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Abstract: So-called prismatic 3D building models, following the level-of-detail (LOD) 1 of the
OGC City Geography Markup Language (CityGML) standard, are usually generated automatically
by combining building footprints with height values. Typically, high-resolution digital elevation
models (DEMs) or dense LiDAR point clouds are used to generate these building models. However,
high-resolution LiDAR data are usually not available with extensive coverage, whereas globally
available DEM data are often not detailed and accurate enough to provide sufficient input to the
modeling of individual buildings. Therefore, this paper investigates the possibility of generating
LOD1 building models from both volunteered geographic information (VGI) in the form of
OpenStreetMap data and remote sensing-derived geodata improved by multi-sensor and multi-modal
DEM fusion techniques or produced by synthetic aperture radar (SAR)-optical stereogrammetry.
The results of this study show several things: First, it can be seen that the height information
resulting from data fusion is of higher quality than the original data sources. Secondly, the study
confirms that simple, prismatic building models can be reconstructed by combining OpenStreetMap
building footprints and easily accessible, remote sensing-derived geodata, indicating the potential
of application on extensive areas. The building models were created under the assumption of flat
terrain at a constant height, which is valid in the selected study area.

Keywords: 3D building reconstruction; building model; OpenStreetMap (OSM); building foot prints;
multi-sensor fusion; digital elevation models (DEM); LOD1; SAR-optical stereogrammetry

1. Introduction

One particular interest in remote sensing is the 3D reconstruction of urban areas for diverse
applications such as 3D city modeling, urban, and crisis management, etc. Buildings belong to the
most important objects in urban scenes and are modeled for diverse applications such as simulation
of air pollution, estimating energy consumption, detecting urban heat islands, and many others [1].
There are different levels of building modeling which have been described under the standard of the
OGC City Geography Markup Language (CityGML). These are summarized in [2].

Figure 1 displays different levels-of-detail as defined in the CityGML standard. As shown in
this figure, the lowest level of detail (LOD) is 1 (LOD1), which describes building models as block
models with flat roof structure and provides the coarsest volumetric representation of buildings [3].
Thus, LOD1 models are frequently produced by extruding a building footprint to a height provided
by separate sources [4]. The next level is LOD2, which represents building shapes with more details.
Therefore, this type of building modeling demands high-resolution data in comparison to the first level.
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Comprehensive technical information about variants of the LOD of a 3D building model can be found
in [5]. In many cases, the building height information can be provided by versatile remote sensing
data sources such as airborne laser scanning [6], high-resolution optical stereo imagery [7], or DEMs
produced by synthetic aperture radar (SAR) interferometry [8]. Other sources for LOD modelling are
described in [9].

LOD0 FootPrint LOD1 LOD2 LOD3 LOD4

Figure 1. Different levels of detail of building models according to OGC City Geography Markup
Language (CityGML) 2.0 [10].

A special interest lies in automatically generating building models for extensive areas at LOD1
level. While height information provided by airborne LiDAR data leads to highly accurate LOD1
representations of buildings [11,12], it is computationally expensive to produce models that cover
wide areas. In addition, expensive LiDAR data are often not available for extensive areas. On the
other hand, several investigations illustrate the possibility of using other remote sensing data types
for 3D building reconstruction for that purpose [13,14]. As an example, the possibility of LOD1 3D
building model generation from Cartosat-1 and Ikonos DEMs has been investigated in [15]. In another
study, Marconcini et al. proposed a method for building height estimation from TanDEM-X data [16].
Using open DEMs such as SRTM for 3D reconstruction has been evaluated in different studies [17–19].
They concluded that SRTM elevation data can be used for recognizing tall buildings. In a recent
investigation, Misra et al. compared different global height data sources such as SRTM, ASTER, AW3D,
as well as TanDEM-X for digital building height model generation [20].

The main objective of this paper is to investigate the possibility of LOD1-based 3D building
modeling from different remote sensing data sources which can be efficiently applied to wide areas.
Regarding that each remote sensing source provided by a sensor with specific properties, using
multi-sensor data fusion techniques can ultimately provide high quality geodata for 3D reconstruction
by instructively integrating the sensors’ properties and mitigating their drawbacks [21]. For that
purpose, height information is extracted from different sources: medium-resolution DEMs derived
from optical imagery such as the Cartosat-1 DEM, and interferometric DEMs generated from bistatic
TanDEM-X acquisitions. Due to the limitations and specific properties of those DEMs, state-of-the art
DEM fusion techniques are used for improving the height accuracy. More details of those techniques
and the logic behind the fusion are explained in the respective sections.

In another experiment, the potential of using heights from SAR-optical stereogrametry for 3D
building reconstruction is investigated. Regarding the growing archive of very high-resolution SAR
and optical imagery, developing a framework that takes advantages of both SAR and optical imagery
can provide a great opportunity to produce 3D spatial information over urban areas. Besides the
globally available DEMs derived from optical and SAR remote sensing, this information can also
potentially be employed for producing 3D building models at LOD1 level.

Besides height data, building outlines are needed for LOD1 modelling, since the aforementioned
height sources are not detailed enough to reliably determine accurate building outlines. We therefore
use OpenStreetMap as a form of volunteered geographic information (VGI) that is available with
global coverage as well. In this paper, we evaluate the potential of 3D building reconstruction from
both building footprints provided by OSM and heights derived by multi-sensor remote sensing data
fusion. Since the study area in this research is flat, we consider a constant height for ground and finally
generate a building model with this assumption.
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In Section 2, different fusion techniques used for height derivation over urban areas are
summarized. It includes three fusion experiments: TanDEM-X and Cartosat-1 DEM fusion (Section 2.1),
multiple TanDEM-X raw DEM fusion (Section 2.2), and SAR-optical stereogrammetry for 3D urban
reconstruction (Section 2.3). After that, a simple procedure for LOD1 building model reconstruction
from the multi-sensor-fusion-derived heights and OSM building footprints is presented in Section 3.
The properties of the applied data and the study area are described in Section 4, including a summary
of the benefits of multi-sensor DEM fusion and SAR-optical stereogrammetry. The outputs and results
of LOD1 building model reconstruction using both VGI and different remote-sensing-derived geodata
are provided in Section 5. Finally, the potential of LOD1 3D reconstruction using the mentioned data
sources, as well as challenges and open issues, are discussed in Section 6.

2. Multi-Sensor Data fusion for Height Generation over Urban Scenes

In this paper, elevation data are derived from different sensor types for 3D building reconstruction.
As mentioned earlier, those data sources can be categorized as digital elevation models derived
from optical or SAR imagery and also as point clouds reconstructed from SAR-optical image pairs
through stereogrammetry. The main idea is to apply data fusion techniques to finally produce more
accurate height information. In the following sections, more details of applied fusion techniques will
be presented.

2.1. TanDEM-X and Cartosat-1 DEM Fusion in Urban Areas

Cartosat-1 is an Indian satellite equipped with optical sensors for stereo imagery acquisitions.
The Cartosat-1 sensor with resolution of 2.5 m and partially large swath width of 30 km makes
the acquired stereo images perfect for producing high-resolution DEMs with a wide coverage [22].
However, the main defect of this sensor is the poor absolute localization accuracy [23]. In parallel,
the TanDEM-X mission is a recent endeavour for producing a global DEM through an interferometric
SAR processing chain. Evaluation with respect to LiDAR reference data illustrates that the TanDEM-X
DEM has a better absolute accuracy than the Cartosat-1 DEM, while its precision drops out in urban
areas because of intrinsic properties of InSAR-based height construction [24]. Figure 2b shows the
performance of both DEMs in a subset selected for height precision evaluation over an urban scene.
As displayed in Figure 2b, the overall precision of the Cartosat-1 DEM is better than the overall
precision of the TanDEM-X DEM.

Regarding the drawbacks of both DEMs, data fusion is used to finally reach a high quality DEM.
In more detail, first the absolute accuracy of Cartosat-1 is increased to the level of absolute accuracy of
the TanDEM-X DEM by vertical alignment. Next, both DEMs can be integrated using a sophisticated
approach presented in our previous research [25]. The fusion method is developed for multi-sensor
DEM fusion with the support of neural-network-predicted fusion weights. For this task, appropriate
spatial features are extracted from both target DEMs as well as respective height residuals from some
training subsets. The height residuals are calculated respective to available LiDAR over training data.
After that, a refinement process is carried out to explore numerical feature-error relations between each
type of extracted features and height residuals. Then, the refined feature-error relations are input into
fully-connected neural networks to predict a weight map for each DEM. The predicted weight maps
can be applied for weighted averaging-based fusion of the input Cartosat-1 and TanDEM-X DEMs.
Figure 3 displays the designed pipeline for ANN-based fusion of TanDEM-X and Cartosat-1 DEMs.
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(a) (b)

Figure 2. (a) Study subset selected over Munich, (b) Precision of the Cartosat-1 (left) and TanDEM-X
(right) digital elevation models (DEMs) over an exemplary urban subset respective to high-resolution
LiDAR data. Both DEMs were assessed with respect to a co-aligned LiDAR DEM.

Cartosat-1 DEM TanDEM-X DEM 
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ANN: Fully connected network
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Figure 3. Different DEM fusion modules for improving the TanDEM-X quality. Left: The proposed
pipeline for TanDEM-X and Cartosat-1 DEM fusion, Right: Process of multi-modal TanDEM-X
DEM fusion.
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2.2. TanDEM-X Raw DEM Fusion over Urban Areas

As mentioned earlier, another possibility to gather reliable height information is to fuse
multi-modal TanDEM-X raw DEMs. The standard TanDEM-X DEM is the output of a processing chain
consisting of interferometry, phase unwrapping (PU), data calibration, DEM block adjustment, and raw
DEM mosaicking [26]. In the mosaicking step, raw DEMs are fused to reach the target accuracy. The
fusion method is weighted averaging using weights derived from a height error map produced during
the interferometry process. Evaluation demonstrates that weighted averaging does not perform well
in urban areas. We proposed to use a more sophisticated fusion approach for fusing TanDEM-X raw
DEMs in [27]. For this, we used variational models like TV-L1 and Huber models and finally produced
a high quality DEM over urban areas in comparison to weighted averaging. In this paper, we also
apply TV-L1 and Huber models for fusion of TanDEM-X raw DEMs over the study urban subset to
improve height accuracy for 3D building reconstruction. A comparison between the multi-modal
TanDEM-X DEM fusion process and the multi-sensor ANN-based fusion is depicted in Figure 3.

2.3. Heights from SAR-Optical Stereogrammetry

In the literature, a few papers can be found that deal with the combination of SAR and optical
imagery for the 3D reconstruction of urban objects, e.g., [28]. In this research, we focus on the
potential of 3D building reconstruction from very high-resolution SAR-optical image pairs such as
TerraSAR-X/WorldView-2 through a dense matching process as a form of cooperative data fusion [21].

A full framework for stereogrammetric 3D reconstruction from SAR-optical image pairs was
presented in our previous work [29] is displayed in Figure 4. It consists of several steps: generating
rational polynomial coefficients (RPCs) for each image to replace the different physical imaging models
by a homogenized mathematical model; RPC-based multi-sensor block adjustment to enhance the
relative orientation between both images; establishing a multi-sensor epipolarity constraint to reduce
the matching search space from 2D to 1D.

Figure 4. Framework for 3D reconstruction from synthetic aperture radar (SAR)-optical image
pairs [29].

The core challenge in SAR-optical stereogrammetry is to find disparity maps between two images
by using a dense matching algorithm. For the presented research, we have investigated the application
of classical SGM for that purpose. SGM computes the optimum disparity maps by minimizing an
energy functional which is constructed by a data and a fidelity term [30]. While the data term is
defined by a similarity measure, the fidelity term employs two penalties to smooth the final disparity
map. Because of aggregating cost values computed by a cost function in the heart of SGM along with
a regularizing smoothness term, SGM is more robust and lighter than other typical dense matching
methods [30], which can be ptentially applied for SAR-optical stereogrammetry. According to [31],
pixel-wise Mutual information (MI), and Census are more appropriate for difficult illumination
relationships than, e.g., normalized cross-correlation (NCC).

3. LOD1 Building Model Generation

The heights output by the different fusion approaches are then used for 3D building modeling
and finally prismatic model generation. Due to the medium resolution of the input DEMs, only LOD1
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models can be reconstructed from those heights; also the resolutions of the DEMs are not sufficient for
detecting building outlines. As shown in Section 4.3, the point cloud resulting from SAR-optical
stereogrammetry is partially sparse and consequently building outlines can not be recognized.
One popular option is to exploit the building footprints layer provided by OpenStreetMap (OSM).
Then, the heights of building outlines can be derived from either those fused DEMs or the point cloud
achieved by SAR-optical stereogrammetry. Technically, this can be realized in two steps. The first
step is to classify heights to those located inside and outside building outlines. Then, only points that
are within building outlines are kept while the remaining points are discarded. After that, for each
remaining height, the ID of the corresponding building (in which the height is located) is assigned.
It facilitates the process of joining building footprints layer to heights.

There are several elevation references that should be considered for estimating the building height
within its outline [32]. These references are displayed in Figure 5. Three-dimensional reconstruction
based on those levels can be realized by using high-resolution data such as LiDAR point clouds along
with precise cadastral maps. Specifying those levels in medium resolution remote-sensing-derived
heights, however, is not possible. Therefore, for LOD1 3D building reconstruction using medium
resolution data such as those applied in this paper, we will only use median or mean of heights inside
a building outline. The main advantage of median is its robustness against outliers in comparison to
the mean measure. Thus, we propose that LOD1 models can be produced by modeling each building
as a coarse volumetric representation using its outline and the median-based allocated height.

Figure 5. Examples of elevation references for different kinds of building [32].

Furthermore, for LOD1 reconstruction, we will consider two scenarios. The first one is to model
buildings based on the original footprint layers provided by OSM. The second is to update these
building outlines in a pre-processing step. This updating has proved to be helpful, because of OSM
building footprints often consist of several intra-blocks with different heights. As displayed in Figure 1,
a building consisting of two blocks, each with different height level, may appear as an integrated
building outline in OSM and thus, only one height value could be assigned for it in a simple LOD1
reconstruction process, while the outline should actually be split into two separate outlines. The result
will be that the heights that actually lie in two separate clusters will erroneously be substituted by
their median value located somewhere in the middle. While this ultimately leads to a significant
height bias, modifying the outlines appropriately optimizes the final reconstruction. In this paper,
this building modification is performed semi automatically: The candidate outlines are detected
by clustering heights. The number of clusters determines the number of height levels and implies
potential separate building blocks. Then, this is verified by visual comparison with open satellite
imagery such as provided by Google Earth. Finally, the individual, newly separated building blocks
are reconstructed by assigning separate median height values.

In addition to that, horizontal displacements of OSMs’ building footprints respective to highly
accurate data such as LiDAR can also lead to a height bias. This phenomenon leads to an inclusion of
non-building points to building outlines. Due to significant height differences between non-building
and building points, the final height estimations are affected by an underestimation bias. To mitigate
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this effect, we use a buffer from the building outline inwards to make sure only building points
are selected.

4. Test Data

In this paper, as explained in Section 2, the heights for 3D building reconstruction are provided
by different sources. For the experiments, a study scene located in Munich, Germany, was selected
because of the availability of high-quality LiDAR reference data. Figure 2a displays the considered
study urban subset. The characteristics of the different input datasets used in the experiments are
listed in following.

• Cartosat-1 DEM: The Cartosat-1 DEM used in this study is produced from stacks of images
acquired over the Munich area based on the pipeline described in [33]. The main characteristics
of the Cartosat-1 DEM are expressed in Table 1.

Table 1. Properties of Cartosat-1 tile. For more information about BKG orthophotos, please refer to [34].

Cartosat-1 DEM

Stereoscopic angle 31◦

Max number of rays 11
Min number of rays 2
Horizontal reference BKG orthophotos
Vertical reference SRTM DEM
Pixel spacing 5 m
Mean height error (1σ) 2–3 m

• TanDEM-X raw DEMs: In this study two tiles of TanDEM raw DEM acquired over Munich city
are used. The properties of those tiles are represented in Table 2.

Table 2. Properties of the nominal TanDEM-X raw digital elevation models (DEMs) tiles for the
Munich area.

TanDEM-X Raws DEMs: Munich Area

Acquisition Id 1023491 1145180

Acquisition mode Stripmap Stripmap
Center incidence angle 38.25◦ 37.03◦

Equator crossing direction Ascending Ascending
Look direction Right Right
Polarization HH HH
Height of ambiguity 45.81 m 53.21 m
Pixel spacing 0.2 arcsec 0.2 arcsec
HEM mean 1.33 m 1.58 m

• TerraSAR-X and WordView-2 images: For the experiment based on heights retrieved by SAR-optical
stereogrammetry, a high-resolution TerraSAR-X/WorldView-2 image pair, acquired over the
Munich test scene, is used. For the pre-processing, first, the SAR image was filtered by a non-local
filter to reduce the speckle [35]. After that, they were resampled to 1 m × 1 m pixel size to
homogenize the study scenes with respect to better similarity estimation. After multi-sensor
bundle adjustment, sub-images from the overlapped part of the study area were selected. These
sub-images are displayed in Figure 6. The specifications of the TerraSAR-X and WorldView-2
images are provided in Table 3.
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Table 3. Specifications of the TerraSAR-X and WorldView-2 images.

Sensor Acquisition Mode Off-Nadir Angle (◦) Ground Pixel Spacing (m) Acquisition Date

TerraSAR-X Spotlight 22.99 0.85 × 0.45 03.2015
WorldView-2 Panchromatic 5.20 0.50 × 0.50 07.2010

Figure 6. Display of SAR-optical sub-scenes extracted from Munich study areas (the left-hand image is
from WorldView-2, the right-hand image is from TerraSAR-X).

• LiDAR point cloud: High-resolution airborne LiDAR data serves for performance assessment and
accuracy evaluation of 3D building reconstruction resulting from different height information
sources. It is also used for measuring accuracy of data fusion outputs. The vertical accuracy of the
LiDAR point cloud is better than ±20 cm and its density is higher than 1 point per square meter.
Some preprocessing steps are implemented to prepare LiDAR data for the accuracy assessment in
different experiments. Details are explained in corresponding sections.

• Building footprints: The building footprints layer of the study area is provided by OpenStreetMap.
The footprints layer is used in combination with heights derived from different sources for LOD1
3D reconstruction

4.1. Input DEM Generated by TanDEM-X and Cartosat-1 DEM Fusion

The first input data we used for LOD1 building model reconstruction, is a refined DEM resulting
from a fusion of Cartosat-1 and TanDEM-X DEMs. As mentioned in Table 1, Cartosat-1 tiles are
registered to highly accurate airborne orthophoto images to compensate horizontal misalignment.
Before launching the TanDEM-X mission, Cartosat-1 tiles were vertically aligned with SRTM DEM as
an almost global, open DEM. However, due to limited vertical accuracy of SRTM, TanDEM-X data can
be substituted for vertical bias compensation of Cartosat-1 products. Thus, the alignment improves the
vertical accuracy of the Cartosat-1 DEM. The evaluation illustrates that the absolute vertical accuracy
of Cartosat-1 DEM increased more than 2 m. The evaluations were performed with respect to a LiDAR
DSM created from the LiDAR point cloud by reducing and interpolating the 3D points into a 2.5D grid
with a pixel spacing of 5 m. It should be noted that the TanDEM-X raw DEM is also converted into a
5 m pixel spacing DEM by interpolation. As we were able to show in [24], this fusion improves the
final DEM quality; quantitative results for the test scene are repeated in Table 4.
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Table 4. Accuracy (in meter) of Cartosat-1 and TanDEM-X DEM fusion in the urban study subset over
Munich. The bold values indicate the best results which were obtained through the proposed DEM
fusion pipeline.

DEM Mean RMSE STD

Raw DEM Cartosat-1 −0.68 5.27 5.23
TanDEM-X −0.36 6.43 6.42

Fused DEM ANN-based −0.55 5.02 4.98

4.2. Input DEM Generated by TanDEM-X Raw DEM Fusion

In the TanDEM-X mission, at least two primary DEMs are produced over all landmass tiles to
reach the target relative accuracy [36]. This is realized by data fusion techniques such as weighted
averaging. However, the weighted averaging performance is not optimal over urban areas. Therefore,
in [27] we proposed to use efficient variational methods such as TV-L1 and Huber models for fusing
raw DEMs. We improved the height precision of the applied TanDEM-X raw DEM by employing
another available tile (see Table 2). For this purpose, both TanDEM-X DEMs are converted to DEMs
with pixel spacing of 6 m. The fusion performances using weighted averaging and variational models
are shown in Figure 7. The quantitative results are collected in Table 5. Those evaluations are carried
out with respect to a LiDAR DEM with 6 m pixel spacing achieved from the input LiDAR point cloud
by interpolation.

Table 5. Height accuracy (in meters) of the TanDEM-X data before and after DEM fusion in the
study area over Munich. The bold values indicate the best results which obtained through the
TV-L1-based fusion.

DEM Mean RMSE STD

Fused DEM
WA 0.84 7.51 7.46
TV-L1 0.77 6.11 6.06
Huber 0.78 6.14 6.09

Figure 7. Absolute residual maps of the initial input raw DEMs and the fused DEMs obtained by
different approaches for the study area over Munich.

As illustrated in Figure 7 and Table 5, the fusion can improve the quality of TanDEM-X raw DEMs.
It becomes apparent that variational models, especially TV-L1, outperform conventional weighted
averaging model.
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4.3. Input Point Cloud Generated by SAR-Optical Stereogrammetry

In [29], we have shown that by implementing a SAR-optical stereogrammetry framework for
the TerraSAR-X and WorldView-2 image pairs, a sparse point cloud can be produced as a product
of cooperative data fusion. A stereogrammetrically generated point cloud using MI as a similarity
measure is shown in Figure 8.

To validate the accuracy of the resulting 3D point clouds, we employed the accurate airborne
LiDAR point cloud described in Section 4. For accuracy calculation, after Least Square (LS) plane
fitting on k (here: k = 6 points) nearest neighbors of each target point in the reference point cloud [37],
the Euclidean distance between the target point to the fitted reference plane was measured along
different directions. Table 6 summarizes accuracy assessments of the reconstructed point clouds using
MI similarity measures along different coordinate axes by LS plane fitting. Additionally, the mean
absolute difference between the achieved point cloud respective to the LiDAR data is applied for total
accuracy evaluation.

Table 6. Accuracy assessment of reconstructed point clouds using different similarity measures with
respect to LiDAR reference.

Similarity Measures Mean (m) STD (m) RMSE (m) Mean (m)
X Y Z X Y Z X Y Z d

MI 0.00 −0.04 0.27 1.57 1.69 3.09 1.57 1.69 3.10 2.75

Figure 8. Achieved point cloud from stereogrammetric 3D reconstruction of TerraSAR-X/WorldView-2
over the Munich study subset.
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5. Result of LOD1 Building Model Reconstruction

Figure 9 displays LOD1 3D reconstruction results for the study area consisting of prismatic
building models generated by combining the height information derived from different sources
discussed in the previous sections and building footprints provided by OpenStreetMap. As displayed
in Figure 9, on average, all models are systematically biased in comparison to a model produced from
high-resolution LiDAR data. However, this bias becomes minimum for a model using heights derived
from SAR-optical stereogrammetry, as can be seen when comparing large buildings. However, for
better evaluation, quantitative assessment should be performed. Therefore, the height accuracy of
each LOD1 model was validated by comparing it with a model was created from the reference LiDAR
DSM in a similar manner. For that purpose, we first interpolated the original LiDAR point cloud to a
grid with a 1 m pixel spacing. Then, we used TV-L1 denoising [27] to reduce potential noise effects.
This TV-L1 denoising mitigates biases in building height estimation induced by height outliers and
inconsistencies such as those caused by crane-towers. As described in [27], TV-L1 comprises two
terms: a fidelity term and a penalty term. The effect of each term on the final output can be tuned
by regularization parameters as weighting factors. Using a higher weight devoted to the penalty
term will lead to better edge-preservation. Thus, we used the double weight for the penalty term
to enhance urban structures. Then, the final height estimate within each building outline can be
computed according to the process described in Section 3. The same process can be applied for the
quality measurements of the 3D building reconstructions obtaining from other height information
sources. The quantitative evaluations for the LOD1 reconstructions implemented based on scenario 1
(using original OSM) and 2 (using updated outlines) are presented in Tables 7 and 8, respectively.

Table 7. Quantitative evaluations (in meters) of the level-of-detail 1 (LOD1) reconstructions of the
urban scene using heights derived from different sources along with original building outlines of
OpenStreetMap (OSM).

Elevations Median RMSE STD

input DEM Cartosat-1 8.63 10.01 4.67
TanDEM-X 9.68 10.16 4.28

Fused DEM
ANN-based: Cartosat-1 and TanDEM-X 9.56 9.97 4.28
Weighted Averaging:TanDEM-X 7.91 9.5 4.81
TV-L1: TanDEM-X 8.94 8.95 3.82
Huber: TanDEM-X 8.97 9 3.83

SAR-optical stereogrammetry TerraSAR-X/WordlView-2 6.51 9.73 5.83

Table 8. Quantitative evaluations (in meters) of the LOD1 reconstructions of the urban scene using
heights derived from different sources along with modified building outlines of OSM.

Elevations Median RMSE STD

input DEM Cartosat-1 −0.96 2.85 2.27
TanDEM-X −0.93 3.43 2.83

Fused DEM
ANN-based: Cartosat-1 and TanDEM-X −0.92 3.09 2.48
Weighted Averaging:TanDEM-X −0.72 2.81 2.5
TV-L1: TanDEM-X −0.68 2.86 2.56
Huber: TanDEM-X −0.67 2.96 2.64

SAR-optical stereogrammetry TerraSAR-X/WorldView-2 −0.29 3.61 3.57
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(a) Cartosat-1 DEM (b) TanDEM-X raw DEM

(c) ANN-based fusion of Cartosat-1 and TanDEM-X (d) WA-based fusion of TanDEM-X raw DEMs

Figure 9. Cont.
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(e) TV-L1 fusion of TanDEM-X raw DEMs (f) Huber-based fusion of TanDEM-X raw DEMs

(g) SAR-optical stereogrammetry

Figure 9. Level-of-detail 1 (LOD1) reconstructions of the study urban scene using heights derived from
different sources and building outlines obtained from building foot prints layer of OpenStreetMap
(OSM). Colors indicate absolute height residuals.
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6. Discussion

6.1. Multi-Sensor Fusion for Height Exploitation

In this research, we employed different sensor fusion techniques to use heights as a requirement
for 3D building reconstruction. Two categories of techniques were used to improve the quality of
TanDEM-X DEM as a global DEM. In the first method, using Cartosat-1 DEM could improve the
quality of TanDEM-X. During DEM fusion, the issue of low absolute localization accuracy of Cartosat-1
DEM could be solved. It is also recommended to use TanDEM-X as an external DEM during the
Cartosat-1 DEM generation to compensate bias existing in the sensor geometry. As a drawback, the
Cartosat-1 data is not globally available such as TanDEM-X. Furthermore, due to different natures
of TanDEM-X and Cartosat-1 DEMs, we implemented an ANN-based algorithm which utilizes both
feature engineering and supervised training for weight map prediction. The weight maps are used
for weighted averaging-based fusion to integrate TanDEM-X and Cartosat-1 DEMs. Nevertheless,
the training samples do not necessarily exist in an arbitrary study area. The next possibility is to use
other TanDEM-X covers acquired through the mission to guarantee target relative accuracy. For this,
we implemented variational models to smooth noise appearing in DEMs while preserving the building
outlines. The main advantage of variational techniques is that they do not need highly accurate
training samples such as those derived from LiDAR data. In addition, it only employs TanDEM-X
raw DEM tiles and does not require a higher quality DEM such as that derived from Cartosat-1 data.
However, by comparing quantitative results represented in Tables 4 and 5 using different metrics, it is
demonstrated that the first solution i.e., employing Cartosat-1 DEM and implementing ANN-based
DEM fusion could ultimately generate a more accurate urban DEM.

Another opportunity for producing heights is to carry out stereogrametry for 3D reconstruction
from archived SAR-optical image pairs such as TerraSAR-X and WorldView-2 images. The promising
outputs demonstrated potential and possibility of 3D reconstruction from SAR-optical stereogrammetry.
However, some development such as improving dense matching performance to produce a denser
point cloud as well as noisy point and outlier removal are demanded.

6.2. LOD1 Building Reconstruction

After implementing data fusion techniques for height retrieval, we reconstructed building models
using the derived heights and the building outlines provided by OSM. The achieved model is not
a complete 3D city model since it provides building heights only. However, this model can be used
for applications that require the building volume, which is not affected by the lack of information on
the precise elevations of the building bottom/top. We investigated the reconstruction using original
building outlines provided by OSM as well as using an updated building footprints layer. Regarding
the median values in Table 7, using the original building outlines causes a bias affecting estimated
final heights (RMSE values) while standard deviations are much smaller, thus confirming a systematic
change in building heights. This bias can be significantly reduced by modifying building outlines in a
preprocessing step (Table 8).

Using heights derived from outputs of multi-sensor DEM fusion can still lead to better
reconstruction results in comparison to the primary TanDEM-X DEM. While the highest accuracy is
obtained by Cartosat-1 data, it owes the accuracy to the bias compensation through the alignment to
TanDEM-X. Without the alignment, the existing bias would be propagated to the final building heights.

Last but not least, it has to be mentioned that for generating a complete 3D city model, computing
the height of the bottom and the top of a building along with the underlying terrain is required. Due to
the limited the resolution of the height data utilized in this study, our focus did not lie on full 3D
city model reconstruction but on simple prismatic building model reconstruction. For that purpose,
we worked with the assumption of flat terrain at a constant height, which is valid in the selected study
area. For a complete 3D city model, more accurate measurements of the terrain and the bottom of
building elevations would be necessary.
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7. Conclusions

In this research, we evaluated the potential of LOD1 3D reconstruction using data from
remote-sensing-derived geodata and volunteered geographic information (VGI). For this purpose,
we used heights derived from sources provided for global mapping such as those produced through
the TanDEM-X mission. We implemented two DEM fusion experiments to improve the quality of
TanDEM-X in urban areas. First is to fuse the TanDEM-X and Cartosat-1 DEMs using corresponding
weight maps generated through a supervised ANN-based pipeline. In the second experiment, multiple
TanDEM-X raw DEMs are fused by variational models. The results confirm the quality improvement of
TanDEM-X after DEM fusion. In another experiment, heights were from an archived TerraSAR-X and
WorldView-2 image pair through a stereogrammetry framework. The output was a sparse point cloud
with a promising accuracy. Since building outlines as an essential requirement for 3D reconstruction
cannot be accurately recognized in those height sources, we employed outlines provided by OSM. It
was also shown that the primary outlines are not perfect and should be modified and updated for
an accurate reconstruction. The final results demonstrate the possibility of prismatic building model
generation (at LOD1 level) on a wide area from easily accessible, remote sensing-derived geodata.
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