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Abstract

The lifetime of stars is determined by the available amount of hydrogen in the
central nuclear burning region. Convective motions inside stellar cores can mix
hydrogen from the envelope into the burning region and prolong the star’s life. The
inclusion of these processes in one dimensional stellar evolution calculations requires
an appropriately parametrized mixing model, which has to be tested against multi-
dimensional hydrodynamic simulations. Due to the exceptionally subsonic flows in
stellar interiors, specialized low Mach number simulations are required to investigate
the magnitude and extent of convective mixing events, and to estimate their effects
on the much longer timescales of stellar evolution.

The hydrodynamical simulations in this study show that the region of mixed zones
in the interior of stars should extend beyond the convective boundary set by stability
considerations. Comparing two and three dimensional simulations it is shown that
two dimensional simulations provide an acceptable approximation for the mixing at
convective boundaries. Therefore, a series of two dimensional simulations is used to
restrict the parameters and applicability of one dimensional mixing models.

Zusammenfassung

Die Lebensdauer von Sternen wird bestimmt durch die zur Verfiigung stehende
Menge an Wasserstoff in der zentralen nuklearen Brennzone. Konvektive Strémun-
gen im Zentrum von Sternen kénnen Wasserstoff aus der Hiille in die Brennzone
mischen und das Leben des Sterns verldngern. Diese Prozesse in eindimensionalen
Sternentwicklungsberechnungen einzubeziehen setzt ein passend parametrisiertes Mis-
chungsmodel voraus, welches in mehrdimensionalen Simulationen verifiziert werden
muss. Aufgrund der ausergewohnlich subsonischen Stréomungen im Sterninneren ist
es notig, Simulationen durchzufithren, die auf niedrige Mach Zahlen abgestimmt sind,
um den Umfang und die Ausdehnung des Mischens an konvektiven Grenzen sowie
dessen Einfluss auf die Sternentwicklung, die sich auf deutlich ldngeren Zeitskalen
abspielt, zu untersuchen.

Die hydrodynamischen Simulationen, die in dieser Arbeit vorgestellt werden, machen
deutlich, dass der gemischte Bereich an konvektiven Grenzen grofier sein sollte als
aufgrund von Stabilitdtskriterien vorhergesagt. Indem zwei- und dreidimensionale
Simulationen verglichen werden, wird gezeigt dass zweidimensionale Simulationen eine
ausreichende Naherung fir das Mischen an konvektiven Grenzen darstellen. Deswe-
gen wird eine Reihe von zweidimensionalen Simulation genutzt, um die Parameter
und Verwendbarkeit von eindimensionalen Mischungsmodellen einzuschrénken.
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Chapter 1
Motivation

The structure and dynamics of turbulent flows have been described by [Prandtl
(1926) as "unpleasantly complicated" and despite almost a century of continuous
research this statement is still true today. In astrophysical plasmata like in stars
the complexity increases even further. To understand the influence of turbulent
convective motions on stellar evolution it is necessary to consider the effects of small
scale turbulence on structures that are many orders of magnitude larger than that.
Furthermore it is known that stellar convective motions usually change on timescales
of months to years. On the other hand, stellar structures evolve on timescales of
millions to billions of years.

This separation of scales makes it impossible to include precise models of turbulence
in stellar evolution calculations.

One dimensional stellar evolution models therefore use approximations to the

intrinsically 3D processes of turbulent convection. The most commonly used
convection model is the so-called Mixing-Length-Theory (MLT) (Bohm-Vitense,
1958). It assumes that convection can be simplified in terms of mass elements that
are accelerated over a certain distance — the mixing length — before they dissipate
in their surrounding.
Due to the reduction of a three dimensional process to an one dimensional model
some information is lost. While MLT provides an acceptable model for the energy
transport in convectively unstable regions, it fails to provide accurate information
about the chemical mixing around the boundaries of unstable regions. The actual
size of the mixed region associated with a convective zone (CZ) can therefore not be
recovered from MLT.

Comparing observations of eclipsing binary systems and populations of stellar
clusters with MLT models one finds indications that the mixed region around CZs
should be larger than the CZ itself. Recently asteroseismological observations have
become sensitive enough to identify oscillations on stellar surfaces that are connected
to the stellar structure near the core region of certain stars. These observations
confirm the need for an enlarged mixing layer around CZs.



In stellar evolution this effect is usually called overshooting and several parametrized
one dimensional models exist. However, due to the uncertainties of the observations
it is currently not possible to calibrate these free parameters reliably.

Arguably the most important CZ in stars more massive than ~ 1.2M is their
central CZ during core hydrogen burning on the main sequence. It is not only the
most persistent CZ, existing for &= 90% of the stars total lifetime, the mixed region
associated with it also influences the lifetime directly by defining the amount of
fuel available for the fusion process. The uncertainty of the size of convective cores
from observations leads to an uncertainty of a star’s age of up to 30%. Moreover,
an increased amount of fuel will also lead to a more massive He-core at the end of
the main sequence which will influence the star’s remaining life significantly, e.g.,
whether a star becomes a Cepheid during its He-burning phase, and might even
determine the end product of stellar evolution.

Over the years the development of new numerical tools and the continuous growth
in computational power made it possible to follow stellar turbulence in numerical
simulations for several convective turnover times. While this is very small compared
to the evolutionary timescale, early two dimensional simulations (e.g., Freytag et al.,
1996)) of stellar surfaces already improved our understanding of the overshooting
process in convective envelopes.

However, a CZ on the surface is fundamentally different from an interior CZ. The
main difference is the driving mechanism of convection. Interior CZs are driven by
the heat release of nuclear fusion, while outer CZs are mostly powered by the loss
of energy through radiation at the surface of stars (Spruit, |1997)). Furthermore,
interior CZs also have a stiffer convective boundary and tend to be more shallow
than surface CZs.

All this makes it very questionable to use the same approximation for interior and
surface CZs. Yet it is still common practice to assume that all CZs in all types
of stars follow the same convection and overshooting model with the same parameters.

Rather recently it has also become possible to perform three dimensional simu-
lations of CZs in the deep interior of stars (e.g., Meakin & Arnett}, [2007; [Herwig
et al., [2007). However, these simulations only cover a small number of convective
timescales due to the low Mach number flows in these kinds of CZs. In fact, in most
of the simulations the energy input had to be increased by a large factor to boost
the velocities and consequently reduce the convective timescales. It is questionable if
such fundamental modifications to the input physics will provide physically relevant
answers.

Specialized low Mach number codes like MAESTRO have the capability to perform
simulations of stellar interiors over many convective turnover times with the actual



energy input at reasonable computational cost, i.e, these type of codes are appropriate
tools to investigate the effects of the short term evolution of convection on the long
term evolution of stars.

Using the MAESTRO code, this study will investigate the mixing in convective
hydrogen burning cores of intermediate mass stars between 1.3 and 3.5 Mg, in two
and three dimensional hydrodynamic simulations. The goal is to define the size
of the homogeneously mixed core and to reduce the uncertainty of overshooting
parameters. These simulations will also allow to identify the dominant mixing
processes. Besides the chemical mixing this also includes the mixing of entropy and
the resulting consequences for the temperature stratification around the convective
boundary. Comparing the long term simulations with mixing models proposed from
short term simulations will also give new insight on the applicability of such models
in one dimensional stellar evolution models.

This thesis is structured in the following way:
Chapter [2] will introduce the important turbulent mixing processes in stars and how
they are treated in one dimensional stellar evolution. The numerical tools necessary
to study main sequence convection will be discussed in Chap. [3] The Chapters [ and
will then analyse results of two and three dimensional simulations, respectively.
The final Chapter [6] will summarize the results and give an outlook on possible
future developments.






Chapter 2
Stellar Mixing Processes

Dynamical mixing processes in stars are intrinsically multi dimensional processes. In
order to include them in a 1 dimensional model they need to be parametrized. In
this chapter we discuss how this is and can be done for non-rotating stars without
magnetic fields.

2.1 Mixing Length Theory

The transport of energy by convection in 1D stellar evolution codes is usually
described by rising and sinking blobs in the so called Mixing-Length-Theory (MLT).
The concept is based on Prandtl (1926), who defines two characteristic length scales
of convective motion. One is set by the characteristic size of a single convective
element (a blob of mass), and the other is the average distance such an element can
travel, before it mixes with neighbouring elements. In the MLT the latter one is
referred to as the "mixing length" a and can be interpreted as a blob’s mean free path.

In pressure equilibrium convective blobs start rising (sinking) when their temper-
ature is higher (lower) than their surrounding due to buoyancy. In the process the
blobs will expand (contract). Comparing the blob’s new density with the surrounding
density, buoyancy force now either continues to point in the direction of the motion,
creating an unstable layer, or back to the blob’s original position, stabilizing the
flow.

Assuming that blobs rise adiabatically while maintaining pressure equilibrium
with their surrounding, it is possible to derive a stability criterion based on the
temperature gradients V = Z%ggg involved in the process. V can be defined based
on the temperature 7" and pressure P of the blob (V}), the surrounding (V), the
radiative energy transport (V;aq), and the local adiabat (Vaq).

The famous Schwarzschild criterion requires V,q < V} for a convectively unstable
layer. Since Vi < Vyaq (Vitense, 1953), this is equivalent to V,q < Viaq, which is
the more commonly used version.




Based on this picture, the energy transport can now be expressed in terms of
the energy flux F' through a mass shell in a star. Following the formulation of
Bohm-Vitense (1958)) one can split F' into a convective Fgony and a radiative F,q
part. Fiony describes the energy excess of convective blobs as they pass through a
shell and F}.q gives the energy transported by radiation. The fluxes can be computed
based on the temperature perturbation of the convective blob AT and V, which is
initially unknown

Feony =pvcpy AT (2.1)
dacG T*m
Fopg=———7= 2.2
rad 3 kPr? (
F =Feony + Fraq- (23)

Here p, K, ¢p, and v are the density, opacity, specific energy, and velocity of the
convective blob respectively. ¢, G, and a are the speed of light, gravitational constant
and radiation density constant respectively. r is the radius of the mass shell with
mass coordinate m.

AT can be related to V and Vj, if one assumes that on average a convective blob has
passed half of its mixing length when it passes through the shell.

AT «

T & (V- Vb)m, (2.4)
where H,, = —dr/dIn P is the local pressure scale height of the shell.

Convective blobs are accelerated by buoyancy and therefore gain kinetic energy while
moving. The buoyancy force depends on the density perturbation of the blob Ap. In
pressure equilibrium Arho/p is directly proportional to AT /T. The proportionality
factor is (). Using equation and assuming that Q(V — V;)/H), as well as the
gravitational acceleration g are constant over one mixing length, the average velocity
of a blob can be written as

2

P2 = g@fﬁw — V) (2.5)

Using equations and [2.4) and putting them back into one finds that
Feony < v°, (2.6)

which is a relationship that can easily be tested by hydrodynamical simulations of

convection (see .

In order to close the system of equations, one can look at the ratio of temperature
gradients in different situations. Neglecting the energy exchange E,,q of a blob



with its surrounding is equivalent to V, = V4, ie., the element is expanding
adiabatically. If there is an energy exchange due to an energy excess (deficiency), it
will be proportional to the difference V,q — V;, because the blob will try to establish
an adiabatic gradient. On the other hand an element is also gaining energy due
to its increasing velocity. This energy increase Fexcess is proportional to Vi — V.
Combining these two proportionalities one can define the ratio of energy excess to

energy loss as
Eeoxcess Vy -V
excess b . (2.7)
Erad Va,d - vb
A blob can exchange energy with its surrounding via radiation on its surface S.

The energy loss F.q of a spherical blob with diameter d can then be written as

8acT? S
Eq= AT —. 2.8
d 3Kkp d (28)

In a convectively unstable region AT will monotonically increase during the lifetime
of a blob, until it reaches ATy, ax, before it mixes with the surrounding. Assuming
that the initial AT is much smaller than ATi,.x, the radiative losses can be best
described when AT in equation is replaced by an average AT = 0.5ATjax.
At the end of its lifetime the blob will release its energy excess Feycess into the
surrounding fluid. The amount of energy is proportional to the volume of the blob
Vv

FEexcess = cppATmaxVv. (2.9)

Following |Bohm-Vitense (1958) one can assume that convective blobs have a typical
surface to volume ratio of 6/1. The energy balance of blobs can then be written as

FEexcess _ Kp2cpdv
Eraq 6acT3

(2.10)

Assuming that the typical size of a convective blob corresponds to the mixing
length (d = «), equations and form an equation system for the 5
unknowns Feony, Frad, ¥, V, and V.

The only free parameter remaining is «, which is calibrated to match our Sun, as
the best observed star. To do that a stellar model with 1M and solar metallicity
needs to reproduce the solar radius and luminosity after 4.7 Gyr. By this way one
finds typical values for o between ~ 1.7 and =~ 2.1 (see, e.g., Weiss & Schlattl, |2008;
Magic et al., 2010).

This study focuses on convective core hydrogen burning, where V — V,q < 1078 is a
typical value. This implies that V — V;, < 10~%, which will be important for the

simulation setup (see .



To derive the MLT equations it was necessary to make two basic assumptions:

First convective blobs were assumed to be in pressure equilibrium with their
surrounding at all times. Pressure is equilibrated by sound waves propagating in
the medium. MLT predicts that in the deep interiors of stars convection is highly
subsonic. We will see in the simulations presented in Chapters [4] and [] that this is
actually the case. This means that the sound crossing timescale is much smaller than
the convective timescale and thus sound waves can establish pressure equilibrium
before significant convective energy transport occurs.
Second convective blobs were assumed to move adiabatically, i.e. that they don’t
exchange energy with their surrounding during their motion. Adiabatic expansion is
only justified if the blobs are assumed to be big enough, such that their surface is
small compared to their volume. The size is, however, also limited by the assumption
that a blob only has small variations in temperature, pressure, etc. This limits the
size of a blob to the respective scale height.

For large Reynolds Numbers Re the size of a blob and its mixing length only differ
by a constant factor (Prandtl, |1926).
Re = 22 (2.11)
n
where v is the typical velocity of a convective blob, p is its density and 7 is the
viscosity of the surrounding fluid. In stellar environments 7 is close to zero, such
that Re is expected to have values of the order of 10'°. Which characterises an
extremely turbulent flow.

MLT is a time independent theory and thus it can only represent a snapshot of
a "frozen-in" convection. Due to the large separation in timescales between con-
vective motions and nuclear evolution, this approach is in most cases an acceptable
assumption. The simulations shown in Chapter 4] and [5| show that most convective
properties can be well described by time and space averaged quantities. The
short term variations only become relevant, when the convective and evolutionary
timescales become comparable, as it is for example the case for Si-burning shortly
before a massive (2 8 M) star collapses and ends its life in a supernova.

2.2 Overshooting

MLT was constructed to describe the convective energy transport in stars, but since
it provides estimates of the convective velocities it can also be used to predict the
chemical mixing in CZs. Considering that the convective timescale (i.e., the radial



extent of a CZ divided by the MLT velocity) in a typical CZ is much smaller than the
evolutionary timescale, it is justified to treat the chemical mixing as instantaneous.
In fact, a homogeneous composition profile is expected for almost all stellar CZs.
However, when the evolutionary and convective timescales become comparable it
can be beneficial to treat the chemical mixing as a diffusive process in order to
couple it directly with the nuclear burning inside the CZ. Using the MLT estimated
convective velocities a diffusion coefficient can be derived. In convective cores on
the main sequence the diffusion coefficient has typical values of 10'3 cm?/s. At the
interface to an adjacent stable layer, however, MLT has less predictive power in
terms of chemical mixing.

In a stable layer a blob with an energy excess will start to rise, but buoyancy

will soon pull it back to its original position. It therefore does not gain any extra
energy, but instead starts radiating away the energy excess. The blob does that until
Vi, = V. According to equation this situation corresponds to v = 0.
MLT therefore predicts that the velocity drops to exactly zero, once a stable layer
is reached. This also means that blobs that start, e.g., half a mixing length inside
the CZ, will accelerate until they reach the boundary and then suddenly stop.
Already Bohm-Vitense| (1958)) pointed out that this is a problematic finding and that
convective boundaries require special treatment.

In a realistic scenario one would expect that blobs that get accelerated towards the
boundary will travel into the stable layer. Buoyancy is now pointing in the opposite
direction, decelerating the blob and finally pulling it back into the CZ.

This so called ballistic overshooting will not only lead to non-zero velocities in the
vicinity of a convective boundary, but will also drag some matter from the stable
layer into the CZ. Ballistic overshooting is the main driving effect of extended mixing
around convective zones in shallow convective envelopes (Freytag et al., [1996; Pratt
et al., 2017).

Convective boundaries deep inside of stars, however, are much stiffer. This means
that blobs will be pulled back quicker. Lattanzio et al.| (2017)) gives an estimate for
the mixing depth of ballistic overshooting, by comparing the energy budget of a mass
element that penetrates the convective boundary, with the restoring buoyancy force.
Integrating the forces, they determined an upper limit of overshooting in deep stellar
envelopes that is smaller than the usual resolution of 1D models. The same is true if
one uses the same argument for convective cores or shells. Nevertheless observations
of the width of the main sequence in young open clusters can only be explained
by an extended mixed region around convective cores in intermediate mass stars
between 2 and 9M, (Maeder & Mermilliod, [1981). Reproducing the shape of the
main sequence turnoff in old open clusters with stellar models also requires some ex-



Figure 2.1: Schematics of mixing at convective boundaries, where each number
indicates a different mixing process (see text).

tra mixing in the range of 1 — 2M, (see, e.g.,|Aparicio et al.[1990; Bertelli et al., 1992).

Therefore, mixing deep inside of stars has to be driven by other processes. Fig.
[2.1] gives an overview of different mixing processes that can occur at convective
boundaries.

To describe other mixing processes it is easier to relax the MLT picture of blobs into
flows of mass. If a flow of mass hits a convective boundary it will initially penetrate
it (1 in Fig. [2.1). Besides the ballistic overshooting, the stream will also launch a
set of internal gravity waves (IGW; 2 in Fig. as each blob in the stream starts
to oscillate around the boundary due to buoyancy. is discussing the properties
and mixing effects of IGWs in more detail. [£.3] will show that IGWs also play an
important role in interpreting our simulation results.

A continuous flow will pile up at the boundary and start to deflect the remaining
stream sideways, converting radial into tangential velocities. will show that
the tangential velocity profile is therefore a good indicator for the position of the
convective boundary. A flow that is shearing along the convective boundary can set
of Kelvin-Helmholtz instabilities (3 in Fig. .

Shear flows that remain stable will most likely produce a surface gravity wave (4 in
Fig. . A surface wave lets the whole boundary oscillate around its equilibrium
point. As such it does not produce any mixing. However, if two surface waves of op-
posing direction run into each other, they will pile up and finally break (5 in Fig. .
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In that process matter from the stable layer will be entrained into the convective zone.

In 1D stellar evolution, all these effects are combined into a single parameter, that
describes the mixing around the CZ.
In modern 1D codes there are two main implementations of overshooting. The classic
one simply extends the CZ by a fixed fraction g, of Hp. g, is a free parameter and
needs to be calibrated based on observation.
Based on simulations of convective envelopes of A stars Freytag et al.| (1996) came
up with a more physical approach that defines the additional mixing in a diffusive
fashion. In their simulations [Freytag et al. (1996) found that the diffusion constant
D decreases exponentially as a function of the distance to the convective boundary
z. 5,

D(z) = Dy exp o)’ (2.12)
where Dy is the diffusion constant at the convective boundary and f,, is the free
parameter of this theory.

Empirical estimates typically give fo, ~ 0.02 corresponding to ., ~ 0.2 (see
e.g., [Ventural, 2007)), but many observables can also be reproduced without any
overshooting (Pols et al.,[1997; Valle et al., 2016) at all, leaving us with large errorbars
on the overshooting parameters (Lastennet & Valls-Gabaud, [2002; |(Constantino &
Baraffel [2018]). Simulations also produce a rather large range of inferred overshooting
parameters ranging from 0.2 to 0.5H, (see, e.g., [Pratt et al., 2017; [Edelmann et al.,
2019; Freytag et al.l |1996).

More recent simulations of convective envelopes from different groups showed that
simulation data can be interpreted in a variety of ways and that the mixing properties
can be explained by several functional forms. For example Pratt et al.|(2017) used
statistical arguments of ballistic overshooting to derive that the diffusion constant D
should decline as an exponential of an exponential (Gumbel-profile) rather than Eq.
Korre et al. (2019) on the other hand argued that the mixing should have a
Gaussian shape based on simulations of the solar envelope.

Here it should be noted that surface convective zones, as used to determine the
diffusive overshooting model, are fundamentally different from core convective zones.
In the surface layers the temperature gradient is partially superadiabatic, while in the
central regions, convective zones are always very close to being adiabatic as predicted
by MLT. This suggests that surface convective zones are much more vigorous than
internal CZs and that the properties of the convective flow is dominated by the
superadiabatic boundary (see Freytag et al., [1996).

Furthermore, Spruit| (1997) argues that surface convection is mainly driven by
the cooling from the surface layer, which was confirmed in numerical simulations
by Kapyla et al. (2017)). Viallet et al. (2013)) find that in convective envelopes a

11



significant amount of kinetic energy is transported by pressure fluctuations. Interior
CZs, on the other hand, are driven by internal heating and the buoyancy terms are
the dominating energy transport mechanism (Viallet et al., 2013). So, from first
principles there is no reason why internal CZs should have the same overshooting
behaviour as surface CZs.

Yet again Moravveji et al.| (2016)) finds that an overshooting prescription like in
fits asteroseismic observations of a 3.2M mass star best in the immediate vicinity
of the convective boundary.

The study, however, also shows that asteroseismic observations can be reproduced
even better, if an additional weak mixing process is included far away from the
boundary. In the literature one can find different forms of such an extended mixing
region, starting with a constant (diffusive) mixing by some undefined process
(Moravveji et al., |2016) up to a more realistic diffusive mixing profile based on IGWs
Rogers & McElwaine| (2017)).

All the overshooting descriptions mentioned above, parametrize the extend of the
mixed region in terms of H),. This leads to problems when we deal with convective
zones that extent less than a pressure scale height. [2.12] would predict that the
CZ is surrounded by a significantly enlarged mixed region. It is unclear which
mixing process could be responsible for that. This problem becomes severe in small
convective cores. H,, diverges towards the centre of a star and therefore low mass
stars (= 1.2Mg — =~ 2.0My) will show an extreme mixed area on the main sequence.
With f,, = 0.02, the mixed region of a 1.3M, star is &~ 7 times more massive than
the CZ. Since mixing is essentially instantaneous this directly translates into an
increased main sequence lifetime by a factor of 7 (see Fig. [4.25)).

One way around this problem is to use a mass dependent overshooting parameter.
Claret & Torres| (2016} [2017)) found a linear trend with mass for their overshoot-
ing parameter by matching observations of eclipsing binaries with 1D models and
confirmed it in consecutive papers (Claret & Torres), 2018| 2019)). They identified
the critical mass range to be 1.2 — ~ 2.0M,. The mass dependency is, however,
challenged by other groups that do not see such a strict relation, mostly because
the error bars on the estimated overshooting parameters are too large to make any
qualitative statement (see, e.g., Deheuvels et al., [2016; |Constantino & Baraffe, [2018;
Stancliffe et al. 2015]).

Another way to limit the overshooting to realistic values is to restrict the mixed
region based on the extent of the CZ ARc¢y itself. Theoretical estimates of the
energy budget by [Roxburgh| (1992) defined an upper limit of the overshooting area
of less than 0.2ARcyz in the limit of vanishing convective cores. [Magic et al.| (2010])
introduced a more general limit by replacing H), with }EIp in where ﬁp is defined

12



as

2
Afcy ) (2.13)

H, = H, -min |1, < oM,
Overall this approach gives good agreement with cluster ages (Magic et al., [2010)),
but seems to be too restrictive in the region around 2Mg (Higl et all 2018).

So far the overshooting descriptions were only used to quantify the chemical mixing
across convective boundaries. Mixing by dynamical effects, however, also carries
some convective energy. This will also lead to an energy transport by convection
in the stable layer, which will alter the temperature gradient there. [Bohm-Vitense
(1958) assumed that these changes to the temperature stratification are negligible
and therefore the radiative temperature gradient should be used in the overshooting
region.

Zahn| (1991)) describes the situation differently. He divides the mixing at convective
boundaries into two regimes. In a region beyond the formal Schwarzschild boundary
the convective flow is still very efficient in transporting heat even though the radiative
diffusion would already be able to transport all the energy. In order to keep the
energy balance, radiative diffusion needs to be limited, which is done by increasing
the temperature gradient to an almost adiabatic one. This is what he calls the
penetration regime. Further away from the convective boundary radiative diffusion
finally takes over the energy transport, since the convective flow is no longer efficient.
The convective flow, however, can still mix elements without altering the temperature
stratification. This is what he calls overshooting, in agreement with our 1D models
where the overshooting region is set by f,, and only influences the mixing of elements.
In simulations of red giants Viallet et al.|(2013) indeed identified such a penetration
layer, where V > V,.q4. It is, however, difficult to make a reliable prediction from
these kind of simulations, because they do not cover a thermal timescale, which is
needed to adjust the temperature stratification based on the energetic and structural
changes due to convection.

Penetration layers have also been found in simulations of the solar envelope (Korre
et al., |2019), and in stellar evolution models that are using one dimensional averages
of the hydrodynamical equations instead of MLT (Li, [2017]).

This makes it necessary to distinguish between the convective region defined by the
Schwarzschild boundary, and the mixed region defined by the composition gradient.
The latter one provides the fuel for the nuclear burning that drives convection.
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2.3 Internal Gravity Waves

Internal gravity waves (IGW) have already been introduced in as one of the
mixing processes at convective boundaries. Here their properties and diagnostic
character are discussed in more detail.

IGWs are produced if a mass element is displaced in a stable stratification. buoyancy
will accelerate the mass element until it reaches its original position, but its inertial
momentum will move it beyond its initial stable position. Now Buoyancy will work in
the opposite direction. The mass element will first decelerate, then accelerate towards
the stable position and finally overshoot. This process repeats with the mass element
oscillating around its stable position. This gives IGWs a characteristic frequency,
called the Brunt-Viiséla, or buoyancy frequency N which can be calculated based
on the gravitational acceleration g
9éT S
¢ H, (Vad \Y% e vy) . (2.14)
Here V,, = dlnp/dInp is the molecular gradient and £, = 0lnp/0Inp|r,; & =
Olnp/0lnp|,r; & = dlnp/0InT|,, are quantities derived from an equation of
state (EOS).

Displacing a mass element in the direction of gravity, will lead to a wave with
frequency w = N. If the mass element, however, is displaced at an angle © with
respect to gravity, one finds

N2 =

w=Ncos(0)=N LA

=N—"———r, (2.15)
’k:” + k1

where k| and k) are the wave vectors parallel and perpendicular to the gravity
vector, respectively.

Therefore N represents an upper limit for the frequency an IGW can have. From
2.15] one can see that one characteristic of IGWs is that their phase velocity
(vph = (w/ k|?) - k with k = k| + k1) is perpendicular to their group velocity
(vgr = Vi w, where Vy, is the gradient operator with respect to k). This makes it
possible to distinguish IGWs from pressure waves.

N? can also be used to characterize the stability of a layer. N? > 0 represents a
stable layer, while N2 < 0 is convectively unstable, i.e., no IGWs are allowed inside
of CZs.

IGWs can be found in many geophysical circumstances. For example, they have

been found to be of importance for the mixing of deep ocean layers (Mashayek et al.,
2017) as well as the quasi-biennial oscillation in the stratosphere over earth’s equator
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(Baldwin et al., |2001; Couston et al.l 2018).

They are also created at every convective boundary inside a star. One characteristic
of a stellar stratification is that there exists a maximum in N2, creating a cavity
between the surface and the core to trap IGWs (Tassoul, |1980; [Smeyers & van Hoolst,
2010). Since IGWs get reflected once their frequency matches the Brunt-Vaisala
frequency, standing g-modes can be excited inside those cavities. Thus g-modes
can be observed as brightness oscillations at the surface of stars. An asteroseismic
analysis of these oscillations allows one to probe the deep interiors of stars, where
the g-modes propagate.

Pedersen et al.[(2018) showed that a careful analysis of the observed spectra allows to
distinguish between different mixing profiles around convective boundaries proposed
in the literature (see . However, the observational data is not good enough yet
to give a fully conclusive answer.

IGWs are also the only diffusive mixing process described in [2.2] which gives them
the power to produce a continuous entrainment across convective boundaries if the
diffusion constant is large enough. While this has not been confirmed so far, [Rogers
& McElwaine| (2017) proposed that diffusive mixing due to IGWs is able to transport
heavier elements from the deep interior to the surface of stars. |Baraffe et al. (2017)
also relate the lithium depletion in F stars to such an additional diffusive mixing
component.

So far, only linear IGWs have been considered, but non-linear effects are expected
to play a major role in stellar evolution, because the amplitude of IGWs scales as
o p~ Y2 In a 3.5M star this implies that the amplitude of a wave generated at the
boundary of the convective core increases by 5 orders of magnitude until it reaches
the photosphere. This is somewhat counteracted by damping of the wave due to
radiative diffusion, but it is very likely that some waves cannot be treated in a linear
fashion throughout the star (Ratnasingam et al., 2019)).

If the amplitude gets too large, IGWs break and deposit their energy and angular
momentum into the surrounding medium. Fuller et al. (2015) therefore propose
that IGWs, produced in convective burning shells, can spin up stellar cores. This
would reduce the tension introduced by observations of the ratio of core to envelope
rotation rates in red giants that does not fit the predictions by stellar evolution (see,
e.g., Cantiello et al., [2014)).

Breaking IGWs might also be responsible for strong outburst in pre-supernova models
(Fuller, [2017)), which would strip the star from its remaining hydrogen envelope and
create a possible candidate for a type Ib supernova.
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2.4 Entrainment

Atmospheric and oceanographic sciences have a different approach towards the
overshooting problem. They found that convective motions transport mass at a
constant rate over a convective to stable interface. The entrained mass is then
quickly distributed over the CZ. A composition or density interface at the convective
boundary is therefore shifted outwards, which can be interpreted as a continuously
growing CZ.

Tracking the position of the composition interface r;, one can define an entrainment
rate ue, = dr;/dt = const. (see e.g., Turner, |1986]).

Dimensional arguments and experiments (see, e.g., Deardorff et al.| |1969; [Turner,
1986 Hannoun et al., [1988]) suggest that the entrainment rate depends on the stiffness
of the boundary, i.e., on how stable the stable layer is compared to the convective
one. A measure for that is the bulk Richardson number Ri,, which compares the
difference in buoyancy across the interface Ab with the typical size L and speed vy

of the convective motions ABL
Ripy = —- (2.16)

rms

The buoyancy jump Ab is defined as an integral of the Brunt-Vaisila frequency N
over the width of the interface d;

ri+d;
Ab = / N2dr. (2.17)

ri—d;

As |Arthur et al.| (2017) point out Ri, can also be interpreted as the effect of
stratification on the smallest turbulent motions down to the Kolmogorov scale.

The mixing speed is generally found to depend on Rip as a power law. Following,
e.g., Turner| (1986) the dimensionless entrainment coefficient £ can then be defined
as
Uer

E:

= ARi," (2.18)
Urms

where A and n are parameters that need to be calibrated. Typical values for n range

from ~ 1 to ~ 1.75 (see, e.g., |Linden, [1975; Fernando & Long}, 1983 Fernando et al.,

1989). In geophysical studies the normalization constant A is generally found to be

in the order of 0.1 (Stevens & Bretherton, [1999).

Recently agreement with such an entrainment law has also been found in the

stellar hydrodynamical context. Meakin & Arnett| (2007) were able to extract an
entrainment law for a oxygen burning shell, as well as in a model of a 25M; main
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Figure 2.2: Spherically averaged N? profile of a 3.5 M, star taken from the ImHrk
simulation.

sequence star. They inferred A = 0.027 + 0.38 and n = 1.05 + 0.21 in agreement
with geophysical studies. Similar results were found by |Cristini et al.| (2017) for the
case of a carbon burning shell, as well as in |Gilet et al. (2013) for a 15M; main
sequence star.

The inferred entrainment rates, however, are enormous, considering the long evol-
utionary timescale of stars, e.g., the simulations by |Gilet et al.| (2013) found that
the CZ entrains matter at a rate of ~ 3.5 - 10?2 g/s. Over the typical main sequence
life time of a 15 M, mass star of roughly 10 Myr the convective core would then
grow by almost 6000 Ms. The convective core would therefore quickly consume the
whole star and evolve homogeneously afterwards. Such a behaviour is, however, not
observed. This result makes it clear that entrainment needs to stop eventually when
long timescales are involved.

In general, N? increases with increasing distance to the CZ (a typical stellar
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profile can be seen in Fig. . An entrainment process that shifts the convective
boundary outwards without altering the remaining stellar structure would therefore
continuously increase the stiffness of the boundary. One could imagine that the
entrainment rate therefore rapidly drops to a negligible value.

In the setups considered in this study a typical convective boundary interface has a
width that corresponds to 1/100th of the star’s radius. N? close to the convective
boundary is approximately 1/10th of the maximum N2. Thus we can estimate a
maximal Ab. In the worst case scenario where N2 = N2__ throughout the star and
the integration length corresponds to the stellar radius one finds that Ab cannot be
larger than 1000 times the initial Ab. Using n = 1 as found by [Meakin & Arnett
(2007) and assuming that the convective velocity and L stay constant during the
entrainment process, one finds that the entrainment rate can, at most, drop by a
factor of 1000 regardless of how far the convective boundary has moved.

Using the Gilet et al.| (2013) results this still corresponds to an entrainment of
6 Mg over the main sequence lifetime. Even this lower limit of entrainment is still
unrealistically large, which means that the increasing boundary stiffness cannot be
the only process that stops entrainment.

Looking back at the different mixing processes at convective boundaries described
in [2.2]it can be expected that all processes except for IGWs will only mix matter up
to a certain distance from the Schwarzschild boundary. The size of the mixed zone
is therefore set by the farthest mixing process. In order to extend the mixed zone,
the Schwarzschild boundary itself needs to migrate. Hence a continuously growing
mixed zone given by the entrainment law needs to entrain entropy at the same time.
The energy required to entrain entropy has to be provided from convection. However,
one would expect that the amount of convective energy decreases with the distance
to the convective boundary, as radiation begins to dominate the energy transport.

The energy argument can also be expanded to the chemical mixing, where mixing
of buoyant matter into the CZ requires energy to overcome the counteracting
buoyancy force.

Indeed, [Linden| (1975)) showed that the entrainment rate depends on how much
kinetic energy is available to overcome buoyancy at the interface. He argued that this
requires n =~ 1, but also showed that the available kinetic energy is not necessarily
the energy that has been put into the system, since dissipation and radiative diffusion
transform and transport a fraction of the available energy as well. The energy carried
away by IGWs is also lost for the entrainment.

Similarly |Jones et al| (2017) and Andrassy et al.| (2018]) were able to show that the
entrainment rate scales with the luminosity input into the convective zone in stellar
environments as well.

It is important to not that all these studies either neglected radiative energy transport
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or were not able to cover thermal timescales in their simulation. This, however, is
necessary in order to establish an energy balance.

Considering the effects of radiative energy transport one would expect that
entrainment stops as soon as a balance between the entrainment of entropy and
buoyant matter, and the radiative energy transport that tries to restore the entropy
gradient has been found. This happens on a thermal timescale, which is usually
orders of magnitude longer than the convective timescale that we can simulate (see
52).

Therefore one can argue that entrainment is limiting the speed of overshooting,
but provides very little information about the actual extent of the mixed region on
timescales longer than the thermal timescale. |Spruit| (2015)) used a similar argument
in order to get an upper limit for the overshooting of a convective helium burning
core.

If the evolutionary timescale, however, becomes comparable with the entrainment
timescale it needs to be considered as well.
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Chapter 3
Low Mach Number Hydrodynamics

Convection in stellar interiors is predicted to be extremely subsonic. The treatment of
such low Mach number flows in hydrodynamic simulations requires special techniques
in order to do long term simulations that cover a significant amount of convective
turnover times. Such simulations also react considerably sensitive to changes in the
initial setup.

In this chapter we will introduce the necessary tools and methods in order to perform
simulations in the low Mach number regime and to set up a proper initial state based
on 1D stellar evolution models.

3.1 Euler Equations

In it was established that the typical size of a convective blob has the size of
a pressure scale height. This is much larger than the mean free path of a single
gas particle inside of stars. It is therefore safe to assume that the gas behaves as a
continuum and that individual particle motions can be neglected.

Furthermore, stellar interiors only have a tiny viscosity, e.g., the timescale for viscosity
to influence the velocity distribution inside the Sun is of the order of 10?? s, much
longer than the age of the Universe. It is therefore safe to assume that viscosity
can be neglected in simulations of stars. In fact, the numerical viscosity of a grid
based hydrodynamical scheme is always orders of magnitudes larger than the actual
viscosity of stellar interiors. Therefore, it is not necessary to include an explicit
viscosity into the code. This allows the usage of the Euler equations in stellar interiors
to simulate motions inside of stars.

The Euler equations can be written as the conservation of mass, momentum, and
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energy in the following form

dp
9 _ 1
5 + VpU =0 (3.1)
OpU
% +V(pU -U) + Vp = — pge, (3.2)
OpE .
% + YV (pUE + pU) =V(sVT) — pg(U - €,) = 3 pagon + pHest,  (3.3)

k

here p, t, U, and p are density, time, velocity, and pressure respectively. g stands
for the gravitational acceleration and e, is the unit vector in radial direction.
E = U -U/2+ Ejy is the specific total energy, where Ej is the internal energy of the
gas with opacity k at temperature T'. For each species k& we include the abundance
changes w; with the respective heating rate q;. Heyt stands for an external heating
source.

The right hand side of is equal to 0 indicating that no mass is added or lost.
The momentum equation [3.2 has a simple source term on the right hand side due to
the gravitational acceleration in direction e,.

Equation describes the evolution of E and contains contributions from all
different physical effects considered in our simulations. The first term on the right
hand side gives the energy transport due to radiation depending on 7" and x in the
diffusive approximation. The diffusive approximation is only valid in an optically
thick regime. In stellar interiors this is always fulfilled.

The second term covers the potential energy due to gravity and the last two terms
introduce heating sources due to reactive heating of each species k and due to
external sources Heyt.

3.1.1 Microphysics

The Euler equations as given in - need to be supplemented by a set of
microphysics modules. This includes a way to obtain realistic opacities, a nuclear
reaction network to follow ¢ and abundance changes wj, of each species k, as well as
an equation of state (EOS), providing a relation between p, p, and T

The MAESTRO simulations produced for this study use the Helmholtz EOS
(Timmes & Swesty, [2000). This EOS includes effects of radiation, ionization,
degeneracy of electrons and Coulomb corrections in a semi analytical tabulated
form. In order to obtain thermodynamically consistent results while interpolating
in the EOS table, all thermodynamic quantities are computed as derivatives of the
Helmholtz free energy, hence the name of the EOS.

The Helmholtz EOS as provided by [Timmes & Swesty| (2000) includes routines to

22



compute the pressure and all other thermodynamic quantities for a given density p,
temperature T, mean atomic weight A and mean charge Z. In it will becomes
clear that it is sometimes necessary to call the EOS with different input quantities.
When, e.g., the enthalpy h has been updated, creating a thermodynamical consistent
state requires to call the EOS with h as an input quantity instead of p or T. The
Helmholtz EOS has no interface for this, but it is possible to create one based on the
provided routines. First one checks whether the old values of p and T still reproduce
the updated h. In case this does not match, the EOS provides all thermodynamic
derivatives necessary to construct a Newton-Raphson iterator that will find a pair p,
T that corresponds to the updated h. The accuracy of this iterator is usually set to
10713,

The simulations follow three species. 'H, *He and a CNO element, the latter
representing a combination of all elements involved in the CNO cycle of hydrogen
burning. The atomic weight and charge of the CNO element is defined as 14.87 and
7.43 respectively. These values are based on the atomic weight and charge of C, N,
and O and their respective abundance ratios in the solar composition.

Hydrogen burning is a slow process lasting millions to billions of years, while the
longest simulation in Chap. [ extends for only = 6 years. During that time only
a negligible fraction of hydrogen would be burned. It was therefore decided not to
follow the abundance changes due to reactive burning. wy in [3.3]is then set equal
to zero, which makes the simulations computationally cheaper since no network
calculations need to be done.

Nevertheless it is necessary to include the energy release of the nuclear burning into
the simulations in order to drive convective motions. The nuclear heating term is
based on hydrogen burning equilibrium rates for the pp (Hpp) and the CNO (Hpo)
cycle, according to Kippenhahn et al. (2012).

Hyp = 2.57 - 10%) fgpppX Ty */° exp (~3.381/7y°)

(3.4)

gpp = 1+ 3.82Ty + 1.51T% + 0.144T3 — 0.0114T¢ (3.5)
Heno = 8.24 - 105 gnopXeno X Ty 2% exp (—15.231T9‘1/3 - (T9/0.8)2) (3.6)
Geno = 1 — 2.00Ty + 3.41T5 — 2.43T¢, (3.7)

where X and X¢ono are the abundances of hydrogen and the CNO element re-
spectively and Ty is the temperature in units of 10° K. f and % in are the
shielding factor and a correction factor for energy branches in different branches of
the pp-cycle respectively. f accounts for the shielding of the potential of hydrogen
atoms by nearby electrons which increases the probability of a reaction between
two 'H atoms slightly. The influence of electron shielding decreases with increasing
temperature, i.e., f = 1. 1 ranges from 1 to 2 and effectively describes how many of
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the slow 'H 4! H reactions are needed to create one *He. f and v are set equal to
one for all simulations in this study. Overall the energy production of the pp-chain
is underestimated, but for the models in this study the CNO cycle produces > 97%
of the energy input anyway.

The nuclear heating computed from [3.4] and [3.6] is formally included as an external
heating source in the simulations. It therefore corresponds to the last term in

The opacities necessary for the diffusive energy transport by radiation are taken
from the analytic stellar opacities provided by [Timmes| (2000). This is a combination
of the analytic expressions for hydrogen-free and hydrogen-containing compositions
by [Iben| (1975)) and |Christy| (1966)) respectively. It also contains contributions from
Compton-scattering based on |Weaver et al.| (1978]).

3.1.2 Spatial Discretisation

The Euler equations are continuous functions in space and time. In order to solve
the system of equations on a computer they need to be discretised. In this work we
use the finite volume method, where equations [3.1] - [3-3] are discretised on a regular
Cartesian grid. Each cell of the three dimensional grid can be associated with a
coordinate of the form x; ;. The conserved quantities of the system are saved for
each cell. In the finite volume method the saved values represent integrated values
over the whole cell, normalized by the cell volume. The quantity f; can then be
written as

Tit1/2,5,k Ti,j+1/2,k Lij,k+1/2

fi= AmAlw / / / f(x,y, 2)dzdydz (3.8)

Ti—1/2,5,k Li,j—1/2,k Ti,j,k—1/2

where Ax = xi+l/2,j,k — xi*l/Z,j,k? A’y = xi’j+1/27k — xi,j*l/?,k? and Az =
T jk+1/2 — Tjjk—1/2 are the width of the cell in each dimension.
To second order the averaged value is equivalent to an evaluation at the cell center.

The advantage of finite volume schemes is that they are conservative by construc-
tion, i.e., that the quantities conserved by the Euler equations (mass, momentum,
energy) will be conserved down to machine precision level on the grid level. This is
possible, because the value associated with each cell can only change due to fluxes
through the cell surfaces.

Computing these fluxes at cell interfaces x; /o ;1. etc., however, is not trivial, because
it requires knowledge about the value of the conserved quantities at these interfaces.
The easiest way to get the interface values is to assume that f(x;_1/2j%) = f(%ijx) =

f(xi—i-l/?,j,k)' This also means that f(l'i—‘rl/Q,j,k‘) = f($i+17j7k) = f($i+3/2,j,k)7 which
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is a problem because now there are two independent values for f(z;;1/2 ;). These
values which will be called f; and fr in the following, as one is constructed ap-
proaching the cell interface from "the left" and one from "the right". In general, f,
and fr do not agree with each other, which can be interpreted as a discontinuity in
the function f(z). This defines a Riemann problem at each interface, which needs to
be solved in order to get a consistent scheme.

The Riemann problem is one of the few problems in hydrodynamics that has an
analytic solution. However, such Riemann solvers require Newton-Raphson itera-
tions (see, e.g., Toro, [2013). Most hydrodynamical codes therefore use simplified
approximate solvers.

One possible approximate Riemann solver for the Euler equations can be constructed
in a two step process. First the velocities on the interface U%f‘/% are reconstructed,
where the following approximate Riemann solver is used

0, (UMAC < 0 AND UMAC > 0) OR [UMAC + UNAC| < ¢
MAG = S UMAC MAC | JMAC 5 (3.9)
UNAC UMAC L UMAC <.

All other quantities f(2;11/2,%) are obtained from the solution U}ff/%

7

0.5 (fL + fr), ‘Ul\ﬁfg‘ > €

f(@iz1/2,5%) = 9 fr, Z-l\ff/% >0 (3.10)
IR Zl\ﬁ/% <0

The order of accuracy of a spatial discretisation depends on how accurately one
can reconstruct the interface states fr and fr. A commonly used reconstruction is
the so-called piecewise parabolic method (PPM) (Colella & Woodward, [1984), which
fits the cell centred data with a parabolic profile and reconstructs the interface value
based on that. Constructing a parabola requires the use of the two neighbouring
cells in each direction, which makes it necessary to include some ghost cells at the
edge of the computational domain. Reconstruction via PPM leads to a scheme that
is second order accurate in space.

3.1.3 Temporal Discretisation

Hydrodynamical simulations require that equations - are integrated in
time. Numerically this needs do be done in a discrete way, whereby the in-
tegration is split up into timesteps t"*! = " + At. The time increment At has
to be chosen such that all physical processes are resolved and that the system is stable.
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Considering a differential equation of the form

dft) _
—a = Ff), (3.11)

one can easily approximate the left hand sight as a difference quotient

df(e) - pm
dt At

where f* = f(t) and f"t! = f(t + At).
Combining equations and it is trivial to solve for the updated f"+!

(3.12)

= f e AR (" 1), (3.13)

This is the so-called explicit (or forward) Euler method. It approximates the integ-
ration solely based on data from the previous timestep and converges with second
order accuracy.

A linear stability analysis shows that such a scheme is only stable if it resolves the
fastest propagation of physical information on the grid associated with a propagation
speed Csignal. Over a distance Az, At is then restricted by the Courant-Friedrichs-
Lewy (CFL) condition (Courant et al.l 1928)

Ax

At < CFL : (3.14)

Csignal

where CFL is a scaling factor < 1. which, depending on code and personal preference,
is usually taken between 0.3 and 0.9.

In most hydrodynamical simulations the dominating signal speed is a combination of
soundspeed c¢g and flow velocity u = |U|

Az
cs+u’

At < CFL (3.15)

Another way to obtain a second order time discretisation is to compute f"*! based
on f* and f"*1. The resulting discretisation is then called implicit (or backward)
Euler method

= At BT . (3.16)

It can be shown that such an implicit method is not limited in the size of the
timestep any more. However, these methods are computationally expensive, since
they require in every timestep an inversion of a matrix in order to solve the linear
system. Depending on the problem size this is a very expensive computation, not
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only in terms of computing time, but also in terms of memory consumption.

It is also possible to combine explicit and implicit methods. A predictor-corrector
integrator (also known as Heun’s method) increases the accuracy of the explicit
Euler method, by combining it with the trapezoidal rule of integration. First one
evaluates the function F' and performs an explicit Euler step (predictor) to obtain
an intermediate state f?*1*. Then f"*1* is used to evaluate the function again.
Combining the new evaluation of F' with the initial one with the trapezoidal rule
(corrector) then gives a second order accurate estimate of f*!. The scheme can be
written as

fn—i—l,* :fn + AtF(tn,fn) (317)
pret = SR P+ e ) (3.18)

Higher order methods using even more steps can improve the accuracy and order
of the time integration. One family of multi step integrators are the Runge-Kutta
integrators (Runge, [1895; Kuttal [1901). The most famous one is the RK4 method,
which advances the simulation with 4 intermediate evaluations of F'. Each evaluation
is depending on the previous one. The final update is then constructed from the
intermediate states as

1 1 1 1
fn-l-l :fn+6kl+§k2+§k3+6k4 (319)

ki = AtF (tn, f(tn))
ks = AtF (tn + g,f(tn) +

o[ F oo

At
ke = AtF (tn + 7,f(tn) +
y f+3)
ka = AtF (t, + At, f(tn) + k3) .
The RK4 method is a 4th order accurate method. While the timesteps of Runge-
Kutta methods are still restricted by the higher accuracy can help to smooth

out numerical problems. This effect can be seen in [3.5.3| and will be discussed in
more detail in

3.2 Timescales

The problem of stellar evolution is a problem of timescales. The nuclear timescale
dictates lifetime and evolutionary speed of a star and can be estimated from the
amount of available nuclear fuel and the stars luminosity L as

Enuc
nuc — 2
T T (3.20)

27



For a 3.5M¢ mass star this gives a main sequence lifetime of the order of 100 Myr.
In it was discussed that the energy transport in convectively unstable regions
in stars is mainly due to convective motions. The convective turnover time 7cony is
therefore an estimate of the timescale on which energy transport occurs. It can be
defined as the time a convective element with a typical velocity vy, takes to cross a
CZ of thickness rcz and to return to its original position

2r
Teomy = —22 (3.21)

Urms

In a 3.5Mg mass star MLT predicts convective turnover times of a few months in its
core.

The 89 orders of magnitude difference between 7Teony and Ty shows that it is
currently computationally impossible to follow the complete evolution of a star while
also resolving convective motions.

The problem gets even worse, when one wants to do hydrodynamical simulations,
where the timestep is restricted by the soundspeed ¢, (see . This can also be
associated to a soundcrossing timescale

Tsound = TCJ (322)
Cs

According to MLT, the expected convective motions in stellar interiors have Mach
numbers of the order of 107 in early burning stages and up to 1072 in later burning
stages. This means that a Tyounqg resolving simulation of a convective hydrogen
burning zone that is resolved by 100 grid cells needs ~ 10° timesteps to cover a
convective turnover time. Therefore it is computationally not feasible to simulate
stellar interiors over a large number of convective turnovers.
However, |Arnett et al. (2009) showed that it is necessary to compute several con-
vective turnover times while convection is fully developed in order to make reliable
predictions about the mixing at a convective boundary. Even worse, establishing a
convective state might already take a few turnover timescales. The long timescales
of stellar evolution also result in the fact, that even very small effects in terms of
mixing can have a huge impact on the stellar structure itself (Andrassy & Spruit,
2015). In order to study small effects long running simulations are needed.
Implicit methods can overcome this timestepping problem since they are not
restricted by the CFL condition (see . It is, however, computationally more
efficient to modify the Euler equations such that sound waves can be ignored. These
soundproof methods are introduced in and allow one to perform the desired
simulations over several turnover timescales.

One can define many different timescales between 7young and mmue. Two noticeable
ones are the Kelvin—Helmholtz timescale 7k and the buoyancy timescale Tprunt.
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Tk is defined as the ratio of available potential energy to the luminosity of a star
(see, e.g., Kippenhahn et al., [2012)

Egrav _ 3GM?

: s (3.23)

TKH =
where M and R are the mass and the radius of the star, respectively. 7y describes
the timescale on which a star evolves if nuclear burning suddenly stops. It can also be
interpreted as the stars reaction time to changes in its internal energy budget. This
becomes important when the effects of penetration (see[2.2)) on the stellar structure
are analysed. For the Sun one finds gy ~ 107 yr, i.e., Tk > Teony Which currently
prevents thermally relaxed simulations in this regime.

One can also define a timescale for IGWs. A mass element that is displaced in a
stable stratification will start to oscillate due to buoyancy with frequency N (see
. One possible way to define 7y,unt is to use the period of this oscillation

1
Thrunt — N (324)

In stellar interiors one often finds 7Teony > Thrunt > Tsound, Which makes it difficult to
properly resolve IGWs with soundproof methods (see |4.3)).

3.3 Sound-proof Methods

Even though the implicit methods discussed in section [3.1.3] are not restricted in
their timestep size, they are rarely used to avoid the problem of timescales, as they
are very expensive and tend to have convergence problems if too large timesteps are
used. It is also challenging to set up a scheme that provides the correct flows in a
low Mach number regime (Miczek et al., [2015).

The so-called sound proof methods avoid the problem of resolving 7younq by decoupling
pressure and density in the Euler equations. This effectively prohibits sound waves
from developing, i.e., they do not have to be considered in the timestep constraint of
explicit methods any longer. The new CFL condition is then

A
At < CFL=2, (3.25)
U
which leads to a potential speed-up of 10* in the case of core hydrogen burning.
In order to remove sound waves from the Euler equations, one needs to decouple
the pressure and density in the momentum equation The simplest way to

do this is the so-called Boussinesq approximation (Boussinesq, [1903)), where one
assumes that density is kept constant during the simulation. With a constant density
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there obviously can be no coupling between pressure and density and sound waves
disappear. In the Euler equations one can then ignore all time derivatives with
respect to p. The mass conservation equation [3.1]is then reduced to

VU =0 (3.26)

Codes that uses the Boussinesq approximation always need to fulfil this constraint
for their velocity fields. This is a good approximation for very low Mach number
flows, but ignores all effects due to compression of matter. It is therefore also called
incompressible hydrodynamics.

In order to gain some of the compressibility back, while still removing the sound
waves, one can write [3.2]in a dimensionless form. Dimensionless quantities are defined
as T = %ef, where z,¢f i a characteristic value of that quantity. can then be
written as

apU
ot

1 Lref

V(pU - U —
+ Vi )+ Ma? H,ot

V( Po) =

Ma 32 (ﬁ - IONO)ger (3'27)
where a horizontally averaged background pressure pyp = (p) and density py = (p)
are introduced. Ma, Lo, and Hye are a characteristic Mach number, length and
scale height, respectively.

Assuming that Ly = Hyer implies that the density perturbations (p — po) as well
as pressure perturbations (p — pg) are of the order Ma?. In this so-called anelastic
approximation it is therefore only possible to track small perturbations in density.
In fact, it turns out that all thermodynamic quantities can be treated as small
perturbations on top of a constant background state. Similar to the Boussinesq
approximation a restriction on the divergence of the velocity field can be defined as

VpU = 0. (3.28)

To allow for even more compressibility one needs to adjust the characteristic length
scales according to the problem. Following the pseudo incompressible approximation
by Durran| (1989) one can relate the typical timescale of the flow t,e¢ to the buoyancy
force tpof = I%fo = %. This implies a typical lengthscale of L. = UretUret | Ty
addition to that one can assume that in a low Mach number flow, the pressure is
quickly equilibrated by sound waves. It is therefore possible to set the typical pressure

CS ref

as Prof = prefcs rof- Lhis gives a typical pressure scale height H,ef = pp“’f =
On the right hand side of equation [3.27 one can then see that this choice of scales
leads to ]\/1[2 ffef = 1. Thus in order to fulfil equation pressure fluctuations
7 = p — po have to scale with = ~ Ma? in the low Mach number limit. It is therefore

reasonable to ignore these small fluctuations in all equations except in the momentum
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equation. This is the assumption that will decouple pressure and density in this set
of equations.

In contrast to the anelastic approximation there now is no restriction on the
density perturbations any longer, which in theory allows to also simulate expand-
ing/contracting systems that build up density variations of finite amplitude over
time as long as the pressure perturbations stay small.

In order to get a constraint on the velocities analogous to the one in the previous
methods, one needs to linearise the EOS and incorporate it into the system of
equations.

Following Almgren et al.| (2006a) an EOS of the form p = p(p, T, X)) can be linearised
as

Dp 1 (Dp
Dt

D= — —pr - pkak> (3.29)

where D/Dt = 0t + U -V and p, = dp/0p|x, 1, pr = Op/0T|x, p, and px, =

8p/ 0X k’T,p‘
In order to obtain DT'/Dt one can rewrite Eq. in terms of the specific enthalpy
h =e+p/p, where e = E — UU /2 is the specific internal energy of the fluid

p—r — 7 = V(tVT) =Y pgry + pHexi := pH. (3.30)
k
Similar to one can now also differentiate Dh/Dt

Dh DT Dp
“ o n h h - 2P, 31
PDi p<TDtJr th+Z ka’“) Dt+ (3.31)

where hp = 0h/OT |y x, , hyp = Oh/Op|T x,., and hx, = Oh/0Xy|, 7. DT /Dt is then

DT 1 Dp
E — phiT <(1 — php thkak —+ pH> (332)

Dp/Dt can be derived from as

Dp

— = —pVU. 3.33

D = P (3.33)
According to the scaling assumption made before, it is possible to replace p with pg.
Dp/ Dt then simplifies to UVpy. With this transformation one gets an initial version

of the new constraint on the velocity field by combining equations [3.29] [3.32], [3.33]

1
VU + aUVpg = L};}f (pH pz hpwk> + prkwk] =9 (3.34)
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here « is defined as

—(1 = phy)pr — phy _ 1
p2hppp Tipo’

a(p,T) = (3.35)
where I'; is the first adiabatic index of a general EOS. The exact derivation of this
last equality can be found in the appendix of |Almgren et al.| (2006a)). Equation m
can be simplified by introducing a function Gy(r) that describes the stratification of
the background state

e [ [P0
Bo(r) = B(0) p<0 Fl(r/)po(?"’)d ) (3.36)

It should be noted that Vpgy(r) can be replaced with —pg(r)g(r) if the state is in
hydrostatic equilibrium. In that case the normalization §(0) can be expressed as
the density at the origin 3(0) = po(0). The derivation of By(r) can be found in the
appendix of |Almgren et al. (2006a)).

Using Eq. [3:36] [3.34] can be written as
VAU = oS (3.37)

3.4 MAESTRO

MAESTRO is an open source hydrodynamics code and was introduced in a series of
papers |Almgren et al.| (2006alb, [2008)); Nonaka et al.| (2010). It uses a generalized
version of the pseudo incompressible approximation (Durran, 1989) to remove sound
waves from the simulations. As discussed in [3.3] this has the advantage that it does
support the evolution of large scale density and temperature perturbations and only
pressure fluctuations need to be assumed to be small.

MAESTRO solves the following system of equations combining equations [3.2

8-37 B.3} and 3.1}

% +VpU =0 (3.38)
o(U) Boom™  (p—po)
—— 4+ pUVU =—V— — ——"ge 3.39
P=or TP >V 5 L ger (3.39)
Dh  Dp .
i " Dt =V(kVT) — zk:/)%wk + pHext (3.40)
VBoU =605, (3.41)

where the scaling assumptions of the pseudo incompressible approximation as
discussed in B.3] have been included in [3.27] in order to obtain [3.39]in terms of the
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velocity. From first principles the first term on the right hand side of [3.39] should
look like 1/pVm, but Vasil et al. (2013) has shown that this kind of approach leads
to a system that does not conserve the actual energy of the system. Instead a pseudo
energy is conserved. To correct for that one needs to modify the equation like it
is done in m This energy fix was proposed in |Vasil et al. (2013)) and has been
included into the MAESTRO code in |Jacobs et al.| (2016)).

MAESTRO computes a single timestep in a fractional step method, where first
density, enthalpy, and velocity are advected without taking the velocity constraint
B:37 into account and then the velocity constraint is enforced in a separate step.
The advection is using a second order PPM scheme where the Riemann problem is
approximately solved according to Eq. 3.9 and Eq[3.10} In time it is discretised as a
predictor corrector (PC) scheme as described in
After the advection, the state is forced to fulfil equation [3.37, which also sets the
updated pressure (see Bell et al., [2002)). MAESTRO solves the Poisson equation
of the velocity constraint by a projection method using the AMRex (formerly
boxlib) library (Zhang et al., [2019).

Numerically Eq. [3.37] can be solved exactly. However, in contrast to the Boussinesq
and anelastic approximation, Eq. is non-homogeneous. Solving Eq. exactly
therefore leads to a numerically unstable scheme due to decoupling of the stencil
(see Lai et al., 1993} Rider et al., |[1995).

Almgren et al.| (1996) showed that this is not the case if an approximate projection
method that only solves the constraint down to some given accuracy is used. The
stability and accuracy of an approximate projection depend on the projection
operator that is used. The specific form of the projection used in MAESTRO can be
found in |Almgren et al.| (2000).

Overall the scheme is second order accurate in time and space. More details of the
scheme, including a flow chart, can be found in Nonaka et al.| (2010).

One downside of the fractional step approach is that it makes it impossible to
conserve mass and energy while simultaneously fulfilling the EOS at all times. It is
therefore one of the design choices of MAESTRO to conserve mass and energy, which
means that over time the conserved quantities in combination with the pressure
fluctuations m do not reproduce the EOS any longer. While this drift is rather
slow and relative changes are negligible, it becomes important when temperature
gradients are compared, since those are sensitive to absolute changes (see .

For this study it was found that the PC time integration scheme causes unreal-
istically large velocities in stably stratified regions. The velocities are caused by an
insufficient time resolution of internal gravity waves and can be overcome by redu-
cing the timesteps significantly (see discussion in . Doing so, however, prevents
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us from doing the longterm simulations we are interested in due to the increased
computational cost.
Another way to mitigate this problem is to use a higher-order, multi-step scheme for
the time integration. Bell et al.| (2002) showed that it is possible to exchange the
time advancement before the final projection by any other method. We replaced the
PC method with a 4th order Runge-Kutta (RK) integrator as described in A
flow chart of this new method is depicted in Fig. [3I] In blue we give the updated
quantity in each sub step.
During the RK loop we need to introduce two additional velocities in the scheme. U*
is the updated velocity in each RK step, computed using the reconstructed velocity
at the cell interfaces Uniac. Unmac is forced to fulfil the velocity constraint of Eq.
[3:37, while U* in general does not do that. The advection of density, composition,
and enthalpy uses Upac to compute the respective flows at the cell interfaces. Due
to enforcing the velocity constraint on Uypac in each RK iteration it is no longer
guaranteed that Upac directly corresponds to U¥, i.e., there might be differences
between the advection velocity and the velocity at the cell centres. However, the
projection of Unrac is necessary to maintain the pseudo incompressible approximation
of the scheme.
In each step the temperature is updated using the EOS, i.e., the EOS needs to be
called in an iterative way, as described in

MAESTRO is a purely Cartesian code with an one dimensional background state.
In order to compute spherical stars it is therefore necessary to adjust the scheme,
such that the background state is evaluated consistently with the domain centred
dataset. |Nonaka et al.| (2010)) showed the necessary algorithm to do this in three
dimensional simulations. We extended the scheme to analogously allow for 2D
simulations of spherical datasets as well. The resulting 2D domain then corresponds
to the equatorial plane of a star.

Computing a spherical star on a cubic (quadratic) grid requires special care at the
outer boundary of the domain, which is prone to numerical problems and convergence
errors. MAESTRO provides different options to reduce these effects. In cases where
the radius of the star is smaller than the width of the computational box the corners
of the domain are expected to be empty. Numerical fluctuations in the corners can
then be reduced by reducing the complexity of the equations, e.g., by ignoring all
buoyancy forces. One can also enforce the simpler anelastic velocity constraint from
Eq. 322§ in those areas or even fix the density at a small constant value. In order to
reduce the influence of these simplifications on the rest of the computation one has
to ensure that they are only applied in regions with very low densities.

In this study, we are dealing with a different situation, because due to the large
density contrast in stars it is not possible to fit the entire star in our computational
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Figure 3.1: Flow chart of the modified time advancement algorithm using a Runge-
Kutta integrator. The computed/updated quantities of each sub step are given in
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Figure 3.2: Functional form of the damping function fqamp(r) applied on a constant
velocity.

box at a reasonable resolution. The corners of the domain can therefore not be
considered empty, i.e., we cannot use simplifications of the physics, without introdu-
cing new numerical artefacts. However, without special treatment the corners of the
domain develop spurious velocities due to mapping and averaging errors (see |Gilet,
2012). |Almgren et al.| (2008) therefore introduced a damping function fqamp(r) into
MAESTRO that is used to keep the spurious velocities as small as possible. The
functional form depending on the radial distance to the centre of the domain r is

07 r<rg
faamp(r) = {3 (1 — cos {W%D , s <T <1y (3.42)
17 r Z Tty

where 75 defines the minimum radius where damping is starting and r; — r5 gives the
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distance over which the damping is slowly ramped up.
The strength of the damping is scaled with the size of the timestep and a scaling

factor
U

1+ At’ifdaump '
Fig. illustrates how a constant velocity would be damped by fqamp(r). The

damping is applied before the final projection step. This ensures that the velocity
constraint is fulfilled at the end of each timestep.

Udamp = (343)

In MAESTRO gravity is usually computed based on the background state. This is

similar to using a monopole solver for gravity, but ensures that gravity is computed
in agreement with the spherical geometry.
Cargo & LeRoux] (1994) proposed a well-balancing method to keep a stable strati-
fication stable in a numerical setup. Their method computes the pressure that is
needed to establish a hydrostatic equilibrium (HSE) and then subtracts it from the
actual pressure such that only the perturbations are considered. This is similar
to the treatment of pressure in MAESTRO, which makes MAESTRO simulations
intrinsically well-balanced.

MAESTRO has a few additional features that are worth mentioning but are not
used in this study, since they are either not suited for the performed simulations or
computationally too expensive for the specific cases discussed here.

For setups that expand (or contract) significantly during the simulation time, a static
background state is not a good approximation. Especially since the background is
used to calculate the gravitational acceleration one would expect that an evolving
background state gives more reliable results. |Almgren et al. (2008) introduced such
an evolving background state into MAESTRO, where the background is evolved
according to spherically averaged radial velocities. However, it is still required that
the background state is in HSE, which needs to be enforced at all times.

To allow simulations over a large range of scale heights, Nonaka et al.| (2010) ex-
tended the algorithm with an adaptive mesh refinement. This allows to focus the
computational resources on one or more specific regions, while the remaining parts
of the domain are computed at coarser resolution.

MAESTRO also has a flexible interface for nuclear reaction networks, which makes
it easier to switch to arbitrarily large reaction networks. It is also possible to change
the type of network integrator easily.
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3.5 Code Verification

In this section the low Mach number properties of MAESTRO are tested. The PC
integrator has been established and has proven to give reliable results (Jacobs et al.,
2016; |Gilet et al., [2013). The RK integrator needs to be compared with the PC
results in order to see under which circumstances the higher order time integration
performs better. For that purpose four test cases of increasing complexity will be
analysed.

The Gresho Vortex is a pressure stabilized vortex in 2D without gravity. The "test
spherical" setup that comes with the MAESTRO package is a similar setup but in
three dimensions. Including gravity one can look at a stable atmosphere, as well as a
convective zone surrounded by stable layers. In a stable atmosphere the advantages
of the RK scheme will be evident. The latter two tests were performed in 2D in
order to reduce computational cost.

3.5.1 Gresho Vortex

Low Mach number flows require that the numerical scheme has as little numerical
dissipation as possible (Miczek et al., 2015)). It is necessary to follow slow flows for a
long time without the numerics altering the flow’s natural evolution. The Gresho
vortex |Gresho & Chan| (1990) can be used to test such a situation. The Gresho vortex
is a stable flow that should not change over time. It is set up as a 2D dimensionless
circular flow with a tangential velocity U¢ that is first increasing with the distance r
from the domain centre and is then linearly dropping of to zero further out

or, 0<r<0.2
Us=Up-{2—5r, 02<r<04 (3.44)
0, 0.4<r

f]o is the reference velocity. For convenience Ug is set to 1.
The dimensionless pressure P, is chosen such that the flow is stabilized by a pressure
gradient working in the opposite direction:

B2, 0<r<0.2
Po=Py+{%r2+4(1 -5 —1n0,2+1nr), 02<r<04 (3.45)
4In2 — 2, 04<r

where Py can be used to shift the pressure up and down. In an ideal gas where the
ratio of specific heats « is equal to 5/3 the soundspeed c; follows a simple relation

with the pressure
| 5p
= . 3.46
Cs 3p ( )
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Figure 3.3: Snapshots of the velocity magnitude in the Gresho Vortex test for a Mach
number of 10~% after approximately 1, 5, and 10 rotation periods. Results obtained
with the PC and RK method are shown in the upper and lower panels, respectively.

It is therefore possible to use Py to adjust the soundspeed and therefore the Mach
number of the imposed flow.

We performed runs with four different Mach numbers ranging from 10~2 to 10~19
on a grid of 40x40 cells following Miczek et al.| (2015). All runs were able to keep
the vortex stable for several rotation periods (see Fig. , but also did disrupt
the vortex after roughly 10 rotation periods. In fact we find that the results are
completely independent of Mach number, indicating that the pseudo incompressible
approximation holds down to arbitrary low Mach numbers without an increase in
numerical dissipation. |Guillard & Murrone| (2004) showed that this is not the case
for many fully compressible schemes.

The disruption of the vortex starts with a slight sloshing that quickly grows in size
and elongates the vortex significantly (see top right panel in Fig. . It is unclear
what causes this behaviour, especially since the vortex starts to reassemble itself
if the simulation is continued further. The reassembling is clearly caused by the
imposed time-independent background pressure gradient. Therefore, there always is
a force that drives the vortex flow. This, however, does not explain why the vortex
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disrupts in the first place.

It is also important to note that the two integration methods (RK, PC) behave

initially almost identically. The top panels in Fig. show the results obtained with
the PC method, while the bottom panels show the RK method. After one rotation
period one can see that the RK method is initially slightly more dissipative since the
vortex already developed a velocity "shadow". The PC method develops the same
feature but only at later times. When we compare the integrated kinetic energy to
the initial kinetic energy in the system we find that after 5 rotation periods, with
the PC method the flow has lost about 1% more energy than with the RK method
due to dissipation. The overall losses, however are still small and comparable to the
preconditioned results in |[Miczek et al.| (2015]).
The amount of kinetic energy lost per timestep is roughly constant, as it is expected
for numerical dissipation on a static grid. The RK method, however, needs slightly
less timesteps to reach a given point in time, which means that it is slightly less
dissipative in the long run.

3.5.2 Test_spherical

We checked the numerical accuracy of the RK scheme, by comparing it with the PC
scheme in the test_ spherical setup provided by MAESTRO. This setup was used in
Zingale et al| (2009) to demonstrate the exact mapping of initial models.

The setup represents a white dwarf with constant entropy, without perturbations
and heating. The model is created by choosing a central density and temperature
and integrating the hydrostatic equilibrium outwards. During the integration, the
EOS is forced to maintain a constant entropy.

In this test By = pg is fixed. This seems arbitrary but is actually equivalent to the
analytic solution for an isentropic stratification. Without any perturbations and
heating Eq. [3:37] then reduces to the anelastic constraint Eq. [3.28] A constant
background state then implies that the density remains constant at all times
irrespective of the velocity field.

In order to compare the two time integrators we therefore impose a random velocity
field based on a combination of Fourier modes (Zingale et al., 2009).

On a 3843 zone grid, the RK method as well as the PC scheme perfectly keep the
density and enthalpy profiles constant over time. The maximum relative deviations
after 3 -10%s for both the density and entropy is 1077.

In Fig. we show radial profiles of the velocity magnitude (|U|), where (-) denotes
a spherically averaged quantity. An isentropic stratification is marginally stable and
any small energy input will therefore trigger convective motions. This is true for
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Figure 3.4: Horizontally averaged velocity magnitude profiles of the test_ spherical
test, after 5-103 (dotted), 15103 (dashed) and 30 - 103 s (solid). The initial velocity
profile is shown as a black solid line.

the whole star, but the velocity perturbations are limited to the central part (see
black line in Fig. . Since there is no additional energy input into the system, the
kinetic energy of the initial velocity field is all the energy available for convection.
In the simulation it is quickly spread over the entire star and then slowly dissipates
away over time.

Both time integrators give the same qualitative answers, but minor deviations arise
at later times (see Fig. , because of the slightly different dissipation behaviour of
the two schemes as described in [3.5.11

This test shows that the RK method also is able to give qualitatively similar answers
to the PC method in 3D simulations with turbulent flows.
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3.5.3 Stable Atmosphere

In order to demonstrate the capability of the new time integration scheme, we set up
a stable 2D atmosphere with several g-mode cavities. To create the atmosphere we
impose a linearly declining density stratification that is modulated by a sine function.
The sine function is chosen such, that no density inversion occurs. We discretise the
density function of the initial 1D model over 1000 grid point N. The density at a
grid point N is given by

p(N)=po+0.14+ A-sin <m]\(;027rn> —}—% ;N € N; N <1000, (3.47)
where A and n are the amplitude and the number of periods inside the stratification
respectively. pg is the base density of the model and the additional 0.1 ensures
that the density does not drop to zero.

Using a constant background gravity, we can now integrate the hydrostatic equilib-
rium and determine the pressure required for stability. Computing N? according to
we find that N2 > 0 in the whole domain, indicating convective stability. We
can also see that N2 has several peaks, which act as g-mode cavities. (see black line
in Fig. . This test used n =5, A =2, and py = 70 g/cm3. The density slope
was spread out over 1.2 - 10'% cm. In the outermost region of the domain (beyond
10'° cm) we kept the density constant and damped all velocities analogous to Eq.
We do this to avoid potential problems with the upper boundary condition.

An atmosphere that is stable against convection should not develop significant
velocities. Yet we see in Fig. that the PC method shows velocities after a short
simulation time of 3 - 10°s. While the velocities with a Mach number of the order of
10~% are still relatively small, it is noticeable that the horizontally averaged velocity
magnitude profile (|U|) (r) shows several peaks that coincide with the N? cavities.
Furthermore the velocity increases in amplitude as N? increases. An increasing
N2 corresponds to a decreasing Thruns (see which also means that resolving
buoyancy effects requires smaller and smaller timesteps.

We therefore explain the velocity peaks with numerical artefacts due to high
frequency and therefore unresolved gravity waves. Such numerically caused gravity
waves can then be trapped in the g-mode cavities and pile up over time, until the
waves finally break.

In general, breaking gravity waves will deposit their energy into the system which
will create a mean flow as has been shown in experiments (e.g., Plumb & McEwan),
1978) and numerical simulations (e.g., [Couston et all, 2018). In Fig. [3.5 we also
notice a large drop in velocity magnitude after the rightmost peak in N2. This is due
to the velocity damping and has nothing to do with the phenomenon discussed here.
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Figure 3.5: Horizontally averaged profiles of N? and |U| for the stable atmosphere
test. The profiles are shown at ¢t = 3 - 10° s, where dashed and solid lines correspond
to the PC and RK time integration methods, respectively.

Mean flows created by artificial IGWs are problematic for the study we are
interested in here. Not only are they unphysical, but the amplitude of the mean
flows also tends to be comparable to or even larger than the velocities in adjacent
convective zones (see . They therefore dominate our timestepping and make
longterm simulations computationally more expensive.

There also is no guarantee that these flows will stay confined in the g-mode cavity.
After some time they might spread out over the entire domain and influence the
mixing at the convective boundary that we are interested in.

Using the Runge-Kutta integrator mitigates the problem of artificial IGWs
significantly. The multi-step approach seems to smooth the numerical artefacts such
that they cannot pile up any longer. This reduces the velocities in the stable zone by
more than one order of magnitude to a maximal Mach number of 1075 as can be
seen from the solid red line in Fig. [3.5
The velocities do not drop to zero as one might expect in a perfectly stable
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atmosphere, but this is expected as the projection method needs some velocities on
the grid in order to converge. These velocities, however, are significantly smaller
than the expected convective velocities. In[4.3] we will see that reducing the size of
the timestep with the PC method has a similar effect, but obviously increases the
computational cost by the same factor as the timestep has to be decreased (usually
~ 100). The RK method, on the other hand, only requires twice the computational
costs of the PC method.

The stable atmosphere test therefore shows that the RK method makes it possible
to use the soundproof timestepping criterion [3.25] without unrealistic numerical
artefacts in the stable layer at minimal cost increase.

3.5.4 Convective Box

A fully convective simulation can potentially show additional behaviour. It is
especially interesting to see how convection behaves in the low Mach number limit,
where pressure and density are essentially fully decoupled. Similar to the stable
atmosphere an artificial atmosphere with perfect hydrostatic equilibrium is created.
In contrast to the stable atmosphere the convective box is defined by its temperature
stratification instead of the density. The lower and upper end of the domain are
stabilized at constant temperatures 77 and 75, respectively, where T7 > T5. In the
centre of the domain the temperature stratification is exactly adiabatic, i.e., the
central layer is marginally stable against convection.

The interfaces between layers with constant temperature and adiabatic stratification
are smoothly connected by a temperature gradient Vipans of the form

Vorans = Vo + 0.5(1 + tanh(K (y — y1))) - (V1 — Vo) (3.48)

where Vy and V7 are the temperature gradients below and above the interface at
position yr respectively. Fig. [3.6/shows the resulting initial profiles of p, T, and N2,
where N? is a proxy for the stability of the region. A value close to but above zero
indicates a marginally stable region.

A similar problem was discussed in Nonaka et al.|(2010) but in a different density
regime and with a slightly different construction of the background stratification.
This setup has been used in [Poalal (2017) to study convective boundary mixing and
has since been extended by L. Horst (priv. communication).

Similar to the test_ spherical setup, any additional energy input Hey should be
able to trigger convective motions in the central marginally stable zone. Heating by
a Gaussian heating function, centred at y = 0 (see orange line in Fig. initiates
convective motions independent of the maximum value of the Gaussian Hext max-
Testing heating rates from Hextmax = 100erg/g/s to only 0.0lerg/g/s the PC
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Figure 3.6: Horizontally averaged profiles of the initial model in the convective box
test. The curves are normalized to their maximum values.

scheme and the RK integrator have been compared. Fig. shows the maximum
(max(Ma)) and averaged (Ma) Mach numbers in the marginally stable region in the
left and right panel, respectively, where T denotes the density weighted volumetric
average of quantity z. MLT predicts that the convective velocities scales as o¢ Heyt
(see . In Fig. m we plot this scaling law as dashed lines, where we chose the time
averaged values for max(Ma) and Ma from the simulation with Hext max = 1erg/g/s
as the reference value of the scaling.

The results show that the expected scaling relation is mostly fulfilled down to
very low heating rates. The resulting Mach numbers range down to a few times
10~4, comparable with expected Mach numbers of core convection during hydrogen
burning. With a lower heating rate, convection needs a longer time to develop.
With the lowest heating rate Hext max = 0.01 erg/g/s convection actually does not
fully develop during the simulation time (see leftmost panel in Fig. [3.8)). Hence the
lowest heating run does not match the scaling relation. The run with a heating of
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Figure 3.7: Maximal (left panel) and density averaged (right panel) Mach number
inside the marginally stable region of the convective box test. Full and dotted lines
show the RK and PC results, respectively. Different colors show different maximum
heating rates Hext max, While the horizontal dashed lines indicate the scaling expected

from MLT.

Hext,max = 0.1erg/g/s develops convection only in the upper half of the marginally
stable zone. In the long run we would expect that convection spreads to the bottom
half as well. Since only half the zone is convective, the average Mach number is

lower than expected.

In simulations using the PC method we reduced the timesteps in order to avoid
large spurious velocities from the outer boundaries. With the RK method this is
unnecessary. As can be seen from Fig. [3.8| the runs with high heating rates do not
show any peculiar velocities at the upper boundary, while the lower heating rates
this is still the case. Nevertheless the velocities remain small. Since we do not need
to reduce the timesteps in RK simulations, we can compute the same flow problem
with less timesteps, increasing the computational efficiency. In this test the PC runs
took 100000 timesteps each, while the RK runs reached similar simulation times after
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Figure 3.8: Snapshots of the Mach number in the convective box tests with different
heating rates, where the maximum heating rate is given at the top of each panel.

only 5000 timesteps. Even after considering that the RK scheme is twice as expens-
ive as the PC scheme, the RK scheme provides a speed-up of a factor of 10 for this test.

3.6 Initial Models

Multidimensional hydrodynamical simulations require initial data that represent
the desired stratification as accurately as possible. We produce our initial data by
using stellar evolution models produced by the Lagrangian 1D stellar evolution code
GARSTEC (Weiss & Schlattl, 2008).

The models considered in this study use a solar calibrated mixing length oo = 1.71
and have a solar composition of 70.9% hydrogen, 27.5% helium and 1.6% heavier
elements. The abundances of specific heavier elements are taken from the measure-
ments of the relative solar abundances by |Grevesse & Noels| (1993)), scaled to match
the total metallicity. Garstec uses a tabulated EOS from the OPAL collaboration
(Rogers & Nayfonov, 2002]).

The 1D stellar evolution of our models is stopped once they reach the beginning
of the main sequence, i.e. the point where hydrogen burning is fully established.
The equilibrium energy production rate in pp chain and CNO cycle is set by the
slowest reaction involved. Initially the composition in the burning region does not
fulfil the equilibrium conditions, i.e., the faster reaction rates of helium-3 and carbon
dominate the energy production until an equilibrium state is reached. Consequently
our initial models already consumed = 1% of the available hydrogen before they
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reach the main sequence.

This leads to a very shallow variation of the hydrogen profile at the boundary of the
convective core, which is very sensitive to single mixing events. Therefore, changes in
the hydrogen profile can be seen quickly without mixing massive amounts. The quick
reaction time consequently also allows us to study the time evolution of the mixing.

This study focuses on the convective cores of intermediate mass stars. An
intermediate mass star has a convective core during its main sequence evolution
and a radiative envelope around it, i.e., the star is more massive than ~ 1.2 M.
The star is, however, not massive enough to go all the way to core collapse and
will end its life as a white dwarf. Stars between ~ 1.2 M and ~ 8 My fulfil both
criteria and are hence considered intermediate mass stars (see e.g., Kippenhahn
et al., 2012). Here we will show 2D simulations of the convective core of a 3.5Mg
star. We chose this mass, because it has a convective core large enough to avoid
problems with the overshooting description (see . Intermediate mass stars are
also preferred targets for observers to study IGWs. Using the observed frequencies
of IGWs, originating at the boundary of the convective core it is then possible
to estimate the size of the mixed cores (Deheuvels et al.,|2016; Moravveji et al., [2016)).

In order to calibrate the overshooting parameter introduced in (see for a
description of the calibration method) we need models computed with and without a
convective overshooting description.

Garstec implements overshooting in the diffusive description as in [2.12] In order to
avoid the problems of small convective cores described in a geometrical cutoff of
the form [2.13] is usually applied.

In order to get results that are more comparable with other codes, we computed our
overshooting models without the cutoff.

Our models with overshooting start from the same initial conditions as the non
overshooting ones and are then self-consistently evolved until they reach a similar
central hydrogen content as the models without overshooting. The variation in the
central hydrogen content is less than 10™* within a set of models.

As a consequence of the self-consistent computation and the fact that we assume
a radiative temperature stratification in the overshooting region, we find that
the overshooting models have a slightly larger convective core, according to the
Schwarzschild criterion (see first column in Table [4.2)).

Garstec provides us with thermally relaxed models on a Lagrangian grid. In order
to use those in MAESTRO, we need to map the model onto an Eulerian grid. The
interpolation introduces slight deviations from the hydrostatic equilibrium (HSE)
into the models. However, MAESTRO expects its background state to be in perfect
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Figure 3.9: Initial spherically averaged density (black) and superadiabaticity (red)
of the ImHrk (solid) and ImHpcT (dotted) simulations. Dashed lines give the
stratification as predicted by Garstec. The vertical dashed and dotted lines indicate
the boundary of the convective core and of the domain respectively. In the shaded
region we damp the velocities.

HSE. Therefore it is necessary to reintegrate the HSE

oP
5y = 9P (3.49)

The integration is also used to slightly smooth out the composition profiles by a
moving average. This is done in order to avoid large spikes in N? at the convective
boundary, as this would lead to problems similar to the ones discussed in3.5.3

During the integration, we also switch from the OPAL EOS used by Garstec to the
Helmholtz EOS in MAESTRO. With this change we modify the thermal structure of
the models. We can therefore not guarantee thermal equilibrium any longer. MLT
predicts that the temperature gradient in the convective zones of our models to be
almost perfectly adiabatic but with a small superadiabaticity of the order of 1075.
In a hydro simulation superadiabaticity acts as an energy reservoir for the convective
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flow. A small change in the temperature stratification can increase the internally
stored energy significantly or remove the convective core entirely. In order to keep
the simulations energetically as close to the initial models as possible, we preserve
the excess of the temperature gradient Vex 1p = Ve — Vag,0opar, over the adiabatic
gradient V,q opar, obtained from the OPAL EOS of the 1D stellar model, where
Vmit is the temperature gradient predicted by MLT. In the integrated model the
superadiabaticity Vex = V — Va4 Helm is set by the unknown temperature gradient V
and the adiabatic gradient obtained from the Helmholtz EOS V,q Helm. By enforcing
Vex = Vex,1p the unknown V can then be computed as

V = Vit — Vad,0pPAL + Vad,Helm- (3.50)

By simultaneously solving equations [3.49] and [3.50] using a Runge-Kutta method
to integrate outwards from the stellar center we minimize the energetic modifications
to the 1D model during the integration.

It is also possible to preserve other quantities like the temperature itself during the
integration, but that again can lead to models with inconsistent energy content.
In Fig. we demonstrate the effect by comparing initial models where the
temperature, respectively the temperature gradient were kept constant. Keeping the
temperature constant during reintegration (red dotted line) leads to a temperature
stratification that is stable in the very centre of the convective core and largely
superadiabatic towards the convective boundary. Keeping the superadiabaticity
constant (red solid line), on the other hand, achieves a more realistic temperature
stratification with a small but constant superadiabaticity.

Trying to fulfil Eq. and Eq. simultaneously in combination with the EOS
leads to an overdefined system, since HSE already provides a temperature (and
V) based on the pressure and density stratification derived from Eq. . The
integration is therefore not exact. In practice we achieve a hydrostatic equilibrium
with a relative accuracy of 107° and a temperature gradient that is only 5 - 107°
larger than the adiabatic temperature gradient in the convective zone. While V¢ is
still three orders of magnitude larger than predicted by MLT (red dashed line in Fig.
, it is sufficiently small for our simulations.

We set up our simulations with a rather large stable layer on top of the convective
zone. The domain spans six pressure scale heights in total (see Fig. . We do this
in order to keep the computationally complicated outer boundary as far away from
the area we are interested in. This way the influence from the outer boundary on
the mixing can be minimized.

Since MAESTRO uses a Cartesian grid we can include the centre of the star into our
simulation. We therefore do not need to cut out the part with the highest heating
rates in the domain. The equilibrium rates discussed in reproduce the nuclear
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energy generation of the 1D models, within a factor of two. We want to stress here,
that we do not use an additional boosting factor in any of the simulations, which is
common practice for fully compressible hydrodynamics in stellar interiors (see, e.g.,
Meakin & Arnett} 2007 Cristini et al., [2019)).

On the other hand, the Cartesian geometry causes problems at the corners of the
domain (Gilet, [2012)). As discussed in these problems can be mitigated with a
velocity damping of the form [3.42] In our models of 3.5M, stars the damping is
smoothly turned on over a distance of 5-10? cm and is fully active beyond a radius
of 5.3 - 100 cm(see shaded region in Fig. [3.9).

Robinson et al.| (2003) found that velocities and temperatures are strongly influenced
by domain boundaries up to a distance of at least two pressure scale heights. Our
velocity damping sets in ~ 2.5 pressure scale heights away from the convective
boundary, minimizing boundary effects.

Even though the velocities are damped, it is done before the final projection. This
means that there will always be some velocities in the outer zone, since the velocity
constraint cannot be fulfilled otherwise. Consequently, there will be some flow across
the domain boundary. These boundaries are treated as open outflow boundaries,
which reduces reflections of waves but reduces the total mass in the system with
time. Due to the velocity damping and the low densities in the outer area, the mass
loss, however, is negligible during the simulation time.

The symmetry of the mapped model is broken by imposing a random velocity field
based on a combination of Fourier modes (Zingale et al., [2009).
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Chapter 4
2D Simulations

This chapter focuses on two dimensional simulations. First we will discuss an
intermediate mass star of 3.5M, and the effects of different time integration methods
and initial model preparation, as well as resolution in time and space. In and
we will then use these insights to draw conclusions on the extent of the mixed region
and the temperature gradient within it. The mass dependence of our findings will be
discussed in 4.7

In total we performed 10 simulations, which were mostly computed on the MPA
clusters pascal, and laplace using a total of 3.6 - 10° CPU hours (Table . Our
longest simulation spans more than 6 years of physical time and covers roughly 340
convective turnover timescales.

The results in this chapter will be published in a forthcoming paper.

4.1 Transient

The initial phase of the simulations show some peculiar transient features that
renders the initial phase unusable for the forthcoming analysis. In this section we
will explain, where these features come from and how we can define the time beyond
which their influence can be neglected.

Initially the stars are at rest, except for a small velocity perturbation in the inner
part of the expected convective zone. This is enough to break the symmetry of
the system and the simulations develop convective motions. Convection uses the
energy source that is easiest to tap into. In the beginning this is the internal energy
stored in the small superadiabaticity Vex (see . Internal energy can be converted
into kinetic energy very rapidly leading to a sharp rise of the velocity magnitude
in the convective zone (CZ). This energy supply is exhausted once an adiabatic
stratification is achieved. From that point on convection has to draw its energy from
the comparably smaller, limited heating term. In combination with the dissipation
of the kinetic energy present, this will lead to a decrease of convective velocities over
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Name ‘ Resolution 1D Model  fo, Int. dt tmax (3)  tmax/Tconv
ImHrk 10247 Vex 0 RK U 2108 340
ImMrk 5122 Vex 0 RK U 1-108 200
ImvHrk 20482 Vex 0 RK U 1-107 20
ImHpc 10242 Vex 0 PC U  6-107 100
ImHpcIGW 10242 Vex 0 PC IGW 1-107 20
ImHpcT 10242 0 PC U  2-10% 430
ImHrk-1 10242 Vex 001 RK U 8107 140
ImHrk-1.7 10242 Vex 0.017 RK U 3-107 50
ImHrk-2 10242 Vex 002 RK U 7107 130
ImHrk-3 10242 Vex 003 RK U 4107 70

Table 4.1: Overview of our 2D simulations of 3.5M, stars. The second column gives
the grid resolution. While the third column gives the preserved quantity during
integration of the initial model, the fourth column shows whether overshooting has
been applied in the stellar evolution calculation. The fifth and sixth column give
the time integration method and the decisive quantity for the timestep selection,
respectively. The last two columns show the physical time at the end of each
simulation and the number of convective turnovers covered.

time.

Fig. illustrates this behaviour by showing the time evolution of the average
velocity magnitude WCZ in the CZ, where T denotes the spatial density weighted
average of quantity x. In all simulations the initial perturbations quickly grow
into a peak in the convective velocities after ~ 10°s. After that the velocities drop
significantly over a few convective turnover times, until a quasi-steady velocity field
is established.

This is a well known phenomenon that has been observed in many previous studies
as well (see e.g. Meakin & Arnett, [2007; |Jones et al., |2017; |Gilet et al., [2013).

Quantifying when a quasi-steady phase is reached is ambiguous, as we are dealing
with a dynamical system where even averaged velocities change constantly over
time. It is also possible that a velocity field is quasi-steady over a few convective
turnovers, but evolves over much longer timescales due to e.g., changes in the chemical
composition and therefore different heating rates.

Boesler & Weber| (2017) define tests based on the time averaged velocity (|U|); = U
and its standard deviation o to determine whether a steady state has been reached.
U and o are determined over N consecutive timesteps as a moving average such that
we can assign each timestep its own U and o. Looking at two consecutive timesteps
(subscript 1 and 2) one can then compare the following quantities, which Boesler &
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Figure 4.1: Evolution of the density averaged convective velocity magnitude for
different simulations of a 3.5M mass star.

(2017)) labelled as T— and F—test

o 10l (4.1)
\Jo?+ 03
max 02,02

= max(or, o) ; 2) (4.2)

min(c?,03) "

In a perfect steady state the velocity field will not change in time and the standard
deviation will be constant. T' therefore goes to 0, while F' approaches 1.

We try to evaluate the presence of a quasi-steady state in post-processing. Since we
do not output every timestep we cannot construct the time averages as proposed
in Boesler & Weber| (2017). We will therefore skip the time integration step and
instead assume that each output file is representative for the timespan in between
output files. This is a valid approach, because we expect that the velocity field does
evolve on a timescale of Teony and we write output files every 10°s, i.e., 5-10 output
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files per convective turnover. We can then use consecutive output files to compute
the test values and analyse the evolution.

In Fig. [4.2] we display the results for the ImHrk simulation. We can see, that the F
and T-test show a similar behaviour over time. During the initial transient the tests
increase by two orders of magnitude and drop shortly thereafter. After a few 10%s
both tests go to a constant value.

As expected, F' goes to 1, indicating a constant o. We plot F' —1 in Fig. [£.2]in order
to show that our value of F' is only a few percent larger than 1.

The T-test in Fig. however, does not go to zero as predicted by [Boesler &
Weber| (2017)), but instead approaches a value of roughly 3. The reason for that are
the missing time averages in our analysis. While dealing with single output files we
cannot expect that U stays constant over the time between two outputs. One would
rather expect that U varies on the order of the standard deviation if a quasi-steady
state has been reached. The nominator of [£.I] will then not go to zero but will
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approach a value of the order of 1 o. The T-test is therefore expected to give a value
> 0 that is roughly constant over time in agreement with our results. The value of 3
as the converged value for F, indicates that within 10°s the field changes by roughly
3 o in agreement with a 99 % confidence interval. This is suggesting that the single
standard deviations are indeed representative for the whole time evolution and the
velocity field is in a quasi-steady state.

In the quasi-steady state, the velocity field in the convective zone is dominated
by two counter-rotating vortices (see Fig. [4.3)). Even though these vortices do
move around and collide with each other, they never annihilate due to vorticity
conservation in 2D turbulence. As expected from the inverse energy cascade in 2D
simulations (Kraichnan| 1967; Batchelor, |1969; |Kraichnan & Montgomery, [1980) the
vortices fill as much space as is available in the CZ.

Throughout the simulations the source term S in Eq. is of the order of 10714,
which corresponds to an almost completely incompressible flow.

Fig. shows time averages, denoted by (-)¢, of the spherically averaged velocity
magnitude profiles (|U[). Our nomenclature gives the order in which averages are
performed from the inside to the outside, e.g., the quantity ((|U|)); is first spherically
averaged and then time averaged over several output files. In Fig. [£.4] the time
averaging was performed over all outputs between 5 - 10%s and 107s. This is the
time span covered by all the simulations where the F' and T-test indicate a steady
state. The average is using 50 output files and covers roughly 10 convective turnover
timescales.

The averaged velocity profile has a maximum towards the centre of the star and a
sharp drop in velocity magnitude at the convective boundary. For comparison we
also plot the velocity predictions by MLT (black dashed line in Fig. . The most
obvious difference between the MLT prediction and the simulations is the behaviour
towards the centre. Since MLT takes the centre of the star, as a convective boundary,
the velocity there is expected to drop to zero. In a multi-D simulation and in nature
the star’s centre, however, is not at the edge of the CZ. On the contrary, the centre
of the star is also the centre of the CZ. The MLT prediction at that point is hence
inconsistent for central convective zones.

On the outer edge of the CZ the MLT prediction, on the other hand, follows the
observed profile nicely. The profiles in the simulations are, however, shifted upwards
by more than one order of magnitude. This is due to the vortices, where their
velocities increase towards the outer edges. Similar to a hurricane on earth, there
exists a pressure pressure gradient from the centre to the edge of the vortices. Even
though this difference is only of the order of 10~% it still creates a noticeable pressure
gradient that drives large velocities. In we will see that 3D simulations, which do
not show these stable vortices, give velocity magnitudes much closer to the MLT
prediction. The rather large mismatch between 2D simulations and MLT is hence
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Figure 4.3: Velocity magnitude (left panels) and perturbations of the spherically
averaged hydrogen profile (right panels) of the ImHrk, ImHrk1.7, ImHrk3 simulations
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initial size of the mixed core, while the black dashed circles show the size of the
convective core according to the Schwarzschild criterion. The streamlines in the left
panels indicate the direction of the flow.
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Figure 4.4: Time averaged velocity profiles for different simulations of a 3.5M, star.
We averaged the data from 5 - 10°s till 107 s using 50 output files. The black dashed
line shows the velocity profile predicted by MLT scaled by a factor of 10.

the sole consequence of the reduced dimensionality.

In contrast to MLT predictions the velocity magnitude at the convective boundary
does not drop to zero, but remains finite in the stable layer. Simulations of convective
envelopes (see ,e.g., [Freytag et al.l [1996; Pratt et al. 2017) find that the velocity
decreases with increasing distance to the convective boundary. In our case we
find the opposite behaviour. The velocity magnitude starts to slowly increase the
deeper we go into the stable layer, the reason being IGWs. As described in [2.3] the
amplitude of IGWs scales as p~ /2. IGWs created by envelope convection will travel
into denser matter and will hence be damped. Centrally created IGWSs, on the other
hand, propagate outwards, where the amplitude will increase due to the reduced
density of the surrounding fluid. In a wave dominated regime it is therefore natural
to see opposite behaviour in the velocity magnitude between envelope and central
convective regions. This effect can also be seen in core convection studies by [Rogers
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(2015) and [Edelmann et al.| (2019).

The simulations ImHrk, ImHpc and ImHpcIGW differ by the time integration
method used. ImHrk uses the Runge-Kutta time integrator, while ImHpc and
ImHpcIGW use the predictor-corrector scheme. In addition to the PC scheme,
ImHpcIGW also uses reduced timesteps in order to resolve IGWs better. This will be
discussed in more detail in [4.3] Using smaller timesteps ImHpcIGW should be more
accurate than ImHpc. We see that in the CZ ImHpcIGW and ImHrk agree almost
perfectly, except for a small difference in the very centre of the simulation. This
difference can be explained by the reduced number of cells per radial bin (Cartesian
grid), which leads to increased statistical fluctuations on the average.

ImHpc, on the other hand, has about 30% smaller velocities. This confirms two
points. First, in order to achieve the same level of accuracy in the PC and the higher
order RK method, the PC method has to use smaller timesteps. Moreover it also
shows that at the same level of accuracy the PC and RK integrator produce the
same convective pattern.

In Fig. ImHrk and ImHpc also reach the same final velocity, indicating that
reproducing the average velocity in the CZ does not require the highest time accuracy
in the long run. The ImHpcIGW simulation was not run long enough to reach a
constant velocity, but it is perfectly following the behaviour of ImHrk up until the
end of the simulation. It is safe to assume that this simulation will also reach a
similar final velocity state.

From Fig. and we can also see the influence of resolution on the setup. The
simulations ImMrk, ImHrk, and ImvHrk have the same initial state and integration
method, but use different resolution levels.

ImMrk and ImHrk agree perfectly inside the CZ except near the very centre. There
less cells are available for the average, i.e., the fluctuations are expected to be larger.
On the other hand, ImvHrk has ~ 10% lower velocities there. Looking at Fig.
the difference is easily explained by the fact, that ImvHrk reaches the quasi-steady
state at an earlier time than ImHrk. The velocities in the averaging window are
therefore already slightly smaller.

In Fig. we can see that the runs with different resolution end up with the same
average velocity in the CZ, indicating convergence. From these results one could
argue that a resolution of 5122 is already converged. For the CZ this might actually
be true. In the stable layer, however, the ImMrk simulation shows velocities that are
~ 1 order of magnitude larger than in ImHrk and ImvHrk. This is due to unresolved
IGWs, similar as in the stable atmosphere test problem in m (see also . The
onset of this discrepancy can also be seen in the profiles of InHpcIGW and ImHpcT
at large radii, but at a much lower level. Nevertheless it becomes clear that we

60



need at least a spatial resolution of 10242 in order to resolve the stable layers properly.

The ImHpcT simulation uses an initial model which reproduces the temperature
of the 1D model, instead of its temperature gradient excess Vex. As shown in Fig.
w (red dotted line), this leads to an increased superadiabaticity in most parts of
the CZ. The additional energy stored in the temperature gradient is then used to
power the convective motions for an extended period of time. The transient is longer
because the additional energy cannot be quickly dissipated. In fact, ImHpcT reaches
a steady state with an average velocity that is &~ 30% larger than in models that
reproduce Vey (see Fig. . This is also obvious from the ImHpcT velocity profile
in Fig. which has a similarly increased maximum velocity compared with the
ImHrk simulation.

4.2 Convective Boundary

Before we can analyse the mixing behaviour around the convective boundary, we
first need to define its position. In MLT the position of the convective boundary
is well described by the Schwarzschild criterion, but already the consideration of
overshooting makes it necessary to differentiate two convective boundaries. While the
driving region is again set by the stability criterion, the star sees a larger convective
region in terms of available fuel. The limit is set by the homogeneously mixed region
of the overshooting layer. In a dynamical system the complexity increases even
further, since now the actual motion needs to be considered as well.

As we can see there are many ways to define the location of the convective boundary,
but we can categorize them into three different classes.

Structural boundaries are defined by classical stability considerations. The Schwar-
zschild criterion uses the temperature stratification to define stable and unstable
regions. As such it can also be interpreted as the driving region of convection. The
convective boundary is then set by the structure of the star, which remains constant
over dynamical timescales. Local variations therefore tend to be negligible and the
position of the boundary only changes on thermal timescales.

Dynamical boundaries use the convective velocities to define the extent of a CZ.
The difference to the structural boundaries lies in the fact that here the extent of a
CZ can be determined by a single localized event, while the structural boundaries
largely rely on the background stratification. The mixing mechanisms at convective
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boundaries discussed in [2.2] and their respective mixing depths are examples of
dynamical boundaries. Dynamical boundaries therefore capture the driving as well
as the breaking region of convection.

Chemical boundaries show the extent of the mixed region around a CZ. They can
therefore be interpreted as the result of the mixing due to the dynamical events.
This is the boundary that usually defines the overshooting region in 1D models as
discussed in 2.2

For each category one can define a set of boundary conditions. One can even define

criteria that combine two categories. An example for that would be the Ledoux
criterion, which includes the structural temperature gradient as well as a contribution
from the chemical gradient. A criterion based on composition fluxes, on the other
hand, combines dynamical and chemical effects.
It is clear that the precise location of the convective boundary is ambiguous and
depends on which quantity we look at. By focusing on the three basic boundary
types, however, we can define a simple model that describes the mixing around CZs.
Assuming that we have a stellar evolution model, computed without overshooting
one would naively expect that a multi-D simulation shows the following behaviour
on a dynamical timescale:

e initially structural and chemical boundaries agree and there is no dynamical
boundary since the initial velocities are close to 0

e convection starts to develop in the region that is convectively unstable defined
by the structural boundary

e convection reaches a steady state with a well defined dynamical boundary
beyond the unaffected structural boundary.

e the chemical boundary slowly moves from the structural boundary to the
dynamical boundary

e a steady state is reached when dynamical and chemical boundary point coincide

This simple picture is the motivation for the overshooting descriptions based on
numerical simulations by [Freytag et al| (1996) and [Pratt et al| (2017) (see [2.2)).
Both studies define the speed and extent of the mixing around the Schwarzschild
boundary based on the observed velocity profile.

We can now check whether this also holds in our simulations, by defining a series
of different boundaries in the ImHrk simulation and following their temporal evolution.
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Figure 4.5: Typical spherically averaged profiles around the convective boundary.
The quantities U, Uy, (0(Ekin,v,));, and ({(Vex)), are normalized and time averaged
between 1.82 and 2.06 - 10% s using 100 plotfiles. Details on the normalization of each
curve can be found in the text. The spherically averaged hydrogen mass fraction
profile (X) is taken from the output file at 2.06 - 108s. Dashed vertical lines mark
the respective convective boundary as defined in

The initial chemical boundary can easily be defined as the mid point of the
composition discontinuity. Since the discontinuity is slightly smoothed out over time,
we define the mid point over an extended radial zone around the initial discontinuity.
Taking the minimal (Xy,iy) and maximum (Xax) hydrogen mass fraction inside the
(initial) convective region and around it, the chemical boundary Rcpem can be defined

as
Xmin + Xrnax)

. (4.3)

Rchem =R <X =
where Xpin and Xpi, are determined between 0.5 and 3.5 - 1019 cm.

Due to the low time variability of the spherically averaged hydrogen mass fractions
(X) we compute this quantity for each individual output file, which increases the
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time resolution of the time evolution shown in Fig. Meakin & Arnett| (2007)) and
Cristini et al.| (2017, 2019)) used as similar definition of the boundary to determine
the growth rate of a convective zone.

One can think of many ways to define a boundary based on the velocity field.
One could use the time averaged radial velocity profiles U, = ((U,)),, as these are
responsible for transporting matter into the convective zone, or transversal velocities
Uy = ({(Uy)), as they tend to increase towards the boundary. One can also look at
the kinetic energy and the (radial) flux of kinetic energy.

In order to reduce the influence of statistical fluctuations, we computed time averaged
profiles with a moving average over 100 output files, which corresponds to ~ 0.5 yr
or 30 convective turnovers.

As it turns out, the radial velocities are not the ideal quantity to look at, because the
radially outward flow is already starting to turn around long before the convective
boundary is reached. In Fig. the curves for Uy as well as for U, are normalized
by the maximum value of Us. From this we can see that U, is smaller than Uy at the
convective boundary and the convective boundary does not show any particularly
strong feature in the U, profile. The U, profile, on the other hand, shows a rather
steep decline near the boundary, which can be used to define a boundary location.
Following |Jones et al. (2017) we use the location of the steepest gradient in the U,
profile to set the boundary location R4yn,1 (dashed vertical lines in Fig. [4.5)).

Pratt et al. (2017)); [Edelmann et al.| (2019)) define the dynamical boundary based
on single plumes under the assumption that the farthest mixing events will also
reflect the maximal extent of the overshooting region. Because averaged profiles are
not sensitive to short term changes, rare deep mixing events are not fully captured
by Rgyn,1- To overcome this problem we use another measure for the dynamical
boundary based on the time averaged standard deviation of radial kinetic energy
flux (o(Eyin,v,)),- The combined variability of a quantity = in a set of N output files

is defined as 21/2
Sy oie) | ws) — ()]
(o(2)), = N : (4.4)

where (z;) represents the horizontally averaged profile of quantity x in each individual
output file i, and o;(z) is the standard deviation of that average. (z) = % SN ()
is the mean of all (z;) included in the averaging window. (o(FExin,u,)), has larger
contributions from rare events than the averaged values themselves.

(0(Exin,u,)), drops by several orders of magnitude as the convective boundary is
approached. We use this to define our second dynamical boundary R4y, 2 as the
point where (o (Eyinv,)), has dropped to 0.1% of its maximum value. In Fig.
we increase the visibility by normalizing (o(Exiny,)), to a value of 10%, which
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corresponds to ~ 0.1% of its maximum value.

This is a similar approach as in Brummell et al. (2002); Rogers et al. (2006]), who
defined the convective boundary as the point where the kinetic energy drops to 1%,
respectively 5% of its peak value.

The structural boundary Rgt,uc is taken from the Schwarzschild criterion as the
point beyond which the temperature gradient excess Vex = V — V4 is smaller than
a certain value for all R > Rgt;uc. The stability criterion obviously would suggest
that the point with Vex < 0 should be used as the boundary, but as it turns out
a large fraction inside the obviously convective zone constantly has Ve, < 0. This
subadiabaticity is very small, being of the order of 10~ and is within the uncertainty
limit of our Ve (see for a discussion of the uncertainty). We therefore chose
Vex < —2-107% to reduce the influence on the uncertainty. Additionally we use the
time average (-); of the spherically averaged (V) to suppress temporal fluctuations
as well.

Fig. shows how the different boundaries evolve during the ImHrk simulation.

The width of the radial bins in our analysis is typically 2 - 10® cm, in agreement
with our grid resolution. In Fig. the effect of the binning causes the step like
evolution of the boundaries. Most of the boundaries stay at a constant radius for
most of the simulation time. Rqyn1 and Rqyn 2 show a small excess in the beginning
of the simulation. This is the point where the averaging window is still capturing
the initial transient discussed in (4.1l
Rchem is changing the most, showing that there is a lot of mixing going on.
Rstrue is retreating during the initial transient from its original position at
2.25 - 10 cm, due to the adjustment of V to the changes in the composition
gradient. The sudden outward shift of Rgirue at 0.2 - 10%s is an artefact of the
mixing, where the temperature gradient in the initial stable layer approaches the
adiabatic temperature gradient. This effect reduces over time as the chemical
boundary moves outwards. will discuss the influence of the composition on the
temperature gradients in more detail. After that R e stays constant for the rest of
the simulation as it is expected from the naive picture above.

The order of Rgtruec and Rgyy is as expected from the naive picture. The driving
of convection is happening within Rgtrue. Rayn on the other hand also captures the
penetration into the stable layer. As expected from energy arguments (see the
penetration region in our simulations is rather small. Rqy, is only 6 - 108 cm further
out than Rgye corresponding to 0.04H,. Rnem is located much further out than
the other boundaries and even keeps moving further away. This does not fit the
mixing picture described above, where we would expect that mixing stops at the
dynamical boundary. There is obviously a process that leads to mixing into much
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Figure 4.6: Temporal evolution of the different convective boundaries as defined in

£

farther layers. Rgyn 2 is giving a hint towards that. Rqyy 2 is in general larger than
Rgyn,1 confirming our suspicion that there are mixing events reaching beyond Rgyn 1
that are not captured by the average. Nevertheless Ry, 2 is still much smaller than
Rehern. In @ we will see that diffusive mixing is the key factor to explain this
discrepancy.

4.3 Internal Gravity Waves

Similar to the stable atmosphere problem in [3.5.3] stellar models also have an IGW
cavity (see Fig. . Our simulations therefore suffer from the same problem, where
numerical IGWs pile up inside the cavity and create an unphysical convective region.
We can clearly see the effect in the velocity profile of the ImMrk simulation in Fig.
where the velocity in the stable region between ~ 3 and 4 - 10'° cm is almost as
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large as in the convective region. In we showed that the RK time integrator
can reduce these velocities significantly and in fact, when we repeat ImMrk with the
same resolution but using the PC integrator, we find that the velocity in the stable
region is actually larger than in the CZ.

The higher resolution case ImHrk does not show exceptionally large velocities in the
stable layer, indicating that higher spatial resolution is able to reduce the artificial
velocities as well. Nevertheless the velocity field in the stable region of ImHrk is
dominated by IGWs. We can see this from Fig. were Uy > U, outside of Rqyn, a
clear sign for IGWs.

While the RK time integration in combination with a sufficiently high spatial
resolution does successfully prevent the creation of unrealistically large velocities in
the stable region, it is unclear what actually causes the problem. Here we want to
analyse the cause in more detail.

In[3:2|we defined Thyunt as the typical timescale of IGWs. From[2.2)we can determine
that this would suggest that IGWs change on a timescale of =~ 500s. The timesteps
in ImMrk are half of that. If 7,y is the numerically important timescale we would
expect that IGWs in ImMrk are not well resolved. On the other hand, we would also
expect that no numerical instability occurs. The quick growth of the velocities in the
stable layer, however, suggests that we are dealing with an unstable situation here.
One can also argue that Tpunt is not the relevant timescale for numerical simulations,
because we also determined in [3.2) that the CFL criterion is based on the speed of
signal propagation. The signal propagation of IGWs, however, is not determined by
their frequency but by their group velocity vgroup = Ow/0k. From Eq. we can
see that IGWs have vgroup < vpn. This allows us to use the phase velocity vp, = w /k
instead of vgroup as an even tighter limit to the speed of signal propagation. The
maximum phase velocity vphmax can then be computed easily as vpn max = AN/27.
The signal speed is hence limited by N and the wavelength A\ of an IGW.
Analogous to sound waves, we can then write a new timestep criterion based on the
generalized CFL criterion that needs to be fulfilled in order to resolves IGWs
properly.

Ax27

A —— 4.
L< Sy (4.5)

Assuming that IGWs have wavelengths up to 1 pressure scale height one ends up
with timesteps that are only a factor &~ 5 — 10 larger than the explicit timesteps

based on [3.15
Fully resolving IGWs in time is therefore computationally too expensive for the long
term simulations we need in order to estimate the extent of the mixed region.

The maximum frequency of IGWs allowed by N is of the order of several mHz,
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while observations show that the dominant component of IGWs is in the low
frequency regime up to several tens of yHz (Bowman et al., |2019)). |Aerts et al.
(2018)) also argue that angular momentum transport by IGWs is dominated by low
frequency waves as well. |Aerts et al.| (2010]) also observed g-mode periods between
0.5 - 3 days, corresponding to 4 — 20uHz

Theoretical wave spectra of IGWs (Lecoanet et al., [2014]) also predict IGW frequencies
predominantly below the convective turnover frequency (which is well resolved in our
simulations). While this last statement is challenged by the simulations of Edelmann
et al.| (2019) who found a non negligible contribution from frequencies above the
turnover frequency, their wave frequencies still remain far below the mHz limit.
We therefore decided to not resolve high frequency waves in time and use the velocity
based timestep criterion instead. In our simulations with high resolution this
corresponds to timesteps of 100s. We therefore expect to properly resolve IGWs
with a frequency of up to 20uHz.

According to linear theory IGWs are exponentially damped inside convective zones,

which means that we do not expect any influence of the unresolved IGWs on the
convective flow itself. The influence at the convective boundary, especially on the
mixing, on the other hand, has to be tested. We therefore performed the simulation
ImHpcIGW, that uses timesteps based on Eq. with a wavelength of 1 pressure
scale height. For efficiency reasons we did not use the RK integrator in this run, but
we already showed that this has no influence on the results.
As expected the average velocity in the CZ does not depend on the timestep criterion
(see Fig. . As already described in the profiles of ImHrk and ImHpcIGW in
Fig. [£.4] also match perfectly. In [£.4] we will see that this also true for the mixing
behaviour at the convective boundary, indicating that the high frequency IGWs do
not significantly contribute to the mixing.

Nevertheless we do see IGWs in our simulations. In Fig. [4.7] we show the
temperature perturbations 77 = T — (T'), where (T') is the spherically averaged
temperature. To increase the visibility of the IGW pattern we interpolated the data
on the Cartesian grid onto a polar grid (r,¢). T’ shows a regular flat pattern in
the stable region. |Rogers et al. (2013)) showed that an eddy dominated flow, will
produce such a flat structure of IGWs, which is consistent with our results where
the convective flow is dominated by large vortices (= eddies). This is a pure effect
of the reduced dimensionality of our simulations. We therefore do not expect this
wave pattern to be a good representation of nature and therefore will not analyse
the IGW frequency spectrum in detail.
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Figure 4.7: Fluctuations of the temperature from its spherically averaged value in
the ImHrk simulation mapped on a polar grid (r,¢), after 8 - 107 s.

4.4 Overshooting Calibration

We are mainly interested in the mixing around the convective boundary. In [2.2]
we described the different processes that lead to chemical mixing at the convective
boundary. Here we will analyse which process dominates and which size we expect
for the homogeneously mixed overshooting layer in 1D models. We will do this by
calibrating a 1D overshooting parameter.

Before we analyse the long term mixing, we first have to look at the influence
of the initial transient and the different numerical setups. In order to quantify
the mixing of matter with higher hydrogen abundance than in the CZ across the
convective boundary we show in the top panel of Fig. [£.8| the change in hydrogen
mass My — Mx, inside the convective core as a function of time, defined by the mass
coordinate of the initial Schwarzschild boundary, where My, is the value at ¢ = 0.
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Figure 4.8: Top panel shows the change in hydrogen mass inside of the initial
convective core for the 3.5M star simulations. The bottom panel shows the time
derivative of this quantity.

We see that in all simulations there occurs rapid mixing in the very beginning of the
simulation, which then slows down with time. This is due to the initial transient as
described in [£.I] The varying strength and length of the transient as seen in Fig. [4.]]
is also the reason for the varying amount of mixing at the beginning of the different
simulations (see Fig. |4.8). The simulations ImMrk and ImHpcT have extended
transients (see velocity evolution in Fig. and therefore mix more matter initially.
The very high resolution run ImvHrk, on the other hand, has the shortest transient
and consequently also shows the least mixing at the beginning of the simulation.
Once the initial transient is decayed, all simulations evolve roughly in a similar way.
This becomes evident when we look at the time derivative of the hydrogen mass
evolution in the bottom panel of Fig. where all simulations show the same
mixing speed at later times. We therefore should only look at the mixing after the
initial transient and a steady state has been reached.
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This again confirms that the RK and PC integrator produce similar results and that
our high resolution runs with 10242 cells are numerically converged. In addition to
that we can also see that there is essentially no difference between the ImHrk and
the ImHpcIGW simulation, suggesting that the high frequency IGWs that are only
properly resolved in ImHpcIGW do not have a significant influence on the mixing.

Surprisingly we also see convergence with the ImHpcT run, where one would expect
a higher mixing speed due to the overall larger velocities. This is an indication
that the velocity magnitude is not the limiting factor for the mixing speed. will
address this point again.

In we will see that the initial mixing behaviour is a problem in 3D simulations,
because there the initial structure is altered significantly and the farther evolution is
influenced.

The mixing in the steady state is dominated by the interaction of the vortices
with the convective boundary. In the top panels of Fig. we display a snapshot of
the ImHrk simulation showing its velocity magnitude and the radial perturbation
X' = X — (X) of the hydrogen abundance in the left and right panel, respectively.
From the perturbation in the hydrogen abundance we can see that the main cause for
mixing is shear created by the vortices as they move along the convective boundary.
The shear mixing can be separated into two main effects. A single vortex that
moves along the boundary creates Kelvin-Helmholtz instabilities in its wake. We
can see this in the top right panel of Fig. [£.3]in the bottom right and the upper left
corner at the convective boundary (black dashed line) as blobs that detach from
the convective boundary. The large inflow on the left side is a combined effect of
two counter rotating vortices. When the two vortices interact with the boundary
at roughly the same time, they launch surface waves running in opposite direction.
These waves then collide and break, creating a significant amount of mixing.

This suggests that mixing is not a strictly continuous process, but rather a combina-
tion of single mixing events. Each event will only mix until a certain distance to the
convective boundary, depending on how strong the event was and where it occurred.
Another form of single mixing events are plumes that penetrate the convective
boundary and turn around due to buoyancy. Pratt et al.| (2017) analysed these plume
events for mixing around a convective envelope and found that only a small number
of events are responsible for the deepest mixing. On the basis of this Extreme Value
approach we develop here a calibration method for the 1D overshooting parameter.

We can calibrate an overshooting parameter by using several starting models,
computed with different overshooting parameters and prepared as described in [3.6]
We depict the procedure in Fig. where we show the mixing in the form of
penetrating plumes, but the idea is the same for all other mixing events with a fixed
mixing depth.
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Figure 4.9: Schematics of the overshooting calibration, where vertical lines indicate
the position of composition interfaces corresponding to the overshooting parameter
given at the top.

Initial models without any overshooting will experience many mixing events that are
able to transport hydrogen from the stable layer into the CZ, since Rchemn and Rgtruc
coincide in those models. As hydrogen is mixed into the CZ, the distance between
Rehem and Rgtpye will increase and thus the hydrogen content in the CZ.

Models with f,, > 0 have a mixed core that is larger than the formal Schwarzschild
boundary. Mixing events need to penetrate further into the radiative layer in order
to reach hydrogen rich matter. Therefore less events will be able to mix matter into
the core and Rcpem moves slower.

A setup where the initial model was computed with a too large value of f,, would
result in a simulation, where no form of chemical mixing into the CZ would be
noticeable. The ideal overshooting parameter fy, ideq is reached, when no mixing
is noticeable any more, but for a model with fu, = fou ideal — €, rare single events
would still occur.

We performed simulations with f,, = 0 (ImHrk), 0.01 (ImHrk-1), 0.02 (ImHrk-2)
and 0.03 (ImHrk-3) to follow the evolution in f,, space from low to large overshooting
parameters. We also computed a model with the canonical value of f,, = 0.017
(ImHrk-1.7) to have a higher sensitivity in the region where we expect the actual
overshooting parameter.

The snapshots of the simulations ImHrk, ImHrk-1.7 and ImHrk-3 in Fig. show
that the velocity magnitude in the left panels looks qualitatively the same in all
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simulations. Inside the formal Schwarzschild boundary (black dashed line) the
velocity field is turbulent and dominated by two vortices. The absolute magnitude
of the velocity is the same in these simulations, which is expected since they all
have very similar heating terms. The dashed white circles in Fig. denote the
position of the composition interface in the initial model. In the ImHrk simulation
this overlaps with the Schwarzschild boundary and is hence not shown. In the
models with larger overshooting parameters, on the other hand, there is a noticeable
gap. The ImHrk-3 panels in show that between the Schwarzschild boundary
and the mixed boundary no convective motion occurs. This is an indication that
single plumes rarely penetrate the convective boundary and that looking at the
composition is not enough to claim a growing CZ in our case.

The right panels in Fig. [£.3] give an indication of the mixing intensity of these models.
In ImHrk (top panel) we see large perturbations throughout the CZ, showing that a
substantial amount of hydrogen is mixed around in the core. Here plumes are not a
largely contributing factor since the shear mixing events are much more frequent. In
ImHrk-1.7 the mixing events have to bridge a gap to reach hydrogen rich matter
hence we see that the CZ is predominantly homogeneous (white color in Fig. |4.3))
and only small perturbations are visible. The gap between the turbulent flow and
the composition discontinuity is even larger in the ImHrk-3 simulation (lower panels
in Fig. . Consequently, no mixing event reaches regions with higher hydrogen
content and the CZ remains completely homogeneous.

However, ImHrk-3 also exhibits large hydrogen perturbations around the chemical
boundary. This shows that the composition boundary is smoothed out during the
simulation. At the time of the snapshot shown in Fig. the smoothing has already
bridged half of the gap towards the Schwarzschild boundary. We will later see that
this a diffusive process.

The second ring with increased perturbation is a feature of the starting models, which
have an additional small discontinuity at the maximum extend of the convective
core during the pre-main sequence evolution.

Due to our shallow hydrogen profiles we can directly see the influence of chemical
mixing on the composition profiles. In the left panel of Fig. [£.10] we can clearly see
that the spherically averaged hydrogen profile (X) in the ImHrk simulation moves
significantly into the stable layer. Consequently the hydrogen content in the CZ
increases.

With increasing f,, the hydrogen profile changes less and less over the same
simulation time. In the ImHrk-2 and ImHrk-3 simulations we almost perfectly retain
the initial profile even after 130 and 70 convective turnover timescales, respectively.
In the ImHrk-1.7 run small deviations are visible, where the profile got smeared out.
The switch from an almost stable profiles in ImHrk-1.7 to a stable profile in ImHrk-2
in combination with the overall small (but non-zero) mixing rates are a clear
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Figure 4.10: Left panel shows spherically averaged hydrogen mass fraction profiles
of the 3.5M mass simulations, where dashed lines give initial profiles and solid lines
show the profiles after 4 - 10”s. The right panels show the change in hydrogen mass
in the CZ, with time analogous to @

indication that these simulations are close to give the real extent of the mixed region.
Based on this we would expect that the overshooting parameter lies in the range
0.017 < fov 5 0.02.

Snapshots and single profiles, however, are not sufficient to follow the time
evolution of mixing. In the right panels of Fig. [£.10] we therefore again follow
Myx — Mx,. From the top right panel of Fig. it becomes clear that there are
significant differences between the runs with different f,,,.

Over the whole simulation ImHrk mixes a few 107°My of hydrogen into the
convective core, while the ImHrk-2, only mixes about 10~7 M), and ImHrk-3 does
not mix any hydrogen at all during the simulation time.

In the right bottom panel of Fig. we show the derivative of the change in
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Name ‘ Mczi (Ms) Mmuyixed,i (Me) Mixing Rate (Mg /yr)  Ri,

ImHrk 0.69 0.69 4.0-1076 627
ImHrk-1 0.72 0.83 2.5.1076 936
ImHrk-1.7 0.78 1.00 1.5-107" 1193
ImHrk-2 0.78 1.02 6.4-1078 1580
ImHrk-3 0.78 1.14 2.5-10716 2236

Table 4.2: Results of our analysis of the mixing processes in the 3.5M models with
different overshooting parameters. The second and third two columns give the initial
mass of the CZ and the homogeneously mixed region, respectively. The fourth column
gives the mixing rates time averaged for ¢t > 107s. The last column shows the bulk
Richardson number Riy, i.e., the stiffness of the boundary.

hydrogen mass My as an indication for the mixing speed, and in Table we give
time averaged mixing rates for each simulation based on this time derivative. In order
to avoid influences from the initial transient we decided to only include datapoints
with ¢t > 107 s into the average. The ImHrk run produces an almost constant, but
slowly declining, mixing speed. The mixing rate is on average 4 - 10~Mg /yr, i.e.,
entraining all the mass in the stable layer (= 2.8 M) would take 7 - 10° yr. This
corresponds to a few thermal timescales and is obviously an unrealistically large
value. The ImHrk-2 run gives on average a growth rate of 6 - 1078 M, /yr, almost
two orders of magnitude smaller. While this is still fast enough to homogenise the
whole star during the main sequence lifetime of the order of 10% yr, it also is slow
enough that the stellar structure can react to these changes before the whole star is
mixed. One can speculate that the possibility of structural changes might stop the
growth eventually.

From the mixing curves of ImHrk-1.7 and ImHrk-2 in Fig. [£.10] we can also see that
our picture of single mixing events is a valid approach. Single bursts of mixing are
followed by a prolonged quiescent time, indicating that rare deep penetrating plumes
are responsible for most of the mixing in these models. We can also notice that the
time between mixing events in ImHrk-2 is significantly longer than in ImHrk-1.7,
because the plumes have to penetrate even farther to reach hydrogen rich matter in
the latter run.

In we raised the question which kind of event can bridge the gap between
the dynamical boundary and the chemical boundary. The sudden mixing events
in ImHrk-2 give us the opportunity to look at one isolated event. We therefore
increased the number of plotfiles in ImHrk-2 between 4.9 and 5.7 - 107 s by a factor
of 100. With this high number of output file, we indeed can identify single plumes
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Figure 4.11: Snapshots of radial velocity of the ImHrk-2 simulation, over-plotted are
the positions of tracer particles (black dots). The elapsed time since the initialisation
of the tracer particles at 1.55yr is given in the lower left corner of each panel.
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Figure 4.12: Diffusion coefficients around the convective boundary determined from
the ImHrk-2 simulation. The solid line uses a time interval of 2.5 - 10%s and the
dotted line 7-10%s. The red dashed lines shows an overshooting law with f,, = 0.01,
while the red dash dotted line uses f,, = 0.06

penetrating unusually deep into the stable layer right around the time where we see
the spike in the mixing at 5.2 - 107 s (see Fig. . However, none of these events
penetrates nearly far enough to reach the steep composition interface that is located
0.1H, outside of the R¢em. At most we see mixing events that extend 0.05H, into
the stable layer.

The missing link to cover that gap are diffusive processes, which are not captured
by the picture of single mixing events. As discussed in [Rogers & McElwaine| (2017))
mixing by IGWs can be interpreted as a diffusive process, but also numerical diffusion
can contribute in regions with sharp gradients.

From first principles we would expect that diffusive processes result in a slow
continuous mixing across the convective boundary. This is contradicting the bottom
right panel of which clearly shows a very peaked mixing history for the ImHrk-1.7
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and ImHrk-2 simulations. However, the timescales for diffusive processes are usually
much larger than the ones for convective motions. Under this assumption we can
interpret the data in the following way:

Diffusion will slowly smooth out the composition profile and will bring matter, with
an increased hydrogen mass fraction, closer to the convective boundary. Before
diffusion has time to move the matter across the boundary deep penetrating mixing
events suck the low end tail of the smeared out profile into the CZ, altering the
composition profile locally in the process. Diffusion and horizontal motion will then
try to restore the low end tail before it is again mixed into the CZ by another plume.
In the end we reach a balance between the diffusion, providing hydrogen rich matter,
and the actual mixing over the boundary by plumes.

Due to the dense output in the ImHrk-2 run we can analyse the diffusive mixing
by adding tracer particles in post-processing. We tracked the position of 40000
particles over a time of 7.1 - 10%s around the mixing event at 5.2 - 107s. We use the
velocity information of each output file to follow the motion of the particles, where
we assume that particles travel at a constant speed in the time interval between two
consecutive output files. The tracer particles were placed on a regular polar grid
around the convective boundary between 2.0 and 4.0 - 10'° cm. The innermost tracer
particles are part of the CZ, while most of the particles are placed in the stable layer.
The initial positions can be see in the upper left panel of Fig.

We can then calculate diffusion coefficients D from the radial displacement Ar of
the particles after some time At as D = (Ar)?/At.

The resulting diffusion coefficients are shown in Fig. £.12] We show two values

for D, using the same particles but following them over different time intervals
At. The solid line shows D calculated after 2.5 - 10°s, while the dotted line uses
At = 7.1-10%s. The vertical dashed lines indicate the convective boundaries as
defined in
Rogers & McElwaine (2017)) did the same exercise for their 2D simulation of a 3.0 M
mass star using data of 2.5 - 10% s of simulation time to determine D. Comparing Fig.
with their Fig. 2 we find a perfect agreement in D when we use the same At.
Inside the CZ D is orders of magnitude larger than outside the CZ, indicating a very
efficient mixing. This is also true for the small layer between Rqyn 1 and Rgtruc-
In Fig. 4.11| we display the positions of the tracer particles (only 4000 are shown)
during the mixing event. We can see that the particles inside the CZ get quickly
distributed across the whole CZ. After placing the particles on the grid at 1.55yr
it only takes 5- 107 s for some particles to reach the centre of the star (upper right
panel). After 2.5-10%s (lower left panel) the particles are perfectly mixed throughout
the whole CZ. This corresponds to a diffusion coefficient of the order of 10'3 cm?/s
throughout the CZ in perfect agreement with estimates based on MLT.
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Outside of Rgyn,1 the diffusion coefficients quickly drop by 4 orders of magnitude over
a distance of less than 10? cm. This drop can be fitted by a diffusive overshooting
model according to Eq. With fov = 0.01 (red dashed line in Fig. , indicating
that the empirical estimate f,, = 0.017 is overestimating the actual amount of
diffusion. However, further out D is still dropping but at a smaller rate. This part
of the curve can be approximated by a diffusive overshooting with f,, = 0.06 (red
dash dotted line in Fig. , which is much larger than the empirical estimate.
Approximating the diffusion coefficient as two connected exponentially decaying
functions corresponds to a diffusive overshooting model proposed by [Herwig et al.
(2007) based on 2D and 3D simulations of convection in a He shell during a flash
event on the asymptotic giant branch. On the main sequence we expect that a single
exponential function still provides an appropriate estimate for the extent of the mixed
region, because the diffusion timescales are so much smaller than the evolutionary
timescales. Thus, the mixing can be assumed to be almost instantaneous. The
overshooting parameter of the single exponential then has to be a specific value in
the range 0.01 < f,, < 0.06, which provides the same size of the mixed region as the
second shallower exponential. However, when the evolutionary timescale becomes
comparable to the diffusion timescale, it is necessary to include both exponentials
into the model to get the right amount of mixing.

The minimum D is reached at the location of Rcpen - At this point D is roughly
5 — 6 orders of magnitude lower than inside the CZ.

Outside of Rehem the diffusion coefficients start to increase again due to the increase
in amplitude of the IGWs. Deep in the stable layer, shortly before we start damping
our velocities, we find D ~ 10 cm?/s.

From Fig. [f.11] we see that throughout the stable layer the initial symmetric angular
distribution of the tracer particles remains initially intact (see upper right panel).
At later times, however, the particle order gets noticeably distorted due to the
considerably larger lateral velocities in the stable layer. This noticeable motion
does not show up in our diffusion coefficients since we are only analysing the radial
displacement. Yet it is the key features to provide an angularly homogenized
hydrogen profile after a mixing event has removed hydrogen locally. Without
lateral motion different deep penetrating mixing events might reach regions with
different hydrogen contents depending on the number of events that previously have
happened at the same location. Hence, the large lateral motion is necessary in
order to establish a balance between the diffusive mixing and the single mixing events.

Including the mixing event of ImHrk-2 at 5.2-107 s into the tracer particle analysis,
changes the results slightly (dotted line in .
Most noticeably the diffusion coefficient inside the CZ is now = 2 orders of magnitude
smaller than before.
This is partially due to the limited size of the CZ, which restricts the maximal radial
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displacement of tracer particles within the CZ. Once the particles are randomly
distributed inside the CZ the mean radial displacement will no longer grow. Hence,
D is expected to decline as 1/t. However, we see a bigger drop than that. The
remaining difference can be explained by overshooting of particles at the convective
boundary:

During the time interval of the tracer particle analysis the output files in ImHrk-2
are written every 1000s, i.e., there are =~ 10 computational timesteps between
each output file. If the direction of a fluid element in the simulation changes very
quickly within a few timesteps we therefore cannot capture that in post-processing.
The particle will overshoot its actual path and might end up in a different region
that follows another flow structure. Such situations are especially common at the
convective boundary. Here, the direction of the flow changes very quickly as plumes
approach the boundary. Moreover, particles that overshoot can end up in the stable
layer. In the worst case one grid cell makes the difference between CZ and stable
layer. A particle with a velocity of 10° cm/s will move across one cell width between
two snapshots. This velocity is not a uncommon one, since the standard deviation in
the velocity is on a similar level as the velocity magnitude.

A similar process where particles move from the stable layer into the CZ is much
less likely as the velocities there tend to be smaller and also the flow direction is
predominantly tangential to the boundary. We can also see this in [4.11] were the
colors indicate radial velocities U,. Outside of the CZ U, is orders of magnitude
smaller than inside the CZ. The motion in radial direction in the stable layer is then
well resolved by our post-processing tracer particles.

As time progresses more and more particles in the CZ will get into such a situation.
Counter intuitively the CZ will, therefore, actually loose particles over time even
though hydrogen is mixed into the CZ. This is very noticeable when we look at the
bottom right panel of Fig. [{.11], where we see much less particles inside the CZ than
in the other panels.

Since we initially only place particles in the outer regions of the CZ, the particles
that are now stuck at the outside of the boundary remain relatively close to their
original position. The diffusion coefficient, hence, is underestimated by this selection
effect.

Further out, the influence of the longer timespan of the analysis is less drastic. In the
intermediate region between Rqyn1 and Rehem the two different curves in Fig.
agree perfectly well. The resulting values of D seem to be converged in that region.
Outside of Rehem the diffusion coefficients increase during the mixing event. A
mixing event that penetrates deep enough to reach hydrogen rich matter needs to
have a large velocity. It will therefore also launch IGWs with an increased amplitude.
Shortly after the mixing event we would therefore expect D to rise in the stable layer.
Beyond 3.5 - 10!° cm the dotted and solid line in Fig. again agree fairly well,
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Figure 4.13: Spherically averaged hydrogen mass fraction profiles of several snapshots
of the ImHrk-3 simulation. The hydrogen mass fraction in the CZ Xy o of the initial
model is subtracted in order to visually enhance the mixing effects at the composition
interface. The profiles shown are equally spaced in time and coloured, respectively.
We also marked Rgyn,1 as a vertical dashed line.

indicating that the strong IGW from the mixing event has not reached this area yet.

The rather robust results for D in the stable layer allow us to look at the timescales
of diffusive mixing by IGWs.
At the composition interface we find that typically D = 10% cm?/s. Over the whole
simulation time of ImHrk-2 this corresponds to a typical mixing distance of < 108 cm.
However, the distance between the hydrogen interface and the dynamical boundary
is more than one order of magnitude larger than that. Yet mixing already sets in
after 3-10°s, i.e., the mixing process that brings the composition interface in contact
with Rgyyn cannot be IGW dominated diffusive mixing .
Another way to estimate the diffusion at the composition interface is to look at the
time evolution of the composition profiles while they are not influenced by convective
motions. The best simulation for that purpose is ImHrk-3 were we do not see any
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dynamical mixing over the simulated time. Looking at the hydrogen profile of
different snapshots, Fig. shows that a tiny amount of hydrogen diffuses very
quickly inwards. In Fig. @ we subtract the initial hydrogen content Xcz ¢ of the
CZ from the spherically averaged hydrogen profiles (X) in order to enhance the low
end tail of the hydrogen interface. In addition to that, the profiles of ImHrk-3 have
also been shifted to the right to increase visibility.

Initially the motion of the hydrogen profile is enhanced by the transient evolution,
but soon after that the hydrogen profile moves at a constant speed, which implies a
diffusion coefficient of the order of 10!° — 10 ecm?/s.

In the ImHrk-2 simulation the behaviour is similar, but dominated by the initial
transient until mixing sets in. In ImHrk-2 it is therefore not possible to determine
D from the long term evolution based on the hydrogen profiles. The value found
from the ImHrk-3 simulation is the same as in simulations of a 1.5M mass star
(see as well as in 3D simulations (see . We therefore think it is an universal
property of all of our simulations. We attribute the process to numerical diffusion of
the composition. One possible source for this diffusion is the handling of velocities
in MAESTRO. As described in the velocity at the end of each timestep is not
necessarily the advection velocity, because we enforce the velocity constraint from
Eq. at the end of each timestep. The velocity of the tracer particles therefore
is slightly different from the velocity used for the advection of composition, which
might explain the difference in the diffusion coefficients determined from tracer
tracer particles and hydrogen profiles.

The simulations where mixing is dominated by this effect (ImHrk-1.7, ImHrk-2, and
ImHrk-3) can be identified by the step like mixing behaviour. Subtracting the effect
of numerical diffusion we conclude that there is actually no mixing going on in these
simulations.

Going back to the D values as determined from the tracer particles we can
also compare these values with the evolutionary time of the star. Assuming that
the diffusion coefficient throughout the stable layer is represented by the minimal
diffusion coefficient of the order of 107 cm? /s, the star would become mixed within
1 Myr over a distance of ~ 10'° ¢cm, which is of the same order as the pressure scale
height at the convective boundary. Hence, during the main sequence lifetime such a
diffusion coeflicient would mix the whole star.

While this amount of mixing is clearly too much, one also has to consider that
the velocities in the 2D simulations are about 20 times larger than predicted by
MLT (see Fig. and larger velocities in the CZ also lead to IGWs with larger
amplitudes. |Rogers & McElwaine| (2017) found that the diffusion coefficient is tightly
correlated with the mean velocity in the CZ. In Rogers & McElwaine (2017) the
velocity in the CZ over time dropped by a factor of three compared with the initial
velocity in the simulation. They found that this drop in velocity corresponds to a
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reduction of the diffusion coefficient by 2 orders of magnitude. Extrapolating the
results of our simulations down to the MLT predictions leads then to a reduction of
D by six orders of magnitude.

Moravveji et al. (2016]) found that stellar models of the 3.25M mass star KIC
7760680 require an additional diffusion parameter D ~ 10cm? /s in the stable layer
in order to fit their asteroseismic observations. This is in perfect agreement with
our extrapolated value for D based on MLT velocities. With such a low diffusion
coefficient, diffusive mixing over the whole lifetime of the main sequence would
extent only over a region of size 10% cm.

We can therefore argue that diffusive mixing is actually not as important for the
mixing at convective boundaries as our simulations indicate. Furthermore, we can
then claim that all simulations that are dominated by diffusive mixing do overestimate
the overshooting parameter. The overshooting calibration then gives us an upper
limit of f,, < 0.017, corresponds to an overshooting distance of less than 4 - 10° cm
or 25% of the local pressure scale height at the convective boundary H,, ~ 1.5-10'0 cm.

In addition to the diffusion constant in the stable layer Moravveji et al. (2016])
also give the overshooting parameter that is required in their 1D models to match
their observations. They find f,, = 0.024, a value larger than what we predict from
our simulations. Overshooting parameters between different codes are, however, not
directly comparable due to different assumptions on the initial diffusion constant
Dy in and different implementations of cutoff functions. The mass in the
overshooting region can be more directly compared. Moravveji et al.| (2016)) found a
value of 0.2642 M, which is in good agreement with our ImHrk-1.7 and ImHrk-2
simulations that contain 0.22 and 0.24 M, in the overshooting region, respectively.

4.5 Entrainment

In [2.4) we introduced the entrainment law [2.1§ and discussed that it is necessary
to limit the entrainment process at long timescales in order to get realistic stellar
models. Some of our simulations also show an almost constant mixing rate, indicating
that some entrainment process is operative. Here we want to check whether these
simulations can be described by an entrainment law and which conclusions we can
draw from that law.

In order to check the applicability of an entrainment law of the form Eq. it is
necessary to determine the bulk Richardson number Ri, at the convective boundary
according to Eq. While computing the rms velocity inside of the composition
interface Recphem, required by Eq. is straightforward, the length scale L and the
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interface width d; are in principle free parameters. The only restriction is that L
needs to reflect the typical size of motions around the composition interface and d;
should cover the full width of the interface.

Cristini et al.| (2019)) used the stratification of the initial model to determine L and d;
as fractions of the pressure scale height H,,. In @ we showed that a parametrization
in terms of H), is problematic for small central convective zones since H, can be
much larger there than the size of the CZ itself. We want to avoid this problem for
our Rip analysis and therefore set d; independently of H,,.

d; we sat depending on the width of the hydrogen interface. While we can estimate
the width of the hydrogen interface from Fig. to be ~ 1-10% cm, we also know
from Fig. that the low end tail can be spread out considerably more than that.
Once the low end tail gets in contact with the convective motions in the CZ, it is
quickly spread out across the whole CZ. This limits the width of the interface to
the distance between Rcpem and Rgy,. d; also has to take into account the shift
of Repern during the simulation (see ,e.g., ImHrk in Fig. [4.10). We therefore set
d; = 5.6 - 10° cm, which is the maximum difference between Rcpen and Rgyn for all
the simulations used for the overshooting estimate, to safely cover the whole interface
throughout the simulations.

L can also be determined independently of Hj, by using an auto-correlation function
A of the fluid velocity between radius r and r + dr (Mocak et al.l 2009). We focus
here on the radial part of the velocity U, since this is the relevant component for the
mixing across interfaces. A(r) can then be defined as

_ (Ur(r)Ur(r + dr))
A G W

where (x) denotes the spherical average of x.

(4.6)

Evaluating A at the composition interfaces Rchemn We find a narrowly peaked

distribution around Repem (Fig. . This indicates that only small scale flows
are relevant for the transport across the composition boundary, as expected for a
diffusive process. At the position of Rgirue the correlation is much broader as shown
by the black dashed line in Fig. for the ImHrk-2 simulation, reflecting the large
scale flows of convection.
In [£4) we identified diffusion to be the dominating process in transporting matter
across the composition interface, while the larger scale motion of convection is used
to distribute the matter homogeneously. We reflect this in our Rip estimate and
adopt L = 1-10? cm corresponding to the width of the peaks in Fig. [4.14

The computed Ri, values are given in the last column of Table We find

that Ri;, increases with increasing f,,, which suggests that the stiffening of the
boundary due to overshooting might be able to stop the mixing eventually. However,
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Figure 4.14: Auto-correlation function (see Eq. of the radial velocities at
the radius of the composition interfaces (dotted vertical lines) at the end of the
simulations. The black dashed line shows the auto-correlation function at the
Schwarzschild boundary of ImHrk-2.

when we plot the mixing rate of the ImHrk, ImHrk-1, ImHrk-1.7, ImHrk-2, and
ImHrk-3 simulations against Ri,, we find that the simulations do not follow an
entrainment law as given in Eq. (see Fig. , but the ImHrk and ImHrk-1
simulations can be fitted quite well with an entrainment law with an exponent
n = 1. In the models with higher f,, values the mixing rate is much lower than
predicted by the entrainment law, i. e., the increasing stiffness of the boundary is
not the mechanism that limits entrainment. In .6 we will find indications that the
mechanism suppressing chemical mixing is rather the entrainment of entropy into

the CZ.

(1975) argued that the entrainment rate is limited by the amount of
available kinetic energy at the convective boundary and the amount of energy that
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ImHrk-3 far outside the shown frame.
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is needed to move a mass element across the composition interface, i.e. the stiffness
of the boundary. The simulations ImHrk-1 and ImHrk have roughly the same energy
input and turbulent velocities in the CZ, but the ImHrk simulation has a slightly
less stiff boundary. In agreement with the picture of Linden| (1975) we find that
the mixing rate in ImHrk is always larger than the one in ImHrk-1. In fact, all
simulations discussed in [£.4] have very similar amounts of kinetic energy and none of
the mixing rates surpasses the mixing rate of ImHrk, indicating that the mixing rate
of ImHrk might be an upper limit for the entrainment rate.

In we will find that also for simulations with smaller stellar masses, the simulation
without any overshooting in the initial model, sets an upper limit to the mixing
rate. Hence, we can conclude that an entrainment law can only provide an upper
limit to the mixing rate. Considering the long evolutionary timescales on the main
sequence we then expect that the entrainment rate provides little information about
the extent of the actually mixed region, because it fails when the distance between
the Schwarzschild boundary and the composition interface increases. In phases of
stellar evolution with shorter evolutionary timescales, however, the mixing limit set
by an entrainment law might also limit the maximum extent of the mixed region.

4.6 Temperature Gradients

Besides the size of the mixed region around CZs the biggest uncertainty of 1D models
is that the actual temperature stratification in that region is unknown. In[2.2] we
introduced the model of [Zahn| (1991) that predicts an intermediate layer between
the adiabatic stratification in the CZ and the radiative one in the stable layer. Even
though our simulations suffer from the same problem as other hydrodynamical
simulations of mixing around CZs, namely that the covered timescale is much too
short to reach thermal equilibrium by radiative diffusion, we want to analyse the
behaviour of the temperature gradients in our simulations.

First we need to compute the gradient V = zﬁggg. As discussed in MAESTRO
does not fulfil the EOS at all times. Calculating V is therefore not as straight
forward as in other codes. In addition, we also have to differentiate between the
background pressure pg that is used in most of the hydrodynamical equations and
the pressure perturbations 7 that are only included in the momentum equation [3.39
Therefore we have three different ways to compute the pressure that is needed for V.
We can use the background pressure pg, as it is the pressure that is used in most
equations, or we could use the total pressure based either on the EOS pgos or the

background pressure plus the perturbations pg + .
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Figure 4.16: Comparison of the different ways to compute temperature gradients
in MAESTRO simulations. Shown are spherically averaged profiles in the ImHrk
simulation at 1-10%s

The relative drift of peos away from pg is of the order of 107, the difference
being largest at the convective boundary, where mixing occurs, changing the
thermodynamic state. While this fact is negligible for the hydrodynamics, it causes a
significant difference for the temperature gradient in the CZ. In the CZ this difference
can easily change the apparent stratification from stable to unstable and vice versa.
In Fig. we show the resulting temperature gradient profiles in the CZ for the
different pressures. We use the form Vo = V — V,q, where V.4 is the adiabatic
gradient provided by the EOS. This quantity appears in the Schwarzschild criterion
where Ve, > 0 identifies an unstable stratification. Fig. clearly shows that
the values of V computed with pgog result in a mostly stable stratification at the
border of the CZ, while py and pg + 7 imply larger unstable areas. Nevertheless
we see convective motions throughout the CZ up until the boundary and even a
bit beyond it (see , i.e., the subadiabatic regions do not seem to slow down
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Figure 4.17: Spherically averaged temperature gradient profiles of the 3.5M¢ star
simulations. Dashed and solid lines show profiles according to the Schwarzschild
criterion at ¢t = 0 and after 4 - 107 s, respectively. The dotted lines give the initial
profiles according to the Ledoux criterion.

the flow. Therefore, we consider all layers with |Ve| < 107% as marginally stable,
i.e. equivalent to Vex = 0. In practice this is only necessary in the CZ and at its
boundary. In the stable layer the subadiabaticity is much larger than the uncertainty
of 1074

For the rest of this section we will use pg to compute V, but the results are not
depending on that choice.

In Fig. [£.17] we show temperature gradient profiles at the start of the simulation
(dashed lines) and after 4-107 s (solid lines). Again we use the Schwarzschild criterion
to differentiate between stable and unstable (marginally stable) regions.

The stability against convection is also influenced by the molecular gradient

V,= 51135 5, where 1 is the molecular weight of the fluid. Including the effects of
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V. in the stability analysis results in the so-called Ledoux criterion (Ledoux), |1947),
where Vi, =V — V4 + i—f;v# > 0 indicates an unstable stratification. x, and x;

are the thermodynamic derivatives Zﬁii and j{ggg provided by the EOS. In our
models V,, always gives a stabilizing contribution to the stratification. We also show
the profile according to the Ledoux criterion of the initial models in Fig. [£.17] as

dotted lines.

The first point we notice in Fig. is that the Schwarzschild criteria in the
ImHrk and ImHrk-1 simulations follow the general shape of the Ledoux criterion
after some time. This is due to the simultaneous mixing of hydrogen and entropy at
the same location, which allows V to adopt the influence of the composition gradient
right at the composition interface. Consequently this leads to a retraction of the
formal Schwarzschild boundary in ImHrk. On the other hand, the temperature
gradient approaches the adiabatic one just outside of the core, indicating an efficient
outward mixing of thermal energy. Initially the bump in V is so close to the adiabatic
one that it interferes with the computation of our structural boundary condition
Rstrue (see jump in Fig. . Over time this feature moves outwards together with
the hydrogen profile, but remains constant in height. The deeper the hydrogen
profile moves into the stable layer, the larger is the subadiabaticity of the background
state. This means that the stability of the bump in V increases over time. An
influence on the driving in the CZ in the long term evolution can therefore be excluded.

In the simulations ImHrk-1.7, ImHrk-2, and ImHrk-3 that have little to no chemical
mixing this feature is completely absent. Without entropy mixing V cannot change
and hence V preserves the initially imposed stratification at Repem. Nevertheless, the
overshooting models do still mix entropy, but in the region of Rty far away from
Rechem- This leads to an additional feature just outside of the formal Schwarzschild
boundary where the temperature gradients are pushed from the radiative gradient
closer to the adiabatic one, i.e., the entropy profile is flattened in that region. In [2.2]
we introduced this feature as a penetration layer.

While it seems surprising that the temperature gradient is altered, even though
we are far away from simulating a thermal timescale, it can be understood with
the penetration picture of van Ballegooijen| (1982), who describes penetration as a
competing process between convection, trying to establish an adiabatic temperature
gradient, and radiative diffusion, trying to restore the radiative gradient. Convection
operates on a much shorter timescale than radiative diffusion and hence a penetration
region is established before V can be pushed back to Vi,q. In the overshooting
models we clearly see the growth of the penetration layer. On the other hand, during
the whole simulation of ImHrk the estimated lengthscale for radiative diffusion
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corresponds to only half the width of a computational cell. This is clearly not enough
to see any noticeable restoring effect from radiative diffusion. The final depth and
shape of the penetration layer therefore cannot be determined from our simulations.
Simply the presence of a penetration layer, however, is a clear indication that the
usual 1D assumption of using the radiative temperature gradient in the overshooting
layer is insufficient to describe all relevant processes.

The balance between radiative diffusion and energy transport by convection is also
directly connected to the entrainment process. In we described how a balance
between the entrainment of entropy, i.e. the transport of energy, and the restoring of
the entropy gradient by radiative diffusion can stop chemical entrainment. Since
we do not reach an equilibrium state in the energy transport we also do not see an
effect on the entrainment. However, the fact that the entropy entrainment seems to
increase as the chemical mixing is reduced is a strong indication that both processes
are connected and should not be considered individually.

4.7 Mass Dependence

Since overshooting in 1D models is parametrized in terms of the pressure scale height
(see Eq. , the procedure fails for very small central convective zones where
H, diverges (see . In order to prevent unrealistically large mixing regions, it is
necessary to investigate the behaviour and size of mixed regions in the mass range
between 1.2 and 2M. We therefore test this range by repeating the procedure of
the 3.5Ms mass star with models of 1.3, 1.5, and 2.0M mass stars. In total we
performed 11 additional simulations, using 3.3 - 10> CPU hours. An overview of the
different models is given in Table

In this section we will first discuss the models individually and then summarize the
mass dependence of the results.

4.7.1 2.0M,

2.0Mg, is the upper end of the linear scaling of f,, as proposed by |Claret & Torres
(2016). We performed 3 simulations with f,, = 0, 0.005, and 0.01, where each
simulation covers 80 to 90 convective turnover timescales.

Qualitatively we find similar results as for the 3.5M star. The low overshooting
parameters in the models Im2Hrk and Im2Hrk-05 lead to a continuous mixing
evolution analogous to ImHrk and ImHrk-1. Comparing the absolute values of
mixing we find that curiously the 2.0M simulations tend to mix faster, even
though the convective velocities are smaller and the boundary stiffer. Assuming
that an universal entrainment law exists, we would expect the opposite behaviour.

91



Name | fo tmax 22 Mcgz; Mpised; Mixing Rate  Rij

Tconv

Im2Hrk 0 6-107 90  0.27 0.27 2.0-107° 662

Im2Hrk-05 0.005 5-107 80  0.29 0.32 1.2-107° 1970
Im2Hrk-1 001 7-107 8  0.30 0.37 2.9-1078 5936
Lm5Hrk 0 1.8-10% 180  0.09 0.09 3.0-1076 1325
Lm5Hrk-025 | 0.0025 1-10° 130  0.10 0.12 1.9-10°6 7407
Lm5Hrk-05 | 0.005 1.4-10% 130  0.12 0.14 3.0-1077 6421
Lm5Hrk-1 0.01 1-108 110 0.14 0.19 1.4-1078 38470
Lm5Hrk-2 0.02 1.8-10% 143 0.16 0.27 1.7-107% 55122
Lm3Hrk 0 1.3-105 30  0.02 0.02 3.8-1077 1015
Lm3Hrk-025 | 0.0025 1.1-10% 130  0.04 0.05 3.9-1077 2141
Lm3Hrk-05 | 0.005 1.5-10% 150  0.06 0.08 6.0-1078 3775

Table 4.3: Overview of our simulations with lower stellar masses. The first column
gives the name of the simulation, where the first three characters describe the total
stellar mass of the model. Im2, Lmb, and Lm3 corresponds to 2.0, 1.5, and 1.3 My,
respectively. The second column shows the overshooting parameter used in the 1D
model. The 3rd and 4th columns show the physical time at the end of the simulation
in seconds and the number of convective turnovers, respectively. The 5th and 6th
columns give the initial mass of the CZ and of the homogeneously mixed region in
units of M), respectively. The mixing rates averaged for ¢ > 107 s in units of Mg /yr
are shown in the second to last column, while the bulk Richardson number is given
in the last column.

Nevertheless we see in Fig. that the mixing in the Im2Hrk-05 simulation
approaches the Im2Hrk simulation in terms of mixing speed and then follows the
evolution of Im2Hrk, indicating again that there is an upper limit for the mixing
rate.

The mixing rate of the Im2Hrk-1 simulation is almost three orders of magnitude
smaller than in the Im2Hrk simulation. From the bottom right panel of Fig. we
can see that this model shows episodic mixing behaviour analogous to ImHrk-1.7
and ImHrk-2. ImHrk-1, the 3.5M model with the same overshooting parameter as
Im2Hrk-1, however, shows a continuous mixing, i.e., the 2.0Ms models need a smaller
overshooting parameter than the corresponding 3.5Ms models to develop a similar
mixing behaviour. With the same argument as in[4.4we can then infer that f,, < 0.01.

The 2.0M mass model is also interesting because Higl et al.[ (2018]) found that the

geometrical cutoff description (2.13)) for overshooting is too restrictive in this mass
range. They tested the eclipsing binary system TZ For, which is prone to undergo
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Figure 4.18: Analogous to Fig. but for the 2.0Mg star and where the solid lines
in the left panel show hydrogen mass fraction profiles after 5 - 107 s.

mass transfer during the red giant phase of the primary star. Based on observations,
however, no transfer is possible in the previous evolution. To prevent mass transfer
in the evolution, the star needs to develop a sufficiently large helium core at the end
of the main sequence. From Table 2 in Higl et al. (2018) one can then conclude that
the helium core of a 2.0M¢ star has to have a mass of at least 0.335M. The initial
model of Im2Hrk-05 would result in a He-core with 0.32M, (see Table . This
is too low for the TZ For limit. In Im2Hrk-05 we still see significant mixing going
on, so the real size of the mixed region should be larger than the initial model of
Im2Hrk-05 implies. In Im2Hrk-1 we find diffusion dominated mixing and the initial
model corresponds to a He-core of 0.365M, above the lower limit of TZ For limit.
Due to the mixing dominated by numerical diffusion we argued that Im2Hrk-1 gives
an upper limit for the mixed core mass. Combining the lower limit of TZ For and
the upper limit from the simulations, we can narrow down the acceptable range for
the mass of the mixed core significantly.
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Figure 4.19: Analogous to Fig. but for the 1.5Mg star and where the solid lines
in the left panel show hydrogen mass fraction profiles after 1-108s.

4.7.2 1.5M,

The radial extent of the CZ in a 1.5Mj, star is only half the size of that in a 3.5M
star. H), of the Lm5Hrk model without overshooting at the convective boundary is
60% larger than the CZ itself. With an unrestricted overshooting, f,, = 0.02, this
results in a mixed core that contains three times the mass of the model without
overshooting (see Table . In this low mass model we expect to see the effect of a
scaled f,, much stronger than in the previous models. We performed five simulations
with f,, = 0, 0.0025, 0.005, 0.01, and 0.02.

The 1.5M; mass models again agree with the entrainment picture, as the Lm5Hrk-
025 model shows continuous mixing which increases until a rate similar to that of
the Lm5Hrk model has been reached. Then both curves follow the same trend (see
bottom right panel in Fig. Overall the mixing rates are now about one order
of magnitude smaller than in the previous models. The computed Ri; values also
indicate a much stiffer boundary. Curiously, the Ri;, value of Lm5Hrk-05 is lower
than that of the one for Lm5Hrk-025. In the left panel of Fig. we can identify a
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Figure 4.20: Analogous to Fig. but for the LmHrk-2 simulation.

small knee in the hydrogen profile of the Lm5Hrk-05 simulation at the bottom of the
hydrogen interface. This smooths out the N? profile as well, consequentially leading
to a lower Ri, value.

Again we find episodic mixing behaviour as we increase f,,. The first clear appearance
is as in the 2.0Mg models at f,, = 0.01 in the Lm5Hrk-1 simulation. We therefore
find f,, < 0.01, resulting in a mixed region of 0.19M. found that the
~ 1.4Mq Kepler star KIC 9812850 has a mixed core with a size of 0.140 £ 0.028 R,
in excellent agreement with the position of the composition interface of Lm5Hrk-1 at
0.139Rs.

The Lm5Hrk-2 model also shows episodic mixing, which however only sets in after
~ 7-107s, while in Lm5Hrk-1 we already see mixing after ~ 4 - 107s. The distance
between the Schwarzschild boundary and the composition interface in Lm5Hrk-2 is
1.1-10% cm larger than in the Lm5Hrk-1 simulation.

From the time difference in the onset of mixing and the increased distance between
Retrue and Repem, We can estimate a diffusion coefficient of D = 4 -10'° cm?® /s, which
is of the same order of magnitude as the estimate based on the hydrogen profiles in

95



ImHrk-3. The velocities in the CZ in Lm5Hrk-2 are much lower than in ImHrk-3.
We would therefore expect that the diffusion coefficient is also considerably smaller.
The high value of D therefore suggests that the diffusion of the hydrogen profile is
not due to IGWs, but that it is dominated by numerical diffusion.

In Fig. [:20] we plot the hydrogen profiles of snapshots at equidistant times in
order to show the evolution during the initial 108s of the Lm5Hrk-2 simulation.
The differences between the profiles in the initially homogeneously mixed area are
enlarged by subtracting the initial hydrogen mass fraction of the CZ. We see that
the hydrogen profile initially moves inwards rather quickly, before it slows down to
an almost constant speed between 3 and 7 - 107s. Once the profile gets in contact
with the convective flow inside of R4y, (dashed line in Fig , the mixing speed
increases and the tail of the profile is quickly spread out across the whole CZ. This
is in agreement with the picture of diffusion supplying the hydrogen rich matter that
is then mixed into the CZ by convective overshooting as described in [£.4]

4.7.3 1.3M,

We also performed three simulations with f,, = 0, 0.0025, and 0.005 for a 1.3M,
star. These models have a tiny convective core that contains less than 2% of the
star’s total mass if no overshooting is used. Due to the self consistent 1D evolution
of the initial models with overshooting the mass inside the CZ triples if we use
fov = 0.005 in Lm3Hrk-05. This already shows that changing the f,, value has
a sizeable impact on the stellar evolution models in that mass range. Using an
unrestricted overshooting with f,, = 0.02 we find that the mixed cores now contains
roughly seven times the mass of the model Lm3Hrk without any overshooting.

The results of the mixing analysis in Fig. follows the general trend. The mixing
rate is smaller and we see episodic mixing at an even lower f,, value in Lm3Hrk-05,
suggesting that f,, < 0.005. There are, however, some peculiarities in these models.

In contrast to the models with higher masses, the model without overshooting is
not providing the upper limit for the mixing rate. In the bottom right panel of Fig.
we can see that the Lm3Hrk-025 and even the Lm3Hrk-05 simulation surpass
the mixing rate of Lm3Hrk after ~ 9 -107s. The main reason for this behaviour is
an anomaly in the Lm3Hrk model, where the convective velocities suddenly drop
by ~ 80% and remain low for several 10”s. We can see this in Fig. where
we plotted a time evolution of the velocity magnitude throughout the simulation
Lm3Hrk. During the first 2 - 107s only the CZ (white dashed line in Fig. [4.22)
shows noticeably flow velocities, which are decaying slowly. Then velocities rapidly
increase inside the stable layer between ~ 0.5 and 3.2 - 10!° cm, where the upper
boundary is set by our damping function. The velocities are created by unresolved
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Figure 4.21: Analogous to Fig. but for the 1.3M¢ star and where the solid lines
in the left panel show hydrogen mass fraction profiles after 1-10%s.

IGWs as described in In contrast to the simulations with more massive stars,
the stable layer has now velocities that are larger than the ones in the convective
layer. This leads to a resonant wave inside the stable layer which can also be seen in
the hydrogen profiles (left panel . In fact, a similar wave in the hydrogen profile
can already be seen in the 1.5M mass models. This has an interesting effect on the
energetics of the system:

The IGWs created by convection are now suppressed by the artificial IGWs created
in the N? cavity at 2.5 - 10'° cm and the outer boundary, and are now travelling
inwards. In Fig. [£.22] we indicate the slope of the wave crests by a white dotted
line, which is tilted towards the CZ. This is not the case for the 1.5M; models as
the internal heating there is still strong enough to push the IGWs outwards and
not inwards. As the IGWs enter the CZ they are exponentially damped and deposit
their energy there, which is periodically driving convective motions and mixing fresh
hydrogen and entropy into the CZ. After 810" s the wave pattern in the stable layer
changes qualitatively into a homogeneously rotating flow. The reason for that is
unclear, but we see that as soon as this pattern gets in contact with the convective
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Figure 4.22: Colour plot of a series of spherically averaged velocity magnitude profiles
in the Lm3Hrk simulation, over a timespan of 1.3 - 108s. The radial position of the
initial Schwarzschild boundary and the propagation direction of IGWs are marked
by white and black dashed lines, respectively.

boundary, the velocities in the CZ drop drastically. It seems like that this new wave
pattern is suppressing convection in the CZ.

In Lm3Hrk-025 and Lm3Hrk-05 the distance between the Schwarzschild boundary
and the composition interface acts as a barrier between the CZ and the homogeneous
wave pattern. The damping effect is therefore not noticeable. Velocities in the CZ
remain large and therefore the mixing rate goes above the one from Lm3Hrk. In
fact, the velocities in the CZ of Lm3Hrk-025 and Lm3Hrk-05 increase during that
time, which leads to the peculiar behaviour of Lm3Hrk-05 switching from an episodic
mixing to a continuous mixing at later times.

The driving of convection by artificial waves suggests that the mixing in stars should
actually be smaller than observed in our models and therefore we should also use
a smaller overshooting parameter. A value of f,, = 0.005 is therefore most likely
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Figure 4.23: Time averaged convective velocities as a function of stellar luminosity.
The predicted MLT scaling is shown as a black line.

gives an overestimation for the amount of mass mixing. We continue to argue that
for < 0.005, since Lm3Hrk-05 has at least a partially episodic mixing behaviour
during which we can apply the same argument as before.

4.7.4 Summary

Based on the simulations with different masses we can now investigate some general
trends. First we can look at the density weighted averaged velocities in the CZ ﬁcz
and compare it with the expected o< L*/3 luminosity scaling from MLT (see . In
Fig. we compare this scaling (solid line) with time averaged values of U],
(dots) and find a good general agreement over the considered luminosity range.

Simulations of the same mass, but with different overshooting parameter, have very
similar luminosities. The spread in velocity, however, is larger than expected from
the scaling relation. This indicates that the scaling relation is only accurate to first
order. One second order effect is the actual size of the CZ, which tends to be slightly
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Figure 4.24: Time averaged mass entrainment rate as a function of the bulk Richard-
son number for all simulations. Each dot corresponds to a different model. The black
dashed line represents an entrainment law according to Eq. with n=1.32.

larger in the overshooting models due to the self-consistent evolution of the initial
models. The change in stiffness at the convective boundary might also have an
influence on the convective velocities. It might be worth investigating these second
order effects to get more accurate velocity estimates for 1D stellar evolution.

The entrainment law suggests that it is universally valid and only depends on
the stiffness of the boundary Riy. We compute Ri; values for all our simulations
analogous to the discussion in [£.5] where the integration width d; is chosen based
on the largest distance between the composition interface and the Schwarzschild
boundary for each model set and the typical lengthscale L is taken from the radial
velocity correlation at the composition interface. As we go to less massive models,
we find that L is slightly decreasing, while Ri; tends to increase, which is mainly due
to the reduced velocity in the CZ at lower luminosities. Between the 1.5 and 1.3Mg

100



0.35 . ; ; : :
**k fo,=0.00
0.30| | 9®® for=0.02 |
000 Cutoff
VVv¥ Hydro
0.25r1 9000 Mombarg+19 1

0.20} .
S
=

0.15 ]

(4
0.10} O i
o
0.05} .
0.00 1 1 1 1 1
1.0 15 2.0 2.5 3.0 3.5 4.0

M, (M)

Figure 4.25: Convectively mixed core mass for models with (black dots) and without
overshooting (black stars). Blue and green ellipses show the same quantity, but using
a geometrical cutoff for the overshooting and observational constraints by Mombarg
et al.| (2019), respectively. The red triangles denote the derived upper limits from
our simulations.

simulations R, decreases, not because the boundary is less stiff, but because the
integration distance d; in the 1.5M, star is considerably larger than in the 1.3 Mg
model.

Using the Ri, values of all simulations in combination with their respective time

averaged mixing rates <M X>t we find Fig. |4.24], A linear fit to the datapoints in

Fig. gives an universal entrainment law with n = 1.32 +0.79 and A = 4 - 1072,
The datapoint from the 3D simulation (black diamond) is excluded for this fit.
The scatter of n is large indicating that an entrainment law solely based on Riy is
not universal. Looking at the individual sets of simulations we only find a good
agreement with the 1.5M mass set.
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Finally we can also look at the scaling of f,, with mass and compare it to our 1D
models.
As expected, mixing rates tend to decrease with decreasing stellar mass. Within
each model set we also find that an increase of f,, leads to a decrease of the mixing
rate. This effect gets stronger when we go to lower masses. We therefore conclude
that models with a small convective core indeed require a smaller overshooting
parameter. We argued that models that show an episodic mixing behaviour are
dominated by diffusion, which is overestimated in our simulations. Models with
an episodic mixing behaviour therefore represent upper limits for f,,. We compare
these upper limits with 1D models in Fig. Due to different implementations
and a different treatment of extreme cases, overshooting parameters between
different 1D codes are not necessarily directly comparable. We therefore show the
mass of the mixed region as a more universal quantity in Figure which also
makes it easier to compare with observations. Figure [£.25] shows results for 1D
models with and without overshooting as black stars and dots respectively. The
overshooting estimates are based on the canonical value f,, = 0.02 and do not
use any form of limiting the amount of overshooting. Our hydrodynamical up-
per limits are shown in red. These values are also given in the 6th column of Table [£.3]

Comparing the hydrodynamical estimates with the unrestricted overshooting we
find that the latter largely overestimates the core masses at the lower mass end.
For the 3.5 My star, however, the two values agree perfectly. It is hence evident
that some form of overshooting restriction is necessary. Figure [£.25] also contains
blue circles that indicate 1D Models with f,, = 0.02 which use the geometrical
overshooting cutoff Eq. 2.13] We find excellent agreement between the geometrical
cutoff and the simulations for 2.0 Mg stars. Above and below 2.0M the cutoff
predicts a mixed region that is slightly smaller than the hydro estimates. In Fig.
we also show constraints on the mass of the homogeneously mixed core by
Mombarg et al.| (2019), which were derived from asteroseismological observations of
~ Dor stars. The observations are clustered around 1.5 M and agree perfectly with
our hydrodynamical limit for that mass. However, some of the observations indicate
stellar masses of ~ 2.0 M and convectively mixed cores less massive than those of
the models without overshooting. The most likely reason for this discrepancy is the
uncertainty of the stellar mass estimates in Mombarg et al.| (2019), which according
to them is £0.1 Mg. Furthermore, we note that all hydrodynamically estimated
upper limits also fulfil the upper limit by Roxburgh (1992)), which restricts the radial
extend of the overshooting layer to a size smaller than 20% of the CZ. Overall, we
find that using the size of the CZ as a limiting factor for the mixed region seems to
be a valid approach.

Here we want to stress that these limits on the overshooting parameter only apply for
central convective zones and not for convective envelopes. The convective boundary
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of convective envelopes tends to be less stiff and therefore ballistic overshooting has
a larger impact. The diffusion by IGWs is also less efficient for surface CZs, because
in these CZs the IGWs created by convection are actually damped as they travel
into denser matter.
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Chapter 5
3D simulations

In the previous chapter we showed that it is possible to test the parameter space of
stellar evolution models using 2D simulations. We also showed that 2D convective
flows are dominated by large scale vortices. However, convection in stars is expected
to be highly turbulent, i.e., flows should easily decay into smaller structures. In
this chapter we will see that these small scale structures can only be reproduced
by 3D simulations, which leads to a fundamentally different flow morphology. A
fully conclusive answer to the mixing at convective boundaries can therefore only be
obtained with three dimensional simulations.

We performed six 3D simulations of a 3.5 Mg star using different initial models,
integration methods, and resolutions of 5122 and 10242 zones, respectively. The
models were computed on the cobra cluster of the Max Planck Society and used
7.7-10% CPU hours. An overview is given in Table where we follow a similar
naming convention as in the 2D models. A M’ or "H’ in the model name stands for
a resolution of 5123 or 10242 zones, respectively.

5.1 Transient

In order to analyse the influence of dimensionality on our results, we used the same
domain sizes and damping parameters for the 2D and 3D simulations. The initial
models of simulations with corresponding name pairs are also identical.
Consequently the initial phase of the 3D simulations resembles that of the 2D runs.
Energy from the slightly superadiabatic temperature stratification is released and
drives fast turbulent motions in the CZ at a velocity comparable to that found in the
corresponding 2D simulations. Shortly after this initial burst the density weighted
averaged convective velocities inside the CZ, mcz: rapidly decrease by almost an
order of magnitude (see Fig. . While this is qualitatively the same behaviour as
the 2D simulations, the velocity drops more in 3D, i.e., the convective velocities after
the initial transient are about one order of magnitude smaller in 3D than in 2D.

In the stable layer, the velocity evolution also shows some discrepancies to the 2D
results. In Fig. we show snapshots of the simulations ImMpc3d, ImMrk3d, and
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Name 1D Model  fo, Int. dt  fpax t"(‘)—d[:‘ Mixing Rate  Riy

ImHrk3d Vex 0 RK U 48 11 4.0-107° 8307
ImMrk3d Vex 0 RK U 91 2 1.8-107° 36948
ImMpc3d T 0 PC U 6.0 2 5.2-1077 31860
ImHpc3dT T 0 PC U 72 4 3.8-107° 5891
ImMrk3dS Vex—10° 0 RK 100s 13 5 7.9-107° 5721
ImMrk3dS-2 | Vex — 107 0.02 RK 100s 17 6 1.4-10716 31554

Table 5.1: Overview of our 3D simulations of 3.5 M, stars. A "M’ in the model name
stands for a grid resolution of 5123 zones, while a "H’ represents simulations with 10243
zones. The second column gives the preserved quantity during reintegration of the
initial 1D model, which has been computed with an overshooting parameter according
to the third column. The time integration method and the timestep criterion are
characterized by the 4th and 5th columns, respectively, where a numerical value in
the 5th column stands for a constant timestep with that value. The 6th and 7th
column give the total simulation time and the corresponding number of convective
turnover times. The time averaged mixing mixing rate is given in column 8 in units
of Mg /yr. The last column shows the bulk Richardson number at the convective
boundary.

ImMrk3dS in the left, middle and right panels respectively. The color represents the
velocity magnitude in an equatorial slice through the computational domain, where
each row in Fig. [5.2] corresponds to the time indicated in the bottom left corner of
the left panels.

In contrast to the 2D simulations (see e.g., Fig. the velocities in the stable layer
in the ImMpc3d and ImMrk3d simulations surpass the velocities in the CZ, which is
marked by a white dashed line in Fig. Comparing the left and middle panels
of Fig. shows that the simulation with the Runge-Kutta (RK) time integrator
generates smaller velocities in the stable layer than the predictor-corrector scheme
(PC), indicating that these velocities are again caused by unresolved IGWs.

The fact that these velocities are concentrated along the diagonals of the computa-
tional domain, indicates that the radial resolution has a large influence on the IGWs.
Due to the Cartesian grid the radial resolution varies depending on the angle of a
zone with respect to the domain centre. In the diagonals of the 3D domain the radial
width of a cell is v/3 times larger than along the domain axes. In 2D simulations
this factor is only v/2, which reduces the influence of this effect. Nevertheless it is
still noticeable in 2D that the diagonals are less resolved, e.g., the radial velocities in
the stable layer shown in Fig. show some slight variations along the diagonals,
which is not seen along the coordinate axes.

In [4:1] we showed that increasing the spatial resolution will decrease the unphysical
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Figure 5.1: Time evolution of the density weighted averaged velocity inside the CZ
(analogous to Fig. for the 3D simulations.

velocities in the stable layer. Indeed, when we compare the velocity profiles of
the simulations ImMrk3d and ImHrk3d in Fig. [5.3] we find that the velocities
in the stable layer are much smaller in the high resolution simulation ImHrk3d.
However, these velocities are still of the same order of magnitude as WCZ. While
we expect that an even higher resolution should improve the situation further we
are limited by our computational resources. Moreover, initial tests simulating only
an octant of the star have shown that even increasing the resolution by another
factor of two does not reduce the velocities in the stable layer significantly below WGZ'

When we continue the simulations beyond the initial transient we also see some
qualitative differences between the velocity evolution in 2D and 3D.
Looking at the evolution of WOZ in Fig. we find that the models ImMrk3d,
ImMpc3d, and ImHrk3d that use the same input model as our favoured 2D simulation
ImHrk do not reach a quasi-steady state after the initial velocity peak. Instead the
velocity keeps decreasing for another 2 - 107 s, before it starts increasing again. The
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Figure 5.2: Equatorial slices of the velocity magnitude from the ImMpc3d, ImMrk3d,
and ImMrk3dS simulations are shown in the left, middle and right panels, respectively.
Each row shows a specific time, given in the lower left corner of the left panels. The
black dashed circle indicates the location of the initial Schwarzschild boundary.
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Figure 5.3: Spherically averaged velocity profiles for the 3D simulations time averaged
from 5 - 10%s to 107s. (analogous to Fig. |4.4))

reason for that behaviour is that during the initial transient, convection draws more
energy than the adiabatic gradient is able to store, i.e., the heating from nuclear
burning is not fast enough to restore the energy and the stratification becomes
marginally stable. Therefore, the energy transport by convection subsides, which
leads to a damping of the radial velocity component. The outcome of these events is
a slowly rotating velocity field inside the CZ (see top right panel of Fig. where
we show the tangential velocity component in an equatorial slice of the ImHrk3d
simulation and the size of the initial CZ is marked by a black dashed circle). It is
also noticeable that the tangential velocity component at that point has formed
large spherical structures inside the CZ.

Over time the heating from nuclear burning slowly restores the temperature gradient
in the CZ and rejuvenates the convective motions, i.e., the large scale flow pattern is
replaced with a small scale turbulent flow. Since the heating term is strongest in the
very centre, convection starts to grow slowly from the inside to the outside, which is
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Figure 5.4: Equatorial slices from the ImHrk3d simulation showing the tangential
velocity magnitude. The black dashed circle denotes the location of the initial
Schwarzschild boundary.
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a rather slow process. The bottom left panel of Fig. shows that after 173 days
heating has increased the amount of turbulent motions in the inner half of the CZ.
However, the outer half of the CZ is still slowly rotating without any significant
radial motions.

With time the turbulent region grows, but when it reaches the extent that corresponds
to the bottom right panel in Fig. it suddenly stops growing without reaching
the initial convective boundary. The reason being that the initial transient has
caused a stabilizing chemical gradient in this layer. Similar to the 2D simulations,
the transient is connected with a strong mixing event. In the 2D simulations the
hydrogen rich matter is quickly distributed across the CZ, but due to the quickly
dying convection this is not the case in 3D. Instead the horizontal motion and
diffusion will evenly distribute the hydrogen rich matter in a small layer near the
initial Schwarzschild boundary, effectively creating an additional hydrogen interface
within the CZ. Furthermore, the molecular gradient from this interface creates a
layer that is stable against convection. Once the rejuvenated turbulent motion
reaches this new composition interface it needs to overcome the stable gradient.
Therefore, the growth of turbulence is stopped until the interface is mixed into the
rest of the CZ. Due to the immense computational cost of these simulations we are
not able to simulate until this happens. Therefore, the models ImMrk3d, ImMpc3d,
and ImHrk3d never reach a quasi-steady state.

In nature convection is not initiated by a superadiabatic temperature gradient, but
rather by a slow conversion from a stable to an unstable stratification. We therefore
conclude that the transient events are due to the unphysical setup of the initial
model, and that the unforeseeable consequences of transients can only be avoided
reliably by removing the transient entirely.

Interestingly, model ImHpc3dT does seem to reach a quasi-steady state shortly
after the initial transient (see magenta line in Fig. . ImHpc3dT is using an initial
model analogous to ImHpcT where the temperature of the 1D stellar evolution has
been preserved during the initial model preparation. Such an initial model has a
larger superadiabaticity in the CZ, as discussed in [3.6] Consequently, the energy
reservoir in the thermal stratification is not depleted as quickly as in, e.g., in models
ImHrk3d. ImHpc3dT therefore does not go through the phase of damped radial
velocities after the initial transient, i.e., the flow field remains turbulent throughout
the simulation.

However, in [£.T] we showed that models with initially larger superadiabaticity reach
a steady state with larger velocities than the models that preserve the temperature
stratification of the 1D stellar models. We therefore cannot be sure that the quasi-
steady state in ImHpc3dT corresponds to realistic velocity amplitudes. Nevertheless,
this model shows that it is possible to find initial models that maintain the original
CZ and show a well behaved velocity evolution into a quasi-steady state analogous
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Figure 5.5: Comparison of the 2D models ImHrkS and ImHrk. The left panels show
the time evolution of the average velocity in the CZ (top) and time averaged radial
velocity profiles (bottom), respectively. The right panels show the time evolution of
the total mixed hydrogen mass (top) and the corresponding mixing rate (bottom)
(analogous to Fig. [4.8)).

to the 2D simulations.

In an attempt to reduce transient effects altogether, we constructed a new set of
initial models, that are initially formally stable throughout the whole star, including
layers that are predicted to be unstable by 1D stellar evolution models. To achieve
such a stratification we enforced a temperature gradient excess Vex = V — V,q in
the initial models that is 10~° smaller than predicted by the 1D model. This leads
to a tiny subadiabaticity in the core region. Therefore, we will continue to denote
the core region as a CZ, even though it is initially not convective. The effect of this
modification of the temperature gradient in the stable layer is negligible, since the
subadiabaticity there is in general much larger.

With such a stratification, the star will not develop convection unless the heating
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function overcomes the subadiabaticity. We therefore expect that this approach will
start convection in a natural way that is not connected to the sudden release of
internal energy.

We tested this initial model in the 2D simulation ImHrkS to see the influence of
such a modification on the results obtained in Chapter [d A comparison between
models IerkE| and ImHrkS is given in Fig. We find that ImHrkS behaves
exactly as predicted. Convection sets in later than in the convective model ImHrk,
but then a quasi-steady state is quickly established without causing a large peak in
WGZ (see top left panel in Fig. . Model ImHrkS reaches a similar convective
velocity as model ImHrk, and also reproduces the velocity profile of the ImHrk
simulation (bottom left panel in Fig. [5.5)). The velocity at the convective boundary
in ImHrkS is slightly larger than in ImHrk leading to a larger mixing rate (bottom
right panel in Fig. [5.5)). The time averaged mixing rate for ¢t > 5 - 10°s of ImHrkS
is 4.3 - 107° My /yr. This is one order of magnitude larger than the value quoted
for ImHrk in Table However, the total mass of mixed hydrogen in ImHrk is
dominated by the mixing during the transient, which increases the distance between
the convectively unstable region and the composition interface early on. Therefore,
it is not surprising that the mixing rate in the quasi-steady state is smaller in ImHrk
than in ImHrkS, where layers with higher hydrogen content can still be accessed
easily. After ~ 107 s ImHrkS has compensated the missing initial mixing due to its
larger mixing rate (top right panel in Fig. [5.5)).

Encouraged by the 2D test of the stably stratified model, we repeated the
simulation in 3D. In order to reduce the computational cost, we used a medium
resolution of 5122 zones for the ImMrk3dS simulation. We expect that the lower
resolution does not have a significant influence on the convective flow inside the
CZ, because a comparison between ImMrk3d and ImHrk3d shows that the velocity
evolution in the CZ is already converged at a resolution of 512 zones (see Fig. [5.1]).
Fig. shows that WCZ of ImMrk3dS quickly reaches a quasi-steady state, without
developing a velocity peak in the very beginning of the simulation, i.e., exactly the
behaviour we intended to achieve. As soon as convection sets in, the CZ in the
ImMrk3dS simulation becomes turbulent as can be seen from the right panels of
Fig.

Furthermore, we see that ImMrk3dS also does not develop the large velocities along
the diagonals after 70 days as seen in ImMpc3d, ImMrk3d, and ImHrk3d (see bottom
panels in Fig. [5.2)). Fig. m shows the time evolution of the density averaged velocity
magnitude in the stable layer mstable outside of 3 - 10" cm. In all simulations
Wstable increases rapidly in the beginning of the simulations. The large velocities

!This simulation uses an initial model, where the exact Ve of the 1D model is preserved during
the initial model preparation (see Table [4.1).
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Figure 5.6: Time evolution of the average velocity in the stable layer outside of
3-10' c¢m for the 3D simulations.

seen along the diagonal in Fig. and Fig. are the main contribution to mstable‘
We further notice that the rise of velocities is delayed by several 10°s when we use
the RK time integrator, indicating that the large velocities in the stable layer can be
suppressed by increasing the accuracy of the time integration. However, as discussed
before |Ul,1o of ImMrk3d is still on the same order of magnitude as [U]qy.

To increase the accuracy in ImMrk3dS even further we decided to limit the timestep
size to dt < 100s, as indicated in Table , which is about 20% of the size of the
timesteps in ImMrk3d. Limiting the timesteps increases the computational cost, but
the chosen limit still provides a speed-up compared to the high resolution simulation
ImHrk3d.

Fig. shows that the higher accuracy in time used in ImMrk3dS leads to an one
order of magnitude smaller mstable during the initial 107 s of the simulation.
Similarly, switching to the RK integrator and thereby reducing the timestep only
delays the onset of the instability. After 107 s the instability starts to grow again
until Wstable reaches a non negligible level, where an influence on the mixing can
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no longer be excluded. This limits the maximum duration of the simulations, but
we will see in [5.4] that this is still sufficient to investigate the differences in mixing
between 2D and 3D simulations.

5.2 Flow Field

As already indicated in the previous section, the flow in 3D simulations is fundament-
ally different from that in 2D simulations. Instead of large scale vortices the flow in
3D is much more turbulent as we can see in Fig. where we show a volumetric
rendering of the CZ in ImMrk3dS after 8 - 10%s. At the time of the rendering,
convection is fully developed and a quasi-steady state has been reached. Depicted
is the radial velocity, where red colors indicate outflows and blue colors indicate
inflows. The flow is fragmented into many tiny features, indicating a turbulent flow.
However, on top of the small scale features there is also a large scale flow originating
from the centre of the star, where the heating by nuclear burning is the largest. The
temperature/entropy in the centre therefore increases faster than in the surrounding
layers and plumes will start to move away from the CZ. These plumes will rise all
the way up to the convective boundary as indicated by the continuous red patches
in Fig. Once the plumes are in the vicinity of the Schwarzschild boundary
they start to turn around. In this process the plumes convert most of their radial
velocities into tangential velocities as can be seen in the lower left corner of Fig.
which lacks any radial velocities. Then the plume starts to cool down and drops
back all the way into the centre, creating a global circular flow pattern.

In MLT such a flow pattern would correspond to a mixing length « of the radius of
the CZ. Comparing the radial extent of the CZ with the local pressure scale height
H,, we find that at the Schwarzschild boundary H, =~ 1.5-10'% cm, i.e., a &~ 1.5. The
pressure scale height increases towards the centre. Hence, the locally estimated «
decreases. a < 1.5 indicates that the mixing length in interior CZs should be smaller
than the solar calibrated values of a = 1.8.

We can also compare the time averaged velocity profiles shown in Fig. [5.3 with
the MLT prediction, shown as a black dashed line.
Obviously, the simulations ImMrk3d, ImMpc3d, and ImHrk3d perfectly match the
MLT predictions. However, we also have to consider that these models have not
yet fully developed convection and are far away from reaching a quasi-steady state.
Therefore, there is no reason why the 1D convection model should agree with the 3D
results of these models. Hence, we argue that the perfect agreement between MLT
and the simulations is a coincidence.
For the models that have fully developed convective motions ImHpc3dT, ImMrk3dS,
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Figure 5.7: Volume render plot of the radial velocity in the ImMrk3dS simulation at
8 -10%s. Red and blue colors represent outflows and inflows, respectively. Only cells
that are within the CZ have been included in the rendering.
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Figure 5.8: Turbulent kinetic energy as a function of wavenumber k. The dotted line
indicates a Fyiy (k) o< k~5/3 scaling, while the dashed lines show Fign (k) oc k=27,

and ImMrk3dS-2 the velocity profiles follow the shape of the MLT prediction,
scaled up by a factor of three. The small deviations from the MLT prediction
in the centre of the star and directly at the boundary are due to the boundary
assumption of MLT (see discussion in4.1) and a small peak of N? right at the
convective boundary, respectively. The small peak of N2 is caused by the molecu-
lar gradient at the composition interface and acts as an additional IGW cavity,
where IGWs can get trapped and pile up to larger velocities. In ImMrk3dS-2
we do not see this velocity peak right at the Schwarzschild boundary, because
there the composition interface and therefore the N2 peak is located further outwards.

Another quantity that characterizes turbulent flows is the power spectrum of
the turbulent kinetic energy Eyi,(k). Using a Fourier transform we analyse the
power spectrum of the ImMrk3dS and ImHrk3d simulations. To ensure that only
convective flows are included in the analysis we reduce our output data to a cube of
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width 1-10'° cm within the CZ. For the ImHrk3d simulation we chose an output file,
where the box overlaps with the rejuvenated convection, i.e., we do not expect an
influence from the slowly rotating flow structure seen in the top right and bottom
left panels of Fig.

The resulting power spectra are shown in Fig. [5.8] where we multiplied the result
of ImHrk3d by a factor of 5 to increase the visibility of the otherwise overlapping
curves. Additionally we added a black dotted line to Fig. [5.8] corresponding to
Fiin(k) o< k~5/3. This is the expected scaling for homogeneous, isotropic turbulent
flows as was shown by Kolmogorov| (1941) using a dimensional analysis of the
Navier-Stokes equations. We see that the Kolmogorov scaling only matches the
largest analysed scales.

On the other hand, at smaller scales our results show a much steeper scaling relation
of Fyin(k) oc k=27, which is shown by dashed lines in Fig. Similar scaling
relations have been found by Edelmann et al.| (2019)) in simulations of a 3 M, star.
They attribute the discrepancy to Kolmogorov scaling to the fact that the Reynolds
number Re in their simulation is ten orders of magnitude lower than in typical stellar
environments, where Re = % is determined by the typical velocity v, length scale L,
and viscosity v of the fluid. MAESTRO solves the Euler equations and therefore
does not include viscosity effects, i.e., theoretically Re = inf. However, due to the
grid discretisation used in MAESTRO there exists some numerical viscosity. On the
other hand, Edelmann et al.| (2019)) included a physical viscosity that is 10'* times
larger than typical stellar values in order to stabilize their low viscosity scheme.
Since we find similar scaling relations we can assume that our numerical viscosity is
of similar strength as the physical viscosity in [Edelmann et al.| (2019)), i.e., our Re is
also tiny compared with stellar values.

5.3 Convective Boundary

Motivated by the distinctively different flow structures in 2D and 3D simulations, we
also analyse the differences in the behaviour of the various definitions of convective
boundaries as defined in

The time evolution of the boundaries in ImMrk3dS is shown in Fig. As
in [£:2] we use time averaged spherical profiles of the tangential velocity U,, the
superadiabaticity Ve, and the combined variation of the radial kinetic energy
profiles (o(Exin,vr,)), (see Eq. to define the boundaries Rqyn 1, Rdyn,2, and Rstruc,
respectively. The width of the time averaging window of the profiles is 107s. In
we computed Ve, based on the background pressure FPy. For the 3D simulations we
use Peos instead, as it is one of the output quantities of MAESTRO. This choice
does not influence the result as we already discussed in The chemical boundary
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Figure 5.9: Analogous to Fig. but for the ImMrk3dS run. The dotted lines
extend the determined boundary locations for visual purposes.

Rehem is set by the spherically averaged profiles of the hydrogen mass fraction of
each output file.

In our 2D simulations we saw an influence of the transient on the dynamical
boundaries. Since the transient phase has been removed in ImMrk3dS we do not see

such an influence in 3D. Therefore, we find that all boundaries except for Rcpem are
constant in time.

The initial model was set up to be slightly subadiabatic throughout the CZ
predicted by the 1D stellar evolution. Therefore, there is no structural boundary
initially. Once convection sets in, ImMrk3dS establishes a new Rgtryc, which is
located at 2.18 - 10'° cm, i.e., 0.05 H,, closer to the centre as predicted by the 1D
model. However, this discrepancy between predicted and simulated Rggpyc is only
half of the inward shift of Rguc induced by the transient event in 2D simulations
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(see discussion in [4.2).

The distance between Rgtrue and Rgyy 2 is about 0.07 H, in ImMrk3dS, which is
almost twice the distance compared with the 2D model ImHrk.
Therefore, we conclude that dynamical mixing events of ImMrk3dS extent farther
into the stable layer than in 2D simulations, indicating that 3D boundaries are less
stiff. However, when we compute the respective Ri;, values according to Eq. [2.16] we
find that 3D simulations have one to two orders of magnitude larger Ri; values than
their respective 2D counterparts. The auto-correlation function of the radial velocity
(Eq. of the 3D simulations shows a similarly broad peak as in 2D around the
composition interface, indicating that the typical length scale of convection is similar
in both cases.
The discrepancy in Ri;, is therefore caused by the smaller convective velocities in
3D simulations. This also explains the exceptionally large difference between the
ImMrk3d simulation and the respective 2D simulation ImMrk, because ImMrk3d
was stopped in a phase of minimal convective velocity (see Fig. |5.1)).

The evolution of Rehen follows exactly the simplified description of mixing given
in where the overshooting distance is set by dynamical events only. The step like
evolution of Repem in Fig. is due to the radial bin size of the spherically averaged
hydrogen profiles used to define Rchem-

During the first 10% s there are no significant velocities in the CZ of ImMrk3dS (see
Fig. |5.1). Hence, no mixing occurs and Rcpen remains constant. Once the convective
flow has been build up, the mixing rate is increasing as can be seen from the shorter
timespan between steps in the red line of Fig. between 3 and 5 - 10%s .

After 5 - 10 s the mixing rate starts to slow down again. The decline of the mixing
rate intensifies noticeably as soon as Renem reaches values greater than Rqyn 1 at
6 - 10%s. From that point on the bulk of the flow does not reach layers with larger
hydrogen abundances any longer and rare events, reaching out to Rqyn 2, have to
account for the mixing. In contrast to the 2D simulations Rcpem in ImMrk3dS does
exceed Rgyn 2, removing the need for an additional diffusive mixing to account for
the observed overshooting distance. However, we would expect that Rcpem grows
beyond Rgyn 2 at later times due to (numerical) diffusive mixing.

5.4 Mixing
In [4:4) we showed that diffusive mixing by IGWs contributes significantly to the

mixing around convective boundaries in 2D simulations. For the 3D simulations we
do not have enough output files to follow the diffusion by IGWs accurately enough,
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but based on the average velocity amplitudes in the stable layer ﬁstable we can
estimate their influence in 3D simulations.

As discussed in [5.1] the higher temporal accuracy in the 3D simulations ImMrk3dS
and ImMrk3dS-2 suppresses the large velocities along the diagonals in the stable
layer for an extended period of time between 1 and 8- 10°s (see Fig. [5.6). During
that time we find that Wstable is about one order of magnitude smaller than in 2D
simulations, i.e., the amplitude of an IGW created by convection is also one order
of magnitude smaller than in 2D simulations. This is a clear indication that 2D
simulations largely overestimate diffusion by IGWs. A similar result is found for
WCZ, hinting towards a strong correlation between ﬁcz and Wstable.
Combining the estimated values of D from 2D simulations with the expected scaling
of D with |U]|qy based on the results of [Rogers & McElwaine| (2017), we find that in
2D simulations D is overestimated by four orders of magnitude.

While this is still two orders of magnitude larger than the predictions of D by
Moravveji et al. (2016) based on asteroseismic observations, it also corresponds to a
mixing distance of the order of 0.1 H,, during the main sequence lifetime in perfect
agreement with our overshooting expectations.

The amplitude and diffusion constant of propagating IGWs are damped by diffusive
radiative energy transport (see e.g. Ratnasingam et al., 2019). Since we cannot
follow the respective thermal timescales of radiation transport in our simulations
we would therefore expect that in a star D decreases further the farther a wave
propagates. Such an additional damping of IGWs in the outer layers might explain
the diffusion estimates by Moravveji et al.| (2016).

Considering the good agreement between the overshooting distance and the diffusion
estimates from our 3D simulations in combination with an additional damping at
greater distances to the convective boundary, we argue that our 3D simulations
provide decent estimates for D close to the convective boundary, but overestimate it
farther away from it.

We can also use the 3D simulation ImMrk3dS-2 to again analyse the numerical
diffusion of composition. Analysing the motion of the low end tail of the hydrogen
mass fraction profile analogous to [£.4) and [£.7.2] we see that the motion is almost
constant throughout the simulation ImMrk3dS-2 (Fig. [5.10). The resulting diffusion
coefficient is to be estimated of the order of 10!° cm?/s, in agreement with the
previous estimates. This agreement between 2D and 3D with different initial models
again suggests that numerical diffusion is the dominating effect.

Finally, we also compare the obtained mixing rates of the 2D and 3D simulations,
showing in Fig. the evolution of the hydrogen mass My inside the mass shell
that corresponds to the initial Schwarzschild boundary.

Looking at this figure and comparing it with the right panels of Fig. we find
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Figure 5.10: Analogous to Fig. but for the ImMrk3dS-2 simulation.

that the time evolution of mixing in 2D and 3D agrees qualitatively well for the
models without overshooting. On the other hand, the 3D simulation ImMrk3dS-2
does not show the episodic mixing behaviour we see in the 2D model ImHrk-2.
This is due to the transient event in ImHrk-2 which gives an initial boost to the
diffusive mixing in 2D and quickly brings the composition interface in contact
with the dynamical events. Once we will reach this point in ImMrk3dS-2, we
expect that it also develops an episodic mixing behaviour. From Fig. [5.10] we can
estimate that it would be necessary to extent the simulation by ~ 10”s in order
for the low end tail of the hydrogen profile to reach the dynamical mixing layer.
Unfortunately, we cannot simulate that long because the IGW velocities along
the diagonals exceed the convective velocities long before the phase of episodic mixing.

Furthermore, we find that the time averaged mixing rate in ImMrk3dS is one
order of magnitude larger than in the 2D simulation ImHrk (see Tables and .
We already saw a similar discrepancy between the 2D models ImHrkS and ImHrk in
(3] There we attributed the different mixing rates to the missing transient in the
ImHrkS simulation, which requires larger mixing rates over an extended period of
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Figure 5.11: Left panel shows the change in hydrogen mass inside of the initial
convective core for the 3.5Mg star 3D simulations. The right panel shows the time
derivative of that quantity.

time in order to reach the same total mixing as during the transient event of ImHrk.
The mixing rates of ImMrk3dS and ImHrk are therefore not directly comparable.
However, we find that the mixing rates of ImMrk3dS is also two times larger than in
ImHrkS.

We can also see this in Fig. [A.24] where we compare the Ri, values of all 2D
simulations with their respective mixing rates. The black diamond in Fig. [4.24]
corresponds to the ImMrk3dS simulation and is located way above the entrainment
law determined in This is a clear indication against an universal entrainment
law and for an increased entrainment speed, i.e., a less restrictive entrainment limit
in 3D.

On the other hand, we find that the time averaged mixing rates of ImHrk and
ImHrk3d agree perfectly well. However, we have to consider that ImHrk3d has not
reached a steady state and shows increased convective velocities towards the end
of the simulation (Fig. |5.1)). Therefore, we would expect that the mixing rate in
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ImHrk3d will exceed the one of ImHrk once convection is fully established.

Overall we see that the mixing rates obtained from 3D simulations are generally
larger than in their 2D counterparts. However, the difference is only within a factor
of a few, while the mixing rates between initial models with varying overshooting
parameters differ by orders of magnitude. We therefore conclude that 2D simulations
are a viable method to probe the extent of overshooting regions.
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Chapter 6
Conclusion and Outlook

Turbulent mixing of matter across the boundary of convective cores on the main
sequence strongly influences the evolution of stars that are more massive than
~ 1.2M. Mixing hydrogen into the convective burning region will extend a star’s
lifetime and determine the mass of the He-core at the end of the core hydrogen
burning phase. To get reliable information about the involved mixing processes, and
the extent and mass of the mixed zone, it is important to simulate the convective
flow for as many convective turnovers as possible. We showed that 2D simulations
with the low Mach number code MAESTRO are able to cover hundreds of convective
turnovers at a reasonable computational cost. This allows one not only to study
the evolution of mixing with time, but also to repeat the simulations with modified
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Figure 6.1: Schematics of a convective boundary. Cloudy parts represent convective
motions and hatched regions indicate diffusion dominated transport mechanisms.
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parameters to explore their influence as well. One of these parameters is the
overshooting parameter f,,, which determines the radial extent of the homogeneously
mixed region surrounding CZs in 1D stellar evolution models.

We find that in 2D simulations the mixing is dominated by overturning plumes

shearing along the stiff boundary of a CZ, which leads to Kelvin-Helmholtz-
instabilities in the direct vicinity of the convective boundary, which has to be
separated into different layers depending on the dominating mixing process. Fig. [6.1
displays a typical convective boundary, where the left most and right most regions
are unstable and stable against convection, respectively. The stability is determined
by the Schwarzschild stability criterion, which describes the driving of convection
based on the temperature stratification. Fig. denotes the location where the
driving mechanism stops as Rgstruc. However, convective motions still penetrate to
radii larger than Rgue. The maximum extent of these dynamical mixing events is
labelled Rgyy. Our stellar evolution models predict a composition profile with a jump
in composition in the stable layer, while the unstable layers is homogeneous. The
location of the composition jump is denoted as Rcpenm in Fig. and corresponds
in our models to an increased hydrogen content in the stable layer. In simulations
where there are layers with increased hydrogen content in the influence region of the
shear, i.e., Rehem < Rayn we find an almost continuous flow of hydrogen into the CZ.
Other mixing events by plumes that potentially penetrate farther than the shear
mixing are rare. The mixing rate therefore drops when we increase the overshooting
parameter f,, in the initial model, i.e., when the distance between the Schwarzschild
boundary of the CZ and the composition interface is increased.
However, the flow structure seen in 2D simulations is fundamentally different from
that of 3D simulations. Vorticity conservation forces the flow to form large scale
structures in two dimensions, while three dimensional turbulence is exhibiting smaller
scale flows. Nevertheless, we showed in that 3D simulations of convective cores
also develop large scale flows on top of the small scale turbulence. Ultimately the
mixing behaviour at the convective boundary is therefore rather similar in 2D and
3D simulations, which is also reflected by the matching of mixing rates obtained in
3D and 2D . We therefore argue that it is justifiable to perform parameter
studies in 2D rather than 3D in order to reduce the computing time and to allow for
longer simulations.

One would expect that due to the long evolutionary time of stars on the main
sequence even rare events will give rise to a significant amount of mixing, i.e., they
will eventually set the size of the mixed core.

However, in[£.4] we found that even rare mixing events cannot account for the amount
of mixing we see in simulations with an increased overshooting parameter f,,. We
identified additional diffusive mixing processes due to numerics and internal gravity
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waves (IGW) that bring the composition interface in contact with the dynamical
mixing events and supply the dynamical mixing across the convective boundary of
matter of different composition. The hatched regions in Fig. [6.1] show the layers
which are dominated by diffusive processes.

The effect of numerical diffusion can be best seen at the low end tail of the
composition interface (see Figures |4.13] |4.20, and [5.10]), where small amounts of
hydrogen are transported close to the convective boundary. This corresponds to a
diffusion coefficient of the order of 10’ cm?/s in the stable layer of a 3.5 M, star,
which is nine orders of magnitude larger than the value determined by [Moravveji
et al. (2016) based on asteroseismic observations. Moreover, we find similar values in
simulations with smaller initial masses and also in 3D simulations, indicating that
this excessive amount of diffusion is indeed a numerical effect.

A realistic source of diffusive mixing in the stable layer are IGWs. However, resolving
IGWs in a low Mach number environment is numerically challenging due to their
short timescales compared to those of the convective flow. Most problematic are
high frequency waves that are numerically generated on the grid level, because they
can be trapped in IGW cavities where they accumulate and grow to significant
amplitudes. Reducing the size of the timesteps increases the fraction of well resolved
IGWs and therefore reduces the amount of trapped artificial IGWs. However, such
simulations are computationally very expensive. We showed in that the pile up
of IGWs in cavities can also be mitigated by changing the time integration algorithm
of MAESTRO. Using a 4th order accurate Runge-Kutta time integrator instead of a
2nd order accurate predictor-corrector scheme reduces the velocities in IGW cavities
by more than one order of magnitude.

The convective motion inside the CZ also creates IGWs, but at lower frequencies,
which are properly resolved. Since we suppressed the effects of unresolved high-
frequency IGWs we can analyse the diffusive mixing of resolved low-frequency IGWs
by following the motion of tracer particles during the simulation. We find diffusion
coefficients that are very large just outside the convective boundary, corresponding
to the action of the farthest reaching dynamical mixing events. With increasing
distance to the boundary the diffusion coefficients drop exponentially. This behaviour
is expected and is in agreement with the mixing models used in most 1D stellar
evolution codes, which describe the mixing by means of a diffusion coefficient, which
is exponentially decaying with distance from the CZ boundary. In contrast to
the most commonly used 1D overshooting model we find that the best fit to our
simulations can be made by two connected exponential functions of different slope.
The additional slope can be interpreted as an extended mixing due to IGWs. At even
larger distances from the convective boundary we find that the diffusion coefficients
increase again due to an increase of the amplitude of IGWs as they propagate into a
less dense environment.

However, we find that the diffusion coefficients determined from the 2D simulations
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are unrealistically large since they would lead to completely homogenized stars. In
Chapter [5| we showed that 3D simulations with the same initial models as the 2D
simulations develop convective velocities that are one order of magnitude smaller
than in 2D. Consequently, the IGWs created by the convection in 3D also have much
smaller amplitudes than in 2D. We therefore argue that the diffusive mixing by
IGWs is largely overestimated by 2D simulations.

Therefore, it might be worth to remove a fraction of or even all of the IGWs
from the stable layer in future simulations. One possible method to achieve
that would be to implement a low pass filter in Fourier space thereby modify-
ing the velocities. Removing IGWs would also allow us to simulate even longer
timescales, especially in 3D, where the problem of unresolved IGWs is more persistent.

In [4.4] we showed that the mixing of hydrogen rich matter across the convective

boundary in models with large overshooting parameters changes from a continuous
flow to an episodic mixing, where short burst of mixing are followed by a long
quiescent period. We argue that this mixing behaviour is due to a balance of diffusive
mixing and rare dynamical mixing events that penetrate into the stable layer. While
diffusive mixing continuously brings fresh hydrogen close to the boundary, the low
end tail of this distribution is swept up by the rare dynamical mixing events and is
transported across the convective boundary where it is quickly distributed across the
whole CZ.
We argue again that this mixing balance is only possible due to the overestimated
diffusive mixing we find in 2D simulations. Therefore, simulations that show
an episodic mixing behaviour are expected to have no mixing in their natural
counterpart. Indeed, we find that 3D simulations with an increased f,, value show
no episodic mixing in contrast to their corresponding 2D counterparts.

By comparing the mixing rates and mixing behaviours of models with varying fo,,
it is then possible to define an upper limit for the overshooting parameter. In 3.5 M
stars we find that an overshooting parameter of f,, < 0.02 is in good agreement with
our simulations as well as with empirical estimates of f,,.
However, the empirical estimate does not hold for stars less massive than ~ 2 M.
These stars have tiny convective cores with large pressure scale heights at the
convective boundary. The formulation of the 1D overshooting model in terms of the
pressure scale height therefore causes an unrealistically large overshooting layer if
the empirical estimate is used. In[4.7] we showed that 2 M stars already require
a significantly smaller f,, value. At even lower masses we find that f,, decreases
further as was suggested in previous observational studies.
We were able to show that a cutoff function to the 1D overshooting model based on
the radial extent of a CZ does fulfil all the limits set by our simulations. Due to the
computational efficiency of 2D simulations it is possible to create a much denser grid
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of simulations in the future, hopefully providing us with a functional form of f,,
depending either on mass or radial extent of the CZ.

In we also investigated the idea that the mixing rate at convective boundaries
is determined by the stiffness of the boundary, i.e., the buoyancy difference between
the CZ and the stable region outside of the composition interface. While there
seems to exist a general trend towards lower mixing rates at stiffer boundaries there
does not seem to be a simple functional form to explain the dependency solely
on the stiffness as it was proposed by previous simulations. There are, however,
indications that the maximal mixing rate is limited by the stiffness. Such a limit
would be irrelevant in long lasting stellar evolutionary phases like the main sequence
or core helium burning, because there the extent of the mixed region is set by the
maximal mixing distance of dynamical mixing events. On the other hand, in short
evolutionary phases like oxygen burning a limited mixing rate might restrain the size
of the mixed region.

In we discussed the dependence of mixing at the convective boundary on the

temperature stratification. Even though we are not able to simulate until the star is
in thermal equilibrium, we showed that mixing of entropy does alter the temperature
gradient just outside the convective boundary. In this so-called penetration layer the
temperature stratification is found to be in between the radiative and the adiabatic
temperature gradient. While we recommend to include the effects of penetration in
1D models, we cannot make a statement about the extent of this layer, because our
simulations times are too short.
In future simulations one can explore the size of the penetration layer by using
the same initial model, but varying the strength of the radiative energy transport.
By boosting the radiative transport by orders of magnitude it is possible to force
the simulation into a thermally relaxed state, which will give the right size of the
penetration layer. Of course, this model is then no longer comparable to an actual
star, but by varying the amount of radiative diffusion further one might be able
to establish a scaling law for the size of the penetration layer and use this law to
extrapolate the findings to the relevant regime for stars.
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