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A B S T R AC T

This dissertation studies the role that magnetic anisotropies play in the magnetic phase dia-
gram of cubic chiral magnets. During the last decade, this type of materials has been at the
center of much scientific interest driven mainly by the discovery of a skyrmion lattice phase.
Skyrmions are topological non-trivial magnetic textures, which means that they cannot be
smoothly and continuously transform into trivial kinds of magnetic order, such as ferromag-
netism. This topological characteristic yields novel physical properties which make magnetic
skyrmions very interesting for future spintronic and memory storage devices. Skyrmions have
now been observed in heterostructures, ultrathin magnetic films, and bulk samples with very
different properties.

Magnetocrystalline anisotropies determine the preferred propagation direction of the heli-
magnetic order, which represents the ground state of the systems studied. Applying a mag-
netic field results in the conical phase after a reorientation of the magnetic helices so that
they propagate along the field direction, lifting the degeneracy between equivalent crystallo-
graphic directions observed at zero-field. Professor Dr. Markus Garst carried out a detailed
theoretical analysis of the role of magnetocrystalline anisotropies in this reorientation for the
case of MnSi, for which the magnetic helices propagate along the 〈111〉 axes at zero mag-
netic field. He identified three distinct cases depending on the crystallographic direction the
magnetic field is applied along. His results were corroborated by a thorough magnetization,
ac-susceptibility and small-angle neutron scattering study. Overall the experimental observa-
tions match the theoretical predictions quite well, and the discrepancies observed could be
explained by the formation of topological non-trivial defects at the boundaries between do-
mains as these are fused together. The properties of these topological defects are mainly
unknown, and might hold interesting novel physics.

The first theoretical study of the possibility of skyrmions in MnSi expected an additional
uniaxial anisotropy to be necessary for their stabilization, as a mean field analysis consistently
yielded a higher free energy than the one calculated for the conical phase. It turns out that
thermal fluctuations are enough to reduce the energy of the skyrmion lattice below that of
the conical state for temperatures just below the transition to the paramagnetic regime. The
effects of an external uniaxial anisotropy were studied by means of ac-susceptibility and
small-angle neutron scattering using a bespoke uniaxial pressure cell. Applying a magnetic
field perpendicular to a finite uniaxial stress, results in an expansion of the stable region of
the skyrmion lattice to lower temperatures, while a magnetic field parallel to the pressure axis
will prefer a conical magnetic order. Small pressures in the order of a few kbar are enough to
completely suppress the skyrmion lattice phase.

The thesis concludes with the discussion of a second skyrmion phase observed in Cu2OSeO3

at low temperatures just below the transition to the field polarized phase, when the magnetic
field is applied along a 〈100〉 axis, which is the preferred axis of propagation of the helices
in this compound. This new phase is stabilized by cubic magneto crystalline anisotropies,
which gain in strength with decreasing temperature. This is the first example of two separate
skyrmion phases in any material studied so far.
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Diese Dissertation untersucht die Rolle, die magnetische Anisotropien in dem Phasendia-
gramm von kubischen chiralen Magneten spielen. In den letzten Jahren sind diese Art von
Materialien auf Grund der Entdeckung von magnetischen Skyrmionen in den wissenschaftlichen
Fokus gerückt. Skyrmionen sind topologisch nicht-triviale magnetische Texturen, was be-
deutet, dass sie nicht kontinuierlich in eine topologisch triviale Anordnung, wie z. B. Ferromag-
netismus, überführt werden können. Diese topologische Eigenschaft bewirkt neue physikalis-
che Phänomene, wodurch magnetische Skyrmionen für zukünftige spintronische Technolo-
gien und Speichermedien besonders geeignet sind. Magnetische Skyrmionen wurden bis-
lang in Heterostrukturen, ultradünnen Schichten und in verschiedenen Sorten von chiralen
Magneten nachgewiesen.

Magnetokristalline Anisotropien bestimmen in diesen Systemen die bevorzugte Propaga-
tionsrichtung der helimagnetischen Ordnung, welche den Grundzustand darstellt. Legt man
ein Magnetfeld an, findet ein Phasenübergang in die sogenannte konische Phase statt. Dabei
drehen sich die Helices kontinuierlich bis sie in Richtung des angelegten Magnetfeldes pro-
pagieren, wodurch die von Symmetrien des Systems bedingte Entartung aufgehoben wird.
Professor Dr. Markus Garst führte eine theoretische Analyse der Rolle von magnetokristalli-
nen Anisotropien bezüglich eines solchen Übergangs in MnSi durch. In MnSi propagieren
die Helices im Nullfeld entlang den 〈111〉 kristallographischen Achsen des Systems. Pro-
fessor Garst identifizierte drei unterschiedliche Fälle, die von der Richtung des Magnetfelds
bezüglich der Kristallstruktur bestimmt werden. Diese theoretischen Vorhersagen wurden
durch ausführliche Messungen der Magnetisierung und der ac-Suszeptibilität, sowie mit Hilfe
von Kleinwinkelneutronenstreuung überprüft. Experimentelle Ergebnisse und theoretische
Vorhersagen stimmen sehr gut überein. Die Unstimmigkeiten, die beobachtet wurden, kön-
nten durch die Entstehung von topologisch nicht-trivialen Defekten an den Grenzen zwischen
Domänen erklärt werden. Ihre Eigenschaften sind bislang unbekannt und könnten interes-
sante neue Physik offenbaren.

Die ersten theoretischen Studien zu Skyrmionen in MnSi erwarteten, dass eine zusät-
zliche uniaxiale Anisotropie notwendig sein würde, um diese magnetischen Texturen zu sta-
bilisieren. Mit der Entdeckung des Skyrmionengitters in MnSi wurde klar, dass thermische
Fluktuationen ausreichend sind, um die Skyrmionen in einem kleinen Temperaturbereich an
der Grenze zum Übergang zum paramagnetischen Bereich zu stabilisieren. Die Effekte von
zusätzlichen uniaxialen Anisotropien wurden anhand von ac-Suszeptibilität Messungen und
Kleinwinkelneutronenstreuung mit Hilfe einer maßgefertigten, uniaxialen Druckzelle unter-
sucht. Legt man ein Magnetfeld senkrecht zur uniaxialen Druckachse an, wird der stabile
Bereich des Skyrmiongitters bezüglich tieferer Temperaturen erweitert. Legt man das Mag-
netfeld stattdessen parallel zur uniaxialen Druckachse an, wird die Skyrmion Phase unter-
drückt und die konische Propagation bevorzugt. Uniaxialer Stress in der Ordnung von ein
paar kilobar reicht aus um die Skyrmiongitter vollkommen zu unterdrücken.

Die Arbeit schließt mit der Diskussion einer zweite Skyrmion Phase in Cu2OSeO3 bei tiefen
Temperaturen unterhalb des Übergangs zum feldpolarisierten Bereich für Magnetfelder ent-
lang einer 〈100〉 Achse ab. Diese Phase wird von kubischen, magnetokristallinen Anisotropien
stabilisiert, die mit sinkenden Temperaturen stärker werden. Diese ist das erste Bespiel, in
dem zwei unabhängige Skyrmionen Phasen in einem Material beobachtet werden.
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In a late-night in 1980, at the high magnetic field laboratory in Grenoble, Klaus von Klitzing ob-
served for the first time that the Hall conductance of a two-dimensional electron gas at very
low temperatures and high magnetic fields takes specific values as a function of magnetic
field strength, resulting in a sequence of wide plateaus [1]. The same values were measured
for different sample shapes, and even different chemical compositions. Von Klitzing received
the Nobel physics prize just five years later for the discovery of the so-called integer quantum
hall effect (IQHE). David Thouless and colleagues recognized just two years after von Klitzing
measurements that topology was at the heart of the problem [2]. However, in the following
years, the IQHE was considered a somewhat special case, due in fact to the extreme experi-
mental conditions necessary to observe these phenomena. Two decades later experimental
studies of graphene reignited the subject of topologically driven states in two dimensional
systems, which led Charles Kane and Eugene Mele to theorize that graphene could show
topological characteristic without the presence of magnetic field, due to spin-orbit coupling,
where the role of the magnetic field is played by the spin of the electron, as had been pro-
posed by Haldane in work published during the 80s [3–5]. Graphene’s spin-orbit coupling
is not strong enough to result in topological states, but soon thereafter Shou-Cheng Zhang
and collaborators at the Stanford University proposed new topological systems, these were
studied in the group of Laurens Molenkamp and the first so-called topological insulators were
confirmed [6, 7]. To date, topological materials fuel the study of new physical phenomena and
the imagination of researchers as to what kind of interesting new physics could be observed
in these systems. The study of Weyl semimetals and the use of topological states in quantum
computing is only a small part.

A different aspect of topology in physics is captured by topologically non-trivial magnetic
textures. These have drawn substantial scientific interest, as they are very promising in the
context of consumer low-power spintronic devices, due to their real space topological proper-
ties [8–10]. The type of non-trivial magnetic order most studied so far are so-called magnetic
skyrmions. First observed as lattices stabilized by thermal fluctuations in cubic chiral magnets
such as MnSi and FeGe, among others, skyrmions have now been identified in ultrathin films
and multilayers [11–13]. Their size ranges between a few nm and 100 nm, which makes them
very attractive for information storage devices, especially due to their increased stability, since
they cannot be continuously deformed into a trivial spin arrangement. Their non-trivial topol-
ogy also results in emergent electrodynamics resulting in an additional contribution to the
Hall effect, the so-called topological Hall effect, by which the electrons are deviated of their
trajectories due to the emergent magnetic flux of the skyrmion [14]. In turn, the skyrmion also
feels a force exerted by the electrons flowing through the sample, when the current exceeds
a critical value to unpin the lattice, this is referred to as the skyrmion Hall effect [15–17].

The electrical current densities necessary to set the skyrmion in motion are four orders of
magnitude smaller, than those required to move conventional domain walls in ferromagnets
[15]. This property makes skyrmions particularly interesting for race track memories, in which
the skyrmions would represent "1" bit and their absence would represent a "0" bit. To read the
information on the racetrack, bits are moved using electrical currents instead of moving the
reader, as is done in conventional hard drives. Hence, a skyrmion racetrack memory would
consume much less power, than one moving ferromagnetic domains [18, 19]. The particle-

1
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like nature of skyrmions could be exploited in new types of transistors and logic gates, as has
been demonstrated in micromagnetic simulations [20, 21]. Furthermore, skyrmion devices
have been proposed in the field neuromorphic computing, which attempts to implement the
brain’s ability to work on a large multitude of tasks in parallel and with low power consump-
tion [22]. The study of the interactions of skyrmions with light and other types of magnetic
structures, as well as with other topological excitations such as superconducting vortices and
Majorana fermions, promises new phenomena and exotic states of matter.

The stabilization of skyrmions is particularly important for the development of the devices
mentioned above. While the amount of materials able to host skyrmions keeps increasing,
these are mostly confined to temperatures well below room temperature and require finite
magnetic fields. This thesis studies the role of magnetic anisotropies in the phase diagrams
of cubic chiral magnets, a family that can host magnetic skyrmions and includes different
types of materials, such as metals and insulators. The experimental technique chosen is pri-
marily small-angle neutron scattering, which exploits the incommensurability and large lattice
constant of the skyrmion crystals, when compared with atomic lattices. The identification of
several coexisting phases is also possible by exploiting different experimental geometries,
without the need to change the experimental parameters such as temperature and field direc-
tion.

Chapter 1 gives a short introduction into magnetic interactions, topological magnetic order
and a compact overview of the research carried out in the last decade in the field of magnetic
skyrmions. Small angle neutron scattering and the specific large facility instruments used
are discussed in chapter 2. The effects of magnetocrystalline anisotropies on the transition
from the helical to the conical phase in MnSi are presented in chapter 3. Chapter 4 reports
the effects on the magnetic order in MnSi of introducing an additional uniaxial anisotropy by
means of a helium loaded uniaxial pressure cell. The recent discovery of a second skyrmion
lattice phase stabilized at low temperatures and magnetic fields just below the transition to
the field polarized phase is discussed in chapter 5. The thesis is concluded with a short
summary and outlook.



1
M AG N E T I C S K Y R M I O N S A N D TO P O L O G Y I N M AG N E T I S M

Technological applications of magnetism, and more specifically magnetic order, are ubiqui-
tous in modern everyday life. Most of these take advantage of ferromagnetic order, where
all spins of the system align in a preferred direction. Fridge magnets, computer hard drives,
small motors found in children toys, among many others, are examples of this. At the core
of magnetic order is the interaction between unpaired electrons, which results in correlated
behavior among large ensembles of particles. There are different types of interactions that
affect the resulting phenomena arising from these correlations. This thesis explores the obser-
vation of large topological non-trivial magnetic structures consisting of magnetic spin whirls
known as skyrmions, which originate from electron correlations. This chapter first reviews
different magnetic interactions, followed by an introduction to magnetic skyrmions discussing
their discovery as well as the research state of the art. The concept of topology, at the core of
the study of magnetic skyrmions, is then introduced. The chapter finishes by examining the
resulting emergent electrodynamics at the center of the technological potential of magnetic
skyrmions.

1.1 M AG N E T I C O R D E R A N D M AG N E T I C A N I S OT R O P Y

Consider the Coulomb interaction between two electrons and a fixed positive charge Ze, the
Hamiltonian reads:

H = H0(r1) +H0(r2) +
e2

4πε0|r1 − r2|
(1.1)

where H0 is the one electron Hamiltonian, given by:

H0 = − h̄2

2m
∇2 + V (1.2)

where V is the potential of the positive point charge. Note that this Hamiltonian is ignoring the
spin-orbit interaction. Electrons are fermions, thus their wave function must be antisymmetric.
This condition can be fulfilled by either an antisymmetric spin part and a symmetric spatial
component, resulting in a singlet state ΨS (S = 0), or by a symmetric spin part and an
antisymmetric spatial component, resulting in a triplet state ΨT (S = 1):

ΨS =
1√
2
[ψa(r1)ψb(r2) + ψa(r2)ψb(r1)] χS (1.3)

ΨT =
1√
2
[ψa(r1)ψb(r2)− ψa(r2)ψb(r1)] χT (1.4)

with ψa(r1) and ψb(r2) the state of the first and and second electron, respectively. One can
write an effective Hamiltonian to produce the same eigenvalues taking advantage that the
energy difference can be parameterized as a function of spin:

Ĥ =
1
4
(ES + 3ET)− (ES − ET)S1 · S2 (1.5)

3



4 M AG N E T I C S K Y R M I O N S A N D TO P O L O G Y I N M AG N E T I S M

with ES and ET the energies of the singlet and triplet state respectively, and S1, S2 the spin
states. The effective Hamiltonian consists of a constant term and spin dependent term, which,
together with the exchange constant J:

J =
ES − ET

2
=
∫

ψ∗a (r1)ψ
∗
b (r2)Ĥψa(r2)ψb(r1)dr1dr2 (1.6)

reads:

Ĥspin = −2JS1 · S2. (1.7)

Hence, since energy has to be minimized, the Coulomb interaction results in a preferred
alignment of the spins of both electrons, either parallel or antiparallel, depending on the sign
of the exchange constant. This is called the exchange interaction.

The spin Hamiltonian above can be readily derived for a system of two electrons, see, for
example, [23, 24]. The generalization to a system of N particles, however, is quite complex.
Instead, different models can be used to approximate the interactions in an extensive system,
such as the Heisenberg model with the Hamiltonian

Ĥ = −∑
ij

JijSiSj. (1.8)

Note that the spins here are usually some relevant sum over the interacting atoms and the
factor of 2 is recovered due to double counting.

There are other types of exchange interactions which include an intermediary between
the spins. A typical example is superexchange, where the interacting magnetic ions couple
through a non-magnetic atom that sits in-between. Allowing the electron to hop between the
magnetic ions reduces the energy of the system and typically favors antiferromagnetism, i. e.,
antiparallel magnetic ordering. In metals, the conduction band electrons mediate the indirect
exchange, also known as the RKKY interaction.

A different type of exchange plays a vital role in the materials studied in this thesis, the
so-called Dzialoshinskii-Moriya interaction, with the Hamiltonian

ĤDM = D · S1 × S2. (1.9)

Proposed first by Dzialoshinskii on a phenomenological basis [25], it was derived by Moriya
by expanding the theory of superexchange interaction to include spin-orbit coupling [26]. It is
also known as the antisymmetric exchange since D vanishes when the crystal has inversion
symmetry. This interaction drives spins to align perpendicular to each other in a plane per-
pendicular to D, often this results in small deviation of the spins from the order dictated by
stronger terms in the Hamiltonian, e. g., in some antiferromagnets it leads to a small canting
of spins perpendicular to the propagation vector resulting in so-called weak ferromagnetism,
for example in insulating and superconducting cuprates [27].

Magnetocrystalline Anisotropy

The Heisenberg Hamiltonian presented above is isotropic, i. e., there is no preferred space di-
rection in which the spins should point. Only their relative direction to each other is important.
Anisotropic effects break this symmetry. Their contribution to the Hamiltonian is usually small
but essential for technological applications. In their absence, a magnetized state defined by
its direction, would not be very stable since it would be very sensitive to small changes in the
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magnetic field direction. One can define anisotropic contributions as the energetic differences
when magnetizing a given compound along different crystallographic directions. In the case
of ferromagnets, they manifest, among others, in the saturation fields. These tend to be very
small when applied along the preferred axis of magnetization, also called the easy-axis of the
system and can become quite large when the magnetic field points along its hard-axis.

Typically we observe anisotropy concerning the crystalline structure of the object or its
shape. The former is known as magnetocrystalline anisotropy and its mainly a consequence
of spin-orbit interaction, the latter is known as shape anisotropy, and its microscopic origin
lies in dipole-dipole interaction. Spin-orbit coupling is a relativistic phenomenon, and it is
explained briefly below.

Consider an electron orbiting around a positive charged nucleus. In the frame of reference
of the electron the nucleus appear to be orbiting around it, resulting in a magnetic field:

B =
E × v

c2 (1.10)

with

E = −∇V(r) = − r
r

dV(r)
dr

(1.11)

the electric field of the nucleus at the electron and V(r) the related potential energy. For a
hydrogen like atom of charge Ze the electric field E reads:

E = − Zer
4πε0r3 . (1.12)

The interaction of the electron spin with this magnetic field is captured by the Hamiltonian:

Hso = −1
2

µs · B =
gµ2

BZ
4πε0r3 S · L (1.13)

with the angular momentum of the electron h̄L = mer× v, the magnetic moment µs = gµBS
and the Bohr magneton µB. The factor of one half is a relativistic correction called the Thomas
precession [28] arising from the fact that the reference frame is rotating in the opposite direc-
tion, for an elegant derivation from the Dirac equation please review [23]. Spin-orbit coupling
can be interpreted as a coupling between the electron and its orbital motion, which is in turn
coupled to the crystal lattice, hence the anisotropic contribution to the Hamiltonian.

Instead of considering all microscopic contributions to the anisotropy, one can use a phe-
nomenological approach base on the spatial symmetry of the system. In the case of cubic
crystals there are three equivalent directions which can be defined as the x,y, and z axes.

Consider a system with magnetization M. The magnitude of M is not relevant for the
calculation, only its direction, hence the anisotropic free energy contribution is expanded as
a function of the components of a unit vector m = M

|M| , mx, my and mz. The anisotropic
energy as a function of the lowest order combination of m components that satisfy the cubic
symmetry reads

Fa = K0 + K1

(
m2

xm2
y + m2

ym2
z + m2

zm2
x

)
+ K2m2

xm2
ym2

z + ... (1.14)

Note that a term of the form m4
x + m4

y + m4
z is also compatible with the symmetry operations,

however it is not independent of the combinations presented above, since

m4
x + m4

y + m4
z = 1− 2

(
m2

xm2
y + m2

ym2
z + m2

zm2
x

)
. (1.15)
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One can ignore K0 since it represents an isotropic contribution. If K2 = 0, the situation is
fairly simple. For K1 > 0 the preferred axis of magnetization are the main crystallographic
directions 〈100〉, i. e., there exist six equivalent energy minima, the space diagonals are hard
axes, and the 〈110〉 axes are saddle points and considered medium-hard axes, which is
the case of body-centered-cubic iron. If K1 < 0 then the situation is turned around, the
space diagonals 〈111〉 become easy axis resulting in eight equivalent energy minima, while
the main axes become energetically unfavorable. Taking into account contributions from the
sixth order term, i. e., K2 6= 0, six different scenarios are possible depending on the relative
strength and sign of K1 and K2, and even the face diagonals 〈110〉 can become the easy axis
of the system.

The results of the study on the role of magnetocrystalline anisotropy in the phase transitions
and magnetic phase diagram of cubic chiral magnets are addressed in chapters 3 and 5
respectively.

Stress anisotropy

The magnetoelastic coupling between spins and orbital configuration may result in a distor-
tion of the position of the ions if it results in a net reduction of the free energy, also known
as magnetostriction. Similarly, a deformation of the lattice by the application of stress σij
might affect the magnetic order. Consider the case of uniaxial stress σ applied along γ, the
contribution to the free energy from the magnetoelastic coupling writes

Fσ = −3
2

λ100σ ∑
i

m2
i γ2

i − 3λ111σ ∑
i 6=j

mimjγiγj (1.16)

with the magnetostriction constants λ100 and λ111 defined by

λ100 =
−2
3

B1

c11 − c12
λ111 = −1

3
B2

c44
(1.17)

where B1 and B2 are the magnetoelastic coupling constants, while c11, c12 and c44 are the
crystal elastic stiffness constants. The stress anisotropic energy depends on the direction of
the magnetization. In case stress is applied along the 〈100〉 or 〈111〉, the contribution to the
free energy simplifies to

Fσ = const. +
3
2

λ100σ sin2 θ (1.18)

and

Fσ = const. +
3
2

λ111σ sin2 θ, (1.19)

respectively, with θ the angle between the axis of magnetization and the stress axis, i. e.,
m · γ = cos θ. Both of these cases describe a uniaxial anisotropy, which, depending on the
sign of λσ, can be either easy-axis or easy-plane.

A study of the effects of uniaxial pressure on the magnetic phase diagram of MnSi is
presented in chapter 4.

1.2 M AG N E T I C S K Y R M I O N S

The different contributions mentioned above result in a arrangement of different types of
magnetic order, some of these are collinear, such as ferromagnetism, antiferromagnetism,
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Figure 1.1: (a) - (d) Schematic representations of different types of magnetic order: ferromagnetic,
antiferromagnetic, helical and cycloidal order. (e) Single Néel Skyrmion. (f) Néel Skyrmion
lattice.

and ferrimagnetism, others are non-collinear, for example, spirals, helices, helicoids, and the
skyrmion crystal, among others. This thesis focuses on the study of non-collinear forms of
magnetic order, such as magnetic helices and skyrmion crystals, represented schematically
in figure 1.1.

The name skyrmion is derived from the work of Tony Skyrme in the 1960s. Skyrme recog-
nized that non-trivial topological solitons of pion fields can describe nucleons. Thus explaining
the significant lifetime of particles as a consequence of their topological characteristics [29–
31]. Over time, the name skyrmion has been used to refer to localized and non-trivial solu-
tions in different areas of physics, from particle physics to condensed matter physics [32–
37].

Magnetic skyrmions were first proposed in 1989 by Bogdanov and Yablonskii as possible
ground state solutions in a zero temperature model for magnetic materials of the crystal-
lographic classes Cn, Cn,ν, Dn, S4, or D2d with n = 3, 4, 6 [38]. In collaboration with Hubert,
Bogdanov then calculated the strength of the effective anisotropic coupling constants in order
for a skyrmion lattice to become stable, and identified the cubic systems MnSi, FeGe, as well
as the families Fe1−xCoxSi and Mn1−xCoxSi, as promising candidates when an easy axis
is superimposed externally [39]. In subsequent works, through a collaboration with Rößler,
Bogdanov studied the possibility of skyrmion lattices in thin films and multilayers, driven by
the lack of inversion symmetry at the interfaces and surface of these systems [40]. Bogdanov,
Rößler and Pfleiderer use the name skyrmion for the first time in a 2006 article, where the
skyrmion model was extended to consider a magnetization with variable amplitude, motivated
by the magnetization of metals, such as the cubic magnet MnSi [41].
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Figure 1.2: (a) Magnetic phase diagram of MnSi consisting of a helical phase at low fields and a con-
ical phase in the largest portion of the phase diagram. The skyrmion lattice is observed
within the A-phase. (b) Neutron scattering pattern obtained for a magnetic field applied
parallel to the incoming neutron beam along a random crystallographic direction. (c) Differ-
ence in energy with respect to the conical phase, without corrections from thermal fluctu-
ations. (d) Resulting theoretical phase diagram when thermal fluctuations are considered,
only results below the dashed line are reliable. Figures adapted from [11].

It was thus surprising when in 2009 the first skyrmion lattice was identified with the help
of small-angle neutron scattering (SANS) in the so-called A-phase of MnSi, a small pocket
in the magnetic phase diagram at medium magnetic fields, relative to the transition to the
field polarized phase, closed to the helimagnetic transition temperature [11], cf. figure 1.2 (a).
In the past, the experimental observations within the A-phase were interpreted as a sponta-
neous discrete reorientation of the helical propagation direction [42, 43]. Previous SANS ex-
periments were carried out with a magnetic field applied perpendicular to the neutron beam,
since the conical propagation lies parallel to the former and would not be observable in a
different configuration. Hence, the scattering pattern showed only two of the propagation vec-
tors corresponding to the skyrmion lattice. Mühlbauer et al. carried out their experiment with
a magnetic field parallel to the neutron beam, resulting in a six-fold pattern of propagation
vectors, originating from a hexagonal skyrmion lattice depicted in figure 1.2 (b).

As mentioned above, MnSi is a cubic crystal. Thus, from the models studied, an additional
uniaxial anisotropy was expected in order to stabilize the skyrmionic state. This discrepancy
is resolved by considering the free energy

exp−G =
∫

DM exp(−F[M]) (1.20)

with F[M] the Ginzburg Landau energy functional

F[M] =
∫

d3r
[
r0M2 + J (∇M)2 + 2DM · (∇×M) + UM4 − B ·M

]
. (1.21)
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Fe Ir

Side
view

Figure 1.3: (a) Real space image of the skyrmion lattice in Fe0.5Co0.5Si obtained via Lorentz TEM. (b)
Fast fourier transformation pattern from the real image in (a). (c) Image of the in-plane
component of the magnetization in the skyrmion lattice, the colors represent the differ-
ent direction of the in-plane component. (d) Image of the Fe monolayer on Ir(111). (e)
Fourier transformation of the image in (a), the Fe atoms order hexagonally. (f) Schematic
representations of the nanoskyrmions observed in the monolayers, the cones represent
the Fe atoms and are pointing in the magnetization direction, note that the skyrmions are
arranged on a square lattice. (a) - (c) adapted from [44], (d) - (f) adapted from [12].

This mean-field free energy of the skyrmion lattice is consistently higher than that of a
conical magnetic order, as shown in figure 1.2 (c). By including the leading correction arising
from Gaussian fluctuations to mean-field theory

G ≈ F [M0] +
1
2

log det
(

∂2F
∂M∂M

) ∣∣∣∣
M0

(1.22)

Mühlbauer et al. were able to show that thermal fluctuations stabilized the skyrmion lattice
with respect to the conical state [11], without the need of an additional uniaxial anisotropy.
Figure 1.2 (d) depicts the resulting phase diagram. The discovery of the skyrmionic state
in MnSi was followed by the real space imaging of the novel magnetic structure by Yu et al.,
using Lorentz force transmission electron microscopy on a thinned sample of Fe0.5Co0.5Si[44],
cf. figure 1.3 (a) - (c) and the observation of magnetic skyrmions in Fe monolayers grown
on Ir(111) by spin-polarized scanning tunneling microscopy [12]. The latter represents an
entirely different avenue of stabilization of skyrmions. As mentioned above the DM interaction
originates from a lack of inversion symmetry, which in MnSi and Fe0.5Co0.5Si is embedded in
the crystal structure. In the ferromagnetic thin films, the DM interaction arises from the break
of inversion symmetry at the interface and the strong spin-orbit coupling between the heavy
metals [12]. The result is a ground state below T = 30K consisting of a skyrmion lattice
phase, cf. figure 1.3 (d) - (f).

The first potential technological applications for magnetic skyrmions were proposed just
a few years after their discovery. Albert Fert and collaborators proposed using skyrmions in
a racetrack memory [18], introduced by Stuart Parkin years before [45]. Logic gates, varia-
tions of the racetrack ideas and new spintronic devices have followed since [19–21]. These
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Figure 1.4: (a) Magnetic phase diagram of Co8Zn8Mn4. The thermodynamical stable skyrmion phase
sits around room temperature and at moderate magnetic field values [46]. (b) In plane
skyrmions proposed as the magnetic order in MBE grown MnSi thin films for fields applied
in plane [47]. (c) Concurring interpretation of experimental data in MnSi thin films. Instead
of in plane skyrmions, discrete changes in the helical propagation length are observed
[48].

technologies demand the stabilization of individual small skyrmions at room temperature and
zero magnetic field, efficient manufacturing, and a process which allows tailoring materials
for specific characteristic in the resulting magnetic structures.

These requirements have led a large portion of the scientific community to focus on multi-
layered systems, stacking magnetic and non-magnetic heavy metals thin films, for example,
a combination of Ir, Co, and Pt [13]. By adjusting the number of layers and their thicknesses,
the size of the skyrmions and the observation of lattices or individual quasiparticles can be af-
fected. Up to the writing of this thesis, however, the right combination of parameters to obtain
the desired type of skyrmions has not been found. In the case of memory storage devices, the
skyrmion should be smaller than 10 nm [8]. At the moment, the smallest skyrmions observed
in multilayer samples have a diameter of ∼ 30 nm and most other materials host skyrmions
of a few hundred nanometers. A different section of the research community, led mainly by
the work directed by Yoshinori Tokura and collaborators, is searching for bulk systems that
might be able to host skyrmions at room temperature. Their search bear fruit with the study
β-Mn-type CoxZny Mnz (x + y + z = 20) alloys, which show a skyrmion lattice as a thermody-
namic stable phase at (Co8Zn8Mn4 [46]) and above room temperature (several compounds
[49, 50]), cf. figure 1.4 (a). The wavelength of the skyrmion lattice is of the order of ∼ 125 nm,
which is deemed too large for the development of novel technology. In contrast to the other
cubic materials studied before, which have a P213 space group, this material family crystal-
lizes in either P4132 or P4332 space groups, thus expanding the search avenues for systems
with the right conditions for the development of skyrmionic devices.

Skyrmion hosting cubic chiral magnets share the same universal phase diagram, consist-
ing mainly of a helical magnetic order at low fields, a conical phase at medium fields and,
as mentioned above, a small pocket where the skyrmion crystal is stable. Already the first
experiments by Yu realized that the region of stability of the skyrmion lattice expanded dra-
matically as a function of sample thickness [44]. This development, albeit observed at low
temperatures, was auspicious for the prospect of skyrmion based spintronics, as one would
like to reduce the amount of material necessary to construct any such devices. Hence, dif-
ferent groups soon pursued the study of epitaxially grown samples of cubic chiral magnets.
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Figure 1.5: Topologically a donut and a coffee cup are equivalent, introducing a space to hold your
donut in the cofee mug, does not change its homotopy. However a coffee in the shape of a
donut (important is the whole in the middle) does not belong to the same homotopy group
as the other three.

Early in this effort, the observation of skyrmions in thin samples if MnSi was reported [51],
this claim was disputed by Monchesky and collaborators, at the same time as they published
a series of works proposing discrete helicoid transitions and in-plane skyrmions for magnetic
fields applied parallel to the thin film, and a pure conical phase for fields perpendicular to the
thin film [47, 52–54], these are in part depicted in figure 1.4 (b) and (c). Yokouchi and collab-
orators interpreted signals measured in a planar-hall effect configuration as arising from the
skyrmion lattice phase [55], while Wiedemann et al. see no evidence of skyrmions, instead,
confirming the observations of the Monchesky group, regarding helicoids and a pure conical
phase for out-of-plane magnetic fields [56].

In FeGe, the situation seems to be more explicit. Thin epitaxially grown samples host
skyrmions. With increasing thickness the skyrmion phase disappears [57, 58], compatible
with experimental results from small-angle neutron scattering on a stack of thin films [59]. Ad-
ditionally, so-called chiral bobbers [60], localized particle-like objects, that can be visualized
as skyrmions truncated by a Bloch-point close to the surface, were observed in thick FeGe
epitaxially grown films [61].

Only ten years after their first experimental observation, a large amount of magnetic skyrmions
hosting materials have been identified, including metals, semiconductors, and insulators, with
critical temperatures ranging from a few kelvin up to above room temperature. Their radius
span a couple of lattice sites up to a few micrometers and the geometries of the samples
range from thin films a few nanometers in thickness to samples several cubic millimeters in
volume. Skyrmions have been proposed for unconventional computing and as well as spin-
tronic devices, and their interactions with other topological phenomena, as well as different
types of magnetic order, promise new rich and exciting states of matter.

1.3 TO P O L O G I C A L M AG N E T I C O R D E R

The main reason behind the broad interest in these spin swirls is mainly their non-trivial
topology and the associated emergent electronic properties. Its non-trivial topology implies
that skyrmions cannot be continuously deformed into a field polarized configuration. Such
considerations are at the center of topology, the study of the properties of topological spaces
that are invariant under continuous transformation [62]. In the present case, the topological
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Figure 1.6: Combing a hairy sphere results in a cowlick at its poles. In contrast combing a hairy torus,
yields a smooth stylish surface.

space is the spin texture. In order to provide the reader with a better grasp of essential
concepts related to topology, such as homotopy groups and winding numbers, the following
paragraphs briefly introduce them. This section ends with a short discussion of emergent
electrodynamics, which arise as a consequence of the skyrmions’ topological properties.

From a topological point of view, objects one would think are very different may be equiv-
alent. A prominent example is the transformation of a doughnut into a coffee cup, cf. figure
1.5. Another example is an attempt to comb the hairs on a hairy ball so that they all lay flat
on the surface, which is impossible since there will always be a "cowlick", as was proven by
Brouwer in 1911 [63]. Note that a torus, for example, can be combed without a "cowlick", this
is illustrated in figure 1.6. The existence of the "cowlick" after combing the hairs is a property
which remains invariant under continuous transformation.

The invariant properties studied in topology are called topological equivalences. Such an
equivalence is homotopy. Consider mappings f from a 1-sphere into the order parameter
space X, S1 → X, described by loops ending and starting at the same point x0. A homotopy
is the continuous deformation of a mapping f into a mapping g. If there exists such a deforma-
tion then f and g are topologically equivalent and have the same homotopy class, [ f ] = [g].
The homotopy class of the identity [e] defines as topological trivial all homotopy classes for
which it holds [ f ] = [e], i. e., one can reduce the mapping f to a point such that f ∼ 0. In
the context of magnetic textures, this class of the identity is the uniformly magnetized state.
These mappings are also referred to as a null-homotopic [64].

In order to obtain a group structure for a set of homotopy classes one takes advantage of
the concatenation operation of loops with the same base point x0, [ f ] ◦ [g] ≡ [ f ◦ g], which
results in a new mapping by following first the loop f and then g. For S1 → X this group is
called "the first homotopy group" of X at x0 and is denoted π1(X, x0). If this group is Abelian,
which is the case for the relevant cases of magnetic order, there is an isomorphism between
first homotopy groups with different base points, i. e., π1(X, x0) ∼= π1(X, y0). Thus, there
exists an abstract first homotopy group π1(X), whose elements correspond to classes of
unbased homotopic loops. Similarly, for the classification of point defects in three dimensions,
one maps a 2-sphere into order parameter space X. As before, if this sphere cannot be
reduced to a point, then the defect is topologically non-trivial. The homotopy classes of 2-
spheres into X correspond to the second homotopy group π2(X).
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Figure 1.7: Winding number for different spin orders in 2D. The direction of the spin around the circle
is shown in the first row, while the second row is the mapping into order parameter space.
Adapted from [65] page 12.

In general f maps a base manifold M to a target manifold N. In the case of smooth mag-
netic textures, M is given by real space Rm. The mapping must include infinity since the
edge of the sample breaks the smoothness condition. Using a stereographic projection Rm

is mapped onto S2 and infinity is mapped to a single point, resulting in the boundary condition
m∞ = const. In the case of single topological defects, the base manifold is a m-sphere, en-
closing the former. The order parameter space, i. e., the target manifold N, may correspond
to Ising spins S0 which is an easy-axis geometry, S1 for easy-plane spins and S2 for Heisen-
berg, or isotropic spins. Hence, the homotopy group is given by πm(Sn). If both manifolds
have the same dimensions and n ≥ 1, then the homotopy group becomes:

πn(Sn) ∼= Z (1.23)

and is thus Abelian. Each homotopy class is associated with an integer. The latter is given
by the winding number w and essentially represents how many times one can wrap the base
manifold around the target manifold, see figure 1.7 for examples of winding numbers for dif-
ferent spins configurations in two dimensions. Consider now, for example, π2(S2), i. e., the
mapping of a 2-sphere to a 2-sphere. Imagine wrapping a plastic bag around a ball. By twist-
ing the plastic bag after each wrap, one increases the number of times it can go over the
ball. The winding number is counting those twists which may have one of two orientations
and twists of different orientations cancel each other through deformation. A finite winding
number characterizes non-trivial topological base-manifolds and can be found for homotopy
groups πn(Sn). Magnetic textures, or point defects, of different winding numbers cannot be
continuously deformed into each other attaining so-called topological stability associated with
an infinite energy barrier. The barrier becomes finite due to the discreteness of the underly-
ing field. Furthermore, the anisotropies in a real system are finite. Thus, while it might be
suitable to describe a configuration in a reduced order parameter space, in reality, the spins
are not constrained to it. Consider, for example, a spin vortex. Its target manifold is initially
described by S1 in which it is a non-trivial spin configuration. However, due to the finiteness
of the easy-plane anisotropy, its actual spin configuration space is S2. Hence, it is possible to
"unwind" the vortex through the "escape via the third dimension", i. e., applying a magnetic
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Figure 1.8: Schematic representation of different magnetic skyrmions and the associated winding
number.

field perpendicular to it will lead to a reorientation of the spins out of the plane when reaching
a critical magnetic field.

The winding number of magnetic textures with target space S2 is given by:

w2
S =

1
4π

∫
M

m · (∂1m× ∂2m) dx1dx2 (1.24)

where m is the normalized magnetic texture and M is the base manifold, which is two-
dimensional and can be parameterized by two variables x1 and x2 (for a thorough derivation
see [66]). If x1 and x2 are cartesian, the winding number is often called the "skyrmion num-
ber". As mentioned before, a skyrmion number of 0, denotes a magnetic configuration which
can be deformed into the uniformly polarized state. Each finite winding number has different
representations which describe essentially the same object. Note that the sign of the winding
number, while not strictly defined, is of relevance when comparing magnetic textures, since
objects of different sign and same absolute value |w|, would mutually annihilate.

The skyrmions discussed above have a winding number w = −1, and the community
differentiates between Néel-type and Bloch-type, the former is the stereographic projection
of a spin anti-hedgehog, while the latter the one of a combed anti-hedgehog. The sense
of rotation of the skyrmion, also known as helicity, does not affect the winding number of
the skyrmion, changing the polarization direction of the background leads to a change in
sign. Antiskyrmions were recently experimentally observed in Heusler compounds [67], and
different types of topologically trivial and non-trivial magnetic bubbles have been studied as
an alternative to avoid some undesirable consequences of non-trivial topology [68]. Note
that in the community, the exact definition of a skyrmion is not strict. The most common
approach is to regard as bubble skyrmions magnetic textures which appear simultaneously
with both left-hand and right-hand chirality. Different types of magnetic structures are depicted
schematically in figure 1.8.

1.4 E M E R G E N T E L E C T R O DY N A M I C S

Magnetic skyrmions have a significant potential for novel spintronic and electronic devices
originating, especially, in spin-transfer torques, that is, the transfer of momentum from the itin-
erant electrons to the magnetic structure as the former passes through it. The forces exerted
by the electron consist of a gyrocoupling, which depends on the non-trivial topology of the
skyrmion, and a dissipative force. They compete against pinning due to defects, which break
the translational symmetry. If the current velocity is large enough, one can neglect the pinning
forces and, in the limit of small damping, the velocity of the skyrmions is about the same as
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that of the electrons [69]. Hence, there is a critical current which leads to the motion of the
skyrmion.

Jonietz et al. first observed these spin-transfer torque effects in a small-angle neutron scat-
tering experiment [15]. An additional thermal gradient results in a spin density gradient, thus
the forces on the lattice vary across the sample resulting in a rotation of the skyrmion crystal
which depends on the directions of the gradient and the electric current. The critical currents
necessary to put the skyrmions in motion are 106 Am−2, about four orders of magnitude
smaller than those measured before in the motion of magnetic domain walls in ferromagnets
(1010 Am−2).

The spin-transfer torque on the skyrmion lattice corresponds to a force from the skyrmion
lattice on the electron. The effects of this force can be analyzed using the Schrödinger equa-
tion of an electron traversing a magnetic texture m. Due to the exchange interaction, the
electron spin would prefer a parallel alignment with the local magnetization field. In an adia-
batic approximation, using a local base to diagonalize the coupling to the magnetic texture,
emergent gauge fields arise. The skyrmion lattice shows no variation as a function of the z
component. Thus, the corresponding emergent magnetic and electric fields read:

Bz
e = −

2πh̄
e

ρtop (1.25)

Eα
e =

2πh̄
e

ε0αβ jtop
β (1.26)

with the topological charge and current densities, jtop
β and ρtop, which are defined by:

ρtop =
1

4π
m
(
∂xm× ∂ym

)
(1.27)

jtop
α =

1
4π

ε0αβm
(
∂βm× ∂tm

)
(1.28)

where ε0αβ is the totally antisymmetric tensor with ε0xy = 1.
Integrating the topological charge density over a primitive magnetic unit cell yields unity,

hence each magnetic unit cell holds effectively one skyrmion. If the magnetization holds
no singularities the topological charge and current density are related through a continuity
equation:

∂tρ
top + ∂α jtop

α = 0 (1.29)

with α = x, y. This conservation law can be expressed using the emergent fields:

∂tBe = −∇× Ee. (1.30)

The emergent magnetic field ~Be deflects the electron of its path, in a manner described by a
fictitious Lorentz force

F = −evs × Be. (1.31)

Therefore, there is an additional contribution to the Hall effect, called the topological Hall
effect. It was first measured in MnSi, where an increase in the Hall resistivity was observed
when the applied field and sample temperature where within the regime of the skyrmion
crystal phase (see figure 1.9 (a)), which is also related to the formation of a Non-Fermi liquid
under hydrostatic pressure [14, 70–72]. The value of the topological hall effect is given by:

ρtop
xy = PR0Bz

e (1.32)
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Figure 1.9: (a) Additional contribution to the hall effect in MnSi within the A-phase arising from the
deviation of the electron path when traversing a skyrmion due to its topology [14]. (b)
Schematic representation of the emergent fields associated with the skyrmion motion [9].
(c1) -(c2) Hall resistivity as a function of dc current measured in MnSi. Outside of the
A-phase no change is observed as there are no skyrmions that could flow. Within the A-
phase there is a reduction in the Hall resistivity associated with the motion of the skyrmions
and the resulting emergent electrical field [17].

with the Hall constant R0 and the effective spin polarization ratio P. The topological charge
density determines the value of the emergent magnetic flux. Hence, for a static skyrmion
crystal, it amounts to a single flux quantum 2πh̄

e per magnetic unit cell. In a semiclassical
picture, the emergent magnetic field can be understood as a Berry phase which the electron
picks up in his trajectory through the skyrmion while its spins realign adiabatically with the
local magnetization direction. This Berry phase is in real space. It is possible to collect a Berry
phase in momentum space as well, which is the origin of the anomalous Hall effect [73]. The
motion of the electron results in a skyrmion crystal flow if the current velocity is high enough,
giving rise to the emergent electric field discussed above. This motion of the skyrmion crystal
results in a suppression of the topological hall effect [17], referred to as the skyrmion-flow Hall
effect, akin to the flux-flow Hall effect in type-II superconductors [74], cf. figure 1.9 (c1) and
(c2).

The quantized emergent magnetic flux demands that emergent magnetic monopoles, also
known as Bloch points, mediate the creation and annihilation of skyrmions. Consider for
clarification the merging of two skyrmions mediated by a monopole. At the beginning of the
merging process, we have two units of quantized flux, by the end of it, only one flux quantum
remains. Hence the monopole mediating the melting process has to carry a negative quantum
flux. There are other processes to annihilate a skyrmion. The spontaneous formation of an
antimonopole - monopole pair in the middle of the skyrmion can lead to its deletion as both
monopoles traverse it and leave the sample at the surface. Milde et al. obtained the first
experimental evidence of these processes by using magnetic force microscopy to study a
sample of Fe0.5Co0.5Si[75]. Further studies of the lifetime of skyrmions have been carried out
recently, revealing that entropy limits the so-called topological protection and how controlled
doping can enhance the lifetime of metastable skyrmions [76, 77].
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As it was mentioned above, the following chapters address the role of anisotropies in the
phase diagram of cubic chiral magnets and mainly the stabilization of skyrmion lattices. The
primary experimental method utilized in these studies is small-angle neutron scattering, intro-
duced in chapter 2. Chapter 3 discusses the transition from the helical to the conical phase
in MnSi and the different phase transitions originating from the magnetocrystalline anisotropy.
Chapter 4 presents the manipulation of the skyrmion lattice phase by introducing additional
anisotropy with uniaxial pressure. Finally, the chapter 5 presents the first observation of two
separate skyrmion phases in any system studied so far.





2
I N T R O D U C T I O N TO S M A L L - A N G L E N E U T R O N S C AT T E R I N G

The magnetic textures introduced in the previous chapter are typically between a few nm and
at most a couple of µm in size. Most of the experimental techniques used to study skyrmions
are well suited for one part of this range but not for all of it. Real-space microscopy is more
suited for structures towards the larger size end of the spectrum, while small-angle neutron
scattering (SANS) can deal with skyrmions towards the smaller sizes. Additionally, SANS can
also be combined with other types of physical probes, thanks to the physical characteristics
of neutrons, such as their low probability of interaction. Hence, most of the data presented
in this thesis are the result of SANS experiments. This chapter gives a brief and incomplete
introduction to neutron scattering with particular focus on magnetic scattering, finishing with a
description of small-angle neutron scattering instruments and typical resolution capabilities.

2.1 S C AT T E R I N G I N T H E S T U DY O F C O N D E N S E D M AT T E R

In 1912 Max von Laue and collaborators delivered direct proof of the microscopic arrange-
ment of atoms in crystals when they observed and interpreted x-rays interference patterns
after being scattered from a copper single crystal [78]. Much of our understanding of the
microscopic structure of condensed matter results from x-ray diffraction. X-rays, however, in-
teract strongly with the electron cloud of the atoms. Hence, the probability of a scattering
process increases with the atomic number, reducing penetration. Thus, the observation of
light elements, such as hydrogen, in samples which include substantially heavier atoms is
challenging. The discovery of the neutron by James Chadwick in 1932 expanded the possibil-
ities of scattering in the study of condensed matter [79]. In contrast to x-rays, neutrons interact
with the atoms mainly by the strong force interaction and the probability to be scattered by
a specific nucleus depends on its internal structure. This results in substantial varying in-
teraction probabilities for atoms and isotopes of similar atomic number allowing to separate
the scattering of hydrogen from deuterium, for example. Furthermore, the neutron carries a
magnetic moment and interacts with the spin or orbital moment of unpaired electrons via the
dipole-dipole interaction, resulting in a contribution of comparable magnitude as the nuclear
scattering.

The main issue with neutrons is their availability. Research reactors based on nuclear fis-
sion were the first source of free neutrons needed for the study of condensed matter. From
the start, there was a synergy between neutron production and the study of the properties of
matter. The former is exceptionally efficient when the neutrons from the fission are moderated
into thermal neutrons, which means their kinetic energy is about the same as the thermal en-
ergy at room temperature, i. e., ∼ 25meV. Thermal neutrons have a wavelength of about the
same size as typical distances between atoms in solids, and their energy is in the same range
as that of dynamical processes in crystals. Thus, they are very well suited for their study.

The interaction of a neutron with the scattering system is very weak and represents only
a small perturbation of the latter, leading to a transition from one quantum state to another,
but leaving the nature of the state unchanged. Hence the differential scattering cross-section
(dσ/dΩ)λi→λ f , which represents the sum of all processes that result in a transition of the
scattering system from state λi to λ f , while the state of the neutron changes from ki to

19



20 I N T R O D U C T I O N TO S M A L L - A N G L E N E U T R O N S C AT T E R I N G

Figure 2.1: Schematic representation of the scattering process. The incoming neutron beam with
wavevector ki is scattered into the solid angle dΘ with wavevector k f .

k f , can be evaluated using Fermi’s golden rule, cf. figure 2.1. The derivation below follows
primarily the one given by G. L. Squires in [80].

The differential cross-section is defined as

dσ

dΩ
=

number of neutrons scattered per second into dΩ
ΦdΩ

, (2.1)

with Φ the incident neutron flux, the product of neutron density and velocity . Thus:

dσ

dΩ

∣∣∣∣
λi→λ f

=
1
Φ

1
dΩ ∑

k f

Wki ,λi→k f ,λ f (2.2)

with Wki ,λi→k f ,λ f , the number of transitions per second between the initial and the final state.
This can be rewritten using Fermi’s golden rule to

∑
k f

Wki ,λi→k f ,λ f =
2π

h̄
ρk f |〈k f λ f |V|kiλi〉|2, (2.3)

with ρk f the total number of states in dΩ per unit energy range for neutrons in state k. Using
the box normalisation one can evaluate the expression 2.2 and obtain an expression for ρk f

([80]):

ρk f =
Y

(2π)3 k f
mn

h̄2 dΩ (2.4)

with the volume of the box Y and the mass of the neutron mn. Considering plane waves and
a neutron density of one neutron per box volume yields

Φ =
1
Y

h̄
mn

ki (2.5)

for the incident neutrons’ flux. Hence the differential cross-section reads

dσ

dΩ

∣∣∣∣
λi→λ f

=
k f

ki

(
mn

2πh̄2

)2 ∣∣〈k f λ f |V|kiλi〉
∣∣2 (2.6)
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where the matrix element is rewritten as

〈k f λ f |V|kiλi〉 =
1
Y

∫
exp

(
−ik f · r

)
χ∗λ f

V exp (iki) χλi dRdr =
1
Y
〈k f λ f |V|kiλi〉.

(2.7)

If the energy transfer of the neutron is considered, the results obtained relate to the partial
differential cross-section d2σ

dΩdE f
, which is related to the differential cross-section through:

dσ

dΩ
=
∫ ∞

0

(
d2σ

dΩdE

)
dE f . (2.8)

Due to energy conservation the energy distribution of scattered neutrons is a δ-function
and the partial differential cross-section is given by

dσ

dΩdE f

∣∣∣∣
λi→λ f

=
k f

ki

(
mn

2πh̄2

)2 ∣∣〈k f λ f |V|kiλi〉
∣∣2 δ(h̄ω + Ei − E f ). (2.9)

Due to the weak interaction with the scattering centers, the Born approximation can be
used to evaluate equation 2.9 in more detail. Consider both incoming and scattered neutrons
as plane waves; then the matrix element can be rewritten as∣∣〈k f λ f |V|kiλi〉

∣∣2 = V(q)〈λ f |∑
j

eiq·rj |λi〉 (2.10)

with rj the position of the jth scattering center, all of which are assumed equal, the scattering
vector q = ki − k f and the nuclear potential

V(q) =
∫

drV(r)eiq·r (2.11)

which is essentially a δ function in r, due to the short-range interaction, and simplifies to

V(q) =
2πh̄2

mn
b (2.12)

with b the nuclear scattering length. Altogether the new expression for the differential cross-
section reads:

d2σ

dΩ f dE f

∣∣∣∣
λi→λ f

=
k f

ki
∑ P(λi)

∣∣∣∣〈λ f |b ∑
j

eiq·rj |λi〉
∣∣∣∣2δ(h̄ω + Ei − E f ) (2.13)

where P(λi) is the statistical weight factor for the initial state λi.
By considering only coherent elastic scattering from a crystalline sample, the partial differ-

ential cross-section can be simplified to

dσ

dΩ f

∣∣∣∣
el
= Nn

(2π)3

νo
∑
G

δ(q−G)|FN(G)|2, (2.14)

with Nn the number of nuclei, ν0 the unit-cell volume and G the reciprocal-lattice vectors
corresponding to the Bravais lattice of the sample. The sum is carried out over all G, only q
vectors equal to such a reciprocal vector result in scattering. Depending on the details of the
crystal structure and the basis of the sample some of the Bragg reflexes may be extinguished.
This information is contained in the nuclear structure factor FN(G), given by:

FN(G) = ∑
j

bjeiG·dj e−Wj , (2.15)

where dj is the position within the unit cell of j-th atom and mean displacements are captured
within the Debye-Waller factor Wj.
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2.2 M AG N E T I C N E U T R O N S C AT T E R I N G

Neutrons carry a finite magnetic moment which leads to scattering events due to dipole-dipole
interaction with the atom. The experimental work presented here consists mainly of analyzing
such magnetic scattering for different types of magnetic order.

The neutron’s magnetic moment is given by

mn = −γµnσ, (2.16)

where γ is the gyromagnetic ratio, µn is the nuclear magneton and σ is the spin operator. The
distribution of magnetic moments associated with the unpaired electrons is captured by the
magnetic form factor f (q), given by the Fourier transformation of the normalized spin-density
ρm(r) of an atom:

f (q) =
∫

ρm(r)eiq·rdr (2.17)

with

f (0) ≡ 1. (2.18)

In 1939, Halpern and Johnson [81] derived the cross-section for magnetic scattering, ne-
glecting contributions from the angular momentum of the electrons. The resulting cross-
section depends on the initial and final wave vectors of the scattered neutrons, as well as
their respective spin states si = σi/2 and s f = σ f /2. Generalizing equation 2.13 to account
for the magnetic interaction the differential cross-section results in:

d2σ

dΩ f dE f

∣∣∣∣
si→s f

=
k f

ki
∑ P(λi)

∣∣∣∣〈λ f |∑
j

eiq·rjU
sis f
j |λi〉

∣∣∣∣2δ(h̄ω + Ei − E f ). (2.19)

The spin component is contained in the atomic scattering amplitude U
sis f
j from spin state si

to s f at the j-th atomic position,

U
sis f
j = 〈s f |bj − pjS⊥j · σ + Hj Ij · σ|si〉 (2.20)

with the nuclear coherent scattering amplitude b, the spin-dependent nuclear amplitude B
and the nuclear spin operator I. The second term is composed of the magnetic interaction
vector S⊥ and a factor p including the magnetic form factor f (q) and the Landé splitting factor
g,

p =
(γr0

2

)
g f (q), (2.21)

with
γr0

2
= 0.2695× 10−12 cm, (2.22)

where r0 = e2/mec2 is the classical electron radius, with e and me the charge and mass of
an electron, and c is the velocity of light.

The magnetic interaction vector was first introduced by de Gennes in 1963 [82],

S⊥ = q̂× (S× q̂),

= S− q̂(q̂ · S), (2.23)
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here q̂ is a unit vector pointing along the direction of the scattering vector q. Note that only
components of the spin amplitude S which are perpendicular to q contribute to the scattering
amplitude.

Up until now only contributions from spin angular momentum and the corresponding mag-
netization density

M(q) = µBgS f (q), (2.24)

with g = 2, have been taken into account. Consider now the radial wave function of the un-
paired spin Φ(r), then the magnetic form factor reads:

f (q) =
∫ ∞

0
dr r2 j0(qr)|Φ(r)|2 ≡ 〈j0〉, (2.25)

where jn(qr) is a spherical Bessel function of order n and aspherical effects have been ne-
glected. For small q the orbital moment can be included simply and the magnetization density
is given by:

M(q) = µB(2〈j0〉S + (〈j0〉+ 〈j2〉)L), (2.26)

with the angular momentum vector L.
As it was the case for nuclear scattering, considering only coherent elastic scattering re-

duces the partial differential cross-section for magnetic scattering from a magnetic crystal
to

dσ

dΩ f

∣∣∣∣
el
= NM

(2π)3

νM
∑
GM

δ(q−GM)|FM(GM)|2, (2.27)

where the subindex M refers to the magnetic unit cell. The magnetic structure factor reads

FM(GM) = ∑
j

pjS⊥jeiGM·dj e−Wj , (2.28)

remember that the magnetic form factor is contained in p.
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The magnetic structures resulting in coherent elastic scattering discussed above tend to have
larger magnetic unit cells than the underlying crystal lattice. The periodicity of the magnetic
arrangements corresponds to a larger wavelength λ defined by the amplitude of the propaga-
tion vector Q = 2π/λ. A common case is that of antiferromagnets with a propagation vector
Q = ( 1

2 , 1
2 , 1

2 ), while ferromagnets represent a special case with Q = 0. The ground state of
cubic helimagnets consists of an incommensurable magnetic helix whose spin density can
be described by [83]:

S(r) = αQ sin(Qr) + βQ cos(Qr) (2.29)

where αQ and βQ are vectors defining the plane of rotation. For a perfect helix these vectors
have the same length, are orthogonal to each other and to the propagation vector Q.

The Fourier transformation of the spin density is then given by:

S(q) =
∫

S(r)eiqrdr (2.30)
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Figure 2.2: Typical scattering patterns from MnSi (a) Typical scattering pattern of two helical domains
with a scattering length of Q ≈ 0.036Å

−1
. (b) Typical scattering pattern for the skyrmion

lattice. (c) The scattering pattern of the skyrmion lattice can be understood as the coherent
superposition of three helical propagations, which result in the hexagonal configuration of
the skyrmion lattice.

and leads in turn to a differential cross-section proportional to:

dσ

dΩ
∝ SQ

(2π)3

ν0
∑
G

δ(q−G−Q) + S∗Q
(2π)3

ν0
∑
G

δ(q−G + Q), (2.31)

with SQ = αQ + iβQ. The sum is carried out over all reciprocal vectors G and results in
satellite Bragg peaks at q = G±Q, i. e., around each reciprocal vector of the sample a pair
of Bragg peaks can be measured along the propagation direction of the helix.

Cubic helimagnets exhibit helices with wavelengths from ∼ 30Å to ∼ 1000Å, which in turn
result is very small propagation vectors. The corresponding scattering angle is also very small.
Hence the Bragg condition is fulfilled when the propagation vector of these helices is almost
perpendicular to the incoming neutron beam. Thus small-angle neutron scattering is very well
suited for the study of these magnetic structures. In such an experimental configuration the
satellites measured lie around the origin of the reciprocal space G = (000) which is identical
with the direct beam.

Typically, the symmetry of the system allows for multiple domains to coexist, each of them
resulting in an additional pair of satellite Bragg peaks. In the case of MnSi, there are four
preferred directions of propagation, i. e., the 〈111〉 crystallographic axes. Due to the resolution
of the instrument and, substantially, the magnetic mosaicity of the crystal, it is possible to
measure two domains simultaneously, when the neutron beam is parallel to a high symmetry
axis, cf. Fig. 2.2 (a).

In addition to the helimagnetic order, cubic helimagnets also exhibit the so-called skyrmion
lattice, consisting of magnetic whirls arranged in a hexagonal lattice perpendicular to the
applied magnetic field B, in a small region of the phase diagram. The skyrmions can be
described by the coherent superposition of three helical propagations perpendicular to B.
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Thus the corresponding scattering pattern consists of three pairs of satellite Bragg peaks
around each reciprocal vector G. The lattice constant of the hexagonal order is almost the
same as the helical propagation length. Hence the Bragg angle remains in the order of ∼ 2°,
cf. Fig 2.2 (b) and (c).
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As mentioned above, large structures in real space lead to very small scattering angles
and, thus, scattering patterns closed to the direct beam. Optimizing an instrument for such
measurements overwhelmingly addresses the size and divergence of the neutron beam. An
schematic instrument setup is shown in figure 2.3 (a). A poly-chromatic neutron beam is fil-
tered using either a monochromator or a so-called velocity selector to choose a neutron wave-
length λn for the experiment, depending on the component used the resulting monochromatic
neutron beam has a distribution of wavelengths around the desired one, which typically has
a width of a few percents. Behind it the neutron beam is collimated over a large distance
L1 (between 1.5m to 20m), to reduce the divergence of the incident beam. After interacting
(or not) with the sample, the neutrons continue their path in an evacuated scattering tube to
avoid scattering with the air. The detector can be positioned at a distance L2 of the sample,
the flexibility, and range of the detector position determine the range of resolvable scattering
lengths q.

The resolution of such an instrument is determined mainly by three contributions:

• the geometrical optical resolution of the slit system

• the wavelength spread ∆λn
λn

• the resolution of the detector

Based on the geometry of the scattering processes, two resolution widths can be defined,
cf figure 2.3 (b). The first one, ∆β1, corresponding to the plane formed by the neutron wave
vectors, i. e., ki and k f , is defined as [84]:

∆β1 =
2R1

L1
− 1

2
R2

2
R1

cos4(2θ)

L2
2L1

(
L1 +

L2

cos2(2θ)

)2

for α1 ≥ α2

∆β1 = 2R2

(
1
L1

+
cos2(2θ)

L2

)
− 1

2
R2

1
R2

L2

L1

1
cos2(2θ)(L1 + L2/ cos2(2θ))

for α1 < α2

The second, ∆β2, is related to the resolution perpendicular to the former plane, cf. Fig.
2.3 (b) and its given by:

∆β2 =
2R1

L1
− 1

2
R2

2
R1

cos2(2θ)

L2
2L1

(
L1 +

L2

cos(2θ)

)2

for α1 ≥ α2

∆β2 = 2R2

(
1
L1

+
cos(2θ)

L2

)
− 1

2
R2

1
R2

L2

L1

1
cos(2θ)(L1 + L2/ cos(2θ))

for α1 < α2

Both equations include the scattering angle θ, the distances of the slit system L1 and L2,
as well as the radius of the slits R1 and R2, cf. figure 2.3.

The wavelength spread ∆λn
λn

depends of the specific selector or monochromator used and
results in an angle error

∆βλn =
∆λn

λ
· 2 · θ
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An additional uncertainty arises from the detector which is determined by its resolution ∆D
and its distance to the sample

∆βdet = arctan ∆D/L2

Adding these sources of uncertainty, while considering their propagation as well, yields the
azimuthal ∆βaz and radial resolution ∆βQ of the setup. The experiments discussed in this the-
sis were carried out at different instruments at the Heinz Meier-Leibnitz Center (MLZ) using
different parameters. Thus specific resolution values are discussed in the relevant chapters.

Most data presented here were measured at the MIRA diffractometer [85]. It is not a typi-
cal small-angle scattering instrument since it was designed with flexibility in mind. Specifically,
one can carry out both elastic and inelastic measurements, as it can change its configuration
from a SANS machine to a triple-axis-spectrometer, cf. Fig. 2.4. Furthermore, by combining
two different neutron beam ports (designated MIRA-1 and MIRA-2) it is able to provide neu-
trons in a wide wavelength range (3.5Å < λn < 20Å) with a very small spread ∆λn

λn
≈ 3%.

Additionally, several additional devices have been developed to increase its capabilities, such
as elliptical focusing guides which allow bundling the neutron intensity in a minimal space,

Figure 2.3: (a) Schematic representation of a small-angle scattering experiment. The neutron beam is
filtered by the selector and collimated over a length L1. The scattered neutrons are regis-
tered with a detector positioned at a distance L2 from the sample. (b) Resolution widths de-
fined by the scattering plane spanned by the neutron wavevectors ki and k f . ∆β1 (green)
is the resolution within the plane, while ∆β2 is related to the resolution perpendicular to
the scattering plane. (c) The angles α1 defined by the source aperture and α2 defined by
the sample aperture determined the exact form of the resolution functions, see text.
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Figure 2.4: (a) MIRA in a SANS configuration. A monochromator yields a neutron beam with a very
small wavelength spread. After source aperture the neutrons travel in air, resulting in a
reduction of flux at the sample due to scattering. The total length available to distribute
between L1 and L2 is ∼ 5m. (b) MIRA in triple-axis-spectrometer mode. (c) Instrument
MIRA in a two-axis configuration. The detector can be seen on the left, the sample table is
in the middle and mounted on it are bespoke elliptical focusing guides, which increase the
neutron flux at the sample.
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increasing the efficiency dramatically when measuring microscopic samples [86]. In a typ-
ical SANS configuration, the detector can be placed about 3m behind the sample and is
the largest constraint when measuring large magnetic structures. Currently, neutrons are
recorded using a CASCADE detector [87] and through the standard sample environment of
the MLZ magnetic fields up to 7T can be applied, and samples can be cooled down to 50mK.

SANS-1, in contrast, is a typical small-angle scattering instrument, the neutron beam can
be collimated over a distance of 20m [88]. Scattered neutrons are detected with an array of
128 3He position-sensitive tubes. The total area of the detector is about 1m2 with a resolution
of 8mm. Alternatively, one can choose to use a secondary high-resolution detector, with
a spatial pixel width of 3mm and a total active area of 0.25m2. A high-resolution velocity
selector which yields a wavelength spread of ∆λn

λn
= 6%, otherwise it is 10%.
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Figure 2.5: Top: Photograph of SANS-1 instrument at MLZ. The sample chamber, the measurement
cabin and part of the evacuated detector chamber are visible. Bottom: Schematic repre-
sentation of the instrument including available experimental options.





3
F I E L D - I N D U C E D H E L I X R E O R I E N TAT I O N I N M N S I

As mentioned in the introduction, the discovery of skyrmion lattices in cubic chiral magnets
fueled a substantial increase in the scientific interest drawn by these compounds [9, 11, 14,
44, 89, 90]. It is not the first time that these materials are at the center of fundamental de-
velopments in condensed matter physics. In the late 1970s studies by Ishikawa [91] and Mo-
toya [92] identified helimagnetism as the ground state of the B20 compound MnSi. Shortly
thereafter it was recognized to be one of the first examples of an incommensurate long-
wavelength magnetic modulation driven by the Dzyaloshinskii-Moriya interaction [26, 83, 93,
94], and subsequent work addressing the spin fluctuation spectra, electronic structure, and
magnetic equation of state of MnSi were not only substantial for the study of itinerant mag-
netism but also laid the groundwork for the field of quantum phase transitions [95, 96].

Efforts to describe the origins of the magnetic order in MnSi excluded magnetic anisotropies
due to their relatively small magnitude in comparison to other contributions. However, a full
understanding of all of the aforementioned properties requires a detailed consideration of the
role of magnetic anisotropies in the system, as it pertains to (i) the incommensurability of the
helical state at zero-field, (ii) itinerant-electron magnetism and the non-Fermi liquid behav-
ior reported under hydrostatic pressure [72, 97, 98] and, specially, (iii) the formation of the
skyrmion lattice phase, since magnetic anisotropies were an essential part of the theoretical
framework predicting its existence [38, 41, 99] (see also Chapter 4).

This chapter discusses a combined experimental and theoretical study of the reorienta-
tion process of the helix in MnSi driven by a competition of the Zeeman energy and mag-
netocrystalline anisotropies. A detailed characterization of this transition was obtained via
neutron scattering, magnetization, and ac-susceptibility measurements, for magnetic fields
applied along a range of different crystallographic directions. A careful comparison of these
results with theoretical predictions, derived from an effective potential for the helix vector Q,
reveal the reorientation process to be a crossover phenomenon for general magnetic field
directions, accompanied by a discontinuous first-order transition to depopulate energetically
unfavorable domains present in the case of zero-field cooling. For a subset of high-symmetry
directions, a residual Z2 is broken through a second-order transition. A particular case arises
for fields along 〈100〉 axes where a Z2 ×Z2 symmetry is broken via two subsequent transi-
tions. Overall, theoretical predictions match the experimental observations very well, allowing
to determine the parameters of the magnetocrystalline potential quantitatively.

The chapter is organized as follows: section 3.1 discusses the general phase diagram
of chiral magnets, including a detailed account of previous work concerning the magnetic
anisotropies in chiral magnets. Section 3.2 introduces an effective theory for the helix vector
Q in the limit of weak magnetocrystalline anisotropies. The experimental results obtained
from small-angle neutron scattering (SANS) used to obtain the specific parameters for the
case of MnSi are presented in section 3.3 followed by a discussion of the magnetic suscepti-
bility and the different time scales of the magnetic response in section 3.4. The role of finite
temperature effects for the accurate description of the experimental results after zero-field
cooling (ZFC) are discussed in 3.5. Section,3.6 the chapter concludes with a discussion of
the main results obtained and the emergence of topological defects as part of the process of
domain coalescence at the second-order phase transition

31
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3.1 T H E M AG N E T I C P H A S E D I AG R A M O F C H I R A L M AG N E T S

Figure 3.1: Schematic phase diagram of cubic chiral magnets. At low temperatures and small mag-
netic fields, the magnetic order consists of helical propagations along the easy-axis of the
system, either the 〈100〉 or 〈111〉 axes. Increasing the magnetic field leads to a reorienta-
tion of the helix so that it propagates along the magnetic field direction, while the spins tilt
towards the propagation axis. At the critical field Bc2, the system reaches the field polar-
ized region. Just below the critical temperature Tc and at moderate magnetic fields, there
is a small phase pocket where the skyrmion lattice is observed. At higher temperatures,
the system shows a paramagnetic state.

The class of cubic chiral magnets encompasses compounds with a chiral crystal structure,
which allows for the Dzyaloshinskii-Moriya (DM) interaction due to the lack of inversion sym-
metry. Until recently, all known skyrmions hosting materials included in these class crystallize
with the P213 space group. The discovery of skyrmion lattices in Co-Zn-Mn alloys with β-Mn-
type structure adds the P4132 and P4332 space groups to the mixture. In general, β-Mn-type
materials and B20 compounds display similar physical characteristics. This correspondence
leads to the conclusion that the origin of the magnetic order observed in these β-Mn com-
pounds is most likely the same as for the more conventional chiral magnets. The helimagnetic
order in the latter is the consequence of a well-understood hierarchy of energies, where the
ferromagnetic exchange interaction is the dominant contribution. By its own, it would lead to a
colinear magnetic order, but the inclusion of the DM interaction produces a small continuous
twist between neighboring spins, resulting in a helical propagation. The relative strength of
the ferromagnetic and the DM interactions determines the length scale of the magnetic modu-
lation. The latter is proportional to spin-orbit coupling, which is small in MnSi and even weaker
in other cubic chiral magnets. Hence, the helical periodicities are large when compared with
crystal lattice constant. Last but not least, the magnetocrystalline anisotropies determine the
preferred propagation direction which is constrained to either 〈100〉 or 〈111〉 axes.

The interplay of these three contributions produces a rich magnetic phase diagram, schemat-
ically depicted in figure 3.1. At zero-field, the magnetic order consists of a multi-domain state
with equally populated domains of helices propagating along the equivalent easy axes of the
system, known as the helical phase. Applying a magnetic field along a general direction leads
to a rotation of the propagation vector Q towards the magnetic field B, while its magnitude
|Q| remains unchanged. At the characteristic magnetic field Bc1 the system transitions into
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the conical phase, where Q‖B. Thus, the system undergoes a macroscopic reconfiguration
of the magnetization, and the spins gain Zeeman energy by canting towards the propagation
axis. This angle is reduced continuously with increasing magnetic fields until it vanishes at
the critical field Bc2 in a second-order transition into the field polarized state. A small region
just below Tc and medium magnetic fields completes the phase diagram. Here the skyrmion
lattice phase is stabilized by coupling to thermal fluctuations, representing a great example of
order-by-disorder [11, 100, 101]. As mentioned above the latter has attracted much scientific
interest since its discovery. However, this chapter focuses on the transition at Bc1 and the
specific role of magnetocrystalline anisotropies play in it.

Ishikawa et al. gave the first experimental account of the helix reorientation in MnSi based
on SANS measurements [91, 102]. Their work also discussed the depopulation of magnetic
domains. Similar observations were made by Lebech et al. for FeGe [103], Grigoriev et al.
for Fe1−xCoxSi [104], and Adams et al. for Cu2OSeO3 [90]. Note that before the identification
of the skyrmion lattice in the so-called A-phase in B20 compounds, the observed scattering
pattern in this region of the magnetic phase diagram was misinterpreted as a spontaneous
reorientation of the helix. The smooth change in the direction of the helix propagation vector
Q results in a nonlinear dependence of the magnetization on the applied magnetic field,
which was observed first by Bloch et al. [105] and associated with the reorientation process
by Hansen [106]. A recent study comparing different B20 compounds can be found here
[107]. The aforementioned scientific work indeed includes the main features of the transition;
however, the focus laid on a few high symmetry axes and the necessary detail for a full
analysis of the transition was not part of their scope.

Plumer and Walker [108], as well as, Nakanishi and Kataoka [109] study the reorientation
process of the helical magnetic order in the framework of the Ginzburg-Landau theory. The
first pair focus on MnSi, while the latter carried out their analysis for several point groups with-
out inversion symmetry. Both these studies identified the reorientation process as a competi-
tion between the Zeeman energy and the magnetocrystalline anisotropy. Plumer and Walker
identified the second-order phase transitions at a critical field Bc1 expected for magnetic fields
applied parallel to the 〈100〉 and 〈110〉 axes, and the ratio of the critical fields B〈100〉

c1 /B〈110〉
c1

to be
√

2. Both of these publications explain the nonlinear magnetization observed at low
fields in MnSi by the rotation process of the propagation vector. Walker expanded on these
analyses and studied the transition for a magnetic field applied along a 〈100〉 crystallographic
axes further, recognizing that the transition separates in two under decreasing magnetic fields
[110]. This prediction had not been previously verified. These studies did not address the tran-
sitions quantitatively due to the lack of a value for the magnetic susceptibility perpendicular to
the helical propagation vector χ⊥. Grigoriev and collaborators calculated the latter in the limit
of zero magnetic field. However, they did not carry out a full analysis of the helix reorientation
process [43, 104].
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In MnSi the characteristic magnetic field for the transition from the helical phase to the con-
ical phase Bc1 is small in comparison to the critical field Bc2, where the system reaches the
field polarized state. The relative size of the transition magnetic field values is an indication
of small spin-orbit coupling λSOC, since Bc1/Bc2 ∼ λ2

SOC. For such a case, the reorientation
process can be derived from a Landau potential V that only depends on the helix propagation
vector Q. The properties of the magnetization enter through the magnetic susceptibility tensor
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χij. Magnetocrystalline anisotropies generate only slight deformations to the helix magnetiza-
tion, observed experimentally in terms of higher harmonics e±2Qr, with very small amplitudes
[103, 111, 112]. Therefore, the magnetization of the pristine helix determines the magnetic
susceptibility. The latter is derived below based on the supplementary information provided
by Janoschek et al. in [113], neglecting corrections due to cubic anisotropies.

Ginzburg-Landau theory of chiral magnets

Cubic chiral magnets can be described by a Ginzburg-Landau functional F =
∫

d3x f , with
the energy density f = f0 + fcub, where [83, 94]:

f0 =
1
2

ψ
(
r− J∇2)ψ + Dψ (∇×ψ) +

u
4!
(
ψ2)2 − µψB. (3.1)

The three-component order parameter field ψ has dimensionless units, leading to a mag-
netization density M = µψ, with µ = µB/f.u.. In the case of MnSi, it results in a single
Bohr magneton per formula unit f.u.= 24.018Å

3
. The parameter r indicates the distance to

the phase transition, while the parameters J and u represent the exchange stiffness and
the interaction of the ferromagnetic exchange, respectively. D corresponds to the DM inter-
action and is proportional to the strength of spin-orbit coupling λSOC. The last term in 3.1
accounts for the Zeeman coupling to a magnetic field B. Note that terms of higher-order in
spin-orbit coupling contained in fcub break the rotation symmetry of f0 at B = 0 due to cubic
anisotropies. The ansatz for a single conical helix is

ψhel(r) = ψ̂0ψ0 + Ψhelê−eiQr + Ψ∗helê
+e−iQr (3.2)

with the homogeneous magnetization ψ0 and the complex modulation Ψhel of the helical order
characterized by the propagation vector Q. The normalized dreibein ê1 × ê2 = ê3 ≡ Q/|Q|
yields the vectors ê± = (ê1± ê2/)

√
2. Evaluating the energy density using this ansatz yields

the mean-field potential VMF = V0 + Vcub. The first term determines the strength of the
amplitudes, and it reads:

V0 =
r
2

ψ2
0 + (r + J|Q|2 − 2D|Q|)|Ψhel|2 +

u
4!
(ψ2

0 + 2|Ψhel|2)2

− µψ0|B|, (3.3)

while the second term, which the following derivation neglects, includes all contributions lead-
ing to the orientation of the propagation vector Q and the homogeneous magnetization. One
can reduce the potential at B = 0 to:

VMF ≈ δ|Ψhel|2 +
u
3!
|Ψhel|4, (3.4)

with the propagation length |Q| ≈ D/J, obtained from minimization with respect to |Q|, and
by introducing the helimagnetic tuning parameter

δ = r− J|Q|2. (3.5)

Helical magnetic order emerges if δ becomes negative, i. e., if r is smaller than the DM en-
ergy density r ≤ J|Q|2. Minimizing the potential with respect to the helix amplitude yields
|Ψhel|2 = −3δ/u.
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Magnetic susceptibility of helimagnetic order

The susceptibility tensor contains the fluctuations around the mean-field solution, and it writes

χ−1
0,i,j

(
r, r′

)
=

δ2
∫

d3x f / (kBT)[
δψi (r) δψj (r′)

] (3.6)

=
1

kBT

{
(r− J∇2

r )δij − 2Dε ijn∇rn

+
u
3!
[
ψ(r)ψ(r)δij + 2ψi(r)ψj(r)

] }
× δ(r− r′) + χ−1

cub ij(r, r′) (3.7)

with the mean-field order parameter ψ(r) and χ−1
cub, the contributions arising from cubic

anisotropies fcub.
The magnetic susceptibility is obtained from the generalized matrix χ−1

0,ij(k, k′) taken at
zero momenta. In the helical phase |Ψhel| > 0, thus the mean field order parameter ψ(r)
carries a finite momentum Q and the susceptibility is non-diagonal in momentum space

kBTχ−1
0,ij(k, k′) = kBTχ−1

0,ij(k)δ0,k+k′

+
u
3

Ψ2
helê
−
i ê−j δ2Q,k+k′ +

u
3

Ψ∗2helê
+
i ê+j δ−2Q,k+k′

+
u
3

Ψhelψ0(ê−i ψ̂0j + ê−j ψ̂0i)δQ,k+k′

+
u
3

Ψ∗helψ0(ê+i ψ̂0j + ê+j ψ̂0i)δ−Q,k+k′ (3.8)

where χ−1
0,ij(k) is the part diagonal in momenta and it reads:

χ−1
0,ij(k) =

1
kBT

[
(r + Jk2)δij − 2Dε ijnikn

+
u
3!

ψ2
0(δij + 2ψ̂0iψ̂0j) +

u
3
|Ψhel |2(2δij − Q̂iQ̂j)

]
. (3.9)

The thermodynamic dimensionless magnetic susceptibility of a single helimagnetic domain
is then given by χij =

µ0µ2

kBT χ0,ij(0, 0). Note that due to the momentum carried by the order pa-

rameter χ0,ij(0, 0) 6=
[
χ−1

0,ij(0, 0)
]−1

. At zero magnetic field |B| = 0 there is no homogeneous
magnetization and the dimensionless magnetic susceptibility is reduced to:

χij = χ‖Q̂iQ̂j + χ⊥(δij − Q̂iQ̂j)

=
µ0µ2

JQ2

[
Q̂iQ̂j +

1− δ/(J|Q|2)
1− 2δ/(J|Q|2) (δij − Q̂iQ̂j)

]
, (3.10)

using |Ψhel| = 3δ/u from the equation of state (3.4) and the helimagnetic tuning parameter
δ (cf. equation 3.5). The terms in the first line are the susceptibilities longitudinal χ‖ and
transverse χ⊥ to the propagation vector Q. In the limit δ→ −∞, i. e., deep in the helical
phase, χ‖ = 2χ⊥. In the case of MnSi, a numerical value χ‖ for the helix can be obtained from
ac susceptibility χac measurements along a 〈111〉 axis after cooling the sample in an applied
magnetic field |B| � Bc2, thus preparing a single domain state. The measured quantity χ̃‖
includes demagnetization effects and relates to χ‖ via
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(a) (b)

Figure 3.2: Helimagnetism in the cubic B20 compound MnSi. (a) Representation of a helical modula-
tion with pitch vector Q (red arrow). In the case of MnSi the helices propagate along the
〈111〉 crystal axes. (b) Representation of the tetrahedral point group T of MnSi. It contains
threefold rotation axes along 〈111〉 and twofold rotation axes along 〈100〉. Note the big
black circles, connecting two 〈100〉 axis through a 〈110〉 axis, separating the spheres into
octants around each 〈111〉.

χ̃ν =
χν

(1 + χνN)
, (3.11)

with the demagnatization factor N. Taking this into consideration one obtains χ‖=0.34.

Effective Landau potential for the helical propagation in MnSi

The magnetization of a helix with amplitude Ms is given by (cf. 3.2):

M(r) = Ms [ê1 cos(Qr) + ê2 sin(Qr)] , (3.12)

and characterized by the propagation vector Q, see figure 3.2,(a). As mentioned above the
size of Q is determined by the Dzyaloshinskii-Moriya (DM) interaction that is proportional to
spin-orbit coupling λSOC and weak in MnSi. Thus the Landau potential V can be expanded in
a Taylor series in Q ∝ λSOC including the lowest order terms only. In MnSi the length of the
propagation vector |Q| is essentially constant. Furthermore the helix is invariant under the
transformation Q→ −Q and ê2 → −ê2, thus the orientation Q̂ = Q/|Q| can be considered
a director. Hence the potential V(Q̂) = VB + VT is an even function of Q̂, consisting of the
Zeeman energy VB and a term arising from the magnetocrystalline anisotropies VT. In small
fields, the former reads explicitly

VB(Q̂) =
−1
2

χijBiBj =
−1
2
[
χ⊥B2 + (χ‖ − χ⊥)(BQ̂)2 + · · ·

]
. (3.13)

In leading order in λSOC, VB is determined by the susceptibility tensor of the helix magneti-
zation with a fixed pitch vector Q (cf. equation 3.10). In order to compare the theory with the
experimental results, one has to take the sample shape into account, i. e., the demagnetiza-
tion factor N. Most of the data presented here were measured on a spherical sample. The
remaining results were measured on cubic samples with a magnetic field along the edges. In
all cases N = 1/3, and the Zeeman energy must be rewritten with χ̃ν from equation 3.11 for
ν= ‖,⊥. Using the value for the longitudinal susceptibility derived above, one obtains:

χ̃‖ ≈ 0.31, χ̃⊥ ≈ 0.16 (3.14)
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It is important to remark that shape anisotropies generally would break the symmetry of the
Zeeman potential in Eq. 3.13. Since the study presented here was carried out on a spherical
sample, such corrections are not considered further.

The potential attributed to the magnetocrystalline anisotropies VT dictates the behavior of
the helix at zero magnetic field. The symmetry operations of the crystal structure restrict the
terms allowed. MnSi crystallizes in the cubic space group P213 and its symmetry operations
are defined by the tetrahedral point group T, cf. figure 3.2 (b), and include a twofold rotation
symmetry C2 around the 〈100〉 cubic axes and a threefold rotation symmetry C3 around
the 〈111〉. The lack of inversion symmetry breaks the 〈111〉 axes in two classes, i. e., the
[111] axis is not equivalent to the [111]. However, we consider the orientation of the helix
Q̂ to be a director. Thus 〈111〉 refers to both classes. Taking the symmetry operations into
consideration, the corresponding potential for Q̂ reads

VT(Q̂) = ε
(1)
T (Q̂4

x + Q̂4
y + Q̂4

z) + ε
(2)
T (Q̂2

xQ̂4
y + Q̂2

yQ̂4
z + Q̂2

zQ̂4
x) + · · ·. (3.15)

The leading first term with energy density ε
(1)
T ∼ λ4

SOC is fourth-order in spin-orbit coupling.
Although there exists another term of fourth-order in λSOC of the form (Q̂2

xQ̂2
y + cycl.), it is

equivalent to the first term in Eq. 3.15 up to a constant and thus superfluous. The energy con-
tribution from ε

(2)
T is sixth order in λSOC, nevertheless necessary to break the fourfold rotation

symmetry C4 still contained in the ε
(1)
T term. Other terms of order O(λ6

SOC) retain the C4 sym-
metry and are less important. These, as well as terms of higher-order, are represented by
the dots in Eq. 3.15 and will be neglected going forward. Moreover, crystalline anisotropies
reduce the rotation symmetry and modify the susceptibility of the Zeeman potential VB by
way of a term (B2

xQ̂2
y + cycl.). A previous analysis of the Ginzburg-Landau theory for the

reorientation transition at Bc1 demonstrates that this term is of order O(λ6
SOC), thus compa-

rably important as ε
(2)
T for the helix reorientation description. Nonetheless, the accuracy of

our results does not allow to distinguish between the various terms of sixth order in spin-orbit
coupling. Therefore such corrections to Eq. 3.13 are not included.

An analysis of the transition measured in small-angle neutron scattering experiments yields
the specific values for the parameters ε

(1)
T and ε

(2)
T , see also section 3.3. An excellent agree-

ment between theoretical and experimental results was reached for

ε
(1)
T ≈ 0.0034 µeV/Å

3, ε
(2)
T ≈ 0.35 ε

(1)
T (3.16)

Trajectories for the helix reorientation

Minimizing the Landau potential V = VB + VT with respect to Q̂ provides the orientation of
the helix for a given magnetic field B. In zero magnetic field, the direction of the helical do-
mains is determined solely by the potential arising from the magnetocrystalline anisotropies
VT. Since ε

(1)
T > 0, the potential is minimized for Q̂‖〈111〉. If the state is prepared by cooling

the system in zero magnetic field, then four equivalent domains pointing along the volume
diagonals of the crystal structure, i. e.,[111], [111],[111] and [111], are equally populated. At
magnetic fields B > Bc1, helices propagating along B minimize the Zeeman contribution.
One can distinguish between this two starting points, i. e., multi-domain state at zero mag-
netic field with Q̂ ‖ 〈111〉 and a single domain state with Q̂ ‖B at large fields. An analysis of
the potential V for different field directions yields three distinct scenarios:

• B points within one of the octants of the unit sphere separated by the black great circle
in figure 3.2,(b) centered around a 〈111〉
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(a) (b)

Figure 3.3: Trajectories of the helix pitch vector Q̂ for decreasing and increasing magnetic field values
and different field directions B. (a) High-field cooling (HFC) yields a single domain conical
propagation as the starting point. Typically, decreasing the magnetic field leads to a single
domain state propagating along the 〈111〉 axis closest to B. The bifurcation observed for
magnetic field directions on the big circles (cf. Fig. 3.2) indicates elastic Ising transitions. (b)
Zero-field cooling prepares the system in a multi-domain state, with helical propagations
along all 〈111〉 axes. In comparison to the HFC scenario, trajectories for domains with a
large angle with respect to B are discontinuous, characteristic of first-order transitions.

• B points along a direction on one of the great circle

• B‖〈100〉

In the first situation, and starting from large magnetic fields, decreasing the field leads to a
smooth change of direction of the propagation vector until it points along the corresponding
〈111〉 axis. Such a case is illustrated in figure 3.3 (a) for a magnetic field along a [315]. When
increasing the field in a multi-domain state at zero magnetic field, only the domain closest to
the magnetic field direction will reorient smoothly, the other three domains show a discontin-
uous transition. Figure 3.3 (b) depicts this transition. The energetically unfavorable domains
show a trajectory up to their spinodal point, at which they reconfigure to show that same prop-
agation direction as the stable domain. For a magnetic field applied along one of the great cir-
cles connecting the 〈100〉 axes, shown in black in figure 3.3, the four domains are separated
into two energetically degenerate pairs. For example, for a B‖ [011] the first group consists of
domains with a propagation vectors Q along the [111] and [111] axes. These have the same
angle between propagation vector and magnetic field direction, specifically θ

(1)
[011] ≈ 35°. Do-

mains propagating along the [111] and [111] axes, which are perpendicular to the magnetic
field direction, comprise the second group. The latter group has a discontinuous transition
as explained above, while a second-order phase transition is expected as a function of field-
strength at Bc1 for the first group of domains. A stability analysis of the orientation vector Q̂
around the field direction B̂ provides a detailed characterization of this transition. For that
purpose the field direction in parametrized by a polar angle α, i. e., B̂ = (0, sin α, cos α), and

the direction of the pitch vector can be written as Q̂ = B̂
√

1− x2
1 − x2

2 + x1v̂1 + x2v̂2, with
the orthonormal vectors v̂1 = (1, 0, 0) and v̂2 = (0, cos α,− sin α). Therefore the coordinate
x1 corresponds to deviations away from the big circle, while x2 represents deviations on it.

At the critical field Bc1 the orientation vector Q̂ must choose between two directions away
from the great circle, i. e., x1 > 0 or x1 < 0, stabilizing a helimagnetic domain along [111]
or [111]. Thus the coordinate x1 is an Ising order parameter of the helimagnetic reorientation
transition. This situation is illustrated in figure 3.3 for a magnetic field along [011] and [014]. In
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(a)

Figure 3.4: Trajectories of the helix pitch vector Q̂ for decreasing and increasing magnetic field values
and different field directions B. (a) High-field cooling (HFC) yields a single domain conical
propagation as the starting point. Typically, decreasing the magnetic field leads to a single
domain state propagating along the 〈111〉 axis closest to B. The bifurcation observed for
magnetic field directions on the big circles (cf. Fig. 3.2) indicates elastic Ising transitions. (b)
Zero-field cooling prepares the system in a multi-domain state, with helical propagations
along all 〈111〉 axes. In comparison to the HFC scenario, trajectories for domains with a
large angle with respect to B are discontinuous characteristic of first-order transitions.

both cases, decreasing the field leads to a bifurcation of the Q̂ trajectory at Bc1, at which point
the phase can separate into two domains. For increasing magnetic fields the propagation
vectors of each domain Q̂ move first smoothly towards the great circle and coalesce on it at
Bc1. For B‖ [014] the orientation vector still has a finite angle with respect to B at the point of
coalescence, thus the reorientation process is concluded through a smooth rotation towards
the magnetic field.

Finally, applying the magnetic field along a 〈100〉 crystallographic axis leads to a distinctive
case, as it is a crossing point of the two great circles (cf. Fig. 3.1 (b)). The finite contribution
from ε

(2)
T lowers the symmetry of the effective theory for the vector (x1, x2) from Z4 , i. e.,

ε
(2)
T = 0, down to Z2 ×Z2. Furthermore, it favors between x1 and x2 depending on the sign

of ε
(2)
T . Consequently, a single Z4 transition is split into two subsequent Z2 Ising transitions,

as predicted by Walker [110]. In MnSi ε
(2)
T > 0, thus the orientation vector Q̂ tilts along one of

the x1 directions at B〈100〉
c1,> when the field is reduced. A further reduction results in a smooth

rotation of Q̂ along the great circle and away from the field direction until a second instability
is reached at B〈100〉

c1,< , where the propagation vector tilts anew, this time away from the great
circle along one of the x2 directions. This is depicted by the red trajectories in figure 3.3 for
B‖ [001].

The low symmetry of the system is also reflected in the trajectories of the helical domains
for fields along [hkl], [lhk], and [klh] (k, l, h > 0) depicted in figure 3.4 (a). These are equiv-
alent, and related by a 2π/3 rotation symmetry around the [111] axis, included in the tetra-
hedral point group T. This symmetry operation leads to the same transition field value for
[hk0], [k0h], and [0hk], which differs from the one of the second equivalent group, i. e., [kh0],
[h0k], and [0kh]. In figure 3.4 (b) the evolution of Bc1 as a function of angle α is compared for
fields B pointing along (0, sin α, cos α) and (sin α, 0, cos α). With the exception of B ‖ 〈110〉
the values of Bc1 are different. Morover the upper and lower transition fields of the Z2 ×Z2

transition, B[001]
c1,> and B[001]

c1,< , respectively, are obtained from the limiting values of Bc1(α) for

α→ 0. For the sake of comparison the critical field for ε
(2)
T , given by
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Bc1(α)|ε(2)T =0
=

√√√√ ε
(1)
T [3 + cos(4α)]

µ0(χ‖ − χ⊥)
, (3.17)

plotted in figure 3.4 (b). Note that in this approximation the critical fields along 〈100〉 and
〈110〉 satisfy the ratio B〈100〉

c1 ≈
√

2B〈110〉
c1 , as was discussed by Plumer and Walker in [108].

A more detailed characterization of the effects of a finite value of ε
(2)
T on the magnetization

is obtained from the computation of the magnetic susceptibility χB. For a macroscopic single
domain, i. e., high-field cooled conditions, χB follows from the effective Landau potential

χB ≡
dM
dB

= − 1
µ0

∂2V(Q̂min)

∂B2

= χ⊥ + (χ‖ − χ⊥)(B̂Q̂min)
2 − 1

µ0

∂2V(Q̂min)

∂Q̂i
min∂Q̂j

min

∂Q̂i
min

∂B
∂Q̂j

min

∂B
, (3.18)

where Q̂min(B) minimizes V for a given field B and B = |B|. Figure 3.5 (a) illustrates the
distinct behavior of the transition at Bc1 observed for fields parallel to [0x1] in comparison to
those pointing along [x01], with 1 > x > 0, by means of the magnetic susceptibility χB. For
x = 0 two sharp critical signatures (red arrows) are observed related with the subsequent
Z2 Ising transitions observed for fields along 〈100〉 axes. Tilting the field away from this high
symmetry axis, i. e., x > 0, breaks one of the Ising symmetries explicitly. Thus the corre-
sponding signature in χB is no longer sharp but rounded, resulting in different susceptibility
curves and transition fields Bc1 for [0x1] and [x01]. For increasing values of x the signature
of the broken symmetry disappears completely and the field value of the transition for both
cases discussed come closer, attaining the same value for B ‖ [101] and B ‖ [011], cf. Fig.
3.5 (a) and (b). Similar effects can be observed for generic field directions, albeit more subtle.

(°)
(c) 

 H

 H

0.25

0.05

0.01

0

1

Figure 3.5: Magnetic susceptibility χB obtained for single-domain calculations, i. e., high-field cooled
(HFC), showing the dependence of the helix reorientation transition on the field direction.
(a) Susceptibility for fields along [0x1] and [x01], for different values of x (data have been
shifted for clarity). The Z2 Ising transitions, identified by sharp signatures (arrows), have
different values depending on the field direction. (b) Critical field Bc1 as a function of angle
alpha, i. e., the field direction. Arrows depict the values for the transitions shown in (a). (c)
Subtle differences can be observed for generic field directions due to magnetocrystalline
anisotropies.
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Figure 3.6: Experimental setup for small-angle neutron scattering experiments. (a) Spherical sample
specially prepared for these measurements. The sample can be rotated around a [110]
axis (out of the page) by an angle ω, thus allowing to apply B along any crystallographic
axis of the system. (b) Experimental setup for SANS experiments. In order to follow the
trajectories of the magnetic propagations, the sample can be rotated around the zlab axis
by an angle φlab. On the scattering pattern the position of the Bragg peaks is defined by
an angle θlab (c) Definition of the θ and φ angles in the sample coordinate system.

As an example the magnetic susceptibility for fields along [315] and [135], respectively, is in
figure 3.5 (c). The curve progression is qualitatively similar, but the exact position and shape
of the peak related to the transition differ slightly.

3.3 N E U T R O N S C AT T E R I N G S T U DY O F T H E H E L I X R E O R I E N TAT I O N I N M N S I

The long wave characteristic of the helical magnetic order in MnSi make it an ideal subject for
small-angle neutron scattering experiments (SANS) since long periodical structures lead to
small scattering vectors, in this case specifically |Q| ≈ 0.035Å

−1
. A spherical sample (diame-

ter: 5.75mm was measured at the diffractometer MIRA2 at the Heinz Maier-Leibnitz Zentrum
(MLZ) [85] to map the evolution of the Bragg Peaks related to the magnetic order in MnSi.
The incident neutron beam of wavelength λ = 4.5Å was collimated with two 3× 3mm2 aper-
tures, placed 1.4m and 0.5m in front of the sample, respectively. A CASCADE detector [87]
positioned 2.6m behind the sample was used to record scattered neutrons. This experimental
configuration results in an azimuthal resolution ∆θ = 14.5°. The azimuthal spread originating
from the magnetic mosaicity is extracted by deconvoluting the instrument’s resolution. Low
temperatures were reached using a closed-cycle cryostat and magnetic fields generated by
a bespoke set of water-cooled Cu solenoids in a Helmholtz configuration.

The sample was attached with GE varnish to a bespoke sample holder. The latter was con-
structed such that the sample could be rotated by an angle ωsample around the axis Csample

perpendicular to the holder, cf. Fig. 3.6 (a). The external field B was applied along the vertical
axis of the laboratory system ẑlab, thus the angle ωsample defined the crystallographic axis par-
allel to B. Moreover, the sample holder was attached to a rotatable sample stick, its rotation
axis Cstick was parallel to the applied magnetic field. Different scattering planes for a given
B could be accessed by rotating the sample by angle φlab around Cstick. Within such a scat-
tering plane, the position of Bragg peak is defined by the azimuthal angle θlab, as illustrated
in figure 3.6 (b). Thus, the parametrization Q̂ = (sin θlab cos φlab, sin θlab sin φlab, cos θlab) de-
scribes the position of an intensity maxima in the laboratory coordinate system (φlab, θlab,
which is transformed to a fixed sample coordinate system (φ, θ) to compare the resulting tra-
jectories to the theoretical results presented above, Sec. 3.2. Here, φ and θ are the azimuthal
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Figure 3.7: Analysis of the scattering patterns obtained from SANS. (a) Typical scattering pattern of
the helical phase. The scattered intensity is averaged over 1° wide sectors between |q| =
0.022 -1 and |q| = 0.038 -1. (b) The calculated averaged intensity as a function of θlab is
then fitted with Gaussian functions to obtain the positioned of the Bragg peaks for a given
angle φlab. The intensity spheres shown on figures 3.8 and 3.9 consist of the averaged
intensity as a function of θlab for all φlab measured.

and polar angle of a unit sphere, with an equatorial plane spanned by the crystal axes [100]
and [010], cf. Fig. 3.6 (c).

In order to measure the reorientation process of the helix for all three different cases pre-
sented in the previous section, the rotation axis Csample should be parallel to a 〈110〉 crys-
tallographic axis. Thus, general field directions within an octant around a 〈111〉 axes are
accessible, as are 〈110〉 and 〈001〉, representatives of the high symmetry special cases. In
this ideal experimental setup, the coordinate systems (φlab, θlab) are identical for B ‖ [001].
However, due to the design of the sample holder, small misalignments in the sample orien-
tation with respect to the ideal experiment cannot be avoided. Furthermore, the rotation axis
Cstick does not go through the center of the sample, resulting in a small precession of the
latter as a function of φlab. The analysis presented here accounts for both of these errors and
corrects them, when necessary, through spherical transformations. Appendix A discusses the
details of these corrections.

Intensity maps at different magnetic fields

This SANS study focuses on the transitions for magnetic fields along the [001] and [110]
crystallographic axes, both of which show elastic Ising transitions. Scattering patterns were
recorded at different fields and low temperatures, well below the onset of the helimagnetic
order at Tc, starting from a multi-domain helical state after zero-field cooling (ZFC) or a single
domain conical state, i. e., Q̂ ‖ B, after high-field cooled (HFC) at large negative fields |B| >
Bc1.

At each magnetic field value two-dimensional scattering patterns were measured in a range
φlab = 0 – 180° in 1° steps. A typical pattern is shown in figure 3.7 (a). The scattered inten-
sity is then averaged over areas with 1° width in θlab and 0.022Å

−1
width in |Q| around

|Qc| = 0.038Å
−1

, cf. Fig 3.7 (a). By fitting a gaussian function to the maxima observed in
the averaged intensity as a function of angle θlab, we obtain the azimuthal position of a Bragg
peak, e. g., θ

[111]
lab . The recorded scattered neutrons around this position are then integrated

as a function of the polar angle and fitting the resulting maxima yield φ
[111]
lab , as well as φ

[111]
lab .
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Figure 3.8: Small-angle neutron scattering data for B ‖ [110] at low temperatures. (a) Schematic
representation of the orientation of the spherical sample. Spheres display typical scattered
intensities for a measurement starting from a single domain state after high-field cooling
(HFC) in large negative fields. Colored points mark high symmetry directions 〈111〉 (green),
〈110〉 (blue), and 〈100〉 (red). (b) Sphere of scattered intensity for a transition starting from
a multi-domain state after zero-field cooled (ZFC). The domains at the bottom of the sphere
lie perpendicular to the magnetic field and are depopulated discontinuously at ∼ 50mT.
The domains at the top of the spheres rotate smoothly with increasing field and coalesce
at high fields. (c) and (d) show the positions of the intensity maxima of (a) and (b) on
a unit sphere Q̂ = (sin θ cos φ, sin θ sin φ, cos θ) parametrized by the angles φ and θ for
increasing fields (black arrows) for both HFC and ZFC. After HFC there is a sharp signature
on θ at |B[110]

c1 | ≈ 95mT where multiple domains form due to phase separation. The
experimental observations match the theoretical prediction (solid gray line) very well. The
same signatures become smeared when multiple domains merge, leading to a deviation
from the expected behavior from theory.

After applying the necessary corrections mentioned above, the positions of the Bragg
peaks related to each domain are transformed to the fixed sample coordinate system (φ, θ).
In the process points with θlab = 180 – 360° are mapped to θ′lab ≡ 360°− θlab and φ′lab ≡
φlab + 180°. Finally, the averaged intensity values evaluated above are plotted on a spherical
mesh expanded by the values of φ and θ. In a nutshell, the spheres are the raw scattered neu-
tron data in the momentum region of interest. Note that small angles of θ lead to a broadening
of the Bragg peak along φ by a factor 1/ sin θ.

Figure 3.8 depicts the results obtained for a magnetic field applied along [110]. On the
left are the raw scattered intensity spheres in the fixed sample coordinate system as seen
from a [010] direction. The sample was cooled from T > Tc in an applied magnetic field B
with |B| > Bc1 yielding a conical state as the starting point of the measurement. Thus at
|B|=−135mT a single domain the propagation vector Q pointing along the magnetic field
is observed, hence φ = 45° and θ = 90°. At this point, reducing the field does not affect
the scattering pattern until the Ising transition is reached at µ0Bc1 ≈ 95mT, indicated by a
spontaneous bifurcation in θ. The latter follows from the separation of the magnetic structure
into two domains. Further reduction of the applied field leads to a smooth reorientation of
each of these domains towards a [111] and a [111] respectively, cf. Fig. 3.8 (a).

The gray solid line in figure 3.8 (b) is a fit taking into consideration the effective potential V
presented in section 3.2. The agreement with the experimental data is excellent. Below the
critical field Bc1 the theoretical curve for φ differs slightly from 45°, less than 0.5° just beneath
Bc1. The experimental resolution did not allow to resolve this deviation in the experimental
data.
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Figure 3.9: Small-angle neutron scattering data for B ‖ [001] at low temperatures analogous to figure
3.8. (a) Spheres of scattered intensity starting from a high-field cooled (HFC) state at large
negative fields. Upon increasing the magnetic field, the maxima split twice related to the
Ising transitions discussed in the main text. However, when starting from a multi-domain
state, increasing the magnetic field leads to a smoother transition. The latter is apparent
in (b) and (c) showing the positions of the Bragg peaks parametrized by the angles φ and
θ. When transitioning from a single state to a multi-domain state two bifurcations can be
observed at the critical fields B[001]

c1 ≈ 135mT and B[001]
c1 ≈ 118mT (vertical dashed lines).

In contrast, the transition at positive fields from a multi-domain state lacks sharp signatures
when the domains coalesce.

Starting from a zero-field cooled (ZFC) multi-domain state, the discrepancies between the-
ory and the experimental result is more prominent. As predicted, one observes discrete tran-
sitions of energetically unfavorable domains. These are related to the two maxima on the
lower part of the sphere on figure 3.8 (b). The scattered intensity from these domains van-
ishes around ∼ 50mT, which is about half the value of the spinodal point expected form
theory. Furthermore, the sharp Ising transition at Bc1 smears out, cf. Fig. 3.8 (c).

The similar procedure is followed after rotating the sample so that B ‖ [001]. Starting
from the conical phase, well above the first of the two predicted transitions, the intensity
observed belongs to a single domain with Q ‖ B. In this region the polar angle φ is not

defined and θ = 90°. At the first transition B[001]
c1,> , the scattered intensity splits into two maxima,

indicating the first Ising transition. Note that the bifurcation is along [110]. By definition φ

should take the value of 0° and 180°, respectively. The discrepancy between the expected
and the calculated values of φ originates mainly on the fact that B is about 3° off a [001] axis.

Both domains move smoothly until at B[001]
c1,< the intensity splits again, resulting in 4 maxima

each associated with a domain, which smoothly reorients to point along a 〈111〉 axes. The
transition is sharp in φ and quickly reaches the four values associated with each domain, i. e.,
[111](φ = 45°), [111](φ = 135°), [111](φ = 225°) and [111](φ = 315° =̂−45°). Furthermore,
a kink in θ, which is predicted from theory and observable in our experimental data, marks
the transition. On further reduction of the magnetic field value, the helices smoothly rotate
until they reach their respective 〈111〉 axes. This motion is observed in the angle θ, which
increases continuously until the final value of 54.7° is reached.

One observes a completely different behavior than expected from theory for increasing
magnetic fields starting from a multi-domain state or after zero-field cooled (ZFC). Instead of
two Ising transitions with sharp signatures in the angle φ, the latter remains constant, and
all domains coalesce smoothly as shown by the continuous decrease of the azimuthal angle
θ. The onset of the conical state takes place at a field value much larger than Bc1[001]c1,>
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observed for decreasing field magnitudes as discussed above. As it was the case for B ‖
[110] our experimental results are in very good agreement with theory for decreasing fields
magnitudes starting from high negative fields, as evident from the grays solid line in both
figures 3.8 (c), (d) and 3.9 (b), (c). The good agreement is somewhat surprising since, as
mentioned before, the magnetic field direction was off by a couple of degrees from the [001]
axis. In the theory presented here, such a misalignment is enough to smear the transitions
signatures substantially, since one or two of the domains are preferred, cf. Fig. 3.5 (a). The
fits to theory shown in figures 3.8 and 3.9 yield the values in equation 3.16.

Sharp signatures related to the transitions are expected in the magnetic susceptibility. Thus,
before discussing the possible origin of the discrepancy between HFC and ZFC measure-
ments, typical susceptibility experiments will be discussed in the following section.

3.4 M AG N E T I C S U S C E P T I B I L I T Y O F T H E H E L I M AG N E T I C O R D E R

Magnetic susceptibility was obtained by means of the real part of the ac susceptibility Re
χac and the derivative of the magnetization dM/dB. Both were measured using a Quantum
Design physical property measurement system with an excitation frequency of 911Hz and an
amplitude of 1mT. Samples were prepared from single crystals of MnSi growns by means of
optical float zoning under ultrahigh vacuum compatible conditions [114, 115], with a residual
resistivity ratio of ∼ 80, which is a typical value for samples reported in the literature. From
the single-crystal ingots two cubes were prepared with edge length 2mm and surfaces per-
pendicular to [110], [110], [001], and [110], [111], and [112], respectively. These samples can
be readily compared to the sphere sample used in the neutron scattering experiments, since
cubes exhibit a demagnetization factor of N = 1/3 for fields along its edges, as is the case
for spheres. The samples prepared permit the measurement of the magnetic susceptibility
for the three representative cases discussed above, i. e., B ‖ 〈100〉, 〈110〉, 〈111〉.

Figure 3.10 shows the data obtained, starting with the results for a B ‖ 〈001〉. After zero-
field cooling all domains are populated and contribute equally to the magnetic susceptibility
leading to a reduced value χ⊥ + 1

3 (χ‖ − χ⊥) ≈ 0.21 [113], measured in both the Re χac

(solid symbols) and the derivative of the magnetization dM/dB (open symbols). Increasing
the magnetic field leads to a smooth increase of Re χac towards the constant value deep in
the conical state given by χ‖ ≈ 0.31 also observed in dM/dB. Furthermore, the transition is
related to a peak in dM/dB, deviating from the behavior observed in χac. This discrepancy
is an indicator of the important role of slow dynamics, to which χac is not sensitive, in the
reorientation of the helical domains, cf. references [116–118]. Starting from large negative
fields in the single domain conical state reducing the field strength results in a sharp signature
in dM/dB where two distinct peaks can be distinguished, related to the two subsequent Ising
transitions, cf Fig. 3.10 (b). While the ac susceptibility does not follow the behavior shown by
dM/dB two clear kinks can be observed at B[001]

c1,> and B[001]
c1,< . After all domains are populated

again, increasing the field on the positive side yields a smeared signature in dM/dB at the
transition from the multi-domain helical state to the conical state, resembling the hysteresis
observed in the neutron scattering experiment.

In the case of fields applied parallel to a 〈110〉 axis, two distinct signatures can be observed
when increasing the magnetic field after zero-field cooling, as shown in figure 3.10 (c). The
first signature relates to the depopulation of the domains propagating perpendicular to the
applied magnetic field observed around ∼ 50mT (cf. Fig. 3.8 (c)), while the second indicates
the Ising transition expected. Again the Reχac does not show any peaks but rather distinct
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Figure 3.10: Magnetic susceptibility around the transition between helical and conical state. (a) and
(b) Results for B ‖ 〈100〉 obtained after zero-field cooling (ZFC) and high-field cooling
(HFC), respectively. Solid symbols depict values of the real part of the ac susceptibility
Re χac measured at 911Hz, while open symbols illustrate values of the derivative of
the magnetization dM/dB. Discrepancies between the two indicate the importance of
slow dynamics in the helical reorientation transition. Dashed and solid lines result from
theoretical calculations, for details see text. (c)-(f) Analogous results for B ‖ 〈110〉 and
B ‖ 〈111〉.

kinks related to the peaks observed in dM/dB. When starting from the conical single domain
state the Ising transition leads to a sharp peak in dM/dB at |B[110]

c1 | for both negative and
positive values. Note that the domains perpendicular to the field are not populated, which
leads to a higher value of the magnetic susceptibility at zero magnetic field. There are small
discrepancies between the phase transitions at negative and positive values, but remarkably
more subtle than those observed for B ‖ 〈100〉.

Finally, for a field applied along a 〈111〉 axis, a sharp signature is observed only after zero-
field cooled. At this field value, all other three domains make a discrete transition to propagate
along the direction parallel to the field. When starting from large negative fields in the single
domain conical state, there are no transitions. Both Zeeman energy and magnetocrystalline
anisotropies are minimized simultaneously by a helical propagation the remains parallel to
the field and parallel to the 〈111〉 axis, populating the other possible domains, would increase
the Zeeman contribution. Thus the susceptibility remains constant with the value of χ‖.
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At the end of section 3.2, the evolution of the transition signatures in the magnetic suscep-
tibility as obtained from equation 3.18 was presented. A closer look reveals that the derived
expression for the magnetic susceptibility can be separated into two contributions:

χB = χmic
B + χmac

B

χmic = χ⊥ + (χ‖ − χ⊥)(B̂Q̂min)
2 (3.19)

χmac = − 1
µ0

∂2V(Q̂min)

∂Q̂i
min∂Q̂j

min

∂Q̂i
min

∂B
∂Q̂j

min

∂B
, (3.20)

where B = |B| and Q̂min(B) is the propagation vector that minimizes the Landau poten-
tial for a given B, cf. Sec. 3.2. The first term accounts for the response of the microscopic
magnetization for a given direction vector Q̂min, while the second term is associated with the
reorientation of helical domains on a macroscopic scale as a function of the magnetic field.

The macroscopic reorientation process, captured by χmac
H , exhibits a large time scale τQ̂. In

case of fluctuations at frequencies fac � 1/τQ̂ the pitch vector is not able to follow the oscil-
lating field and the contribution from χmac

B is suppresed. Thus, Re χac probes only χmic
B which

responds to changes much faster than typical time scales for this type of measurements. In
contrast the derivative of the magnetization represents the static limit ( fac = 0) and is sensi-
tive to both scales of the magnetic response, i. e., dM/dB = χB. Bauer et al. showed that Re
χac and dM/dB differ from each other even at low frequencies and high temperatures close
to the magnetic transition, i. e., (Tc − T)/Tc ≈ 5% [116]. Thus providing an estimate for the
low boundary of τQ̂ ≥ 1ms.

Both χB and χmic
B , as calculated using the values given in equations 3.14 and 3.16 obtained

from the neutron scattering data, are plotted in figure 3.10. Here fac = 911Hz � 1/τQ̂ and
χmic

B reproduces the values of Re χac for transitions starting from a conical state (right column)
very well. Furthermore the critical signatures observed in dM/dB at different Ising transitions
are in excellent agreement with the computed χB. Note that the derivative ∂BQ̂i

min is linear in
B for B → 0, because the Zeeman potential VB is quadratic in B, resulting in χB|B=0 = χmic

B .
In general only small inconsistencies are observed for B ‖ 〈100〉, which most likely originate
from deviations of the field direction from the actual 〈100〉 axis in the experiment.

3.5 AC C O U N T I N G F O R M U LT I P L E D O M A I N S

As mentioned above all four domains are populated equally after cooling the sample in zero
magnetic field. Typically, some of these domains become metastable with increasing field
and jump into the favored direction at first-order transitions. Such transitions were shown for
B ‖ [110] around∼ 50mT in neutron scattering, cf. Fig. 3.8 (b), and for fields along 〈110〉 and
〈111〉, as deduced from the magnetic susceptibility and the derivative of the magnetization.
Especially for the latter case, the signature is relatively strong. The theoretical susceptibilities
plotted on the right column of figure 3.10 are calculated based on a single domain model.
This approach does not capture the transitions observed after zero-field cooling, shown on
the left column of figure 3.10. Instead, consider thermally populated domains with energy
density

f =
kBT
ξ3

dom
log Z (3.21)

Z =
∫

dQ̂ e−ξ3
domV(Q̂)/(kBT), (3.22)
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with the finite linear size ξdom. The resulting susceptibilities 〈χB〉 ≡ −∂2
B f /µ0 are plotted

as dashed lines in the left column of figure 3.10 and referred to as ’thermal calculation’.
Here a thermal energy density kBT/ξ3

dom = tε(1)T was considered, with the dimensionless
temperature t = 0.02 corresponding to a linear length ξdom = 136Å at T = 2K. This is rather
unrealistic since ξdom is of the order of the pitch length in MnSi. However such calculations
do reproduce the signatures observed qualitatively, cf. Fig. 3.10 (c), (e), albeit the expected
transitions fields are consistently smaller than those measured in experiment.

A different approach is to consider domains which are macroscopically large so that they
are essentially trapped in their local minimum of V(Q̂). In this case, these domains remain
metastable until they reach their spinodal point, at which there is a spontaneous switch of
the propagation direction to point along the field in a first-order manner. As a consequence,
the calculated susceptibility shows critical first-order spikes at these transitions. Figure 3.11
shows the expected susceptibility for these macroscopic domains and, for the sake of com-
parison, the computed susceptibility for small domains, as discussed above, for both t = 0.02
and t = 0.05. The latter is smooth and resemble the experimental results very well. In con-
trast, the experimental susceptibility data does not reproduce the very sharp peaks arising
from the macroscopic metastable domains. Furthermore, the neutron scattering experiment
established that unfavorable domains are depopulated at fields much lower than their spin-
odal point. Thus, large macroscopic domains are not suitable for describing the zero-field
cooling behavior.
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Figure 3.11: Theoretically computed magnetic susceptibility for different field orientations for zero-
field cooled (ZFC) samples. The coalescence of different domains is addressed utiliz-
ing macroscopic domains that switch at their spinodal point, solid lines. For comparison,
the dashed and dotted lines represent ensembles of domains thermally populated for
two different dimensionless temperatures t. Note that concerning the thermal calculation,
macroscopic domains have larger critical fields associated with sharp signatures in the
magnetic susceptibility, in direct contrast with the experimental observations.
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Additionally, the results for t = 0.05 seem to be in better quantitatively agreement with the
magnetic susceptibility measured for all field directions, as evident in figure 3.11 (b) where
the critical signatures fo the domains reorientations, both discrete and continuous are much
smoother than measured, cf. Fig. 3.10 (c). Furthermore, such a value of t demands for even
smaller domains than those discussed above for t = 0.02. A more realistic approach would
take into account, among others, an array of domain sizes and the contributions from the
domain walls.

The excellent agreement between theory and experiment demonstrated above is put more
generally to the test by calculating the derivative of the magnetization for several different field
directions. For this purpose, the latter was measured on the spherical sample presented in the
neutron scattering experiments, cf. Fig. 3.6 (a), using an Oxford Instruments vibrating sample
magnetometer. The external magnetic field was applied in directions B̂ = ( sin β√

2
, sin β√

2
, cos β),

cf. figure 3.12 (a), on one the great gray circles on the unit sphere in figure 3.12 (b). The
angle β was determined using an optical microscope, which results in an uncertainty of ±1°.
The field was increased in 1mT steps. At each step, the magnetization was determined by
integrating oscillations at 62.35Hz over 3 s while the field was kept constant. The derivative
was calculated numerically and smoothed using a fourth-order Savitzky-Golay filter over 40
data points.
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Figure 3.12: Derivative of the magnetization for different orientations of B = ( sin β√
2

, sin β√
2

, cos β) as
shown in (a), tracing a gray big circle on the unit sphere (b). (c) Data measured after zero-
field cooling (ZFC), for comparison the magnetic susceptibility computed from a thermal
ensemble calculation with kBT/ξ3

dom = 0.05ε
(1)
T are shown as dashed gray lines. Data

has been shifted by 0.1. (d) Data obtained starting from a single domain state achieved
after high-field cooling (HFC), correspondingly the solid lines are calculation of χB for
a single macroscopic domain. Overall the agreement between theory and experimental
data is very good.
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When comparing the results for different directions, one can neglect the demagnetizing
effects thanks to the spherical shape of the sample. Recorded data is plotted on figure 3.12 (c)
and (d). As was the case so far, two different scenarios are considered: starting from a multi-
domain state after zero-field cooling depicted on the left column and starting from the single-
domain conical state after high-field cooling on the right column. The expected values of
the magnetic susceptibility, as obtained from a thermal calculation for ZFC measurements
and from a single domain for HFC measurements, are shown by the grey dashed and solid
lines, respectively. The dependency on the angle β is captured very well by the theoretical
model, albeit some consistent deviations point to contributions well beyond the mean-field
approximation presented here.

In the case of zero-field cooling, the transition is regularly at higher fields than expected
from theory, as was already shown in figure 3.10. A systematic error from the smoothing algo-
rithm results in an additional discrepancy in the absolute value of the magnetic susceptibility
at zero-field. When starting from the conical state, the agreement between theory and experi-
ment is remarkable. Both differ only for field directions closed to the critical fields for B ‖ [110]
and B ‖ [001]. At the transition, dM/dB is larger, and critical signatures are sharper than
expected from theory. Notably, two subsequent maxima related to the Ising transitions are ob-
served in the experimental data for field directions around a [001], but deviating substantially
from it. In the theoretically derived susceptibility, these deviations lead to the smearing of the
maxima. Furthermore, hysteresis can be observed between decreasing and increasing field
strength. Multiple domains coalesce for the latter corresponding with weaker signatures in
the susceptibility, consistent with the neutron scattering results, cf. Fig. 3.9 (c).

3.6 B E YO N D T H E M E A N - F I E L D A P P R OX I M AT I O N

In this chapter, the reorientation process of the helimagnetic in MnSi was discussed in the
framework of an effective mean-field theory in the limit of weak anisotropies and corroborated
with thorough neutron scattering, magnetization, and magnetic susceptibility measurements.
A few phenomenological parameters are sufficient to account for the tetrahedral point group
T of the cubic chiral magnets and successfully described the trajectory of the helical propa-
gation vector Q and the magnetic response to an external magnetic field B.

The transition from the helical to the conical phase in MnSi involves two elastic Ising transi-
tions for B ‖ 〈100〉 which break a Z2 ×Z2 symmetry subsequently. For general field orienta-
tions along 〈hk0〉 with h, k 6= 0, a single elastic Ising transition occurs at the critical field Bc1,
while the reorientation represents a crossover phenomenon for all other directions.

The overall agreement, both quantitatively and qualitatively, between experiment and the-
ory is remarkable and lays the ground to identify specific aspects of this transition where
interesting new physical phenomena in these systems could be studied. Specifically, there
are two distinct discrepancies between the experimental results and the theory:

• Hysteresis is observed at nominal continuous elastic Ising transitions

• Sharper and more robust signatures when the transition is approached from the single
domain conical state

It should be evident that the approach presented here is by no means complete. Corrections
arising from thermal fluctuations may lead to the enhanced signatures mentioned above,
while the emergence of non-trivial topological defects in the helimagnetic order could be
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Figure 3.13: (a) and (b) Two different type of disclinations of helimagnetic order. The arrows represent
magnetic moments around +π and−π disclinations. The color map represents the value
of the out-of-plane moment. (c) and (d) Director fields of the helimagnetic order. The
disclinations represent vortices where the propagation directions rotate by +π and −π
respectively. The color map is the same as in (a) and (b) for comparison.

the cause behind the hysteresis observed in the experimental data, as they inhibit the co-
alescence of domains [119]. The magnetic susceptibility measurements establish that slow
dynamics are a crucial aspect of the transition yielding a relatively long relaxation time τQ̂.
The relaxation time scale probably becomes even larger than the typical probing times of our
experimental methods, giving rise to the hysteretic behavior.

In order to relieve stress in a helical domain wall plastic deformations of the magnetic ar-
rangements, i. e., disclinations, may form, cf. Fig. 3.13 (a) and (b). The helix propagation
vector rotates by +π and −π around such defects respectively, cf. Fig. 3.13 (c) and (d), thus
creating vortices in the pitch-director field and are therefore topologically non-trivial. Con-
sequently, domains adjacent to such defects do not join smoothly. Instead, the topological
disclinations need to be removed first, resulting in slow relaxation processes. Disorder in the
sample leads to pinning of these defects, which in turn increases the relaxation time scale.
Interestingly the role of topological defects in the relaxation processes in helimagnetic order
was recently studied for the case of FeGe using magnetic force microscopy [120].

The non-trivial characteristic of skyrmions is at the center of the properties that have gen-
erated so much interest recently, cf. [9]. In contrast studies of topologically non-trivial disclina-
tions defects in chiral magnets are sparse, and their properties remain largely unknown. The
technological possibilities from single macroscopic topological objects in a different region of
the phase diagram in chiral magnets merit further research.
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As mentioned in the introduction, Alexei Bogdanov proposed the existence of a thermody-
namical skyrmion lattice phase similar to the vortex lattices observed in superconductors in
a seminal theoretical work in the late 80s [38]. His study focused on the mean-field theory of
easy-axis ferromagnets with chiral spin-orbit interactions. While a hexagonal skyrmion lattice
represents the ground state for specific parameters, it demands the presence of easy-axis
anisotropy [39, 121]. Thus, cubic crystals were excluded from the predicted skyrmion hosting
material due to their symmetry. It was thus surprising as the first observation of this novel type
of magnetic order was in the cubic chiral magnet MnSi by Mühlbauer and collaborators [11].
The latter publication established that the coupling of the magnetic structure to thermally
driven fluctuation leads to a reduction in energy sufficient for the skyrmion lattice to become
the ground state of the system at temperatures close to the helimagnetic to paramagnetic
transition and medium magnetic fields. Recently systems have been identified, where strong
anisotropies play a vital role in the stabilization of skyrmions, albeit changing an intrinsic char-
acteristic, i. e., switching from bloch to néel skyrmions [122]. The role of uniaxial anisotropy
in systems with high symmetry, such as B20 compounds, remained an open question and is
the subject of the present chapter.

Butenko and collaborators carried out a theoretical study considering the effects of uni-
axial magnetic anisotropy induced by pressure [99]. They concluded that skyrmions can be
stabilized by uniaxial stress in the order of a few kbar. The results presented below con-
firmed this prediction. The main effect of uniaxial stress is indeed to control the stability of
the skyrmion lattice. However, the relation between stress and the magnetic field is crucial. If
they lie parallel to each other, the skyrmion lattice is suppressed, as the uniaxial stress and
the magnetic field favor a conical propagation pointing in their direction. The skyrmion lattice
is preferred when the magnetic field points perpendicular to the stress axis. Seki obtained
similar results when studying the effects of tensile strain on thin single-crystal samples of
Cu2OSeO3 [123]. In situ application of stress is even able to switch from the skyrmion lattice
to the conical phase, as demonstrated by Nii and collaborators through magnetic suscepti-
bility measurements [124]. Strain might represent an important component to understand the
magnetic order in epitaxially grown samples of B20 compounds. However, recent extended
x-ray absorption fine structure (EXAFS) measurements on MnSi thin films established that
the strain originating in the 3% lattice mismatch between substrate and film is released after
a few atomic layers [125]. Thus, the film is essentially unstrained.

This chapter presents a thorough recently published study of the effects of uniaxial pres-
sure on the magnetic order of MnSi [126]. The first section introduces the experimental meth-
ods used, consisting of a bespoke uniaxial pressure cell and susceptometer. It is followed by
a discussion of uniaxial pressure effects on the helical magnetic order in section 4.2, starting
with measurements in zero magnetic field, continuing with the discussion of the competition
between the Zeeman energy and the magnetic anisotropy. The section finishes by examining
the suppression of the magnetic order. The effects of uniaxial stress on the skyrmion lattice
are discussed in section 4.3. A discussion of the phase diagrams obtained from magnetic
susceptibility measurements wraps up the chapter.

53
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Figure 4.1: Schematic depiction of the uniaxial pressure cell and the SANS set up. (a) Cut-away view
of the uniaxial pressure cell, which is based on He-activated bellows. A Helium gas cap-
illary, B Cu:Be cage, C Force transmission, D Piezo Sensor, E Uniaxial pressure piston,
and F Sample space. (b) Photograph of the pair of secondary detection coils of the ac
susceptometer. (c) Photograph of the sample as mounted in the pressure cell for SANS
measurements. (d) SANS configuration 1: The applied magnetic field Bdc is perpendicular
to both σ and the ac excitation field Bac. (e) SANS configuration 2: The applied magnetic
field Bdc is parallel to the pressure axis and the ac excitation field Bac.

4.1 E X P E R I M E N TA L E N V I R O N M E N T F O R U N I A X I A L P R E S S U R E E X P E R I M E N T S

Two main aspects were taking into consideration, when addressing the question of how to
study the effects of uniaxial pressure on the skyrmion lattice in MnSi:

1. What is the best probing mechanism for changes to the magnetic order?

2. What type of uniaxial pressure cell is compatible with the chosen experimental method?

Small-angle neutron scattering is well suited for uniaxial pressure experiments. The type
of materials able to withstand the forces and stresses that develop in these experiments,
normally lead to a reduction of the beam flux due to absorption and scattering. The aluminum
used for the pressure cell has high neutron transparency allowing must of the flux to go
through. Tensile strains can be addressed by thickening the cell without a substantial loss
of neutron transmission and using stronger materials for parts of the cell which the neutron
beam does not illuminate. Magnetic neutron scattering is sensitive to specific domains and
provides access to physical characteristics like propagation direction and population, that get
lost in bulk measurements such as electrical transport and magnetization. However, some
of the effects of uniaxial pressure can be tracked using this type of bulk measurements. The
combination of both microscopic and macroscopic measurements allowed the thorough study
presented in this chapter.

Uniaxial pressure cell

Uniaxial pressure was generated with a bespoke pressure cell based on a He-activated bel-
low system depicted [127, 128] in figure 4.1 (a). The materials of the cell were carefully
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sample size σ Bdc Bdc vs σ Exp MLZ λ detector

S1 10x2x2 [110] [110] ⊥ SANS MIRA-1 10.4 He3 PSD

S1 10x2x2 [110] [001] ⊥ ACS

S1 10x2x2 [110] [110] ‖ ACS

S2 5x1x1 [110] [110] ‖ SANS MIRA-2 5 CASCADE

S3 5x1x1 [001] [110] ⊥ SANS MIRA-2 4.5 CASCADE

S3 5x1x1 [001] [001] ‖ SANS MIRA-2 4.5 CASCADE

S4 5x1x1 [111] [110] ⊥ SANS MIRA-2 4.5 CASCADE

Table 4.1: Summary of all sample dimensions, sample orientations, field orientations, SANS configu-
rations (instrument, wavelength and type of detector) as well as measurements performed
in the context of this study. SANS: small-angle neutron scattering, ACS: ac susceptibility

selected to balance mechanical stability and neutron transparency. Both were achieved by
combining Cu:Be and Aluminum AW 7075. Pressurized He-Gas is filled into the metal-bellow
through a capillary. The effective area of the metal bellow AMB results in an effective axial
force originating in the gas pressure. Thus the uniaxial stress on the sample is given by

σ =
AMB

Asample
Pgas (4.1)

The experimental setup included a piezo sensor (Kistler 9001A) to measure the applied
force. The pressure of the He-Gas was determined using a Siemens Diptron 3 Digital Manome-
ter. The gas handling system included a 10 L gas dump to reduce pressure variations driven
by temperature changes within the cryostat. Pressure fluctuations throughout the experi-
ments were less than 3%. A detailed description of the uniaxial pressure cell can be found in
the author’s master thesis [129].

AC magnetic susceptibility

AC magnetic susceptibility was measured using a bespoke free-standing susceptometer
[130] depicted in figure 4.1 (b). Specifically, figure 4.1 (b) shows the two secondary coils C1
and C2, wound concentrically with C2 on top of C1. These had an inner diameter of 3.1mm

with a height of 5.5mm. The primary coil was large and placed outside of the pressure cell,
to ensure a homogenous ac-magnetic field Bac across the sample. AC susceptibility χac was
recorded at typical excitation fields ∼ 1mT and excitations frequencies of 900Hz oriented
parallel to the uniaxial stress σ. The data were calibrated against data recorded with a Quan-
tum Design Physical Properties Measurement System.

External magnetic fields

Static external magnetic fields Bdc were generated using two magnets. For measurements
up to a few Tesla, a cryogen-free superconducting magnet was used whose magnetic field
always pointed along the uniaxial stress direction. The second magnet consisted of a bespoke
set of water-cooled Cu solenoids in a Helmholtz configuration with a maximum field strength
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of ∼ 350mT when Fe-cores were inserted in the solenoids. The magnetic field could be
applied parallel or perpendicular to σ.

Experimental configurations

Two different experimental setups characterized by the relation between the external dc mag-
netic field Bdc and the uniaxial pressure σ were used, namely:

• Bdc ⊥ σ

• Bdc ‖ σ.

Both are illustrated in figure 4.1 (d) and (e) respectively. In the first configuration, one is able
to observe the full scattering pattern of the skyrmion lattice, since the external magnetic
field is applied parallel to the incoming neutron beam. In the second experimental setup,
one can observe the conical phase and a skyrmion lattice related signal, indicated by two
Bragg reflections perpendicular to the applied field. Note that regardless of the external field
direction, the ac-magnetic field is always parallel to σ.

Small-Angle neutron scattering

Neutron scattering was carried out at the MIRA-1 and MIRA-2 [85] diffractometers at the
Heinz Maier-Leibnitz Center. For the measurements at MIRA-1 the neutron beam was colli-
mated with two 5× 5mm2 slits situtated ∼ 1.5m and ∼ 0.5m in front of the sample. Scat-
tered neutrons were then recorded with a 20× 20 cm2 delayline 3He area detector, with a
spatial resolution of 2× 2mm2 placed 0.85m behind the sample. At MIRA-2 the apertures
had a size of 2× 3mm2 and 1× 1.4mm2, respectively. Their positions were the same as at
MIRA-1 with respect to the sample. The experimental setup was completed by a CASCADE
detector [87] 2.3m behind the sample. Magnetic fields were applied using the Helmholtz set
mentioned above, however in this experiments the maximum field was limited to 250mT.

Sample preparation

In order to study the interplay of the uniaxial stress with the magnetocrystalline anisotropies,
four MnSi samples were prepared from optically float-zoned high-quality single crystals [114].
The dimensions of three of the samples were 5× 1× 1mm3, with the long edge parallel to a
〈100〉, 〈110〉 and 〈111〉 respectively. The remaining sample had a size of 10× 2× 2mm3 with
its long axis parallel to a 〈110〉 crystallographic axis. The sample quality was comparable to
those measured in previous studies [116]. A summary of all samples including the pressure
and field directions, as well as the measurements performed, is shown on table 4.1.

4.2 M AG N E T I C H E L I C E S U N D E R P R E S S U R E

At zero magnetic field and below the critical temperature Tc ∼ 29K the magnetic moments
in MnSi order in helices propagating along the 〈111〉 axes of the system with a propagation
length of λhel ∼ 180Å. The associated scattering pattern consists of satellite Bragg peaks
at |Qhel| = 2π

λhel
≈ 0.35Å

−1
along the 〈111〉 directions. With small-angle neutron scattering it



4.2 M AG N E T I C H E L I C E S U N D E R P R E S S U R E 57

0.04

-0.04

0

-

-

-

-

-

- -- --

- -- --

-

-

-

-

-

0.04-0.04 0

-

-

-

-

-

- -- --

- -- --

-

-

-

-

-

0.04-0.04 0

0.04

-0.04

0

0.04

-0.04

0

-

-

-

-

-

- -- --

- -- --

-

-

-

-

-

0.04-0.04 0

Figure 4.2: Reorientation of the helical phase for σ ‖ 〈110〉 and σ ‖ 〈100〉: (a) Scattering pattern of the
helical phase at ambient pressures. Four Bragg peaks corresponding to the propagations
±Qhel ‖ [111] and ±Qhel ‖ [111] can be observed. (b) Upon applying a uniaxial pressure
the propagation direction rotates towards the stress axis. (c) Similar reorientation of helical
domains is captured for σ ‖ 〈100〉. (d) Angle α between propagation direction and uniaxial
pressure axis σ as a function of stress. (e) Corresponding field value Bα which yields the
same rotation angle α of the helimagnetic propagation vector as a function of stress. The
dashed line is the value of the critical field at which the helical phase points along the
magnetic field for B ‖ 〈110〉.

is possible to image four such Bragg peaks at the same time for an incoming neutron beam
parallel to a 〈110〉 crystallographic axis. A typical example is shown on figure 4.2 (a).

Applying a uniaxial pressure breaks the symmetry of the system in a similar fashion as a
magnetic field, creating a preferred propagation direction along σ. Thus, for σ ‖ [110] we
expect a continuous reorientation of the domains propagating along the [111] and [111] with
increasing pressure, while discrete transitions take place for domains lying perpendicular to
the uniaxial pressure axis,i. e., [111] and [111]. Similarly, σ ‖ 〈100〉 leads to a smooth reorien-
tation of all domains until they build a single domain state along σ. The rotation of the helices
is captured by the angle α encompassed by the propagation vector and the uniaxial pressure
axis. The reorientation, evident in the changes in α, is presented in figures 4.2 (b) and (c).
Note that the sample was heated to T � Tc before every increment in pressure. There is
small smearing of the helical Bragg peaks, which is attributed to pressure inhomogeneities in
the sample that do not affect the conclusions reported here.

In the range of pressures measured in this study, α decreases linearly with increasing σ.
The strength of the uniaxial pressure coupling can be expressed in terms of the correspond-
ing magnetic field Bα at which the same value of α is measured. The latter is plotted in figure
4.2. For σ ‖ [110] Bα increases rapidly, reaching values close to the critical transition field
Bc1 for pressures just above 1 kbar. A comparable behavior is observed for σ ‖ 〈100〉, albeit
the effects of uniaxial stress seem to be somewhat weaker. In addition to the rotation within
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Figure 4.3: Uniaxial stress effects for σ ‖ 〈111〉. (a) Typical scattering pattern of the helical phase at
ambient pressures. (b), (c) Uniaxial pressure along a 〈111〉 crystallographic axis leads a
depopulation of the unfavorable domain, evident by the decrease in the intensity of the
associated Bragg peaks. (d) Scattered intensity of the [111] domain and the [111] domain
as a function of uniaxial pressure for σ ‖ [111]. Sample is heated up to T � Tc before
every pressure increment. Smallest pressure is sufficient to achieve substantial transfer of
population from unfavorable domains to [111]. (e) Rocking curves for angle φ for different
values of σ. With increasing uniaxial pressure the peaks become sharper indicating a
reduction in magnetic mosaicity.

the scattering plane, theoretically one expects additional tilts ’away’ from the scattering anal-
ogous to the magnetic field-driven transition to a conical state discussed in chapter 3, cf. Fig.
3.3. The mapping of these rotations was not part of the scope of the work in this thesis.

Uniaxial stress along a 〈111〉 axis breaks the symmetry between the different domains. For
the following discussion, the pressure axis is defined as parallel to the [111] axis. The SANS
measurements presented here captured neutrons scattered from the [111] domain and the
domains propagating along [111]. A detailed measurement of all helical domains was out
of the scope of this study. Due to the symmetry of the system observations made for [111]
are equivalent to the behavior from the other domains. Typical scattering patterns are shown
in figure 4.3. Increasing uniaxial pressure leads to the depopulation of unfavorable domains
resulting in a reduction of the associated scattering intensity, cf. Fig. 4.3 (b) and (c).

Figure 4.3 (d) shows the intensity of the [111] and [111] domains as a function of uniaxial
stress. Already the smallest pressure applied results in a substantial transfer of intensity from
the unfavorable domains to the one propagating parallel to the pressure axis. As for the other
measurements, the sample was heated up to T � Tc before every pressure increment.
Going above the onset of the magnetic order enhances the effects of uniaxial pressure. Upon
cooling the sample spins would align along the pressures axis due to the broken symmetry
of the system, which breaks up the degeneracy between the space diagonals. If the pressure
were to be increased well below the transition temperature, a macroscopic rearrangement of
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Figure 4.4: (a) Longitudinal magnetic susceptibility χac as a function of external field Bdc at different
values of σ. Both stress and magnetic field are applied along a [110] axis. A rotation of
the helix propagation vector towards [110], either driven by pressure or magnetic field,

results in a higher susceptibility. Consequently the critical field B‖c1 for the transition from
helical to conical decreases with increasing pressure. (b) Magnetic susceptibility for an
excitation field Bdc ‖ [110] as a function of external magnetic field Bdc ‖ [001] for different
values of pressure σ ‖ [110]. The transition from the helical to the conical state at B⊥c1
is associated with a reduction in the magnetic susceptibility. Introduction of an uniaxial
anisotropy perpendicular to the field results in a larger critical field B⊥c1.

helical domains would be needed as is the case for the magnetic field-driven transition. Thus
larger pressures than the ones applied here would be necessary to achieve the transition
to a single domain state because the unfavorable domains would remain metastable until
they reach their spinodal point. The continuous increase in scattered intensity for the domain
parallel σ observed in figure 4.3 (d) is associated with pressure inhomogeneities as well as
a reduction of magnetic mosaicity. So-called rocking scans measure the width of the Bragg
peak perpendicular to the observable plane, which is related to the magnetic mosaicity, by
rotating the sample around a vertical axis perpendicular to the neutron beam and, if possible,
perpendicular to the propagation axis. The resulting intensity dependence of rocking angle
φ is shown in figure 4.3 (e) for different values of σ. With increasing uniaxial pressure, the
maximum intensity increases, but the width of the peak does not broaden. Thus the full-width
at half maximum decreases, which means that the more helical domains are oriented along
the uniaxial stress axis, reducing the magnetic mosaicity.

Competition and cooperation between Zeeman energy and uniaxial anisotropy

As shown above, uniaxial pressure leads to a preferred axis of propagation parallel to the
stress axis. As discussed in chapter 3, applying an external magnetic field Bdc also results in
a reorientation of the helix to point towards the field direction. The interplay between uniaxial
anisotropy and Zeeman energy at finite fields was studied through ac magnetic susceptibility
measurements.

Two different scenarios depending on the geometrical relation of external magnetic field
Bdc and uniaxial pressure axis σ can be distinguished:

• Cooperation: Bdc ‖ σ,

• Competition: Bdc ⊥ σ
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Figure 4.5: Scattered intensity from helical domains as a function of external magnetic field Bdc ‖
[110] for different values of σ with σ ‖ [111]. (a) Intensity from helical domains with propa-
gation vector Q ‖ [111]. This domain is stabilized by the uniaxial stress, and survives up to
higher values of the magnetic field with increasing uniaxial pressure, surpassing the typical
critical field for pressures above 1 kbar. (b) Intensity from helical domain with propagation
vector Q ‖ [111]. The combination of stress and magnetic field makes this domain the
most unfavorable one. Thus its population is depleted at very low magnetic field values.

while the excitation field Bac pointed always parallel to σ. These measurements were made
on sample S1, cf. table 4.1, which had a [110] axis along its long edge, while the shorter
sides where parallel to [001] and [110].

Cooperation Bdc ‖ σ

The situation is cooperative when the uniaxial pressure σ is parallel to the external magnetic
field Bdc. In the present case, both of these as well as the excitation field pointed along the
[110] axis. The measured magnetic susceptibility is the same as the one discussed in the
previous chapter and is denoted longitudinal susceptibility since Bdc ‖ Bac. Typical curves
obtained at different values of σ are shown in figure 4.4 (a). These were measured after
cooling the sample in a high negative magnetic field. Consequently, at zero magnetic field
only the domains along [111] and [111] are populated as these are closest to the magnetic
field direction, while the other two domains lie perpendicular to it, cf. chapter 3. Increasing
the magnetic fields results in turn in a higher χac as the domains rotate towards the field. The
point of inflection of the susceptibility curve as a function of the magnetic field defines the
critical field value Bc1, and in this case is Bc1 ≈ 100mT. At ambient pressure, there is a small
peak associated with the transition. Consistent with the rotation of helical domains observed
in the neutron scattering patterns, cf. Fig. 4.2 (b), the magnetic susceptibility χac at zero
magnetic field increases with increasing pressure approaching the value observed for the
conical phase. Accordingly, the transition to the conical phase takes places at lower magnetic
field values. The small peak observed at the transition vanishes as the pressure rises. That
can be the consequence of large and fewer domains, as well as pressure inhomogeneities
present in the sample that smear the critical behavior at the transition.

Competition Bdc ⊥ σ

Uniaxial stress pointing along a hkl[110] axis and an external magnetic field parallel to a
[001] permits the study of the competition between Zeemann energy and the induced uniax-
ial anisotropy. The crystallographic magnetic field direction was chosen to avoid the discrete
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Figure 4.6: Pressure dependence of critical field Bc1 for uniaxial pressures perpendicular and parallel
to the external magnetic field, denoted by B⊥c1 and B‖c1, respectively. Uniaxial pressure was
applied along a [110], and fields were applied along [001] and [110] crystallographic axes,
for perpendicular and parallel configurations, respectively. In a perpendicular geometry,
the critical field increases with increasing pressure, while it decreases for a field parallel
to pressure. Additionally, the characteristic field Bdom indicate the field at which domains
parallel to σ ‖ [111] are completely depopulated. The latter approaches B⊥c1 for pressures
∼ 1 kbar . Thus uniaxial anisotropy dominates anisotropic behavior for pressures above a
few kbars.

transition of the domains closest to the uniaxial pressure axis under ambient pressure for
a field parallel to [110]. As a reminder, in MnSi domains perpendicular to a magnetic field
applied along a 〈110〉, are depopulated in a discrete transition at fields lower than Bc1. Due
to the experimental setup constraints, the excitation field Bac is perpendicular to the external
static field Bdc. Thus probing a different diagonal component of the magnetic susceptibility
tensor. The measured susceptibility is denoted χac

⊥ to avoid confusion with the more typi-
cal longitudinal susceptibility. Figure 4.4 (b) shows typical dependencies of χac

⊥ around the
transition to the conical state. At zero magnetic field, the susceptibility measured is the same,
as the field increases and the helical domains rotate towards it, the value of χac

⊥ decreases.
Further increments of the magnetic field strength result in an increase of the susceptibility,
associated with the rotation of the spins towards the propagation direction Qhel ‖ Bdc.

It is instructive to consider the particular case of uniaxial stress applied parallel to [111],
in which the pressure enhances the energy gain from propagating along the easy axis of
the system. Figures 4.5 (a) and (b) show the measured scattered intensity from the helical
domains propagating along [111] and [111], respectively, as a function of an external mag-
netic field applied along [110], for different values of uniaxial stress applied along [111]. As
mentioned above, all other domains become depopulated as the pressure increases, and the
[111] domain is favored. At ambient pressure, the intensity for these domains vanishes just
below ∼ 50mT. The application of uniaxial stress increases the field region in which the helix
along [111] is stable dramatically and for σ ≈ 1.1 kbar intensity can be observed above the
critical field Bc1 at ambient pressure.

At the moment, it is not possible to perform small-angle neutron scattering while rotating
the sample and the magnetic field by an arbitrary angle. Typically the rotation range is con-
strained to −5° to 5° around the incoming neutron beam. Thus it is not possible to determine
carefully the value of Bc1 from these measurements since one cannot establish that the not
observable domains have coalesced to a single domain already. Instead, a new field value
Bdom is defined at which the domains along [111] has been completely depleted, cf. Fig.
4.5 (a). The dependencies of the critical transition fields B⊥c1 and B‖c1, for magnetic fields per-
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Figure 4.7: (a) Scattered neutron intensity from the helimagnetic order in MnSi at different uniaxial
pressures σ. The critical temperature Tc is defined as the onset of intensity and marked
by a black arrow. (b) With increasing uniaxial pressure the magnetic order is suppressed
and the critical temperatures shifts to lower values as a consequence of isotropic pressure
effects, the gray line is a fit with a slope of dT/dσ ≈ −0.24Kkbar−1.

pendicular and parallel to the uniaxial pressure axis, respectively, are plotted in figure 4.6,
together with Bdom, defined above. The critical field for B ⊥ σ increases with increasing
uniaxial pressure. In contrast B‖c1 decreases linearly with increasing uniaxial pressure. While
Bdom shows non-linear behavior for pressures below 1 kbar, and linear behavior above. This
domain is perpendicular to the field, which means that usually there would be a discrete tran-
sition to one of the helical domains propagating closer to the magnetic field direction. Thus,
the field dependence of Bdom can be interpreted as a transition to the conical phase through
an intermediary helical domain below 1 kbar and a direct transition to the conical state for
pressures above this value.

Regardless of the crystallographic direction the pressure is applied along, the anisotropic
contribution arising from it exceeds the magneto-crystalline anisotropies above a few kbars
and dominates the anisotropic phenomena related to the helical phase.

Suppression of the magnetic order from uniaxial pressure

The effects of uniaxial pressure on the helical phase discussed above are a consequence
of symmetry breaking anisotropic strain. A different, isotropic effect of uniaxial stress on the
magnetic order of MnSi is observed at the transition temperature from the paramagnetic
to the helical state at zero magnetic field. The scattered intensity on the helical propaga-
tion peaks as a function of temperature is depicted in figure 4.7 (a). The onset of scattered
neutrons intensity from the helical domains, indicated by the black arrow for ambient pres-
sure, defines the critical transition temperature Tc. With increasing uniaxial stress σ the mag-
netic order is suppressed and the critical temperature Tc shifts to smaller values at a rate of
dTc/dσ ≈ −(0.24± 0.03)Kkbar−1), cf. Fig. 4.7 (b). A similar suppression of the magnetic or-
der is observed under hydrostatic pressure at a rate of −0.8Kkbar−1 ≈ 3dTc/dσ [131]. The
latter is a consequence of a reduction of the unit cell volume, leading to the conclusion that
the uniaxial pressure-driven suppression of the magnetic order originates in isotropic effects
which result in a smaller volume of the unit cell.
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Figure 4.8: Scattering pattern of the skyrmion lattice for Bdc ‖ [110] at different values of σ. (a1), (a2)
and (a3), scattering patterns for σ ‖ [001]. The application of pressure does not break the
intrinsic symmetries of the system. Thus the scattering pattern remains unchanged for all
values of σ. (b1), (b2) and (b3), skyrmion lattice for σ ‖ [111]. In this case, the symmetry
of the skyrmion lattice is broken by the uniaxial stress, leading to a smooth rotation of the
scattering pattern towards the pressure axis with increasing pressure.

4.3 U N I A X I A L P R E S S U R E E F F E C T S O N T H E S K Y R M I O N L AT T I C E

The seminal theoretical work of Bogdanov established the existence of skyrmion lattices P213
systems only under the existence of additional uniaxial anisotropy. As was discussed in the
introduction, the skyrmion lattices are stabilized in these compounds by their effective cou-
pling to thermal excitations closed to the transition temperature. Recent theoretical analysis
on the effects of extrinsic uniaxial anisotropies on the phase diagram of MnSi established
that a uniaxial tensile strain would result in the stabilization of the skyrmion lattice down to
lowest temperatures. In agreement with this most recent work, the results presented here
show that the application of uniaxial stress perpendicular to the magnetic field stabilizes the
skyrmion lattice. However, the latter is suppressed if the uniaxial stress is parallel to the ex-
ternal magnetic field direction. These observations will be discussed in more detail towards
the end of this subsection. First, the next paragraphs examine the effects on the microscopic
characteristics of the magnetic order.

Small-angle neutron scattering and magnetic susceptibility measurements are combined
to obtained a thorough characterization of the skyrmion lattice under pressure, using both
experimental configurations with Bdc ‖ σ and Bdc ⊥ σ. These are discussed separately in
the following.
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Figure 4.9: (a) Scattering pattern of the skyrmion lattice at ambient pressure subtracted by the scat-
tering pattern obtained at σ = 2.4 kbar. The skyrmion lattice has rotated by an angle ω
induced by pressure. (b) Temperature dependence of the rotation angle ω for different
values of σ. The decrease close the transition temperature indicates thermally driven re-
laxation processes. (c) Uniaxial pressure dependence of the rotation angle ω for absolute
temperatures T = 28K and for relative temperatures TA2 − T = 1.1K. The rotation angle
shows a smooth increase with increasing pressure, due to the breaking of the two-fold
rotation symmetry around [001] induced by the uniaxial stress.

Uniaxial pressure perpendicular to the external magnetic field

The SANS experiments carried out with Bdc ‖ σ included an external magnetic field applied
along a [110] axis to readily compare anisotropic effects arising from different pressure axis,
i. e., [001],[110] and [111]. Figure 4.8 depicts typical scattering patterns for σ ‖ [001]. The
skyrmions order in a hexagonal lattice resulting in a scattering pattern consisting of three
pairs of Bragg peaks. For Bdc ‖ 〈110〉 one of these pairs points along a 〈110〉. The orientation
of the skyrmion lattice as a function of uniaxial pressure can be described with an effective
potential given by

V(ω) = −V(σ) cos{6[ω−ω0(σ)]}, (4.2)

where V(σ) and ω0(σ) are pressure dependent coefficients and ω quantifies the deviation of
one of the Bragg peak pair from a 〈110〉. At ambient pressure and magnetic fields parallel to
〈110〉 the two-fold symmetry around the cubic 〈100〉 axes of the system from the tetrahedral
point group results in ω0(0) = 0. Hence V(0) > 0 so that the contribution from V(σ) is
minimized for ω = 0. Applying uniaxial pressure along a 〈100〉 axis does not break the
rotation symmetry around the [001] since σ is a director. Typical scattering patterns for σ ‖
[001] are shown in the first row of figure 4.8. Increasing uniaxial stress does not result in
any changes on the magnetic structure of the skyrmion lattice. Thus, ω0(σ) = 0 and the
coefficient V(σ) remains positive.

The rotation symmetry around the cubic 〈100〉 axis is broken when uniaxial pressure is
applied along a 〈111〉 axis. This can be easily observed in the scattering patterns shown in
the second row of figure 4.8. At ambient pressures the typical six-fold pattern is observed.
Adding uniaxial stress leads to a rotation of the skyrmion lattice towards σ, cf. Fig 4.8 (b2)
and (b3).

Figure 4.9 contains a detailed characterization of the rotation angle ω . First, the rate of
rotation is evident from a subtraction of the scattering pattern obtained at σ = 2.4 kbar from
the one measured at ambient pressures. The blue points represent the position of the Bragg
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Figure 4.10: (a) Scattering pattern of the skyrmion lattice at ambient pressures. Intensity differences
between Bragg peaks originate from incomplete rocking scans. (b) Skyrmion lattice at
σ = 0.9 kbar after the sample was cooled in an applied field Bdc = 185mT. There are no
changes in the orientation of the skyrmion lattice. (c) Scattering pattern of the skyrmion
lattice after zero-field cooling. The 12-fold pattern corresponds to two different domains,
with a Bragg peak pair along [110] and [001], respectively. (d), (e) Scattered intensity
from the [001] and [110] domains after zero-field cooling as a function of magnetic field
at σ = 0.9 kbar and σ = 1.2 kbar, respectively. The domains oriented along [001] are
observed at lower fields, while those oriented relative to the [110] dominate in the typ-
ical field region of the skyrmion lattice phase. Increasing the uniaxial stress results in
enhanced stability of the [001] domain for larger fields. (f), (g) Schematic phase diagrams
from neutron scattering measurements after zero-field cooling. Regimes of the [001] and
[110] domains are shaded orange and purple, respectively. The squares represent points
at which scattered neutrons were measured. The [001] domain dominates the high tem-
perature, low field regime, while the [110] is observed to lowest temperatures. The regime
of the [001] domain increases with increasing pressure.
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peaks under pressure rotated by the angle ω concerning the measurement at σ = 0. Interest-
ingly the rotation angle has a temperature dependency, depicted for ambient, intermediate,
and the maximum pressure measured in figure 4.9 (b). At ambient pressures, there is no ro-
tation over the entire temperature window of the skyrmion lattice. At intermediate pressures,
i. e., ∼ 1.1 kbar, ω shows a linear dependence on temperature, decreasing with increasing
temperature. Finally, at σ = 2.4 kbar, the highest pressure measured, the rotation angle re-
mains finite and constant with a value of ∼ 12.5° over must of the temperature regime of
the skyrmion lattice and starts to decrease close to the transition to the intermediate regime.
Thus, thermal fluctuations reduce the effects of uniaxial pressure, allowing a partial relaxation
of the crystal lattice. These coupling to thermal fluctuations together with the suppression of
the magnetic order, discussed in the last section, need to be considered when defining the
dependence of ω on uniaxial stress σ. In figure 4.9 (c) two different approaches are plot-
ted, i. e., constant temperature and constant distance from the transition to the intermediate
regime, i. e., TA2 − T. Regardless of which approach is chosen the rotation angle ω shows
a continuous dependence on the uniaxial pressure, which seems to be linear above 1 kbar.
Hence breaking the two-fold symmetry leads to a finite ω0(σ) and in turn a smooth increase
in ω with increasing stress as the Bragg peaks rotate away from the [110] axis.

Similarly to the case of uniaxial pressures along [001], applying stress along a [110] axis
does not break the 180° rotation symmetry around the [001] axis. From an experimental point
of view, two different scenarios can be distinguished, field-cooling, and zero-field-cooling.
In the former, the desired magnetic field value is applied, and the sample is then cooled
below the critical temperature Tc. In the case of zero-field-cooling, there is no finite magnetic
field during cooling. For field-cooling measurements, there are no changes in the six-fold
pattern of the skyrmion lattice. For comparison, the measured scattering pattern at ambient
pressure and at σ = 0.9 kbar are shown in figure 4.10 (a) and (b), respectively. Note that
intensity differences between the Bragg peaks at ambient pressure are the consequence of
incomplete rocking scans.

After cooling the sample in zero magnetic field, and subsequently increasing the latter,
the scattering pattern shown in figure 4.10 (c) is observed. It consists of a total of 12 Bragg
peaks, originating from two separate domains of skyrmion lattices, one with a pair of Bragg
peaks pointing along the [110] axis and a second with a pair of Bragg peaks along the [001]
axis. Each of these domains possesses its independent regime of stability in the phase di-
agram. The [001] domain dominates at lower fields, even slightly lower than those at which
the skyrmion lattice is stable at ambient pressures. Increments in the magnetic field lead to a
population transfer from the [100] domain to the [110] one, cf. Fig. 4.10 (d) and (e). In contrast,
the [110] domain is stable at lower temperatures than the [001] domain, this is illustrated in
schematic phase diagrams shown in figure 4.10 (f) and (g). The regime of the [001] domain is
colored orange, while the regime of the [110] is colored purple, the squares denote the points
at which scattering patterns were measured. The scattered neutron intensity indicates that
the [001] domain becomes dominant over increasing field regions as the pressure increases.

As mentioned above, since the rotation symmetry remains unchanged ω0(σ) = 0 and the
uniaxial pressure changes only the value of V(σ). With increasing pressure V(σ) decreases
and it changes sign for σ ≈ 1 kbar, hence the potential V(ω) is minimized for ω = 30°.
The expansion of the temperature regime of the [110] skyrmion domain demonstrates the
limits of the effective potential described above. The [110] domain can be stabilized by the
temperature dependence of the coefficients of V(ω) or the [001] domain could be metastable
and only an intermediate step between helical and [110] skyrmion lattice.
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Figure 4.11: Temperature dependence of the scattered neutrons intensity from the skyrmion lattice
for Bdc ‖ [110] for different direction of σ. The temperature scale is relative to TA2 the
transition to the intermediate regime for better comparison. (a) σ ‖ [001], temperature
window of the skyrmion lattice increases with increasing pressure and doubles around
σ ≈ 1 kbar. (b) σ ‖ [110] the stabilization is stronger than for σ ‖ [001], reaching three
times the width of the ambient pressure phase at σ ≈ 1 kbar. Strong intensity changes
originate from incomplete rocking scans. (c) σ ‖ [111], the expansion of the skyrmion
phase is similar as for σ ‖ [110].

In summary, there is no indication of microscopic changes to the magnetic order in the
skyrmion lattice phase as a function of uniaxial pressure, for the range of stresses studied
here. Regardless of the uniaxial stress direction, no intensity related to higher-order contribu-
tions was observed, indicating that the pressure does not affect the magnetic structure, only
affecting their preferred spatial orientation. Additionally, σ should couple to the normal vector
of the skyrmion lattice, causing a small tilt from a plane perfectly perpendicular to the applied
magnetic field. Such a tilt was recently observed, in careful measurements of the skyrmion
lattice orientation as a function of magnetic field direction on a spherical sample [132].

The main result for the experimental configuration with Bdc ⊥ σ is the expansion of the
thermodynamic stability of the skyrmion lattice, regardless of the crystallographic axis, the
pressure is applied along. The increment in the stability is evident from the temperature
dependence of the scattered intensity from the skyrmion lattice. The measured intensity is
shown in figure 4.11 as a function of relative temperature T− TA2 for Bdc ‖ [110] and uniaxial
stress applied along an axis of high symmetry perpendicular to Bdc. At ambient pressure, the
temperature boundaries of the skyrmion lattice are about 1K apart. A few kbars of uniaxial
stress are enough to expand this temperature window dramatically, i. e., three times larger for
σ ≈ 1 kbar.

The thermodynamic stabilization also affects the magnetic field regime of the skyrmion lat-
tice, as demonstrated by the scattered intensity as a function of the external magnetic field Bdc

shown in figure 4.12. At ambient pressure, the skyrmion lattice is observed between, approx-
imately, 150 and 225mT. As the pressure increases, scattered intensity can be measured at
both smaller and larger fields in comparison to the ambient pressure case. Interestingly, while
the intensity at 130mT increases continuously with σ, no intensity is measured at 110mT de-
marcating a sharp low boundary for the skyrmion phase. In contrast, the intensity increments
for larger fields are substantially greater than those for lower fields. Additionally, from the
slope of the curve, it is reasonable to conclude that the transition to the conical phase shifts
considerably with increasing pressure. As mentioned above, the available magnetic fields
only reach a maximum of 250mT. Thus it was not possible to measure the latter transition.
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Figure 4.12: Scattered neutron intensity from the skyrmion lattice at different values of uniaxial stress
σ applied along a [111] crystallographic axis. At ambient pressure, the skyrmion lattice
phase is observed between 150 and 225mT. The curve progression indicates that the
skyrmion lattice transition to the conical phase at large fields increases substantially with
increasing pressure. At lower fields, there is a small expansion, but there is no intensity
below 130mT.

Uniaxial pressure parallel to the external magnetic field

The main result for a field applied parallel to the uniaxial pressure axis is the suppression of
the skyrmion lattice. This is not surprising. The uniaxial pressure defines an easy-axis for the
helical propagation, an effect that is enhanced by applying a finite magnetic field parallel to σ,
thus leading to substantially smaller critical transition fields Bc1 for the helical phase. In other
words, uniaxial stress applied parallel to the external magnetic field favors a conical magnetic
order.

The suppression of the skyrmion phase is summarized in figure 4.13, showing typical scat-
tering patterns and the scattered intensity as a function of temperature. The uniaxial pressure
axis is always perpendicular to the incoming neutron beam, cf. Fig. 4.1 (e). Thus only two from
the six reflexes associated with the skyrmion lattice are observable simultaneously in such a
configuration.

In the case of Bdc ‖ 〈100〉 the skyrmion lattice changes its orientation such that one of its
propagation vectors points along a 〈100〉 axis [132], cf. Fig 4.13 (a). Hence, after verifying the
orientation of the sample with the helical scattering pattern at ambient pressures, the cryostat
was turned by 45°, so that the neutron beam was parallel to a [100] axis.

Figure 4.13 (b) depicts the scattered neutron intensity from the skyrmion lattice as a func-
tion of temperature for σ ‖ [001]. At ambient pressure the temperature window of the
skyrmion phase is larger than for Bdc ‖ [110], this is a consequence of the additional contribu-
tion to the stabilization of the skyrmion lattice from the magnetocrystalline anisotropies since
a field along a 〈100〉 axis is furthest from the easy-axis of propagation,i. e., 〈111〉. Increasing
uniaxial pressure reduces both the temperature window in which the skyrmion lattice is ob-
served as well as the scattered intensity from it. As the uniaxial anisotropy dominates over the
magnetocrystalline contribution, the preferred axis of propagation rotates towards σ, with this
rotation the stability of the skyrmion lattice is reduced. Note that for pressures & 1 kbar the
temperature window remains unchanged within the accuracy of this study, and the effect of
uniaxial pressure is mainly captured by a decrease in the volume of the skyrmion phase, indi-
rectly measured through the scattered neutron intensity, cf. Fig 4.13 (b). That last observation
could be a consequence of pressure inhomogeneities in the sample.

Uniaxial stress along a 〈110〉 axis results in very similar behavior. Depicted in figure 4.13 (c)
is a typical scattering pattern of the skyrmion lattice in this experimental configuration mea-
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Figure 4.13: Neutron scattering data from the skyrmion lattice for Bdc ‖ σ (a), (b) Scattering pattern
and scattered intensity from a skyrmion lattice with Bdc ‖ σ ‖ [001]. Only two Bragg
peaks are simultaneously measurable since the neutron beam is perpendicular to the
magnetic field. A pair of Bragg peaks lie along [010]. With increasing uniaxial stress the
scattered intensity decreases strongly and the temperature window of the skyrmion lat-
tice is reduced. (c), (d) Scattering pattern and scattered intensity for Bdc ‖ σ ‖ [110].
The Bragg peaks measured point along a [225] axis, 60° away from a [110] axis. The
suppresion of the skyrmion lattice with increasing uniaxial pressure is very effective and
no intensity is measured at σ = 1.9 kbar. (e), (f) Pressure dependence of the intensity
and the temperature width of the skyrmion phase. As the pressure increases, the inten-
sity decreases linearly. The intersection of a linear fit with the pressure axis (black arrow)
defines the critical pressure that suppresses the skyrmion phase completely. The temper-
ature width of the skyrmion phase decreases slightly with increasing uniaxial pressure
and vanishes spontaneously at the critical pressure.
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Figure 4.14: (a) Transition temperatures TA1 and TA2 as a function of uniaxial stress σ for pres-
sures applied along [111], [001], and [110], perpendicular to the magnetic field Bdc.
The suppression of the magnetic order observed in the decrease of TA2 shows the
same slope dTA2/dσ as Tc, cf. Fig 4.7. The transition to the conical phase also shifts
to lower temperatures indicating the extended region where the skyrmions are stable.
(b), (c) Transition temperatures for Bdc ‖ σ ‖ [110] and Bdc ‖ σ ‖ [001], respec-
tively. In contrast to Bdc ⊥ σ the effects of uniaxial pressure on the phase bound-
aries are very weak, and the transition temperature TA1 shows only a rate of increment
dTA2/dσ ≈ (0.20± 0.02)Kkbar−1.

sured along a [225] axis, ∼ 60° away from a [110]. As was the case for σ ‖ [001], the
scattering pattern of the helical phase for a neutron beam parallel to [110] at ambient pres-
sure verifies the sample orientation. The closest pair of skyrmion Bragg peaks are brought
to a scattering condition by rotating the sample by 30°. The suppression of the skyrmion lat-
tice phase for σ ‖ [110] is very efficient and no intensity is measured at Bdc = 160mT for
σ = 1.9 kbar.

The results discussed above are summarized in figure 4.13, where the intensity reduction
and the temperature window of the skyrmion lattice, given by the difference of the transition
temperatures TA2 − TA1, are illustrated as a function of uniaxial stress in panel (e) and (f),
respectively. TA1 denotes the transition from the conical to the skyrmion phase, while the
transition to the intermediate regime defines TA2. The progression of the intensity as a func-
tion of pressure shows a monotone reduction with increasing σ. The intersection of a linear
fit of intensity with the pressure axis defines the critical pressure σc at which the skyrmion
lattice would be completely suppressed, cf. Fig. 4.13 (e). Using this definition one obtains a
critical stress σ

[110]
c ≈ 1.7 kbar for pressures along [110] and σ

[001]
c ≈ 2.1 kbar for σ ‖ [001].

Extrapolation of the data obtained for σ ‖ [001] results in a suppression of the skyrmion
lattice for σA ≈ 2.2 kbar. The changes in the temperature width of the skyrmion phase as a
function of stress are smaller and reach a spontaneous collapse at the critical pressure.

The effects of uniaxial stress perpendicular and parallel to the external magnetic field are
compared in figure 4.14, where the pressure dependency of the transition temperatures TA1

and TA2 has been plotted for all experimental configuration and samples measured using
SANS. Note that regardless of crystallographic pressure axis or geometrical configuration,
the temperature at which the skyrmion lattice transitions to the intermediate regime de-
creases with increasing pressure. The rate of the suppression dTA2/dσ is the same as the
one observed for the critical temperature Tc, i. e., dTA2/dσ ≈ −(0.24± 0.03)Kkbar−1. Thus
the suppression of the magnetic order is dominated by the trace of the induced strain tensor.
In a cubic crystal, the latter is independent of the orientation of the applied pressure.

The differences between Bdc ⊥ σ and Bdc ‖ σ are reflected in the behavior of TA1. It
decreases rapidly for pressures perpendicular to the external magnetic field, exhibiting a
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Figure 4.15: (a) χac as a function of temperature for different magnetic fields at ambient pressure.
Black arrows mark the different transition temperatures: Tc1 helical phase to intermediate
regime, Tc2 intermediate regime to paramagnetic regime, TA1 conical to skyrmion phase,
TA2 skyrmion phase to intermediate regime and Tm crossover between ferromagnetic and
paramagnetic regime. (b) χac as a function of temperature at zero-field for different values
of stress. At σ = 1.1 kbar the susceptibility value increases as the propagation vector
rotates to uniaxial stress direction, additionally the transitions move to lower temperatures,
as the magnetic order is suppressed.

rate dTA1/dσ ≈ −(2.00± 0.05)Kkbar−1 and dTA1/dσ ≈ −(1.00± 0.05)Kkbar−1 for σ ‖
[110] and σ ‖ [111], and σ ‖ [001], respectively. In contrast, uniaxial stress parallel to the
external magnetic field results in an increase of the transition temperature TA1, but the rate
of increment dTA1/dσ ≈ (0.20± 0.02)Kkbar−1 is very small in comparison.

4.4 P H A S E D I AG R A M S U N D E R S T R E S S F R O M M AG N E T I C S U S C E P T I B I L I T Y

The neutron scattering experiments discussed above are very useful to measure the micro-
scopic details of the magnetic structures, at the same time they are very time consuming.
Hence ac-magnetic susceptibility measurements are more suitable for the thorough deter-
mination of the phase boundaries. The results obtained from these measurements are pre-
sented below.

As mentioned above the excitation field for the ac magnetic susceptibility measurements
Bac is always parallel to the uniaxial stress axis σ. In the case of an external magnetic field
Bdc parallel σ, the susceptometer is sensitive to the longitudinal component of the suscepti-
bility of the conical phase, χ‖, cf. Ch. 3. Typical data obtained in this configuration at ambient
pressure as function of temperature are shown in figure 4.15 (a). The different signatures
associated with the different transitions in the sample are marked by arrows. At zero-field
(yellow curve) and low temperatures, χac has the average value resulting from the equal pop-
ulation of the domains along the different 〈111〉 axes. When the sample is warmed up the
susceptibility increases reaching a peak related with the intermediate regime, where fluctua-
tions of length Qhel propagate along all directions. The point of inflection of the curve before
reaching the maximum is designated Tc1 and demarks the transition from the helical phase to
the intermediate regime. At the transition from the intermediate regime to the paramagnetic
phase the curve shows another inflection point, defined as Tc2. For fields within the region of
the skyrmion phase (red curve), the susceptibility at low temperatures is determined by the
conical phase. At higher temperatures the susceptibility drops spontaneously as the sample
enters the skyrmion lattice phase. The point of the drop defines the transition temperature
from the conical to the skyrmion phase TA1. As the temperature is increased further, the
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Figure 4.16: AC magnetic susceptibility χac as a function of temperature, (a), and external magnetic
field Bdc, (b), for different values of uniaxial stress σ. Data have been shifted to improve
visibility. The areas filled in gray mark the region of the skyrmion phase. At ambient
pressure the skyrmion signature is a dip in the value of χac as the system transitions
from and to the conical phase. With increasing uniaxial pressure the transitions become
smoother and the absolute value of χac increases.

susceptibility increases again, this point defines TA2, and demarks the transition from the
skyrmion phase to the intermediate regime. For the sake of completeness the plot includes
a curve for high fields (blue). At low temperatures the susceptibility is defined by the coni-
cal phase, increasing the temperature leads to a sharp transition to a field polarized regime,
further increment of the temperature leads to a crossover between the field polarized and
the paramagnetic phases, separated by a broad maximum of the susceptibility defined as
Tm. The latter will not be discussed further, note that no effects of uniaxial pressure were
observed at Tm.

It was discussed thoroughly in section 4.2 that the uniaxial pressure creates a preferred
axis of propagation for the helimagnetic domains of the system. Hence at high uniaxial stress
the susceptibility at zero-field should the same as the one measured at high fields and ambi-
ent pressures. Accordingly we see an increase in the zero-field susceptibility at low temper-
atures with increasing uniaxial stress σ, as illustrated by the data at σ = 1.1 kbar in figure
4.15 (b). Additionally the suppression of the magnetic order with increasing uniaxial pressure
is observed in a shift to lower temperatures of the transition signatures discussed above.

Typical ac-susceptibility values for the skyrmion lattice as a function of temperature and
external magnetic field are shown in figure 4.16 (a) and (b), respectively, where the region
of the skyrmion phase is filled gray. Note that the temperature scale has been changed to
relative values with respect to the transition to the intermediate regime TA2 to readily compare
the obtained data at different values of uniaxial stress. Taking into consideration that the
curves have been shifted to improve visibility, as a reference point it is noted that the values
of χac for T − TA2 below 1K are the same for all pressures, i. e., the susceptibility of the
conical phase remains unchanged. At ambient pressure a sharp dip into the reduced value
of the susceptibility of the skyrmion lattice is observed. With increasing uniaxial pressure the
sharp transitions becomes smoother and the value of the susceptibility of the skyrmion lattice
increases, at the maximum pressure measured σ = 1.1 kbar the signature of the skyrmion
phase in the susceptibility its reduces to a small smooth decline just below the transition to
the intermediate regime.

As a function of the external magnetic field, the susceptibility curves around the skyrmion
phase look very similar to the temperature dependence. At ambient pressure, the susceptibil-
ity decreases from the conical value to the skyrmion phase, BA1, and increases again as the
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Figure 4.17: (a), (b)χ⊥ac around the skyrmion lattice phase for Bdc ⊥ σ as function of temperature and
magnetic field, respectively. The signature of the skyrmion lattice at ambient pressure
consists of an enhanced magnetic susceptibility. Uniaxial stress smooths the transitions,
probably due to homogeneities in the pressure distribution. As a function of temperature,
a dramatic expansion of the skyrmion lattice phase is observed. The stability enhance-
ment as a function of the magnetic field is less pronounced.

systems transitions to the conical phase at higher magnetic fields, BA2. Increasing uniaxial
stress results in a smoother transition between conical and skyrmion phase and an increment
of the susceptibility within the latter. The value of the transition does not change much as a
function of uniaxial stress. The main effect is a change of the absolute value of χac, and at the
maximum pressure measured σ = 1.1 kbar a very shallow valley in the ac-susceptibility as a
function of Bdc signalizes the skyrmion phase. Note that the skyrmion phase has its largest
region in magnetic field just below TA2 and the data shown in figure 4.16 (b) were all recorded
at T = 28.3K. The reduction in the transition temperature with increasing uniaxial pressure
means that the measurement at σ = 1.1 kbar is closer to the transition to the intermediate
regime as the one measured at ambient pressure.

In the case of external magnetic fields applied perpendicular to the uniaxial stress axis, the
excitation field Bac is also perpendicular to Bdc, thus the recorded response will be denoted
χ⊥ac to avoid confusion. At ambient pressures and deep within the conical phase, χ⊥ac is sen-
sitive to the perpendicular component of the magnetic susceptibility χ⊥, cf. chapter 3. As a
function of field an temperature χ⊥ac maps a different component of the magnetic susceptibility
in comparison with χac.

Figure 4.17 (a) and (b) depict typical data of χac in the vicinity of the skyrmion phase as
a function of temperature and external magnetic field, respectively. At ambient pressures
and starting from low temperatures warming up the sample at Bdc = 185mT leads to a
smooth increase in χ⊥ac until the transition to the skyrmion lattice is reached, associated
with a sharp rise of the susceptibility. Within the skyrmion phase, the susceptibility increases
smoothly again with increasing temperature until the next transition to the intermediate regime
is reached, also associated with a sharp increment of χ⊥ac. At finite uniaxial stress, the sharp
signatures in χ⊥ac are smoothed out, and the region of the skyrmion lattice expands greatly, in
accordance with the observations made in small-angle neutron scattering.

For χ⊥ac as a function of the magnetic field, the skyrmion phase is denoted by a plateau
of higher value in comparison to the conical phase. The gray filled region relates to the
skyrmion lattice, and the boundaries are denoted BA1 and BA2. Applying uniaxial pressure
leads to a smoother signature of the skyrmion lattice in χ⊥ac. At the same time, the value of
the susceptibility of the conical phase increases, reducing the absolute difference between
the skyrmion lattice and the conical phase. Regardless of the specific magnetic phase, χ⊥ac
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Figure 4.18: Magnetic phase diagram of MnSi. (a1) Magnetic phase diagram at ambient pressure for
Bdc ‖ [001]. The skyrmion lattice is stable at temperatures above ∼ 27K. (a2) A uniaxial
pressure of σ = 1.0 kbar applied perpendicular to the magnetic field results in a substan-
tial expansion of the skyrmion stability region. It survives down to temperatures around
22K and shifts to larger magnetic fields with decreasing temperature. (b1), (b2) Com-
parison of the magnetic phase diagrams for σ ‖ Bdc. At ambient pressure the skyrmion
lattice is observable between 28K and just above 29K. The high temperature end of the
skyrmion lattice phase is surrounded by the intermediate regime. Upon application of a
uniaxial pressure σ = 1.0 kbar, the phase region shrinks, and it is almost completely
embedded in the intermediate regime.

increases sharply just below the transition to the intermediate regime. The susceptibility en-
hancement in the conical phase originates in the suppression of the magnetic order as a
function of temperature under pressure.

The magnetic susceptibility was measured for a large range of temperatures and magnetic
fields. The critical values that defined the phase transitions are compiled in phase diagrams
shown in figure 4.18. The main aspect that defines the effects of uniaxial pressure on the
magnetic order of MnSi is its relation to the field direction, i. e., parallel or perpendicular to the
latter. The left column shows the magnetic phase diagram for an experimental configuration
with σ ⊥ Bdc. At ambient pressure the skyrmion lattice is stable for temperatures above 27K

and below ∼ 29K. As it concerns the magnetic field, skyrmions are observed between ∼
140mT and∼ 225mT. The transition from the helical to the conical phase takes place around
100mT at low temperatures. Uniaxial stress perpendicular to the magnetic field expands the
region of the skyrmion lattice phase substantially. For σ = 1.0 kbar skyrmions are stable
down to ∼ 22K and up to magnetic fields around ∼ 300mT.

In contrast, uniaxial pressure parallel to the external magnetic field results in a suppression
of the skyrmion lattice phase in favor of the conical magnetic order. At ambient pressures and
for magnetic fields applied along the [110] axis of the system, the skyrmion lattice phase en-
compasses the region between ∼ 28K and ∼ 29.5K, and from ∼ 100mT to ∼ 200mT. The
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high-temperature limit of this phase is embedded in the intermediate regime. As discussed
above, the application of uniaxial pressure suppresses the signatures of the skyrmion lattice
phase in the magnetic susceptibility. The whole phase shrinks strongly in temperature, and
shifts so that it is embedded completely in the intermediate regime. Note that these phase
diagrams are taken from bulk measurements, it is possible that the skyrmion lattice has been
almost completely suppressed at this point.

The high sensitivity of the skyrmion lattice to external elastic contributions opens an avenue
of control and design of devices that exploit anisotropies to obtain the desired magnetic order.
Furthermore, MnSi is a very well understood system. Hence it is ideal for the study of new
phenomena. The enhanced stability of the helical modulation for pressures applied parallel to
a 〈111〉 axis, should result in the stabilization of a soliton lattice in the presence of a magnetic
field applied perpendicular to the axis of propagation. In the latter case, it is also of interest to
study the competition between the skyrmion lattice and the helical propagation, which should
arise at high pressures and intermediate magnetic fields. The information gained from such
studies should help substantially to understand the magnetic order observed in epitaxially
grown films, where a helical propagation constrained to the out-of-plane direction has been
observed, and discrete changes in the helix pitch develop under a magnetic field applied
in-plane.
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Skyrmion lattices couple very efficiently to external drivers such as strain and electric fields,
which allow the manipulation of the phase boundaries in B/T phase diagrams or the metastable
preparation of skyrmion lattices outside of their thermodynamic phase region through super-
cooling [123, 133, 134]. In the case of stress, a uniaxial anisotropy analogous to the one in-
duced naturally in lacunar spinels, such as GaV4S8 and GaV4Se8, is introduced. In the latter,
a Jahn-Teller distortion stretches the cubic unit cells along the space-diagonal into rhombo-
hedral structures reducing the symmetry and resulting in a variate phase diagram, including
a Néel type skyrmion phase [122, 135]. As a reminder, in B20 compounds MnSi, Fe1−xCoxSi,
Mn1−xCoxSi, and FeGe, thermal fluctuations stabilize the skyrmions closed to the helimag-
netic to the paramagnetic transition temperature. Skyrmions also profit from surface energies
in systems with reduced dimensionalities, such as thin films and heterostructures.

The wide variety of paths leading to skyrmion lattices allow for the expectation that differ-
ent stabilization mechanisms might lead to the observation of independent skyrmion lattices
within the same system. This chapter discusses the recently published discovery of a sec-
ond independent skyrmion lattice phase stabilized by standard cubic magnetic anisotropic
contributions in the chiral cubic magnet Cu2OSeO3 using small-angle neutron scattering
(SANS) [136]. The new phase develops at low temperatures and relatively high magnetic
fields. Previous studies had reported hysteretic effects in this regime of the phase diagram
whose origin remained unexplained [137, 138]. Before the publication of this study, Qian et
al. reported the observation of the so-called tilted conical phase together with a mean-field
analysis claiming it to be the ground state of the system [139]. The minimization of the free
energy of the appropriate Ginzburg-Landau model taking skyrmions into account identifies
the tilted conical phase as a metastable phase only.

The chapter is organized as follows: the first section 5.1 gives a brief introduction to the new
phases, consisting of their scattering pattern and real space depiction. The following section,
5.2, discusses the characterization of both new phases and their corresponding correlations
lengths. Section 5.3 presents the mapping of the magnetic phase diagram, separated, due
to hysteretic effects, in temperature 5.3 and magnetic field 5.3 scans. Section 5.4 gives a
theoretical description in the frame of a Ginzburg-Landau model, and the chapter concludes
with a small summary of the most important aspects 5.5.

5.1 M AG N E T I C P H A S E S I N C U2 O S E O3

As discussed in the previous chapter, one of the main advantages of using small-angle neu-
tron scattering (SANS) in the study of chiral magnets is its high sensitivity to each specific
phase. Other techniques such as magnetization or susceptibility measure an averaged re-
sponse of the whole sample. Thus, the coexistence of multiple phases is masked. In contrast,
in SANS, the signals of different magnetic orders do not tend to overlap and allow their iden-
tification even when constrained to small sample volumes easily.

Typically, chiral magnets present four distinct magnetic phases below the magnetic order-
ing temperature, the helical, the conical, the skyrmion lattice and the field polarized phase, cf.
Fig. 3.1. The previous chapters focused on the helical magnetic order and skyrmion lattices
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Figure 5.1: Summary of key characteristics of the different magnetic phases in Cu2OSeO3for B ‖
[001] in the following order: helical, conical, high-temperature skyrmion, tilted conical, and
low-temperature skyrmion phase. The first row shows a schematic representation of the
real space magnetic configuration. The second row shows the resulting Bragg peaks while
taking into consideration possible multiple domains. In each depiction, the solid spheres
represent the position of the different Bragg peaks, while the grey plane represents the
section of the Ewald sphere. The intersection of the latter with the Bragg peaks result in
the scattering patterns show in the third row measurable with SANS.

in MnSi, before introducing the new phases identified in Cu2OSeO3 the following paragraphs
revisit the basic details of helical, skyrmion lattice, and conical phase. In the helical phase,
the spins rotate around the propagation vector Q with an aperture angle of or close to 90°.
The direction of Q is defined by the magnetocrystalline and exchange anisotropy [83], cf. Fig.
5.1 (a1). In the case of Cu2OSeO3, the magnetic helices propagate along the crystallographic
〈100〉 axes resulting in three distinct domains. These translate into six Bragg peaks in recipro-
cal space illustrated as green spheres in figure 5.1 (b1). These Bragg peaks are observable
if the Ewald sphere defined by the wavevector of the incoming neutrons k intersects them.
In SANS |k| � |Q|, thus the section of the Ewald sphere which intersects the Bragg peaks
is approximately flat, shown in gray in figure 5.1 (b1). The geometry illustrated belongs to a
neutron beam parallel to [001] which yields the scattering pattern shown in figure 5.1 (c1), the
angle δ indicates a misalignment of the crystallographic [110] axis from the sample’s vertical
rotation axis.

Figure 5.1 (a2) shows the real space spin configuration of the conical phase. The mag-
netic phase consists of a single domain with propagation vector Q parallel to the magnetic
field, and the aperture angle of the spins with respect to the propagation vector decreases
continuously with increasing magnetic field. In this study, the magnetic field B was applied
along [001]. The transition between to helical and conical phase is discontinuous. The do-
mains propagating perpendicular to the magnetic field are depopulated in favor of the one
parallel to B. As it is single domain with only one Q propagation vector, it translates into two
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Bragg peaks as depicted schematically by white spheres in figure 5.1 (b2). An example of the
scattering pattern of the conical phase is shown in figure 5.1 (c2).

The skyrmion lattice in Cu2OSeO3 can be described as an ensemble of particles, i. e.,
skyrmions, which ordered densely resulting in a hexagonal arrangement perpendicular to the
magnetic field B, cf. Fig. 5.1 (a3). This periodic arrangement translates in reciprocal space to
six Bragg peaks at the same distance from the direct beam separated by 60° steps, rotated by
30° concerning the real space configuration. One of the Bragg peaks pairs lies along a 〈100〉
crystallographic axis, schematically shown in figure 5.1 (b3) as orange spheres. As mentioned
above, B points along [001]. Thus the plane in which the Bragg peaks of the skyrmion lattice
lies contains both the [100] and the [010] axes. Since both of these are energetically equal,
two domains of skyrmion lattices can be observed, resulting in a scattering pattern with twelve
maxima, as shown in figure 5.1 (c3).

In Cu2OSeO3 cubic magnetocrystalline contributions result in two new phases in the low
temperature and high magnetic field region of the magnetic phase diagram when the field
points along an easy axis. The first phase is labeled the tilted conical phase, due to its scat-
tering pattern. While the name seems to refer to a usual conical phase propagating away from
the magnetic field direction, the real space configuration of the magnetic spins is more com-
plex. Over a wide range of the modulation, the spins point primarily parallel to the magnetic
field, thus increasing the homogeneous magnetization in field direction, and then rotate over
a small region within a plane almost completely perpendicular to B, cf. Fig. 5.1 (a4). Due to
the symmetry of the system, the magnetic order can tilt in four equivalent directions allowing
for different domains to coexist. Thus the schematic representation of the reciprocal space
in figure 5.1 (b4) includes a total of eight Bragg peaks (grey spheres) from which four can be
measured simultaneously resulting in the scattering pattern shown in figure 5.1 (c4) with the
angle αt denoting the deviation of the propagation vector from the magnetic field.

The second phase only observed for this magnetic field direction is referred to as the
low-temperature skyrmion phase (LT-Sky). The spin configuration of a single skyrmion in
real space is the same as for the high-temperature skyrmion lattice (HT-Sky). In addition
to the hexagonal configuration associated with the latter, the LT-Sky can order in a square
lattice. According to the theoretical analysis presented below, both configurations have al-
most the same free energy resulting in a competition which leads to a ring of intensity as
its scattering pattern, cf. Fig. 5.1 (c5). It is possible to prepare the LT-Sky phase in a well-
ordered state showing a six-fold pattern. Further, the 〈100〉 axis the field was applied along
defines the plane spanned by the propagation vectors of the low-temperature skyrmion lat-
tice phase. Upon rotations of the magnetic field direction, the skyrmion lattice phase remains
fixed, maintaining its propagation vectors perpendicular to the original 〈100〉 axis. In contrast,
the high-temperature skyrmion lattice follows the magnetic field direction very well [132, 140].
The phase boundaries are highly hysteretic, and it is possible to expand the phase region of
the LT-Sky to cover almost the entire phase diagram. The following section addresses these
aspects further.

5.2 C H A R AC T E R I Z AT I O N O F T H E M AG N E T I C P H A S E S

The sample chosen for this study was carefully polished to a spherical shape with a diameter
of 2mm, as shown in figure 5.2 (a). Diffraction measurements performed at the instrument
HEIDI at the MLZ confirmed its excellent single crystallinity and Laue x-ray diffraction was
used to orient the sample which was then mounted on an Al sample holder using GE varnish.
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Figure 5.2: (a) Cu2OSeO3 spherical sample used in the experiments. (b) Experimental configuration
with the magnetic field B parallel to the neutron beam n. The angle φ determines the crys-
tallographic axis that B is applied along. For n ‖ [001] this setup allows measuring the
signal, of the helical, high temperature and low-temperature skyrmion phases. (c) Exper-
imental setup with B ⊥ n. The signal of the conical and tilted conical phases, as well as
part of the signature of the skyrmion lattices, can be measured in this setup.

A closed-cycle cryostat (CCR) was used to control the sample temperature, and the magnetic
field originated from a 5T superconducting magnet. The temperature of the sample was
determined using a Cernox sensor placed in its close vicinity. The experiments were carried
out at the beamline SANS-1 at the MLZ [88].

The magnetic helices in Cu2OSeO3 have a wavelength of ∼ 600Å thus a neutron wave-
length of λ = 7Å was selected, with a FWHM wavelength spread of 10% originating from the
neutron selector. The neutron beam was collimated over a distance of 20m with a beam diam-
eter of 50mm at the entry of the collimation and a pinhole sample aperture with a diameter of
4mm located 350mm in front of the sample. Scattered neutrons were then recorded using an
area-sensitive detector of 1× 1m2 consisting of 128 3He tubes resulting a spatial resolution
of 8× 8mm2. The distance between the sample and the detector was 20m. The setup in-
cluded two vertical rotation axis. The first defined the orientation of the magnetic field relative
to the sample, by rotating the latter by angle φ, cf. Fig. 5.2 (b). The second one is used for
rocking scans measurements, in which both sample and magnetic field are rotated together
by angle ω relative to the incoming neutron beam, cf. Fig. 5.6 (a). This setup maintains a high
neutron flux while the scattering condition yields Bragg peaks far enough of the direct beam
to be resolved accurately. Specifically the radial resolution was ∆|q| = 0.0011Å

−1
while the

resolution of the azimuthal and rocking angle were ∆α = 6° and ∆ω = 0.14° respectively.
All phases could be measured using two different basic setups with the magnetic field ei-
ther parallel or perpendicular to the incoming neutron beam, shown in figure 5.2 (b) and (c),
respectively.

Propagation of tilted conical phase

Both new phases were initially characterized through rocking scans measured at different
values of magnetic field and temperature. As shown in figure 5.3 the magnetic order of the
tilted conical phase is not defined by a specific easy axis of propagation, as is the case in
the helical phase. Instead, its orientation, as defined by the angle αt, which changes continu-
ously with the magnetic field strength and the temperature (note that the error bars represent
the full width at half maximum of the intensity peak as a function of azimuthal angle). The
observed propagation direction does not evidence a strong hysteresis between increasing
and decreasing fields, as demonstrated by the comparison of the dependence on the mag-
netic field of αt, for a sample cooled in zero-field (ZFC) and high-fields (HFC) well within the
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Figure 5.3: Azimuthal angle αt enclosed by the propagation vector Q of the tilted conical and conical
phases with the magnetic field B. (a) As a function of the magnetic field, the tilted coni-
cal phase can be resolved between ∼ 50mT and 90mT. Its’ deviation from B increases
smoothly with increasing fields, and there is no hysteresis between increasing (ZFC) and
decreasing (HFC) amplitudes, |B|. (b) Temperature dependence of αt obtained while heat-
ing the sample. Similar to the magnetic field dependence, the propagation of the tilted
conical phase rotates smoothly towards the field with increasing temperature. All error
bars shown represent the full width at half maximum of the intensity distribution over the
azimuthal angle.

field polarized region, in figure 5.3 (a). Notice that the value of αt related to the conical phase
tends to increase close to the transition from the tilted conical phase, i. e., in high-field cooled
measurements in 5.3 (a) (in (b) the transition shown is also from tilted conical to conical). This
increment might be an artifact of the analysis arising from a superposition of the Bragg peaks
of both phases, which could not be decomposed with the resolution of the detector used.
Hence, vestigial domains of tilted conical phase appear to survived down to ∼ 45mT and up
to ∼ 40K for the temperature versus field histories presented in figure 5.3. It is also possible
for the conical phase to propagate with a small deviation to the external magnetic field due
to demagnetization and other internal effects. Because of this uncertainty, the observation
of a distinct additional Bragg peak defined the boundary between conical and tilted conical
phase.

Correlations of tilted conical phase and low temperature skyrmion lattice

The intensity distribution as a function of azimuthal angle α, rocking angle ω and momentum
transfer |q| provide insight into microscopic details of each phase. The interpretation of the
first two depends on the experimental configuration used, and the latter provides information
on typical length scales. Figure 5.4 contains the intensity distributions as a function of these
three parameters for the tilted conical phase (top row) and the low-temperature skyrmion
lattice (bottom row). Especially interesting is the width of the peaks shown, which indicates
the distribution of domains with respect to the given parameter. For reference, the instrument
resolution is shown as a colored area. The resolution of the rocking angle is so small that it
reduces to a line. Consequently, it was omitted.

Figure 5.4 (a1) shows the intensity distribution as a function of azimuthal angle for the
tilted conical phase. The magnetic field is applied perpendicular to the neutron beam which
is parallel to a 〈110〉 axis. The plot represents the distribution of directions the magnetic do-
mains point to within the (110) plane. The full width at half maximum (FWHM) is the same
as observed for the conical and helical phases. Consequently, the magnetic mosaicity re-
mains constant. The intensity as a function of rocking angle ω is in contrast very wide, cf.
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Figure 5.4: Intensity distribution of the tilted conical phase (first row) and the low-temperature skyrmion
lattice (second row) as a function of azimuthal angle α (first column), of rocking angle ω
(second column) and of reciprocal length |q|. Each of this curves represents a cut through
the Bragg peak (Ring) along the given dimension, except in the case of the azimuthal
intensity distribution of the LT-Sky phase, where the homogenous intensity ring results in
a flat distribution.

Fig. 5.4 (a2). The domains prefer to propagate in the plane spanned by the [001] and [110]
crystallographic axes, as indicated by the peak maximum, consistent with a rotation towards
a [111] axis. The large FWHM indicates that the exact propagation direction is not associated
with a significant energy gain. The domains gain energy by interacting with defects and take
a small penalty for propagating in a slightly different direction. The intensity distribution as a
function of momentum transfer |q| is consistent with those measured for the conical, helical,
and high-temperature skyrmion lattice, cf. Fig. 5.4 (a3). All show a full width at half maximum
of ∼ 0.0015Å

−1
, indicating that the correlation vanishes at lengths of a few µm independent

of the phase.
As mentioned above the typical observation of the low-temperature skyrmion lattice lacks

the six-fold pattern related to the HT-Sky phase. Instead, the intensity plot as a function of
azimuthal angle α illustrated in figure 5.4 (b1), describing the order of the skyrmion lattice
in the plane perpendicular to the magnetic field, is flat. The lack of maxima means that the
magnetic domains are distributed equally over a range of 60°. Note that the data shown were
obtained at B = 70mT to avoid mixture with the intensity signatures from other phases. The
distribution as a function of rocking angle is very wide, implying that several skyrmion lattice
domains are described by propagation vectors which are not perpendicular to the magnetic
field direction, cf. Fig. 5.4 (b2). The function remains centered around 0° hence the lowest
energy for a skyrmion domain is still achieved propagating perpendicular to the magnetic
field. It was mentioned above and will be discussed further below that the low-temperature
skyrmion lattice plane is not defined by the magnetic field direction but rather by the [001]
crystallographic axis, the former was applied along. The full width at half maximum of the
intensity peak as a function of momentum transferred |q| is slightly larger then than one
observed for the other magnetic phases when specifically comparing the sharpest distribution
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Figure 5.5: (a) Propagation length |Q| as a function of magnetic field for the different magnetic phases
in Cu2OSeO3. Magnetic order described by propagation vectors perpendicular to the mag-
netic field B show a strong dependence on the latter and the propagation length decreases
strongly as the magnetic field increases. In contrast, the conical and tilted conical phases
show almost no dependence on |B|. Note that there is no hysteresis between different
measurement protocols, refer to text for details. (b) Comparison of the propagation length
of the skyrmion lattice for fields parallel to a 〈111〉 (squares) and 〈100〉 crystallographic
axes as a function of the magnetic field. The markedly different behavior indicates the
anisotropic origin of the field dependence.

measured for each phase. For the LT-Sky phase, this is the case at the low magnetic field
phase boundary. Therefore the data was obtained at B = 20mT, cf. Fig. 5.4 (b3).

Propagation length as a function of magnetic field amplitude

The broader distribution in I(|q|) for the low-temperature skyrmion lattice may be explained
as a consequence of demagnetization and anisotropic effects on the correlation length Q.
As is shown in figure 5.5 (a) the propagation length of the different magnetic phases is
|Q| = 0.01Å

-1
at low fields, but it responds differently to changes in magnetic field ampli-

tude |B|. In essence, two groups can be distinguished, characterized by the direction of the
propagation vectors concerning the applied magnetic field. On the one hand, the phases with
a large component of Q parallel to B show only a small change in |Q|(B), i. e., less than 10%
for the tilted conical phase. On the other hand, magnetic phases propagating perpendicular to
B show a reduction larger than 30% in the length of their propagation vector Q with increasing
magnetic field amplitude. The helical and low-temperature skyrmion phases show the same
dependence on |B|, while the rate of change in |Q(B)| of the high-temperature skyrmion
lattices is lower. Note that different temperature vs. magnetic field protocols were followed to
obtain the broadest magnetic field range for each phase, and that there are no substantial
differences between the different measurement protocols. Consequently, the slightly broader
intensity distribution for the LT-Sky phase can be explained by demagnetization effects on the
sample leading to a mixture of domains with different |Q|.

A comparison with data measured on the high temperature skyrmion phase for B ‖ 〈111〉
following the same measurement protocol demonstrates that the dependence of |Q| on the
applied magnetic field is indeed anisotropic in nature, as in contrast to the case of B ‖ 〈100〉
the scattering length increases slightly with increasing fields. The stronger effects observed
for an easy axis magnetic field also lead to an increment in the peak width illustrated as the
error bars in figure 5.5 (b).
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Figure 5.6: (a) View of the experimental setup from above detailing the two rotation axes available.
The angle φ defines the direction of the magnetic field concerning a [001] crystallographic
axis, while ω denotes the angle of the magnetic field B and the sample with respect to the
incoming neutron beam n. (b) Intensity as a function of φ and ω (during a scan over one
parameter the other remains constant). As both distributions match exactly, the skyrmion
lattice plane is perpendicular to the [001] axis instead of the magnetic field. (c) Intensity
distribution over the reciprocal length |q| for different angles of φ. The shift of the peak
center to larger values of |q| indicates that the skyrmion lattice in mostly sensitive to the
component of B parallel to [001].

Orientation of the low temperature skyrmion lattice with respect to the magnetic field

One of the aspects the has attracted much interest in skyrmion lattices is their very effi-
cient manipulation using electrical currents. Magnetic skyrmions can be driven with very low
current densities [15], a consequence, in part, of the weak coupling to the underlying crys-
tal lattice. Except for the lacunar spinels, bulk skyrmion hosting samples show an isotropic
skyrmion phase, in the sense that the direction of the magnetic field has only minor effects
on its stability, i. e., the size of the phase pocket in the B/T phase diagram [11, 90, 122,
141]. Regarding the effects on the orientation and propagation of the skyrmion phase, a re-
cent study reviewing in detail the skyrmion lattice in MnSi for fields applied along different
crystallographic directions established that the plane spanned by its propagation vectors lies
always perpendicular to the applied magnetic field except for corrections in the order of a few
degrees ∼ 3° due to cubic magnetocrystalline anisotropies. Adams et al. reset the magnetic
order by heating the sample over the transition temperature before each change of field direc-
tion to avoid hysteretical effects due to magnetic pinning centers. Mühlbauer et al. studied the
effects of pinning centers on the motion of the skyrmion lattice driven by the magnetic field
direction using time-dependent small-angle neutron scattering (TISANE) [140]. Similar to the
current-driven motion of the skyrmion lattice, Mühlbauer observes a smooth motion follow-
ing the magnetic field above a certain threshold angle of deviation. TISANE experiments on
Cu2OSeO3 show the same behavior for the high-temperature skyrmion lattice in this material.
Hence, generally, the skyrmion lattice can be described as independent of the crystal lattice.

Not surprisingly, the low-temperature skyrmion phase in Cu2OSeO3 does not exhibit the
aforementioned isotropic characteristic. Instead, it is only observable for fields close to a
〈100〉 crystallographic axis. As described above the experimental setup included a rotation
axis connected only to the sample. Hence, it determines which crystallographic axis is parallel
to B defined by the angle φ with respect to the crystallographic axis [001]. A second rotation
axis is coupled to both sample and magnetic field to measure rocking scans under an applied
field and is defined by an angle ω concerning the incoming neutron beam, cf. Fig. 5.6 (a). A
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Figure 5.7: (a) Intensity as a function of number of cycles from 60mT to 80mT and back. With each
cycle the intensity of scattered neutrons from low temperature skyrmion lattice increases.
(b) Typical scattering pattern at B = 60mT after rotating the sample by φ ∼ 15° against
the magnetic field and back a six-fold pattern develops (c) indicating the improvement of
order in the skyrmion plane.

scan over the angle φ probes the effects of changing the field direction relative to the crystal.
As plotted in figure 5.6 (b), the intensity distribution as a function of φ for fixed ω matches
perfectly to the one obtained as a function of ω for fixed φ. The magnetic field direction does
not affect the plane of the propagation vectors of the LT-Sky phase. These are instead con-
strained to the (001) plane. The low -temperature skyrmion phase is predominately sensitive
to the component of the magnetic field along the [001], as demonstrated by the intensity dis-
tribution as function of |q|, which shifts to larger values for increasing values of φ related to
a smaller component along the main crystallographic axis, cf. Fig. 5.6 (c), reproducing the
changes in |Q| illustrated in figure 5.5 (a).

Before conducting the scan described above the sample was cooled in an applied field of
250mT down to 3.6K, cycling the magnetic field from 60mT to 80mT leads to an enhance-
ment in the measured intensity from the low-temperature skyrmion lattice, cf. Fig. 5.7 (a), pro-
viding, thus, further evidence that the former is the ground state in this region of the magnetic
phase diagram. Rotating the sample against the magnetic field also led to a reordering of
the intensity distribution from a homogenous ring, shown in figure 5.7 (b), to a six-fold pattern
consisting of broad Bragg peaks, illustrated in figure 5.7 (c). The well-ordered phase develops
after a rotation of φ ∼ 15°, consistent with a lifting of the in-plane degeneracy trough a more
significant component of the magnetic field lying in the (001) plane. An ω rocking scan taken
after the six-fold pattern forms shows the same width as both the φ and ω scan discussed in
the previous paragraph. Therefore, the reordering of the skyrmion lattices takes place only in
the plane perpendicular to B.

5.3 M A P P I N G O F T H E M AG N E T I C P H A S E D I AG R A M S

It is possible to obtain all relevant information to characterize the different five magnetic
phases using two different experimental setups. The first one, with the magnetic field B par-
allel to the incoming neutron beam n, provides information on the helical phase and both
high-temperature and low-temperature skyrmion phases. In the second experimental setup,
the magnetic field points perpendicular to the incoming neutron beam. Consequently, both
conical and tilted conical phase are observable. Note that due to the multiple domains in
both skyrmion lattices part of their signal can be measured in the second experimental con-
figuration as well. Both experimental setups are shown schematically in figure 5.2 (b) and (c)
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respectively. The angle φ refers to the rotation axis discussed above. Note the deviation δ of
the [110] axis from the rotation axis, in an ideal experimental setup both of these axes would
lay parallel to each other. Since the divergence of the magnetic field direction from the [001]
axis resulting from δ was approximately 1°, it does not affect the results presented here.

The characterization of the magnetic structures was based on their behavior as a function
of temperature and magnetic field. That can be done twofold by either keeping the magnetic
field constant, while different temperature values are scanned known as a temperature scan,
or keeping the temperature of the sample constant while recording the scattering patterns at
different values of B also known as a magnetic field scan. Both temperature and magnetic
field scans were performed as the results were strongly hysteretical.

Sample preparation before temperature dependent measurements

Data during temperature scans were recorded using three different protocols of temperature
versus magnetic field depicted in figure 5.8, to investigate how the behavior of the sample de-
pends on the starting state. All measurements started at a temperature of ∼ 70K well above
the helimagnetic transition at Tc ≈ 57K, deep in the paramagnetic phase. The supercon-
ducting magnet was degaussed to minimize the amount of trapped flux following the same
procedure before each new temperature scan. That is necessary because the critical fields
are in the order of a few mT. Thus even small trapped flux may affect the measurements
significantly.

Typically SANS experiments are carried out at a constant temperature and magnetic field.
Scans over an external parameter are obtained by collections of discrete measurements at
different values of the given parameter. In the case of temperature, for example, this means
a chosen value is set, the cryostat regulates until it is sufficiently stable at the chosen temper-
ature and scattered neutrons are recorded, then the procedure is followed again for the next
measurement point. The relation between the heat capacity of the measuring system and the
cooling power of the cryostat is complex and temperature-dependent. Smooth temperature
control in different regions, ensuring a fast cooling and, more importantly, a fast stabilization
at the set temperature requires careful tuning of the parameters controlling the cooling cycle.
Best-case scenarios are typically associated with waiting times of several minutes between
set points, sharply reducing the efficiency of the allocated time at the beamline. In the present
case, the chosen material system,i. e., Cu2OSeO3, yields a strong signal to noise ratio in just
a couple of seconds, making the process described above even more inefficient. Thus, data
were recorded continuously. Once the scan began scattered neutrons were counted for a pe-
riod of 5 s and the scattering pattern was then stored. The storing of the scattering patterns is
associated with a dead time of 1 s. Thus data points were recorded every 6 s for the duration
of the scan.

Since data is being recorded continuously, gradients in temperature present during the
scan cannot be neglected. These were determined in a set of systematic control measure-
ments cooling and heating the sample under different sweep rates. For the fastest sweep rate
measured i. e., 8Kmin−1 the gradients vanished at low temperatures and were as a high as
a few % near ∼ 60K. Note that data recorded under a sweep rate of 2Kmin−1 did not show
any gradient. The temperature of the data shown below has been corrected to account for
the temperature gradient where needed. The following temperature vs. field protocols were
followed for temperature scans, see also figure 5.8:
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Figure 5.8: Schematic representation of the three different temperature versus magnetic field pro-
tocols followed to obtain data for temperature scans. (a) zero-field-cooled/field-heated
(ZFC/FH): the sample is cooled down to the lowest temperature at zero magnetic field.
At the lowest temperature the magnetic field magnitude is increased to Bscan. Data is
recorded at Bscan while the sample is heated continuously. (b) field-cooled (FC): the mag-
netic field value is set to Bscan at a temperature well above the helimagnetic transition.
Scattering patterns are recorded while cooling the sample continuously. (c) high-field-
cooled/field-heated (HFC/FH): well above the helimagnetic transition the magnetic field
value is increased well above the critical field Bc2 of the conical to field polarized transition.
The sample is cooled to the lowest temperature accessible. At the lowest temperature the
magnetic field magnitude is set to Bscan and data is recorded while heating the sample
continuously.

(a) ZFC/FH: Zero-field-cooled/field-heated, cf. Fig. 5.8 (a). Starting well above the helimag-
netic transition, the sample is cooled in zero magnetic field at a rate of 8Kmin−1 to the
lowest temperature accessible ∼ 3.5K. At the lowest temperature, the magnetic field
magnitude is increased to the field value of interest Bscan. Scattered intensity is then
recorded at Bscan while the sample is heated at a rate of 2Kmin−1 up to 65K. Each data
point requires a total of 6 s. Thus it yields the average scattering intensity in a temperature
region ∼ 200mK. After the scan was finished the procedure to degaussed the magnet
was started.

(b) FC: Field-cooled, cf. Fig. 5.8 (b). Starting well above the helimagnetic transition, the mag-
nitude of the magnetic field is increased to the field value of interest Bscan. At Bscan scat-
tered neutrons are recorded while the sample is cooled at a rate of 4Kmin−1 (B ‖ n) or
6Kmin−1 (B ⊥ n) down to 3.5K. Each data point represents then the average of scat-
tered intensity over a change of temperature of ∼ 400mK or ∼ 600mK . At the lowest
temperature the superconducting magnet was degaussed and the sample heated up to
∼ 70K.

(c) HFC/FH: High-field-cooled/field-heated, cf. Fig. 5.8 (c). Well above the helimagnetic tran-
sition temperature Tc, the magnetic field value is set at B = 250mT well above the critical
field for the transition from the conical to the field polarized phase. The sample is then
cooled under a sweep rate of 8Kmin−1 down to ∼ 3.5K. At the lowest temperature,
the field magnitude is decreased to the field value of interest Bscan. Scattering patterns
are then recorded while the sample is continuously heated at a rate of 2Kmin−1. Thus
each data point represents the average scattered intensity over a temperature region
∼ 200mK wide. Note that the superconducting magnet is not degaussed after each scan
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for this protocol as 250mT is well above any trapped magnetic flux and thus nullifies the
effects of degaussing.

Typical data obtained from zero-field-cooled/field-heated scans

Typical scattering patterns obtained at T = 3.5K after cooling the sample in zero-field are
shown in figure 5.9 (a1) and (b1), for a magnetic field parallel B to the neutron beam n and for
B ⊥ n, respectively. The scattering patterns include sectors which define the area over which
the intensity is integrated for the different phases. Sectors 1 (solid green) on figure 5.9 (a1) are
centered around the [100] and [010] crystallographic axes of the system. When the sample
is prepared in zero-field, there is no coexistence of the helical domains with neither the high-
temperature nor the low-temperature skyrmion phase. Therefore the intensity integrated over
sectors 1 can be readily identified as the helical phase. If scattered neutrons are recorded
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Figure 5.9: Typical scattering patterns and extracted intensity from small angle neutron scattering for
ZFC/FH. (a1) Helical phase for B ‖ n. There is no coexistence of helical and skyrmion
phases, thus no overlapping signal. Sector 1 (solid green) contains intensity scattered by
the helical phase, while sector 2 (dashed red) is the region where intensity related to the
LT- and HT-sky would be found. (a2) Temperature dependence of the intensity as obtained
from the sectors shown in (a1) for the helical (green circles) and HT-sky (orange circles)
phases at B = 25mT and the LT-sky (red circles) at B = 70mT. (b1) Conical and the tilted
conical phase at higher magnetic fields for B ⊥ n. Sectors 1 (solid black) and 2 (dashed
grey) correspond to the conical and tilted conical phase, respectively. Both phases coexist
over a substantial portion of the phase diagram. (b2) Temperature dependence of the
scattered intensity from the conical (white circles) and tilted conical (grey circles) phase at
70mT. Note the increment in the tilted conical intensity up to ∼ 12K corresponding to a
decrease in the conical intensity.
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within the sectors 2 (dashed red) in this experimental configuration, it is always related to one
of the skyrmion phases, regardless of the protocol followed.

Figure 5.9 (a2) shows examples of the temperature dependence of the scattered neutron
intensity for all phases. The helical phase (green circles) at B = 25mT shows a substan-
tial decline with increasing temperature indicating a decrease in the volume of the sample
populating these domains. As mentioned above, B ‖ [001], thus the helical domain propagat-
ing parallel to the B gains energy from the Zeemann interaction, in contrast to the domains
propagating along either [100] or [010]. The non-vanishing population in these domains is re-
lated to pinning centers and magnetic defects, among others, creating an energy barrier, as
discussed in chapter 3. With increasing temperature, the domains can overcome the small en-
ergy barriers and turn to propagate along B. The helical intensity vanishes completely around
50K. Around 55K the intensity associated with the high-temperature skyrmion (HT-Sky) lat-
tice rises (orange circles), creating a small peak in the typical region of stability of this phase
just below the critical temperature Tc. At higher magnetic field values the situation is different,
e. g. at B = 70mT, the low-temperature skyrmion phase scatters neutrons in this plane. This
intensity remains constant with increasing temperature up to ∼ 28K and decreases steeply
vanishing around ∼ 34K.

The conical and the tilted conical phase can be seen in the scattering pattern shown in fig-
ure 5.9 (b1) for B ⊥ n. Both phases coexist at low temperatures for almost all magnetic fields
measured. The domain of the tilted conical phase on the right hand side of the scattering
pattern is preferred, this may be a consequence of the small misalignment of the magnetic
field from the [001] axis, which is ∼ 1°. Note that the experimental setups chosen were
not sensitive to the additional two domains of the tilted conical phase, as depicted in figure
5.1 (b4). Sectors 1 (solid black) on the scattering diagram is the area related to the conical
phase, while the sectors 2 (dashed grey) mark the region of the detector where neutrons
scattered from the tilted conical phase would be recorded. The temperature dependence of
the intensity at B = 70mT is shown in figure 5.9 (b2), note that the conical intensity has
been divided by 10. The conical phase is very well ordered, and there are no energetically
degenerate competing domains yielding very sharp peaks. Consequently, there is a signifi-
cant difference in intensity measured in a single image scan as the one performed here. A
quantitative analysis of the scattered intensity is out of the scope of this works. Instead, the
qualitative features will be in the foreground when comparing different phases. The inten-
sity from the tilted conical phase increases with increasing temperature until T ≈ 12K. The
intensity of the conical phase decreases in the same temperature region, suggesting that,
below this temperature, the tilted conical phase is indeed energetically preferable to the con-
ical magnetic order. Thus an increase of thermal excitation allows possible pinned domains
to overcome their pinning potential and reorder in the new phase. Above ∼ 12K the tilted
conical phase starts to decrease and the conical phase starts to increase, as the population
from the former is transferred to the later. The conical phase reaches a plateau of intensity
around ∼ 30K followed by a small peak at ∼ 40K after which it steeply decreases when
approaching the transition to the paramagnetic phase.

Typical data obtained from field-cooled scans

The most prominent behavior, when measuring scattered neutrons following the field-cooled
protocol, is related to the high-temperature skyrmion phase if the magnetic field value applied
is in the vicinity of the HT-Sky phase then a portion of it survives in a metastable state down
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to the lowest temperature. A typical scattering pattern at low temperatures, i. e., at the end of
the scan, is shown in figure 5.10 (a1). One can recognize twelve Bragg peaks corresponding
to the two different domains of the HT-Sky phase. Additionally, the Bragg peaks along the
[100] crystallographic axes are stronger than the rest. That is due to the coexistence of the
metastable HT-Sky phase with the helical phase. In contrast to the ZFC/FH measurements
sector 1 (solid green) now contains the overlapping signal from the helical and skyrmion
phase. However, the intensity in sector 2 (dashed red) belongs only to the skyrmion phase.
Hence, subtracting the integrated intensity of sectors 2 from that of sectors 1 yields the helical
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Figure 5.10: Typical scattering patterns and extracted intensity from small-angle neutron scattering for
FC. (a1) Coexistence of a metastable high-temperature skyrmion and a helical phase at
low temperatures recorded for B ‖ n. Sectors 1 (solid green) contain the overlapping
intensity from neutrons scattered by the helical and HT-Sky phase, while the intensity
in sectors 2 (dashed red) originates solely from the HT-Sky phase. (a2) Temperature
dependence of the intensity as obtained from the sectors shown in (a1). Subtracting
sectors 2 from sector 1 yields the helical intensity (green circles) at B = 25mT. The
remnant intensity of the HT-Sky phase (orange circles) below ∼ 54K belongs to the
metastable state. The LT-Sky phase (red circles) at B = 70mT is constrained to a smaller
region at very low temperatures. (b1) Conical and tilted conical phase at higher magnetic
fields for B ⊥ n. In a similar case as with the LT-Sky phase, the tilted conical order is
weaker than for ZFC/FH measurements. Its Bragg peaks are barely visible, and the angle
of propagation θ is smaller than in ZFC/FH scans. Sectors 1 (solid black) and 2 (dashed
grey) correspond to the conical and tilted conical phase, respectively. (b2) Temperature
dependence of the scattered intensity from the conical (white circles) and tilted conical
(grey circles) phase at B = 80mT. Note that the decline in the tilted conical intensity at
very low temperature correlates with the temperature region where the LT-Sky phase is
observed.
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intensity. Sectors 2 were enlarged and then averaged to correspond to the same detector
area encompassed by sectors 1 to control for the variation of intensity as a function of the
azimuthal angle. Finally, note that under this measurement protocol, the signature of the low-
temperature skyrmion phase does not coexist with the helical phase.

Figure 5.10 (a2) shows the extracted intensities as a function of temperature for the helical
and the high-temperature skyrmion phase at B = 25mT and the low-temperature skyrmion
phase in an applied field of B = 70mT. Starting from high temperatures, the first feature
observed is a peak in the HT-Sky intensity (orange circles). This sharp increment in inten-
sity corresponds to the sample entering the reversible HT-Sky pocket. The intensity then
reaches a maximum deep in the skyrmion phase. As the temperature decreases further, the
sample approaches the low-temperature boundary, and the intensity declines sharply, yet it
does not vanish completely; instead, the intensity stops at an intermediate value and starts
increasing with decreasing temperature. This increment is associated with the rise of the
magnetic moment with decreasing temperature. As the sample is cooled, the curve shows a
change in curvature reaching a maximum around ∼ 38K and declines slowly with decreas-
ing temperature. Typically, cooling the sample in a moderate finite magnetic field pointing
along an easy axis will not yield a helical phase. Nonetheless, the helical intensity (green
circles) starts increasing with decreasing temperature around ∼ 50K, close to the point of
inflection of the intensity resulting from scattering from the HT-Sky. The small misalignment
between the magnetic field and the [001] axis may allow the emergence of domains along the
two axes perpendicular to the field direction. With decreasing temperature, the helical inten-
sity increases and reaches a plateau just below 10K. The behavior of the low-temperature
skyrmion phase is quite simple, around ∼ 10K the associated intensity starts to increase
sharply with decreasing temperature, as LT-Sky domains condensate and start to grow.

In comparison to the ZFC/FH measurements, the signal of the tilted conical phase is
weaker, and θ is smaller as can be seen in a typical scattering pattern at low temperatures,
shown in figure 5.10 (b1). The intensities of the conical and tilted conical phase at B = 80mT

as extracted using sectors 1 and 2, respectively, are plotted in figure 5.10 (b2). The conical
phase (white circles) shows increasing intensity with decreasing temperature until it reaches
a maximum just over T = 25K. Around this temperature, the intensity corresponding to the
tilted conical phase (gray circles) starts increasing. As the temperature keeps decreasing the
intensity of the conical phase falls solidly, while the tilted conical phase intensity increases,
albeit at a slower rate. While only small remnants of the conical phase are left at the lowest
temperatures measured, the tilted conical phase shows a maximum around T = 8K and
decreases sharply as the sample is cooled further. Note that this sharp reduction of the tilted
conical intensity correlates with the region in which the LT-Sky phase emerges.

Typical data obtained from high-field-cooled/field-heated scans

A high-field-cooled/field-heated measurement protocol typically favors the conical magnetic
order in chiral magnets, when the field is parallel to one of the easy axis of the system. While
the effects on the skyrmion lattice are minimal, due to its relatively high temperature, the
helical phase is generally suppressed in large portions of the phase diagram only reappearing
at temperatures close to the helical to the paramagnetic phase transition. That is not the case
for Cu2OSeO3. Instead, both new phases, i. e., the tilted conical and the low-temperature
skyrmion phase, show very well defined signatures and, in the case of the LT-Sky, expand
their region in the phase diagram substantially.
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Typical scattering patterns recorded at low temperatures are shown in figure 5.11 (a1) and
(b1). The former was obtained in a experimental setup with B ‖ n, after reducing the mag-
netic field magnitude from B = 250mT down to B = 25mT. The LT-Sky scattering pat-
tern consists of a ring showing a complete homogeneous azimuthal intensity distribution.
The four Bragg peaks observed correspond to helical propagations coexisting with the low-
temperature skyrmion phase. As it was the case for field-cooled measurements, the remain-
ing intensity, after subtracting sectors 2 (dashed red in figure 5.11 (a1)) from sectors 1 (solid
green), originates from the helical phase. The results are shown in figure 5.11 (a2). The heli-
cal phase shows a typical behavior decreasing slowly with increasing temperature vanishing
completely at T = 48K. The intensity of the LT-Sky phase also decreases at first, albeit
slower than the helical phase. At T = 50K, a sharp peak develops, yet there are no changes
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Figure 5.11: Typical scattering patterns and extracted intensity from small angle neutron scattering for
HFC/FH. (a1) Coexistence of LT-Sky (ring) and helical (Bragg peaks) phases at low tem-
peratures for B ‖ n. Sectors 1 (solid green) contain overlapping signal of the coexisting
phases. Sectors 2 (dashed red) contain intensity from the LT-skyrmion phase only. (a2)
Examples for the temperature dependence of the intensity at B = 25mT. The helical
intensity (green circles) decreases slowly with increasing temperature and vanishes com-
pletely at T = 48K. For low temperatures the intensity of the LT-Sky phase decreases
slowly (red circles). The peak at T = 50K marks a transition from the LT-Sky to the
HT-Sky (orange circles) phase. (b1) Typical scattering pattern at lower temperatures for
B ⊥ n showing both the conical and the tilted conical phase. The smudges of intensity
along the [110] direction correspond to the low- temperature skyrmion phase. (b2) Tem-
perature dependence of the scattered intensity from the conical (white circles) and tilted
conical (grey circles) phase at B = 70mT, extracted using sectors 1 (solid black) and
2 (dashed grey) from (b1). The tilted conical transitions to the conical phase starting at
T = 15K, vanishing completely at T = 38K.
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to the scattering pattern recorded. The intensity falls sharply and increases again at T = 54K

as the LT-Sky phase transitions into the HT-Sky phase showing again the twelve peaks corre-
sponding to the two domains observed for this experimental configuration.

A typical scattering pattern for B ⊥ n is shown in figure 5.11 (b1). Note how clear the Bragg
peaks for the tilted conical phase are. Their positions are separated from the coexisting coni-
cal phase. The second domain is not as strong, due in part to the misalignment between field
and crystallographic axis, as well as the chosen field value to be able to demonstrate the coex-
istent of both phases for this measurement protocol. Additionally, there are two light intensity
patterns along [110]. These correspond to the low-temperature skyrmion phase. As for the
previous examples, the intensity is obtained by integrating over the different sectors depicted.
Specifically, sectors 1 (solid black) and sectors 2 (dashed grey) for the conical and tilted con-
ical phase, respectively. Figure 5.11 (b2) contains the resulting curves for B = 70mT. At low
temperatures only the tilted conical phase is populated and the related intensity remains fairly
constant up to T = 12K. After a small increase while the sample is heated further the inten-
sity of the tilted conical phase starts to decrease as the conical phase emerges at T = 15K.
The former vanishes at T = 38K while the latter shows a small peak and then decreases
sharply as the system reaches the transition to the paramagnetic regime.

Magnetic phase diagrams from temperature scans

Based on the dense mesh of data recorded as a function of temperature for the different
aforementioned measurement protocols, a set of magnetic phase diagrams was determined.
The boundaries were defined at the data point at which the intensity differed from the back-
ground by at least five standard deviations, 5σ. Note that this definition of phase boundary
did not intend to reproduce the phase diagram as observed with other thermodynamic phys-
ical properties, such as magnetization and magnetic susceptibility measurements. The high
sensitivity of SANS can lead to larger cirtical values for the phase boundaries than expected
in case of hysteresis and metastability. Furthermore, the experimental results presented here
are the first thorough mapping of the new phases, i. e., tilted conical and low-temperature
skyrmion phase, so the definition was chosen to ensure consistency and transparency. Sub-
sequent precise measurements of the magnetization and the ac susceptibility defined phase
boundaries different from the ones shown here, their relation to the following phase diagrams
is obtained by virtue of a direct comparison of the data sets [142].

The magnetic phase diagrams for the different temperature versus magnetic field protocols
were obtained by combining both measurements with B ‖ n and B ⊥ n and are depicted
in figure 5.13 (b1) through (b3). For comparison the phase diagram for B ‖ [111] as ex-
tracted from magnetization measurements following a zero-field-cooled/field-heated protocol
is shown in figure 5.13 (a). The ZFC/FH phase diagrams for B ‖ [111] and B ‖ [001] are
very similar for temperatures just below the transition to the helimagnetic order Tc down to
the T = 44K. The helical phase is observed in low magnetic fields, followed by the skyrmion
lattice at intermediate field values and the conical phase just below the transition to the field
polarized phase at high fields. The small apparent difference in the temperature width of the
high-temperature skyrmion phase (orange circles) is due to the boundary definition, as is the
strong difference in sizes of the helical phase (green circles).

Both tilted conical and low-temperature skyrmion phases are not observed for B ‖ [111].
Moreover, the conical to field polarized phase transition shows a strong temperature depen-
dence decreasing steadily with increasing temperature. This is not only in stark contrast to
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Figure 5.12: Intensity maps for the different protocols of temperature versus magnetic fields and mag-
netic phases. Scattered neutron intensities were obtained from the four sectors as de-
fined in the typical scattering patterns, e.g., figure 5.10. The data is organized by mag-
netic phases (rows) and measurement protocols(columns). The white lines are the phase
boundaries of the phase diagrams presented in figure 5.13, while the circles mark the
phase boundaries. The black dots represent points were scattered neutron data were
recorded.
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Figure 5.13: Magnetic phase diagrams for different experimental protocols of Cu2OSeO3: (a) B ‖
[111]. Typical magnetic phase diagram from literature, see text for details of phase
boundary definitions. (b1) ZFC/FH measurements. Note that at low temperatures the
low-temperature skyrmion phase transitions directly into the field polarized regime. (b2)
FC scans. For fields in the range of the high-temperature skyrmion phase a metastable
phase survives down to lowest temperature. The LT-Sky region shrinks substantially. (b3)
HFC/FH measurements. The low-temperature skyrmion phase expands to cover almost
the entire phase diagram.

the transition to the polarized phase observed for B ‖ [001] which is almost constant be-
low T = 44K, but it also differs from the behavior observed for other chiral magnets such
as MnSi and Fe1−xCoxSi, where the transition shows a vanishing temperature dependence
at very low temperatures. The characteristic dependence on the direction of the field is a
strong indication that magnetocrystalline anisotropies play an important role determining the
magnetic order in Cu2OSeO3.

As it was discussed in chapter 3, the critical fields defining the transition from the helical
to the conical phase are determined by the angle βB,Qi between the field direction B and the
different propagation vectors Qi of the helical domains. In the case of Cu2OSeO3 the helices
propagate along 〈100〉 axes, thus the case of B ‖ [111] and B ‖ [001] are not so different as
both are characterized by relatively large angles, i. e., β

[111]
B,ki

= 55° and β
[001]
B,Qi

= 90°. Hence,
the critical field Bc1 at which all domains coalesce into a single domain propagating along B
is similar for both field directions.

A very different scenario develops when a single domain state breaks up into several do-
mains, i. e., the transition from the conical phase to the helical phase. For B ‖ [111] all do-
mains are equivalent concerning the magnetic field direction. Thus, such a transition results
in all of them being equally populated. In contrast for magnetic fields applied along 〈100〉,
the conical domain propagates along an easy axis, and there is no energetic advantage in
splitting up this domain in the absence of a magnetic field. It follows that the helical phase
would show a strong hysteresis depending on the temperature versus magnetic field proto-
col followed. If the experimental protocol ’passes through’ the conical phase, a multidomain
helical phase should not be observed.

As mentioned above, in this study, scattering from helical domains perpendicular to the
magnetic field can be observed up to large fields, ∼ 0.5Bc2, for both field-cooled and high-
field-cooled/field-heated measurement protocols, cf. figure 5.13 (b2) and (b3). The critical
fields are slightly lower in comparison to ZFC/FH, but these differences are small in compar-
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ison to the region in which the helical signal survives. Note also that for field-cooled mea-
surements the temperature at which the helical signal emerges for fields around 40mT is
almost constant, indicating the temperature at which the anisotropic contributions favoring
helical domains perpendicular to the field become strong enough. A simple explanation for
this behavior is the combination of the small deviation of the magnetic field from the intended
[001] axis and the field-dependent contribution from the magnetocrystalline anisotropies. Re-
cent careful measurements of magnetization M and ac-susceptibility χ substantiated this
explanation [142]. As part of that study, a conical to helical transition was observed for small
deviations of the magnetic field direction from a 〈100〉 crystallographic axis. Careful alignment
of the sample suppresses the signature completely, as shown in [142].

The boundaries of the tilted conical phase show a small hysteresis between the different
measurement protocols, cf. figure 5.13 (b1) - (b3). The differences in the phase boundaries
as related to temperature are small and the highest critical temperature, at which the phase
vanishes, is constantly ∼ 30K. Relatively more significant hysteretical effects are observed
as a function of field, especially around the lower field boundary. The work of Halder et al.
shows that these effects disappear when demagnetization corrections are taken into account
(lack of magnetization data on the specific sample used in the study presented here prevented
such a correction).

Depending on the temperature vs. magnetic field history, the region in the magnetic phase
diagram where the low-temperature skyrmion phase can be observed changes dramatically.
The smallest phase is observed when cooling the sample in an applied field (FC), cf. figure
5.13 (b2), and it relates to the phase extent after ZFC as well as HFC. Note that on the one
hand, the low field boundary of the ZFC/FH measurements is close to that obtained for the FC
measurement. On the other hand, the high field boundary of the FC measurments matches
the one observed in HFC/FH experiments.

One observes the largest phase area for the LT-Sky phase in HFC/FH measurements for
which the phase extends down to ∼ 15mT and up to temperatures just below the HT-Sky.
The phase region of low-temperature skyrmion lattice after ZFC/FH is reduced to fields be-
tween 60mT and 90mT and it transitions directly into the field polarized regime at lowest
temperatures. Note that the transition temperature for both ZFC/FH at 70mT and 80mT are
very close to those obtained from HFC/FH measurements, the differences might be explained
by demagnetization effects, which shift the magnetic field scale slightly.

Sample preparation before magnetic field dependent measurements

Magnetic field scans followed typically the same protocol as hysteresis loop in which the
measurement starts from zero-field, and the magnetic field is increased until the saturation
is reached (in this case the field polarized region), at that point the magnetic field magnitude
decreases until it reaches 0mT where the polarization switches and the magnitude increases
again until saturation is reached in the opposite direction. In the following, we denote the
first leg of the measurement zero-field-cooled/field-scan (ZFC-FS) and the second leg high-
field/field-scan (HF/FS), as the sample needs to be prepared in the zero-field state by cooling
from above the critical temperature Tc before every scan. Due to the behavior of the high-
temperature skyrmion lattice observed after field-cooled scans two additional temperature
versus magnetic field protocols were followed to investigate the boundaries of the metastable
HT-Sky phase. The details of the different measurements are as follows:
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Figure 5.14: Schematic representation of the different temperature versus magnetic field protocols
followed to obtain data for magnetic field scans. (1) Zero-field-cooled/field-scan (ZFC/FS):
the sample is cooled down to the lowest temperature at zero magnetic field. At the desired
temperature, Tscan, scattered intensity is recorded while the magnetic field magnitude is
increase continuously to above Bc2. (2) High-field/field-scan (HF/FS): Following (1) data is
again recorded continuously while the field is decreased continuously below−Bc2. (3), (4)
Field scans after field cooled: the magnetic field value is set to BFC at a temperature well
above the helimagnetic transition. The sample is cooled to the temperature of interest,
Tscan, at which data is recorded while the magnetic field is either increased (FC/FSU) or
decreased (FC/FSD) until the field polarized phase is reached.

(a) ZFC/FS: Zero-field-cooled/field-scan, cf. Fig. 5.14 (1). Starting well above the helimag-
netic transition with a previously degaussed magnet the sample is cooled in zero mag-
netic field at a rate of 8Kmin−1 to the desired temperature for the scan, Tscan. Scattered
neutron intensity is recorded over a 5 s interval, while the magnetic field is increased con-
tinuously at a rate of 0.2mTs−1 to a field higher than Bc2. Due to the dead time of 1 s for
the storage of the file, each data point represents an average over a change of field of
∼ 1.2mT.

(b) HF/FS: High-field/field-scan, cf. Fig. 5.14 (2). Starting deep in the field polarized phase
and at the temperature of interest Tscan, data is recorded while the magnetic field strength
changes continuously at a rate of −0.2mTs−1 until a field well below −Bc2 is reached.
As for ZFC/FS each data point is an average over 1.25mT.

(c) FC/FSU: field-cooled/field-scan-up, cf. Fig. 5.14 (3). Starting with a degaussed magnet
well above the helimagnetic transition temperature Tc the field value is set to BFC =

29mT. The sample is then cooled at a rate of 8Kmin−1 down to the temperature of
interest Tscan. Scattered neutrons are recorded while the magnetic field is increased at
a rate of 0.2mTs−1 up to a field value greater than Bc2. As above data points are an
average over 1.2mT.

(d) FC/FSD: field-cooled/field-scan-down, cf. Fig. 5.14 (4). Starting with a degaussed magnet
well above the helimagnetic transition temperature Tc the field value is set to BFC = 29mT.
The sample is then cooled at a rate of 8Kmin−1 down to the temperature of interest
Tscan. Scattered neutrons are recorded while the magnetic field is change at a rate of
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Figure 5.15: Typical data obtained from neutron scattering during field scans after zero-field-scan for
B ‖ n (left column) and B ⊥ n (right column). (a1) Scattering pattern obtained in the
phase pocket of the low-temperature skyrmion lattice, note that the signal concentrates
around the direct beam indicating a small value of |Q|. (a2) Intensity as a function of
magnetic field obtained at T = 5K. (b1) Scattering pattern including the conical and
tilted conical phase, at this intermediate field both phases coexist, and their Bragg peaks
overlap. The streaks along the [110] axis belong to the low-temperature skyrmion lattice.
(b2) Conical and tilted conical intensity as a function of the magnetic field. The increase
in the conical intensity at low fields is related to the depopulation of helical domains. Note
that the decline of the conical intensity at higher fields is accompanied by the rise of the
tilted conical phase indicating the transition from the former to the latter.

−0.2mTs−1 up to a field value below −Bc2. As above data points are an average over
1.2mT.

Typical data obtained from zero-field-cooled/field-scan

Figure 5.15 shows representative results obtained during field scans after cooling the sample
in zero-field. The image has the same layout as the typical data illustrations for the tempera-
ture scans. The scattering patterns are in a logarithmic scale in order to emphasize certain
features in them. The scattering pattern on the top left was obtained with a magnetic field par-
allel to the incoming neutron beam in the middle of the low-temperature skyrmion phase. The
main feature consists of a ring with a small radius, i. e., very close to the direct beam. There is
also a stronger contribution from higher order components or double scattering than observed
for the other magnetic phases. The captured scattered neutrons intensity as a function of the
magnetic field B for the LT-Sky and helical phase is plotted in figure 5.15 (a2). The helical



5.3 M A P P I N G O F T H E M AG N E T I C P H A S E D I AG R A M S 99

phase (green circles) shows a strong signal at very low fields, which starts to decrease just
above 10mT but maintains a substantial intensity value up to 50mT. Note that the intensity for
the helical phase has been divided by 10. The low-temperature skyrmion phase (red circles)
is given by a broad intensity peak centered around 75mT and ∼ 40mT wide. The scattering
pattern obtained for B ⊥ n, cf. Fig. 5.15 (b1), also shows a clear signal related to the low-
temperature skyrmion phase, i. e., the intensity strides on both sides. The Bragg peaks from
the conical and tilted conical phase do not show any notable differences to those observed
from temperature scans following a similar protocol, i. e., zero-field-cooled/field-heated.

This type of scans showcases the transition from the helical to the conical phase. As illus-
trated in figure 5.15 (b2), the intensity of the helical domain propagating along the magnetic
field direction (white circles) shows a strong increase between 10mT and 25mT. Typically,
the point of inflection of this increasing flank in the vicinity of 20mT would define the phase
boundary and should coincide with the point of inflection of the helical state in 5.15 (a2). Fol-
lowing that definition would yield similar boundaries as those obtained from magnetization.
However, the intensity as a function of temperature lacks an inflection point. Thus alternating
definitions of phase boundaries would be necessary depending on the measurement protocol.
To maintain the analysis transparent and straight forward, the same boundary definition as
used in the temperature scans was applied here. As it was the case with the low-temperature-
skyrmion phase, a peak in the intensity as a function of magnetic field defines the phase re-
gion of the tilted conical phase. The center of the peak lies at∼ 70mT and it is∼ 25mT wide.
Notice that the onset of the tilted conical phase correlates with a decline in the intensity of the
conical magnetic order. The peak is asymmetrical, and the decreasing flank (towards larger
magnetic fields) possesses a longer tail. Both the conical phase and tilted-conical phase are
in decline as the intensity of the LT skyrmion phase rises, this is a strong indicator that the
skyrmion lattice represents the ground state at this point in the phase diagram.

Typical data obtained from high-field/field-scan

After reaching the field polarized phase, the magnetic field ramp is reversed, and scattered
neutrons are recorded starting from high positive fields and finishing at high negative fields.
The results from the temperature scan already demonstrate a large hysteresis between mea-
surements starting from zero-field and those that start above Bc2. In the latter case, the
first unusual observation is that the radius of intensity ring close to the direct beam, cf. Fig.
5.15 (a1), increases with decreasing magnetic field as illustrated in figure 5.16 (a1). Hence,
the ring is very well defined and easily recognizable as a new form of magnetic order, instead
of a signal arising from domain walls related to the field polarized transition, which would not
survive far from the latter. The intensity as a function of the magnetic field (red circles plotted
in figure 5.16 (a2)) increases sharply around 80mT, reaches a maximum just below 70mT

and falls slightly to reach a plateau. The latter extends down below 20mT, at which point the
intensity sharply decreases. On the negative magnetic field side of the curve, the same shape
is observed as in the field scans starting from zero-field-cooled discussed above, i. e., a peak
just below the transition to the field polarized phase. The helical phase (green circles) shows
a broad peak around 0mT, with long tails reaching pass 50mT. The center of the curve is not
at zero magnetic field, which is likely a consequence of trapped flux in the superconducting
magnet.

The strong signal of the low temperature skyrmion lattice at small positive fields, can also
be observed in the experimental setup with B ⊥ n. Figure 5.16 (b1) contains a scattering
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Figure 5.16: Typical data obtained from field scans starting from high-fields well above the transition to
the field polarized phase for B ‖ n (left column) and B ⊥ n (right column). (a1) Scattering
pattern within the low-temperature skyrmion lattice phase, the disorder skyrmion domains
yield a ring of intensity. By expanding the phase metastably to lower field values, the ring
expands and is easier resolved from the direct beam. (a2) Scattered neutrons intensity
for the helical and low-T skyrmion phase as a function of the magnetic field at T = 5K.
On decreasing field magnitudes the skyrmion phase expands to very low magnetic fields,
upon reaching B = 0 and increasing the magnitude again, the boundaries look almost
the same as in ZFC/FC measurements, cf. Fig. 5.15 (a2). (b1) Scattering pattern deep
in the conical phase, the tilted conical phase is not observable. Instead, a strong signal
from the low-temperature skyrmion phase is observed along the [110] axis. The four
weaker spots observed arise from double scattering processes, including the LT-sky and
the conical phase. (b2) Intensity of scattered neutrons from the conical and tilted conical
phases. Small hysteretic effects are observed at the boundaries of both phases as a
consequence of demagnetization.

pattern obtained in this configuration at low fields. The broad Bragg peaks left and right, arise
from scattering from LT-Sky phase. Note that there is also double scattering originating from
neutrons the scattered from the conical phase and the from skyrmion lattice or the other
way around. This signal is captured partially by the integration windows used for the tilted
conical phase, resulting in a longer tail to small magnetic fields, that could not be extracted
from the data efficiently. The tilted conical intensity as a function of magnetic field plotted in
5.16 (b2) (gray circles) shows clearly this artifact. The curve progression does not change,
the tilted conical phase is still described by an intensity peak as a function of magnetic field.
The phase region on the positive magnetic field side sets on at ∼ 85mT and reaches its
maximum at 63mT. The tilted conical phase vanishes just below 50mT. The linear behavior
observed below that is associated with the double scattering from the LT-Sky phase. On the
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Figure 5.17: Typical data obtained from field scans after cooling the sample in a field BFC = 29mT for
B ‖ n. (a) Scattering pattern of the metastable skyrmion lattice in a finite field larger than
BFC. There is no contribution from the helical order. (b) Scattering pattern obtained for a
field just below BFC. The Bragg peaks related to the skyrmion domains become very weak
rapidly while scattering from the helical phase increases. (c) Intensity of scattered neutron
from the helical phase as a function of the magnetic field for different temperatures. The
curves are not centered around B = 0 due to frozen flux in the superconducting magnet.
(d) Intensity of scattered neutrons from the skyrmion lattice as a function of B for different
temperatures. Note that increasing the field after field cooling leads to a large peak just
below the transition to the field polarized phase up to T ≈ 25K. In contrast, negative
fields show the behavior related to the low-temperature skyrmion phase, and increasing
temperature leads to a strong reduction in intensity, and no intensity is observed above
T ≈ 25K.

negative field side the curve shape is exactly the same as observed after zero-field cooled.
For decreasing magnetic field strength the tilted conical phase reaches its peak without coex-
istence with the conical phase (white circles), thus allowing a clear signature to be observed.
In contrast, for increasing magnetic field strength the conical phase is still observable well
after the tilted conical intensity has reached its peak and starts declining again.

Typical data obtained from field-cooled/field-scan

The boundaries of the metastable skyrmion lattice related to the HT-Sky phase were obtained
through field scans measured after the sample was cooled in an applied field BFC = 29mT,
denoted field-cooled/field-scans. This protocol was carried out with the magnetic field par-
allel to the neutron beam only. Scattering patterns for increasing and decreasing fields are
depicted in figure 5.17 (a) and (b), respectively. The former consists only of a skyrmion lattice
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signal, while the latter shows coexistence of helical and skyrmion domains. The helical inten-
sity as a function of magnetic field for different temperatures is obtained by combining both
measurement protocols, cf. Fig. 5.17 (c). There are some important difference between the
positive and negative field sides of the curve. The helical state is not favored when cooling
the sample in a finite magnetic field. Hence, the magnitude of the critical field Bc1 is larger for
negative fields than for positive ones, note that there is a small shift due to frozen magnetic
flux in the superconducting magnet but it does not account for the differences observed.

The magnetic field dependence of the intensity resulting from scattering from the skyrmion
lattice is complex, cf. Fig. 5.17 (d). When increasing the magnetic field after reaching tem-
peratures below ∼ 25K the intensity remains constant and then increases strongly above
50mT it reaches a peak and decreases rapidly as the transition to the field polarized phase
is reached. There is no significant change in the scattering pattern that would point to a transi-
tion from the out-of-equilibrium HT-Sky to the LT-Sky phase. Under a negative field ramp, the
recorded signal from the skyrmion lattice rapidly declines and completely vanishes until the
typical peak related to the LT-Sky phase develops at the same absolute field values observed
for zero-field-cooled/field-scan measurements. The LT-Sky phase exhibits a strong reduction
in intensity as the temperature increases.

In contrast, the HT-Sky phase remains constant and seems to gain intensity as the tem-
perature comes closer to 25K. Above this temperature there is no contribution from the low-
temperature skyrmion lattice and the peak of the metastable high-temperature phase just
below the field polarized region vanishes, resulting in a broad plateau which falls slowly with
increasing magnetic field to decline very fast at ever smaller magnetic fields. The data thus
evade explanation by a simple superposition of the contributions from both skyrmion phases.

Neutron scattering measurements following an incomplete minor hysteresis loop in which
the magnetic field was increased up to B = 85mT just below the transition to the field
polarized phase and then reduced to the starting value again, either BFC or B = 0, cf.
Fig. 5.18 (a1) and (b1), help to clarify the origin of the increment in the intensity from the
metastable skyrmion phase. The measurements were carried out at T = 23K at which the
maximum value of the metastable peak was observed. When starting with a zero-field-cooled
sample, the intensity of the different magnetic phases is consistent with expectations from the
measurements discussed above. Specifically, the tilted conical intensity is strongest when
the magnitude of the magnetic field decreases from larger values, and the signal of the low-
temperature skyrmion lattice survives down to very low magnetic fields, the conical intensity
vanishes at higher magnetic fields and below ∼ 50mT its larger for decreasing than for in-
creasing magnetic fields, indicating a helical domain favored by the field direction.

The incomplete minor loop for a sample field-cooled in BFC yields the same magnetic field
dependence for the tilted conical phase as the ZFC measurement. Upon decreasing the mag-
netic field after reaching B = 85mT, the intensity from the metastable HT-Sky domains grows
slightly with the decreasing amplitude of B. At the same time, in contrast to the behavior after
ZFC, the conical intensity for a negative field ramp is smaller than the one observed for the
positive ramp, leading to the conclusion that the skyrmions domain grow and maintain the
gained volume after reversing the field ramp. The scattering patterns for the skyrmion lattice
in the latter case show some small differences. When starting the measurement, there is ev-
idence of domains oriented along both [100] and [010] crystallographic axes, with the latter
showing stronger Bragg peaks than the former. Upon decreasing the magnetic field, we can-
not distinguish between both, due to a reduction of the reciprocal scattering vector length Q,
as the starting field value is reached again, the scattering pattern shows only Bragg peaks for
a skyrmion lattice oriented along the [100] axes and a ring of scattering indicating disordered
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Figure 5.18: Depiction of minor loop measurement and the corresponding starting phase diagram for
ZFC and after cooling the sample in BFC, (a1) and (b1), respectively. (a2) - (a4) Measured
intensity as a function of the magnetic field for the conical, tilted conical and skyrmion
phases after zero-field-cooled. (b2) - (b4) Intensity as a function of the magnetic field ob-
tained after cooling the sample in BFC. The HT-Sky phase shows a substantial enhance-
ment after the minor loop, note that the intensity of the conical phase is significantly
reduced on the leg of the decreasing field. (c1) Scattering patterns at the start of the
minor loop after cooling in BFC. (c2) Scattering pattern at the maximum field of the loop.
(c3) Scattering pattern back at BFC after the minor loop.

skyrmion lattices. Thus, the domains are not only growing, but there is an extensive rear-
rangement of the magnetic order, which favors one type of domains, likely as a consequence
of a small deviation from the magnetic field resulting in a small component along [010].

Magnetic phase diagram from field dependent scans

Magnetic phase diagrams were constructed as discussed for temperature scans. Figure 5.19
contains the results. It is helpful to disregard the helical phase in the following discussion
since its phase volume is very small except for magnetic fields close to zero. The tilted conical
phase shows a constant upper transition field value for both zero-field- and high-field-cooled
measurements. The small hysteresis in the lower critical field originates in demagnetizing ef-
fects. The conclusion derived from the conical boundaries is consistent with the observations
made in temperature scans, i. e., the transition from the conical to field polarized phase shifts
to lower values below∼ 30K. Below∼ 10K there is an additional reduction in the critical field
of the conical phase, these correlate with the temperatures for which the low-temperature
skyrmion lattice is strongest in field scans starting at high-fields. Note that this is also the
same temperature region in which the LT-Sky phase is observed in field-cooled measure-
ments (cf. Fig. 5.13 (b2)). Above 10K the intensity from the LT-Sky in HFC-FS measurements
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Figure 5.19: Magnetic phase diagrams from field scan measurements. (a) ZFC/FS At low tempera-
tures the transition to the polarized phase occurs last for the low-temperature skyrmion
lattice. (b) HFC/FS: At low temperatures the extent of the LT-Sky phase expands consid-
erably. Note that above ∼ 10K the intensity of the latter sharply decreases. (c) FC/FS:
The metastable state of the HT-Sky phase covers almost the entire phase diagram, and
below ∼ 25K its the last phase to transition to the field polarized state.

declines substantially as a consequence of irreversible processes, as demonstrated by the
fact that no such reduction is observed in temperature scans nor field scans following a zero-
field cooling. Otherwise, the boundaries are consistent with the characteristics observed in
temperature scans, i. e., the boundaries are highly hysteretic depending on the sign of the
field ramp.

The phase boundaries resulting from measurements after cooling the sample through the
skyrmion phase show two important properties: 1. there is an enhancement of the critical
field related with temperatures at which the low-temperature skyrmion lattice is observed and
2. the low field boundary shows almost no temperature dependence, a fact hinted at by the
temperature scans and corroborated by the field-cooled/field-scans. The high-temperature
skyrmion phase profits from the increasing anisotropy with decreasing temperature and in-
creasing field, resulting in larger domains.

5.4 M E A N F I E L D A N A LY S I S I N C L U D I N G C U B I C A N I S OT R O P I E S

The most important developments in the field of magnetic skyrmions in chiral magnets have
been accompanied by theoretical analysis based on a Ginzburg-Landau φ4-Model already
discussed in the first paper identifying the skyrmion lattice in MnSi by Mühlbauer et al.[11].
It was further used in the analysis of the skyrmion decay [75], as well as the study of the
universal magnetic excitations in chiral magnets with P213 space group [143]. Here the same
approach is followed to explain the appearance of the low-temperature skyrmion lattice and
the tilted conical phase. The increment of the ring intensity, after cycling of the magnetic field
amplitude, establishes the connection of the former to the ground state of the system. The
origin of both new phases is constrained by the anisotropic character of the phase diagram,
i. e., both phases are only observable for B ‖ 〈100〉, and the fact that these are observed
for ’high’ fields, in contradiction with the well-understood phase diagram of MnSi, where an
alignment of the helices parallel to the magnetic field is energetically favorable. Hence, the
anisotropy increases nonlinearly with the magnetization squared.
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Fa = −K
∫

d3r
(

M4
x + M4

y + Mz4
)

(5.1)

represents the only anisotropic term to lowest order in spin-orbit coupling in the P213 space
group of Cu2OSeO3 which fulfills the constrains described above, where K is a constant. Most
research neglects its effects, instead opting for the introduction of uniaxial anisotropies and
their effects on the stabilization of skyrmions, especially in thin samples [53, 99, 144, 145].

This cubic anisotropy term is found in typical textbooks discussing the effects of crystalline
structure in ferromagnets such as Fe and Ni. Recently, Grigoriev and collaborators reviewed
its effects on the stability of the helical order, as well as its contributions to the critical field
of the field polarized transition [146] and found that the latter decreases in the presence of
cubic anisotropies of comparable size to the Dzyaloshinskii-Moriya interaction. Specifically,
the helical order becomes unstable at a finite spin angle concerning the propagation direc-
tion, and the system undergoes a first-order phase transition into the field polarized phase.
Their conclusions are derived for a model of helix under consideration of all major contribu-
tions to its energy without considering further magnetic structures that might be stabilized by
the anisotropic contributions. Still, their main observations are in agreement with the results
presented here. The tilted conical phase can be understood as an attempt to avoid the first-
order transition to the homogeneous state. Magnetization and susceptibility measurements
on Cu2OSeO3 published recently support this conclusion as the tilted conical phase is related
to a steep increment in the magnetization [142].

The experimental results are already a strong indication that the new phase related to the
ring of intensity consists of some skyrmion lattice order. A plausibility check can be obtained
by verifying whether 5.1 is able to stabilize a skyrmion lattice versus a conical, tilted coni-
cal, and ferromagnetic phase, where stable is the phase of lowest free energy in a model
considering all relevant contributions. In the present case, such an energy functional can be
separated into three components F = F0 + Fd + Fa. In momentum space, the first one reads:

F0[M] =∑
Q

(
J
2
(Q ·Q)(MQ ·M−Q) + iDM−Q · (Q×MQ) + r0MQ ·M−Q+

+ U ∑
Q2,Q3,Q4

(MQ ·MQ2)(MQ3 ·MQ4)δQ+Q2+Q3+Q4,0

)
− B ·M0 (5.2)

and is able to reproduce key qualitative characteristics of chiral magnets, such as the helical
and conical phase [83, 94], as well as the high temperature skyrmion phase [11, 75, 101, 143].
This is the same functional used in the derivation of the magnetic susceptibility in chapter 3.

The parameter r0 quantifies the distance from the phase transition while U stabilizes the
functional. J accounts for the exchange strength, while D is given by the strength of the
Dzyaloshinskii-Moriya interactions and B the magnetic field.

Fd[M] = τ

(
M0NM0 + ∑

Q

(Q ·MQ)(Q ·M−Q)

Q ·Q

)
, (5.3)

is the second contribution and accounts for dipolar interactions with a relative strength of τ.
N is the demagnetization tensor, with tr(N) = 1. The third and final contribution Fa arises
from the cubic anisotropies and is given by:

Fa[M] = −K ∑
Q,Q2,Q3,Q4

(
Mx

Q Mx
Q2Mx

Q3Mx
Q4 + ...

)
δQ+Q2+Q3+Q4,0 (5.4)
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Figure 5.20: Phase diagrams resulting from Ginzburg-Landau model as a function of anisotropy K and
magnetic field B for dipolar interactions τ = 0.88 as reported for Cu2OSeO3, (a), and for
comparison in the absence of the former, i. e., τ = 0, (b). Above a critical anisotropy
value Kc, skyrmion lattices are stabilized at finite magnetic fields. There are two forms
of morphology, i. e., a square lattice, and a triagonal (hexagonal) lattice. Increasing the
anisotropy further leads to a region in phase diagram where the tilted conical phase has
energy lower than the conical phase (hatched region), but the skyrmion lattices remained
the ground state of the system.

with K the anisotropic constant. Other anisotropy terms of similar strength, such as (Q4
x +

...)MQ · M−Q and Q2
x Mx

Q Mx
−Q, do not fulfill the conditions set out before and are not nec-

essary to understand the experimental results obtained. Additionally, terms of higher order
in spin orbit coupling are neglected since they are formally weaker. A rescaling transforma-
tion permits J, D and U to be eliminated, thus in the consecutive discussion these are set
J = D = U = 1. Dipolar interactions suppress the transition to the field polarized state and
for Cu2OSeO3 there are reports of τ ≈ χint

con/2 ≈ 0.88 [143]. Hence the free paramaters
of the model are B, r0, K and N, unless stated otherwise the results discussed here were
obtained for r0 = −1000 (equivalent to very low temperatures), K = 0.004 and N = 1

3 1

(corresponding to a sphere).
As stated by its name, the low-temperature skyrmion lattice becomes more stable towards

the low-temperature limit. Hence fluctuations can be neglected, and a mean-field approxi-
mation is followed using the magnetization MQ, which has been parametrized to respect
the relevant symmetries on a lattice in momentum-space corresponding to a specific phase.
Note that such a parametrization does not prevent states involving phases beyond the one
of interest, e. g., the field polarized state is in most cases a special solution with infinite wave
vector. The mean-field approach entails the identification of the minima of F[M], these are
often close to each other, and thus the identification of the global minimum is cumbersome.
Thus a combination of different methods, including random starting values, manually scripted
starting values, results of previous minimizations with similar starting parameters and inter-
polation of several previous results, was used to generate starting values for a quasi-Newton
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Figure 5.21: (a) Real space depiction of the tilted conical phase. The angle enclosed by the propaga-
tion vector k and the magnetic field B is denoted αt and measured in a big circle con-
necting [001] and [111]. (b) Energy of the tilted conical phase as a function of tilt angle αt
for different values of magnetic field B, calculated for r0 = −1000, K = 0.004, τ = 0.88
and N = 1

3 1. For B > 19.9, the energy minimum moves towards finite values of αt. Note
that αt = 0 represents the conventional conical phase. (c) Wavenumber |Q| of the tilted
conical phase as a function of the magnetic field for different values of anisotropy K. (d)
Evolution of the tilt angle αt of the tilted conical phase as a function of B for different val-
ues of K. Both values show discontinuities as a function of the magnetic field. The lowest
values of K seem to reproduce the experimental results best.

minimization, resulting in a solution for each parametrization at each point in phase space.
The results are summarized in a phase diagram as a function of K and B in figure 5.20 (a),
for comparison the phase diagram obtained for τ = 0 is depicted in figure 5.20 (b).

The viability of a tilted conical phase is determined by calculating its energy as a function
of an angle αt between the propagation vector Q and B ‖ [001] at different field values, cf.
5.21 (a), where αt is measured along a great circle connecting [001] and [111]. The calculated
energy for different field values is plotted in figure 5.21 (b). Starting at a critical value Bct ≈
19.9 the minimum in energy shifts from αt = 0 to finite values indicating the instability of
the conical phase, hence the tilted conical phase becomes energetically favorable. The field
polarized phase also gains energy from the contributions arising from Fa for K > 0, and in
the presence of weak dipolar interactions (τ � 1) it becomes the ground state in the same
field region as the tilted conical would be favored with respect to the conical phase. The
dipolar interactions in Cu2OSeO3 are strong and penalized the polarized state enough for a
larger phase space to developed in which the tilted conical would be preferred, marked by
the hatched regions in the phase diagrams in figure 5.20. The model described above does
not yield a set of parameters for which the tilted conical phase becomes the ground state.
It is metastable and masked by the skyrmion lattice. One could consider further anisotropic
terms and their extensions for which the tilted conical state is the ground state for specific
parameters, but these models also yielded a helical phase propagating along 〈111〉 directions
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of the system at B = 0. That is in clear contradiction to experimental observations; thus, these
extensions cannot explain the phase diagram obtained for Cu2OSeO3.

The length of the propagation vector |Q| and the angle αt can be obtained from the model.
Both are plotted as a function of magnetic field B for different values of anisotropy K in
figure 5.21 (c) and (d), respectively. The results from the model agree qualitatively with the
experimental observations, i. e., αt increases with the increasing magnetic field, while |Q|
decreases. There are discontinuities in both of these values which are not present in the
experimental results. These indicate spontaneous changes to the magnetic structure, which
involved a rearrangement of the spins over large sample areas. Additional anisotropy terms
have a strong effect on the details of these jumps, hence the presence of defects might smear
them out.

A similar analysis considering skyrmions as the magnetic order yielded at least two differ-
ent skyrmion lattices which are stabilized for anisotropy values higher than Kc ≈ 0.001, i. e.,
a triangular and a square lattice, as already indicated in the phase diagrams shown in figure
5.20. Using Kc = Kσ,c/M4

s the critical anisotropy can also be expressed in terms of material-
specific parameters as the ratio Kσ,c/(Bint

c2 Ms) = 0.07, with the cubic anisotropy in units of
energy density Kσ,c, the critical field for the transition to the field-polarized phase Bint

c2 and
the saturate magnetization Ms, a roughly estimate sets the cubic anisotropy for Cu2OSeO3

at Kσ, c ≈ 400 Jm−3. On the one hand the ratio Kσ,c/(Bint
c2 Ms) scales with λ2

SOC, hence the
skyrmion lattice is stable only if λSOC is strong enough, on the other hand it is less susceptible
to the effects of dipolar interactions and does not depend on their presence to avoid masking
by the field polarized state, cf. Fig. 5.22 (d).

The wavenumber |Q| obtained from these calculations shows a good qualitative agree-
ment with the experimental results, specifically a reduction with increasing magnetic field
for different values of anisotropy K, as illustrated in figure 5.22. Independent of the value of
the latter both types of skyrmion lattices show discontinuities in |Q| as a function of mag-
netic field, related to deformations of the lattice or the skyrmions themselves in the case of
the triangular lattice, or changes in the orientation in the case of the square lattice between
Q ‖ 〈100〉 or Q ‖ 〈110〉. Real space representations of the skyrmion phases associated
with solutions of the mean-field approach are shown in figure 5.22(̇c). The sharp transition
out of the skyrmion phase at low fields for decreasing magnitude could be related with the
deformation demanded by the model, in the sense that it could facilitate the transition to the
conical state. An overview of the field dependence of the propagation length |Q| for all differ-
ent magnetic phases is plotted in figure 5.22 (d) for an extended field region independent of
the phase stability. The stable phase is illustrated by the background color and denoted on
top of the graph. The agreement between theory and experiment is excellent, regardless of
the phase. Importantly, none of the abrupt changes in wavenumber are observed in neutron
scattering, either due to instabilities arising from large reconfigurations of the spin magnetic
order or to masking originating from higher order anisotropic contributions.

Unbeknownst to the author before the publication of the study above, Andrey Leonov had
analysed the stabilization of the skyrmion lattice by cubic anisotropies in a paper published
in 2014 [147].

5.5 S U M M A RY

A thorough small-angle neutron scattering study of the magnetic phase diagram of Cu2OSeO3

identified a new independent skyrmion lattice phase ground state at temperatures below
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Figure 5.22: Wavenumber |Q| as a function of the magnetic field for the triangular (a) and square
skyrmion lattice (b) for different values of anisotropy K. Both show discontinuities asso-
ciated with changes in the morphology of the lattices. These are depicted in (c), note
that only the triangular lattice is observed directly experimentally. (d) Wavenumbers for
the different phases as a function of the magnetic field. Qualitatively these results match
experimental observations very well, note that the phases are not stable over the entire
magnetic field region depicted.

∼ 10K, between ∼ 0.7Bc2 and Bc2, for B ‖ 〈100〉. Additionally, a so-called tilted conical
phase was also observed for this magnetic field configurations. Minimization of the free en-
ergy from an appropriate Ginzburg-Landau model including an anisotropic term of the form

Fa = −K
∫

d3r
(

M4
x + M4

y + Mz4
)

(5.5)

confirms that for values of K > Kc = Kσ,c/M4
s , a skyrmion configuration has a lower energy

than the conical phase observed in this region of magnetic phase diagram in similar materials
such as MnSi, where Kσ,c ≈ 400 Jm−3 using material-specific parameters. Larger values of K
result in a tilted conical phase with lower energy than the conical and field polarized phases.

The transition to and from the skyrmion lattice phase is strong first-order, resulting is strong
hysteresis on the phase boundaries leading to large areas of the phase diagram in which the
new low-temperature skyrmion phase survives metastably. Overall experiment and theory
are in good qualitative agreement, and the latter is able to reproduce the magnetic field de-
pendence of characteristic parameters such as the wavenumber |Q| describing the different
phases and the tilt angle of tilted conical phase. Furthermore, it is possible to obtain a B/T
magnetic phase diagram from the theory which confirms the confinement of the new skyrmion
lattice ground state to low temperature and relatively high fields.

This study constitutes the first observation of two independent, disconnected skyrmion
phase pockets stabilized by different mechanisms, i. e., thermal fluctuations and magne-
tocrystalline anisotropy for the high temperature and low-temperature skyrmion phases, re-
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spectively. Most of the cubic system thoroughly studied to time of writing have very small
anisotropic contributions, thus resulting is subtle but distinguishable effects as the ones dis-
cussed in chapter 3. Some of the data published on the β-Mn compounds resemble that
from Cu2OSeO3, hence the metastable skyrmion phase and the associated structural transi-
tion observed in the former might be driven by magnetocrystalline contributions as the ones
discussed here.
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The scientific interest in complex magnetic structures increased substantially with the discov-
ery of magnetic skyrmions in MnSi, especially in the context of modern technologies [10, 11].
The spin arrangement of a magnetic skyrmion forms a sphere when mapped into order space,
which puts them in a different topological category as other types of magnetic order such as
ferromagnetism. The former are topologically non-trivial and, thus, cannot be continuously
transformed into the trivial ferromagnetic order. The topology of skyrmions is at the heart of
exciting new properties, such as spin-transfer torques, and the topological hall effect [14–17].
These properties have inspired new types of magnetic storage media [19]. Their particle-like
nature is at the heart new type of transistors and logic gates [20, 21]. One of the challenges
on the path of these technological applications is the region of stability of skyrmions, as
most materials able to host these magnetic textures, do so at low temperatures and in finite
magnetic fields. This thesis presented results regarding the role magnetic anisotropies play
in the phase diagrams of cubic helimagnets, and especially in the stabilization of magnetic
skyrmions.

A brief introduction into magnetic interactions, topology and the study of magnetic skyrmions
was given in chapter 1. Chapter 2 presented the theory behind neutron scattering and em-
phasizing magnetic neutron scattering. The chapter also reviewed important aspects in the
study of cubic helimagnets using small-angle neutron scattering and finished with the presen-
tation of the resolution and specific capabilities of the instruments used for the experiments
discussed in this study.

The effects of magnetocrystalline anisotropies on the transition from the helical to the con-
ical phase were discussed in chapter 3. The helical phase consists of magnetic helices
propagating along a preferred direction with its spin pointing perpendicular to it, the features
observed in bulk measurements such as magnetization and ac magnetic susceptibility arise
from the coexistence of helices propagating parallel to equivalent crystallographic directions.
The study was carried out on MnSi, the preferred axis of propagation are the space diago-
nals i. e., 〈111〉 crystallographic axes, resulting in four degenerate configurations. The conical
phase, in contrast, is characterized by a single propagation direction pointing parallel to the
magnetic field. The spins are no longer perpendicular to it but instead, rotate towards it with
increasing magnetic field.

The role of magnetocrystalline anisotropies was investigated by looking at the transition
between conical and helical phases for magnetic fields applied in different crystallographic di-
rections. A theoretical study carried out by collaborators revealed that there are three distinct
scenarios: (1) a magnetic field along the axis with the highest symmetry i. e.,〈100〉, results
in two elastic Ising transitions, (2) if the field points along 〈hk0〉 a single elastic transitions is
observed and (3) for all other directions there is no elastic transition, instead the reorientation
represents a crossover phenomenon, which means that a phase transition is not discernible.
A thorough magnetization and ac-susceptibility study was complemented by small-angle neu-
tron scattering measurements. The experimental results are in remarkable agreement with
the theoretical calculations, and the expected transitions were all observed. However the ex-
perimental results showed a hysteresis in nominal continuous elastic Ising transitions, and
the features measured were sharper and more robust when the transition was approached

111
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from the single domain conical state. A possible explanation is the formation of non-trivial
topological defects that inhibit the coalescence of magnetic domains.

Regarding the role of uniaxial anisotropies, the first theoretical studies about the magnetic
skyrmions suggested that such an additional contribution was needed to stabilize these tex-
tures in MnSi [39]. This assertion and subsequent theoretical studies motivated the study
of the magnetic phase diagram in MnSi under uniaxial pressure. The results of this study
were presented in chapter 4. Using a bespoke He-loaded uniaxial pressure cell different
crystals of MnSi were placed under uniaxial pressures up to ∼ 2 kbar. The different crystals
allowed the pressure to be applied in different crystallographic directions, enabling the ob-
servation of the interplay between uniaxial and magnetocrystalline anisotropies. The main
experimental probe was small-angle neutron scattering, complemented by ac-susceptibility
measurements.

In general, uniaxial pressure in MnSi creates a new preferred axis of propagation. In zero-
field, the helices start rotate towards the stress axis with increasing pressure. This can be
exploited for experimental probes that demand a single domain helical state, which is ob-
tained if pressure is applied parallel to a 〈111〉 axis. The area of stability of the skyrmion
lattice may be tuned via the application of uniaxial pressure. However, the geometric rela-
tion between the magnetic field and the pressure axis is critical. If they point parallel to each
other the skyrmion lattice is suppressed, as both magnetic field and anisotropy favor a conical
propagation. When the magnetic field and pressure are perpendicular, the skyrmion lattice is
stabilized to substantially lower temperatures.

Chapter 5 discussed the recent discovery of a second independent skyrmion lattice phase
in the cubic chiral magnet Cu2OSeO3. The second phase is only observed when the magnetic
field is applied parallel to a 〈100〉 crystallographic axis, which happens to be the easy-axis of
the system. Skyrmion phases in chiral magnets are stabilized by thermal fluctuations and are
observed for small temperatures regimes just below the transition to the paramagnetic phase.
In contrast, the new skyrmion is stable below ∼ 10K and for magnetic fields just below the
transition to the field polarized phase. It shows a strong dependence on the magnetic field, as
the skyrmions become larger as the former increases. Its boundaries are strongly hysteretic
and demark completely different regions of stability depending on the magnetic field and
temperature history.

In addition to this low-temperature skyrmion phase, a so-called tilted conical phase was
also observed below ∼ 20K for fields close to the field polarized transition. This magnetic
order consists of a complex twist of the spins the result in a larger homogeneous magne-
tization when compared with a typical conical propagation. The boundaries of this phase
showed almost no hysteresis and it seems to function as a sort of catalyst for the formation of
the low-temperature skyrmion phase, as it was always observed before the skyrmion phase
nucleates.

Collaborators from the University of Cologne carried out a mean field analysis as a plausi-
bility check that the observe Bragg peaks, were indeed related to a skyrmion lattice. Their re-
sults confirmed that cubic anisotropies can reduce the energy of the skyrmion lattice enough
for it to become the ground state at low temperatures and high magnetic fields. The calcula-
tions do not foresee the emergence of the tilted conical phase.

Cubic anisotropies may be at the heart of interesting phenomena observed in other skyrmion
hosting compounds, such as the transition to a square lattice at low temperatures in β-Mn
compounds [46]. The study of the effects of uniaxial pressure in this new phase in Cu2OSeO3

might open a door into new phenomena regarding magnetic skyrmions. The avenue of tuning
the anisotropies in the search of skyrmion hosting materials suitable for technological devices
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might be very fruitful and resolve some of the issues encountered so far, such as skyrmion
size and even their existence in some thin films. The observation of skyrmions at very low
temperatures and very small magnetic fields, could facilitate the study their interaction with
vortices in superconductors.
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Figure A.1: Ideal and actual setup for the measurements presented in chapter 3. The orientation of
the sample is defined by a rotation axis perpendicular to the ẑlab axis. A second rotation
axis parallel to ẑlab allows to measure a sphere in reciprocal space by rotating the sample
by φlab. The measured position of the Bragg peak is defined as a θlab. In the actual setup
a deviation from both rotation axes results in a shifted coordinate system.

The measurements performed in chapter 3 were unusual, due to the fact that it combined
measurements over a full sphere in reciprocal space while comparing results for magnetic
fields applied along different crystallographic directions. The ideal setup to achieve both these
goals requires a axis of rotation along the laboratory vertical axis ẑlab parallel to the magnetic
field direction and a second axis of rotation perpendicular to ẑlab parallel to a 〈110〉 axis to
select any crystal orientation with respect to the magnetic field. Such an ideal experimental
setup is depicted in figure A.1. There were two origins of discrepancy from the aforemen-
tioned setup, the rotation axis perpendicular to ẑlab has a small deviation with respect to
a 〈110〉 axis and the sample stick is not perfectly straight, resulting in a precession of the
sample when rotated by the angle φlab. This is illustrated in figure A.2 (a) by the scattering
patterns obtained for crystallographic directions 90° apart, note how the center of the scatter-
ing pattern shifts for the different orientations.

The effects of this shift are schematically portrayed in figure A.2 (b), where the observable
values are denoted with a prime and the intrinsic values without one. The change in posi-
tion of the center is parametrized by an angle γ and a distance ∆R. The analysis carried
out here averages the intensity over a radius range, hence one can disregard Q′− and Q′+,
concentrating instead on the values of the azimuthal angles θ′−Q and θ′+Q, cf. figure A.1. The
arithmetic mean of these two angles is designated θ̄′ for a given helical propagation direction.
This average is the value we used for our fits, as it is closed to the intrinsic value of theta for
precessions with a small amplitude.

Consider first the measured values for each Bragg peak:

θ′+Q = θ + α

θ′−Q = θ − β

θ̂′ = θ +
α− β

2
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Figure A.2: Precession of the sample due to small deviation of the sample stick from a straight line. (a)
Scattering patterns obtained for a neutron beam~n parallel to a [110] and [110] axes. Note
how the center of the scattering plane, where both lines cross, moves from one image to
the next. (b) Schematic representation of the shift of the Bragg peaks as a consequence
of the precession, the movement of the center of the scattering plane is parametrized by
γ and ∆R.

Both angles α and β are defined by the intrinsic positions Q, θ and the shift of the center
∆R, γ:

α = arccos

(
Q + ∆R cos (γ− θ)

R′+Q

)
= arccos

(
Q + ∆R cos (γ− θ)√

Q2 + ∆R2 + 2Q∆R cos (γ− θ)

)

β = arccos

(
Q− ∆R cos (γ− θ)

R′−Q

)
= arccos

(
Q− ∆R cos (γ− θ)√

Q2 + ∆R2 − 2Q∆R cos (γ− θ)

)

The discrepancy between the average of the measured theta angle and the intrinsic value
is then given by

∆θ̄′ = θ̄′ − θ =
α− β

2
.

Considering the summation rule for arccosines

arccos x1 − arccos x2 = arccos x1x2 +
√(

1− x2
1

) (
1− x2

2

)
it yields

∆θ̄′ =
1
2

arccos

(
Q2 − ∆R2 cos (2γ− 2θ)√

Q4 − 2Q2∆R2 cos (2γ− 2θ) + ∆R4

)
.

A careful look at this expression reveals that the largest value of ∆θ̄′ is obtained when the
cosine becomes zero, which means that the relative angle between γ and θ is 45°. Hence
the largest deviation as a function of ∆R/Q reads

∆θ̂′max =
1
2

arccos

 1√
1 + ∆R

Q
4
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Figure A.3: Analysis of discrepancy between averaged angle θ̄′ and intrinsic azimuthal angle θ, defin-
ing the position of the Bragg peaks. (a) ∆θ̄′ as a function of intrinsic azimuthal angle θ for
a shift of ∆R/Q = 0.05 along an angle of γ = 45°. (b) Maximal discrepancy ∆θ̄′ as a
function of relative shift ∆R/Q, note the small values of the maximum discrepancy.

The magnitude of the discrepancy ∆θ̂′ between the measured averaged and intrinsic az-
imuthal angle as a function of intrinsic angle θ is plotted in figure A.3 (a) for a shift of ∆R/Q =

0.05 along an angle γ = 45°. The relative shift represents a typical value observed in this
experiment. Note that a change in γ results in a motion of the curve along the θ axis. In this
case the maximum discrepancy is ∼ 0.07°, which is much smaller than our experimental res-
olution in the azimuthal direction. Exploring the maximum value of ∆θ̄′ reveals that for shifts
below ∆R/Q ≈ 0.3 the discrepancy in the measured angle remain below 3°. Hence the ef-
fects of the precession are neglected in the analysis of the Bragg peak position presented in
chapter 3 and the θ̄′ has been used instead.

It is important to regard the measured values of θ̂′ and φlab in an intrinsic coordinate system,
which was defined in chapter 3, cf. figure 3.6, in order to compare them with the theoretical
calculations. For that purpose one needs to carefully determined the orientation of the sample.
This can be defined by the direction of the [110] and [110] axes. These can be described by
two angles δ1 and δ2, which described the angle between the crystallographic directions and
a imaginary horizontal line, representing the ideal orientation. These angles are defined by:

δ1 =
θ̄′[111] − θ̄′[111]

2
δ2 =

θ̄′[111] − θ̄′[111]

2

where θ̄ are the averaged angles for each domain measured after zero-field cooling, the
measured tilts for a setup with [100] parallel to ẑlab are shown in figure A.4. In this case the
scattering patterns yield δ1 = 2.3° and δ2 = −2.8°. After extracting the domain positions Q
parametrized by φlab and θ̄′, two rotation matrixes are applied to obtain θ and φ in the intrinsic
coordinate system.
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Figure A.4: Scattering patterns for ~n ‖ [110] and ~n ‖ [110] used to determine the deviations of both
these axis from the horizontal line, thus defining the necessary rotational transformations
to map the extracted values to the intrinsic coordinate system.
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[133] I. Levatić, P. Popčević, V. Šurija, A. Kruchkov, H. Berger, A. Magrez, J. S. White, H. M.
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