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ABSTRACT
This demo presents NOracle: a system using Stochastic Block Mod-
els (SBMs) to infer structural roles of hosts and communication
patterns of services in networks. NOracle can be used with exist-
ing monitoring systems to analyze and visualize networks in an
online manner or be used to analyze stored traces. Network op-
erators can use SBMs to monitor and verify network operation,
detect possible security issues and change-points. To showcase
this, NOracle combines the production-grade network manage-
ment solution StableNet with an SBM based anomaly detection
and network visualization module. StableNet provides network
flow statistics in real-time from actual devices. The SBM extracts
roles and communication patterns live from the data provided by
StableNet. The result can help to reason about communication
behaviors, detect anomalous hosts and indicate changes in the large
scale-structure of network communication.
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1 INTRODUCTION
Answering the questions of "who is communicating with whom
in my network" can help operating today’s and future self-driving
networks in many directions. For instance, knowing the commu-
nication pattern of applications in data centers helps improving
resource management systems, e.g., speeding up the completion
times of distributed data processing applications. In particular, data
driven resource management systems for placement and embed-
ding tasks like [1, 2, 15] can use communication patterns as basis
for their predictions, and thus help networks to run themselves.

Futerhmore, inferring communication patterns can help detect-
ing security holes, e.g., infected hosts being part of a botnet [3, 6, 14].
A better understanding of the communication behaviors of users
and services is crucial to make networks self-driving and thus
inevitable for future communication paradigms such as application-
aware networking needed for low-latency networks, such as 5G.
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Figure 1: System diagram of NOracle. NOracle extracts TDGs
from different sources (online and offline analysis), sequen-
tially fits SBMs to the data, checks the data for anomalies,
and visualizes the result.

Existing solutions often rely on prior knowledge, require un-
encrypted network traffic, significant computational resources and
time or cannot be easily interpreted by technical staff [3, 14]. Such
approaches neither work live and ad-hoc (i.e., without a prior in-
formation base) nor will they perform efficiently in the future due
to the encryption of network traffic and increasing network sizes.
However, efficient pattern extraction is a requirement to enable data
driven algorithms that unlock the full potential of Software Defined
Networking and Network Function Virtualization [10], as well as
novel technologies such as re-configurable physical layers [8].

In this demo, we present NOracle: A system that analyzes and
visualizes network traffic based on Probabilistic Graphical Models
(PGMs), fitted to network monitoring data in real-time. PGMs are
used in robotics to model complex systems in a principled and
understandable fashion [11]. We apply a specific class of PGMs,
the so-called Stochastic Block Models (SBMs) [9], in a network
scenario: a machine will autonomously learn structural roles and
the communication pattern of a network and use this information
to detect anomalies. Since SBMs work in an unsupervised fashion,
they do not rely on any prior knowledge such as port-to-service
mappings and do not required labelled data. SBMs can efficiently
be estimated and thus allow NOracle to operate online. In addition,
NOracle relies only on packet header information.

Fig. 1 illustrates our approach: NOracle extracts Traffic Disper-
sion Graphs (TDGs)1 using IP and TCP header information. A SBM
is fitted to each TDG and passed to an anomaly detector. The result
of SBM and detector is visualized on a web-based interface illus-
trated in Fig. 2 and Fig. 3. Modeling traffic as TDG allows NOracle
to explicitly model and exploit relational data between hosts.

2 NOracle: A DATA-DRIVEN APPROACH
NOracle uses Stochastic Block Models (SBMs) [9] to separate hosts
into meaningful groups. A SBM is a PGM that represents a para-
metric probability distribution over graphs [9]. The model encodes
1In a TDG nodes correspond to IP addresses and edges to flows/communication be-
tween these addresses.
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Figure 2: Different time series obtained with NOracle, indi-
cating the presence of an anomaly, the goodness of fit of the
underlying model and the group sizes.

(a) Group Structure (b) Node Communication

Figure 3: Large scale structure of monitored network and
communication of one individual node.

high-level relations, details are filled-in by estimating model pa-
rameters from data. SBMs have already proven their potential in
generating synthetic IP-to-IP communication for simulations [5].

The SBM has three different types of parameters: the number of
communication groups k , the node-to-group assignment z, and the
number of expected edges θr,s between two groups r and s . The
probability of a graph G with nodes V and edges E is then:

P(G | θ , z) =
∏
i<j

Poiθzi ,zj (Ai, j )
∏
i

Poiθzi ,zi (Ai,i ).

A is the adjacency matrix and Ai, j the number of edges between
nodes i and j. The procedure of NOracle is then as follows: given
a TDG G created with data from StableNet or other sources,
NOracle uses Maximum Likelihood to find z and θ . Parameter
k is provided by the user or can be estimated from data using the
Minimum Description Length (MDL) principle [13] in our demo.
We represent TDGs as unweighted graphs, i.e., Ai, j ∈ {0, 1}. In
the future, we plan to extend NOracle to include edge weights as
shown in [7] and node metadata [12] to boost model accuracy.

While the model can work completely unsupervised, human
knowledge can still improve the overall system performance drasti-
cally. For instance, by roughly knowing the services inside a net-
work, a system administrator can help to faster bootstrap the sys-
tem or choose a more suitable value for k . We will showcase both
examples in our demo.

3 DEMO
The demo presents how NOracle can (1) infer the communication
structure of applications and (2) based on this information detect
anomalous hosts, i.e., hosts infected with malware or generally with
a suspicious communication pattern.
Scenario. The demo considers three scenarios: (1) synthetic graphs
with known structure, (2) a campus network with more than 5 000
hosts and (3) an enterprise network with more than 100 hosts. For
all scenarios, network traffic, i.e., the packet level traces or netflow
data are fed into NOracle. The data can be evaluated for different
parameter settings. For instance, the demo shows how network
hosts are grouped for different k , exposing structural roles of nodes
(e.g., client vs. server). Moreover, the demo shows how live grouping
of hosts can help to detect hosts with abnormal behavior, e.g., hosts
which suddenly change their communication pattern when infected
with malware.
Network data. For (1) we use synthetic data with planted groups.
This data is generated using a SBM with pre-set parameters. The
demonstration shows how known structural roles can be identified in
an completly unsupervised fashion.

For (2), the demo uses the publicly available data set "CTU13
Corpus 9". The data set contains the trace of a campus network
with known infected hosts. Those hosts are manually infected with
the Neris malware by the authors [4]. The demonstration shows
that NOracle can detect the malicious bots shortly after the malware
becomes active.

Data for (3) is taken live with the network management system
StableNet from a remote enterprise network testbed located in
Würzburg, Germany. The enterprise network provides a testbed
for trying out network management operations — it consists of
more than 100 devices. StableNet is the core part "glueing" all
together, i.e., it fetches networking data from all devices and makes
it available. Here, the demo shows how a network operator can in-
spect the communication behavior of the users and services live at
run-time. For example, it is possible to select the number of com-
munication groups. Using NOracle’s GUI illustrated in Fig. 2, a
network operator/administrator can investigate the evolution of
the network over time, or investigate details of the communication
structures within or between groups illustrated in Fig. 3. Clients
that should be blocked from the outside world should not show any
communication with "external" groups. Again, human knowledge
is useful or even required to finally infer the semantic meaning of
the communication groups.
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