[
γp(‖fp(x̂, ŵ, ς̂)− fp(x̂, ŵ, ς)‖2)

∣∣x, x̂, ν̂, w, ŵ]+ γp(δ̄). (4.3.22)

Employing (4.3.18) and since ĥ2(x̂) = h2(x̂), we get

E
[
Vp(fp(x,w, ς), fp(x̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ] ≤ κ̄pVp(x, x̂) + zTSpz,
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where

z =

[
w − ŵ

h2(x)− ĥ2(x̂)

]
, Sp =

[
S11
p S12

p

S21
p S22

p

]
.

Then one has

E
[
Vp(fp(x,w, ς), fp(x̂, ŵ, ς̂))

∣∣x, x̂, ν̂, w, ŵ]
≤ κ̄pVp(x, x̂) + zTSpz + γp(δ̄) + E

[
γp(‖fp(x̂, ŵ, ς̂)− fp(x̂, ŵ, ς)‖2)

∣∣x, x̂, ν̂, w, ŵ].
Given the Lipschitz assumption on fp, one can conclude that

E
[
Vp(fp(x,w, ς), fp(x̂, ŵ, ς̂))

∣∣x, x̂, ν̂, w, ŵ] ≤ κ̄pVp(x, x̂) + zTSpz + γp(δ̄) + Λp,

(4.3.23)

where

Λp = E
[
γp(Lp‖ς̂ − ς‖2)

∣∣x, x̂, ν̂, w, ŵ].
Now employing (4.3.23) and Assumptions 4.2.33 (required for the last scenario), and
4.3.14, one can obtain the chain of inequalities in (4.3.24) including the three different

scenarios as discussed in Definition 4.2.24. By defining κ = maxp{κ̄
ε̄−1
ε̄

p }, and ψ =
1

maxp{κ̄p}l/ε̄
∑m

p=1 γp(δ̄), one can conclude that V defined in (4.3.19) is an aug-type SStF

from Ĝ(Σ̂) to G(Σ), which completes the proof. Note that the last inequality in the
first scenario holds since l < kd − 1, and consequently, l + 1 < kd. In addition, the
last inequality of the second scenario holds since ε̄ > 1, and consequently, 0 < ε̄−1

ε̄ < 1.

Finally in the last scenario, µ̃maxp{κ̄p}(kd−1)/ε̄ ≤ 1 since kd ≥ ε̄ ln(µ̃)
ln(1/maxp{κ̄p}) +1. Hence,

the last inequality of the last scenario also holds.

Remark 4.3.16. Note that if there exists a common storage function V : X×X → R≥0

between all switching modes p ∈ P satisfying Definition 4.3.13 and Assumptions 4.2.33,
4.2.35 and 4.3.14, and there exists a common supply rate satisfying Definition 4.3.13,
then V ((x, p, l), (x̂, p, l)) = V (x, x̂) and Definitions 4.3.7 and 4.3.8 reduce to, respectively,
Definitions 3.4.1 and 3.2.4 (cf. Case study 4.3.2.4.2).

Now we provide similar results as this subsection but tailored to a particular class
of nonlinear stochastic switched systems whose nonlinearities satisfy an incremental
quadratic inequality.

4.3.2.3.2 Switched Systems with Incremental Quadratic Constraint on Non-
linearity

Here, we enlarge the nonlinear class of discrete-time stochastic switched systems Σ pro-
posed in (4.2.38) by adding time-varying nonlinearities to the dynamics satisfying an
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4.3 Dissipativity Approach

- First Scenario (l < kd − 1, ‖f(x̂, ŵ, ς̂)− f̂p(x̂, ŵ, ς̂)‖2 ≤ δ̄, p′ = p, l′ = l + 1):

E
[
V ((x′, p′, l′), (x̂′, p′, l′))

∣∣x, x̂, p, l, w, ŵ] =
1

maxp{κ̄p′}l′/ε̄
E
[ m∑
p′=1

Vp′(x
′, x̂′)

∣∣x, x̂, ν̂, w, ŵ]
=

1

maxp{κ̄p}(l+1)/ε̄
E
[ m∑
p=1

Vp(fp(x,w, ς), f̂p(x̂, ŵ, ς̂))
∣∣x, x̂, ν̂, w, ŵ]

≤ 1

maxp{κ̄p}(l+1)/ε̄
(

m∑
p=1

(κ̄pVp(x, x̂) + zTSpz + γp(δ̄) + Λp))

≤ 1

maxp{κ̄p}(l+1)/ε̄
(max

p
{κ̄p}

m∑
p=1

Vp(x, x̂) +

m∑
p=1

(zTSpz + γp(δ̄) + Λp))

= max
p
{κ̄p}

ε̄−1
ε̄ V ((x, p, l), (x̂, p, l)) +

1

maxp{κ̄p}(l+1)/ε̄

m∑
p=1

zTSpz

+
1

maxp{κ̄p}(l+1)/ε̄

m∑
p=1

(γp(δ̄) + Λp)

≤ max
p
{κ̄p}

ε̄−1
ε̄ V ((x, p, l), (x̂, p, l)) + z̄T X̄z̄ +

1

maxp{κ̄p}kd/ε̄
m∑
p=1

(γp(δ̄) + Λp);

- Second Scenario (l = kd − 1, ‖f(x̂, ŵ, ς̂)− f̂p(x̂, ŵ, ς̂)‖2 ≤ δ̄, p′ = p, l′ = kd − 1) :

E
[
V ((x′, p′, l′), (x̂′, p′, l′))

∣∣x, x̂, p, l, w, ŵ] =
1

maxp{κ̄p′}l′/ε̄
E
[ m∑
p′=1

Vp′(x
′, x̂′)

∣∣x, x̂, ν̂, w, ŵ]
=

1

maxp{κ̄p}l/ε̄
E
[ m∑
p=1

Vp(fp(x,w, ς), f̂p(x̂, ŵ, ς̂))
∣∣x, x̂, ν̂, w, ŵ]

≤ 1

maxp{κ̄p}l/ε̄
(max

p
{κ̄p}

m∑
p=1

Vp(x, x̂) +
m∑
p=1

(zTSpz + γp(δ̄) + Λp))

= max
p
{κ̄p}V ((x, p, l), (x̂, p, l)) +

1

maxp{κ̄p}l/ε̄
m∑
p=1

zTSpz +
1

maxp{κ̄p}l/ε̄
m∑
p=1

(γp(δ̄) + Λp)

≤ max
p
{κ̄p}

ε̄−1
ε̄ V ((x, p, l), (x̂, p, l)) + z̄T X̄z̄ +

1

maxp{κ̄p}kd/ε̄
m∑
p=1

(γp(δ̄) + Λp);

- Last Scenario (l = kd − 1, ‖f(x̂, ŵ, ς̂)− f̂p(x̂, ŵ, ς̂)‖2 ≤ δ̄, p′ 6= p, l′ = 0):

E
[
V ((x′, p′, l′), (x̂′, p′, l′))

∣∣x, x̂, p, l, w, ŵ] =
1

maxp{κ̄p′}l′/ε̄
E
[ m∑
p′=1

Vp′(x
′, x̂′)

∣∣x, x̂, ν̂, w, ŵ]
≤ µ̃E

[ m∑
p=1

Vp(fp(x,w, ς), f̂p(x̂, ŵ, ς̂))
∣∣x, x̂, ν̂, w, ŵ]

= µ̃max
p
{κ̄p}(kd−1)/ε̄ 1

maxp{κ̄p}l/ε̄
E
[ m∑
p=1

Vp(fp(x,w, ς), f̂p(x̂, ŵ, ς̂))
∣∣x, x̂, ν̂, w, ŵ]
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≤ 1

maxp{κ̄p}l/ε̄
E
[ m∑
p=1

Vp(fp(x,w, ς), f̂p(x̂, ŵ, ς̂))
∣∣x, x̂, ν̂, w, ŵ]

≤ 1

maxp{κ̄p}l/ε̄
(max

p
{κ̄p}

m∑
p=1

Vp(x, x̂) +
m∑
p=1

(zTSpz + γp(δ̄) + Λp))

= max
p
{κ̄p}V ((x, p, l), (x̂, p, l)) +

1

maxp{κ̄p}l/ε̄
(
m∑
p=1

zTSpz +
m∑
p=1

(γp(δ̄) + Λp))

≤ max
p
{κ̄p}

ε̄−1
ε̄ V ((x, p, l), (x̂, p, l)) + z̄T X̄z̄ +

1

maxp{κ̄p}kd/ε̄
m∑
p=1

(γp(δ̄) + Λp). (4.3.24)

incremental quadratic inequality, and provide an approach on the construction of an
aug-type SStF. The time-varying nonlinearity is the one considered in [AC11], which
satisfies an incremental quadratic inequality: for all Q̃p ∈ Q̃p, where Q̃p is the set of
symmetric matrices referred to incremental multiplier matrices, the following incremen-
tal quadratic constraint holds for all k ∈ N, and d1, d2 ∈ R:[

d2 − d1

ϕp(k, d2)− ϕp(k, d1)

]T
Q̃p

[
d2 − d1

ϕp(k, d2)− ϕp(k, d1)

]
≥ 0. (4.3.25)

To facilitate subsequent analysis, we write the matrix Q̃p in the following conformal
partitioned form:

Q̃p =

[
Q̃11p Q̃12p

Q̃T12p Q̃22p

]
.

Remark 4.3.17. As discussed in [AC11], the time-varying nonlinearity proposed in
(4.3.25) is more general that the one presented in (4.2.39). For instance, one can readily
recover the slope restriction in (4.2.39) for ϕp(k, x) = sin(x),∀k ∈ N, by considering
Q̃11p = 1, Q̃12p = 0, Q̃22p = −1.

In order to show that a nominated V employing Vp in (4.2.40) is an aug-type SStF

from Ĝ(Σ̂) to G(Σ), we raise the following assumption.

Assumption 4.3.18. Assume that for some constants 0 < κ̄p < 1, and πp ∈ R>0, there
exist matrices M̃p � 0, S11

p , S12
p , S21

p , and S22
p of appropriate dimensions such that the

inequality (4.3.26) holds.

Remark 4.3.19. Note that for any linear system Σ = (A,B,C1, C2, D,R), the stability
of matrices Ap is sufficient to satisfy Assumption 4.3.18, where matrices Ep and Fp are
identically zero.
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(1 + πp)A
T
p M̃pAp ATp M̃pDp ATp M̃pEp

DT
p M̃

T
p Ap (1 + πp)D

T
p M̃pDp DT

p M̃pEp
ETp M̃

T
p Ap ETp M̃

T
p Dp (1 + πp)E

T
p M̃pEp


�

κ̄pM̃p + C2TS22
p C

2 − F Tp Q̃11pFp C2TS21
p −F Tp Q̃12p

S12
p C

2 S11
p 0

−Q̃T12pFp 0 −Q̃22p

. (4.3.26)

Now we provide another main result of the section showing that under which conditions
a nominated V using Vp in (4.2.40) is an aug-type SStF from Ĝ(Σ̂) to G(Σ).

Theorem 4.3.20. Consider the global MDP G(Σ) associated with Σ = (A,B,C1, C2, D,
E, F,R, ϕ) and Ĝ(Σ̂) as its finite abstraction with the state discretization parameter δ̄.

Let ε̄ > 1 and kd ≥ ε̄ ln(µ̃)
ln(1/κ̄p) + 1, ∀p ∈ P . If Assumptions 4.3.18, and 4.3.14 (with κ̄p

as appeared in (4.3.26)) hold, then

V ((x, p, l), (x̂, p, l)) =
1

maxp{κ̄p}l/ε̄
m∑
p=1

Vp(x, x̂), (4.3.27)

with Vp nominated in (4.2.40), is an aug-type SStF from Ĝ(Σ̂) to G(Σ).

Proof. Since Ĉ1 = C1, we have ‖H1(x, p, l) − Ĥ1(x̂, p, l)‖2 = ‖C1x − Ĉ1x̂‖22 = (x −
x̂)TC1TC1(x−x̂). Since λmin(C1TC1)‖x−x̂‖22 ≤ (x−x̂)TC1TC1(x−x̂) ≤ λmax(C1TC1)‖x−
x̂‖22 and similarly λmin(M̃p)‖x− x̂‖22 ≤ (x− x̂)T M̃p(x− x̂) ≤ λmax(M̃p)‖x− x̂‖22, it can

be readily verified that
λmin(M̃p)

λmax(C1TC1)
‖C1x − Ĉ1x̂‖22 ≤ Vp(x, x̂) holds ∀x, ∀x̂, and conse-

quently, 1

κ̄
l/ε̄
p

λmin(M̃p)
λmax(C1TC1)

‖C1x − Ĉ1x̂‖22 ≤ V ((x, p, l), (x̂, p, l)), ∀(x, p, l) ∈ X,∀(x̂, p, l) ∈

X̂. Since 1

κ̄
l/ε̄
p

> 1, one can conclude that the inequality (4.3.5) holds with α(s) =

minp{ λmin(M̃p)
λmax(C1TC1)

} s2 for any s ∈ R≥0. We proceed with showing that the inequal-

ity (4.3.6) holds, as well. We simplify

Apx+ Epϕp(k, Fpx) +Bp +Dpw +Rpς

−Πx(Apx̂+ Epϕp(k, Fpx̂) +Bp +Dpŵ +Rpς̂)

to

Ap(x− x̂) +Dp(w − ŵ) + Ep(ϕp(k, Fpx)− ϕp(k, Fpx̂)) +Rp(ς − ς̂) + N̄p, (4.3.28)

where N̄p = Apx̂ + Epϕp(k, Fpx̂) + Bp + Dpŵ + Rpς̂ − Πx(Apx̂ + Epϕp(k, Fpx̂) + Bp +
Dpŵ + Rpς̂). By defining ϕ̄p = ϕp(k, Fpx) − ϕp(k, Fpx̂), and employing the fact that
∀x ∈ X,∀x̂ ∈ X̂, [AC11],[

x− x̂
ϕ̄p

]T [
Fp 0
0 I

]T
Q̃p

[
Fp 0
0 I

] [
x− x̂
ϕ̄p

]
≥ 0,
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using Young’s inequality [You12] as cd ≤ π
2 c

2 + 1
2πd

2, for any c, d ≥ 0 and any π > 0,
employing Cauchy-Schwarz inequality, the matrix inequality (4.3.26), and since

‖N̄p‖2 ≤ δ̄, N̄T
p M̃pN̄p ≤ λmax(M̃p)δ̄

2,

one can obtain the chain of inequalities in (4.3.29) including the three different scenarios

as discussed in Definition 4.2.24. By defining κ = maxp{κ̄
ε̄−1
ε̄

p }, and ψ = 1
maxp{κ̄p}kd/ε̄

∑m
p=1

((1+4/πp)λmax(M̃p) δ̄
2+(2+πp)Tr(RTp M̃pRp)), one can conclude that V defined in (4.3.27)

is an aug-type SStF from Ĝ(Σ̂) to G(Σ), which completes the proof. Note that in the
first scenario of chain of inequalities (4.3.29), we utilize J1 and J2 to show respectively
the left and right-hand sides of the matrix inequality (4.3.26).

Remark 4.3.21. If ∀p ∈ P , there exists a common V : X×X → R≥0 satisfying Assump-
tions 4.3.14, and 4.3.18, and there is a common supply rate satisfying Assumption 4.3.18,
then V, α, κ, and ψ in Theorem 4.3.20 reduce to V ((x, p, l), (x̂, p, l)) = V (x, x̂), α(s) =
λmin(M̃p)

λmax(C1TC1)
s2, κ = κ̄p, and ψ = (1 + 4/πp)λmax(M̃p)δ̄

2 + (2 + πp)Tr(RTp M̃pRp).

Remark 4.3.22. Note that if the noises in the concrete and abstract systems are as-
sumed to be the same, the constant ψ in (4.3.6) reduces to ψ = 1

maxp{κ̄p}kd/ε̄
∑m

p=1(1 +

3/πp)λmax(M̃p) δ̄
2.

4.3.2.4 Case Studies

To show the applicability of our results to stochastic switched systems with multiple
supply rates and multiple storage functions accepting the dwell-time, we first apply our
proposed techniques to a fully interconnected network of 100 nonlinear subsystems (to-
tally 200 dimensions), and construct their finite MDPs with guaranteed error bounds on
their probabilistic output trajectories. We then apply our approaches to the road traffic
network in a circular cascade ring composed of 50 cells, and construct compositionally
a finite MDP of the network such that the compositionality condition does not require
any constraint on the number or gains of subsystems. We employ the constructed ab-
straction as a substitute to compositionally synthesize policies keeping the density of the
traffic lower than 20 vehicles per cell.

4.3.2.4.1 Switched Network with Multiple Supply Rates and Multiple Stor-
age Functions Accepting Dwell-Time

We first apply our proposed techniques to a fully interconnected network of 100 nonlinear
subsystems (totally 200 dimensions) and construct their finite MDPs with guaranteed
error bounds on their probabilistic output trajectories. Note that the model of the
system does not have a common storage function because it exhibits unstable behaviors
for different switching signals [Lib03] (i.e., if one periodically switches between different
modes, the trajectory goes to infinity). We assume that there is no common supply
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- First Scenario (l < kd − 1, ‖f(x̂, ŵ, ς̂)− f̂p(x̂, ŵ, ς̂)‖2 ≤ δ̄, p′ = p, l′ = l + 1):

E
[
V ((x′, p′, l′), (x̂′, p′, l′))

∣∣x, x̂, p, l, w, ŵ]=
1

maxp{κ̄p′}l′/ε̄
E
[ m∑
p′=1

Vp′(x
′, x̂′)

∣∣x, x̂, ν̂, w, ŵ]
=

1

maxp{κ̄p}(1+l)/ε̄
E
[ m∑
p=1

Vp(fp(x,w, ς), f̂p(x̂, ŵ, ς̂))
∣∣x, x̂, ν̂, w, ŵ]

=
1

maxp{κ̄p}(1+l)/ε̄

( m∑
p=1

(
(x− x̂)TATp M̃pAp(x− x̂) + ϕ̄TpE

T
p M̃pEpϕ̄p

+ (w−ŵ)TDT
p M̃pDp(w−ŵ)+E

[
N̄T
p M̃pN̄p

∣∣x, x̂, ν̂, w, ŵ]+E[ςTRTp M̃pRpς
∣∣x, x̂, ν̂, w, ŵ]

+ E
[
ς̂TRTp M̃pRpς̂

∣∣x, x̂, ν̂, w, ŵ]+ 2E
[
ς̂TRTp M̃pN̄p

∣∣x, x̂, ν̂, w, ŵ]
+ 2(x− x̂)TATp M̃pDp(w − ŵ) + 2ϕ̄TpE

T
p M̃pDp(w − ŵ)

+ 2(w − ŵ)TDT
p M̃pE

[
N̄p

∣∣x, x̂, ν̂, w, ŵ]+ 2(x− x̂)TATp M̃pEpϕ̄p

+ 2(x− x̂)TATp M̃pE
[
N̄p

∣∣x, x̂, ν̂, w, ŵ]+ 2ϕ̄TpE
T
p M̃pE

[
N̄p

∣∣x, x̂, ν̂, w, ŵ]))
≤ 1

maxp{κ̄p}(1+l)/ε̄

( m∑
p=1

(x− x̂w − ŵ
ϕ̄p

TJ1

x− x̂w − ŵ
ϕ̄p

+ (1 + 4/πp)λmax(M̃p)δ̄
2

+ (2 + πp)Tr(RTp M̃pRp)
))

≤ 1

maxp{κ̄p}(1+l)/ε̄

( m∑
p=1

(x− x̂w − ŵ
ϕ̄p

TJ2

x− x̂w − ŵ
ϕ̄p

+ (1 + 4/πp)λmax(M̃p) δ̄
2

+ (2 + πp)Tr(RTp M̃pRp)
))

=
1

maxp{κ̄p}(1+l)/ε̄

( m∑
p=1

κ̄pVp(x, x̂)−
m∑
p=1

[
x− x̂
ϕ̄p

]T [
Fp 0
0 I

]T
Q̃p

[
Fp 0
0 I

] [
x− x̂
ϕ̄p

]

+
m∑
p=1

((1 + 3/πp)λmax(M̃p) δ̄
2 + (2 + πp)Tr(RTp M̃pRp))

+

m∑
p=1

[
x− x̂
w − ŵ

]T [
C2TS22

p C
2 C2TS21

p

S12
p C

2 S11
p

] [
x− x̂
w − ŵ

] )
≤ 1

maxp{κ̄p}(1+l)/ε̄

(
max
p
{κ̄p}

m∑
p=1

Vp(x, x̂)+

m∑
p=1

[
x−x̂
w−ŵ

]T[
C2TS22

p C
2 C2TS21

p

S12
p C

2 S11
p

][
x−x̂
w−ŵ

]

+
m∑
p=1

((1 + 3/πp)λmax(M̃p) δ̄
2 + (2 + πp)Tr(RTp M̃pRp))

)
= max

p
{κ̄p}

ε̄−1
ε̄ V ((x, p, l), (x̂, p, l))
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+
1

maxp{κ̄p}(1+l)/ε̄

m∑
p=1

[
w − ŵ

C2x− Ĉ2x̂

]T [
S11
p S12

p

S21
p S22

p

] [
w − ŵ

C2x− Ĉ2x̂

]

+
1

maxp{κ̄p}(1+l)/ε̄

m∑
p=1

((1 + 4/πp)λmax(M̃p) δ̄
2 + (2 + πp)Tr(RTp M̃pRp))

≤ max
p
{κ̄p}

ε̄−1
ε̄ V ((x, p, l), (x̂, p, l)) +

[
w − ŵ

C2x− Ĉ2x̂

]T [
X̄11 X̄12

X̄21 X̄22

] [
w − ŵ

C2x− Ĉ2x̂

]
+

1

maxp{κ̄p}kd/ε̄
m∑
p=1

((1 + 3/πp)λmax(M̃p) δ̄
2 + (2 + πp)Tr(RTp M̃pRp));

- Second Scenario (l = kd − 1, ‖f(x̂, ŵ, ς̂)− f̂p(x̂, ŵ, ς̂)‖2 ≤ δ̄, p′ = p, l′ = kd − 1) :

E
[
V ((x′, p′, l′), (x̂′, p′, l′))

∣∣x, x̂, p, l, w, ŵ]=
1

maxp{κ̄p′}l′/ε̄
E
[ m∑
p′=1

Vp′(x
′, x̂′)

∣∣x, x̂, ν̂, w, ŵ]
=

1

maxp{κ̄p}l/ε̄
E
[ m∑
p=1

Vp(fp(x,w, ς), f̂p(x̂, ŵ, ς̂))
∣∣x, x̂, ν̂, w, ŵ]

≤ max
p
{κ̄p}V ((x, p, l), (x̂, p, l))+

1

maxp{κ̄p}l/ε̄
m∑
p=1

[
w−ŵ

C2x−Ĉ2x̂

]T[
S11
p S12

p

S21
p S22

p

][
w−ŵ

C2x−Ĉ2x̂

]

+
1

maxp{κ̄p}l/ε̄
m∑
p=1

((1 + 4/πp)λmax(M̃p) δ̄
2 + (2 + πp)Tr(RTp M̃pRp))

≤ max
p
{κ̄p}

ε̄−1
ε̄ V ((x, p, l), (x̂, p, l)) +

[
w − ŵ

C2x− Ĉ2x̂

]T [
X̄11 X̄12

X̄21 X̄22

] [
w − ŵ

C2x− Ĉ2x̂

]
+

1

maxp{κ̄p}kd/ε̄
m∑
p=1

((1 + 3/πp)λmax(M̃p) δ̄
2 + (2 + πp)Tr(RTp M̃pRp));

- Last Scenario (l = kd − 1, ‖f(x̂, ŵ, ς̂)− f̂p(x̂, ŵ, ς̂)‖2 ≤ δ̄, p′ 6= p, l′ = 0):

E
[
V ((x′, p′, l′), (x̂′, p′, l′))

∣∣x, x̂, p, l, w, ŵ]=
1

maxp{κ̄p′}l′/ε̄
E
[ m∑
p′=1

Vp′(x
′, x̂′)

∣∣x, x̂, ν̂, w, ŵ]
≤ µ̃ E

[ m∑
p=1

Vp(fp(x,w, ς), f̂p(x̂, ŵ, ς̂))
∣∣x, x̂, ν̂, w, ŵ]

= µ̃max
p
{κ̄p}(kd−1)/ε̄ 1

maxp{κ̄p}l/ε̄
E
[ m∑
p=1

Vp(fp(x,w, ς), f̂p(x̂, ŵ, ς̂))
∣∣x, x̂, ν̂, w, ŵ]

≤ 1

maxp{κ̄p}l/ε̄
E
[ m∑
p=1

Vp(fp(x,w, ς), f̂p(x̂, ŵ, ς̂))
∣∣x, x̂, ν̂, w, ŵ]

≤ max
p
{κ̄p}V ((x, p, l), (x̂, p, l)) +

1

maxp{κ̄p}l/ε̄
(

m∑
p=1

[
x− x̂
w − ŵ

]T [
S11 S12

S21 S22

] [
x− x̂
w − ŵ

]
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+
m∑
p=1

((1 + 4/πp)λmax(M̃p) δ̄
2 + (2 + πp)Tr(RTp M̃pRp)))

≤ max
p
{κ̄p}

ε̄−1
ε̄ V ((x, p, l), (x̂, p, l)) +

[
w − ŵ

C2x− Ĉ2x̂

]T [
X̄11 X̄12

X̄21 X̄22

] [
w − ŵ

C2x− Ĉ2x̂

]
+

1

maxp{κ̄p}kd/ε̄
m∑
p=1

((1 + 4/πp)λmax(M̃p) δ̄
2 + (2 + πp)Tr(RTp M̃pRp)). (4.3.29)

rate satisfying the condition (4.3.26). The dynamic of the interconnected system is as
in (4.2.49) (but with a time-varying nonlinearity) with

Ã =

[
0.0012 0

0 0.0012

]
,

and R = diag(0.00112, . . . , 0.00112), ϕ(k, x(k)) = [0.112ϕ1(k, 0.11T2 x1(k)); . . . ; 0.112ϕN
(k, 0.11T2 xN (k))], and ϕp(k, x) = sin(x), ∀k ∈ N. Note that nonlinear functions ϕi satisfy
the incremental quadratic constraint (4.3.25) with

Qp =

[
1 0
0 −1

]
, ∀p ∈ P.

Furthermore, Bp = [b1p1 ; . . . ; bNpN ] such that

bipi =


[
−0.9
0.5

]
, if pi = 1,[

0.1
−0.3

]
, if pi = 2.

We partition x(k) as x(k) = [x1(k); . . . ;xN (k)] and ς(k) as ς(k) = [ς1(k); . . . ; ςN (k)],
where xi(k), ςi(k) ∈ R2. Now by introducing the individual subsystems Σi as in (4.2.50)
(with Di = I2), one can readily verify that Σ = Isd(Σ1, . . . ,ΣN ), equivalently G(Σ) =
Isd(G(Σ1), . . . ,G(ΣN )), where the coupling matrix M is

M = 0.0012


02 I2 · · · · · · I2
I2 02 I2 · · · I2
I2 I2 02 · · · I2
...

. . .
. . .

...
I2 · · · · · · I2 02


200×200

.

One can also verify that, ∀i ∈ {1, . . . , N}, the condition (4.3.26) is satisfied with

for pi = 1: M̃pi =

[
1.311 0.001
0.001 0.492

]
, κ̄pi = 0.7, πpi = 0.5,

for pi = 2: M̃pi =

[
0.4 0.01
0.01 1.49

]
, κ̄pi = 0.7, πpi = 0.4,
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and

S11
1 =

[
2.4799 −0.1017
−0.1017 1.4646

]
, S12

1 =

[
0.1389 0.1744
0.1744 −0.0461

]
,

S21
1 = (S12

1 )T, S22
1 =

[
−0.1464 0.0654
0.0654 −0.2233

]
,

S11
2 =

[
3.1467 −0.7962
−0.7962 4.1511

]
, S12

2 =

[
−0.6347 −0.1068
−0.1068 −0.5404

]
,

S21
2 = (S12

2 )T, S22
2 =

[
−0.0318 −0.0101
−0.0101 −0.0202

]
.

By taking ε̄ = 1.75, and µ̃ = 3.27, one can get the dwell-time kd = 7. Then Assump-
tion 4.3.14 is also satisfied with

X̄11 =

[
19.4343 −3.0642
−3.0642 19.4581

]
, X̄12 =

[
−1.2599 0.1942
0.1942 −1.4565

]
,

X21 = (X̄21)T, X̄22 =

[
−0.8721 −0.0480
−0.0480 −0.8474

]
.

Hence, Vi((xi, pi, li), (x̂i, pi, li)) = 1
maxpi{κ̄pi}l/1.75

∑2
pi=1(xi − x̂i)T M̃ipi(xi − x̂i) is an aug-

type SStF from Ĝ(Σ̂i) to G(Σi) satisfying the condition (4.3.5) with αi(s) = 0.39s2,
∀s ∈ R≥0, and the condition (4.3.6) with κi = 0.85, and ψi = 117.41 δ̄2

i + (3.7× 10−5).

Now we look at Σ̂ = Isd(Σ̂1, . . . , Σ̂N ) with a coupling matrix M̂ satisfying the condition
(4.3.13) as M̂ = M . By taking µ1 = · · · = µN = 1, the condition (4.3.14) is also satisfied.
Hence, V ((x, p, l), (x̂, p, l)) =

∑100
i=1( 1

maxpi{κ̄pi}l/1.75

∑2
pi=1(xi − x̂i)T M̃ipi(xi − x̂i)) is an

aug-type SPStF from Ĝ(Σ̂) to G(Σ) satisfying conditions (4.3.7) and (4.3.8) with α(s) =
0.39s2, ∀s ∈ R≥0, κ = 0.85, and ψ =

∑100
i=1 ψi = 1.17× 104 δ̄2 + (3.7× 10−3).

By taking the state discretization parameter δ̄ = δ̄i = 0.0003, ∀i ∈ {1, . . . , N}, and
taking the initial states of the interconnected systems Σ and Σ̂ as 1200, we guarantee
that the distance between trajectories of Σ and of Σ̂ will not exceed ε = 1 during the
time horizon Td = 10 with the probability at least 88%, i.e.,

P(‖yaν̂(k)− ŷâν̂(k)‖2 ≤ 1, ∀k ∈ [0, 10]) ≥ 0.88.

Note that for the construction of finite abstractions, we selected the center of partition
sets as representative points. Moreover, we assume a well-defined interconnection of
abstractions (i.e., M̂

∏N
i=1 Ŷ

2
i =

∏N
i=1 Ŵi). Then satisfying the compositionality condi-

tion (4.3.12) is no more needed, and accordingly, the overall error formulated in (4.3.15)
is reduced to ψ =

∑N
i=1 µiψi.

4.3.2.4.2 Road Traffic Network

In this subsection, we apply our results to the road traffic network in a circular cascade
ring which is composed of 50 identical cells, each of which has the length of 500 meters
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with 1 entry and 1 way out. We compositionally construct a finite MDP of the network
such that the compositionality condition does not require any constraint on the number
or gains of subsystems. We then employ the constructed finite abstraction as a substitute
to compositionally synthesize policies keeping the density of the traffic lower than 20
vehicles per cell.

The dynamic of the interconnected system is as in (4.2.47). Now by introducing the in-
dividual cells Σi described as in (4.2.48) with Di = τvi−1

l̃i−1
(with v0 = vn, l̃0 = l̃n), one can

readily verify that Σ = Isd(Σ1, . . . ,ΣN ), equivalently G(Σ) = Isd(G(Σ1), . . . , ,G(ΣN )),
where the coupling matrix M is with elements mi+1,i = 1, i ∈ {1, . . . , n− 1}, m1,n = 1,
and all other elements are identically zero. Note that here Vp = Vp′ ,∀p, p′ ∈ P (i.e.,
a common storage function). Moreover, we assume that the noises of the concrete and
abstract systems are the same in order to reduce the error as discussed in Remark 4.3.22.
Then one can readily verify that the condition (4.3.26) (applied to linear systems with
Ep = Fp = 0, ∀p ∈ P , and Sijp = X̄ij , i, j ∈ {1, 2}) is satisfied with M̃i = 1, πi = 1.48,
κ̄i = 0.99, ∀i ∈ {1, . . . , n}, and

X̄i =

[
( τvi
l̃i

)2(1 + πi) (1− τvi
l̃i
− q̃) τvi

l̃i
(1− τvi

l̃i
− q̃) τvi

l̃i
− 1.9( τvi

l̃i
)2(1 + πi)

]
. (4.3.30)

Then the function Vi(xi, x̂i) = (xi − x̂i)
2 is an aug-type SStF from Ĝ(Σ̂i) to G(Σi)

satisfying the condition (4.3.5) with αi(s) = s2, ∀s ∈ R≥0, and the condition (4.3.6)
with κi = 0.99, and ψi = 2.34 δ̄2

i .

Now we look at Σ̂ = Isd(Σ̂1, . . . , Σ̂N ) with a coupling matrix M̂ satisfying the condition
(4.3.13) as M̂ = M . By taking µ1 = · · · = µN = 1, and using X̄i as in (4.3.30), the
condition (4.3.14) is satisfied as[
M
In

]T
X̄cmp

[
M
In

]
=(

τvi

l̃i
)2(1 + πi)M

TM + (1− τvi
l̃i
−q̃)τvi

l̃i
(MT+M)− 1.9(

τvi

l̃i
)2(1 + πi)In

=(1− τvi

l̃i
− q̃) τvi

l̃i
(MT +M)− 0.9(

τvi

l̃i
)2(1 + πi)In ≤ 0,

without requiring any restrictions on the number or gains of the subsystems. Note that
MTM is an identity matrix and MT + M is a matrix with m̄i,i+1 = m̄i+1,i = m̄1,n =
m̄n,1 = 1, i ∈ {1, . . . , n−1}, and all other elements are identically zero. In order to show
the above inequality, we used, i ∈ {1, . . . , n},

2(1− τvi

l̃i
− q̃)(τvi

l̃i
)− 0.9(

τvi

l̃i
)2(1 + πi) � 0,

employing Gershgorin circle theorem [Bel65]. Hence, V (x, x̂) =
∑50

i=1(xi− x̂i)2 is an aug-

type SPStF from Ĝ(Σ̂) to G(Σ) satisfying conditions (4.3.7) and (4.3.8) with α(s) = s2,
∀s ∈ R≥0, κ = 0.99, and ψ =

∑50
i=1 ψi = 117 δ̄2.

By taking δ̄ = δ̄i = 0.02,∀i ∈ {1, . . . , N}, and choosing the initial states of the inter-
connected systems Σ and Σ̂ as 10150, we guarantee that the distance between trajectories
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of Σ and of Σ̂ will not exceed ε = 1 during the time horizon Td = 10 with the probability
at least 90%, i.e.,

P(‖yaν̂(k)− ŷâν̂(k)‖2 ≤ 1, ∀k ∈ [0, 10]) ≥ 0.9.

Let us now synthesize a controller for Σ via the abstraction Ĝ(Σ̂) using the software
tool FAUST2 [SGA15] such that the safety controller maintains the density of the traffic
lower than 20 vehicles per cell. We fix the standard deviation of the noise as σ̄i = 0.83,
∀i ∈ {1, . . . , n}. An optimal switch for a representative cell in a network of 50 cells is
plotted in Figure 4.22 top. An optimal switch w.r.t. time for a representative cell with
different noise realizations is also illustrated in Figure 4.22 middle, with 10 realizations.
Moreover, closed-loop state trajectories of the representative cell with different noise
realizations are illustrated in Figure 4.22 bottom.

4.3.2.4.3 Analysis on Probabilistic Closeness Guarantee

In order to have more practical analysis on the proposed probabilistic closeness guaran-
tee, we plotted the probabilistic error bound provided in (4.2.27) in terms of the state
discretization parameter δ̄ and the confidence bound ε in Figure 4.23. As seen, the prob-
abilistic closeness guarantee is improved by either decreasing δ̄ or increasing ε. Note that
the constant ψ in (4.2.27) is formulated based on the state discretization parameter δ̄.

4.4 Relaxed max Small-Gain Approach

In this section, we propose a relaxed version of max small-gain conditions for the con-
struction of finite MDPs for networks of not necessarily stabilizable stochastic systems.
The proposed framework relies on a relation between the original system and its finite ab-
straction employing a new notion of so-called max-type finite-step stochastic simulation
functions. In comparison with the notions of max-type SSF (proposed in the previous
sections) in which stability or stabilizability of each subsystem is required, a max-type
finite-step simulation function needs to decay only after some finite numbers of steps
instead of at each time step. This relaxation results in a less conservative version of
small-gain conditions, using which one can compositionally construct finite MDPs such
that the stabilizability of each subsystem is not necessarily required.

4.4.1 Stochastic Control Systems

We first focus on stochastic control systems as in Definition 2.3.1 and propose a com-
positional scheme based on relaxed max small-gain conditions. In order to make the
notation easier, we assume that the internal and external output maps are identity. In
the following subsection, we defineM-sampled systems, based on which one can employ
max-type finite-step stochastic simulation functions to quantify the mismatch between
the interconnected dt-SCS and that of their finite abstractions.
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Figure 4.22: Top: An optimal switch for a representative cell in a network of 50 cells. Mid-
dle: An optimal switch w.r.t. time for a representative cell with different noise
realizations. Bottom: Closed-loop state trajectories of a representative cell with
different noise realizations.

4.4.1.1 M-Sampled Systems

The existing methodologies for compositional (in)finite abstractions of interconnected
discrete-time stochastic control systems proposed in the previous sections rely on the
assumption of each subsystem to be individually stabilizable. This assumption does not
hold in general even if the interconnected system is stabilizable. The main idea behind
the relaxed max small-gain approach proposed in this section is as follows. We show that
the individual stabilizability requirement can be relaxed by incorporating the stabilizing
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Figure 4.23: Probabilistic error bound proposed in (4.2.27) based on δ̄ and ε. Plot is in the
logarithmic scale for Td = 10. The probabilistic closeness guarantee is improved by
either decreasing the state discretization parameter δ̄ or increasing the confidence
bound ε.

effect of neighboring subsystems in a local unstabilizable subsystem. Once the stabilizing
effect is appeared, we construct abstractions of subsystems and employ small-gain theory
to provide compositionality results. Our approach here relies on looking at the solution
process of the system in future time instances while incorporating the interconnection
of subsystems. The following example illustrates this idea.

Example 4.4.1. Consider two linear dt-SCS Σ1,Σ2 with dynamics

Σi :

{
x1(k + 1) = 1.01x1(k) + 0.4w1(k) + ς1(k),
x2(k + 1) = 0.55x2(k)− 0.2w2(k) + ς2(k),

(4.4.1)

that are connected with the constraint wi = x3−i, for i = {1, 2}. For simplicity, these
two dt-SCS do not have external inputs, i.e., νi ≡ 0 for i = {1, 2}. Note that the first
subsystem is not stable thus not stabilizable as well. Therefore the proposed results in
Section 4.2 are not applicable to this network. By looking at the solution process two
steps ahead and considering the interconnection, one can write

Σauxi :

{
x1(k + 2) = 0.94x1(k) + 0.62w1(k) + 0.4ς2(k) + 1.01ς1(k) + ς1(k + 1),
x2(k + 2) = 0.22x2(k)− 0.31w2(k)− 0.2ς1(k) + 0.55ς2(k) + ς2(k + 1),

(4.4.2)

which we denote them by Σaux1,Σaux2 in which wi = x3−i, for i = {1, 2}. These two
subsystems in (4.4.2) are now stable. This motivates us to construct abstractions of
original subsystems (4.4.1) based on auxiliary subsystems (4.4.2).

Remark 4.4.2. Note that after interconnecting the subsystems with each other and
propagating the dynamics in the next M-steps, the interconnection topology may change
(cf. Case study 4.4.1.6). Then the internal input of the auxiliary system (i.e., w) may
be different from the original one (i.e., w).
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The main contribution of this section is to provide a general methodology for the
compositional synthesis of the interconnected dt-SCS with not necessarily stabilizable
subsystems, by looking at the solution process M-step ahead. For this, we raise the
following assumption on the input signal.

Assumption 4.4.3. The control input is nonzero only at time instances {(k +M−
1), k = jM, j ∈ N}.

Remark 4.4.4. Note that in order to provide a fully decentralized controller synthesis
framework, each subsystem in our setting must depend only on its own external input. In
particular, after interconnecting subsystems with each other based on their interconnec-
tion topology and coming up with an M-sampled system with all subsystems stabilizable,
some subsystems may depend on external inputs of other subsystems. Then Assump-
tion 4.4.3 here helps us in decomposing the network after M transitions such that each
subsystem of the M-sampled model is described only based on its own external input.
This is essential in our proposed setting to have a fully decentralized controller synthe-
sis.

Remark 4.4.5. Assumption 4.4.3 restricts external inputs to take values only at partic-
ular time instances, and consequently, reduces the times at which a policy can be applied.
In addition, the proposed M-sampled systems may increase the interconnectivity of the
network’s structure (less sparsity) and then increase the computational effort. These is-
sues are conservatism aspects of our proposed approach in this section but with the gain
of providing a compositional framework for the construction of finite MDPs for networks
of not necessarily stabilizable stochastic subsystems (cf. Case study 4.4.1.6).

Next lemma shows how dynamics of M-sampled systems, call auxiliary system Σaux,
can be acquired.

Lemma 4.4.6. Suppose we are given N dt-SCS Σi defined by

Σi :

{
xi(k + 1) = fi(xi(k), νi(k), wi(k), ςi(k)),
xi(·) ∈ Xi, νi(·) ∈ Ui, wi(·) ∈Wi, k ∈ N, (4.4.3)

which are connected in a network with constraints wi = [x1; . . . ;xi−1;xi+1; . . . ;xN ], ∀i ∈
{1, · · · , N}. Under Assumption 4.4.3, the M-sampled systems Σauxi, which are the so-
lutions of Σi at time instances k = jM, j ∈ N, have the dynamics

Σauxi :

{
xi(k +M) = f̃i(xi(k), νi(k +M− 1),wi(k), ς̃i(k)),

xi(·) ∈ Xi, νi(·) ∈ Ui,wi(·) ∈ W̃i, k = jM, j ∈ N,
(4.4.4)

where ς̃i(k) is a vector containing noise terms as follows:

ς̃i(k) = [ς̄1(k); . . . ; ς̄∗i (k); . . . ; ς̄N (k)], ς̄∗i (k) = [ςi(k); . . . ; ςi(k +M− 1)],

ς̄j(k) = [ςj(k); . . . ; ςj(k +M− 2)], ∀j ∈ {1, . . . N}, j 6= i. (4.4.5)
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Note that some of the noise terms in ς̃i(k) may be eliminated depending on the inter-
connection graph, but all the terms are present for a fully interconnected network. Proof
of Lemma 4.4.6 is based on the recursive application of the vector field fi and utilizing
Assumption 4.4.3. Computation of vector field f̃i is illustrated in the next example on
a network of two linear dt-SCS.

Example 4.4.7. Consider two linear dt-SCS Σi with dynamics

Σi :

{
x1(k + 1) = A1x1(k) +B1ν1(k) +D1w1(k) +R1ς1(k),
x2(k + 1) = A2x2(k) +B2ν2(k) +D2w2(k) +R2ς2(k),

(4.4.6)

connected with constraints wi = x3−i, i ∈ {1, 2}. Matrices Ai, Bi, Di, Ri, i ∈ {1, 2}, have
appropriate dimensions. We can rewrite the given dynamics as

x(k + 1) = Āx(k) + B̄ν(k) + D̄w(k) + R̄ς(k),

with x = [x1;x2], ν = [ν1; ν2], w = [w1;w2], ς = [ς1; ς2], where

Ā = diag(A1, A2), B̄ = diag(B1, B2), D̄ = diag(D1, D2), R̄ = diag(R1, R2).

By applying the interconnection constraints w = [w1;w2] = [x2;x1] = C[x1;x2] with

C =

[
0 I

I 0

]
, we have

x(k + 1) = (Ā+ D̄C)x(k) + B̄ν(k) + R̄ς(k).

Now by looking at the solutions M steps ahead, one gets

x(k +M) =(Ā+ D̄C)Mx(k) +
M−1∑
n=0

(Ā+ D̄C)nB̄ν(k +M− n− 1)

+
M−1∑
n=0

(Ā+ D̄C)nR̄ς(k +M− n− 1).

After applying Assumption 4.4.3 and by partitioning (Ā+ D̄C)M as

(Ā+ D̄C)M =

[
Ã1 D̃1

Ã2 D̃2

]
,

one can decompose the network and obtain the auxiliary subsystems proposed in (4.4.4)
as follows:

Σauxi :

{
x1(k +M) = Ã1x1(k) +B1ν1(k +M− 1) + D̃1w1(k) + R̃1ς̃1(k),

x2(k +M) = Ã2x2(k) +B2ν2(k +M− 1) + D̃2w2(k) + R̃2ς̃2(k),

where wi = x3−i, for i = {1, 2}, are the new internal inputs, ς̃1(k), ς̃2(k) are defined as
in (4.4.5) with N = 2, and R̃1, R̃2 are matrices of appropriate dimensions which can
be computed based on the matrices in (4.4.6). As seen, Ã1 and Ã2 now depend also on
D1, D2, which may make the pairs (Ã1, B1) and (Ã2, B2) stabilizable.
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Remark 4.4.8. The main idea behind the proposed approach is that we first look at
the solutions of the unstabilizable subsystems, during which we connect subsystems with
each other based on their interconnection networks. We go ahead until all subsystems
are stabilizable (if possible). Once the stabilizing effect is evident, we decompose the
network such that each subsystem is only in terms of its own state, and external input.
In contrast to given original systems, the interconnection topology inM-sampled systems
may change meaning that the internal input of auxiliary systems may be different from
the original ones. Furthermore, the external input of auxiliary systems after doing the
M-step analysis is given at instants k +M− 1, k = jM, j ∈ N. Finally, the noise in
auxiliary systems is now a sequence of noises of other subsystems in different time steps
depending on the type of the interconnection.

Remark 4.4.9. If after interconnecting subsystems to each other and looking ahead
in times at the solutions of unstable subsystems the stability effect is not present in
finite time steps, we cannot employ the proposed relaxed small-gain condition to provide
compositionality results. In particular, in order to establish finite-step stochastic pseudo-
simulation functions from Σ̂i to Σi for the general setting of nonlinear stochastic systems,
the auxiliary system Σauxi should be incrementally input-to-state stable. To the best of
our knowledge, it is not possible in general to provide some conditions on original systems
based on which one can guarantee the stabilizability of subsystems after M transitions
or provide an upper bound for M. In fact, such M depends not only on the subsystem
dynamics but also on the interconnection topology.

4.4.1.2 max-Type Finite-Step Stochastic Pseudo-Simulation and Simulation
Functions

In this subsection, we introduce the notion of max-type finite-step stochastic pseudo-
simulation functions (max-type FPSF) for dt-SCS with both internal and external sig-
nals. We also define the notion of max-type finite-step stochastic simulation functions
(max-type FSF) for dt-SCS without internal signals. We then quantify the closeness of
two interconnected dt-SCS based on the max-type FSF. We employ here the notion of
max-type finite-step simulation functions inspired by the notion of finite-step Lyapunov
functions [GGLW14].

Definition 4.4.10. Consider dt-SCS Σi and Σ̂i, where Ŵi ⊆ Wi and X̂i ⊆ Xi. A
function Vi : Xi×X̂i → R≥0 is called a max-type finite-step stochastic pseudo-simulation

function (max-type FPSF) from Σ̂i to Σi if there exist M ∈ N≥1, αi, κi ∈ K∞, with
κi < Id, ρinti, ρexti ∈ K∞∪{0}, and a constant ψi ∈ R≥0, such that for all k = jM, j ∈ N,
xi := xi(k) ∈ Xi, x̂i := x̂i(k) ∈ X̂i,

•

αi(‖xi − x̂i‖) ≤ Vi(xi, x̂i), (4.4.7)
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• and for any ν̂i := ν̂i(k +M− 1) ∈ Ûi, there exists νi := νi(k +M− 1) ∈ Ui such
that for any wi := wi(k) ∈ W̃i and ŵi := ŵi(k) ∈ Ŵi,

E
[
Vi(xi(k +M), x̂i(k +M))

∣∣xi, x̂i, νi, ν̂i,wi, ŵi]
≤ max

{
κi(Vi(xi, x̂i)), ρinti(‖wi − ŵi‖), ρexti(‖ν̂i‖), ψi

}
. (4.4.8)

We denote by Σ̂i �max
FPSF Σi if there exists a max-type FPSF Vi from Σ̂i to Σi. We

drop the term finite-step for the case M = 1, and instead call it the max-type SPSF as
defined in Definition 3.3.1.

Remark 4.4.11. Note that κi defined in (4.4.8) depends on M and is required to be
less than Id. Then the max-type FPSF Vi here is less conservative than the max-type
SPSF in Definition 3.3.1. In other words, the condition (4.4.8) may not be satisfied
for M = 1 but may hold for some M ∈ N>1 which is the case in this section. Such
an implicit dependency on M increases the class of systems for which the condition
(4.4.8) is satisfiable. This relaxation allows some of the individual subsystems to be even
unstabilizable.

Definition 4.4.10 can also be stated for systems without internal inputs by eliminating
all the terms related to w, ŵ, as the next definition.

Definition 4.4.12. Consider two dt-SCS Σ and Σ̂ without internal inputs, where X̂ ⊆
X. A function V : X × X̂ → R≥0 is called a max-type finite-step stochastic simulation

function (max-type FSF) from Σ̂ to Σ if there exist M∈ N≥1, and α ∈ K∞ such that

• ∀x(k) := x ∈ X, x̂(k) := x̂ ∈ X̂,

α(‖x− x̂‖) ≤ V (x, x̂), (4.4.9)

• and ∀x(k) := x ∈ X, ∀x̂(k) := x̂ ∈ X̂, ∀ν̂(k+M− 1) := ν̂ ∈ Û , ∃ν(k+M− 1) :=
ν ∈ U such that

E
[
V (x(k +M), x̂(k +M))

∣∣x, x̂, ν, ν̂] ≤ max
{
κ(V (x, x̂)), ρext(‖ν̂‖), ψ

}
,

(4.4.10)

for some κ ∈ K∞ with κ < Id, ρext ∈ K∞ ∪ {0}, ψ ∈ R≥0, and k = jM, j ∈ N.

We call Σ̂ an abstraction of Σ, and denote by Σ̂ �max
FSF Σ if there exists a max-type

FSF V from Σ̂ to Σ.

We rewrite Theorem 3.2.7 for the M-sampled systems, and show how the max-type
FSF can be employed to compare state trajectories of two dt-SCS (without internal
inputs) in a probabilistic setting.
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Theorem 4.4.13. Let Σ and Σ̂ be two dt-SCS without internal inputs, where X̂ ⊆ X.
Suppose V is a max-type FSF from Σ̂ to Σ at times k = jM, j ∈ N, and there exists
a constant 0 < κ̂ < 1 such that the function κ ∈ K∞ in (4.4.10) satisfies κ(r) ≥ κ̂r,
∀r ∈ R≥0. For any random variables a and â as the initial states of the two dt-SCS, and
for any external input trajectory ν̂(·) ∈ Û that preserves Markov property for the closed-
loop Σ̂, there exists an input trajectory ν(·) ∈ U of Σ through the interface function
associated with V such that the following inequality holds:

P

{
sup

k=jM, 0≤j≤Td
‖xaν(k)− x̂âν̂(k)‖ ≥ ε

∣∣ a, â} (4.4.11)

≤

1− (1− V (a,â)
α(ε) )(1− ψ̂

α(ε))Td , if α (ε) ≥ ψ̂
κ̂ ,

(V (a,â)
α(ε) )(1− κ̂)Td + ( ψ̂

κ̂α(ε))(1− (1− κ̂)Td), if α (ε) < ψ̂
κ̂ ,

where the constant ψ̂ ≥ 0 satisfies ψ̂ ≥ ρext(‖ν̂‖∞) + ψ.

The proof is similar to that of Theorem 3.2.7 and is omitted here.

Remark 4.4.14. Note that the results shown in Theorem 4.4.13 provide a closeness of
state trajectories of two interconnected dt-SCS only at times k = jM, 0 ≤ j ≤ Td, for
some M ∈ N≥1. This guarantee will be generalized in Section 4.4.2 by providing the
closeness guarantee for all time instances.

4.4.1.3 Finite Abstractions of Auxiliary Systems

In this subsection, we modify Algorithm 1 and approximate an dt-SCS Σaux with a finite
Σ̂aux. Algorithm 2 presents this approximation.

Given a dt-SCS Σaux = (X,U, W̃ , ς, f), a finite MDP Σ̂aux = (X̂, Û , Ŵ , ς, f̂) can be
constructed based on Algorithm 2, where f̂ : X̂ × Û × Ŵ × Vς → X̂ is defined as

f̂(x̂(k), ν̂(k +M − 1), ŵ(k), ς̃(k)) = Πx(f̃(x̂(k), ν̂(k +M − 1), ŵ(k), ς̃(k))), (4.4.12)

and Πx : X → X̂ is the map that assigns to any x ∈ X, the representative point x̄ ∈ X̂ of
the corresponding partition set containing x. The initial state of Σ̂aux is also selected ac-
cording to x̂0 := Πx(x0) with x0 being the initial state of Σaux. Dynamical representation
provided by (4.4.12) uses the map Πx : X → X̂ that satisfies the inequality (4.2.5).

4.4.1.4 Compositionality Results

In this subsection, we assume that we are given a complex stochastic control system Σ
composed of N ∈ N≥1 discrete-time stochastic control subsystems Σi as in (4.4.3), where
their internal inputs wi are partitioned as in (3.2.8). Now we define the interconnected
stochastic control systems.

Definition 4.4.15. Suppose we are given N ∈ N≥1 discrete-time stochastic control sub-
systems Σi, i ∈ {1, . . . , N}, with the internal input configuration as in (3.2.8). The
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Algorithm 2 Abstraction of dt-SCS Σaux by a finite MDP Σ̂aux

Require: Input dt-SCS Σaux = (X,U, W̃ , Tx)
1: Select finite partitions of sets X,U, W̃ as X = ∪nxi=1Xi, U = ∪nνi=1Ui, W̃ = ∪nwi=1W̃i

2: For each Xi,Ui, and W̃i, select single representative points x̄i ∈ Xi, ν̄i ∈ Ui, w̄i ∈ W̃i

3: Define X̂ := {x̄i, i = 1, ..., nx} as the finite state set of MDP Σ̂aux with external and
internal input sets Û := {ν̄i, i = 1, ..., nν} Ŵ := {w̄i, i = 1, ..., nw}

4: Define the map Ξ : X → 2X that assigns to any x ∈ X, the corresponding partition
set it belongs to, i.e., Ξ(x) = Xi if x ∈ Xi for some i = 1, 2, . . . , nx

5: Compute the discrete transition probability matrix T̂x for Σ̂aux as:

T̂x(x′
∣∣x, ν,w) = Tx(Ξ(x′)

∣∣x, ν,w),

for all x := x(k), x′ := x(k +M) ∈ X̂, ν := ν(k +M− 1) ∈ Û ,w := w(k) ∈ Ŵ ,
k = jM, j ∈ N,

Ensure: Output finite MDP Σ̂aux = (X̂, Û , Ŵ , T̂x)

interconnection of Σi for any i ∈ {1, . . . , N}, denoted by Ifs(Σ1, . . . ,ΣN ), is the inter-

connected stochastic control system Σ, such that X :=
∏N
i=1Xi, U :=

∏N
i=1 Ui, and the

function f :=
∏N
i=1 fi, subjected to the following constraint:

∀i, j ∈ {1, . . . , N}, i 6= j : wij = xj , Xj ⊆Wij . (4.4.13)

In the next theorem, we leverage max small-gain Assumption 3.3.4 together with
the concavity assumption of maxi σ

−1
i to show the main compositionality result of the

section.

Theorem 4.4.16. Suppose we are given the interconnected dt-SCS Σ = Ifs(Σ1, . . . ,ΣN )
induced by N ∈ N≥1 stochastic control subsystems Σi. Let each Σi admits an abstraction

Σ̂i with the corresponding max-type FPSF Vi. If Assumption 3.3.4 holds and also

∀i, j ∈ {1, . . . , N}, i 6= j : X̂j ⊆ Ŵij ,

then the function V (x, x̂) defined as

V (x, x̂) := max
i

{
σ−1
i (Vi(xi, x̂i)

}
, (4.4.14)

for σi as in (3.3.6), is a max-type FSF function from Σ̂ = Ifs(Σ̂1, . . . , Σ̂N ) to Σ =
Ifs(Σ1, . . . ,ΣN ) at times k = jM, j ∈ N provided that maxi σ

−1
i is concave.

Proof. We first show that for some K∞ function α, the max-type FSF V in (4.4.14)
satisfies the inequality (4.4.9). For any x = [x1; . . . ;xN ] ∈ X and x̂ = [x̂1; . . . ; x̂N ] ∈ X̂,
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one gets

‖x− x̂‖ = max
i

{
‖xi − x̂i‖

}
≤ max

i

{
α−1
i (Vi(xi, x̂i))

}
≤ β̂ (max

i

{
σ−1
i (Vi(xi, x̂i))

}
) = β̂(V (x, x̂))

where β̂(s) = maxi

{
α−1
i ◦σi(s)

}
for all s ∈ R≥0, which is a K∞ function and thus (4.4.9)

holds with α = β̂−1.
We proceed with showing (4.4.10). Let κ(s) = maxi,j{σ−1

i ◦ κij ◦ σj(s)}. It follows
from (3.3.6) that κ < id. Since maxi σ

−1
i is concave and by using Jensen’s inequality, one

can readily acquire the chain of inequalities in (4.4.15) where ρext(·) and ψ are defined
as

ρext(s) :=

{
maxi{σ−1

i ◦ ρexti(si)},
s.t. si≥ 0, ‖[s1; . . . ; sN ]‖ = s,

ψ := max
i
σ−1
i (ψi).

Since κ and ρext in (4.4.15) are K∞ and K∞ ∪ {0}, respectively, V is a max-type FSF
from Σ̂ to Σ which completes the proof.

4.4.1.5 Construction of max-Type FPSF

4.4.1.5.1 Discrete-Time Linear Stochastic Control Systems

In this subsection, we focus on the linear class of dt-SCS. Suppose we are given a network
composed of N linear discrete-time stochastic control subsystems as follows:

Σi : xi(k + 1) = Aixi(k) +Diwi(k) +Biνi(k) +Riςi(k), (4.4.16)

where the additive noise ςi(k) is a sequence of independent random vectors with multi-
variate standard normal distributions. Suppose wi is partitioned as (3.2.8), and M ∈
N≥1 be given. By employing the interconnection constraint (4.4.13) and Assump-
tion 4.4.3, the dynamic of the sampled system at M-step forward can be written as

Σauxi : xi(k +M) = Ãixi(k) +Biνi(k +M− 1) + D̃iwi(k) + R̃iς̃i(k),

where ς̃i(k) for the fully interconnected network is obtained as in (4.4.5). Although the
pairs (Ai, Bi) may not be necessarily stabilizable, we assume that the pairs (Ãi, Bi) after
M-step are stabilizable as discussed in Example 4.4.1. Therefore, we can construct the
finite MDP as presented in Algorithm 2 from the new auxiliary system. To do so, we
candidate the following function

Vi(xi, x̂i) = ((xi − x̂i)T M̃i(xi − x̂i))
1
2 , (4.4.17)

where M̃i is a positive-definite matrix of an appropriate dimension. In order to show that
Vi in (4.4.17) is a max-type FPSF from Σ̂i to Σi, we require the following assumption
on Σauxi.

141



4 Finite Abstractions (Finite Markov Decision Processes)

E
[
V (x(k +M), x̂(k +M))

∣∣x(k), x̂(k), ν(k +M− 1), ν̂(k +M− 1)
]

= E
[

max
i

{
σ−1
i Vi(xi(k +M), x̂i(k +M))

} ∣∣x(k), x̂(k), ν(k +M− 1), ν̂(k +M− 1)
]

≤ max
i

{
σ−1
i (E

[
Vi(xi(k +M), x̂i(k +M))

∣∣x(k), x̂(k), ν(k +M− 1), ν̂(k +M− 1)
]
)
}

= max
i

{
σ−1
i (E

[
Vi(xi(k +M), x̂i(k +M))

∣∣xi = xi(k), x̂i = x̂i(k), νi = νi(k +M− 1),

ν̂i = ν̂i(k +M− 1)
]
)
}

≤ max
i

{
σ−1
i (max{κi(Vi(xi, x̂i)), ρinti(‖wi − ŵi‖), ρexti(‖ν̂i‖), ψi})

}
= max

i

{
σ−1
i (max{κi(Vi(xi, x̂i)), ρinti(max

j,j 6=i
{‖wij − ŵij‖}), ρexti(‖ν̂i‖), ψi})

}
= max

i

{
σ−1
i (max{κi(Vi(xi, x̂i)), ρinti(max

j,j 6=i
{‖xj − x̂j‖}), ρexti(‖ν̂i‖), ψi})

}
≤ max

i

{
σ−1
i (max{κi(Vi(xi, x̂i)), ρinti(max

j,j 6=i
{α−1

j (Vj(xj , x̂j))}), ρexti(‖ν̂i‖), ψi})
}

= max
i,j

{
σ−1
i (max{κij(Vj(xj , x̂j)), ρexti(‖ν̂i‖), ψi})

}
= max

i,j

{
σ−1
i (max{κij ◦ σj ◦ σ−1

j (Vj(xj , x̂j)), ρexti(‖ν̂i‖), ψi})
}

≤ max
i,j,l

{
σ−1
i (max{κij ◦ σj ◦ σ−1

l (Vl(xl, x̂l)), ρexti(‖ν̂i‖), ψi})
}

= max
i,j

{
σ−1
i (max{κij ◦ σj(V (x, x̂)), ρexti(‖ν̂i‖), ψi})

}
= max

{
κ(V (x, x̂)), ρext(‖ν̂‖), ψ

}
. (4.4.15)

Assumption 4.4.17. Assume that there exist matrices M̃i � 0, and Ki of appropriate
dimensions such that the matrix inequality

(1 + 2πi)(Ãi +BiKi)
T M̃i(Ãi +BiKi) � κ̂iM̃i, (4.4.18)

holds for some constants 0 < κ̂i < 1 and πi > 0.

Now we raise the main result of this subsection.

Theorem 4.4.18. Assume the system Σauxi satisfies Assumption 4.4.17. Let Σ̂auxi be its
finite abstraction as constructed in Algorithm 2 with the state discretization parameter
δ̄i. Then the function Vi defined in (4.4.17) is a max-type FPSF from Σ̂i to Σi.
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Proof. We first show that ∀xi(k), ∀x̂i(k), ∀ν̂i(k+M−1), ∃νi(k+M−1), ∀ŵi(k), ∀wi(k),

such that Vi satisfies
√
λmin(M̃i)‖xi(k)− x̂i(k)‖ ≤ Vi(xi(k), x̂i(k)) and then

E
[
Vi(xi(k +M), x̂i(k +M))

∣∣xi = xi(k), x̂i = x̂i(k), νi = νi(k +M− 1),

ν̂i = ν̂i(k +M− 1),wi = wi(k), ŵi = ŵi(k)
]

≤max
{

(1− (1− π̃i)κ̃i)(Vi(xi, x̂i)), (1 + δ̃i)(
1

κ̃iπ̃i
)(p̄i(1 + πi + 1/πi))

1
2

‖
√
M̃iD̃i‖2‖wi − ŵi‖, (1 + 1/δ̃i)(

1

κ̃iπ̃i
)(ni(1 + 2/πi)λmax(M̃i))

1
2 δ̄i

}
.

Since
√
λmin(M̃i)‖xi − x̂i‖ ≤ ((xi − x̂i)T M̃i(xi − x̂i))

1
2 , one can readily verify that√

λmin(M̃i)‖xi− x̂i‖ ≤ Vi(xi, x̂i) ∀xi, ∀x̂i. Then the inequality (4.4.7) holds with αi(s) =√
λmin(M̃i) s for any s ∈ R≥0. We proceed with showing the inequality (4.4.8). Given

any xi(k), x̂i(k), and ν̂i(k+M− 1), we choose νi(k+M− 1) via the following interface
function:

νi(k +M− 1) = Ki(xi(k)− x̂i(k)) + ν̂i(k +M− 1), (4.4.19)

and simplify

Ãixi(k) +Biνi(k +M− 1) + D̃iwi(k) + R̃iς̃i(k)

−Πxi(Ãix̂i(k) +Biν̂i(k +M− 1) + D̃iŵi(k) + R̃iς̃i(k))

to

(Ãi +BiKi)(xi(k)− x̂i(k)) + D̃i(wi(k)− ŵi(k)) + N̄i,

where N̄i = Ãix̂i(k)+Biν̂i(k+M−1)+D̃iŵi(k)+ R̃iς̃i(k)−Πxi(Ãix̂i(k)+Biν̂i(k+M−
1) + D̃iŵi(k) + R̃iς̃i(k)). By employing Cauchy-Schwarz inequality, Young’s inequality,
Assumption 4.4.17, and since{

‖N̄i‖ ≤ δ̄i,

N̄T
i M̃iN̄i ≤ niλmax(M̃i)δ̄

2
i ,

one can obtain the chain of inequalities in (4.4.20). Hence, the proposed Vi in (4.4.17) is
a max-type FPSF from Σ̂i to Σi, which completes the proof. Note that the last inequality
in (4.4.20) is derived by applying Theorem 1 in [SGZ18]. The functions αi, κi ∈ K∞,
and ρinti, ρexti ∈ K∞ ∪ {0} in Definition 4.4.10 associated with Vi in (4.4.17) are defined

as αi(s) =
√
λmin(M̃i) s, κi(s) := (1− (1− π̃i)κ̃i) s, ρinti(s) := (1 + δ̃i)(

1
κ̃iπ̃i

)(p̄i(1 + πi +

1/πi))
1
2 ‖
√
M̃iD̃i‖2 s, ρexti(s) := 0, ∀s ∈ R≥0 where κ̃i = 1 −

√
κ̂i, 0 < π̃i < 1, and

δ̃i > 0. Moreover, the positive constant ψi in (4.4.8) is ψi = (1 + 1/δ̃i)(
1

κ̃iπ̃i
)(ni(1 +

2/πi)λmax(M̃i))
1
2 δ̄i.
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E
[
Vi(xi(k+M), x̂i(k+M))

∣∣xi=xi(k), x̂i= x̂i(k), νi=νi(k+M−1), ν̂i= ν̂i(k+M−1),

wi = wi(k), ŵi = ŵi(k)
]

=
(
(xi − x̂i)T (Ãi +BiKi)

T M̃i(Ãi +BiKi)(xi − x̂i)
+ 2(xi − x̂i)T (Ãi +BiKi)

T M̃iD̃i(wi − ŵi) + (wi − ŵi)
T D̃T

i M̃iD̃i(wi − ŵi)

+ 2(xi − x̂i)T (Ãi +BiKi)
T M̃iE

[
N̄i

∣∣xi, x̂i, νi, ν̂i,wi, ŵi]
+ 2(wi − ŵi)

T D̃T
i M̃iE

[
N̄i

∣∣xi, x̂i, νi, ν̂i,wi, ŵi]+ E
[
N̄T
i M̃iN̄i

∣∣xi, x̂i, νi, ν̂i,wi, ŵi])1
2

≤
√
κ̂i(Vi(xi, x̂i))+(p̄i(1+πi+1/πi))

1
2 ‖
√
M̃iD̃i‖2‖wi−ŵi‖+(ni(1+2/πi)λmax(M̃i))

1
2 δ̄i

≤max
{
(1−(1−π̃i)κ̃i)(Vi(xi, x̂i)), (1 + δ̃i)(

1

κ̃iπ̃i
)(p̄i(1+πi+1/πi))

1
2 ‖
√
M̃iD̃i‖2‖wi−ŵi‖,

(1 + 1/δ̃i)(
1

κ̃iπ̃i
)(ni(1 + 2/πi)λmax(M̃i))

1
2 δ̄i

}
. (4.4.20)

4.4.1.6 Case Study

In this subsection, we demonstrate the effectiveness of the proposed results by consid-
ering an interconnected system composed of four discrete-time linear stochastic control
subsystems, i.e., Σ = Ifs(Σ1,Σ2,Σ3,Σ4), such that one of them is not stabilizable. The
discrete-time linear stochastic control subsystems are given by

Σi :


x1(k + 1) = 1.001x1(k) + 0.4w1(k) + ς1(k),
x2(k + 1) = −0.95x2(k) + ν2(k)− 0.08w2(k) + ς2(k),
x3(k + 1) = −0.94x3(k) + ν3(k)− 0.05w3(k) + ς3(k),
x4(k + 1) = 0.6x4(k) + ν4(k) + 0.9w4(k) + ς4(k),

(4.4.21)

where

w1 = x2 + x3, w2 = x1 + x3, w3 = x2, w4 = x3.

As seen, the first subsystem is not stabilizable. Then we proceed with looking at the
solution of Σi two steps ahead, i.e., M = 2,

Σauxi :


x1(k + 2) = 0.97x1(k) + D̃1w1(k) + R̃1ς̃1(k),

x2(k + 2) = 0.8745x2(k) + ν2(k + 1) + D̃2w2(k) + R̃2ς̃2(k),

x3(k + 2) = 0.8876x3(k) + ν3(k + 1) + D̃3w3(k) + R̃3ς̃3(k),

x4(k + 2) = 0.36x4(k) + ν4(k + 1) + D̃4w4(k) + R̃4ς̃4(k),

(4.4.22)
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where

D̃1 = [−0.0004;−0.0076]T , D̃2 = [−0.0041; 0.1192]T ,

D̃3 = [0.004; 0.0945]T , D̃4 = [−0.045;−0.306]T ,

w1 = [x2;x3], w2 = [x1;x3], w3 = [x1;x2],w4 = [x2;x3],

ς̃1(k) = [ς3(k); ς2(k); ς1(k); ς1(k + 1)], ς̃3(k) = [ς2(k); ς3(k); ς3(k + 1)],

ς̃2(k) = [ς3(k); ς1(k); ς2(k); ς2(k + 1)], ς̃4(k) = [ς3(k); ς4(k); ς4(k + 1)].

Moreover, R̃i = [R̃i1; R̃i2; R̃i3; R̃i4]T ,∀i ∈ {1, 2}, where

R̃11 = 0.4, R̃12 = 0.4, R̃13 = 1.001, R̃14 = 1,

R̃21 = −0.08, R̃22 = −0.08, R̃23 = −0.95, R̃24 = 1.

and R̃i = [R̃i1; R̃i2; R̃i3]T , ∀i ∈ {3, 4}, where

R̃31 = −0.05, R̃32 = −0.941, R̃33 = 1, R̃41 = 0.9, R̃42 = 0.6, R̃43 = 1.

One can readily see that Ã1 is stable. Now, we proceed with constructing the finite
MDP from the M-sampled system as acquired in (4.4.22). We fix the max-type FPSF
as (4.2.14). One can readily verify that the condition (4.4.18) is satisfied with

κ̂1 = 0.9597, κ̂2 = 0.588, κ̂3 = 0.7115, κ̂4 = 0.337,

K2 = −0.1745, K3 = −0.1176, K4 = 0,

π1 = 0.01, π2 = 0.1, π3 = 0.1, π4 = 0.8, M̃i = 1, ∀i ∈ {1, 2, 3, 4}.

Then function Vi(xi, x̂i) = (xi − x̂i)2 is a max-type FPSF from Σ̂i to Σi satisfying the
condition (4.4.7) with αi(s) = s2,∀i ∈ {1, 2, 3, 4}, ∀s ∈ R≥0, and the condition (4.4.8)
with

κi(s) = 0.99s, ρexti(s) = 0, ∀i ∈ {1, 2, 3, 4}, ρint1(s) = 0.8802s2,

ρint2(s) = 0.8517s2, ρint3(s) = 0.8344s2, ρint4(s) = 0.9779s2, ∀s ∈ R≥0,

ψ1 = 7409 δ̄2, ψ2 = 555 δ̄2, ψ3 = 433 δ̄2, ψ4 = 57.48 δ̄2.

Now we check the max small-gain condition (3.3.5) that is required for the composition-
ality result. By taking σi(s) = s ∀i ∈ {1, 2, 3, 4}, one can readily verify that the max
small-gain condition (3.3.5) and as a result the condition (3.3.6) are satisfied. Hence,
V (x, x̂) = maxi(xi − x̂i)2 is a max-type FSF from Σ̂ to Σ satisfying conditions (4.4.9)
and (4.4.10) with α(s) = s2, κ(s) = 0.99 s, ρext(s) = 0, ∀s ∈ R≥0, and ψ = 7409 δ̄2.

By taking the state discretization parameter δ̄ = 0.001, and starting the initial states
of the interconnected systems Σ and Σ̂ from 14 and employing Theorem 4.4.13, we
guarantee that the distance between states of Σ and of Σ̂ will not exceed ε = 1 at times
k = 2j, j = {0, . . . , 30} with the probability at least 90%, i.e.,

P(‖xaν(k)− x̂âν̂(k)‖ ≤ 1, ∀k = 2j, j = {0, . . . , 30}) ≥ 0.9.
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4.4.2 Stochastic Autonomous Systems

In this subsection, we focus on discrete-time stochastic autonomous systems (dt-SAS)
(i.e., the dt-SCS in (4.4.3) without external inputs) and extend the proposed composi-
tional framework of the previous section. In particular, although the provided results
in the previous section do not ask the individual subsystems to be stable, our proba-
bilistic closeness guarantee presented in this section is more general than the one pro-
vided in (4.4.11) since we propose the closeness guarantee for the whole state trajectory,
while (4.4.11) quantifies the error only at some specific steps without providing the
closeness for all time steps.

Similar to the previous section, we consider the internal and external output maps
as identity. Furthermore, we employ in this section Definitions 4.4.10, and 4.4.12 but
with ρext(·) ≡ 0. In the next subsection, we leverage the results of Theorem 4.4.13 and
provide the closeness guarantee for all time instances.

4.4.2.1 Closeness Guarantee for All Time Instances

Suppose we are given an interconnected network composed of N stochastic subsystems
Σi as in (4.4.3) where νi ≡ 0, and with the interconnection constraint wij = xj ,∀i, j ∈
{1, . . . , N}, i 6= j. The M-sampled systems for all time instances contain M different
dynamics starting from initial values {xi(0), xi(1), . . . , xi(M− 1)} as follows:

xi(k +M) = f̃i(xi(k),wi(k), ς̃i(k)),

xi(k +M+ 1) = f̃i(xi(k + 1),wi(k + 1), ς̃i(k + 1)),

... (4.4.23)

xi(k + 2M− 1) = f̃i(xi(k +M− 1),wi(k +M− 1), ς̃i(k +M− 1)),

where k = jM, j ∈ N. In order to show the closeness of two interconnected dt-SAS for
all time instants using Theorem 4.4.13, we require the following assumption.

Assumption 4.4.19. Assume that there exist K∞ and concave function η̃ and a constant
θ̃ ≥ 0 such that for all x(k) := x ∈ X and x̂(k) := x̂ ∈ X̂,

E
[
V (x(k + 1), x̂(k + 1))

∣∣x, x̂] ≤ η̃(V (x, x̂)) + θ̃.

Remark 4.4.20. Note that Assumption 4.4.19 is a standard one employed in the defi-
nition of the sum-type SSF (M = 1) similar to the one appeared in (3.2.4). Remark that
Assumption 4.4.19 is less restrictive than the condition (4.4.10) since we do not require
η̃ < Id (cf. Case study 4.4.2.3).

Next theorem shows the closeness of two interconnected dt-SAS for all time instants.

Theorem 4.4.21. Let Σ and Σ̂ be two dt-SAS without internal inputs (i.e., ρint(·) ≡ 0),
where X̂ ⊆ X. Suppose V is a max-type FSF from Σ̂ to Σ at times k = jM, j ∈ N, and
Assumption 4.4.19 holds. For any random variables a and â as the initial states of the
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two dt-SS, the closeness of the two interconnected systems for all time instants within
the time horizon TdM can be acquired as

P

{
sup

k∈N, 0≤k≤TdM
‖xa(k)− x̂â(k)‖ ≥ ε

∣∣ a, â} (4.4.24)

≤

{
η̄0 + β̄0V (a, â), if M = 1,∑M−1

i=0 (η̄i + β̄iη̃
i(V (a, â)) + β̄i

∑i−1
n=0 η̃

n(θ̃)), if M≥ 2,

where η̃0 = Id, and η̄i, β̄i are some constants coming from the right-hand side of (4.4.11)
in the form of η̄i + β̄iV (a, â), with{

η̄i = 1− (1− ψi
αi(ε)

)Td , β̄i = 1
αi(ε)

(1− ψi
αi(ε)

)Td , if αi (ε) ≥ ψi
κ̂i
,

η̄i = ψi
κ̂iαi(ε)

(1− (1− κ̂i)Td), β̄i = 1
αi(ε)

(1− κ̂i)Td , if αi (ε) < ψi
κ̂i
.

Proof. We write our closeness guarantee proposed in (4.4.11) (i.e., at times k = jM, j ∈
N,M∈ N≥1) forM-sampled systems withM different dynamics as appeared in (4.4.23)
starting from initial values {xi(0), xi(1), . . . , xi(M− 1)} as follows:

P
{

supk=jM, 0≤j≤Td ‖xa(k)− x̂â(k)‖ ≥ ε
∣∣ a, â} ≤ h̄0(a, â),

P
{

supk=jM+1, 0≤j≤Td ‖xx1(k)− x̂x̂1(k)‖ ≥ ε
∣∣x1, x̂1

}
≤ h̄1(x1, x̂1),

...

P
{

supk=jM+M−1, 0≤j≤Td ‖xxM−1(k)− x̂x̂M−1
(k)‖ ≥ ε

∣∣xM−1, x̂M−1

}
≤ h̄M−1(xM−1,

x̂M−1).

Now one can write the chain of inequalities in (4.4.25) which completes the proof. The
first inequality is based on Boole’s inequality,

P{A1 ∪A2

∣∣ a1, a2} ≤ P{A1

∣∣ a1, a2}+ P{A2

∣∣ a1, a2}.

The last inequality is valid due to

E
[
V (xi, x̂i)

∣∣ a, â] ≤ η̃i(V (a, â)) +

i−1∑
n=0

η̃n(θ̃),

which can be proved inductively. It holds for i = 1 using η̃0 = Id, and Assumption 4.4.19.
For (i+ 1) we have

E
[
V (xi+1, x̂i+1)

∣∣ a, â] = E
[
E
[
V (xi+1, x̂i+1)

∣∣xi, x̂i] ∣∣ a, â]
≤ E

[
η̃(V (xi, x̂i)) + θ̃

∣∣ a, â] ≤ η̃(E
[
V (xi, x̂i)

∣∣ a, â]) + θ̃

≤ η̃(η̃i(V (a, â)) +
i−1∑
n=0

η̃n(θ̃)) + θ̃ ≤ η̃i+1(V (a, â)) +
i−1∑
n=0

η̃n+1(θ̃) + θ̃

≤ η̃i+1(V (a, â)) +
i∑

n=0

η̃n(θ̃),
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P
{

sup
k∈N, 0≤k≤TdM

‖xa(k)− x̂â(k)‖ ≥ ε
∣∣ a, â}

≤
M−1∑
i=0

P
{

sup
k=jM+i, 0≤j≤Td

‖xxi(k)− x̂x̂i(k)‖ ≥ ε
∣∣ a, â}

≤ h̄0(a, â) +
M−1∑
i=1

E
[
h̄i(xi, x̂i)

∣∣ a, â] =
M−1∑
i=0

E
[
η̄i + β̄iV (xi, x̂i)

∣∣ a, â]
=

M−1∑
i=0

(η̄i + β̄iE
[
V (xi, x̂i)

∣∣ a, â]) ≤ M−1∑
i=0

(η̄i + β̄iη̃
i(V (a, â)) + β̄i

i−1∑
n=0

η̃n(θ̃)). (4.4.25)

where we have respectively used the law of total expectation, Assumption 4.4.19, Jensen’s
inequality for the concave function η̃, assumption of the induction step for i, and finally
using the fact that η̃ is subadditive. Note that η̃ is indeed subadditive because it is
concave and η̃ : [0,∞]→ [0,∞] with η̃(0) = 0 [Sch96, Chapter 12].

4.4.2.2 Stochastic Autonomous Systems with Incremental Quadratic Constraint on
Nonlinearity

In this subsection, we impose conditions on the infinite dt-SAS Σi in order to find a
max-type SPSF (i.e.,M = 1) from Σ̂i to Σi for the nonlinear class of stochastic systems
with an incremental quadratic constraint on the nonlinearity. The class of nonlinear
stochastic autonomous systems, considered here, is given by

xi(k + 1) = Aixi(k) + Eiϕi(k, Fixi(k)) +Diwi(k) +Riςi(k), (4.4.26)

where the additive noise ςi(k) is a sequence of independent random vectors with multi-
variate standard normal distributions. Moreover, the time-varying nonlinearity satisfies
the incremental quadratic inequality in (4.3.25) for ϕi,∀i ∈ {1, . . . , N}. We use the tuple
Σi = (Ai, Di, Ei, Fi, Ri, ϕi), to refer to the class of nonlinear stochastic systems of the
form (4.4.26).

Now we provide a condition under which a candidate Vi in the quadratic form of (4.2.14)
is a max-type SPSF from Σ̂i to Σi.

Assumption 4.4.22. Assume that for some constants 0 < κ̂i < 1, and πi > 0, there
exists a matrix M̃i of an appropriate dimension such that the following inequality holds:[

(1 + 2/πi)A
T
i M̃iAi ATi M̃iEi

ETi M̃iAi (1 + 2/πi)E
T
i M̃iEi

]
�
[
κ̂iM̃i − F Ti Q̃11iFi −F Ti Q̃12i

−Q̃T12iFi −Q̃22i

]
.

(4.4.27)

Now we raise the main result of this subsection.
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Theorem 4.4.23. Assume Σi = (Ai, Di, Ei, Fi, Ri, ϕi) satisfies Assumption 4.4.22. Let
Σ̂i be its finite MC as described in Algorithm 1 (but for stochastic autonomous systems)
with the state discretization parameter δ̄i. Then the function Vi defined in (4.2.14) is a
max-type SPSF (with M = 1) from Σ̂i to Σi.

Proof. Since λmin(M̃i)‖xi − x̂i‖2 ≤ (xi − x̂i)T M̃i(xi − x̂i), it can be readily verified that
λmin(M̃i)‖xi− x̂i‖2 ≤ Vi(xi, x̂i) holds ∀xi, ∀x̂i, implying that the inequality (3.3.1) holds
with αi(s) = λmin(M̃i)s

2 for any s ∈ R≥0. We proceed with showing that the the
inequality (3.3.2) holds, as well. Given any xi := xi(k), and x̂i := x̂i(k), we simplify

Aixi +Diwi + Eiϕi(k, Fixi) +Riςi

−Πxi(Aix̂i +Diŵi + Eiϕi(k, Fix̂i) +Riςi)

to

Ai(xi − x̂i) +Di(wi − ŵi) + Ei(ϕi(k, Fixi)− ϕi(k, Fix̂i)) + N̄i,

where N̄i = Aix̂i+Diŵi+Eiϕi(k, Fix̂i) +Riςi−Πxi(Aix̂i+Diŵi+Eiϕi(k, Fix̂i) +Riςi).
By defining ϕ̄i = ϕi(k, Fixi) − ϕi(k, Fix̂i), and employing the fact that ∀xi ∈ Xi, ∀x̂i ∈
X̂i, [AC11], [

xi − x̂i
ϕ̄i

]T [
Fi 0
0 I

]T
Q̃i

[
Fi 0
0 I

] [
xi − x̂i
ϕ̄i

]
≥ 0,

using Young’s inequality, Cauchy-Schwarz inequality, the matrix inequality (4.4.27), and
since

‖N̄i‖ ≤ δ̄i, N̄T
i M̃iN̄i ≤ λmax(M̃i)δ̄

2
i ,

one can obtain the chain of inequalities in (4.4.28). Hence, the proposed Vi in (4.2.14) is
a max-type SPSF from Σ̂i to Σi, which completes the proof. Note that functions αi, κi ∈
K∞, and ρinti ∈ K∞ ∪{0}, are defined as αi(s) = λmin(M̃i)s

2, κi(s) := (1− (1− π̃i)κ̃i) s,
ρinti(s) := (1 + δ̃i)(

1
κ̃iπ̃i

)(p̄i(1 + 2πi + 1/πi))‖
√
M̃iDi‖22 s2, ∀s ∈ R≥0 where κ̃i = 1 − κ̂i,

0 < π̃i < 1, and δ̃i > 0. Moreover, the positive constant ψi is ψi = (1+1/δ̃i)(
1

κ̃iπ̃i
)(ni(1+

3πi)λmax(M̃i)) δ̄
2
i .

4.4.2.3 Case Study

In this subsection, we demonstrate the effectiveness of the proposed results by consid-
ering an interconnected system composed of four discrete-time linear stochastic subsys-
tems, i.e., Σ = I(Σ1,Σ2,Σ3,Σ4), such that one of them is not stable. The stochastic
subsystems are given by

Σi :


x1(k + 1) = 1.001x1(k) + 0.5w1(k) + ς1(k),
x2(k + 1) = −0.95x2(k)− 0.08w2(k) + ς2(k),
x3(k + 1) = −0.94x3(k)− 0.05w3(k) + ς3(k),
x4(k + 1) = 0.6x4(k) + 0.9w4(k) + ς4(k),

(4.4.29)
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E
[
Vi(xi(k + 1), x̂i(k + 1))

∣∣xi = xi(k), x̂i = x̂i(k), wi = wi(k), ŵi = ŵi(k)
]

= (xi − x̂i)TATi M̃iAi(xi − x̂i) + ϕ̄Ti E
T
i M̃iEiϕ̄i + (wi − ŵi)TDT

i M̃iDi(wi − ŵi)

+ E
[
N̄T
i M̃iN̄i

∣∣x, x̂i, wi, ŵi]+ 2(xi − x̂i)TATi M̃iDi(wi−ŵi)+2ϕ̄Ti E
T
i M̃iDi(wi−ŵi)

+ 2(wi − ŵi)TDT
i M̃iE

[
N̄i

∣∣xi, x̂i, wi, ŵi]+ 2(xi − x̂i)TATi M̃iEiϕ̄i

+ 2(xi − x̂i)TATi M̃iE
[
N̄i |xi, x̂i, wi, ŵi

]
+ 2ϕ̄Ti E

T
i M̃iE

[
N̄i

∣∣xi, x̂i, wi, ŵi]
≤
[
xi − x̂i
ϕ̄i

]T [
(1 + 2/πi)A

T
i M̃iAi ATi M̃iEi

ETi M̃iAi (1 + 2/πi)E
T
i M̃iEi

] [
xi − x̂i
ϕ̄i

]
+ p̄i(1 + 2πi + 1/πi)‖

√
M̃iDi‖22‖wi − ŵi‖2 + ni(1 + 3πi)λmax(M̃i) δ̄

2
i

≤
[
xi − x̂i
ϕ̄i

]T [
κ̂iM̃i − F Ti Q̃11iFi −F Ti Q̃12i

−Q̃T12iFi −Q̃22i

] [
xi − x̂i
ϕ̄i

]
+ p̄i(1 + 2πi + 1/πi)‖

√
M̃iDi‖22‖wi − ŵi‖2 + ni(1 + 3πi)λmax(M̃i) δ̄

2
i

= κ̂iVi(xi, x̂i)−
[
xi − x̂i
ϕ̄i

]T [
Fi 0
0 I

]T
Q̃i

[
Fi 0
0 I

] [
xi − x̂i
ϕ̄i

]
+ p̄i(1 + 2πi + 1/πi)‖

√
M̃iDi‖22‖wi − ŵi‖2 + ni(1 + 3πi)λmax(M̃i) δ̄

2
i

≤ κ̂iVi(xi, x̂i) + p̄i(1 + 2πi + 1/πi)‖
√
M̃iDi‖22‖wi − ŵi‖2 + ni(1 + 3πi)λmax(M̃i) δ̄

2
i

≤max
{
(1−(1−π̃i)κ̃i)(Vi(xi, x̂i)), (1+δ̃i)(

1

κ̃iπ̃i
)(p̄i(1+2πi+1/πi))‖

√
M̃iDi‖22‖wi−ŵi‖2,

(1 + 1/δ̃i)(
1

κ̃iπ̃i
)(ni(1 + 3πi)λmax(M̃i)) δ̄

2
i

}
. (4.4.28)

where

w1 = x2 + x3, w2 = x1 + x3, w3 = x2, w4 = x3,

with sets Xi = [0 0.1], and Wi = [0 0.2], ∀i ∈ {1, 2, 3, 4}. As seen, the first subsystem
is not stable. Then we proceed with looking at the solution of Σi two steps ahead, i.e.,
M = 2,

Σauxi :


x1(k + 2) = 0.962x1(k) + D̃1w1(k) + R̃1ς̃1(k),

x2(k + 2) = 0.8665x2(k) + D̃2w2(k) + R̃2ς̃2(k),

x3(k + 2) = 0.8876x3(k) + D̃3w3(k) + R̃3ς̃3(k),

x4(k + 2) = 0.36x4(k) + D̃4w4(k) + R̃4ς̃4(k),

(4.4.30)
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where

D̃1 = [0.0005;−0.0095]T, D̃2 = [−0.0041; 0.1112]T,

D̃3 = [0.004; 0.0945]T, D̃4 = [−0.045;−0.306]T,

w1 = [x2;x3], w2 = [x1;x3], w3 = [x1;x2], w4 = [x2;x3],

ς̃1(k) = [ς3(k); ς2(k); ς1(k); ς1(k + 1)], ς̃3(k) = [ς2(k); ς3(k); ς3(k + 1)],

ς̃2(k) = [ς3(k); ς1(k); ς2(k); ς2(k + 1)], ς̃4(k) = [ς3(k); ς4(k); ς4(k + 1)].

Moreover, R̃i = [R̃i1; R̃i2; R̃i3; R̃i4]T ,∀i ∈ {1, 2}, where

R̃11 = 0.5, R̃12 = 0.5, R̃13 = 1.001, R̃14 = 1,

R̃21 = −0.08, R̃22 = −0.08, R̃23 = −0.95, R̃24 = 1.

and R̃i = [R̃i1; R̃i2; R̃i3]T ∀i ∈ {3, 4}, where

R̃31 = −0.05, R̃32 = −0.94, R̃33 = 1, R̃41 = 0.9, R̃42 = 0.6, R̃43 = 1.

As seen, Ã1 is now stable. Now we proceed with constructing the finite MC from the
M-sampled system as acquired in (4.4.30). We fix Vi(xi, x̂i) = ‖xi−x̂i‖. One can readily
verify that Vi is a max-type FPSF from Σ̂i to Σi satisfying the condition (4.4.7) with
αi(s) = s, ∀i ∈ {1, 2, 3, 4} ∀s ∈ R≥0, and the condition (4.4.8) with

κi(s) = 0.99s, ∀i ∈ {1, 2, 3, 4},
ρint1(s) = 0.8838s, ρint2(s) = 0.9676s, ρint3(s) = 0.9936s, ρint4(s) = 0.9659s,

ψ1 = 36.47 δ̄1, ψ2 = 56.85 δ̄2, ψ3 = 60.61 δ̄3, ψ4 = 3.09 δ̄4.

Now we check the max small-gain condition (3.3.5) that is required for the composition-
ality result. By taking σi(s) = s ∀i ∈ {1, 2, 3, 4}, one can readily verify that the max
small-gain condition (3.3.5) and as a result the condition (3.3.6) are satisfied. Hence,
V (x, x̂) = maxi ‖xi − x̂i‖ is a max-type FSF from Σ̂ to Σ satisfying conditions (4.4.9)
and (4.4.10) with α(s) = s, κ(s) = 0.99 s, ∀s ∈ R≥0, and ψ = 60.61 δ̄.

We take the state and internal input discretization parameters as 0.0001. Then we have
nxi = 1000, and nwi = 2000. By starting the initial states of the interconnected systems
Σ and Σ̂ from 14, and by employing Theorem 4.4.13, we guarantee that the distance
between states of Σ and of Σ̂ will not exceed ε = 1 at times k = 2j, j = {0, . . . , 15} with
the probability at least 91%, i.e.,

P
{
‖xa(k)− x̂â(k)‖ ≤ 1, ∀k = 2j, j = {0, . . . , 15}

}
≥ 0.91.

Now we quantify the probabilistic closeness guarantee for the whole state trajectory
as proposed in (4.4.24). Assumption 4.4.19 is satisfied for the original interconnected
system with η̃(s) = 1.001s, ∀s ∈ R≥0 and θ̃ = δ̄. Then by employing Theorem 4.4.21, we

guarantee that the distance between states of Σ and of Σ̂ will not exceed ε = 1 for the
whole state trajectory within the time horizon [0, 30] with the probability at least 88%,
i.e.,

P
{
‖xa(k)− x̂â(k)‖ ≤ 1, ∀k ∈ [0, 30]

}
≥ 0.88.
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Figure 4.24: Error bound proposed in (4.4.24) for M = 2. Plot is in the logarithmic scale for
Td = 30. The probabilistic closeness guarantee is improved by either decreasing
the state discretization parameter δ̄ or increasing the confidence bound ε.

4.4.2.3.1 Analysis on Probabilistic Closeness Guarantee, Computation Time
and Memory Usage

In order to have more practical analysis on the proposed closeness guarantee, we plotted
the error bound provided in (4.4.24) for M = 2 in terms of the state discretization
parameter δ̄ and the confidence bound ε in Figure 4.24. As seen, the probabilistic
closeness guarantee is improved by either decreasing δ̄ or increasing ε.

Now we provide some discussions on the computation time and memory usage in
constructing the finite MC in both monolithic and compositional manners. To do so, we
employ the software tool FAUST2 on a machine with Windows operating system (Intel
i7@3.6GHz CPU and 16 GB of RAM). The monolithic MC would be a matrix with the
dimension of n4

xi × n
4
xi with nxi = 1000. By allocating 8 bytes for each entry of the

matrix to be stored, one needs a memory of roughly 8×10004×10004

109 = 8 × 1015 GB for
building the finite MC in the monolithic manner which is impossible in practice. Now,
we proceed with the compositional construction of the finite MC proposed in this section
for each subsystem. The constructed MC for each subsystem here is a matrix with the
dimension of (nxi × nwi) × nxi (with nxi = 1000, nwi = 2000) with a memory usage
of roughly 8×1000×2000×1000

109 = 16 GB for each MC and 64 GB for all 4 MCs, and the
computation time of 112 seconds for constructing each MC. This implementation clearly
shows that the proposed compositional approach in this section significantly mitigates
the curse of dimensionality problem in constructing finite MCs monolithically.

4.5 Relaxed Dissipativity Approach

In this section, we develop a compositional approach for the construction of finite MDPs
for networks of not necessarily passivable stochastic control systems using the dissipativ-
ity approach. In particular, the proposed compositional technique leverages the intercon-
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nection structure and joint dissipativity-type properties of subsystems and their abstrac-
tions characterized via a notion of finite-step stochastic storage functions. The provided
compositionality conditions can enjoy the structure of the interconnection topology and
be potentially satisfied regardless of the number or gains of subsystems. The finite-step
stochastic storage functions of subsystems are utilized to establish a sum-type finite-
step stochastic simulation function between the interconnection of concrete stochastic
subsystems and that of their finite MDPs.

In order to make the notation easier, we assume that the internal and external output
maps are identity. Similar to Example 4.4.1, we first raise the following example with
an interconnection constraint based on the dissipativity approach to illustrate the idea.

Example 4.5.1. Consider two linear dt-SCS Σ1,Σ2 as in (4.4.1) with the interconnec-

tion constraint [w1;w2] =

[
−1 1
1 1

]
[x1;x2]. Note that the first subsystem is not stable

thus not stabilizable as well. Therefore the proposed results in Section 4.3 are not appli-
cable to this network. By looking at the solution process of the system two steps ahead
and considering the interconnection, one can obtain

Σauxi :

{
x1(k + 2) = 0.29x1(k) + 0.38w1(k) + 0.4ς2(k) + 0.61ς1(k) + ς1(k + 1),
x2(k + 2) = 0.04x2(k)− 0.19w2(k)− 0.2ς1(k) + 0.35ς2(k) + ς2(k + 1),

(4.5.1)

where [w1; w2] = [x2;x1]. The two subsystems in (4.5.1), denoted by Σaux1,Σaux2, are
now stable. This motivates us to construct abstractions of original subsystems (4.4.1)
based on auxiliary subsystems (4.5.1).

Now one can utilize Assumption 4.4.3 and Lemma 4.4.6 to come up with the dynamics
of the M-sampled systems, i.e., auxiliary systems Σauxi, as in (4.4.4). Similar to Exam-
ple 4.4.7, we illustrate the computation of the vector field f̃i on a network of two linear
dt-SCS in the next example.

Example 4.5.2. Consider linear dt-SCS Σi, i ∈ {1, 2} in (4.4.6) with the interconnec-

tion constraint [w1;w2] =

[
M11 M12

M21 M22

]
[x1;x2]. Matrices Ai, Bi, Di, Ri, i ∈ {1, 2}, have

appropriate dimensions. We can rewrite the given dynamics as

x(k + 1) = Āx(k) + B̄ν(k) + D̄w(k) + R̄ς(k),

with x = [x1;x2], ν = [ν1; ν2], w = [w1;w2], ς = [ς1; ς2], where

Ā = diag(A1, A2), B̄ = diag(B1, B2), D̄ = diag(D1, D2), R̄ = diag(R1, R2).

By applying the interconnection constraint w=[w1;w2]=M [x1;x2] with M=

[
M11 M12

M21 M22

]
,

we have

x(k + 1) = (Ā+ D̄M)x(k) + B̄ν(k) + R̄ς(k).
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Now by looking at the solutions M steps ahead, one gets

x(k +M) = (Ā+ D̄M)Mx(k) +
M−1∑
n=0

(Ā+ D̄M)nB̄ν(k +M− n− 1)

+
M−1∑
n=0

(Ā+ D̄M)nR̄ς(k +M− n− 1).

After applying Assumption 4.4.3 and by partitioning (Ā+ D̄M)M as

(Ā+ D̄M)M =

[
Ã1 D̃1

Ã2 D̃2

]
,

one can decompose the network and obtain the auxiliary subsystems proposed in (4.4.4)
as follows, i ∈ {1, 2}:

Σauxi : xi(k +M) = Ãixi(k) +Biνi(k +M− 1) + D̃iwi(k) + R̃iς̃i(k), (4.5.2)

where w1(k),w2(k) are the new internal inputs, ς̃1(k), ς̃2(k) are defined as in (4.4.5) with
N = 2, and R̃i is a matrix of an appropriate dimension which can be computed based
on the matrices in (4.4.6). As seen, Ã1 and Ã2 now depend also on D1, D2 and the
interconnection matrix M , which may result in the pairs (Ã1, B1) and (Ã2, B2) being
stabilizable.

Remark 4.5.3. Note that in order to establish finite-step stochastic storage functions
from Σ̂i to Σi for the general setting of nonlinear stochastic systems, the auxiliary sys-
tem Σauxi should be incrementally passivable. This incremental passivability property is
equivalent to the classical stability property for the class of linear stochastic systems. Af-
ter interconnecting subsystems to each other and looking at the solutions in future time
instances, checking the stability property for unstable subsystems is easy since it only
needs matrix manipulations (as discussed in Example 4.5.2).

4.5.1 Finite-Step Stochastic Storage and sum-Type Finite-Step Stochastic
Simulation Functions

In this subsection, we first introduce the notion of finite-step stochastic storage func-
tions (FStF) for dt-SCS with both internal and external signals, which is adapted from
the notion of storage functions from the dissipativity theory. We then define the no-
tion of sum-type finite-step stochastic simulation functions (sum-type FSF) for systems
with only external signals. We utilize these two definitions to quantify the probabilistic
closeness of two interconnected dt-SCS.

Definition 4.5.4. Consider dt-SCS Σi and Σ̂i where X̂i ⊆ Xi. A function Vi : Xi×X̂i →
R≥0 is called a finite-step stochastic storage function (FStF) from Σ̂i to Σi if there exist
M∈ N≥1, αi, κi ∈ K∞, ρexti ∈ K∞ ∪{0}, a constant ψi ∈ R≥0, and a symmetric matrix

X̄i with conformal block partitions X̄ ll̄
i , l, l̄ ∈ {1, 2}, such that for all k = jM, j ∈ N,

xi := xi(k) ∈ Xi, x̂i := x̂i(k) ∈ X̂i,
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•

αi(‖xi − x̂i‖2) ≤ Vi(xi, x̂i), (4.5.3)

• and for any ν̂i := ν̂i(k +M− 1) ∈ Ûi, there exists νi := νi(k +M− 1) ∈ Ui such
that for any wi := wi(k) ∈ W̃i and ŵi := ŵi(k) ∈ Ŵi, one obtains

E
[
Vi(xi(k +M), x̂i(k +M))

∣∣xi, x̂i, νi, ν̂i,wi, ŵi]− Vi(xi, x̂i) (4.5.4)

≤ −κi(Vi(xi, x̂i)) + ρexti(‖ν̂i‖2) + ψi +

[
wi − ŵi
xi − x̂i

]T [
X̄11
i X̄12

i

X̄21
i X̄22

i

]
︸ ︷︷ ︸

X̄i:=

[
wi − ŵi
xi − x̂i

]
.

If there exists an FStF Vi from Σ̂i to Σi, denoted by Σ̂i �FStF Σi, the control system
Σ̂i is called an abstraction of the concrete (original) system Σi.

Remark 4.5.5. Note that for the sake of readability, we assume that Σi and Σ̂i both
have the same dimension (without performing any model order reductions). But if this
is not the case and they have different dimensionality, one can employ the techniques
proposed in Section 3.4 to first reduce the dimension of concrete systems, and then apply
the proposed results of this section.

Definition 4.5.6. Consider two dt-SCS Σ and Σ̂ without internal signals, where X̂ ⊆ X.
A function V : X × X̂ → R≥0 is called a sum-type finite-step stochastic simulation

function (sum-type FSF) from Σ̂ to Σ if there exist M∈ N≥1, and α ∈ K∞ such that

•

∀x := x(k) ∈ X,∀x̂ := x̂(k) ∈ X̂, α(‖x− x̂‖2) ≤ V (x, x̂), (4.5.5)

• and ∀x := x(k) ∈ X, ∀x̂ := x̂(k) ∈ X̂, ∀ν̂ := ν̂(k +M− 1) ∈ Û , ∃ν := ν(k +M−
1) ∈ U such that

E
[
V (x(k +M), x̂(k +M))

∣∣x, x̂, ν, ν̂]− V (x, x̂)

≤ −κ(V (x, x̂)) + ρext(‖ν̂‖2) + ψ, (4.5.6)

for some κ ∈ K, ρext ∈ K∞ ∪ {0}, ψ ∈ R≥0, and k = jM, j ∈ N.

If there exists a sum-type FSF V from Σ̂ to Σ, denoted by Σ̂ �sum
FSF Σ, Σ̂ is called an

abstraction of Σ.
Now one can utilize Theorem 4.4.13 and compare state trajectories of two dt-SCS

without internal inputs in a probabilistic setting at times k = jM, 0 ≤ j ≤ Td, for some
M∈ N≥1.

Remark 4.5.7. Note that one can consider original stochastic systems as autonomous
without external inputs and provide a closeness guarantee for all time instances similar
to results of the previous section proposed in Theorem 4.4.21.
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4.5.2 Compositionality Results

We first provide a formal definition of concrete interconnected stochastic control subsys-
tems.

Definition 4.5.8. Consider N ∈ N≥1 concrete stochastic control subsystems Σi, i ∈
{1, . . . , N}, and a matrix M defining the coupling between them. The interconnection of
Σi, ∀i ∈ {1, . . . , N}, is the concrete dt-SCS Σ, denoted by Ifd(Σ1, . . . ,ΣN ), such that

X :=
∏N
i=1Xi, U :=

∏N
i=1 Ui, and f :=

∏N
i=1 fi, with the internal inputs constrained

according to

[w1; . . . ;wN ] = M [x1; . . . ;xN ]. (4.5.7)

We require the condition M
∏N
i=1Xi ⊆

∏N
i=1Wi to have a well-posed interconnection.

As mentioned in Remark 4.4.2, after interconnecting subsystems with each other and
doing the M-step analysis, the interconnection coupling matrix M may change. Then
the interconnection constraint for auxiliary systems is defined as

[w1; . . . ; wN ] = Ma[x1; . . . ;xN ], (4.5.8)

where Ma is an auxiliary coupling matrix.
We assume that we are given N concrete stochastic control subsystems Σi together

with their corresponding abstractions Σ̂i with an FStF Vi from Σ̂i to Σi. We indicate by
αi, κi, ρexti, X̄i, X̄

11
i , X̄12

i , X̄21
i , and X̄22

i , the corresponding functions and the conformal
block partitions appearing in Definition 4.5.4. In order to provide the compositionality
results of the section, we define a notion of the interconnection for abstract stochastic
control subsystems.

Definition 4.5.9. Consider N ∈ N≥1 abstract stochastic control subsystems Σ̂i, i ∈
{1, . . . , N}, and a matrix M̂ defining the coupling between them. The interconnection
of Σ̂i, ∀i ∈ {1, . . . , N}, is the abstract dt-SCS Σ̂, denoted by Îfd(Σ̂1, . . . , Σ̂N ), such that

X̂ :=
∏N
i=1 X̂i, Û :=

∏N
i=1 Ûi, and f̂ :=

∏N
i=1 f̂i, with the internal inputs constrained

according to

[ŵ1; . . . ; ŵN ] = Πw(M̂ [x̂1; . . . ; x̂N ]),

where Πw is the abstraction map defined similarly to the one in (4.2.6). Accordingly, the
interconnection constraint for abstractions of auxiliary subsystems is defined as

[ŵ1; . . . ; ŵN ] = Πw(M̂a[x̂1; . . . ; x̂N ]), (4.5.9)

where M̂a is an auxiliary coupling matrix for abstractions.

Remark 4.5.10. Note that Definition 4.5.9 implicitly assumes that the following con-
straints are satisfied to have well-posed interconnections:

Πw(M̂

N∏
i=1

X̂i) ⊆
N∏
i=1

Ŵi, Πw(M̂a

N∏
i=1

X̂i) ⊆
N∏
i=1

Ŵi. (4.5.10)
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In the next theorem, as the compositionality results of the section, we provide suf-
ficient conditions to have a sum-type FSF from the interconnection of abstractions
Σ̂ = Îfd(Σ̂1, . . . , Σ̂N ) to that of concrete ones Σ = Ifd(Σ1, . . . ,ΣN ). This theorem
enables us to quantify the probabilistic error between the interconnection of stochastic
control subsystems and that of their abstractions in a compositional manner by leverag-
ing Theorem 4.4.13.

Theorem 4.5.11. Consider the interconnected stochastic auxiliary system Σaux = Ifd(
Σaux1, . . . ,ΣauxN ) induced by N ∈ N≥1 stochastic auxiliary subsystems Σauxi and the
auxiliary coupling matrix Ma. Suppose that each stochastic control subsystem Σi admits
an abstraction Σ̂i with the corresponding FStF Vi. Then the weighted sum

V (x, x̂) :=

N∑
i=1

µiVi(xi, x̂i) (4.5.11)

is a sum-type FSF from the interconnected control system Σ̂ = Îfd(Σ̂1, . . . , Σ̂N ) to Σ =
Ifd(Σ1, . . . ,ΣN ) if µi > 0, i ∈ {1, . . . , N}, and there exists 0 < µ < 1 such that ∀xi ∈ Xi,

∀x̂i ∈ X̂i, i ∈ {1, . . . , N},

‖xi − x̂i‖22 ≤
µi
µ
κi(Vi(xi, x̂i)), (4.5.12)

and

Ma = M̂a, (4.5.13)[
Ma

In

]T
X̄cmp

[
Ma

In

]
� 0, (4.5.14)

where X̄cmp is as in (3.4.6).

Proof. We first show that the sum-type FSF V in (4.5.11) satisfies the inequality (4.5.5)
for some K∞ function α. For any x = [x1; . . . ;xN ] ∈ X and x̂ = [x̂1; . . . ; x̂N ] ∈ X̂, one
gets:

‖x− x̂‖2 ≤
N∑
i=1

‖xi − x̂i‖2 ≤
N∑
i=1

α−1
i (Vi(xi, x̂i)) ≤ β̂(V (x, x̂)),

with the function β̂ : R≥0 → R≥0 defined for all s ∈ R≥0 as

β̂(s) := max
{∑N

i=1 α
−1
i (si)

∣∣ si≥ 0,
∑N

i=1 µisi = s
}
.

It is not hard to verify that the function β̂(·) defined above is a K∞ function. By taking
the K∞ function α(r) := β̂−1(s), ∀s ∈ R≥0, one obtains

α(‖x− x̂‖2) ≤ V (x, x̂),
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satisfying the inequality (4.5.5). Now we prove that the sum-type FSF V in (4.5.11)
satisfies the inequality (4.5.6), as well. Consider any x = [x1; . . . ;xN ] ∈ X, x̂ =
[x̂1; . . . ; x̂N ] ∈ X̂, and ν̂ = [ν̂1; . . . ; ν̂N ] ∈ Û . For any i ∈ {1, . . . , N}, there exists
νi ∈ Ui, consequently, a vector ν = [ν1; . . . ; νN ] ∈ U , satisfying (4.5.4) for each pair
of subsystems Σi and Σ̂i with internal inputs given by [w1; . . . ; wN ] = Ma[x1; . . . ;xN ]
and [ŵ1; . . . ; ŵN ] = Πw(M̂a[x̂1; . . . ; x̂N ]). By defining [w̄1; . . . ; w̄N ] = M̂a[x̂1; . . . ; x̂N ], we
have the chain of inequalities in (4.5.16) using conditions (4.5.12), (4.5.13), (4.5.14) and
by defining κ(·), ρext(·), ψ as

κ(s) := (1− µ) min
{ N∑
i=1

µiκi(si)
∣∣ si≥ 0,

N∑
i=1

µisi = s
}

ρext(s) := max
{ N∑
i=1

µiρexti(si)
∣∣ si≥ 0, ‖[s1; . . . ; sN ]‖ = s

}
,

ψ :=


∑N

i=1 µiψi +
‖µ̄̄µ̄µ‖22
µ2 λmax(P ), if X̄cmp ≤ 0,∑N

i=1 µiψi + ‖µ̄̄µ̄µ‖22( 1
µ2λmax(P ) + ρ(X̄cmp)), if X̄cmp > 0,

(4.5.15)

where P = X̄T
cmp

[
Ma

In

] [
Ma

In

]T
X̄cmp, µ̄̄µ̄µ = [µ̄1; . . . ; µ̄N ], and ρ is the spectral radius.

Note that κ and ρext in (4.5.16) belong to K∞ and K∞ ∪ {0}, respectively, due to their
definition provided above. Hence, we conclude that V is a sum-type FSF from Σ̂ to
Σ.

Remark 4.5.12. Condition (4.5.12) is satisfied if one can find µi > 0 and 0 < µ <

1 such that (α−1
i (s))2 ≤ µi

µ κi(s),∀s ∈ R≥0, i ∈ {1, . . . , N}. Note that the previous

inequality is always satisfied for linear systems and quadratic functions Vi(xi, x̂i) (cf.
Case study 4.5.4.1).

4.5.3 Construction of FStF

In this subsection, we first focus on the nonlinear class of discrete-time stochastic control
systems Σi and quadratic functions Vi by providing an approach on the construction of
their stochastic storage functions (with M = 1). We then propose a technique to
construct an FStF for a linear class of stochastic control systems.

4.5.3.1 Stochastic Control Systems with Slope Restrictions on Nonlinearity

The class of discrete-time nonlinear stochastic control systems, considered here, is given
by

xi(k + 1) = Aix(k) + Eiϕi(Fixi(k)) +Biνi(k) +Diwi(k) +Riςi(k), (4.5.17)
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E
[
V (x(k +M), x̂(k +M))

∣∣x(k), x̂(k), ν(k +M− 1), ν̂(k +M− 1)
]
− V (x, x̂)

= E
[ N∑
i=1

µi

[
Vi(xi(k +M), x̂i(k +M))

∣∣x(k), x̂(k), ν(k +M− 1), ν̂(k +M− 1)
]]

−
N∑
i=1

µiVi(xi, x̂i)

= E
[ N∑
i=1

µi

[
Vi(xi(k +M), x̂i(k +M))

∣∣xi = xi(k), x̂i = x̂i(k), νi = νi(k +M− 1),

ν̂i = ν̂i(k +M− 1)
]]
−

N∑
i=1

µiVi(xi, x̂i)

≤
N∑
i=1

µi
(
− κi(Vi(xi, x̂i)) + ρexti(‖ν̂i‖2) + ψi +

[
wi − ŵi
xi − x̂i

]T [
X̄11
i X̄12

i

X̄21
i X̄22

i

] [
wi − ŵi
xi − x̂i

])
=

N∑
i=1

−µiκi(Vi(xi, x̂i)) +

N∑
i=1

µiρexti(‖ν̂i‖2) +

N∑
i=1

µiψi

+



w1 − ŵ1
...

wN − ŵN
x1 − x̂1

...
xN − x̂N



T 

µ1X̄
11
1 µ1X̄

12
1

. . .
. . .

µNX̄
11
N µNX̄

12
N

µ1X̄
21
1 µ1X̄

22
1

. . .
. . .

µNX̄
21
N µNX̄

22
N





w1 − ŵ1
...

wN − ŵN
x1 − x̂1

...
xN − x̂N


=

N∑
i=1

−µiκi(Vi(xi, x̂i)) +
N∑
i=1

µiρexti(‖ν̂i‖2) +
N∑
i=1

µiψi

+



w1 − w̄1 + w̄1 − ŵ1
...

wN − w̄N + w̄N − ŵN
x1 − x̂1

...
xN − x̂N



T

X̄cmp



w1 − w̄1 + w̄1 − ŵ1
...

wN − w̄N + w̄N − ŵN
x1 − x̂1

...
xN − x̂N



=


Ma

x1
...
xN

− M̂a

 x̂1
...
x̂N


x1 − x̂1

...
xN − x̂N



T

X̄cmp


Ma

x1
...
xN

− M̂a

 x̂1
...
x̂N


x1 − x̂1

...
xN − x̂N


+

N∑
i=1

−µiκi(Vi(xi, x̂i))
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+
N∑
i=1

µiρexti(‖ν̂i‖2) +
N∑
i=1

µiψi +



w̄1 − ŵ1
...

w̄N − ŵN

0N



T

X̄cmp



w̄1 − ŵ1
...

w̄N − ŵN

0N



+ 2


Ma

x1
...
xN

− M̂a

 x̂1
...
x̂N


x1 − x̂1

...
xN − x̂N



T

X̄cmp



w̄1 − ŵ1
...

w̄N − ŵN

0N



=

N∑
i=1

−µiκi(Vi(xi, x̂i)) +

N∑
i=1

µiρexti(‖ν̂i‖2) +

N∑
i=1

µiψi +



w̄1 − ŵ1
...

w̄N − ŵN

0N



T

X̄cmp



w̄1 − ŵ1
...

w̄N − ŵN

0N



+

 x1 − x̂1
...

xN − x̂N


T [
Ma

In

]T
X̄cmp

[
Ma

In

] x1 − x̂1
...

xN − x̂N

+2

 x1 − x̂1
...

xN − x̂N


T[
Ma

In

]T
X̄cmp



w̄1 − ŵ1
...

w̄N − ŵN

0N



≤
N∑
i=1

−µiκi(Vi(xi, x̂i)) +
N∑
i=1

µiρexti(‖ν̂i‖2) +
N∑
i=1

µiψi + µ2

 x1 − x̂1
...

xN − x̂N


T  x1 − x̂1

...
xN − x̂N



+



w̄1 − ŵ1
...

w̄N − ŵN

0N



T

X̄cmp



w̄1 − ŵ1
...

w̄N − ŵN

0N


+

1

µ2



w̄1 − ŵ1
...

w̄N − ŵN

0N



T

X̄T
cmp

[
Ma

In

] [
Ma

In

]T
X̄cmp



w̄1 − ŵ1
...

w̄N − ŵN

0N


≤

N∑
i=1

−µiκi(Vi(xi, x̂i)) +
N∑
i=1

µiρexti(‖ν̂i‖2) +
N∑
i=1

µiψi + µ
N∑
i=1

µiκi(Vi(xi, x̂i))
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+
1

µ2
‖µ̄̄µ̄µ‖22λmax

(
X̄T
cmp

[
Ma

In

] [
Ma

In

]T
X̄cmp

)
+ ‖µ̄̄µ̄µ‖22σmax

(
X̄cmp

)
≤ −κ (V (x, x̂)) + ρext(‖ν̂‖2) + ψ. (4.5.16)

(1 + πi)(Ai +BiKi)
T M̃i(Ai +BiKi) (Ai +BiKi)

T M̃iDi (Ai +BiKi)
T M̃iEi

∗ (1 + πi)D
T
i M̃iDi DT

i M̃iEi
∗ ∗ (1 + πi)E

T
i M̃iEi


�

κ̂iM̃i + X̄22
i X̄21

i −F Ti
X̄12
i X̄11

i 0
−Fi 0 2/bi

 (4.5.18)

where the additive noise ςi(k) is a sequence of independent random vectors with mul-
tivariate standard normal distributions, and ϕi : R → R satisfies slope restrictions
in (3.3.11). We provide conditions under which a candidate Vi in the quadratic form
of (4.2.14) is an SStF from Σ̂i to Σi. To do so, we require the following assumption on
Σi.

Assumption 4.5.13. Assume that for some constants 0 < κ̂i < 1, and πi > 0, there
exist matrices Ki, X̄

11
i , X̄12

i , X̄21
i , and X̄22

i of appropriate dimensions such that the
inequality (4.5.18) holds.

Now we propose the main result of this subsection.

Theorem 4.5.14. Assume the system Σi = (Ai, Bi, Di, Ei, Fi, Ri, ϕi) satisfies Assump-
tion 4.5.13. Let Σ̂i be its finite abstraction as constructed in Algorithm 1 with the state
discretization parameter δ̄i, and X̂i ⊆ Xi. Then function Vi defined in (4.2.14) is an
SStF (with M = 1) from Σ̂i to Σi.

Proof. Since λmin(M̃i)‖xi − x̂i‖22 ≤ (xi − x̂i)
T M̃i(xi − x̂i), it can be readily verified

that λmin(M̃i)‖xi − x̂i‖22 ≤ Vi(xi, x̂i) holds ∀xi, ∀x̂i, implying that the inequality (4.5.3)
holds with αi(s) = λmin(M̃i)s

2 for any s ∈ R≥0. We proceed with showing that the
inequality (4.5.4) holds, as well. Given any xi := xi(k), x̂i := x̂i(k), and ν̂i := ν̂i(k), we
choose νi := νi(k) via the following interface function:

νi = νν̂i(xi, x̂i, ν̂i) := Ki(xi − x̂i) + ν̂i. (4.5.19)

By employing the above definition of the interface function, we simplify

Aixi +Biνν̂i(xi, x̂i, ν̂i) +Diwi + Eiϕi(Fixi) +Riςi

−Πxi(Aix̂i +Biν̂i +Diŵi + Eiϕi(Fix̂i) +Riςi)
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to

(Ai +BiKi)(xi − x̂i) +Di(wi − ŵi) + Ei(ϕi(Fixi)− ϕi(Fix̂i)) + N̄i, (4.5.20)

where N̄i = Aix̂i+Biν̂i+Diŵi+Eiϕi(Fix̂i)+Riςi−Πxi(Aix̂i+Biν̂i+Diŵi+Eiϕi(Fix̂i)+
Riςi). From the slope restriction (3.3.11), one obtains

ϕi(Fixi)− ϕi(Fix̂i) = δiFi(xi − x̂i), (4.5.21)

where δi is a function of xi and x̂i and takes values in the interval [0, bi]. Using (4.5.21),
the expression in (4.5.20) reduces to

(Ai +BiKi)(xi − x̂i) + δiEiFi(xi − x̂i) +Di(wi − ŵi) + N̄i.

Using Cauchy-Schwarz inequality, Young’s inequality, Assumption 4.5.13, and since{
‖N̄i‖2 ≤ δ̄i,

N̄T
i M̃iN̄i ≤ λmax(M̃i)δ̄

2
i ,

one can obtain the chain of inequalities in (4.5.22). Hence, the proposed Vi in (4.2.14) is
an SStF (withM = 1) from Σ̂i to Σi which completes the proof. Note that functions αi ∈
K∞, κi ∈ K, ρexti ∈ K∞ ∪ {0}, and the matrix X̄i in Definition 4.5.4 associated with Vi
in (4.2.14) are defined as αi(s) = λmin(M̃i)s

2, κi(s) := (1− κ̂i)s, ρexti(s) := 0, ∀s ∈ R≥0,

and X̄i =

[
X̄11
i X̄12

i

X̄21
i X̄22

i

]
. Moreover, the positive constant ψi is ψi = (1 + 3/π)λmax(M̃i)δ̄

2
i .

Note that in the chain of inequalities (4.5.22), we defined Z̄ =

 xi − x̂i
wi − ŵi

δiFi(xi − x̂i)

.

4.5.3.2 Discrete-Time Linear Stochastic Control Systems

In this subsection, we focus on the class of linear dt-SCS and propose a technique to
construct an FStF from Σ̂i to Σi. Suppose we are given a network composed of N
linear stochastic control subsystems Σi = (Ai, Bi, Di, Ri), i ∈ {1, . . . , N}. LetM∈ N≥1

be given. By employing the interconnection constraint (4.5.7) and Assumption 4.4.3,
the dynamics of the auxiliary system Σauxi, i ∈ {1, . . . , N}, at M-step forward can
be obtained similar to (4.5.2) but for the N subsystems. Although the pairs (Ai, Bi)
may not be necessarily stabilizable, we assume that the pairs (Ãi, Bi) after M-step are
stabilizable as discussed in Example 4.5.1. Therefore, we can construct finite MDPs as
presented in Algorithm 2 from the new auxiliary system. To do so, we nominate the
quadratic function (4.2.14). In order to show that Vi in (4.2.14) is an FStF from Σ̂i to
Σi, we require the following assumption on Σauxi.

Assumption 4.5.15. Assume that for some constants 0 < κ̂i < 1 and πi > 0, there
exist matrices Ki, X̄

11
i , X̄12

i , X̄21
i , and X̄22

i of appropriate dimensions such that inequal-
ity (4.5.23) holds.
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E
[
Vi(xi(k+1), x̂i(k+1))

∣∣xi=xi(k), x̂i= x̂i(k), νi=νi(k), ν̂i= ν̂i(k), wi=wi(k), ŵi= ŵi(k)
]

− Vi(xi, x̂i)

= (xi−x̂i)T
[
(Ai+BiKi)

T M̃i(Ai+BiKi)
]
(xi−x̂i)+δi(xi−x̂i)TF Ti ETi M̃iEiFi(xi−x̂i)δi

+ 2
[
(xi − x̂i)T (Ai +BiKi)

T
]
M̃i

[
δiEiFi(xi − x̂i)

]
+ (wi − ŵi)TDT

i M̃iDi(wi − ŵi)

+ 2
[
δi(xi−x̂i)TF Ti ETi

]
M̃i

[
Di(wi−ŵi)

]
+2
[
(xi−x̂i)T (Ai+BiKi)

T
]
M̃i

[
Di(wi−ŵi)

]
+ 2
[
(xi−x̂i)T (Ai+BiKi)

T
]
M̃iE

[
N̄i

∣∣xi, x̂i, ν̂i, wi, ŵi]+E[N̄T
i M̃iN̄i

∣∣x, x̂i, ν̂i, wi, ŵi]
+ 2
[
δi(xi − x̂i)TF Ti ETi

]
M̃iE

[
N̄i

∣∣xi, x̂i, ν̂i, wi, ŵi]
+ 2(wi − ŵi)TDT

i M̃iE
[
N̄i

∣∣xi, x̂i, ν̂i, wi, ŵi]− Vi(xi, x̂i)
≤ Z̄T

(1+πi)(Ai+BiKi)
T M̃i(Ai+BiKi) (Ai+BiKi)

T M̃iDi (Ai+BiKi)
T M̃iEi

∗ (1+πi)D
T
i M̃iDi DT

i M̃iEi
∗ ∗ (1+πi)E

T
i M̃iEi

Z̄
+ (1 + 3/πi)λmax(M̃i)δ̄

2
i − Vi(xi, x̂i)

≤ Z̄T
κ̂iM̃i + X̄22

i X̄21
i −F Ti

X̄12
i X̄11

i 0
−Fi 0 2/bi

 Z̄ + (1 + 3/πi)λmax(M̃i)δ̄
2
i − Vi(xi, x̂i)

= −(1− κ̂i)(Vi(xi, x̂i))− 2δi(1−
δi
bi

)(xi − x̂i)TF Ti Fi(xi − x̂i) + (1 + 3/πi)λmax(M̃i)δ̄
2
i

+

[
xi − x̂i
wi − ŵi

]T [
X̄22
i X̄21

i

X̄12
i X̄11

i

] [
xi − x̂i
wi − ŵi

]
≤ −(1− κ̂i)(Vi(xi, x̂i)) +

[
wi − ŵi
xi − x̂i

]T [
X̄11
i X̄12

i

X̄21
i X̄22

i

] [
wi − ŵi
xi − x̂i

]
+ (1 + 3/πi)λmax(M̃i)δ̄

2
i .

(4.5.22)

[
(1 + πi)(Ãi +BiKi)

T M̃i(Ãi +BiKi) (Ãi +BiKi)
T M̃iD̃i

∗ (1 + πi)D̃
T
i M̃iD̃i

]
�
[
κ̂iM̃i + X̄22

i X̄21
i

X̄12
i X̄11

i

]
(4.5.23)

Now we propose the main result of this subsection.

Theorem 4.5.16. Assume the system Σauxi satisfies Assumption 4.5.15. Let Σ̂auxi be its
finite abstraction as constructed in Algorithm 2 with the state discretization parameter
δ̄i. Then the function Vi proposed in (4.2.14) is an FStF from Σ̂i to Σi.
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Proof. We first show that ∀xi := xi(k), ∀x̂i := x̂i(k), ∀ν̂i := ν̂i(k+M−1), ∃νi := νi(k+
M−1), ∀wi := wi(k), ∀ŵi := ŵi(k), such that Vi satisfies λmin(M̃i)‖xi− x̂i‖22 ≤ Vi(xi, x̂i)
and then

E
[
Vi(xi(k +M), x̂i(k +M))

∣∣xi, x̂i, νi, ν̂i,wi, ŵi, ]− Vi(xi, x̂i)
≤ −(1− κ̂i)(Vi(xi, x̂i)) + (1 + 2/πi)λmax(M̃i)δ̄

2
i +

[
wi − ŵi
xi − x̂i

]T [
X̄11
i X̄12

i

X̄21
i X̄22

i

] [
wi − ŵi
xi − x̂i

]
.

Since λmin(M̃i)‖xi−x̂i‖22 ≤ (xi−x̂i)T M̃i(xi−x̂i), one can readily verify that λmin(M̃i)‖xi−
x̂i‖22 ≤ Vi(xi, x̂i) ∀xi, ∀x̂i. Then the inequality (4.5.3) holds with αi(s) = λmin(M̃i) s

2

for any s ∈ R≥0. We proceed with showing the inequality (4.5.4). Given any xi(k),
x̂i(k), and ν̂i(k +M− 1), we choose νi(k +M− 1) via the interface function (4.4.19)
and simplify

Ãixi(k) +Biνi(k +M− 1) + D̃iwi(k) + R̃iς̃i(k)

−Πxi(Ãix̂i(k) +Biν̂i(k +M− 1) + D̃iŵi(k) + R̃iς̃i(k))

to

(Ãi +BiKi)(xi(k)− x̂i(k)) + D̃i(wi(k)− ŵi(k)) + N̄i,

where N̄i = Ãix̂i(k)+Biν̂i(k+M−1)+D̃iŵi(k)+ R̃iς̃i(k)−Πxi(Ãix̂i(k)+Biν̂i(k+M−
1) + D̃iŵi(k) + R̃iς̃i(k)). By employing Cauchy-Schwarz inequality, Young’s inequality,
and Assumption 4.5.15, one can obtain the chain of inequalities in (4.5.24). Hence the
proposed Vi in (4.2.14) is an FStF from Σ̂i to Σi, which completes the proof. Note that
functions αi ∈ K∞, κi ∈ K, ρexti ∈ K∞ ∪ {0}, and the matrix X̄i in Definition 4.5.4
associated with Vi in (4.2.14) are defined as αi(s) = λmin(M̃i)s

2, κi(s) := (1 − κ̂i)s,

ρexti(s) := 0, ∀s ∈ R≥0, and X̄i =

[
X̄11
i X̄12

i

X̄21
i X̄22

i

]
. Moreover, the positive constant ψi in

(4.5.4) is ψi = (1 + 2/π)λmax(M̃i)δ̄
2
i .

4.5.4 Case Studies

In this subsection, to demonstrate the effectiveness of our proposed results, we first
apply our approaches to an interconnected system composed of 4 subsystems such that
2 of them are not stabilizable. Then to show the applicability of our results to nonlinear
systems having strongly connected networks, we apply our proposed techniques to a fully
interconnected network of 500 nonlinear subsystems and construct their finite MDPs with
guaranteed error bounds on their probabilistic output trajectories.

4.5.4.1 Network with Unstabilizable Subsystems

We demonstrate the effectiveness of the proposed results by considering an intercon-
nected system composed of four linear stochastic control subsystems, i.e., Σ = Ifd(Σ1,Σ2,

164



4.5 Relaxed Dissipativity Approach

E
[
Vi(xi(k+M), x̂i(k+M))

∣∣xi = xi(k), x̂i = x̂i(k), νi = νi(k+M−1), ν̂i = ν̂i(k+M−1),

wi = wi(k), ŵi = ŵi(k)
]
− Vi(xi, x̂i)

= (xi − x̂i)T (Ãi +BiKi)
T M̃i(Ãi +BiKi)(xi − x̂i) + (wi − ŵi)

T D̃T
i M̃iD̃i(wi − ŵi)

+ 2(xi − x̂i)T (Ãi +BiKi)
T M̃iD̃i(wi − ŵi)+2(wi − ŵi)

T D̃T
i M̃iE

[
N̄i

∣∣xi, x̂i, ν̂i,wi, ŵi]
+ 2i(xi − x̂i)T (Ãi +BiKi)

T M̃E
[
N̄i

∣∣xi, x̂i, ν̂i,wi, ŵi]+ E
[
N̄T
i M̃N̄i

∣∣xi, x̂i, ν̂i,wi, ŵi]
− Vi(xi, x̂i)

≤
[
xi − x̂i
wi − ŵi

]T [
(1 + πi)(Ãi +BiKi)

T M̃i(Ãi +BiKi) (Ãi +BiKi)
T M̃iD̃i

∗ (1 + πi)D̃
T
i M̃iD̃i

] [
xi − x̂i
wi − ŵi

]
+ (1 + 2/πi)λmax(M̃i)δ̄

2
i − Vi(xi, x̂i)

≤
[
xi − x̂i
wi − ŵi

]T [
κ̂iM̃i + X̄22

i X̄21
i

X̄12
i X̄11

i

] [
xi − x̂i
wi − ŵi

]
+ (1 + 2/πi)λmax(M̃i)δ̄

2 − Vi(xi, x̂i)

= −(1− κ̂i)(Vi(xi, x̂i)) +

[
wi − ŵi
xi − x̂i

]T [
X̄11
i X̄12

i

X̄21
i X̄22

i

] [
wi − ŵi
xi − x̂i

]
+ (1 + 2/πi)λmax(M̃i)δ̄

2
i .

(4.5.24)

Σ3,Σ4), with the interconnection matrix

M =


1 0 1 0
0 1 0 1
1 1 0 0
1 1 0 0

.
The linear stochastic control subsystems are given by

Σ :


x1(k + 1) = 1.02x1(k)− 0.07w1(k) + ς1(k),
x2(k + 1) = 1.04x2(k)− 0.06w2(k) + ς2(k),
x3(k + 1) = 0.5x3(k) + ν3(k) + 0.04w3(k) + ς3(k),
x4(k + 1) = 0.6x4(k) + ν4(k) + 0.05w4(k) + ς4(k),

(4.5.25)

with Xi = [0 0.5],Wi = [0 1], ∀i ∈ {1, . . . , 4} and Ui = [0 0.45],∀i ∈ {3, 4}. As seen, the
first two subsystems are not stabilizable. Then we proceed with looking at the solution
of Σi two steps ahead, i.e., M = 2,

Σaux :


x1(k + 2) = 0.89x1(k) + w1(k) + R̃1ς̃1(k),

x2(k + 2) = 0.95x2(k) + w2(k) + R̃2ς̃2(k),

x3(k + 2) = 0.24x3(k) + ν3(k + 1) + w3(k) + R̃3ς̃3(k),

x4(k + 2) = 0.35x4(k) + ν4(k + 1) + w4(k) + R̃4ς̃4(k),

(4.5.26)
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where

ς̃1(k) = [ς3(k); ς1(k); ς1(k + 1)], ς̃3(k) = [ς1(k); ς2(k); ς3(k); ς3(k + 1)],

ς̃2(k) = [ς4(k); ς2(k); ς2(k + 1)], ς̃4(k) = [ς1(k); ς2(k); ς4(k); ς4(k + 1)].

Moreover, R̃i = [R̃i1; R̃i2; R̃i3]T , ∀i ∈ {1, 2}, where

R̃11 = 0.95, R̃12 = −0.07, R̃13 = 1,

R̃21 = 0.98, R̃22 = −0.06, R̃23 = 1,

and R̃i = [R̃i1; R̃i2; R̃i3; R̃i4]T , ∀i ∈ {3, 4}, where

R̃31 = 0.04, R̃32 = 0.04, R̃33 = 0.5, R̃34 = 1,

R̃41 = 0.05, R̃42 = 0.05, R̃43 = 0.6, R̃44 = 1.

In addition, the new interconnection matrix for the the auxiliary system is

Ma =


0 −0.002 −0.1 0

−0.003 0 0 −0.09
0.05 0.05 0 −0.002
0.07 0.07 −0.003 0

. (4.5.27)

One can readily see that the first two subsystems are now stable. Then, we proceed with
constructing finite MDPs from auxiliary systems (4.5.26) as proposed in Algorithm 2.
Based on the auxiliary coupling matrix Ma in (4.5.27), one has W̃1 = [−0.051 0], W̃2 =
[−0.0465 0], W̃3 = [−0.001 0.05], W̃4 = [−0.0015 0.07]. By taking state, internal and
external input discretization parameters as δ̄i = 0.004, µ̄i = 0.0001,∀i ∈ {1, . . . , 4},
θi = 0.006,∀i ∈ {3, 4}, one has nxi = 125,∀i ∈ {1, . . . , 4}, nw1 = 510, nw2 = 465, nw3 =
510, nw4 = 715, nui = 75, ∀i ∈ {3, 4}. We consider here partition sets as intervals and
the center of each interval as representative points. One can readily verify that the
condition (4.5.23) is satisfied with

κ̂1 = 0.96, κ̂2 = 0.99, κ̂3 = 0.64, κ̂4 = 0.63,K3 = K4 = 0,

π1 = 0.1, π2 = 0.05, π3 = π4 = 0.99, M̃i = 1,∀i ∈ {1, 2, 3, 4},
X̄11

1 = 1.1, X̄12
1 = X̄21

1 = 0.89, X̄22
1 = −0.05,

X̄11
2 = 1.05, X̄12

2 = X̄21
2 = 0.95, X̄22

2 = −0.03,

X̄11
3 = 1.99, X̄12

3 = X̄21
3 = 0.24, X̄22

3 = −0.2,

X̄11
4 = 1.99, X̄12

4 = X̄21
4 = 0.35, X̄22

4 = −0.03.

Then, the function Vi(xi, x̂i) = (xi−x̂i)2 is an FStF from Σ̂i to Σi satisfying the condition
(4.5.3) with αi(s) = s2,∀s ∈ R≥0,∀i ∈ {1, 2, 3, 4}, and the condition (4.5.4) with

κ1(s) = 0.03s, κ2(s) = 0.0051s, κ3(s) = 0.35s, κ4(s) = 0.36s, ∀s ∈ R≥0,

ρexti(s) = 0,∀i ∈ {1, 2, 3, 4}, ψ1 = 21 δ̄2, ψ2 = 41 δ̄2, ψ3 = 3.02 δ̄2, ψ4 = 3.02 δ̄2,

166



4.5 Relaxed Dissipativity Approach

where the input νi is given via the interface function in (4.4.19) as νi = ν̂i. Now we look
at Σ̂ = Îfd(Σ̂1, . . . , Σ̂N ) with a coupling matrix M̂a satisfying the condition (4.5.13) as

M̂a = Ma. Choosing µ1 = · · · = µ4 = 1, condition (4.5.14) is satisfied as

[
Ma

I4

]T
X̄cmp

[
Ma

I4

]
=


−0.03 0.01 −0.07 0.02
0.01 −0.01 0.01 −0.06
−0.07 0.01 −0.18 −0.001
0.15 0.06 −0.007 −0.02

 � 0.

By selecting µ = 0.005, the condition (4.5.12) is also satisfied. Now, one can readily

verify that V (x, x̂) =
∑4

i=1(xi− x̂i)2 is a sum-type FSF from Σ̂ to Σ satisfying conditions
(4.5.5) and (4.5.6) with α(s) = s2, κ(s) := 0.005s, ρext(s) = 0, ∀s ∈ R≥0, and the overall
error of the network formulated in (4.5.15) as ψ = 68.04δ̄2 + (1.6× 105)µ̄̄µ̄µ2.

By starting the initial states of the interconnected systems Σ and Σ̂ from 14 and
employing Theorem 4.4.13, we guarantee that the distance between states of Σ and of
Σ̂ will not exceed ε = 0.5 at times k = 2j, j = {0, . . . , 7} with the probability at least
90%, i.e.,

P(‖xaν̂(k)− x̂âν̂(k)‖2 ≤ 0.5, ∀k = 2j, j = {0, . . . , 7}) ≥ 0.9.

4.5.4.1.1 Discussions on Memory Usage and Computation Time for Con-

structing Σ̂auxi

Now we provide some discussions on the memory usage and computation time in con-
structing finite MDPs in both monolithic and compositional manners. The monolithic
finite MDP constructed from the given system in (4.5.25) would be a matrix with
the dimension of (n4

xi × n2
ui) × n4

xi . By allocating 8 bytes for each entry of the ma-
trix to be stored as a double-precision floating point, one needs a memory of roughly
8×1254×752×1254

109 ≈ 2.6822×1012 GB for building the finite MDP in the monolithic manner
which is impossible in practice. Now, we proceed with the compositional construction
of finite MDPs proposed in this work for each subsystem of the M-sampled system
in (4.5.26). The construction procedure is performed via the software tool FAUST2

on a machine with Windows operating system (Intel i7@3.6GHz CPU and 16 GB of
RAM). The constructed MDP for each subsystem here is a matrix with the dimension of
(nxi×nwi×nui)×nxi . Then the memory usage and computation time for all subsystems
are as follows:
Σ̂aux1: Memory usage: 0.0638 GB, computation time: 9 (s),
Σ̂aux2: Memory usage: 0.0581 GB, computation time: 7 (s),
Σ̂aux3: Memory usage: 4.7813 GB, computation time: 43 (s),
Σ̂aux4: Memory usage: 6.7031 GB, computation time: 65 (s).
A comparison on the required memory for the construction of finite MDPs between the
monolithic and compositional manners for different ranges of the state discretization
parameter is provided in Table 4.2. Note that the third column of the table is about
the maximum required memory for the construction of Σ̂auxi (which is corresponding to
Σ̂aux4). As seen, in order to provide even a weak closeness guarantee of 18% between
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Table 4.2: Required memory for the construction of finite MDPs in both monolithic and com-
positional manners for different ranges of the state discretization parameter.

δ̄ Closeness Memory for Σ̂auxi (GB) Memory for Σ̂ (GB)

0.002 92% 44.6875 1.9073× 1015

0.004 90% 6.7031 2.6822× 1012

0.006 88% 1.6156 3.0289× 1010

0.008 85% 0.6816 1.6786× 109

0.01 83% 0.3575 195312500
0.02 61% 0.0429 175780
0.04 18% 0.0049 123.8347

states of Σ and Σ̂, the required memory for the monolithic fashion is 123.8347 GB which
is still too big. This implementation clearly shows that the proposed compositional
approach in this work significantly mitigates the curse of dimensionality problem in con-
structing finite MDPs monolithically. In particular, in order to quantify the probabilistic
closeness between states of two networks Σ and Σ̂ via Theorem 4.4.13 as provided in
Table 4.2, one needs to only build finite MDPs of individual auxiliary subsystems (i.e.,
Σ̂auxi), construct an FStF between each Σi and Σ̂i, and then employ the proposed com-
positionality results of the section to build a sum-type FSF between Σ and Σ̂.

4.5.4.1.2 Compositional Controller Synthesis

In order to study the level of conservatism originating from Assumption 4.4.3, we com-
positionally synthesize a safety controller for Σaux in (4.5.26). We also compositionally
abstract the original system Σ using the approach in [SAM17] which is based on dynamic
Bayesian network (DBN), and employ FAUST2 [SGA15] to synthesize a controller. We
then compare the probabilities of satisfying a safety specification obtained by using these
two controllers.

Note that the approach of [SAM17] does not require original subsystems to be stabi-
lizable and only the Lipschitz continuity of the associated stochastic kernels is enough
for the validity of the results. However, their proposed closeness guarantee converges
to infinity when the standard deviation σ̄ goes to zero whereas our probabilistic error
in (4.4.11) is independent of σ̄. Thus our proposed closeness bound outperforms [SAM17]
for a smaller standard deviation of the noise. A detailed comparison on this issue has
been made in Section 4.3, Figure 4.17. Although the comparison there is done for 1-step
models, the same reasoning is valid for the M-step ones as well.

Let Xi = [−2 2],Wi = [−2 2],∀i ∈ {1, . . . , 4}, and Ui = [0 1],∀i ∈ {3, 4}. We take
δ̄i = 0.005, µ̄i = 0.01, ∀i ∈ {1, . . . , 4}, and θi = 0.01,∀i ∈ {3, 4}. The main goal is to
compositionally synthesize a safety controller for Σaux and Σ such that the controller
maintains states of the systems in the set [−2 1.5] for Td = 14 time steps. In order to
make a fair comparison and since M = 2, this safety requirement is required for only
even time instances.
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Figure 4.25: Comparison of safety probabilities by our approach and that of [SAM17] based
on DBN. Plots are probabilities as a function of the initial state of one state
variable while the other state variables have an initial value according to x1(0) =
−0.35, x2(0) = −0.285, x3(0) = −1.705, x4(0) = −1.745. The time horizon is
Td = 14.

A comparison of safety probabilities for the M-step and original subsystems is pro-
vided in Figure 4.25. We selected the initial conditions x1(0) = −0.35, x2(0) = −0.285,
x3(0) = −1.705, x4(0) = −1.745. In each plot of Figure 4.25, we fixed three of these
initial states and showed the probability as a function of the other state. We also fixed
the standard deviation of the noise as σ̄i = 0.1, ∀i ∈ {1, 2}, σ̄i = 0.6,∀i ∈ {3, 4}. As
seen, safety probabilities using the DBN approach are better than those using the M-
step approach. This is mainly due the fact that the external inputs in the M-step
setting are allowed to take nonzero values only at particular time instances (here at
2j+ 1, j = {0, . . . , 6}), which makes the controller synthesis problem more conservative
(as discussed in Remark 4.4.5).

We now plot one realization of input trajectories for the third and fourth subsystems
in bothM-step and DBN approaches in Figure 4.26. As seen, the DBN approach allows
taking nonzero input values at all time steps whereas theM-step one only allows nonzero
input values at 2j + 1, j = {0, . . . , 6}.
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Figure 4.26: One realization of input trajectories ν3, ν4 via our approach and that of [SAM17]
based on DBN. The DBN approach allows taking nonzero inputs at all time steps
whereas the M-step one allows this only at 2j + 1, j = {0, . . . , 6}.

4.5.4.2 Nonlinear Fully Interconnected Network

In order to show the applicability of our approach to strongly interconnected networks
with nonlinear dynamics, we consider the nonlinear dt-SCS

Σ : x(k + 1) = Ḡx(k) + ϕ(x(k)) + ν(k) + ς(k),

for some matrix Ḡ = (In − τL̃) ∈ Rn×n where L̃ is the Laplacian matrix of an undi-
rected graph with 0 < τ < 1/∆̄, and ∆̄ is the maximum degree of the graph [GR01].
We assume L̃ is the Laplacian matrix of a complete graph as in (3.4.24). Moreover, ς(k) =
[ς1(k); . . . ; ςN (k)], ϕ(x(k)) = [E1ϕ1(F1x1(k)); . . . ;ENϕN (FNxN (k))] where ϕi(x) = sin(x),
∀i ∈ {1, . . . , N}. We partition x(k) as x(k) = [x1(k); . . . ;xN (k)] and ν(k) as ν(k) =
[ν1(k); . . . ; νN (k)]. Now, by introducing Σi described as

Σi : xi(k + 1) = xi(k) + Eiϕi(Fixi(k)) + νi(k) + wi(k) + ςi(k),

one can readily verify that Σ = Ifd(Σ1, . . . ,ΣN ) where the coupling matrix M is given
by M = −τL̃. Then one can verify that, ∀i ∈ {1, . . . , N}, the condition (4.5.18) is
satisfied with M̃i = 1, Ki = −0.5, Ei = 0.1, Fi = 0.1, bi = 1, X̄11 = (1 + πi), X̄

22 = 0,
X̄12 = X̄21 = λ′i, where λ′i = 1 + Ki, κ̂i = 0.99, and πi = 1, ∀i ∈ {1, . . . , N}. Hence,

the function Vi(xi, x̂i) = (xi − x̂i)2 is an SStF from Σ̂i to Σi (with M = 1) satisfying
the condition (4.5.3) with αi(s) = s2 and the condition (4.5.4) with κi(s) := (1 − κ̂i)s,
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ρiext(s) = 0, ∀s ∈ R≥0, and ψi = 4δ̄2
i . Now, we look at Σ̂ = Îfd(Σ̂1, . . . , Σ̂N ) with a

coupling matrix M̂ satisfying the condition (4.5.13) by M̂ = M . Choosing µ1 = · · · =
µN = 1, the matrix X̄cmp in (3.4.6) reduces to

X̄cmp =

[
(1 + π)In λ′In
λ′In 0

]
,

where λ′ = λ′1 = · · · = λ′n, π = π1 = · · · = πn, and the condition (4.5.14) reduces to[
−τL̃
In

]T
X̄cmp

[
−τL̃
In

]
= (1 + π)τ2L̃T L̃− λ′τL̃− λ′τL̃T = τL̃((1 + π)τL̃− 2λ′In) � 0,

which is always satisfied without requiring any restrictions on the number or gains of
the subsystems with τ = 0.4/(n − 1). In order to show the above inequality, we used
L̃ = L̃T � 0 which is always true for Laplacian matrices of undirected graphs. We fix
here n = 500. Now one can readily verify that V (x, x̂) =

∑500
i=1(xi− x̂i)2 is an SStF Σ̂ to

Σ satisfying conditions (4.5.5) and (4.5.6) with α(s) = s2, κ(s) := (1− κ̂)s, ρext(s) = 0,
∀s ∈ R≥0, and ψ = 2000δ̄2.

By taking the state discretization parameter δ̄ = 0.005, and selecting the initial states
of the interconnected systems Σ and Σ̂ as 1500, we guarantee that the distance between
states of Σ and of Σ̂ will not exceed ε = 1 during the time horizon Td = 10 with the
probability at least 88%.

4.6 Approximate Probabilistic Relations

In this section, we propose a compositional approach for constructing abstractions of
Markov decision processes in (2.4.1) using approximate probabilistic relations. The ab-
straction framework is based on the notion of δ-lifted relations, using which one can
quantify the distance in the probability between interconnected MDPs and that of their
abstractions. This new approximate relation unifies compositionality results in the lit-
erature by incorporating the dependencies between state transitions explicitly and by
allowing abstract models to have either finite or infinite state spaces. Accordingly, one
can leverage the proposed results to perform analysis and synthesis over abstract models,
and then carry the results back over concrete ones.

We provide conditions under which the proposed similarity relations between indi-
vidual MDPs can be extended to relations between their respective interconnections.
These conditions enable a compositional quantification of the probabilistic distance be-
tween interconnected MDPs and that of their abstractions. The proposed notion has
the advantage of encoding prior knowledge on dependencies between uncertainties of
the two models. Our compositional scheme allows constructing both infinite and finite
abstractions in a unified framework. We benchmark our results against the composi-
tional abstraction techniques proposed in Sections 3.4 and 4.3.1 which are based on the
dissipativity approach and provide a compositional methodology for constructing both
infinite abstractions (reduced-order models) and finite MDPs in two consecutive steps.
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We show that the proposed unified approach here is less conservative than the two-step
construction one proposed in Sections 3.4 and 4.3.1.

Similarities between two MDPs have been recently studied in [HSA17] using a notion
of δ-lifted relations, but only for single MDPs. The result is generalized in [HSA18] to
a larger class of temporal properties and in [HS18] to synthesize policies for the robust
satisfaction of specifications. One of the main contributions of this section is to extend
this notion such that it can be applied to networks of MDPs. In particular, we extend the
notion of δ-lifted relations for networks of MDPs and show that under specific conditions
systems can be composed while preserving the relation. This type of relations enables
us to provide the probabilistic closeness guarantee between two interconnected MDPs
(cf. Theorem 4.6.6). Furthermore, we provide an approach for the construction of
finite MDPs in a unified framework for the nonlinear class of stochastic control systems
(3.3.10), whereas the construction scheme in [HSA17] only handles the class of linear
systems.

4.6.1 Approximate Probabilistic Relations based on Lifting

In this subsection, we first introduce the notion of δ-lifted relations over general state
spaces. We then define (ε, δ)-approximate probabilistic relations based on lifting for
MDPs with internal inputs and outputs. Finally, we define (ε, δ)-approximate relations
for interconnected MDPs without internal signals resulting from the interconnection of
MDPs having internal inputs and outputs.

We provide the notion of δ-lifted relation borrowed from [HSA17] as the following
definition.

Definition 4.6.1. Let X, X̂ be two sets with associated measurable spaces (X,B(X)) and
(X̂,B(X̂)). Consider a relation Rx ∈ B(X × X̂). We denote by R̄δ ⊆ P(X,B(X)) ×
P(X̂,B(X̂)), the corresponding δ-lifted relation if there exists a probability space (X ×
X̂,B(X × X̂), L̄ ) (equivalently, a lifting L̄ ) such that (Φ,Θ) ∈ R̄δ if and only if

• ∀A ∈ B(X), L̄ (A× X̂) = Φ(A),

• ∀Â ∈ B(X̂), L̄ (X × Â) = Θ(Â),

• for the probability space (X × X̂,B(X × X̂), L̄ ), it holds that xRxx̂ with the prob-
ability at least 1− δ, equivalently, L̄ (Rx) ≥ 1− δ.

For a given relation Rx ⊆ X × X̂, the above definition specifies required properties
for the lifting relation Rx to a relation R̄δ that relates probability measures over X and
X̂.

We are interested in using δ-lifted relation for specifying similarities between an MDP
and its abstraction. Therefore, internal inputs of the two MDPs should be in a relation
denoted by Rw. Next definition gives conditions for having a stochastic simulation
relation between two MDPs.

Definition 4.6.2. Consider two MDPs Σ = (X,U,W, Tx, Y
1, Y 2, h1, h2) and Σ̂ = (X̂, Û ,

, Ŵ , T̂x, Y
1, Y 2, ĥ1, ĥ2) with the same output spaces. Let π : B(X̂) → [0, 1] and π̂ :
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B(X̂) → [0, 1] be initial probability distributions respectively for Σ and Σ̂. System
Σ̂ is (ε, δ)-stochastically simulated by Σ, i.e., Σ̂ �δε Σ, if there exist relations Rx ⊆
X × X̂ and Rw ⊆ W × Ŵ for which there exists a Borel measurable stochastic kernel
L̄T (·

∣∣x, x̂, ν̂, w, ŵ) on X × X̂ such that

• ∀(x, x̂) ∈ Rx,∀i ∈ {1, 2}, ‖hi(x)− ĥi(x̂)‖ ≤ ε,

• ∀(x, x̂) ∈ Rx, ∀ŵ ∈ Ŵ , ∀ν̂ ∈ Û , there exists ν ∈ U such that ∀w ∈ W with
(w, ŵ) ∈ Rw,

Tx(·
∣∣x, ν, w) R̄δ T̂x(·

∣∣ x̂, ν̂, ŵ)

with lifting L̄T (·
∣∣x, x̂, ν̂, w, ŵ),

• π R̄δ π̂.

The second condition of Definition 4.6.2 implicitly implies that there exists an interface
function ν = νν̂(x, x̂, ν̂, ŵ) such that state probability measures are in the lifted relation
after one transition for any (x, x̂) ∈ Rx, ν̂ ∈ Û , and ŵ ∈ Ŵ . This function can be
employed for refining a synthesized policy ν̂ for Σ̂ to a policy ν for Σ.

Remark 4.6.3. Definition 4.6.2 extends the approximate probabilistic relation in [HSA17]
by adding the relation Rw to capture the effect of internal inputs. The interface function
ν = νν̂(x, x̂, ν̂, ŵ) is also allowed to depend on the internal input of the abstract MDP Σ̂.

Remark 4.6.4. Note that Definition 4.6.2 generalizes the results of Section 3.4, that
assumes independent noises in two similar MDPs, and of Section 4.3.1, that assumes
shared noises, by making no particular assumption but requiring this dependency to be
reflected in lifting L̄T . We emphasize that this generalization is considered only for
a concrete MDP and its abstraction. We still retain the assumption of independent
uncertainties between MDPs in a network (cf. Definition 4.6.7 and Remark 4.6.8).

Figure 4.27 illustrates ingredients of Definition 4.6.2. As seen, the relation Rw and
the stochastic kernel L̄T capture the effect of internal inputs, and the relation of two
noises, respectively. Moreover, the interface function νν̂(x, x̂, ŵ, ν̂) is employed to refine
a synthesized policy ν̂ for Σ̂ to a policy ν for Σ.

In this section, we are interested in networks of MDPs that are obtained from com-
posing MDPs having both internal and external signals. The resulting interconnected
MDP will have only external inputs and outputs and will be denoted by the tuple
Σ = (X,U, Tx, Y, h) with the stochastic kernel Tx : B(X)×X × U → [0, 1].

Accordingly, Definition 4.6.2 can be applied to MDPs without internal inputs and
outputs that may arise from composing MDPs via their internal signals. For such MDPs,
we eliminate Rw and the interface function becomes independent of internal inputs, thus
the definition reduces to the following definition.

Definition 4.6.5. Consider two MDPs without internal signals Σ = (X,U, Tx, Y, h)
and Σ̂ = (X̂, Û , T̂x, Y, ĥ), that have the same output spaces. Σ̂ is (ε, δ)-stochastically
simulated by Σ, i.e., Σ̂ �δε Σ, if there exists a relation Rx ⊆ X × X̂ for which there
exists a Borel measurable stochastic kernel L̄T (·

∣∣x, x̂, ν̂) on X × X̂ such that
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4 Finite Abstractions (Finite Markov Decision Processes)

Figure 4.27: Notion of the lifting for specifying the similarity between an MDP and its ab-
straction. Relations Rx and Rw are the ones between states and internal inputs,
respectively. L̄T specifies the relation of two noises, and the interface function
νν̂(x, x̂, ν̂, ŵ) is used for the refinement policy.

• ∀(x, x̂) ∈ Rx, ‖h(x)− ĥ(x̂)‖ ≤ ε,

• ∀(x, x̂) ∈ Rx, ∀ν̂ ∈ Û ,∃ν ∈ U such that Tx(·
∣∣x, ν(x, x̂, ν̂)) R̄δ T̂x(·

∣∣ x̂, ν̂) with
L̄T (·

∣∣x, x̂, ν̂),

• π R̄δ π̂.

Definition 4.6.2 enables us to quantify the error in probability between a concrete
system Σ and its abstraction Σ̂. In any (ε, δ)-approximate probabilistic relation, δ is
used to quantify the distance in the probability between MDPs and ε for the closeness
of output trajectories as stated in the next theorem.

Theorem 4.6.6. If Σ̂ �δε Σ and (w(k), ŵ(k)) ∈ Rw for all k ∈ {0, 1, . . . , Td}, then for all
policies on Σ̂ there exists a policy for Σ such that, for all measurable events A ⊂ Y Td+1,

P{{ŷ(k)}0:Td ∈ A−ε} − γ ≤ P{{y(k)}0:Td ∈ A} ≤ P{{ŷ(k)}0:Td ∈ Aε}+ γ, (4.6.1)

with the constant 1− γ := (1− δ)Td+1, and with the ε-expansion and ε-contraction of A
defined as

Aε := {y(·) ∈ Y Td+1
∣∣ ∃ȳ(·) ∈ A with maxk≤Td‖ȳ(k)− y(k)‖ ≤ ε},

A−ε := {y(·) ∈ A
∣∣ ȳ(·) ∈ A for all ȳ(·) with maxk≤Td‖ȳ(k)− y(k)‖ ≤ ε}.

Proof. The definition of the lifting implies that the initial states of two systems are in a
relation with the probability at least 1−δ. Moreover, if the two states are in the relation
at the time k, they remain in the relation at time k + 1 with the probability at least
1− δ. Then, we can write

P{(x(k), x̂(k)) ∈ Rx for all k ∈ [0, Td]} ≥ (1− δ)Td+1.

This can be proved by induction and conditioning the probability on the intermediate
states.
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Note that if {ĥ(x̂(k))}0:Td ∈ A−ε and (x(k), x̂(k)) ∈ Rx for all k ∈ [0, Td], then
{y(k)}0:Td ∈ A. As a consequence

P{{ĥ(x̂)}0:Td ∈ A−ε} ∧ (x(k), x̂(k)) ∈ Rx for all k ∈ [0, Td]} ≤ P{{h(x)}0:Td ∈ A}.

Now by employing the union bounding argument, we have

P{{ĥ(x̂)}0:Td ∈ A−ε} − (1− δ)Td+1 ≤ P{{ĥ(x̂)}0:Td ∈ A−ε ∧ (x(k), x̂(k)) ∈ Rx,

for all k ∈ [0, Td]}.

Then

1− P{{ĥ(x̂)}0:Td ∈ A−ε ∧ (x(k), x̂(k)) ∈ Rx for all k ∈ [0, Td]}
≤ (1− P{{ĥ(x̂)}0:Td ∈ A−ε}) + (1− P{(x(k), x̂(k)) ∈ Rx for all k ∈ [0, Td]})
≤ (1− P{{ĥ(x̂)}0:Td ∈ A−ε}) + (1− (1− δ)Td+1).

One can deduce that

P{{ĥ(x̂)}0:Td ∈ A−ε} − (1− (1− δ)Td+1) ≤ P{{h(x)}0:Td ∈ A}.

Similarly, if {h(x(k))}0:Td ∈ A and (x(k), x̂(k)) ∈ Rx, then {ĥ(x̂(k))}0:Td ∈ Aε. Thus via
similar arguments it holds that

P{{h(x)}0:Td ∈ A} ≤ P{{ĥ(x̂)}0:Td ∈ Aε}+ (1− (1− δ)Td+1).

We employ this theorem to provide the probabilistic closeness guarantee between in-
terconnected MDPs and that of their compositional abstractions. In the next subsection,
we define the composition of MDPs via their internal inputs and outputs, and discuss
how to relate them to a network of the interconnected abstraction based on their indi-
vidual relations.

4.6.2 Compositionality Results

4.6.2.1 Interconnected MDPs

Let Σ be a network of N ∈ N≥1 MDPs

Σi = (Xi,Wi, Ui, Txi , Y
1
i , Y

2
i , h

1
i , h

2
i ), i ∈ {1, . . . , N}. (4.6.2)

We partition internal inputs and outputs of Σi as in (3.2.8) and (3.2.9). Since internal
inputs are employed for the interconnection by requiring wji = y2

ij , this can be explicitly
written using appropriate functions gi defined as

wi = gi(x1, . . . , xN ) :=
[
h2

1i(x1); . . . ;h2
(i−1)i(xi−1);h2

(i+1)i(xi+1); . . . ;h2
Ni(xN )

]
. (4.6.3)

Now, we define the interconnected MDP Σ as follows.
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4 Finite Abstractions (Finite Markov Decision Processes)

Figure 4.28: Interconnection of two MDPs Σ1 and Σ2 and that of their abstractions.

Definition 4.6.7. Consider N ∈ N≥1 MDPs Σi = (Xi,Wi, Ui, Txi , Y
1
i , Y

2
i , h

1
i , h

2
i ), i ∈

{1, . . . , N}, with the input-output configuration as in (3.2.8) and (3.2.9). The intercon-
nection of Σi, i ∈ {1, . . . , N}, is an MDP Σ = (X,U, Txi , Y, h), denoted by Icl(Σ1, . . . ,ΣN ),
such that X :=

∏N
i=1Xi, U :=

∏N
i=1 Ui, Y :=

∏N
i=1 Y

1
i , and h =

∏N
i=1 h

1
i , with the fol-

lowing constraints:

∀i, j ∈ {1, . . . , N}, i 6= j : wji = y2
ij , Y 2

ij ⊆Wji. (4.6.4)

Moreover, one has the conditional stochastic kernel Tx :=
∏N
i=1 Txi and the initial prob-

ability distribution π :=
∏N
i=1 πi.

An example of the interconnection of two MDPs Σ1 and Σ2 and that of their abstrac-
tions is illustrated in Figure 4.28.

Remark 4.6.8. Definition 4.6.7 assumes that uncertainties affecting individual MDPs
in a network Icl(Σ1, . . . ,ΣN ) are independent and, thus, constructs Tx and π by taking
products of Txi and πi, respectively. This definition can be generalized for dependent
uncertainties by using their joint distribution in the construction of Tx and π, in the
same manner as we discussed in Remark 4.6.4 for expressing dependent uncertainties in
concrete and abstract MDPs.

4.6.2.2 Compositional Abstractions of Interconnected MDPs

We assume that we are given N MDPs as in (4.6.2) together with their corresponding
abstractions Σ̂i = (X̂i, Ŵi, Ûi, T̂xi , Y

1
i , Y

2
i , ĥ

1
i , ĥ

2
i ) such that Σ̂i �δiεi Σi for some relation
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Rxi and constants εi, δi. The next theorem shows the main compositionality result of
the section.

Theorem 4.6.9. Consider the interconnected MDP Σ = Icl(Σ1, . . . ,ΣN ) induced by
N ∈ N≥1 MDPs Σi. Suppose Σ̂i is (εi, δi)-stochastically simulated by Σi with the corre-
sponding relations Rxi and Rwi and lifting L̄i. If

gi(x)Rwi ĝi(x̂), ∀(x, x̂) ∈ Rxi , (4.6.5)

with interconnection constraint maps gi, ĝi defined as in (4.6.3), then Σ̂ = Icl(Σ̂1, . . . , Σ̂N )
is (ε, δ)-stochastically simulated by Σ = Icl(Σ1, . . . ,ΣN ) with a relation Rx defined asx1

...
xN

Rx

 x̂1
...
x̂N

⇔

x1Rx1 x̂1,

...
xNRxN x̂N ,

and constants ε =
∑N

i=1 εi, and δ = 1 −
∏N
i=1(1 − δi). Lifting L̄ and the interface ν

are obtained by taking products L̄ =
∏N
i=1 L̄i and ν =

∏N
i=1 νi, and then substituting

interconnection constraints (4.6.4).

Proof. We first show that the first condition in Definition 4.6.5 holds. For any x =
[x1; . . . ;xN ] ∈ X and x̂ = [x̂1; . . . ; x̂N ] ∈ X̂ with xRxx̂, one gets:

‖h(x)− ĥ(x̂)‖ = ‖[h1
1(x1); . . . ;h1

N (xN )]− [ĥ1
1(x̂1); . . . ; ĥ1

N (x̂N )]‖

≤
N∑
i=1

‖h1
i (xi)− ĥ1

i (x̂i)‖ ≤
N∑
i=1

εi.

As seen, the first condition in Definition 4.6.5 holds with ε =
∑N

i=1 εi. The second

condition is also satisfied as follows. For any (x, x̂) ∈ Rx, and ν̂ ∈ Û , we have:

L̄
{
x′Rxx̂

′ ∣∣x, x̂, ν̂} = L̄
{
x′iRxi x̂

′
i, i ∈ {1, 2, . . . , N}

∣∣x, x̂, ν̂}
=

N∏
i=1

L̄i

{
x′iRxi x̂

′
i

∣∣ gi(x), ĝi(x), ν̂i

}
≥

N∏
i=1

(1− δi).

The second condition in Definition 4.6.5 also holds with δ = 1 −
∏N
i=1(1 − δi) which

completes the proof.

Remark 4.6.10. Note that Theorem 4.6.9 requires gi(x)Rwi ĝi(x̂) for any (x, x̂) ∈ Rx.
This condition puts a restriction on the structure of the network and how the dynamics
of MDPs are coupled in the network (cf. Remark 4.6.3). It is similar to the condition
imposed in the disturbance bisimulation relation defined in [MSSM19, MSSM17].

We provide the following example to illustrate our compositionality results.
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4 Finite Abstractions (Finite Markov Decision Processes)

Example 4.6.11. Assume that we are given two linear stochastic control systems as

Σi :


xi(k + 1) = Aixi(k) +Biνi(k) +Diwi(k) +Riςi(k),
y1
i (k) = xi(k),
y2
i (k) = xi(k), i ∈ {1, 2},

(4.6.6)

where the additive noise ςi(·) is a sequence of independent random vectors with multi-
variate standard normal distributions for i ∈ {1, 2}, and Ri, i ∈ {1, 2}, are invertible.
Let Σ̂i be the abstraction of MDP (4.6.6) as

Σ̂i :

x̂i(k + 1) = Âix̂i(k) + B̂iν̂i(k) + D̂iŵi(k) + R̂iς̂i(k),
ŷ1
i (k) = x̂i(k),
ŷ2
i (k) = x̂i(k).

Transition kernels of Σi and Σ̂i can be written as

Txi(·
∣∣xi, νi, wi) = N (·

∣∣Aixi +Biνi +Diwi, RiR
T
i ),

T̂xi(·
∣∣ x̂i, ν̂i, ŵi) = N (·

∣∣ Âix̂i + B̂iν̂i + D̂iŵi, R̂iR̂
T
i ), ∀i ∈ {1, 2},

where N (·
∣∣µc, Σ̃) indicates a normal distribution with mean µc and covariance matrix

Σ̃.
Independent uncertainties. If ςi(·) and ς̂i(·) in concrete and abstract systems are
independent, a candidate for the lifted measure is

L̄Ti(·
∣∣xi, x̂i, ν̂i, wi, ŵi) = N (·

∣∣Aixi +Biνi +Diwi, RiR
T
i )

×N (·
∣∣ Âix̂i + B̂iν̂i + D̂iŵi, R̂iR̂

T
i ).

Now we connect two subsystems with each other based on the interconnection constraint
(4.6.4) which are wi = x3−i and ŵi = x̂3−i for i ∈ {1, 2}. For any x = [x1;x2] ∈ X, x̂ =
[x̂1; x̂2] ∈ X̂, ν = [ν1; ν2] ∈ U, ν̂ = [ν̂1; ν̂2] ∈ Û , compositional transition kernels for
interconnected MDPs are

Tx(·
∣∣x, ν) = N (·

∣∣Ax+Bν,RRT ), T̂x(·
∣∣ x̂, ν̂) = N (·

∣∣ Âx̂+ B̂ν̂, R̂R̂T ),

where ν := ν(x, x̂, ν̂) and

A =

[
A1 D1

D2 A2

]
, B = diag(B1, B2), R = diag(R1, R2),

Â =

[
Â1 D̂1

D̂2 Â2

]
, B̂ = diag(B̂1, B̂2), R̂ = diag(R̂1, R̂2). (4.6.7)

Then the candidate lifted measure for interconnected MDPs is

L̄T (·
∣∣x, x̂, ν̂) = N (·

∣∣Ax+Bν,RRT )N (·
∣∣ Âx̂+ B̂ν̂, R̂R̂T ).

Note that after connecting subsystems with each other using the proposed interconnec-
tion constraint in (4.6.4), internal inputs will disappear.

178
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Dependent uncertainties. Suppose Σi and Σ̂i share the same noise ςi(·) = ς̂i(·). In
this case, the candidate lifted measure for i ∈ {1, 2} is obtained by

L̄Ti(dx
′
i × dx̂′i

∣∣xi, x̂i, ν̂i, wi, ŵi) = N (dx′i
∣∣Aixi +Biνi +Diwi, RiR

T
i )

× δd(dx̂′i
∣∣ Âix̂i + B̂iν̂i + D̂iŵi + R̂iR

−1
i (x′i −Aixi −Biνi −Diwi)),

where δd(·
∣∣ c) indicates Dirac delta distribution centered at c. Now we connect two

subsystems with each other. For any x = [x1;x2] ∈ X, x̂ = [x̂1; x̂2] ∈ X̂, ν = [ν1; ν2] ∈
U, ν̂ = [ν̂1; ν̂2] ∈ Û , the candidate lifted measure for interconnected MDPs is

L̄T (dx′ × dx̂′
∣∣x, x̂, ν̂) = N (dx′

∣∣Ax+Bν,RRT )× δd(dx̂′
∣∣Ax̂+Bν̂ − Āx+ Ãx′ − B̄ν),

where A,B,R, Â, B̂ are defined as in (4.6.7), and

Ā =

[
R̂1R

−1
1 A1 R̂1R

−1
1 D1

R̂2R
−1
2 D2 R̂2R

−1
2 A2

]
, Ã =

[
R̂1R

−1
1 0

0 R̂2R
−1
2

]
, B̄ =

[
R̂1R

−1
1 B1 0

0 R̂2R
−1
2 B2

]
.

In the next subsection, we focus on the nonlinear class of stochastic control systems
in (3.3.10) and construct its infinite and finite abstractions in a unified framework. We
provide explicit inequalities for establishing Theorem 4.6.9, which gives a probabilistic
relation after composition and enables us to get guarantees of Theorem 4.6.6 on the
closeness of the composed systems and that of their abstractions.

4.6.3 Stochastic Control Systems with Slope Restrictions on Nonlinearity

Here we focus on the nonlinear class of stochastic control systems in (3.3.10) where ς(·) ∼
N (0, In), and ϕ : R → R satisfies slope restrictions (3.3.11). Existing compositional
abstraction results for this class of models are based on either model order reductions
or finite MDPs as proposed in the previous sections. Our proposed results here combine
these two approaches in one unified framework. In other words, our abstract model here
is obtained by discretizing the state space of a reduced-order version of the concrete
model.

4.6.3.1 Construction of Finite MDPs

Consider a nonlinear system Σ = (A,B,C1, C2, D,E, F,R, ϕ) and its reduced-order
version Σ̂r = (Âr, B̂r, Ĉ

1
r , Ĉ

2
r , D̂r, Êr, F̂r, R̂r, ϕ). Note that the index r in the whole thesis

signifies the reduced-order version of the original model. We discuss the construction
of Σ̂r from Σ in Theorem 4.6.12 of the next subsection. Construction of a finite MDP
from Σ̂r follows the approach of Algorithm 1. Denote the state and input spaces of Σ̂r

respectively by X̂r, Ûr, Ŵr. We construct a finite MDP by selecting partitions X̂r = ∪iXi,
Ûr = ∪iUi, and Ŵr = ∪iWi, and choosing representative points x̄i ∈ Xi, ν̄i ∈ Ui,
and w̄i ∈ Wi, as abstract states and inputs. The finite abstraction of Σ is an MDP
Σ̂ = (X̂, Ŵ , Û , T̂x, Y, ĥ), where

X̂ = {x̄i, i = 1, . . . , nx}, Û = {ūi, i = 1, . . . , nu}, Ŵ = {w̄i, i = 1, . . . , nw}.
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The transition probability matrix T̂x is constructed according to the dynamics x̂(k+1) =
f̂(x̂(k), ν̂(k), ŵ(k), ς(k)) with

f̂(x̂, ν̂, ŵ, ς) := Πx(Ârx̂+ Êrϕ(F̂rx̂) + B̂rν̂ + D̂rŵ + R̂rς), (4.6.8)

where Πx : X̂r → X̂ is the map that assigns to any x̂r ∈ X̂r, the representative point
x̄ ∈ X̂ of the corresponding partition set containing x̂r. The initial state of Σ̂ is also
selected according to x̂0 := Πx(x̂r(0)) with x̂r(0) being the initial state of Σ̂r. The
abstraction map Πx satisfies the inequality (4.2.5).

4.6.3.2 Establishing Probabilistic Relations

In this subsection, we provide conditions under which Σ̂ is (ε, δ)-stochastically simulated
by Σ, i.e., Σ̂ �δε Σ, with relations Rx and Rw. Here we candidate relations

Rx =
{

(x, x̂)
∣∣ (x− P̃ x̂)T M̃(x− P̃ x̂) ≤ ε2

}
, (4.6.9a)

Rw =
{

(w, ŵ)
∣∣ (w − P̃wŵ)T M̃w(w − P̃wŵ) ≤ ε2w

}
, (4.6.9b)

where P̃ ∈ Rn×n̂ and P̃w ∈ Rm×m̂ are matrices of appropriate dimensions (potentially
with the lowest n̂ and m̂), and M̃, M̃w are positive-definite matrices.

The next theorem gives conditions for having Σ̂ �δε Σ with relations (4.6.9a) and
(4.6.9b).

Theorem 4.6.12. Let Σ = (A,B,C1, C2, D,E, F,R, ϕ) and Σ̂r = (Âr, B̂r, Ĉ
1
r , Ĉ

2
r , D̂r, Êr,

, F̂r, R̂r, ϕ) be two nonlinear systems with the same additive noise. Suppose Σ̂ is a finite
MDP constructed from Σ̂r according to Subsection 4.6.3.1. Then Σ̂ is (ε, δ)-stochastically
simulated by Σ with relations (4.6.9a)-(4.6.9b) if there exist matrices K, Q, S, L1, L2

and R̃ such that, ∀i ∈ {1, 2},

M̃ � CiTCi, (4.6.10a)

Ĉir = CiP̃ , (4.6.10b)

F̂r = FP̃ , (4.6.10c)

E = P̃ Êr −B(L1 − L2), (4.6.10d)

AP̃ = P̃ Âr −BQ, (4.6.10e)

DP̃w = P̃ D̂r −BS, (4.6.10f)

P{(H̃1 + P̃ H̃2)T M̃(H̃1 + P̃ H̃2) ≤ ε2} � 1− δ, (4.6.10g)

where

H̃1 = ((A+BK)+δ̄(BL1 + E)F )(x− P̃ x̂)+(BR̃− P̃ B̂r)ν̂+D(w − P̃wŵ)+(R− P̃ R̂r)ς,

H̃2 = Ârx̂+ Êrϕ(F̂rx̂) + B̂rν̂ + D̂rŵ + R̂rς −Πx(Ârx̂+ Êrϕ(F̂rx̂) + B̂rν̂ + D̂rŵ + R̂rς).
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Proof. First we show that the first condition in Definition 4.6.2 holds for all (x, x̂) ∈ Rx.
According to (4.6.10a) and (4.6.10b), we have

‖Cix− Ĉir x̂‖2 = (x− P̃ x̂)TCiTCi(x− P̃ x̂) ≤ (x− P̃ x̂)T M̃(x− P̃ x̂) ≤ ε2,

for any (x, x̂) ∈ Rx. Now we proceed with showing the second condition. This condition
requires that ∀(x, x̂) ∈ Rx,∀(w, ŵ) ∈ Rw,∀ν̂ ∈ Û , the next states (x′, x̂′) should also be
in the relation Rx with the probability at least 1− δ:

P{(x′ − P̃ x̂′)T M̃(x′ − P̃ x̂′) ≤ ε2} ≥ 1− δ.

Given any x, x̂, and ν̂, we choose ν via the following interface function:

ν = νν̂(x, x̂, ν̂, ŵ) := K(x− P̃ x̂) +Qx̂+ R̃ν̂ + Sŵ + L1ϕ(Fx)− L2ϕ(FP̃ x̂). (4.6.11)

By substituting dynamics of Σ and Σ̂, employing (4.6.10c)-(4.6.10f), and the definition
of the interface function in (4.6.11), we simplify

x′ − Px̂′ = Ax+ Eϕ(Fx) +Bνν̂(x, x̂, ν̂, ŵ) +Dw +Rς

− P̃ (Ârx̂+ Êrϕ(F̂rx) + B̂rν̂ + D̂rŵ + R̂rς) + P̃ H̃2,

to

(A+BK)(x− P̃ x̂) + (BR̃− P̃ B̂r)ν̂ +D(w − P̃wŵ)

+ (BL1 + E)(ϕ(Fx)− ϕ(FPx̂r)) + (R− P̃ R̂r)ς + P̃ H̃2, (4.6.12)

with H̃2 = Ârx̂+ Êrϕ(F̂rx̂) + B̂rν̂+ D̂rŵ+ R̂rς−Πx(Ârx̂+ Êrϕ(F̂rx̂) + B̂rν̂+ D̂rŵ+ R̂rς).
From the slope restriction (3.3.11), one obtains

ϕ(Fx)− ϕ(FP̃ x̂) = δ(Fx− FP̃ x̂) = δF (x− P̃ x̂), (4.6.13)

where δ is a function of x and x̂, and takes values in the interval [0, b]. Using (4.6.13),
the expression in (4.6.12) reduces to

((A+BK) + δ(BL1 + E)F )(x− P̃ x̂) + (BR̃− P̃ B̂r)ν̂ +D(w − P̃wŵ)

+ (R− P̃ R̂r)ς + P̃ H̃2.

This gives the condition (4.6.10g) for having the probabilistic relation, which completes
the proof.

Remark 4.6.13. Note that the condition (4.6.10g) is a chance constraint. We satisfy
this condition by selecting the constant cς such that P{ςT ς ≤ c2

ς} ≥ 1− δ, and requiring
(H̃1 + P̃ H̃2)T M̃(H̃1 + P̃ H̃2) ≤ ε2 for any ς with ςT ς ≤ c2

ς . Since ς ∼ (0, In), ςT ς has a
chi-square distribution with 2 degrees of freedom. Thus, cς = X−1

2 (1− δ) with X−1
2 being

chi-square inverse cumulative distribution function with 2 degrees of freedom.
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4.6.4 Case Study

In this section, we demonstrate the effectiveness of the proposed results on the net-
work of four nonlinear stochastic control systems (totally 12 dimensions), i.e., Σ =
Icl(Σ1,Σ2,Σ3,Σ4) as illustrated in Figure 3.2. We want to construct finite MDPs from
their reduced-order versions (together 4 dimensions).

The matrices of the system are given as

Ai =

0.7882 0.3956 0.8333
0.7062 0.7454 0.9552
0.6220 0.3116 0.4409

, Bi =

0.7555 0.1557 0.3487
0.1271 0.9836 0.2030
0.4735 0.4363 0.4493

, C1
i = 0.011T3 ,

Ei =
[
0.6482; 0.6008; 0.6209

]
, Fi =

[
0.5146; 0.8756; 0.2461

]T
,

Ri =
[
0.4974; 0.3339; 0.4527

]
, (4.6.14)

for i ∈ {1, 2, 3, 4}. Internal input and output matrices are also given by

C2
14 = C2

23 = C2
31 = C2

42 = 0.011T3 , D13 = D24 = D32 = D41 =
[
0.074; 0.010; 0.086

]
.

We consider ϕi(x) = sin(x), ∀i ∈ {1, . . . , 4}. Then functions ϕi satisfy the slope condi-
tion (3.3.11) with b = 1. In the following, we first construct the reduced-order version of
the given dynamic by satisfying conditions (4.6.10a)-(4.6.10f). We then establish rela-
tions between subsystems by fulfilling the condition (4.6.10g). Afterwards, we satisfy the
compositionality condition (4.6.5) to get a relation on the composed system, and finally,
we utilize Theorem 4.6.6 to provide the probabilistic closeness guarantee between the
interconnected model and its constructed finite MDP.

Conditions (4.6.10a)-(4.6.10f) are satisfied by, ∀i ∈ {1, 2, 3, 4},

Qi =
[
−1.6568;−1.2280; 1.9276

]
, Si =

[
0.0775; 0.0726;−0.1759

]
,

P̃i =
[
0.5931; 0.3981; 0.5398

]
, L1i =

[
−0.6546;−0.4795;−0.2264

]
,

L2i =
[
−0.1713;−0.0777;−0.1044

]
, P̃wi = 1, M̃i = I3.

Accordingly, matrices of reduced-order systems can be obtained as, ∀i ∈ {1, 2, 3, 4},
∀ī ∈ {1, 2},

Âri = 0.5127, Êri = 0.3, F̂ri = 0.7866, Ĉ īri = 0.0371, D̂ri = 0.1403, R̂ri = 0.8386.

Moreover, we compute R̃i = (BT
i M̃iBi)

−1BT
i M̃iP̃iB̂ri, i ∈ {1, 2, 3, 4}, as discussed in

Remark 3.2.21, to make the chance constraint (4.6.10g) less conservative. By taking
B̂ri = 2, we have R̃i = [1.1418; 0.5182; 0.6965]. The interface functions for i ∈ {1, 2, 3, 4}
are acquired by (4.6.11) as

νi =

−0.6665 −0.3652 −0.9680
−0.4372 −0.5536 −0.5781
−0.4012 −0.1004 −0.2612

(xi − P̃ix̂i) +Qix̂i + R̃iν̂i + Siŵi

+ L1iϕi(Fixi)− L2iϕi(FiP̃ix̂i).
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We proceed with showing that the condition (4.6.10g) holds as well, using Remark 4.6.13.
This condition can be satisfied via the S-procedure [BV04], which enables us to refor-
mulate (4.6.10g) as an existence of λ ≥ 0 such that the matrix inequality

λi

[
F̃1i g̃1i

g̃T1i h̃1i

]
−
[
F̃2i g̃2i

g̃T2i h̃2i

]
� 0, (4.6.15)

holds. Here, F̃1i, F̃2i are symmetric matrices, g̃1i, g̃2i are vectors, and h̃1i, h̃2i are real
numbers. We first bound the external input of abstract systems as ν̂2

i ≤ cν̂i and select
cςi = X−1

2 (1− δi), for all i ∈ {1, 2, 3, 4}. Then matrices F̃1i and F̃2i, ∀i ∈ {1, 2, 3, 4}, can
be constructed as

F̃1i =



M̃i 03×3 03 03 03 03

03×3 03×3 03 03 03 03

∗ ∗ M̃wi 0 0 0
∗ ∗ ∗ 1 0 0
∗ ∗ ∗ ∗ 1 0
∗ ∗ ∗ ∗ ∗ 1

,

F̃2i =



F̃11i F̃12i F̃13i F̃14i F̃15i F̃16i

∗ F̃22i F̃23i F̃24i F̃25i F̃26i

∗ ∗ F̃33i F̃34i F̃35i F̃36i

∗ ∗ ∗ F̃44i F̃45i F̃46i

∗ ∗ ∗ ∗ F̃55i F̃56i

∗ ∗ ∗ ∗ ∗ F̃66i


, (4.6.16)

where

F̃11i = (Ai +BiKi)
T M̃i(Ai +BiKi), F̃12i = (Ai +BiKi)

T M̃i(BiL1i + Ei)Fi,

F̃13i = (Ai +BiKi)
T M̃iDi, F̃14i = (Ai +BiKi)

T M̃i(BiR̃i − P̃iB̂ri),

F̃15i = (Ai +BiKi)
T M̃iP̃i, F̃16i = (Ai +BiKi)

T M̃i(Ri − P̃iR̂ri),

F̃22i = F Ti (BiL1i + Ei)
T M̃(BiL1i + Ei)Fi, F̃23i = F Ti (BiL1i + Ei)

T M̃iDi,

F̃24i = F Ti (BiL1i + Ei)
T M̃i(BiR̃i − P̃iB̂ri), F̃25i = F Ti (BiL1i + Ei)

T M̃iP̃i,

F̃26i = F Ti (BiL1i + Ei)
T M̃i(Ri − P̃iR̂ri), F̃33i = DT

i M̃iDi, F̃34i = DT
i Mi(BiR̃i − P̃iB̂ri),

F̃35i = DT
i MiP̃i, F̃36i = DT

i M̃i(Ri − P̃iR̂ri), F̃44i = (BiR̃i − P̃iB̂ri)
T M̃i(BiR̃i − P̃iB̂ri),

F̃45i = (BiR̃i − P̃iB̂ri)
T M̃iP̃i, F̃46i = (BiR̃i − P̃iB̂ri)

T M̃i(Ri − P̃iR̂ri), F̃55i = P̃ Ti M̃iP̃i,

F̃56i = P̃ Ti M̃i(Ri − P̃iR̂ri), F̃66i = (Ri − P̃iR̂ri)
T M̃i(Ri − P̃iR̂ri).

Moreover, vectors and real numbers of the inequality (4.6.15) are obtained as

g̃1i = g̃2i = 010, h̃1i = −(ε2i + ε2wi + cν̂i + cςi + δ̄i), h̃2i = −ε2i . (4.6.17)
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By taking εi = 1.25, εwi = 0.05, cν̂i = 0.25, δi = 0.001, δ̄i = 0.1, λi = 0.347, for all

i ∈ {1, 2, 3, 4}, one can readily verify that the matrix inequality (4.6.15) holds. Then Σ̂i

is (εi, δi)-stochastically simulated by Σi with relations

Rxi =
{

(xi, x̂i)
∣∣ (xi − P̃ix̂i)T M̃i(xi − P̃ix̂i) ≤ ε2i

}
,

Rwi =
{

(wi, ŵi)
∣∣ (wi − ŵi)2 ≤ ε2wi

}
,

for i ∈ {1, 2, 3, 4}. We proceed with showing that the compositionality condition in (4.6.5)
holds, as well. To do so, by employing the S-procedure, one should satisfy the matrix
inequality in (4.6.15) with the following matrices:

F̃1i =

[
M̃i −M̃iP̃i
∗ P̃ Ti M̃iP̃i

]
, F̃2i =

[
C2T

ri M̃wiC
2
ri −C2T

ri M̃wiP̃wiĈ
2
ri

∗ Ĉ2T
ri P̃

T
wiM̃wiP̃wiĈ

2
ri

]
,

g̃1i = g̃2i = 04, h̃1i = −ε2i , h̃2i = −ε2wi,

for i ∈ {1, 2, 3, 4}. This condition is satisfiable with λi = 0.001,∀i ∈ {1, 2, 3, 4}, thus Σ̂
is (ε, δ)-stochastically simulated by Σ with ε = 6, and δ = 0.003. According to (4.6.1),
we guarantee that the distance between outputs of Σ and of Σ̂ will not exceed ε = 6
during the time horizon Td = 10 with the probability at least 96% (γ = 0.04).

4.6.4.1 Comparison with Sections 3.4 and 4.3.1

To demonstrate the effectiveness of the proposed approach, let us now compare the
guarantees provided by the approach of this section and by Sections 3.4 and 4.3.1.
Note that the proposed results here are based on the δ-lifted relation while Sections 3.4
and 4.3.1 employ the dissipativity approach to provide a compositional methodology
for constructing both infinite abstractions (reduced-order models) and finite MDPs in
two consecutive steps. Since we are not able to satisfy the proposed matrix inequalities
in (3.4.11) and (4.5.18) for the given system in (4.6.14), we change the system dynamics
to have a fair comparison. In other words, in order to show the conservatism nature
of the existing techniques in Sections 3.4 and 4.3.1, we provide another example and
compare our techniques with the existing ones in great detail.

The matrices of the new system are given by

Ai = I5, Bi = I5, C
1
i = 0.051T5 , Ri = 15,

for i ∈ {1, 2, 3, 4}, where matrices Ei, Fi are identically zero. The internal input and
output matrices are also given by:

C2
14 = C2

23 = C2
31 = C2

42 = 0.051T5 , D13 = D24 = D32 = D41 = 0.115.

Conditions (4.6.10a),(4.6.10b),(4.6.10e),(4.6.10f) are satisfied by:

Mi = I5, Pxi = 15, Pwi = 1, Qi = 15, Si = 0.115,

184



4.6 Approximate Probabilistic Relations

for i ∈ {1, 2, 3, 4}. Accordingly, the matrices of reduced-order systems are acquired as

Âri = 2, Ĉ īri = 0.25, D̂ri = 0.2, R̂ri = 0.97, ∀i ∈ {1, 2, 3, 4}, ∀ī ∈ {1, 2}.

Moreover by taking B̂ri = 1, we compute R̃i, i ∈ {1, 2, 3, 4}, as R̃i = 15. The interface
function for i ∈ {1, 2, 3, 4} is computed as:

νi = −0.95I5(xi − 15x̂i) + 15x̂i + 15ν̂i + 0.115ω̂i.

We proceed with showing that the condition (4.6.10g) holds, as well. By taking

εi = 5, εwi = 0.75, cν̂i = 0.25, δi = 0.001, δ̄i = 0.1, λi = 0.825, ∀i ∈ {1, 2, 3, 4},

and by employing the S-procedure, one can readily verify that the condition (4.6.10g)
holds. Then Σ̂i is (εi, δi)-stochastically simulated by Σi, for i ∈ {1, 2, 3, 4}. Additionally,
by applying S-procedure, one can readily verify that Σ̂ is (ε, δ)-stochastically simulated
by Σ with ε = 20, and δ = 0.005. According to (4.6.1), we guarantee that the distance
between outputs of Σ and of Σ̂ will not exceed ε = 20 during the time horizon Td = 5
with the probability at least 97% (γ = 0.03).

Now we apply the proposed results in Sections 3.4 and 4.3.1 for the same matrices
of the new system and also employ the same ε and the discretization parameter δ̄. By
applying the proposed results in Section 3.4 to construct the infinite abstraction Σ̂r, one
can guarantee that the distance between outputs of Σ and of Σ̂r will exceed ε1 = 15
during the time horizon Td = 5 with the probability at most 87.94%, i.e.,

P(‖yaν(k)− ŷrârν̂r(k)‖ ≥ 15, ∀k ∈ [0, 5]) ≤ 87.94 .

After applying the proposed results in Section 4.3.1 to construct the finite abstraction Σ̂
from Σ̂r, one can guarantee that the distance between outputs of Σ̂r and of Σ̂ will exceed
ε2 = 5 during the time horizon Td = 5 with the probability at most 0.0117%, i.e.,

P(‖ŷrârν̂r(k)− ŷâν̂(k)‖ ≥ 5, ∀k ∈ [0, 5]) ≤ 0.0117.

By employing Proposition 4.2.16, one can guarantee that the distance between outputs
of Σ and of Σ̂ will exceed ε = 20 during the time horizon Td = 5 with the probability at
most 0.8911%, i.e.,

P(‖yaν(k)− ŷâν̂(k)‖ ≥ 20, ∀k ∈ [0, 5]) ≤ 0.8911.

This means the distance between outputs of Σ and of Σ̂ will not exceed ε = 20 during the
time horizon Td = 5 with the probability at least 0.1089%. As seen, the provided results
in this section outperform the ones proposed in Sections 3.4 and 4.3.1. More precisely,
since the proposed approach here is presented in a unified framework than a two-step
abstraction scheme which is the case in Sections 3.4 and 4.3.1, one only needs to check
the proposed conditions one time, and consequently, the proposed approach here is less
conservative.
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4.7 Model-Free Reinforcement Learning

In this section, we propose a novel reinforcement learning scheme to synthesize poli-
cies for unknown, continuous-space MDPs. This scheme enables one to apply model-
free, off-the-shelf reinforcement learning algorithms for finite MDPs to compute optimal
strategies for the corresponding continuous-space MDPs without explicitly constructing
the finite-state abstraction provided in Algorithm 1. The proposed approach is based
on abstracting the process with a finite MDP with unknown transition probabilities,
synthesizing strategies over the abstract MDP, and then mapping the results back over
the concrete continuous-space MDP with approximate optimality guarantees. The sys-
tem properties of interest belong to the scLTL as discussed in Subsection 3.4.4, and
the synthesis requirement is to maximize the probability of satisfaction within a given
bounded time horizon. A key contribution of the section is to leverage the classical
convergence results for the reinforcement learning on finite MDPs and provide control
strategies maximizing the probability of satisfaction over unknown, continuous-space
MDPs by providing probabilistic closeness guarantees.

Consider the discrete-time stochastic control system Σ = (X,U, ς, f) with the finite
input space U . Note that since any input sequence will be implemented by a digital
controller, without loss of generality and from now on in this section, we assume that
the input space U is finite. In the following, we consider scLTL properties φ as in
Subsection 3.4.4 since their verification can be performed via a reachability property
over a deterministic finite-state automaton (DFA) Aφ such that Lf (φ) = L(Aφ) [KV01].
Given a policy ρ̄, we can define the probability that an output trajectory of Σ satisfies
an scLTL property φ over the time horizon [0, Td], i.e., P(ωf ∈ L(Aφ) s.t. |ωf | ≤ Td+1),
with |ωf | denoting the length of ωf [DLT08a].

We should emphasize that there is no closed-form solution for computing optimal
policies enforcing scLTL specifications over continuous-space MDPs. One can employ the
approximation approaches, discussed before, to synthesize those policies which, however,
suffer from the curse of dimensionality and require knowing precisely the probabilistic
evolution of states in the models. Instead, we propose in this section an RL approach
providing policies for unknown, continuous-space MDPs while providing quantitative
guarantees on the satisfaction of properties.

4.7.1 Controller Synthesis for Unknown Continuous-Space MDPs

We are interested in automatically synthesizing controllers for unknown continuous-space
MDPs whose requirements are provided as scLTL specifications. Given a discrete-time
stochastic control system Σ = (X,U, ς, f), where f and distribution of ς are unknown,
and given an scLTL formula φ, we wish to synthesize a Markov policy enforcing the
property φ over Σ with the probability of satisfaction within a guaranteed threshold
from the unknown optimal probability.

In order to provide any formal guarantee, we need to make further assumptions about
the dt-SCS. In particular, we assume that the dynamical system in (2.3.3) is Lipschitz-
continuous with a constant H . We follow the results of [SA14a, SA15b] for the charac-
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terization of the Lipschitz constant. Consider the dynamical system in (2.3.3) where ς(·)
is i.i.d. with the known distribution tς(·). Suppose that the vector field f is continuously
differentiable and that the matrix ∂f

∂ς is invertible. Then the implicit function theorem
guarantees the existence and uniqueness of a function ḡ : X × X × U → Vς such that
ς(k) = ḡ(x(k + 1), x(k), ν(k)). In this case, the conditional density function is:

tx(x′
∣∣x, ν) =

∣∣∣∣det

[
∂ḡ

∂x′
(x′, x, ν)

]∣∣∣∣ tς(ḡ(x′, x, ν)).

The Lipschitz constant H is specified by the dependence of the function ḡ(x′, x, ν) on
the variable x. As a special case, consider a nonlinear system with an additive noise

f(x, ν, ς) = fa(x, ν) + ς.

Then the invertibility of ∂f
∂ς is guaranteed and ḡ(x′, x, ν) = x′ − fa(x, ν). In this case,

H is the product of the Lipschitz constant of tς(·) and fa(·).
The next example provides a systematic way of computing H for a class of linear

MDPs.

Example 4.7.1. Consider a dt-SCS Σ with linear dynamics x(k+1) = Ax(k)+Bν(k)+
ς(k), A = [aij ] where ς(k) are i.i.d. for k = 0, 1, 2, . . . with normal distribution having
the zero mean and the covariance matrix diag(σ̄1, . . . , σ̄n). Then one obtains H =∑

i,j

2|aij |
σ̄i
√

2π̄
with π̄ = 3.14159. Note that for the computation of the error, it is sufficient

to know an upper bound on entries of the matrix A and a lower bound on the standard
deviation of the noise σ̄.

An alternative way of computing the Lipschitz constant H is to estimate it from sam-
ple trajectories of Σ. This can be done by first constructing a non-parametric estimation
of the conditional density function using techniques from [Sco92] and then compute the
Lipschitz constant numerically using the derivative of the estimated conditional density
function.

Now we have all required ingredients to state the main problem we solve in this section.

Problem 4.7.2. Let φ be an scLTL formula and Σ = (X,U, ς, f) a continuous-space
MDP, where f and distribution of ς are unknown, but the Lipschitz constant H is known.
Synthesize a Markov policy that satisfies the property φ over Σ with the probability within
a guaranteed threshold from the unknown optimal probability.

Prior to proposing our solution to this problem, we first present the following theorem
borrowed from [SA13a, Sou14] that shows the closeness between a continuous-space MDP
Σ and its finite abstraction Σ̂ in a probabilistic setting. We will then exploit the result
of this theorem in the next subsection to provide a reinforcement learning-based solution
to Problem 4.7.2.

Theorem 4.7.3. Let Σ = (X,U, ς, f) be a continuous-space MDP and Σ̂ = (X̂, Û , ς, f̂)
its finite abstraction as constructed in Algorithm 1. For a given scLTL specification φ,
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and for any policy ν̂(·) ∈ Û that preserves Markov property for the closed-loop Σ̂ (denoted
by Σ̂ν̂), the closeness between two systems can be acquired as

|P(Σν̂ � φ)− P(Σ̂ν̂ � φ)| ≤ ε̃, with ε̃ := Tdδ̄H L , (4.7.1)

where Td is the finite time horizon, δ̄ is the state discretization parameter, H is the
Lipschitz constant of the stochastic kernel, and L is the Lebesgue measure of the spec-
ification set. Moreover, optimal probabilities of satisfying the specification over the two
models are different with a distance of at most 2ε̃:∣∣ max

ν∈Π̄M
P(Σν � ϕ)− max

ν̂∈ ˆ̄ΠM

P(Σ̂ν̂ � ϕ)
∣∣ ≤ 2ε̃, (4.7.2)

where Π̄M and ˆ̄ΠM are the set of Markov policies over Σ and Σ̂, respectively.

Remark 4.7.4. Note that in order to employ Theorem 4.7.3, one can first a-priori
fix the desired threshold ε̃ in (4.7.1). According to the values of H , L , and Td, one
computes the required discretization parameter as δ̄ = ε̃

TdH L . For instance in the case
of a uniform quantizer, one can divide each dimension of the set X into intervals of size
δ̄/
√
n with n being the dimension of the set.

4.7.2 Controller Synthesis via Reinforcement Learning

It follows from Theorem 4.7.3 that one can construct a finite abstraction Σ̂ from a
given continuous-space dt-SCS Σ with known stochastic kernels such that the optimal
probability of satisfaction of an scLTL specification φ for Td steps in Σ̂ is no more
than 2ε̃-worse that the optimal strategy in Σ. Hence, given a dt-SCS Σ with known
stochastic kernels, an scLTL property φ, and a time-horizon Td, a 2ε̃-optimal strategy
to satisfy φ in Td steps can be computed using a suitable finite MDP with δ̄ as the state
discretization parameter. This problem can be solved using the dynamic programming
over the product of Σ̂ and Aφ by providing a scalar reward for all transitions once a final
state of the DFA Aφ is reached.

On the other hand, when the stochastic kernels are unknown, Theorem 4.7.3 still
provides the correct probabilistic bound given a discretization parameter δ̄ if the Lips-
chitz constant H is known. This observation enables us to employ the reinforcement
learning algorithm over the underlying discrete MDP without explicitly constructing
the abstraction by restricting the observations of the reinforcement learner to the closest
representative point in the set of partitions (cf. Algorithm 1). The model-free reinforce-
ment learning can be used under such observations by using DFA Aφ to provide scalar
rewards by following an approach similar to the one presented in [HPS+19b] to combine
the automaton and MDP. Observations of the MDP are used by an interpreter process
to compute a run of the DFA. When the DFA reaches a final state, the interpreter gives
the reinforcement learner a positive reward and the training episode terminates. Any
RL algorithm that maximizes this probabilistic reward is guaranteed [HPS+19b] to con-
verge to a policy that maximizes the probability of satisfaction of the scLTL objective.
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It follows that any converging reinforcement learning algorithm [JJS94, BM00] over such
finite observation space then converges to a 2ε-optimal strategy over the concrete dt-
SCS Σ thanks to Theorem 4.7.3. We summarize the proposed solution in the following
theorem.

Theorem 4.7.5. Let φ be an scLTL formula, ε̃ > 0, and Σ = (X,U, ς, f) a continuous-
space MDP, where f and distribution of ς are unknown but the Lipschitz constant
H as defined in Theorem 4.7.3 is known. For a discretization parameter δ̄ satisfy-
ing Tdδ̄H L ≤ ε̃, a convergent model-free reinforcement learning algorithm (e.g., Q-
learning [BM00] or TD(λ) [JJS94]) over Σ̂ with a reward function guided by the DFA
Aφ, converges to a 2ε̃-optimal strategy over Σ.

Before illustrating our results via some experiments, we elaborate on the dimension
dependency in our proposed RL techniques compared to the abstraction-based ones.
Assuming a uniform quantizer, the finite MDP constructed by Algorithm 1 is a matrix
with a dimension of (nx × nν)× nx. Computing this matrix is one of the bottlenecks in
abstraction-based approaches since an n-dimensional integration has to be done numer-
ically for each entries of this matrix. Moreover, nx (i.e., the cardinality of the state set)
grows exponentially with the dimension n. Once this matrix is computed, it is employed
for the dynamic programming on a vector of size (nx × nν). This is a second bottleneck
of the process. On the other hand, by employing the proposed RL approach, the curse
of dimensionality reduces to only learning the vector of size (nx×nν) without having to
compute the full matrix. Moreover, the abstraction-based techniques need to precisely
know the probabilistic evolution of the states in the models, whereas in this section we
only need to know the Lipschitz constant H .

Concerning the trade-off between the iteration count, discretization size, and perfor-
mance, we should mention that by decreasing the discretization parameter, the closeness
error in Theorem 4.7.3 is reduced. On the other hand, one needs more training episodes
as the size of the problem increases. Note that in our proposed setting, we do not need
to compute transition probabilities T̂x in Algorithm 1, since we directly learn the value
functions using RL.

4.7.3 Case Studies

Table 4.3 shows a comparison of Q-learning to the computed optimal probabilities. Two
systems are analyzed. The first is the model of the room-temperature control system as

Σ : T̃ (k + 1) = (1− 2η − β − θ̄ν(k))T̃ (k) + θ̄T̃hν(k) + βT̃e + 0.3162ς(k),

where η = 0, β = 0.022, θ̄ = 0.05, T̃e = −1 ◦C and T̃h = 50 ◦C. Moreover, T (k) and ν(k)
are taking values in [19, 21] and a finite input set {0.03, 0.09, 0.15, 0.21, 0.27, 0.33, 0.39, 0.45,
0.51, 0.57}, respectively. The objective of the controller is to keep the temperature be-
tween 19◦C and 21◦C.
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Traffic light

Σ

Way out

Entry

Figure 4.29: Diagram of the traffic cell model.

Table 4.3: Q-learning results.

Room Traffic

δ̄ pr p∗ ε̃ pl pu pr p∗ ε̃ pl pu

0.01 0.9698 0.9753 0.2468 0.7285 1.0 0.9856 0.9995 0.0160 0.9835 1.0

0.02 0.9745 0.9753 0.4936 0.4817 1.0 0.9975 0.9995 0.0319 0.9676 1.0

0.05 0.9543 0.9753 1.2339 0.0000 1.0 0.9993 0.9995 0.0798 0.9197 1.0

0.1 0.9779 0.9754 2.4678 0.0000 1.0 0.9999 0.9995 0.1596 0.8399 1.0

0.2 0.9732 0.9743 4.9357 0.0000 1.0 0.9999 0.9995 0.3193 0.6802 1.0

The second system is the model of the road traffic cell (Figure 4.29) with the following
dynamics:

Σ : x(k + 1) = (1− τv

l̃
− q̃)x(k) + 6ν(k) + 1.9494ς(k) + 3,

where the length of a cell is 0.5 kilometers [km], and the flow speed of the vehicles is
100 kilometers per hour [km/h]. Moreover, during the sampling time interval τ = 6.48
seconds, it is assumed that 6 vehicles pass the entry controlled by the traffic light, 3
vehicles go into the entry of the cell, and one quarter of vehicles goes out on the exit
of the cell (the ratio denoted by q̃). The road has an input ramp regulated by a traffic
light. The control strategy turns the light red and green trying to keep the density of
the traffic fewer than 20 in the cell, while allowing as many cars as possible to enter the
road.

For each model, five different discretization steps (δ̄) are considered and for each value
of δ̄ the probabilities of satisfaction of the safety objectives are reported in the columns
labeled pr. These probabilities are the Q-values of the initial state of the finite-state
MDP for the policy computed by Q-learning after 106 episodes. The objective is to
keep the system safe for at least 10 steps. For the comparison, the optimal probability
p∗ for a time-dependent policy is reported assuming that we know the exact dynamics
for these two examples. Note that we compute p∗ using the dynamic programming
over constructed finite MDPs as proposed in Algorithm 1. The optimal probability
p∗ reported in Table 4.3 corresponds to the same initial condition that is utilized in
the learning process. The optimal probability for the original continuous-space MDP
is always within an interval [pl, pu] centered at p∗ and with a radius ε̃ as reported in
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Figure 4.30: Room temperature control: A heat-map visualization of strategies learned via
Reinforcement Learning after 105 episodes (left) and after 8 · 106 episodes (right).
The X axis represents the room temperature in ◦C, while the Y axis represents
time steps 1 ≤ k ≤ 10. The action suggested by the strategy is in the finite
input set {0.03, 0.09, 0.15, 0.21, 0.27, 0.33, 0.39, 0.45, 0.51, 0.57} and is color-coded
according to the map shown in the middle: Bright yellow and deep blue represent
maximum and minimum heats. In the first step, the strategies are only defined
for the initial state; this causes the blue bands at the top.

Table 4.3. One can readily see from Table 4.3 that as the discretization parameter δ̄
decreases, the size of this interval shrinks, which implies that the optimal probability for
the original continuous-space MDP converges to p∗. While finer abstractions give better
theoretical guarantees, for a fixed number of episodes it is easier to learn good strategies
for coarser abstractions. This is reflected in Table 4.3, where the values of pr do not
necessarily get better with smaller values of δ̄. However, by increasing the number of
episodes, the strategies converge toward the optimal one, as illustrated in Figure 4.30,
which visualizes room-temperature control strategies computed by the Q-learning after
different numbers of episodes. Note that in Table 4.3, the error bound ε̃ exceeds one
for δ̄ ≥ 0.05 in the room-temperate control example, which is not a useful probability
bound for the continuous-space MDP. However, we prefer to report the corresponding
values of pr and p∗ so that they can still be compared.

4.7.3.1 Autonomous Vehicle

The case studies discussed so far are the representative of what can be solved by dis-
cretization and tabular methods like Q-learning. Relaxing those constraints, we were
able to apply a deep deterministic policy gradient (DDPG) [LHP+15] to a hybrid 7-
dimensional nonlinear single track (ST) model of a BMW 320i car to synthesize a
reach-avoid controller. The model is borrowed from [Alt19, Section 5.1] by including
the stochasticity inside the dynamics as additive noises:

191



4 Finite Abstractions (Finite Markov Decision Processes)

For |x4(k)| < 0.1:

xi(k + 1) = xi(k) + τ āi(k) + 0.5ςi(k), i ∈ {1, . . . , 7}\{3, 4},
x3(k + 1) = x3(k) + τSat1(ν1) + 0.5ς3(k),

x4(k + 1) = x4(k) + τSat2(ν2) + 0.5ς4(k),

and for |x4(k)| ≥ 0.1:

xi(k + 1) = xi(k) + τ b̄i(k) + 0.5ςi(k), i ∈ {1, . . . , 7}\{3, 4},
x3(k + 1) = x3(k) + τSat1(ν1) + 0.5ς3(k),

x4(k + 1) = x4(k) + τSat2(ν2) + 0.5ς4(k), (4.7.3)

where,

ā1 = x4cos(x5(k)), ā2 = x4sin(x5(k)), ā5 =
x4

lwb
tan(x3(k)),

ā6 =
ν2(k)

lwb
tan(x3(k)) +

x4

lwbcos2(x3(k))
ν1(k), a7 = 0,

b̄1 = x4(k)cos(x5(k) + x7(k)), b̄2 = x4(k)sin(x5(k) + x7(k)), b̄5 = x6(k),

b̄6 =
µ̄fm̄

Iz(lr + lf )
(lfCS,f (glr − ν2(k)hcg)x3(k) + (lrCS,r(glf + ν2(k)hcg)− lfCS,f (glr

− ν2(k)hcg))x7(k)− (l2fCS,f (glr − ν2(k)hcg) + l2rCS,r(glf + ν2(k)hcg))
x6(k)

x4(k)
),

b̄7 =
µ̄f

x4(k)(lr + lf )
(CS,f (glr − ν2(k)hcg)x3(k) + (CS,r(glf + ν2(k)hcg) + CS,f (glr

− ν2(k)hcg))x7(k)−(lfCS,f (glr − ν2(k)hcg)−lrCS,r(glf + ν2(k)hcg))
x6(k)

x4(k)
)−x6(k).

Moreover, Sat1(·) and Sat2(·) are input saturation functions introduced in [Alt19, Section
5.1], x1 and x2 are position coordinates, x3 is the steering angle, x4 is the heading velocity,
x5 is the yaw angle, x6 is the yaw rate, and x7 is the slip angle. Variables ν1 and ν2 are
inputs and they control the steering angle and heading velocity, respectively.

The model takes into account the tire slip making it a good candidate for studies
that consider planning of evasive maneuvers that are very close to physical limits. We
consider an update period τ = 0.001 seconds and the following parameters for a BMW
320i car: lwb = 2.5789 as the wheelbase, m̄ = 1093.3 [kg] as the total mass of the vehicle,
µ̄f = 1.0489 as the friction coefficient, lf = 1.156 [m] as the distance from the front
axle to the center of gravity (CoG), lr = 1.422 [m] as the distance from the rear axle to
CoG, hcg = 0.574 [m] as the hight of CoG, Iz = 1791.6 [kg m2] as the moment of inertia
for the entire mass around z axis, CS,f = 20.89 [1/rad] as the front cornering stiffness
coefficient, and CS,r = 20.89 [1/rad] as the rear cornering stiffness coefficient.

We consider a bounded version of the state set X := [0, 84] × [0, 6] × [−0.18, 0.18] ×
[12, 21] × [−0.5, 0.5] × [−0.8, 0.8] × [−0.1, 0.1], and a quantized version of the input set
U := [−0.4, 0.4]× [−4, 4] with a very fine quantization parameter.
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Figure 4.31: Trajectories of 100 simulations of the RL-synthesized controller for a 7-dimensional
model of a BMW 320i car trained using DDPG. The road is 6 meter wide and 50
meter long, and the length of the car is 4.508 meters and its width is 1.610 meters.

We are interested in an autonomous operation of the vehicle on a highway. Consider
a situation on a two-lane highway when an accident suddenly happens on the same lane
on which our vehicle is traveling. The vehicle’s controller should find a safe maneuver
to avoid the crash with the next-appearing obstacle.

Figure 4.31 shows simulations from 100 samples with varying initial positions and
initial heading velocities (16–18 m/s) for the learned controller. Though convergence
guarantees are not available for DDPG and most RL algorithms with nonlinear function
approximations, breakthroughs in this direction (e.g., SBEED by [DSL+17]) will expand
the applicability of our results to more complex safety-critical applications.

4.8 Summary

In this chapter, we have proposed compositional frameworks for the construction of fi-
nite MDPs as finite abstractions of given (reduced-order) systems. We showed that if
the original system is incrementally input-to-state stable (or incrementally passivable
in the dissipativity setting), one can construct finite MDPs of original systems for the
general setting of nonlinear stochastic control systems. We have also proposed novel
frameworks for the construction of finite MDPs for some particular classes of nonlinear
stochastic systems whose nonlinearities satisfy a slope restriction or (in a more general
form) an incremental quadratic inequality. We extended our results from control sys-
tems to switched ones whose switching signals accept dwell-time condition with multiple
Lyapunov functions. Moreover, we proposed relaxed versions of small-gain and dissipa-
tivity approaches in which the stabilizability of individual subsystems for providing the
compositionality results is not necessarily required.

We have also proposed a compositional technique for the construction of both infinite
and finite abstractions in a unified framework via notions of approximate probabilistic
relations. We showed that the unified compositional framework is less conservative than
the two-step consecutive procedure that independently constructs infinite and finite ab-
stractions. We finally proposed a novel model-free reinforcement learning framework
to synthesize policies for unknown, continuous-space MDPs. We provided probabilistic
closeness guarantees between unknown original models and that of their finite MDPs.
We discussed that via the proposed model-free learning framework not only one can syn-
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thesize controllers for unknown stochastic systems, but also the curse of dimensionality
problem is remarkably mitigated.
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5 AMYTISS: Parallel Automated
Controller Synthesis for Large-Scale
Stochastic Systems

5.1 Introduction

To alleviate the computational complexity arising from the abstraction construction
proposed in the previous chapter, one promising solution is to employ high-performance
computing (HPC) platforms together with cloud-computing services to mitigate the
state-explosion problem which is always the case in analyzing large-scale stochastic sys-
tems. In this chapter, we develop a software tool, called AMYTISS, in C++/OpenCL
that provides scalable parallel algorithms to first construct finite MDPs from discrete-
time stochastic control systems and then synthesize automatically their controllers sat-
isfying complex logic properties including safety, reachability, and reach-avoid specifica-
tions. This tool significantly improves performances w.r.t. the computation time and
memory usage by the parallel execution in different heterogeneous computing platforms
including CPUs, GPUs and hardware accelerators (HWAs). In other words, unlike all
existing tools, AMYTISS offers highly scalable, distributed execution of parallel algo-
rithms utilizing all available processing elements (PEs) in any heterogeneous computing
platform. To the best of our knowledge, AMYTISS is the only tool of this kind for the
stochastic systems that is able to utilize this type of compute units (CUs), simultane-
ously.

5.1.1 Related Literature

There exist several software tools on the verification and synthesis of stochastic systems
with different classes of models. SReachTools [VGO19] performs the stochastic reach-
ability analysis for linear, potentially time-varying, discrete-time stochastic systems.
ProbReach [SZ15] is a tool for verifying the probabilistic reachability for stochastic hy-
brid systems. SReach [WZK+15] solves probabilistic bounded reachability problems for
two classes of models: (i) nonlinear hybrid automata with the parametric uncertainty,
and (ii) probabilistic hybrid automata with the additional randomness for both transi-
tion probabilities and variable resets. Modest Toolset [HH14] performs the modeling and
analysis for hybrid, real-time, distributed and stochastic systems. Two competitions on
tools for the formal verification and policy synthesis of stochastic models are organized
with reports in [ABC+18, ABC+19].
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Table 5.1: Comparison between AMYTISS, FAUST2 and StocHy based on native features.

Aspect FAUST2 StocHy AMYTISS
Platform CPU CPU All platforms
Algorithms Serial on HPC Serial on HPC Parallel on HPC
Model Stochastic control sys-

tems: linear, bilinear
Stochastic hybrid sys-
tems: linear, bilinear

Stochastic control systems:
nonlinear

Specification Safety, reachability Safety, reachability Safety, reachability, reach-
avoid

Stochasticity Additive noise Additive noise Additive & multiplicative
noises

Distribution Normal, user-defined Normal, user-defined Normal, uniform, exponen-
tial, beta, user-defined

Disturbance Not supported Not supported Supported

FAUST2 [SGA15] generates formal abstractions for continuous-space discrete-time
stochastic processes, and performs the verification and synthesis for safety and reachabil-
ity specifications. However, FAUST2 is originally implemented in MATLAB and suffers
from the curse of dimensionality due to its lack of scalability for large models. StocHy
[CDA19] provides the quantitative analysis of discrete-time stochastic hybrid systems
such that it constructs finite abstractions, and performs the verification and synthesis
for safety and reachability specifications.

AMYTISS differs from FAUST2 and StocHy in two main directions. First, AMYTISS
implements novel parallel algorithms and data structures targeting HPC platforms to
reduce undesirable effects of the state-explosion problem. Accordingly, it is able to per-
form the parallel execution in different heterogeneous computing platforms including
CPUs, GPUs and hardware accelerators (HWAs). Whereas, FAUST2 and StocHy can
only run serially in one CPU, and consequently, it is limited to small systems. Addition-
ally, AMYTISS can handle the abstraction construction and controller synthesis for two
and a half player games (e.g., stochastic systems with bounded disturbances), whereas
FAUST2 and StocHy only handle one and a half player games (disturbance-free systems).

We compare AMYTISS with FAUST2 and StocHy in Table 5.1 in detail in terms of dif-
ferent technical aspects. Although there have been some efforts in FAUST2 and StocHy
for parallel implementations, these are not compatible with HPC platforms. Specifically,
FAUST2 employs some parallelization techniques using parallel for-loops and sparse ma-
trices inside Matlab, and StocHy uses Armadillo, a multi-threaded library for the scientific
computing. However, these tools are not designed for the parallel computation on HPC
platforms. Consequently, they can only utilize CPUs but they cannot run on GPUs
or HWAs. In comparison, AMYTISS introduces novel parallel algorithms that support
heterogeneous computing platforms combining CPUs, GPUs and HWAs.

Note that FAUST2 and StocHy do not natively support reach-avoid specifications in
the sense that users can explicitly provide some avoid sets. Implementing this type of
properties requires some modifications inside those tools. In addition, we do not make a
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comparison here with SReachTools since it is mainly for the stochastic reachability anal-
ysis of linear, potentially time-varying, discrete-time stochastic systems, while AMYTISS
is not limited to the reachability analysis and can handle nonlinear systems as well.

5.1.2 Contributions

In this chapter, we propose novel scalable parallel algorithms and efficient distributed
data structures for constructing finite MDPs of large-scale discrete-time stochastic sys-
tems and automating the computation of their correct-by-construction controllers, given
high-level specifications such as safety, reachability and reach-avoid. The main contri-
butions and merits of this work are:

(1) We propose a novel data-parallel algorithm for constructing finite MDPs from
discrete-time stochastic systems and storing them in efficient distributed data con-
tainers. The proposed algorithm handles large-scale systems.

(2) We propose parallel algorithms for synthesizing discrete controllers using the con-
structed MDPs to satisfy safety, reachability, or reach-avoid properties. More
specifically, we introduce a novel parallel algorithm for the iterative computation
of Bellman equation in the standard dynamic programming [Sou14].

(3) Unlike the existing tools in the literature, AMYTISS accepts bounded disturbances
and natively supports both additive and multiplicative noises with different prac-
tical distributions including normal, uniform, exponential, and beta.

We apply the proposed implementations to real-world applications including room tem-
perature and road traffic networks, and autonomous vehicles. This extends the applica-
bility of formal method techniques to some safety-critical real-world applications with
high dimensions. The results show remarkable reductions in the memory usage and
computation time outperforming all existing tools in the literature.

We provide AMYTISS as an open-source tool. After compilation, AMYTISS is loaded
via pFaces [KZ19] and launched for the parallel execution within available parallel com-
puting resources. The source of AMYTISS and detailed instructions on its building and
running can be found in:

https://github.com/mkhaled87/pFaces-AMYTISS

5.2 AMYTISS

In this chapter, we develop scalable parallel algorithms such that they support the paral-
lel execution within CPUs, GPUs and hardware accelerators (HWAs). The results show
that AMYTISS outperforms all existing tools. In this respect, we benchmark our tool
against the most recent tools in the literature using several physical case studies includ-
ing robot examples, and room temperature and road traffic networks. We also apply our
algorithms to a 3-dimensional autonomous vehicle and a 7-dimensional nonlinear model
of a BMW 320i car by synthesizing autonomous parking controllers.
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Algorithm 3 Traditional serial algorithm for computing T̂x

Require: X̂, Û , Ŵ , and a noise covariance matrix Σ̃ ∈ Rn×n
Ensure: Transition probability matrix T̂x with the dimension of (nx × nν × nw, nx)

1: for all x̄i ∈ X̂, s.t. i ∈ {1, ..., nx}, do
2: for all ν̄j ∈ Û , s.t. j ∈ {1, ..., nν}, do
3: for all w̄k ∈ Ŵ , s.t. k ∈ {1, ..., nw}, do
4: Compute mean µc taking into account the given dynamic as

µc = f(x̄i, ν̄j , w̄k, 0)

5: for all x̄′
l̄
∈ X̂, s.t. l̄ ∈ {1, ..., nx}, do

T̂x(x̄′l̄|x̄i, ν̄j , w̄k) :=

∫
Ξ(x′)

PDF(dx
∣∣µc, Σ̃),

where PDF is the probability density function of the normal distribution.
6: end
7: end
8: end
9: end

We consider here stochastic control systems in Definition 2.3.1 in which W is a distur-
bance set. In the next subsection, we propose parallel algorithms for the construction of
finite MDPs.

5.2.1 Parallel Construction of Finite MDPs

Here, we propose an approach to efficiently compute the transition probability matrix
T̂x of the finite MDP Σ̂, which is essential for any controller synthesis procedure, as we
discuss later in Section 5.2.2. Algorithm 3 presents the traditional serial algorithm for
computing T̂x. Note that if there are no disturbances in the given dynamics as presented
in (2.3.3), one can still employ Algorithm 3 to compute the transition probability matrix
but without step 3.

In subsections 5.2.1.1, 5.2.1.2, we address improvements of Algorithm 3. Each sub-
section targets one inefficient aspect of Algorithm 3 and discusses how to improve it.
In subsection 5.2.1.3, we combine the proposed improvements and introduce a parallel
algorithm for constructing T̂x.
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Figure 5.1: A 2-dimensional visualization of the cutting probability region (shown in red) with
a cutting threshold of γt. The cutting region encloses representative post states
(blue dots) that have nonzero probabilities in T̂x. Other representative post states
outside of the cutting region are considered to have zero probabilities in T̂x.

5.2.1.1 Data-Parallel Threads for Computing T̂x

The inner steps inside the nested for-loops 1, 2, and 3 in Algorithm 3 are computationally
independent. More specifically, computations of µc, PDF(x

∣∣µc, Σ̃), and T̂x all do not
share date from one inner-loop to another. Hence, this is an embarrassingly data-parallel
section of the algorithm. pFaces can be used to launch the necessary number of parallel
threads on the employed hardware configuration (HWC) to improve the computation
time of the algorithm. Each thread will eventually compute and store, independently,
its corresponding values within T̂x.

5.2.1.2 Less Memory for Post States in T̂x

T̂x is a matrix with a dimension of (nx × nν × nw, nx). The number of its columns is
nx as we need to compute and store the probability for each reachable partition element
Ξ(x′

l̄
), corresponding to the representing post state x′

l̄
. Note that PDFs in this section

follow Gaussian distributions.
For simplicity, we now focus on the computation done for a tuple (x̄i, ν̄j , w̄k). In many

applications, when the PDF is decaying fast, only those partition elements near µc have
relatively high probability values for being reached, starting from x̄i and applying an
input ν̄j .

We set a cutting probability threshold γt ∈ [0, 1] to control how much information
for the partition elements around µc is stored. For a given mean value µc, a covariance
matrix Σ̃ and a cutting probability threshold γt, x ∈ X is called a PDF cutting point
if γt = PDF(x|µc, Σ̃). Since PDFs are symmetric, we have cutting points that form
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a hyper-rectangle in X, which we call it cutting region and denote it by X̂Σ̃
γt . This is

visualized in Figure 5.1 for a 2-dimensional system.
For a tuple (x̄i, ν̄j , w̄k), X̂

Σ̃
γt is the set of representative points with probabilities of

being reached greater than γt. Formally,

X̂Σ̃
γt = {x̄ ∈ X̂

∣∣P(x(k + 1) ∈ Ξ(x̄)
∣∣x(k) = xi, ν(k) = νj , w(k) = wk

)
≥ γt}.

Any partition element Ξ(x′l) with x′l outside the cutting region is considered to have a
zero probability of being reached. Such approximation allows controlling the sparsity of
columns of T̂x. The closer the value of γt to zero, the more accurate T̂x in representing
the transitions of Σ̂. On the other hand, the closer the value of γt to one, less post state
values need to be stored as columns in T̂x. The number of probabilities to be stored for
each tuple (x̄i, ν̄j , w̄k) is |X̂Σ̃

γt |. Figure 5.1 also visualizes how the proposed γt can help

controlling the required memory for storing the transitions in T̂x.
Note that since Σ̃ is fixed prior to running the algorithm, number of columns needed for

a fixed γt can be identified before launching the computation. We can then accurately
allocate a uniform fixed number of memory locations for any tuple (x̄i, ν̄j , w̄k) in T̂x.
Hence, there is no need for a dynamic sparse matrix data structure and T̂x is now a
matrix with a dimension of (nx × nν × nw, |X̂Σ̃

γt |).

Remark 5.2.1. Construction of X̂Σ̃
γt is practically a simple process. We start by solving

the equation PDF(x∗
∣∣ 0, Σ̃) = γt for x∗ ∈ Rn>0 and computing the zero-mean cutting

points at each dimension. Now since the PDF is symmetric, one obtains

X̂Σ̃
γt = {x̄ ∈ X̂|x̄ ∈ [[µc − x∗, µc + x∗]]}.

Remark 5.2.2. The reduction in the memory usage discussed in this subsection is tai-
lored to Gaussian distributions for the sake of better presentation of the idea. Users
interested in adding additional distributions to AMYTISS have the option of providing a
subroutine that describes how other distributions should behave in terms of the required
memory and with respect to the cutting threshold γt.

5.2.1.3 A Parallel Algorithm for Constructing Finite MDP Σ̂

We present a novel parallel algorithm (Algorithm 4) to efficiently construct and store T̂x

as a successor to Algorithm 3. We employ all the discussed enhancements in subsections
5.2.1.1, and 5.2.1.2, within the proposed algorithm. We do not parallelize the for-loop in
Algorithm 4, Step 2, to avoid excessive parallelism. Note that, practically, for large-scale
systems, |X̂ × Û | can reach up to billions. We are always interested in the number of
parallel threads that can be scheduled reasonably to available HW computing units.

5.2.2 Parallel Synthesis of Controllers

In this subsection, we employ the dynamic programming to synthesize controllers for con-
structed finite MDPs Σ̂ satisfying safety, reachability, and reach-avoid properties [Sou14,
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Algorithm 4 Proposed parallel algorithm for computing T̂x

Require: X̂, Û , Ŵ , γt, and a noise covariance matrix Σ̃ ∈ Rn×n

Ensure: Transition probability matrix T̂x with the dimension of (nx × nν × 2, |X̂Σ̃,W
γt |)

1: for all (x̄, ν̄) ∈ X̂ × Û in parallel do
2: for all w̄ ∈ Ŵ do
3: Set µc = f(x̄, ν̄, w̄)

4: Construct X̂Σ̃
γt as described in Remark 5.2.1

5: for all x∗ ∈ X̂Σ̃
γt do

6: Set T̂x(x∗|x̄, ν̄, w̄) :=
∫

Ξ(x∗) PDF(dx|µc, Σ̃)
7: end
8: end
9: end

SA13a]. We first present the traditional serial algorithm for the controller synthesis sat-
isfying safety, reachability, and reach-avoid specifications as Algorithm 5. Note that if
there are no disturbances in the given dynamics, Steps 16 and 17 of Algorithm 5 are to
be excluded.

The serial algorithm does, repetitively, matrix multiplications in each loop that cor-
responds to different time instance of the bounded time Td. We cannot parallelize the
for-loop in Step 9 due to the data dependency, however, we can parallelize the con-
tents of this loop by simply considering the standard parallel algorithms for the matrix
multiplication.

Algorithm 6 is a parallelization of Algorithm 5. Step 10 in Algorithm 6 is the parallel
implementation of the matrix multiplication in Algorithm 5, Step 10. Step 19 in Al-
gorithm 6 selects and stores the inputs ν̄ that maximizes probabilities of enforcing the
specifications.

A significant reduction in the computation of the intermediate matrix Vint is also
introduced in Algorithm 6. In Algorithm 5, Step 10, the computation of Vint requires a
matrix multiplication between Tx (dimension of (nx×nν ×nw, nx)) and Vs(:, ·) (dimen-
sion of (nx, 1)). On the other hand, in the parallel version in Algorithm 6, for each w̄, the
corresponding computation is done for Vint such that each element, i.e., Vint(x̄, ν̄, w̄),

requires only |X̂Σ̃
γt | scalar multiplications. Here, we clearly utilize the technique discussed

in Subsection 5.2.1.2 to consider only those post states in the cutting region X̂Σ̃
γt . Re-

member that other post states outside X̂Σ̃
γt are considered to have the probability zero

which means we can avoid their scalar multiplications.

5.2.3 On-the-Fly Construction of T̂x

In AMYTISS, we also use another technique that further reduces the required memory
for computing T̂x. We refer to this approach as on-the-fly abstractions (OFA). In OFA

201



5 AMYTISS: Parallel Automated Controller Synthesis for Large-Scale Stochastic Systems

Algorithm 5 Traditional serial algorithm for controller synthesis satisfying safety, reachability
and reach-avoid specifications

Require: X̂, Û , Ŵ , bounded time horizon Td, specs ∈ {Safety,Reachability,
ReachAvoid}, target set T̄ (in case specs = Reachability, ReachAvoid), and avoid
set Ā (in case specs = ReachAvoid)

Ensure: Optimal satisfaction probability Vs at time step Td = 1, and optimal policy
ν? corresponding to optimal satisfaction probability

1: Compute T̂x as presented in Algorithm 3
2: if specs == Safety do
3: Set value function Vs := ones(nx, Td + 1)
4: else
5: Compute a transition probability matrix T̂0x from X̂\(T̄ ∪ Ā) to T̄
6: Set T̂x to zero for any post-state in (T̄ ∪ Ā)
7: Set value function Vs := zeros(nx, Td + 1)
8: end
9: for k = Td : −1 : 1 (backward in time) do

10: if specs == Safety do
11: Set Vint = T̂xVs(: , k + 1) {Vint has dimension of (nx × nν × nw, 1)}
12: else
13: Set Vint = T̂0x + T̂xVs(: , k + 1) {Vint has dimension of (nx × nν × nw, 1)}
14: end
15: Reshape Vint to a matrix V̄int of dimension (nx × nν , nw)
16: Minimize V̄int with respect to disturbance set Ŵ as Vmin
17: Reshape Vmin to a matrix V̄min of dimension (nx, nν)
18: Maximize V̄min with respect to input set Û as Vmax of dimension (nx, 1)
19: Update Vs(:, k) := Vmax
20: end

version of Algorithm 6, we skip computing and storing the MDP T̂x and the matrix T̂0x

(i.e., Steps 1 and 5). We instead compute the required entries of T̂x and T̂0x on-the-fly
as they are needed (i.e., Steps 13 and 15). This reduces the required memory for T̂x and
T̂0x but at the cost of the repeated computation of their entries in each time step from 1
to Td. However, this gives the user an additional control over the trade-off between the
computation time and memory usage.

5.2.4 Supporting Multiplicative Noises and Practical Distributions

AMYTISS natively supports multiplicative noises and practical distributions such as
uniform, exponential, and beta distributions. The technique introduced in Subsection
5.2.1.2 for reducing the memory usage is also tuned for other distributions based on the
support of their PDFs. Since AMYTISS is designed for extensibility, it allows also for
customized distributions. Users need to specify their desired PDFs and hyper-rectangles
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Algorithm 6 Proposed parallel algorithm for controller synthesis satisfying safety, reachability
and reach-avoid specifications

Require: X̂, Û , Ŵ , bounded time horizon Td, specs ∈ {Safety,Reachability,
ReachAvoid}, target set T̄ (in case specs = Reachability, ReachAvoid), and avoid
set Ā (in case specs = ReachAvoid)

Ensure: Optimal satisfaction probability Vs at time step Td = 1, and optimal policy
ν? corresponding to optimal satisfaction probability

1: Compute T̂x in parallel as presented in Algorithm 4
2: if specs == Safety do
3: Set value function Vs := ones(nx, Td + 1)
4: else
5: Compute a transition probability matrix T̂0x from X̂\(T̄ ∪ Ā) to T̄
6: Set T̂x to zero for any post-state in (T̄ ∪ Ā)
7: Set value function Vs := zeros(nx, Td + 1)
8: end
9: for k = Td : −1 : 1 (backward in time) do

10: for all (x̄, ν̄) ∈ X̂ × Û in parallel do
11: for all w̄ ∈ Ŵ
12: Construct X̂Σ̃

γt as discussed in Subsection 5.2.1.2
13: Set Vint(x̄, ν̄, w̄) :=

∑
x∗∈X̂Σ̃

γt

Vs(x
∗, k + 1)Tx(x∗|x̄, ν̄, w̄)

14: if specs == ReachAvoid and x̄ 6∈ (T̄ ∪ Ā) do
15: Set Vint(x̄, ν̄, w̄) := Vint(x̄, ν̄, w̄) + T0x(x̄, ν̄, w̄)
16: end
17: end
18: end
19: for all x̄ ∈ X̂ in parallel do
20: Set Vs(x̄, k) := max

ν̄∈Û
{min
w̄∈Ŵ
{Vint(x̄, ν̄, w̄)}}

21: Set ν?(x̄, k) := argmax
ν̄∈Û

{min
w̄∈Ŵ
{Vint(x̄, ν̄, w̄)}}

22: end
23: end

enclosing their supports so that AMYTISS can include them in the parallel computa-
tion of T̂x. Further details on specifying customized distributions are provided in the
README file.

AMYTISS also supports multiplicative noises as introduced in [LTS05]. Currently, the
memory reduction technique of Subsection 5.2.1.2 is disabled when users provide systems
with multiplicative noise. This means users should expect larger memory requirements
for systems that have multiplicative noises. However, users can still benefit from the OFA
version of Algorithm 6 to compensate for such increase in the memory requirement. We
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plan to include this feature for multiplicative noises in a future update of AMYTISS. We
should mention that for the sake of better demonstration, previous sections considered
the additive noise and the Gaussian normal distribution as a PDF to introduce the
concepts of the idea.

5.2.5 AMYTISS by Running Example

AMYTISS is self-contained and requires only a modern C++ compiler. It supports the
three major operating systems: Windows, Linux and Mac OS. We tested AMYTISS on
Windows 10 x64, MacOS Mojave, Ubuntu 16.04, and Ubuntu 18.04, and found no major
computation time differences.

Once compiled, utilizing it is a matter of providing text configuration files and launch-
ing the tool to operate on them. Please refer to the provided README file in the
repository of AMYTISS for the general installation instruction.

For the sake of illustrating the proposed algorithms and the usage of AMYTISS, we first
introduce a simple 2-dimensional example. Consider a robot described by the following
difference equation:

{
x1(k + 1) = x1(k) + τν1(k)cos(ν2(k)) + w(k) + ς1(k)
x2(k + 1) = x2(k) + τν2(k)sin(ν2(k)) + w(k) + ς2(k),

(5.2.1)

where (x1, x2) ∈ X := [−10, 10]2 is a state vector representing a spacial coordinate,
(ν1, ν2) ∈ U := [−1, 1]2 is an input vector, w ∈ W := [−1, 1] is a disturbance, (ς1, ς2) is
noises following a Gaussian distribution with the covariance matrix Σ̃ := diag(0.75, 0.75),
and τ := 10 is a constant.

To construct MDPs approximating the system, we consider state quantization param-
eters of (0.5, 0.5), input quantization parameters of (0.1, 0.1), disturbance quantization
parameters of 0.2, and a cutting probability level γt of 0.001. Using such quantization
parameters, the number of state-input pairs |X̂ × Û | in Σ̂ is 203401. We use |X̂ × Û | as
an indicator to the size of the system.

System descriptions and controller synthesis requirements are provided to AMYTISS
as text configuration files. The configuration files of this example are located in the
directory %AMYTISS%/examples/ex toy XXXX, where %AMYTISS% is the installation
directory of AMYTISS and XXXX should be replaced with the controller synthesis spec-
ification of interests and can be any of: safety, reachability, or reach-avoid. For a detailed
description of the key-value pairs in each configuration file, refer to the README file in
the repository of AMYTISS.

5.2.5.1 Synthesis for Safety Specifications

We synthesize a controller for the robot system in (5.2.1) to keep the state of the robot
inside X within 8 time steps. The synthesized controller should enforce the safety spec-
ification in presence of the disturbance and the noise. The corresponding configuration
file is located in file %AMYTISS%/examples/ex toy safety/toy2d.cfg, which describes the
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Figure 5.2: A visualization of the transitions for one source state x := (0, 0) and an input
ν = (0.7, 0.8) of the MDP approximating the robot example. The green point is
the source state, the transparent bell-like shape is the PDF and the red rectangle
is the cutting region. Probabilities of reaching partition elements inside cutting
regions are shown as bars below the PDF.

system in (5.2.1) and the safety requirement. To launch AMYTISS and run it for synthe-
sizing the safety controller of this example, navigate to the install directory %AMYTISS%
and run the command:

$ pfaces -CGH -d 1 -k amytiss.cpu@./kernel-pack -cfg ./examples/ex_toy_safety/toy2d.cfg -p

where pfaces calls pFaces, -CGH -d 1 asks pFaces to consider the first device from all CPU,
GPU and HWA devices, -k amytiss.cpu@./kernel-pack asks pFaces to launch AMYTISS’s ker-
nel from its main source folder, -cfg ./examples/ex_toy_safety/toy2d.cfg asks pFaces to hand
the configuration file to AMYTISS, and -p asks pFaces to collect profiling information.
For more details about other arguments you may use, please refer to the manual of
pFaces.

This launches AMYTISS to construct an MDP of the robot system and synthesize
a safety controller for it. The results are stored in the output file specified in the
configuration file. Using the provided MATLAB interface in AMYTISS, we visualize some
transitions of the constructed MDP and show them in Figure 5.2. The used MATLAB
script is located in %AMYTISS%/examples/ex toy safety/make figs.m.

The output file contains also the control strategy which we use to simulate the closed-
loop behavior of the system. Again, we rely on the provided MATLAB interface in
AMYTISS to simulate the closed-loop behavior. The MATLAB script in %AMYTISS%
/examples/ex toy safety/closedloop.m simulates the system with random choices on w̄ ∈
Ŵ and random values for the noise according to the provided covariance matrix. For
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Figure 5.3: 100 simulations of the closed-loop behavior of the robot under a safety controller
synthesized for maintaining the robot inside X. At left, we show the trajectory of
each component of the state of the system at each time step. At right, we show the
applied input at each time step. For the sake of readability, the input plot is shown
as the piece-wise linear signal. The system is discrete-time and inputs are utilized
only at update times.

each time step, the simulation queries the strategy from the output file and applies
it to the system. We repeat the simulation 100 times. Figure 5.3 shows the closed-
loop simulation results. Note that the input is always fixed at the time step k = 0.
This is because we store only one input, which is the one maximizing the probability of
satisfying the specification. After the time step k = 0, and because of noise/disturbance,
the system lands in different states which requires applying different inputs to satisfy
the specification.
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Figure 5.4: 9 simulations of the closed-loop behavior of the robot example under a controller
synthesized for reaching a target set of states in X while avoiding another set of
states. The 9 dots at the left bottom correspond to 9 initial states for 9 different
simulation runs. The red and blue rectangles are avoid and target sets, respectively.

5.2.5.2 Synthesis for Reach-Avoid Specifications

We synthesize a controller for the robot system in (5.2.1) to reach the set [5, 7]2 while
avoiding the set [−2, 2]2 within 16 time steps. To launch AMYTISS and run it for
synthesizing the reachability controller of this example, navigate to the install directory
%AMYTISS% and run the command:

$ pfaces -CGH -k amytiss.cpu@./kernel-pack -cfg ./examples/ex_toy_reachavoid/toy2d.cfg -d 1 -p

This launches AMYTISS to construct an MDP of the robot system and synthesize a
reachability controller for it. A MATLAB script simulates the closed loop and it is
located in %AMYTISS%/examples/ex toy reachavoid/closedloop.m. This runs 9 different
simulations from 9 different initial states. Figure 5.4 shows the closed-loop simulation
results.

5.2.6 Benchmarking and Case Studies

5.2.6.1 Controlling Computational Complexities

AMYTISS implements scalable parallel algorithms that run on top of pFaces. Hence,
users can utilize the computing power in HPC platforms and cloud computing to scale
the computation and control the computational complexities of their problems. We fix
the system (i.e., the robot example) in hand and show how AMYTISS scales with respect
to different computing platforms. Table 5.2 lists the HW configuration (HWC) we use
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Table 5.2: Used HW configurations for benchmarking AMYTISS.

Id Description PEs Frequency
CPU1 Local machine: Intel Xeon E5-1620 8 3.6 GHz
CPU2 Macbook Pro 15: Intel i9-8950HK 12 2.9 GHz

CPU3 AWS instance c5.18xlarge: Intel Xeon Platinum 8000 72 3.6 GHz

GPU1 Macbook Pro 15 laptop laptop: Intel UHD Graphics 630 23 0.35 GHz

GPU2 Macbook Pro 15 laptop: AMD Radeon Pro Vega 20 1280 1.2 GHz

GPU3 AWS p3.2xlarge instance: NVIDIA Tesla V100 5120 0.8 GHz

to benchmark AMYTISS. The devices range from local devices in laptops and desktop
computers to advanced compute devices in Amazon AWS cloud computing services.

Table 5.4 shows the benchmarking results running AMYTISS with these HWCs for
several case studies and makes comparisons between AMYTISS, FAUST2, and StocHy.
We employ a machine with Windows operating system (Intel i7@3.6GHz CPU and 16
GB of RAM) for FAUST2, and StocHy. We should mention that FAUST2 predefines a
minimum number of representative points based on the desired abstraction error, and
accordingly the computation time and memory usage reported in Table 5.4 are based on
the minimum number of representative points. In addition, to have a fair comparison,
we run all the case studies with additive noises since neither FAUST2 nor StocHy support
multiplicative noises.

For each HWC, we show the time in seconds to solve the problem. Clearly, employing
HWCs with more PEs reduces the time to solve the problem. This is a strong indication
for the scalability of the proposed algorithms. This also becomes very useful in real-time
applications, where users can control the computation time of their problems by adding
more resources. Since AMYTISS is the only tool that can utilize the reported HWCs, we
do not compare with other similar tools.

To show the applicability of our results to large-scale stochastic systems, we apply our
proposed techniques to several physical case studies. First, we synthesize a controller for
3- and 5-dimensional room temperature networks to keep the temperature of rooms in
a comfort zone. Then we synthesize a controller for road traffic networks with 3 and 5
dimensions to maintain the density of the traffic below some level. We then consider 3-
and 7-dimensional nonlinear models of autonomous vehicles and synthesize reach-avoid
controllers to automatically park the vehicles. For each case study, we compare our tool
with FAUST2 and StocHy and report the technical details in Table 5.4.

5.2.6.2 Room Temperature Network

5-Dimensional System. We first apply our results to the temperature regulation
of 5 rooms each equipped with a heater and connected on a circle. The evolution of
temperatures T̃i can be described by individual rooms as

T̃i(k + 1) = aiiT̃i(k) + θ̄T̃hνi(k) + ηwi(k) + βT̃ei + 0.01ςi(k), i ∈ {1, 3},
T̃i(k + 1) = biiT̃i(k) + ηwi(k) + βT̃ei + 0.01ςi(k), i ∈ {2, 4, 5},
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where aii = (1−2η−β− θ̄νi(k)), bii = (1−2η−β), and wi(k) = T̃i−1(k)+ T̃i+1(k) (with
T̃0 = T̃n and T̃n+1 = T̃1). Furthermore, η = 0.3, β = 0.022, and θ̄ = 0.05, T̃ei = −1 ◦C,
T̃h = 50 ◦C, and T̃i(k) and νi(k) are taking values in sets [19, 21] and [0, 1], respectively,
∀i ∈ {1, . . . , n}.

Let us now synthesize a controller for the 5-dimensional system via its finite abstraction
Σ̂ such that the controller maintains the temperature of any room in the safe set [19, 21]
for at least 8 time steps.

We also applied our algorithms to a smaller version of this case study (3-dimensional
system) with the results reported in Table 5.4.

5.2.6.3 Road Traffic Network

A

Road Traffic

Network

1

2

3

4

5

A

Traffic lightTraffic light

ExitExit

1

2

34

5

Figure 5.5: Model of a road traffic network composed of 5 cells of 500 meters with 2 entries
and 2 ways out.

5-Dimensional System. Consider a road traffic network divided in 5 cells of 500
meters with 2 entries and 2 ways out, as schematically depicted in Figure 5.5. The model
of this case study is borrowed from [LCGG13] by including stochasticity in the model
as the additive noise.

The two entries are controlled by traffic lights, denoted by ν1 and ν3, that enable
(green light) or not (red light) the vehicles to pass. In this model, the length of a cell is
in kilometers [km] and the flow speed of the vehicles is 100 kilometers per hour [km/h].
Moreover, during the sampling time interval τ = 6.48 seconds, it is assumed that 6
vehicles pass the entry controlled by the light ν1, 8 vehicles pass the entry controlled by
the light ν3, and one quarter of vehicles that leave cells 1 and 3 goes out on the first
exit (the ratio denoted by q̃). We want to observe the density of the traffic xi, given in
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vehicles per cell, for each cell i of the road. The model of cells is described by:

x1(k + 1) = (1− τv1

l̃1
)x1(k) +

τv5

l̃5
w1(k) + 6ν1(k) + 0.7ς1(k),

xi(k + 1) = (1− τvi

l̃i
− q̃)xi(k) +

τvi−1

l̃i−1

wi(k) + 0.7ςi(k), i ∈ {2, 4},

x3(k + 1) = (1− τv3

l̃3
)x3(k) +

τv2

l̃2
w3(k) + 8ν3(k) + 0.7ς3(k),

x5(k + 1) = (1− τv5

l̃5
)x5(k) +

τv4

l̃4
w5(k) + 0.7ς5(k),

where wi(k) = xi−1(k) (with x0 = x5), and v0 = v5, l̃0 = l̃5. We are interested first in
constructing the finite MDP of the given 5-dimensional system and then synthesizing
policies keeping the density of the traffic lower than 10 vehicles per cell.

For this case study, we have X := [0, 10]5 with quantization parameters of (0.37, 0.37,
0.37, 0.37, 0.37), U = [0, 1]2 with quantization parameters of (1, 1), the noise covariance
matrix Σ := diag(0.7, 0.7, 0.7, 0.7, 0.7), and a cutting probability level γt of 2e− 2.

We also applied our algorithms to the same case study but with 3-dimensions for the
sake of benchmarking.

5.2.6.4 Autonomous Vehicle

7-Dimensional BMW 320i. Here, to show the applicability of our approaches to
nonlinear models, we consider the 7-dimensional discrete-time nonlinear model of the
BMW 320i car as presented in (4.7.3) with the sampling time τ = 0.1 and the stan-
dard deviation of the noise σ̄i = 0.2,∀i ∈ {1, ..., 7}. To construct a finite MDP Σ̂,
we consider a bounded version of the state set X := [−10.0, 10.0] × [−10.0, 10.0] ×
[−0.40, 0.40]× [−2, 2]× [−0.3, 0.3]× [−0.4, 0.4]× [−0.04, 0.04], a state discretization vec-
tor (4.0; 4.0; 0.2; 1.0; 0.1; 0.2; 0.02), an input set U := [−0.4, 0.4] × [−4, 4], and an input
discretization vector [0.2; 2.0].

We are interested in an autonomous operation of the vehicle. The vehicle should
park automatically in the parking lot located in the projected set [−1.5, 0.0]× [0.0, 1.5]
within 32 time steps. The vehicle should avoid hitting a barrier represented by the set
[−1.5, 0.0]× [−0.5, 0.0].

We also applied our algorithms to a 3-dimensional autonomous vehicle [RWR16, Sec-
tion IX-A] for the sake of benchmarking.

5.2.6.5 Benchmark in StocHy

We benchmark our results against the ones provided by StocHy [CDA19]. We employ
the same case study as in [CDA19, Case study 3] which starts from a 2-dimensional to
a 12-dimensional continuous-space system with the same parameters.

To have a fair comparison, we utilize a machine with the same configuration as the one
employed in [CDA19] (a laptop having an Intel Core i7−8550U CPU at 1.80GHz with 8
GB of RAM). We build a finite MDP for the given model and compare our computation
time with the results provided by StocHy.
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Table 5.3 shows the comparison between StocHy and AMYTISS. StocHy suffers signif-
icantly from the state-explosion problem as seen from its exponentially growing compu-
tation time. AMYTISS, on the other hand, outperforms StocHy and can handle bigger
systems using the same hardware. This comparison shows speedups up to maximum 375
times for the 12-dimensional system. Note that we only reported up to 12-dimensions
but AMYTISS can readily go beyond this limit for this example. For instance, AMYTISS
manged to handle the 20-dimensional version of this system in 1572 seconds using an
NVIDIA Tesla V100 GPU in Amazon AWS.

Table 5.3: Comparison between StocHy and AMYTISS for a continuous-space system with di-
mensions up to 12. The reported system is autonomous and, hence, Û is singleton.
|X̂| refers to the size of the system.

Dimension 2 3 4 5 6 7 8 9 10 11 12

|X̂| 4 8 16 32 64 128 265 512 1024 2048 4096

Time (s) - StocHy 0.015 0.08 0.17 0.54 2.17 9.57 40.5 171.6 385.5 1708.2 11216

Time (s) - AMYTISS 0.02 0.92 0.20 0.47 1.02 1.95 3.52 6.32 10.72 17.12 29.95

Readers are highly advised to pay attention to the size of the system |X̂ × Û | (or
|X̂| when Û is singleton), not to its dimension. Actually, here, the 12-dimensional
system, which has a size of 4096 state-input pairs is much smaller than the 2-dimensional
illustrative example we introduced in Subsection 5.2.5, which has a size of 203401 state-
input pairs. The current example has small size due to the very coarse quantization
parameters and the tight bounds used to quantize X.

As seen in Table 5.4, AMYTISS clearly outperforms FAUST2 and StocHy in all the
case studies (with maximum speedups respectively up to 1680000 and 676000 times).
Moreover, only AMYTISS can utilize the available HW resources to reduce the compu-
tation time. The OFA feature in AMYTISS reduces dramatically the required memory,
while still solves the problems in reasonable amounts of time. FAUST2 and StocHy fail
to solve many of the problems since they lack the native support for nonlinear systems,
they require of large amounts of memory, or they do not finish computing within 24
hours.
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5.3 Summary

5.3 Summary

In this chapter, we developed a software tool, called AMYTISS, in C++/OpenCL that
provides scalable parallel algorithms for first constructing finite MDPs from discrete-
time stochastic control systems and then synthesizing automatically their controllers
satisfying complex logic properties including safety, reachability, and reach-avoid spec-
ifications. The software tool is developed based on theoretical results of the previous
chapter (finite abstraction), and can utilize high-performance computing platforms and
cloud-computing services to mitigate effects of the state-explosion problem, which is
always present in analyzing large-scale stochastic systems. We showed that this tool
significantly improves performances w.r.t. the computation time and memory usage by
the parallel execution in different heterogeneous computing platforms including CPUs,
GPUs and hardware accelerators. We also showed that this tool outperforms all existing
tools available in the literature.
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6.1 Conclusions

In this thesis, we proposed novel compositional techniques to analyze and control large-
scale stochastic CPSs in an automated as well as formal fashion. In the first part of
the thesis, we discussed compositional infinite abstractions (model order reductions) of
original systems with three different compositional techniques including classic small-
gain, max small-gain and dissipativity approaches. We showed that the proposed max
small-gain approach is more general than the classic one since it does not require any
linear growth on the gains of subsystems which is the case in the classic small-gain.
We also proved that the provided approximation error via the max small-gain does not
change as the number of subsystems grows. This issue is due to the fact that the proposed
overall error is completely independent of the size of the network, and is computed only
based on the maximum error of subsystems instead of being a linear combination of
them which is the case in classic small-gain and dissipativity approaches. On the other
hand, we discussed that the proposed dissipativity technique is less conservative than
the classic (or max) small-gain approach in the sense that the provided dissipativity-type
compositionality condition can enjoy the structure of the interconnection topology and
be potentially fulfilled independently of the number or gains of subsystems.

In the second part of the thesis, we proposed compositional construction of finite MDPs
as finite abstractions of given (reduced-order) systems with the same compositionality
techniques. We showed that if the original system is incremental input-to-state stable (or
incrementally passivable in the dissipativity setting), one can construct finite MDPs of
original systems for the general setting of nonlinear stochastic control systems. We also
proposed novel frameworks for the construction of finite MDPs for some particular classes
of nonlinear stochastic systems whose nonlinearities satisfy a slope restriction or (in a
more general form) an incremental quadratic inequality. We generalized our results from
control systems to switched ones whose switching signals accept a dwell-time condition
with multiple Lyapunov-like functions. Moreover, we proposed relaxed versions of small-
gain and dissipativity approaches in which the stabilizability of individual subsystems
for providing the compositionality results is not necessarily required. We then proposed
a compositional technique for the construction of both infinite and finite abstractions in
a unified framework via notions of approximate probabilistic relations. We showed that
the unified compositional framework is less conservative than the two-step consecutive
procedure that independently constructs infinite and finite abstractions. We finally
proposed a novel model-free reinforcement learning scheme to synthesize policies for
unknown, continuous-space MDPs. We provided approximate optimality guarantees
between unknown original models and that of their finite MDPs. We discussed that via
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the proposed model-free learning framework not only one can synthesize controllers for
unknown stochastic systems, but also the curse of dimensionality problem is remarkably
mitigated.

In the last part of the thesis, we developed a software tool in C++/OpenCL, called
AMYTISS, for designing correct-by-construction controllers of large-scale discrete-time
stochastic systems. This software tool provides scalable parallel algorithms that allow
to (i) construct finite MDPs from discrete-time stochastic control systems, and (ii) syn-
thesize controllers automatically that satisfy complex logic properties including safety,
reachability, and reach-avoid specifications. AMYTISS is developed based on theoretical
results on constructing finite abstractions by employing high-performance computing
platforms and cloud-computing services to alleviate effects of the state-explosion prob-
lem, which is always the case in analyzing large-scale stochastic systems. We showed that
this tool significantly improves performances w.r.t. the computation time and memory
usage by the parallel execution in different heterogeneous computing platforms including
CPUs, GPUs and hardware accelerators. We also showed that this tool outperforms all
existing tools available in the literature.

6.2 Recommendations for Future Research

In this section, we discuss some interesting topics that could be considered as potential
future research lines.

• Compositional controller synthesis. In this thesis, we widely studied dif-
ferent compositional approaches for the construction of (in)finite abstractions for
networks of stochastic control (switched) systems. One potential direction as a
future work is to investigate the compositional controller synthesis for stochastic
systems. In particular given a specification over the interconnected system, one
can study the formal relation between the probability of satisfactions provided by
local controllers for individual subsystems and that of their monolithic ones in the
interconnected case.

• Decomposition of more complex LTL properties. In this thesis, we mainly
considered our specifications as the safety. In particular, we considered the overall
safety specification as a hyper-rectangle (a.k.a. hyper interval) and decomposed
and projected it to different dimensions corresponding to subsystems. We first
designed local controllers for abstractions Σ̂i, and then refined them back to sub-
systems Σi using interface functions. Consequently, the controller for the intercon-
nected system Σ is simply constructed by augmenting controllers of subsystems
Σi. Another direction as the future research line is to consider more complex
LTL properties including reachability, reach-avoid, etc., and study how to decom-
pose these high-level specifications in order to provide a compositional synthesis
framework for them.

• Compositional barrier certificate. In order to deal with the computational
complexity arising with the construction of finite abstractions proposed in this
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thesis, there have also been discretization-free approaches based on control barrier
certificates. One promising direction is to develop the barrier certificate approach
to come up with a compositional approach for the temporal logic verification and
synthesis of stochastic CPSs.

• max dissipativity approaches. In Sections 3.3 and 4.2, we proposed max small-
gain approaches and showed that they are less conservative than the classic one
provided in Section 3.2 since their approximation error does not change as the
number of subsystems grows. One potential direction for an extension is to develop
a compositional approach based on max dissipativity with the approximation error
independent of the size of the network, and being only based on the maximum
error of subsystems instead of a linear combination of them which is the case in
the current dissipativity approach proposed in Sections 3.4 and 4.3.

• Switched systems with unstable (unstabilizable) subsystems. In Sec-
tions 4.2.2 and 4.3.2, we assumed that the given original switched subsystems are
stable. It would be interesting if one can provide a compositional framework for
stochastic switched systems accepting dwell-time and multiple Lyapunov functions
but with some unstabilizable modes.

• Constructing finite MDPs with discretization-free approaches. In order
to construct finite MDPs from original stochastic systems via Algorithm 1, we
needed to discretize the state space of the system. This issue in general creates the
state-explosion problem which is always present in analyzing large-scale stochastic
systems. There are some discretization-free approaches for building symbolic mod-
els of original systems in the non-stochastic setting [ZAG15],[ZTA14],[ZG15]. It
would be interesting if one can leverage the ideas there and provide a discretization-
free framework for the construction of finite MDPs.

• Compositional controller synthesis for unknown stochastic systems via
reinforcement learning. In Section 4.7, we proposed an approach for the con-
troller synthesis of unknown continuous-space MDPs via the model-free reinforce-
ment learning. One potential direction is to provide a compositional framework
for the controller synthesis of unknown stochastic systems via the reinforcement
learning.

• Closeness guarantee for unknown stochastic systems via reinforcement
learning for infinite-time horizon. In Section 4.7, we proposed probabilistic
closeness guarantees between unknown continuous-space original models and that
of their finite MDPs for the finite-time horizon. It would be interesting if one
can extend the results to an infinite-time horizon via the model-free reinforcement
learning.

• Extension of AMYTISS. In our proposed software tool, AMYTISS, in Chapter 5,
we assumed that our dynamics are discrete-time stochastic control systems. Pro-
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viding a tool for large-scale continuous-time stochastic systems is an interesting
direction as a future work.
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