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Abstract—Combining control engineering with nonparametric
modeling techniques from machine learning allows for the control
of systems without analytic description using data-driven models.
Most existing approaches separate learning, i.e. the system
identification based on a fixed dataset, and control, i.e. the
execution of the model-based control law. This separation makes
the performance highly sensitive to the initial selection of training
data and possibly requires very large datasets. This article
proposes a learning feedback linearizing control law using online
closed-loop identification. The employed Gaussian process model
updates its training data only if the model uncertainty becomes
too large. This event-triggered online learning ensures high data
efficiency and thereby reduces computational complexity, which
is a major barrier for using Gaussian processes under real-
time constraints. We propose safe forgetting strategies of data
points to adhere to budget constraints and to further increase
data-efficiency. We show asymptotic stability for the tracking
error under the proposed event-triggering law and illustrate the
effective identification and control in simulation.1

Index Terms—adaptive control, machine learning, switched
systems, uncertain systems, closed loop identification, data-driven
control, online learning, Gaussian processes, event-based control

I. INTRODUCTION

DATA-DRIVEN control has gained a great deal of at-
tention as costs for measuring, processing and storing

data rapidly decrease and control engineering is increasingly
applied in areas in which it is difficult to describe the
plant using first principles. Nevertheless, a precise system
description is essential for many modern model-based control
algorithms, such as model predictive control and feedback
linearization. Classical system identification using parametric
models, such as autoregressive moving average (ARMA) or
Hammerstein models [1], reaches its limits when the choice
of a suitable model class is cumbersome or impossible, e.g.
in systems where human behavior is part of the control loop.
That is where data-driven nonparametric models have their
advantages, as only minimal prior knowledge is required and
they allow for higher flexibility than parametric models.

This article specifically considers Gaussian processes (GPs),
which are well recognized in machine learning and control for
modeling complex dynamics [2]. The Bayesian background
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Fig. 1. Proposed concept of an online learning control law with event-
triggered model updates.

allows for an implicit bias-variance trade-off [3] and, as GPs
are a kernel-based method, prior knowledge (if any exists)
can properly be transferred into the model [4]. The major
advantage is that GP models also encode their own ignorance
and therefore provide information as to whether the model is
reliable for particular inputs or not.

Due to their nonparametric nature, the model complexity of
a GP increases with the amount of available data. This possible
unlimited expressive power is generally desired, however, it
may cause difficulties from a computational point of view in
the case of large training data sets. Particularly challenging
are online learning schemes in which data points are accu-
mulated over time and real-time capability is critical. This
raises the question of efficient online learning strategies for
nonparametric models. Time-triggered model adaptation fails
to distinguish whether a new measurement or training point
is necessary at the current location of the state-space or not.
This calls for an event-triggered scheme, which decides upon a
new measurement based on the current reliability of the model,
which is expected to result in higher data-efficiency.

A. Related work

The fact that no model can initially capture all aspects of the
true system motivated researchers to design robust and adap-
tive control methods to overcome this discrepancy [5]. The
online adaptation of the control strategy or its employed model
is well understood for parametric models [6], [7]. In particular
for linear systems, data-driven approaches are extensively
researched, see [8], and [9]. For nonlinear systems, model
reference adaptive control (MRAC) is designed to effectively
deal with model uncertainties or only little prior knowledge us-
ing online parameter estimation [10]. Iterative learning control
(ILC) improves control performance by iteratively modulating
the control signal in a repetitive task, such that experience from
earlier executions is used to improve performance, see [11]
and [12]. However, most existing MRAC and ILC methods



are mainly based on parametric models that suffer from
limited complexity and flexibility. Model-free adaptive control
(MFAC) avoids an explicit model but instead employs e.g.
a dynamic linearization [13], virtual reference feedback tun-
ing [14] or a closed-loop control parameter optimization [15].
Alternatively, a spectral analysis for nonparametric frequency-
domain tuning is considered [16] or extremum seeking is
employed for performance optimization [17].

Different than in classical control theory, the machine learn-
ing literature more frequently employs data-driven models
with infinite expressive power for online adaptation [18]. The
class of model-based reinforcement learning algorithms con-
siders continuous model and controller updates to maximize a
reward [19]. For example [20] shows a high data efficiency
with Gaussian process models. These are also successfully
applied in robotics [21], [22], however, most approaches lack
a formal stability analysis for the system’s behavior.

Very recently, several control approaches with formal guar-
antees for GP models have been developed that, however, keep
a fixed dataset during execution of the control law [23], [24].
The work in [25] considers the control of Lagrangian systems
and shows boundedness of the tracking error. The identifi-
cation of a priori known stable systems with GPs is ana-
lyzed in [26], and [27] proposes an uncertainty-based control
approach for which asymptotic stability is proven. However,
none of these techniques updates the model while controlling
the system. The work in [28] proposes a safe exploration
by sequentially adding training points to the dataset, but it
only stays within the region of attraction and cannot track an
arbitrary trajectory in the state space.

An online learning tracking control law with time-triggered
adaptation is proposed in [29]. As a result, data points are
added to the training dataset irrespectively of their importance.
This might compromise real-time capability, as the computa-
tional inefficiency for large datasets is a known challenge of
GPs [3].

This difficulty is circumvented in [30], [31], where the
unknown dynamics is estimated using high gain filters. How-
ever, these approaches suffer from the known difficulties of
high gain control, i.e. a quick saturation of input signals
and the amplification of noise. The latter is avoidable by
combining feedback and model-based feedforward control.
This idea is not just employed in this article, but was also
used in [32], where a neural network identifies the dynamics
without any parametric prior knowledge. Particularly [33], [34]
and [35] focus on stability and performance guarantees. The
work in [36] proposes a feedback linearizing control law
that adapts the weights of a neural network model online. It
shows boundedness of the adaptation law and the resulting
controller but cannot quantify the ultimate bound because
neural networks - in comparison to GPs - do not inherently
provide a measure for the fidelity of the model [37]. This
becomes important if the controller is applied in safety critical
domains, where the tracking error must be quantified to avoid
failure or damage to the system.

In summary, to date there exists no approach that adapts a
nonparametric model online to guarantee the asymptotic sta-
bility of the tracking error. Thus, for universal models, which

can represent arbitrarily complex dynamics, there are missing
online learning control laws to guarantee the safe behavior of
the closed-loop system. Also, a data-efficient update strategy
is required to keep the model computationally efficient, which
is important in many real-time critical applications.

B. Contribution and structure

The main contribution of this article is an online learning
feedback linearizing control law based on Gaussian processes
for an initially unknown system. This control algorithm in-
cludes a closed-loop identification scheme for control affine
systems exploiting compound kernels for GPs. To ensure the
data-efficiency of the approach, we propose an event-triggered
online learning mechanism that decides upon a model update
based on its current reliability. The derivation is based on a
probabilistic upper bound for the model error of a GP, and
allows to provide safety guarantees in terms of the convergence
properties of the closed-loop system. For noiseless training
data, we show global asymptotic stability and for noisy output
training data, global ultimate boundedness of the tracking
error. For the case of a constraint budget for data points, we
propose a forgetting strategy that maintains the convergence
guarantees using a reduced number of training points.

The article is based on the preliminary work in [38], which
focuses on the identification of a control affine system with
GPs given a fixed dataset. In contrast, this work considers
the online collection of data and updates the model while the
control law is active. This allows to show asymptotic stability
with a data-efficient event-triggered update rule while [38]
only showed the existence of an ultimate bound.

This article is structured as follows: After formulating the
considered problem formally in Sec. II, Sec. III reviews
the identification of control affine systems based on GPs.
In Sec. IV, the feedback linearizing tracking control law
is proposed, including a convergence analysis for training
data measured online at arbitrary time instances. Section V
introduces an event-triggering to update the model based on
its uncertainty. A numerical illustration is provided in Sec. VI
followed by a conclusion in Sec. VII.

C. Notation

Lower/upper case bold symbols denote vectors/matrices,
R+,0/R+ all real positive numbers with/without zero, N0/N
all natural numbers with/without zero, σmin(·),σmax(·) the
minimal/maximal singular value of a matrix and E[·]/V[·] the
expected value/variance of a random variable, respectively.
In denotes the n × n identity matrix, N (µ,σ) a Gaussian
distribution with mean µ and variance σ, a1:n the first n
elements of the vector a, · � 0 the positive definiteness of
matrix or function and ‖ · ‖ the Euclidean norm if not stated
otherwise.



II. PROBLEM FORMULATION

Consider a single-input system in the controllable canonical
form

ẋ1 = x2

ẋ2 = x3

· · ·
ẋn = f(x) + g(x)u, x0 = x(0), (1)

with state x = [x1 x2 · · ·xn]ᵀ ∈ X ⊆ Rn and in-
put u ∈ U = R; the functions f(·) and g(·) are considered
unknown. The following assumptions are made.

Assumption 1: The unknown functions f : X→ R
and g : X→ R are globally bounded and differentiable.
Differentiability is a very natural assumption, as it holds
for many physical systems. The boundedness of the func-
tions f(·), g(·) would automatically be implied (due to the
differentiability) if the set X was bounded. However, we
want X to be possibly unbounded.

From Assumption 1, the first property is derived.
Lemma 1: Consider the system (1) under Assumption 1

with bounded and continuous u(x). Then the solution x(t)
does not have a finite escape time, thus @t∞, 0 < t∞ < ∞
for which

lim
t→t∞

‖x(t)‖ =∞. (2)

Proof: According to [39, Theorem 3.2] the stated con-
ditions ensure a unique solution x(t), for all t > 0 for
which the finite escape time follows from the differentiability
of f(·), g(·) and the bounded control input.
As a stabilizing controller is not known in advance (be-
cause f(·), g(·) are unknown), the absence of a finite escape
time is important: It allows for the collection of observations of
the system in any finite time interval with a “poor” controller
(or also u(x) = 0) without risking damage due to “infinite”
states. Additionally, we assume the following.

Assumption 2: For system (1), g(x) > 0,∀x ∈ X holds.
This ensures that the system’s relative degree is equal to
the system order n for all x ∈ X and the sign of g(·)
is known. Equivalently, g(·) can also be taken as strictly
negative, resulting in a change of sign for the control input.
Assumption 2 is necessary to ensure global controllability and
excludes the existence of internal dynamics. It restricts the
system class, however, the focus of this work is on the online
learning control, and extending it to larger system classes is
part of future work.

We assume that observations are taken online while the
proposed control law is active.

Assumption 3: Noiseless measurements of the state vec-
tor x(κ) = x(tκ) and noisy measurements of the high-
est derivative y(κ) = ẋn(tκ) + ε(κ) can be taken at arbi-
trary time instances tκ with κ ∈ N0. The observation
noise ε(κ) ∼ N (0,σ2

on) is assumed Gaussian, independent and
identically distributed. The time-varying dataset

Dκ =
{
x(i), y(i)

}Nκ
i=1

, (3)

is updated at time tκ and remains constant until tκ+1

and Nκ ∈ N0 denotes the current number of data points.
The exact measurement of the state is a common assumption
and necessary for feedback linearization. The time derivative
of the state xn can, for practical applications, be approximated
through finite differences. The approximation error is then
considered as part of the measurement noise, as other additive
sources of imprecision result in an overall sub-Gaussian noise
distribution. Alternatively, a separate sensor for measurements
of ẋn is necessary.

Throughout this article, we will refer to σ2
on = 0 as the

noiseless case and σ2
on > 0 as the noisy case considering

measurements of ẋn. The measurement of the state x will
always be assumed noise free.

Consider that Nκ is not necessarily increasing with increas-
ing κ, as data pairs can also be discarded from the dataset if
not needed anymore. However, this set Dκ remains constant
between two consecutive measurements, because elements are
only added or removed at tκ.

The goal is to design an online learning feedback linearizing
control law - based on dataset Dκ - of the form

uκ(x) =
1

ĝκ(x)

(
−f̂κ(x) + ν

)
, κ ∈ N0, (4)

where ν ∈ R is the input to the resulting approximately lin-
earized system and the functions f̂κ : X→ R, ĝκ : X→ R are
the approximations for the unknown functions f(x), g(x). The
control law (4) is switching, because the model f̂κ(x), ĝκ(x)
is updated with every change of the dataset Dκ at time tκ.
We would like to emphasize that measurements are not taken
at a constant time interval, and updates are therefore not
performed periodically. Instead, the updates will be performed
when needed, i.e. triggered by an event (introduced in Sec. V)
and thus tκ for κ ∈ N0 are not equidistant. By definition,
the κ-th update occurs at tκ and the control law uκ is then
applied until the next event at tκ+1, more formally written as

u(x) = uκ(x), t ∈ [tκ tκ+1). (5)

III. GAUSSIAN PROCESS LEARNING FOR CONTROL
AFFINE SYSTEMS

For the closed-loop online identification of f(·) and g(·)
we consider Gaussian process regression, which then provides
the approximations f̂κ(·) and ĝκ(·). We will first introduce GP
regression in general (Sec. III-A) before presenting our tailored
solution for control affine closed-loop systems in Sec. III-B.

A. Gaussian process regression

Consider a function ftrue : X→ R for which noisy measure-
ments of the image at the locations x(i) ∈ X are available, thus

y
(i)
f = ftrue

(
x(i)

)
+ ε(i), (6)

where ε(i) ∼ N (0,σ2
on) and i = 1, . . . ,N (where we simply

write N for Nκ in this section). Modeling this function
with a Gaussian process fGP(x) results in a stochastic pro-
cess that assigns a Gaussian distribution to any finite sub-
set {x1, . . . ,xM} ⊂ X in a continuous domain. The GP is also



often considered as a distribution over functions [3], denoted
by

fGP(x) ∼ GP (m(x), k(x,x′)) , (7)

and is fully specified by a mean m(x) : X → R and
covariance k(x,x′) : X × X → R function. The mean
function includes prior knowledge of the function ftrue if there
is any. Otherwise, it is commonly set to zero. The covariance
function, also called kernel function, determines the properties
of fGP(x), like the smoothness and signal variance. Mean and
kernel function are described by the hyperparameters ψ.

Using Bayesian techniques, the likelihood function

ψ∗ = arg max
ψ

log p(yf |X,ψ), (8)

log p(yf |X,ψ) =
1

2

(
yTfK

−1yf − log detK −N log(2π)
)

,

is maximized to obtain the optimal hyperparameters for a given
set of observations. As notation, we use

X =
[
x(1) · · · x(N)

]
∈ Rn×N , (9)

yf =
[
y

(1)
f · · · y(N)

f

]ᵀ
∈ RN , (10)

to denote the input/output data, respectively, and

K=

k
(
x(1),x(1)

)
· · · k

(
x(1),x(N)

)
...

. . .
...

k
(
x(N),x(1)

)
· · · k

(
x(N),x(N)

)
∈RN×N (11)

concatenates the kernel evaluations of pairs of input data.
Although the optimization (8) is generally non-convex, it
is usually performed with conjugated gradient-based meth-
ods [3]. Each local minimum can be considered as a different
interpretation of data and we discuss the effect of suboptimal
identification in Sec. III-C.

In a regression task, GPs employ the joint Gaussian distri-
bution of training data X,yf and a test input x∗[

fGP(x∗)
yf

]
∼ N

([
m(x∗)
mX

]
,

[
k∗ kᵀ

k K + σ2
onIN

])
, (12)

where

mX =
[
m
(
x(1)

)
· · · m

(
x(N)

)]ᵀ
, (13)

to find the posterior mean and variance function

µ(x∗) := E
[
fGP(x∗)|X,yf

]
(14)

= m(x∗) + kᵀ(K + σ2
onIN )−1(yf −mX),

σ(x∗) := V [fGP(x∗)|X,yf ] (15)

= k∗ − kᵀ(K + σ2
onIN )−1k,

through conditioning, where

k∗ = k(x∗,x∗),

k =
[
k
(
x(1),x∗

)
· · · k

(
x(N),x∗

)]ᵀ
∈ RN .

(16)

However, considering the defined problem in Sec. II, the
classical GP regression framework cannot be directly applied
because closed-loop measurements do not provide data points
for f(·) and g(·) separately. Therefore, the following section
explains how it is augmented using the given prior knowledge.

B. Closed-loop identification with prior knowledge
First, we transfer the knowledge on the positivity of the

function g(x) from Assumption 2 into the model ĝ(x). It is
crucial to utilize this knowledge for the model to ensure the
feedback linearizing control (4) results in well-behaved control
signals. Using a GP model for ĝ(x), this can be ensured using
a proper prior mean function.

Lemma 2: Consider the posterior mean function (14)
with a bounded and differentiable kernel k(·, ·) and a
dataset (X,yf ) for which x(i) 6= x(i′) and y

(i)
f > 0,

hold ∀i, i′ = 1, . . . ,N , i 6= i′. Then, there exists a differ-
entiable prior mean function m(x) such that

µ(x) > 0, ∀x ∈ X. (17)

Proof: Consider a prior mean function for
which 0 < m

(
x(i)

)
< ∞, ∀i = 1, . . . ,N holds, then,

a differentiable m(x) can ∀x ∈ X \
{
x(1), . . . ,x(N)

}
always be chosen larger than the con-
stant kᵀ(K + σ2

onIN )−1
(
yf −mX

)
, because the latter is

bounded. For x ∈
{
x(1), . . . ,x(N)

}
a choice m

(
x(i)

)
= y

(i)
f

(which complies with the first condition) ensures that µ(x) is
strictly positive.

Remark 1: Since g(·) is strictly positive by Assumption 2,
the condition y(i)

f > 0 follows naturally. In case the Gaussian
noise results in negative measurements y(i), it can be corrected
using max(y(i), η), with an arbitrarily small η > 0. Alter-
natively, strictly positive noise distributions, e.g. a Gamma
distribution, can also be combined with Gaussian process
regression [3].

In practice, it is often sufficient to set m(x) to a positive
constant. To verify that µ(x) > 0 holds, the techniques in [28]
can be utilized. The suitable prior mean function according to
Lemma 2 will be denoted by mg(x).

Second, the major difficulty of closed-loop identification
is to differentiate the effect of the control input and the
unforced dynamics. For the control affine structure, this means
that individual measurements of the functions f(·) and g(·)
from (1) are not provided. Thus, functions f(·), g(·) must be
identified by only observing their sum exploiting the control
affine structure. We propose utilizing a compound kernel as
reviewed in Appendix A based on [4]. More specifically, we
use the composite kernel

k(x,x′) = kf (x,x′) + u(x)kg(x,x′)u(x′), (18)

which replicates the structure of a control affine system: the
first summand kf (·, ·) represents the unknown unforced dy-
namics f(·); the second summand u(·)kg(·, ·)u(·) the product
of the unknown scaling of the control g(·) and the known
state feedback control term u(·). As no further knowledge
regarding f(·), g(·) is given, we employ two squared expo-
nential (SE) kernels with automatic relevance determination

kf (x,x′) = σ2
f exp

 n∑
j=1

(xj − x′j)2

−2l2j,f

 , (19)

kg(x,x′) = σ2
g exp

 n∑
j=1

(xj − x′j)2

−2l2j,g

 , (20)



where the hyperparameters are the length-
scales lj,f , lj,g∈R+, j = 1, . . . ,n and the signal
variances σf ,σg ∈ R0

+. For notational convenience, they
are concatenated in the vector

ψgf =
[
l1,f l1,g · · · ln,f ln,g σ

2
f σ

2
g

]ᵀ
. (21)

The SE kernel is universal and therefore allows for arbitrarily
exactly modeling of any continuous function according to [40].

Remark 2: GP models with structured kernels, like (18),
must not be confused with parametric models, which have a
predetermined structure and use a fixed number of parameters.
In contrast, a GP with a structured kernel has potentially
infinitely many parameters for each part of its structure. So
the kernel encodes the knowledge that the unknown function,
for example, is comprised of a sum, but each summand has
unlimited flexibility.
We denote U = diag

(
u1

(
x(1)

)
, . . . ,uN

(
x(N)

))
∈ RN×N ,

where ui denotes the control law that was active at the time
at which the pair

{
x(i), y(i)

}
was collected for i = 1, . . . ,N .

Furthermore, mX
g , y are analogously defined to (13), (10),

respectively. Then

Kfg = Kf +UᵀKgU + σ2
onIn, (22)

and kf ,kg,Kf ,Kg are defined analogously to (16) and (11)
using kf (x,x′), kg(x,x′). This notation allows for the for-
mulation of the estimates f̂(x), ĝ(x).

Lemma 3: The GP posterior mean prediction for the
functions f(x), g(x), based on the training data Dκ in (3)
for the compound kernel (18) are given by

f̂(x) := µf (x) = kᵀfK
−1
fg

(
y −UmX

g

)
, (23)

ĝ(x) := µg(x) = mg(x) + kᵀgUK
−1
fg

(
y −UmX

g

)
, (24)

where the prior mean function for f̂(x) is set to
zero, mf (x) = 0, and for ĝ(x), mg(x) is chosen according
to Lemma 2.

Proof: For an input x and the compound kernel (18), the
joint distribution is given byf(x)

g(x)
y

∼ N
 0

mg(x)
UmX

g

 ,

k∗f 0 kᵀf
0 k∗g kᵀgU

ᵀ

kf Ukg Kfg

, (25)

similarly to (12). According to [4], the posterior mean func-
tions (23) and (24) correspond equivalently to (14).
For these estimates, it can be shown that all prior knowledge
is properly transferred into the model.

Proposition 1: Consider a control affine system (1) under
Assumptions 1-3 and the compound kernel (18). Then, the es-
timates f̂(x) and ĝ(x) in Lemma 3 are bounded and infinitely
differentiable, and there exists a prior mean function mg(x)
and a hyperparameter vector ψgf such that ĝ(x) > 0
holds ∀x ∈ X.

Proof: The SE kernel inherits its properties differentiabil-
ity and boundedness to all functions represented by the GP [3],
thus also to the posterior mean functions, which are used as
estimates. The strict positivity of ĝ(x) follows from the fact
that σ2

g can be made arbitrarily small, such that there always

exists a positive function mg , such that mg(x) dominates the
term kᵀgUK

−1
fg

(
y −UmX

g

)
in (24).

Remark 3: The only properties of the SE kernel that are used
for the derivations and proofs are its differentiability and its
boundedness. Thus, the conclusions can directly be extended
to other kernel functions fulfilling these properties. For the
sake of focus, in this article we will consider the SE kernel
only.

C. Discussion

The most obvious challenge of the closed-loop identification
is that no unique yet infinitely many solutions exist for two
differentiable functions to add up to the same values. Thus,
only observing the sum in (1) is not promising for learning
the unique correct individual functions f(·), g(·) because it is
an under-determined problem. The estimates in (23) and (24)
are just one of many solutions, determined by the choice of
hyperparameters, which suit the training data. Nevertheless,
the optimization (8) interprets the observed data to match
the kernel structure, which is shown to be successful in the
simulation in Sec. VI-A. For the case in which the results are
not satisfactory, we provide an extension in Appendix B to
address this challenge. It merges data points of the closed-
loop system with measurements from the temporary open-
loop system. It thereby uses Lemma 1, which allows to
safely turn off the control signal (u = 0) for a finite time
period. Nevertheless, we want to highlight that the formal
guarantees provided in the following section (Theorem 1) hold
independently whether this extension is utilized or not.

Furthermore, additional knowledge like the periodicity or
dependence of f(·) or g(·) on only a subset of the state
variables can also be transferred into the kernel to facilitate
the identification by using a periodic kernel or setting the
lengthscales lj,f = lj′,g =∞ for the states j, j′ of which they
are independent, respectively. The latter simplifies the opti-
mization of hyperparameters as the search space is reduced. A
systematic way of constructing a more evolved kernel function
(including more prior knowledge) is discussed in [4].

Considering the computational load, the inverse of Kfg is
most critical, as the number of operations increases cubically
with the number of data points, thus O(N3). However, adding
further data points is necessary to ensure the model is precise
at the current position in the state space where the most
recent data points are taken from measurements. Compared
to previous approaches, e.g. [38], where K−1

fg y is constant
and can thereby be precomputed offline, here it must be
recomputed with every update of the model as data points are
added one at a time. This difficulty can be addressed using
a rank-1 update of the inverse with the Sherman–Morrison
formula [41] resulting in only O(N2) operations. However,
this quadratic computational complexity might still be very
time consuming, and therefore lead to the data-efficient event-
triggered model updates introduced in Sec. V.

Generally, Gaussian processes turn out to be very effective
for the adaptive model control law: They properly transfer
all prior assumptions consistently into the model (Proposi-
tion 1) and allow for the identification in a closed loop. The



nonparametric nature allows for unlimited model flexibility
and the complexity increases as more data is available in a
data-driven fashion. This is a crucial advantage compared to
classical system identification methods, particularly for highly
nonlinear systems.

IV. FEEDBACK LINEARIZING CONTROL LAW

In this section, the feedback linearizing online learning
control law is proposed and the resulting closed-loop behavior
is analyzed. After showing the ultimate boundedness for the
most general case, we make further specific assumptions to
provide stronger stability results. Here, further properties of
the Gaussian process modeling technique are exploited: As
the model error of the GP can be bounded and quantified, the
ultimate bound of the tracking error can also be quantified.

Classical model reference adaptive control modifies the
model parameters continuously over time, which is not possi-
ble here due to the nonparametric nature of the GP model.
Thus, particular attention must be drawn to the resulting
switching character of the control law, which stems from the
time-varying dataset Dκ of the Gaussian process introduced in
Assumption 3.

We are interested in tracking a desired trajectories for the
state x1, given by xd(t), with the following property.

Assumption 4: The desired trajectory xd(t) is bounded and
at least n− 1 times differentiable, thus

xd(t) =
[
xd ẋd · · · dn−1xd

dtn−1

]ᵀ
(26)

is continuous and dnxd
dtn is bounded.2

For notational convenience, we define the tracking error

e = x− xd. (27)

A. Control law

Consider the filtered scalar state r ∈ R, defined as

r =
[
λᵀ 1

]
e, (28)

where λ = [λ1 λ2 · · ·λn−1]ᵀ ∈ Rn−1 is a coef-
ficient vector such that for s ∈ C the polynomial
sn−1 + λn−1s

n−2 + · · ·+ λ1 is Hurwitz. Under this condi-
tion, the error converges exponentially e→ 0 as r → 0 [36].
The dynamics of the filtered state is

ṙ = f(x) + g(x)u(x) + ρ, (29)

where

ρ = λᵀe2:n −
dnxd
dtn

, (30)

with e2:n = [e2 · · · en]
ᵀ ∈ Rn−1. For the control law u(x),

we propose

uκ(x) =
1

ĝκ(x)

(
−f̂κ(x)− kcr − ρ

)
, (31)

according to (4) where ν = −kcr − ρ with kc ∈ R+ is
used. The subscript κ ∈ N0 indicates the κ-th time inter-
val t ∈ [tκ tκ+1) for which uκ is applied according to (5).

2The t dependency of xd,x and the x dependencies of u, f , f̂ , g, ĝ are
partially omitted for notational convenience.

The estimates ĝκ(·), f̂κ(·) are based on Nκ training points
in the time-varying dataset Dκ introduced in Assumption 3.
The control scheme is visualized in Fig. 2 and the adaptation
procedure is provided in Algorithm 1.

Note that even though GPs themselves are probabilistic
models, the control law is deterministic because it only
employs the posterior mean functions as a model esti-
mate ĝκ(·), f̂κ(·).

Algorithm 1 Online learning for feedback linearization control

1: initialize κ = 0, D0 = {}, f̂0 = 0, ĝ0 = mg(·)
2: while simulation time not exceeded do
3: while t < tκ+1 do
4: run controller uκ in (31)
5: end while
6: set κ← κ+ 1
7: measure x(κ) = x(tκ) and y(κ) = ẋn(tκ) + ε(κ)

8: add training point Dκ = Dκ−1 ∪
{(
x(κ), y(κ)

)}
9: update the estimates f̂κ(·), ĝκ(·) in (23), (24)

10: end while

B. Convergence analysis

An offline version of the control law (31), with constant
dataset D and estimates f̂(x), ĝ(x) was introduced previ-
ously and was shown to be globally uniformly ultimately
bounded [38, Proposition 1].

But, with the time-varying dataset and model, Algorithm 1
describes a switching control law. This switching results in
a hybrid system, where some states change continuously in
time but the system dynamics (or other states) change at
discrete time instances. Here, the resulting closed-loop system
is subject to (in general) arbitrary switching. Its convergence
behavior is analyzed here based on the principle of a common
Lyapunov function. It states that a Lyapunov function, which
is independent of the switching signal must decrease over time
along the system’s trajectories. This is shown in the following.

Theorem 1: Consider the system (1) and a desired tra-
jectory xd(t) under Assumptions 1-4. Further consider the
control law (31), where f(·), g(·) are modeled by GP mean
functions f̂κ(·), ĝκ(·) in (23) and (24), respectively. The GP
model is updated at arbitrary switching times tκ according
to Algorithm 1. Then, there exists a k∗c > 0 such that for
every kc ≥ k∗c the tracking error ‖e‖ is globally uniformly
ultimately bounded.

Proof: Consider the common Lyapunov function candi-
date

Vκ(x) = r2/2, ∀κ ∈ N0, (32)

with time derivative

V̇κ(x) = rṙ = r (f + guκ + ρ) (33)

= r

(
f +

g

ĝκ
(−f̂κ − kcr − ρ) + ρ

)
= r

(
f − ḡκf̂κ

)
− kcḡκr2 + (1− ḡκ)rρ,
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Fig. 2. The online learning feedback linearizing control scheme including the event trigger proposed in Sec. V, which controls the switching time tκ+1.

where ḡκ := g(x)
ĝκ(x) is positive and bounded ∀κ and ∀x ∈ X

from Proposition 1 and Assumptions 1 and 2. As a con-
sequence

(
f − ḡκf̂κ

)
is bounded and there exists a con-

stant a ∈ Rn such that∥∥∥r (f − ḡκf̂κ)∥∥∥ ≤ ‖aᵀe‖ ∀e,κ (34)

holds, because r only grows linearly in e. For similar rea-
sons, we can find constants c ∈ Rn and B,C ∈ Rn×n,
with B,C � 0 and∥∥ḡκr2

∥∥ ≥ eᵀBe, ∀e,κ (35)
‖(1− ḡκ)rρ‖ ≤ eᵀCe+ cᵀe, ∀e,κ (36)

which exist since f , f̂κ, ḡκ are bounded. Therefore,

V̇κ(x) ≤‖a‖‖e‖−kcσmin(B)‖e‖2+σmax(C)‖e‖2+‖c‖‖e‖
=‖e‖(‖a‖+‖c‖)+‖e‖2(σmax(C)−kcσmin(B)) (37)

holds for all κ and there exists a k∗c > 0 such that

σmax(C)− k∗cσmin(B) < 0. (38)

As a result, for every kc ≥ k∗c , the Lyapunov function
decreases

V̇κ(x) < 0, ∀x ∈ X\B, ∀κ (39)

outside of the set

B =

{
∀x ∈ X

∣∣∣∣‖e‖ ≤ ‖a‖+ ‖c‖
kcσmin(A)− σmax(B)

}
, (40)

which forms a tube in x coordinates around the desired
trajectory and a ball in e coordinates. Thus, we have found
a common radially unbounded Lyapunov function V (x),
which decreases ∀κ outside of the ball B. According
to [42, Theorem 2.1], this allows for the conclusion that for
arbitrary switching sequences the tracking error converges to
the ball B. Since B is independent of the initial state, global
uniform ultimate boundedness (GUUB) holds.
Thus, we have shown that the tracking error is bounded by the
proposed online learning control scheme for a large enough
gain kc with an arbitrary switching sequence. However, with-
out further knowledge, a value for the critical gain k∗c cannot
be computed. We therefore make the following simplifying
assumption

Assumption 5: The function g(x) is known,
thus ĝ(x) = g(x) and noisy training data observations
of ẋn

y
(i)
f = f

(
x(i)

)
+ ε(i) = ẋ(i)

n − g
(
x(i)

)
uκ

(
x(i)

)
+ ε(i)

(41)

with ε(i) ∼ N (0,σ2
on), i = 1, . . . ,Nκ are available.

This assumption holds for many real-world systems, e.g. most
Lagrangian systems, which is a considerably large class [43]. It
is also a quite common assumption when working with control
affine systems [44].

Analogously to (23), the unknown function is now estimated
by

f̂(x) := µf (x) = kᵀf (Kf + σ2
onINκ)−1yf , (42)

where yf =
[
y

(1)
f · · · y

(Nκ)
f

]ᵀ
and kf , Kf are computed

according to (16) and (11) for the SE kernel. Under this
assumption, Theorem 1 can be relaxed with respect to the
choice of the gain kc.

Corollary 1: Consider the system (1) and a desired trajec-
tory xd(t) under Assumptions 1-5. Further consider the control
law (31), where f(·) is modeled by a GP mean function f̂κ(·)
in (42), which is adapted at arbitrary switching times tκ
according to Algorithm 1. Then, the tracking error ‖e‖ of the
closed-loop switching system is globally uniformly ultimately
bounded for any kc > 0.

Proof: Using the Lyapunov function (32), we obtain
for ḡκ = 1

V̇κ(x) = rṙ = r (f + guκ + ρ) (43)

= r
(
f − f̂κ

)
− kcr2, (44)

which leaves us with the condition
(
f − f̂κ

)
< kcr for

negative definiteness of V̇κ(x). Thus, independent of the
gain kc, a ball exists outside of which the Lyapunov function
decreases ∀κ, which leads to the GUUB ∀kc > 0.

For completeness, we also formalize the result for
dataset Dκ which remains constant after tκ, thus no further
measurements are taken and no data points are deleted from
the set for t > tκ.

Corollary 2: Consider the system (1) and a desired trajec-
tory xd(t) under Assumptions 1-5. Further consider the control



law (31), where f(·) is modeled by a GP mean function f̂κ(·)
in (42) with a fixed dataset Dκ. Then, the tracking error ‖e‖
of the closed-loop system is globally uniformly ultimately
bounded for any kc > 0.

Proof: The proof is straightforward as it follows from the
proof for Corollary 1.

C. Quantifying the ultimate bound

Theorem 1 and Corollaries 1 and 2 show that an ultimate
bound for the tracking error e exists, however, its size is
unknown. To quantify the ultimate bound B, an upper bound
for the model estimate, defined as

∆fκ(x) = |f(x)− f̂κ(x)|, ∀κ, (45)

is derived in this section using the variance func-
tion σκ(x) : X → R0

+ of the GP as defined in (15). Since
the GP is a probabilistic model in nature, we cannot expect
any deterministic statements regarding the error of the esti-
mate ∆fκ. However, according to [45], it is possible to make
high probability statements regarding the maximum distance
from the true function f(x) to the mean function µ(x) on a
compact set. As known from the no-free lunch theorems [46],
this generalization cannot be expected without any prior
knowledge about f(·). Since we do not want to make any
parametric assumptions that limit the complexity of f(·), we
restrict its reproducing kernel Hilbert space (RKHS) norm as
follows.

Assumption 6: The function f(x) has a bounded repro-
ducing kernel Hilbert space (RKHS) norm with respect to a
squared exponential kernel k(·, ·), with known hyperparame-
ters denoted by ‖f(x)‖2k ≤ Bf .
With this additional assumption, a high probability statement
regarding the precision of the mean function estimate is
possible according to [45].

Lemma 4: Suppose Assumption 6 holds, then

Pr
{
|µκ(x)−f(x)| ≤ βκσκ(x),∀x ∈ X̃ ,Nκ ∈ N0

}
≥ 1−δ,

(46)

holds on a compact set X̃ ⊂ Rn, where δ ∈ (0, 1),

βκ =
√

2Bf + 300γκ log3((κ+ 1)/δ) and γκ is the max-
imum mutual information that can be obtained about f(·)
from κ+1 noisy samples x(1), . . . ,x(κ+1) and µκ(·) and σκ(·)
are the posterior mean and variance function of a GP for Nκ
data points as defined in (14) and (15), respectively.

Proof: This is a direct consequence from [45, Theorem 6].

Remark 4: Consider that (46) takes all Nκ ∈ N0 into
account at once. This means the probability δ holds not just
for a single Nκ ∈ N0 but for all Nκ ∈ N0. This becomes clear
when rewriting (46) as

Pr

{ ∞⋂
Nκ=0

|µκ(x)− f(x)| ≤ βκσκ(x),∀x ∈ X̃

}
≥ 1− δ.

(47)

The model error bound in Lemma 4 only holds on a compact
set X̃. Nevertheless, we have already shown in Theorem 1

and Corollary 1 that the tracking error converges to a compact
set B. Thus, we set X̃ = B, which leads to the following result.

Theorem 2: Consider the system (1) and a desired tra-
jectory xd(t) under Assumptions 1-6. Further consider the
control law (31), where f(·) is modeled by a GP mean
function f̂κ(·) in (42), which is adapted at arbitrary switching
times tκ according to Algorithm 1. Then, with probabil-
ity 1− δ, δ ∈ (0, 1), the tracking error ‖e‖ is uniformly
ultimately bounded for any kc > 0 with the ultimate bound

Bκ =

{
∀x ∈ X

∣∣∣∣∣‖e‖ ≤ βκσ̄κ

kc
∥∥[λᵀ 1

]∥∥
}

, ∀x0 ∈ X, (48)

where σ̄κ := maxx∈X̃ σκ(x) and βκ is defined in Lemma 4.
Proof: Using the common Lyapunov candidate (32), its

time derivative (44) is given in the κ-th time step for the
case g − ĝ = 0 (Assumption 5) by

V̇κ(x) ≤ r∆fκ(x)− kcr2. (49)

As Theorem 1 guarantees convergence to B = X̃, the model
error must only be more closely considered in this compact
set. From Lemma 4 it can be concluded that

Pr
{

∆fκ(x) ≤ βκσ̄κ,∀x ∈ X̃ ,κ ∈ N0

}
≥ 1− δ (50)

⇒ Pr
{
V̇ (x) < 0,∀x ∈ X̃ \Bκ,κ ∈ N0

}
≥ 1− δ, (51)

which shows the convergence of r to a ball with radius βκσ̄κ
kc

and the error e is ultimately bounded by Bκ with a probability
larger than 1 − δ. The attributes hold uniformly and globally
from the fact that Vκ is a common, time-independent and
radially unbounded Lyapunov function [42].

Remark 5: Theorem 1 focuses on the existence of an
ultimate bound and with B in (40) therefore provides the
maximum bound across all time intervals, which can be seen
in (35), where B,C, c must be suitable for all κ. In contrast,
Theorem 2 is more specific here and with Bκ provides a
quantitative bound for each time interval κ individually. Note
that the tracking error e will not necessarily converge to the
ball Bκ by the end of the κ-th time step tκ+1 because it might
take infinite time. It is considered a ball that is reached by the
tracking error if the control law stops adapting after the κ-th
update (compare Corollary 2).

Remark 6: In contrast to Theorem 1, Theorem 2 is a stability
statement that only holds with a specified probability. The
reason for this lies in the uncertainty about the plant itself,
but neither the plant nor any part of the controller is stochas-
tic. Therefore, a stability analysis from deterministic control
theory is applicable here, but the convergence result does not
hold for all plants that fulfill the specified assumptions. A
small fraction of all plants exists (specified by δ) that do not
converge to the specified ultimate bound. But, if the plant
does not belong to this fraction, the result will always hold
and there is no stochastic stability analysis necessary. Note
that the fraction δ for which the result does not hold can be
be made arbitrarily small.



V. EVENT-TRIGGERED MODEL UPDATE

The results in the previous section all hold for arbitrary
switching sequences (any definition of tκ+1 is possible) be-
cause we have so far not specified when new training data
points are taken and the model is updated accordingly. Our
goal is a data-efficient online learning scheme and thereby we
only want to add training data if necessary. Thus, switching
should not occur synchronously (after a specified fixed time
interval) but asynchronously (whenever needed), which is
known as event-triggered control.

The general idea of event-based control is to utilize a
scarce resource (sensor measurements, computational power,
communication channel, etc.) only when required. In contrast
to time-triggered control, where the resource is used period-
ically (synchronously), it is thereby typically more resource-
conserving [47]. In our setting, we aim to reduce the number
of model updates and measurements for training data to keep
the computational complexity low. The key idea of our data-
efficient online learning is therefore to take only new training
data into account if there is a necessity based on the current
uncertainty in the model.

Previous work in [29] uses a time-triggered model, thus
measurements are taken and training points are added after a
specific time, thus tκ+1 = tκ+∆t with fixed interval ∆t > 0.
However, this causes the following difficulties: First, it is un-
known whether the current estimate f̂κ(·) of the function f(·)
is precise enough to ensure a further decrease of the Lyapunov
function. From (49) it is clear that the estimates must become
more precise as r gets smaller to guarantee the negative
definiteness of V̇κ for ∀x ∈ X.

Considering that at some parts of the state space more
data points are necessary to model the function f(·) precisely
than in others shows that choosing a constant ∆t properly
is impossible without knowing the function f(·). Second,
over an infinite time horizon, the time-triggered update causes
infinitely many (possibly unnecessary) measurements. This is
critical even for finite time, because the number of operations
to update the GP model increases with O(N3) (or O(N2) at
best, when using the Sherman–Morrison formula) [3].

In summary, for the time-triggered design, there is a trade-
off between the precision and the computational complexity of
the model when choosing the update rate. If more points are
added to the dataset, the variance of the GP model and thereby
the maximum model error decreases according to Lemma 4.
However, many training points increase the time to compute
the model estimate and possibly result in a loss of the real-time
capability [48].

Therefore, in the interest of data efficiency and the as-
sociated computational complexity, we trigger measurements
and their intake to the dataset in an event-based fashion.
An intuitive idea is to add training points as soon as the
error ∆fκ becomes too large, which is specified based on the
Lyapunov stability condition. Generally, to guarantee stability,
an event must be triggered before the temporal derivative of
the Lyapunov function turns non-negative, thus

tκ+1 :=
{
t > tκ

∣∣∣V̇ (x) ≥ 0
}

. (52)

However, since an exact computation of V̇ (·) is not possible,
we have to evaluate an upper bound as presented in the
following. First, we will consider noiseless measurements
of the highest state derivative for the training data before
addressing the case in which these measurements are corrupted
by noise.

A. Asymptotic stability for noiseless measurements

We first define the noise free case formally in an assumption.
Assumption 7: Measurements of ẋn are available noise free,

thus σ2
on = 0 in Assumption 3.

A well-suited indicator for the necessity to add a new training
point is the variance function of the GP σκ(·) in (15) as it
bounds the maximum error with high probability according to
Lemma 4. Based on this intuition, we propose the following
event

tκ+1 := {t > tκ |βκσκ(x) ≥ kc|r| } , (53)

where the triggering time tκ+1 is defined as the first time
after tκ when βκσκ(x) becomes larger than or equal to kc|r|.

Remark 7: In the time instance after each
update t = tκ, σκ(x(tκ)) = 0 generally holds,
which implies σκ(x(tκ)) ≤ kc|r(tκ)|. Since both σκ
and r are continuous over time between two events,
the event will always be triggered at the equality,
thus βκσκ(x(tκ+1)) = kc|r(tκ+1)|.
Using the proposed event (53) in Algorithm 1 as a trigger to
update the model, the following is concluded.

Theorem 3: Consider the system (1) and a desired trajec-
tory xd(t) under Assumptions 1-7. Further consider the control
law (31), where f(·) is modeled by a GP mean function f̂κ(·)
in (42) which is updated according to the event-triggering
law (53) and Algorithm 1. Then, the tracking error e is
globally asymptotically stable for any kc > 0 and the inter-
event time ∆tκ := tκ+1 − tκ is lower bounded by a positive
constant tlb > 0, for all κ ∈ N with probability 1− δ.

Proof: We consider again the common Lyapunov candi-
date (32) and its time derivative

V̇κ(x) ≤ r∆fκ(x)− kcr2, (54)

where ∆fκ is the model error defined in (45). With noise-
less measurements, a GP mean function passes through each
training point [49]. Thus, the estimate f̂κ is exact for the
time step tκ, and V̇κ(x(tκ)) = −kcr2. For tκ < t < tκ+1

the estimation error ∆fκ(x(t)) continuously changes and is
generally larger than zero. But the term kcr

2 will domi-
nate r∆fκ(x) with probability 1 − δ by the design of the
triggering condition (53) and Lemma 4, thus

Pr
{
V̇κ(x) < 0, ∀x ∈ X̃ ,κ ∈ N0

}
≥ 1−δ. (55)

From Theorem 1 it is known that the system reaches a compact
set X̃ for any initial condition x0 ∈ X. Therefore, Lemma 4
is applicable and with the radial boundedness of V , the global
asymptotic stability with probability 1− δ is shown.

To show that the inter-event time is lower bounded, we
define the Lipschitz constant Lσ > 0, such that σ̇κ ≤ Lσ ṙ,



which exists due to the differentiability of σκ with respect to r.
Following the lines of [50]

d

dt

∣∣∣σκ
r

∣∣∣ =
d

dt

√
σ2
κ√
r2

=
σ̇κr − σκṙ

r2

≤
∣∣∣∣ σ̇κr

∣∣∣∣+

∣∣∣∣σκṙr2

∣∣∣∣
≤
∣∣∣∣Lσ(∆fκ − kcr)

r

∣∣∣∣+

∣∣∣∣σκ(∆fκ − kcr)
r2

∣∣∣∣
≤ Lσ

∣∣∣∣∆fκr
∣∣∣∣+ Lσkc +

∣∣∣∣∆fκσκr2

∣∣∣∣+ kc

∣∣∣σκ
r

∣∣∣ ,
and using Lemma 4 yields

Pr

{
d

dt

∣∣∣σκ
r

∣∣∣ ≤Lσβκ ∣∣∣σκ
r

∣∣∣+ Lσkc + βκ

∣∣∣σκ
r

∣∣∣2
+ kc

∣∣∣σκ
r

∣∣∣ ,∀x ∈ X̃ ,k ∈ N0

}
≥ 1− δ

for which we define φ =
∣∣σκ
r

∣∣. The differential equation

φ̇ = βκφ
2 + φ(Lσβκ + kc) + Lσkc, (56)

with initial condition φ(tκ) = 0 (from σκ(x(tκ)) = 0) yields

φ(t) =
1

2βκ

(
c1 tan

(
1

2
((t− tκ)c1 ± c2)

)
− Lσβκ − kc

)
,

(57)

according to [51] for the time interval t ∈ [tκ tκ+1]
where c1 =

√
4βκLσkc − (Lσβκ + kc)2

and c2 = 2 arccos
(

−c1
2
√
βκLσkc

)
. By design, the event is

triggered at φ = kc/βκ, which leads to the lower bound on
the inter-event time of

∆tκ ≥
(

2 arctan
(
(3kc + Lσβκ)/c1

)
+ c2

)
/c1

≥ (π + c2)/c1 =: tlb,

where arctan(ξ) < π/2, ∀ξ > 0 is used.
Alternatively, we consider the scenario in which the model
error can continuously be monitored.

Assumption 8: Measurements of x, ẋn are continuously
available without effort.
To take advantage of this assumption, we propose the follow-
ing event-trigger

tκ+1 := {t > tκ |∆fκ(x) ≥ kc|r| } , (58)

which allows to drop Assumption 6 and the probabilistic
nature of Theorem 3 (δ = 0) as formalized in the following.

Corollary 3: Consider the system (1) and a desired trajec-
tory xd(t) under Assumptions 1-5, 7 and 8. Further consider
the control law (31), where f(·) is modeled by a GP mean
function f̂κ(·) in (42) which is updated according to the event-
triggering law (58) and Algorithm 1. Then, the tracking error e
is globally asymptotically stable for any kc > 0 and the inter-
event time ∆tκ := tκ+1 − tκ is lower bounded by a positive
constant tlb > 0.

Proof: This is a direct consequence of the proof for
Theorem 3.
We want to highlight that this requires measurements at any
continuous time instance, which is generally not possible

due to nonzero update rates of digital sensors. Therefore,
Corollary 3 is rather stated for completeness. Nevertheless,
the algorithm remains data-efficient despite the infinity mea-
surements in finite time, because data points are only stored
if actually needed.

B. Ultimate boundedness for noisy measurements

In case of noisy measurements of ẋn (Assumption 7 does
not hold), it is possible to find an ultimate bound to which
the system converges. The difference to Theorem 2 is that we
now make use of the event-triggered model update (Theorem 2
allowed arbitrary updates), which shrinks the size of the
ultimate bound to a size that is proportional to the noise level.
From Theorem 3 we derive the following results.

Corollary 4: Consider the system (1) and a desired trajec-
tory xd(t) under Assumptions 1-6. Further consider the control
law (31), where f(·) is modeled by a GP mean function f̂κ(·)
in (42) which is updated according to the event-triggering law

tκ+1 := {t > tκ |βκσκ(x) ≥ kc|r| ∩ e /∈ Bσon } . (59)

and Algorithm 1 where

Bσon =

{
e ∈ X̃

∣∣∣∣∣‖e‖ ≤ σonβκ

kc
∥∥[λᵀ 1

]∥∥
}

. (60)

Then, the tracking error e is GUUB to the set Bσon for
any kc > 0 and the inter-event time ∆tκ is lower bounded by
a positive constant t′lb > 0, for all κ ∈ N with probability 1−δ.

Proof: In contrast to Theorem 3, a measurement at time tκ
does not lead to ∆fκ(x(tκ)) = 0, but we make use of the
fact that the variance function of a GP (15) at any training
point can be upper bounded in terms of the measurement
noise. Considering the variance for a single training data point
at x(tκ) as an upper bound for the variance function (which
holds according to [38]), the following is concluded

σκ(x(tκ)) ≤

√
σ2
f −

σ4
f

σ2
f + σ2

on
=

√
σ2

on

1 + σ2
on/σ

2
f

< σon

(61)

for σ2
f < ∞ using kf (x,x) = σ2

f in (15). Considering again
the Lyapunov function (32) and its time derivative

V̇κ(x(tκ)) ≤ |r|(βκσon − kc|r|), (62)

it is clear that inside Bσon the negative definiteness of V̇κ cannot
not be ensured. But outside of this ball it is negative definite
and therefore GUUB can be shown similarly to Theorem 3.

To exclude Zeno behavior, only e /∈ Bσon must be analyzed,
since inside Bσon no events are triggered. The lower bound on
the inter-event time is derived along the lines of Theorem 3.
Hence, the dynamics of φ(t) as derived in (56) are the same for
the noisy case, but the initial condition φ(tκ) is now unequal
to zero (due to the noise). However, it can be upper bounded
by

φ(tκ) <

√
σ2

on

1 + σ2
on/σ

2
f

/|r| := φ0.



The solution for the zero initial condition in (57) is adapted to
a nonzero initial condition φ0 according to [51] by changing c2
to

c′2 = 2 arctan

(
2βκφ0 + Lσβκ + kc

c1

)
. (63)

Accordingly, the lower bound on the inter event time is

∆tκ ≥ (π + c′2)/c1 =: t′lb,

which concludes the proof.

C. Forgetting strategies

With the event in (53) and Algorithm 1, we have proposed a
strategy that adds data points to the dataset only if necessary to
ensure further convergence of the system. However, this still
leads to a growing computational burden for computing the
GP model as the cardinality of the dataset Dκ monotonically
increases with time. Particularly, if the desired trajectory
covers a large area in the state space or when high precision
tracking is required, keeping up the real-time capability of the
adaptation algorithm is challenging. A common technique to
circumvent this problem is a forgetting mechanism (deleting
old data points when new ones are added) if a particular budget
is reached. While most other works, e.g. [29], use a heuristic
for the forgetting strategy, we propose a safe forgetting rule,
which requires to store only a single data point.

Corollary 5: Consider the system (1) and a desired trajec-
tory xd(t) under Assumptions 1-7. Further consider the control
law (31), where f(·) is modeled by a GP mean function f̂κ(·)
in (42). This estimate is updated at the event tκ+1 in (53),
where at each event κ all old data points are eliminated from
the dataset, thus

Dκ = {x(tκ), ẋn(tκ)} .

Then, with probability 1 − δ, the tracking error e is globally
asymptotically stable for any kc > 0.

Proof: This follows along the lines of the proof of
Theorem 3. With the continuity of σ(x), which is zero at the
single training point, σ(x(tκ)) = 0, it follows that there exists
a neighborhood of x(tκ) for which σκ(x) < kc|r| holds. Thus
the results from Corollary 6 and Theorem 3 are applicable.
Deleting all old data points is consequent in terms of data
efficiency, but in general triggers events more frequently. Thus,
by storing more than one data point, future measurements can
be avoided particularly for periodic desired trajectories. For a
fixed budget N̄ ∈ N, we can also forget unnecessary points
and still guarantee stability.

Corollary 6: Consider the system (1) and a desired trajec-
tory xd(t) under Assumptions 1-7. Further consider the control
law (31), where f(·) is modeled by a GP mean function f̂κ(·)
in (42). This estimate is updated at the event tκ+1 in (53),
where at each event κ the dataset Dκ is limited to hold at
most N̄ ∈ N data points, such that

βelim
κ σelim

κ (x) < kc|r| (64)

remains true, where βelim
κ and σelim

κ denote the values after the
elimination. Then, with probability 1− δ, the tracking error e
is globally asymptotically stable for any kc > 0.

Proof: This follows along the lines of the proof of
Theorem 3. From Corollary 5, it is known that there always
exists a reduced dataset that fulfills (64) for N̄ ≥ 1.
Finding the reduced dataset is not a trivial combinatorial
problem, but we refer to the existing literature for efficient
algorithms [52]. Note that the reduced dataset must necessarily
contain the most recent measurement at tκ as otherwise the
event would not have been triggered.

D. Discussion

From a control perspective, the most important advantage
of GPs is the quantification of the uncertainty, i.e. an upper
bound of the model error as given by Lemma 4. We note that
the prerequisite for this lemma, the bounded RKHS norm in
Assumption 6, is difficult to verify, however, minimal assump-
tions are necessary, as otherwise a generalization beyond the
training data is impossible [46].

Also, the maximum mutual information γκ in Lemma 4
cannot be computed analytically for a general kernel, but
we refer to the existing literature [45], which provides upper
bounds on γκ for different kernels (including the squared
exponential kernel). Since βκ is not trivial to find, we would
like to point out that βκ always appears in the ratio with kc,
thus any conservatism/approximation in βκ can generally
be compensated for by the designer’s choice of the control
gain kc.

Overcoming these challenges, the GP allows - based on
event-triggered online learning - to design a feedback lin-
earizing control law that asymptotically stabilizes an initial
unknown system (with high probability). This is made possible
by the error bounds on the model, which is the most significant
advantage of a GP over alternative modeling approaches like
neural networks [53].

As the model update is event-triggered, only data points that
are necessary to increase the precision of the model are col-
lected. This reduces the frequency at which measurements are
taken and increases data efficiency. With Corollary 5 we have
shown that only a single data point must be stored to guarantee
asymptotic convergence. This is a significant advantage of
the locally linearizing control law in comparison to predictive
control laws or reinforcement learning algorithms, where an
accurate global model is required. Accurate global models
require active exploration, e.g. through exploration noise,
which sacrifices control performance (known as exploration-
exploitation trade-off).

VI. NUMERICAL ILLUSTRATION

To illustrate the proposed approach, we present simulations3

for the control affine system

ẋ1 = x2, (65)

ẋ2 = 1− sin(x1) + s(x2)︸ ︷︷ ︸
=f(x)

+

(
1 +

1

2
sin(x2/2)

)
︸ ︷︷ ︸

=g(x)

u,

3The code is available at https://gitlab.lrz.de/ga68car/adaptFeLi4GPs
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Fig. 3. Scenario 1: The black solid line illustrates the actual, the green dashed
line the desired value for the state x1. The system converges to the desired
state over time.

where s(x2) = 0.5
1+exp(−x2/10) is the sigmoidal function. It

is a modified pendulum system and fulfills Assumptions 1
and 2. To ensure Assumption 6 holds, we do not simulate
directly on (65) but use a GP mean that was trained on it
with a high density of training points. As we are working in
simulation, Assumptions 3, 5 and 7 do hold or do not hold
by design in the following two different scenarios, which we
use to illustrate the proposed approach. An overview of the
employed parameters is given in Table I

A. Scenario 1: Time-triggered updates

In Scenario 1 (S1), we illustrate the results from Sec. IV,
which are shown to hold for an arbitrary switching sequence.
Therefore, we utilize a periodic, time-triggered model update,
thus tκ+1 − tκ = ∆t, ∀κ, with ∆t = 0.5 and follow
Algorithm 1. We consider f(x) and g(x) to be unknown,
so Assumption 5 does not hold, but we know that g(x) is
positive, so Assumption 2 holds. As the reference trajectory

xd(t) = 1− 1

1 + exp(−20(t− 10))
(66)

is used, which describes a “soft” jump from x1 = 1 to x1 = 0
at t = 10 and it fulfills the required smoothness in Assump-
tion 4. The scenario works on noisy measurements, thus
Assumption 7 does not hold. As this scenario does not utilize
Assumption 6, we consider the kernel’s hyperparameters to be
unknown. Therefore, a hyperparameter optimization according
to (8) is performed at each model update step κ. The simu-
lation is stopped manually after Tsim = 20, which leads to
N = 40 data points.

Figure 3 shows the desired trajectory and the corresponding
tracking performance of the controller over time. Figure 4
illustrates the resulting trajectory in the state space. In Figs. 5
and 6, the true system dynamics, f(x), g(x) are compared
with the approximations f̂(x), ĝ(x) at the end of the simula-
tion. It turns out that the hyperparameters for kfg are well
identified: With l1,f � l2,f , the estimate for f̂(x) shows
that f(x) mainly depends on x1 (and vice versa for g(x)
with l1,g � l2,g). As it can be seen in Figs. 5 and 6, the
estimates are more precise near the training data.

It can be seen that the two stationary points of the desired
trajectory, (1, 0) and (0, 0), are approached with high precision
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Fig. 4. Scenario 1: Black crosses indicate the collected training points, the
black solid line illustrates the actual, the green dashed the desired trajectory.
The system approaches the desired states as more training points are collected.
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Fig. 5. Scenario 1: The surface illustrates the relative error between the true
function f(x) and the model estimate f̂40(x) after taking 40 training points
(black crosses). The error is the lowest (in terms of absolute value) near the
training data.
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function g(x) and the model estimate ĝ40(x) after taking 40 training points
(black crosses). The error is the lowest (in terms of absolute value) near the
training data.



kc λ mg(x) σ2
on(S1) σ2

on(S2) x0 β rmin

1 1 = 2, ∀x 10−6 10−16 [3 2]ᵀ 7 10−5

TABLE I
SIMULATION PARAMETERS

in the steady state. However, for both a few measurements
must be collected in the corresponding area of the state space
and the following model updates are required to achieve this
high precision. Once the steady state has been reached, the
time-triggered implementation keeps adding unnecessary data
points even though the model already has a high precision
in this area. This is improved with the event-triggered model
update as illustrated in Scenario 2.

B. Scenario 2: Event-triggered updates
In Scenario 2 (S2), the results in Sec. V are illustrated,

which utilizes the event-triggered model update described
by (53). For this scenario, g(x) is assumed to be known
(Assumption 5 holds). The reference trajectory

xd(t) = sin(t) (67)

is used, which describes a circle with radius 1 in the state
space. The scenario works on noise free measurements, thus
Assumption 7 does hold, however, for numerical stability a
minimal noise is assumed (σ2

on = 10−16). The simulation is
stopped manually after Tsim = 100.

As this scenario utilizes Assumption 6, we take the kernel
hyperparameters to be known at σ2

f = 5, l21/2,f = 5 and do
not update these at any of the triggered events. Additionally,
we set βκ constant ∀κ and refer to the discussion in Sec. V-D
and [28]. Additionally, we enforce a lower bound r > rmin to
avoid numerical difficulties.

Figure 8 shows the tracking error until t = 30, which ini-
tially decreases approximately exponentially until a numerical
limit is reached. In the event-triggered setup, a total of 51
events are triggered until sufficient training points are collected
around the desired trajectory. This is also visualized in the
state space view in Fig. 7. In comparison, the time-triggered
approach requires to store 200 data points and would keep
adding points for longer simulations, which the event-based
would not.

The time-trigger results in a higher computational burden
than the event-trigger: The simulation of the latter only
takes ≈ 5s for the MATLAB 2019a implementation on a i5-
6200U CPU with 2.3GHz and uses 0.20957MB. The time-
triggered approach takes ≈ 11s and uses 0.47924MB of
memory.

Figure 8 also shows that the stability criteria in
Theorem 3 are fulfilled for the event-triggered case,
since βκσκ(x) ≤ kc|r| holds for any time. In contrast - for
the time-triggered case - this condition is violated frequently,
which means that negative definiteness of the common Lya-
punov function - and thereby stability - cannot be shown.

VII. CONCLUSION
This article proposes an online learning feedback linearizing

control law based on Gaussian process models. The closed-
loop identification of the initially unknown system exploits
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Fig. 7. Scenario 2: Black crosses indicate the collected training points, the
black solid line illustrates the actual, the green dashed the desired trajectory.
The color map shows the variance function (15) for the GP σ51(x) after the
51st update, where yellow indicates low variance and blue high variance.

the control affine structure by utilizing a composite kernel.
The model is updated in an event-triggered fashion, taking
advantage of the uncertainty measure of the GP. The control
law results in the global asymptotic stability of the tracking
error in the noiseless case and in global uniform ultimate
boundedness for noisy measurements (of the highest state
derivative) with high probability. We therefore propose a safe
and data-efficient online learning control approach because
model updates occur only if required to ensure stability. Zeno
behavior is excluded, as a lower bound on the inter-event
time is derived. The proposed techniques are illustrated using
simulations to support the theoretical results.

APPENDIX A
EXPRESSING STRUCTURE IN KERNELS

According to [4], the kernel of the GP does not only
determine the smoothness properties of the resulting functions
but can also be utilized to express prior knowledge regarding
the structure of the unknown function.

A. Sum of functions

Consider fa, fb : X→ R which both originate from two
independent GP priors

fa(x) ∼ GP (ma(x), ka(x,x′)) , (68)
fb(x) ∼ GP (mb(x), kb(x,x′)) , (69)

and add up to fsum : X → R, thus fsum(x) = fa(x) + fb(x).
Then,

fsum(x) ∼ GP (ma(x) +mb(x), ka(x,x′) + kb(x,x′))
(70)

is also a GP with kernel ka(x,x′) + kb(x,x′).
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when the threshold kc/βκ (black vertical line) is reached by σκ/r as proposed in (53). For the latter, events are triggered after a fixed time interval (∆t = 0.5).
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For regression, where noisy measurements
with ε(i) ∼ N (0,σ2

on) of the sum of the two functions
are available

y(i)
sum = fsum

(
x(i)

)
+ ε(i) = fa

(
x(i)

)
+ fb

(
x(i)

)
+ ε(i),

(71)

with i = 1, . . . ,N , the joint distribution of the individual
functions and the observations is given byfa(x∗)

fb(x
∗)

ysum

 ∼ N
0,

k∗a 0 kᵀa
0 k∗b kᵀb
ka kb Ka +Kb + σ2

onIN

 ,

(72)

where the prior mean functions are set to
zero ma(x) = mb(x) = 0 for notational simplicity
and ka,kb, k

∗
a, k∗b are defined according to (16). By

conditioning, the output of fa and fb are inferred for a test
point x∗

fa(x∗)|X,ysum ∼ N
(
kᵀaK

−1
sumysum, k∗a − k

ᵀ
aK
−1
sumka

)
,

(73)

fb(x
∗)|X,ysum ∼ N

(
kᵀbK

−1
sumysum, k∗b − k

ᵀ
bK
−1
sumkb

)
,
(74)

where Ksum = Ka + Kb + σ2
onIN with Ka,Kb according

to (11). Similarly to (8), the extended hyperparameter vec-
tor ψsum = [ψᵀ

a ψᵀ
b ]ᵀ is obtained through the optimization

of the likelihood, where K = Ksum and yf = ysum. This
allows to predict a value of the individual functions fa, fb
even though only their sum has been measured.

B. Product with known function

Consider an unknown function fh(x) : X → R, which is
multiplied with the known function h(x) : X → R, we can
model fh using a GP with a scaled kernel function and noisy
measurements

y
(i)
prod = fprod

(
x(i)

)
+ ε(i) = fh

(
x(i)

)
h
(
x(i)

)
+ ε(i) (75)

of the product with ε(i) ∼ N (0,σ2
on), i = 1, . . . ,N . Thus,

if fh ∼ GP(0, kh(x,x′)) is a GP, then fprod(x) is also a GP
with kernel

kprod(x,x′) = h(x)kh(x,x′)h(x′), (76)

where the prior mean is set to zero mh(x) = 0 for notational
simplicity.

The joint distribution of the measurements and the inferred
output of fprod at a test input x∗ is given by[

fh(x∗)
yprod

]
∼ N

(
0,

[
k∗h kᵀhH

ᵀ

Hkh HᵀKhH + σ2
onIN

])
, (77)

where H = diag
(
h
(
x(1)

)
, . . . ,h

(
x(N)

))
∈ RN×N

and kh, k∗h, Kh are defined similarly to (16) and (11),



respectively. Through the conditioning on the training data and
the input, the function fh is inferred by

fh(x∗)|X,yprod ∼ N
(
kᵀhH

ᵀK-1
prodyprod, (78)

k∗h − k
ᵀ
hH

ᵀK-1
prodHkh

)
,

where Kprod = HᵀKhH + σ2
onIN .

Remark 8: Instead of scaling the kernel, it seems more
straight forward to use y(i)

prod/h
(
x(i)

)
as training data for a GP

with an unscaled kernel. However, this would scale the obser-
vation noise undesirably, is numerically unstable and is not
compatible with the summation of kernels in Appendix A-A,
which we combine in our identification approach in Sec. III-B.

APPENDIX B
IMPROVING IDENTIFICATION

From Lemma 2 it is known that the state remains bounded
for any finite 0 < T < ∞ without any control input. Thus,
without risking damage to the system, one can set u = 0 for
time interval T and record an open-loop training point

y(iol) = f
(
x(iol)

)
+ ε(iol), (79)

which is highly beneficial, as it only measures f(x) (with
the usual noise ε). The GP framework allows to merge these
iol = 1, . . . ,Nol observations with the closed-loop training
points in Dκ to improve the prediction as follows: Consider
the extension of the joint distribution (25) (where u = 1 is
assumed in the close loop measurements and mg(x) = 0 for
notational convenience)

f(x∗)
g(x∗)
y
yol

 ∼ N
0,


k∗f 0 kᵀf kᵀf ,ol
0 k∗g kᵀg 01×Nol

kf kg Kfg Kᵀ
ol,cl

kf ,ol 0Nol×1 Kol,cl Kol


 ,

where Kol,cl, Kol are the pairwise evaluation of k(x(iol),x(i)),
k
(
x(iol),x(i′ol)

)
and kf ,ol evaluates k

(
x∗,x(iol)

)
. for

all i = 1, . . . ,N , iol, i
′
ol = 1, . . . ,Nol. Then, the estimates

are given by

f̂(x∗) = [kᵀf k
ᵀ
f ,ol]K

−1ỹ, ĝ(x∗) = [kᵀg 01×Nol ]K
−1ỹ

with K =

[
Kfg Kᵀ

ol,cl
Kol,cl Kol

]
, and ỹ =

[
y
yol

]
. (80)

We do not further investigate this extension, since it does
not provide any additional formal guarantees regarding the
convergence, however, in practice, a significant improvement
of the identification can be expected.
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[9] G. R. Gonçalves da Silva, A. S. Bazanella, C. Lorenzini, and
L. Campestrini, “Data-driven lqr control design,” IEEE Control Systems
Letters, vol. 3, no. 1, pp. 180–185, Jan. 2019.

[10] L. Campestrini, D. Eckhard, A. S. Bazanella, and M. Gevers,
“Data-driven model reference control design by prediction error
identification,” Journal of the Franklin Institute, vol. 354, no. 6,
pp. 2628–2647, 2017, special issue on recent advances on control
and diagnosis via process measurements. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S001600321630271X

[11] D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative
learning control,” IEEE Control Systems Magazine, vol. 26, no. 3, pp.
96–114, Jun. 2006.

[12] M.-B. Rădac, R.-E. Precup, E. M. Petriu, and S. Preitl, “Iterative data-
driven tuning of controllers for nonlinear systems with constraints,”
IEEE Transactions on Industrial Electronics, vol. 61, no. 11, pp. 6360–
6368, Nov. 2014.

[13] Z. Hou, R. Chi, and H. Gao, “An overview of dynamic-linearization-
based data-driven control and applications,” IEEE Transactions on
Industrial Electronics, vol. 64, no. 5, pp. 4076–4090, May 2017.

[14] M. C. Campi and S. M. Savaresi, “Direct nonlinear control design: the
virtual reference feedback tuning (vrft) approach,” IEEE Transactions
on Automatic Control, vol. 51, no. 1, pp. 14–27, Jan. 2006.

[15] H. Hjalmarsson, M. Gevers, S. Gunnarsson, and O. Lequin, “Iterative
feedback tuning: theory and applications,” IEEE Control Systems Mag-
azine, vol. 18, no. 4, pp. 26–41, Aug. 1998.

[16] L. C. Kammer, R. R. Bitmead, and P. L. Bartlett, “Direct iterative tuning
via spectral analysis,” Automatica, vol. 36, pp. 1301–1307, 2000.

[17] N. J. Killingsworth and K. Miroslav, “Pid tuning using extremum
seeking: online, model-free performance optimization,” IEEE Control
Systems Magazine, vol. 26, no. 1, pp. 70–79, Feb. 2006.

[18] E. Theodorou, J. Buchli, and S. Schaal, “Reinforcement learning of mo-
tor skills in high dimensions: A path integral approach,” in International
Conference on Robotics and Automation (ICRA). IEEE, May 2010, pp.
2397–2403.

[19] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
Cambridge, MA, USA: MIT Press, 1998.

[20] M. P. Deisenroth and C. E. Rasmussen, “PILCO: A model-based and
data-efficient approach to policy search,” in International Conference on
Machine Learning (ICML), 2011, pp. 465–472.

[21] D. Nguyen-Tuong and J. Peters, “Model learning for robot control: a
survey,” Cognitive processing, vol. 12, no. 4, pp. 319–340, 2011.

[22] D. Nguyen-Tuong, M. Seeger, and J. Peters, “Model learning with local
Gaussian process regression,” Advanced Robotics, vol. 23, no. 15, pp.
2015–2034, 2009.

[23] T. Beckers, J. Umlauft, and S. Hirche, “Stable model-based control with
Gaussian process regression for robot manipulators,” in World Congress
of the International Federation of Automatic Control (IFAC), vol. 50,
no. 1. Toulouse, France: Elsevier, Jul. 2017, pp. 3877–3884.

[24] Y. Fanger, J. Umlauft, and S. Hirche, “Gaussian processes for dynamic
movement primitives with application in knowledge-based cooperation,”
in International Conference on Intelligent Robots and Systems (IROS).
IEEE, Oct. 2016, pp. 3913–3919.

[25] T. Beckers, J. Umlauft, D. Kulic, and S. Hirche, “Stable Gaussian
process based tracking control of Lagrangian systems,” in Conference
on Decision and Control (CDC). IEEE, Dec. 2017, pp. 5180–5185.
[Online]. Available: https://ieeexplore.ieee.org/document/8264427

[26] J. Umlauft, A. Lederer, and S. Hirche, “Learning stable Gaussian
process state space models,” in American Control Conference (ACC),
IEEE. IEEE, May 2017, pp. 1499–1504. [Online]. Available:
https://ieeexplore.ieee.org/document/7963165
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