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Abstract II 
 

Generative design uses the principles of evolution to improve design options iteratively. 

It adapts the three operators of selection, crossover, and mutation to generate solu-

tions and evaluate them on design goals.  

This study focuses on the potential this method holds for early project stages in the 

AEC industry. The goal is to produce a basic model of a project and optimize it in the 

aspects relevant to early project development. 

To realize this goal, a design concept consisting of variables and constraints has to be 

developed. A set of relevant design metrics must be identified to evaluate design op-

tions and determine the direction of the optimization.  

This approach is tested on a specific type of Siemens Real Estate office buildings. 

Seven variables and eight objectives are identified. A population of 120 solutions is 

assessed by the genetic algorithm NSGA-II over 50 generations.  

The results include 14 different design options with their parameter values as well as 

their individual scoring in each objective. The solutions can easily be compared to each 

other based on the provided metrics.  

When a well-defined vision of the design and a set of relevant evaluation measures 

exist, generative design can provide profitable solutions. It can help optimize a project 

and find the right geometry to fulfill non-geometric goals. However, some aspects that 

might be trivial to the human designer, but hard to translate into calculatable scores, 

will be elaborate to implement.  

Keywords: Generative design, optimization, NSGA-II, architecture, project develop-

ment, genetic algorithm, Refinery, multi-objective optimization 
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Zusammenfassung III 
 

Generatives Design ist eine digitale Entwurfsmethodik, die sich die Prinzipien der Evo-

lution zunutze macht. In einem iterativen Prozess werden verschiedene Entwurfsopti-

onen verglichen und verbessert. Dabei werden die drei evolutionären Operatoren Se-

lektion, Rekombination und Mutation angewendet, um neue Lösungsvorschläge zu ge-

nerieren und anschließend auszuwerten.  

Diese Studie beschäftigt sich mit dem Potential dieser Methodik für die Projektentwick-

lung in der Bauindustrie. Das Ziel ist es, ein Bauklötzchenmodell eines Projekts zu 

erzeugen und dieses im Hinblick auf die relevanten Aspekte der frühen Projektphasen 

zu optimieren.  

Dafür wird ein abstraktes Design-Konzept benötigt, das die Entwurfsidee mit Hilfe von 

Randbedingungen und variablen Eigenschaften beschreibt. Außerdem müssen die 

Merkmale festgelegt werden, in denen die Entwurfsoptionen bewertet werden, da 

diese die Richtung der Optimierung bestimmen. 

Dieser Ansatz wird an einem bestimmten Gebäudetypus von Siemens Real Estate 

Bürogebäuden getestet. Dabei werden sieben Entwurfsvariablen und acht Bewer-

tungskategorien festgelegt. Mit dem genetischen Algorithmus NSGA-II wird eine Po-

pulation mit 120 Individuen über 50 Generation optimiert.  

Das Ergebnis besteht aus 14 verschiedene Entwurfsoptionen mit den jeweiligen Ei-

genschaften und Merkmalen. Die Ergebnisse lassen sich durch die vorhandene Be-

wertung gut miteinander vergleichen.  

Es zeigt sich, dass durch generatives Design nützliche Entwürfe entstehen können, 

wenn die Entwurfsvision präzise definiert ist und die Beurteilungsparameter behutsam 

gewählt werden. Generatives Design kann dabei helfen, ein Projekt zu optimieren und 

die richtige Geometrie im Bezug auf nicht-geometrische Ziele zu finden. Manche As-

pekte, die ein menschlicher Designer automatisch einhält, sind jedoch schwer in mess-

bare Merkmale zu überführen und daher aufwendig in der Implementierung. 

Schlüsselwörter: Generative Gestaltung, Optimierung, NSGA-II, Architektur, Projekt-

entwicklung, genetischer Algorithmus, Refinery, Pareto-Optimierung 
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Introduction  7 

1.1 Introduction 

With the continuous research and public debate on artificial intelligence, it appears 

compelling to introduce the computer into the design process as well. Its creativity is 

untouched by convention or tradition, so when we give it the freedom to experiment, 

unexpected structures might emerge.  

As humans, when we are faced with the task to arrange a floorplan, we are immediately 

drawn to rectangular shapes. An algorithm, however, has no idea how rooms usually 

look like and only respects the constraints we set. So, if the only constraint given is a 

list of rooms with desired sizes, it will start experimenting by assembling different 

shapes. We can influence the direction of these experiments by setting a goal for the 

algorithm, such as minimizing material.  

 

On the right, the layout of an elementary school can 

be seen. Joel Simon used this rather traditional floor-

plan and converted it to a room program with size in-

formation for every room as well as adjacency re-

quirements, such as the cafeteria must be placed next 

to the kitchen (Simon, 2017). These requirements 

were handed to a genetic algorithm (GA) for optimiza-

tion. The goal of the study was set to minimize traffic 

flow between classrooms.  

1 Introduction 

Figure 1 Original floorplan of a school in 
Maine, USA (Simon, 2017) 
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The results have an almost biological appeal, defying all rules of traditional architec-

ture. The rooms become cell-shaped entities connected by vein-like corridors. When 

also optimized for daylight in the classrooms, the structure forms interior courtyards 

(Simon, 2017).  

 

Figure 2 Results after optimization for minimal traffic between classes (left) and additional optimization for mini-
mal fire escape paths (right); from: Simon (2017) 

Figure 3 Results after windows were implemented as additional fitness function. Class-
rooms received higher priority for daylight than storage rooms; from: Simon (2017) 
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Needless to say, these constructs would be expensive in production as well as imprac-

tical in use. However, the experiment can be an inspiration to what effect artificial in-

telligence can have on the design process. At least, it can be a reminder of the bound-

aries we set our creativity as we proceed in age and academic education.  

It also highlights the importance of setting clear constraints when working with gener-

ative design. The computer has no inherent understanding of the problem it is faced 

with. It can only apply the rules we teach it. Therefore, developing an abstract concept 

of the design is the first step in a generative design study. The concept consists of a 

set of geometric and arithmetic rules, that limit the space of possibilities just enough 

so the results can be useful in the eye of the human designer but leaving enough room 

for the algorithm to find unexpectedly positive solutions.  

In this study, a respective design concept is developed and optimized in a generative 

design workflow. The design problem at hand consists of finding the right position, size, 

layout, and desk configuration for a Siemens office building on a pre-defined site. As it 

involves meta-elements such as position of the building on-site as well as micro-enti-

ties like a single desk, it is hard for a human designer to regard all aspects simultane-

ously. Experimentation shall determine whether generative design can provide a fruitful 

solving mechanism to this problem. 

  

1.2 Motivation 

The motivation of this research is to help with early-stage decisions in the project de-

velopment process. If parts of the design finding procedure can be automated, reliable 

data is available sooner, and information significant to project development can be 

drawn from a model rather than from estimates.  

Four stages are identified to set up a generative design study for a specific design 

problem:  

1) Outlining of constraints and geometric rules, as well as open variables  

2) Identification of criteria significant to early project stages and concurring design 

goals 

3) Implementation of a model that allows to explore different design options as well 

as to assess them 

4) Integration of said model into an optimization workflow 
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It is the goal of this study to use the generative design approach to optimize a specific 

type of Siemens office buildings in a pre-defined environment. For this purpose, a 

workflow consisting of three repetitive steps (generate – evaluate – evolve) must be 

customized to the project.  

Furthermore, the right settings for the evolution (population size, number of genera-

tions, etc.) have to be detected to allow the algorithm to find optimal solutions. Finally, 

the results found can be assessed by the Siemens project developers. 

 

1.3 Structure 

In chapter 2, the basics of generative design are introduced. The concept of multi-

objective optimization (MOO) is explained, and different genetic algorithms (GA) are 

compared. The nondominated sorting genetic algorithm (NSGA-II) is illustrated in more 

detail, as it will be used in the study.  

Chapter 3 introduces the example studied in this paper, which is an architectural stand-

ard called Siemens Real Estate Construction Excellence. Furthermore, the three ele-

ments that make up a generative design study are defined: a parametric model that 

covers the entire solution space, a well-defined set of design goals and an optimization 

engine that drives the evolution – in this case, a software product called Refinery. 

In chapter 4, two different approaches are followed to verify the functionality of both 

the NSGA-II algorithm and Refinery.  

Chapter 5 focusses on the computational implementation of the study. The program-

ming is executed in the form of a Dynamo graph. In this chapter, the elements and 

algorithms of the graph are explained as well as the settings of the generative design 

study in Refinery. 

In chapter 6, experiments are run based on a real-life Siemens project in Hannover. 

The specifications of this project are discussed, as well as the limitations of the re-

search. Finally, the results of the study are presented and assessed in an interview 

with Siemens Real Estate project managers. 

Chapter 7 elaborates the findings of the research as well as the problems that oc-

curred. It touches on further development of the tool as well as its integration into BIM 

processes. 
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2.1 Background 

Design problems are multidimensional by nature (Nagy, 2017a). They consist of a 

complex network of non-linear functions, of which the solution is supposed to satisfy a 

multitude of goals like function, appearance, economic value, socio-political percep-

tion, etc. Since the time frame of a design process is usually limited, a human designer 

cannot possibly explore the entire design space but can only test and improve a minor 

amount of designs before deciding on a final solution.  

With the advancement of artificial intelligence (AI) arises the idea of a symbiosis be-

tween the human designer and the power of a computer. While the computer has the 

computational capacities to produce copious quantities of design solution, the human 

designer possesses the intuition and experience to decide what makes a good design.  

To attain this form of cooperation, we can learn from nature’s evolutionary approach to 

design. Evolution is fueled by procreation – which is the intermixing of different sets of 

genes – combined with mutation – which brings in new random genes occasionally. 

The resulting offspring are then tested in the troubles of life leaving those to procreate 

(the most) which perform best. This eventually leads to a well-adapted set of genes.  

2 Generative Design 

Figure 4 The evolutionary process in nature; inspired by Nagy (2017a) 

Mutation creates variation

Unfavorable mutations 
selected against

Reproduction and mutation 
occur

Favorable mutations more 
likely to survive

and reproduce
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Generative design mimics this process. It is able to “learn from designs it has analyzed, 

and apply that knowledge to generate new, better performing designs” (Nagy, 2017b). 

Its ability to learn makes this technology part of the larger framework of artificial intelli-

gence. However, it does not make use of artificial neural networks (ANN), but falls into 

the category of metaheuristics – or “search algorithms” (Nagy, 2017b). The search 

algorithm that is used in most generative design studies is called genetic algorithm 

(GA), which is part of evolutionary algorithms (EA). It is based on three consecutive 

principles (Nagy, 2017a): 

Generate 

A population of different (design) solutions is cre-

ated.  

Evaluate 

The fitness of the individual solutions is calculated. 

 Evolve 

The best performing solutions are crossed over to 

generate a new population. 

 

This process is repeated for a declared number of generations or until a stop criterion 

is satisfied. For the algorithm to optimize the fitness of a population from generation to 

generation and eventually find the desired solution, it must be able to explore the entire 

solution space. The solution space is made up of the variety of every possible combi-

nation of “genes”. The genes, in this case, are the design variables – or more specifi-

cally, the parameters of a parametric model. A specific combination of values for these 

parameters produces a specific outcome which can then be evaluated.  

If we think of a parametric model of a curtain wall façade, the defining parameters might 

be the amount of vertical and horizontal beams. With the surface of the façade being 

constant, the size of the glass panels results directly from those two parameters. An 

increasing number of beams leads to smaller glass panels and vice versa. The solution 

space of this example covers a variety of designs – from a façade with just a single 

Figure 5 Iterative optimization process 
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panel (H = 0, V = 0), via very elongated panels (H < V), to a highly fragmented appear-

ance (H = V = 100).  

To accelerate the installation of the façade, the number of glass panels shall be de-

creased. However, since bigger panels are harder to produce, the price/m² rises sig-

nificantly with the size. Every possible façade can, therefore, be evaluated based on 

its number of panels and the total cost for all panels. They make up the fitness of a 

solution. 

Minimizing panel quantity and minimizing cost are the design goals in this example. 

They determine the direction in which the optimization is heading. The solutions with 

the highest fitness value form the base for the next generation of designs.  

Hence, the parametric model is a curial part of a generative design study. The model 

must be capable of taking in different values of its design variables and output the 

corresponding evaluation results. It is the task of the human designer to define the 

design parameters – and hereby the solution space – as well as the design goals – 

and hereby, the measures by which a solution is evaluated. The genetic algorithm can 

then explore the solution space by changing the parameters’ values and registering 

the outcome. The parametric model itself remains a black box to the algorithm. By 

defining design goals (minimize or maximize an outcome), the algorithm can learn 

which values increase the performance and optimize the model to a desirable outcome. 

Figure 6 Three different façade configurations 

Figure 7 The function of the parametric model 
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2.2 Multi-Objective Optimization 

The complexity of the design process usually arises from the multitude of criteria that 

are to be satisfied but contradict each other in nature. For example, maximizing the 

comfort of an apartment leads to an increased floor area, but at the same time, mini-

mizing rent leads to a decreasing floor area.  

Finding optimal decisions in the presence of two or more conflicting goals is called 

multi-objective optimization (MOO). “For a nontrivial multi-objective optimization prob-

lem, no single solution exists that simultaneously optimizes each objective” (Multi-

objective optimization, 2019). A trade-off situation occurs, in which no objective func-

tion can be increased in value without reducing at least one of the other objective val-

ues. Hence, there cannot be one single solution to satisfy all objectives, but instead, 

several Pareto optimal solutions exist. A solution is called Pareto optimal or nondomi-

nated when none of its objective values can be improved without decreasing some of 

its other values. Therefore, no solution exists that performs better in all of the objec-

tives.  

From a mathematical perspective, a MOO-problem can be described as:  

min�𝑓𝑓1(𝑥𝑥),𝑓𝑓2(𝑥𝑥), … ,𝑓𝑓𝑘𝑘(𝑥𝑥)�; 

𝑠𝑠, 𝑡𝑡, 𝑥𝑥 ∈ 𝑋𝑋;  

(Miettinen, 1999) 

The functions 𝑓𝑓1 to 𝑓𝑓𝑘𝑘 represent objective functions, with 𝑘𝑘 being the number of objec-

tives. A vector of input data 𝑋𝑋 describes every possible design in the system. 𝑋𝑋 is 

usually limited by some constraint functions. Maximizing a particular objective function 

can be achieved by minimizing its negative. “An element 𝑥𝑥∗ ∈ X is called a feasible 

solution or a feasible decision. A vector 𝑧𝑧∗ ∶= 𝑓𝑓(𝑥𝑥∗) ∈ 𝑅𝑅𝑘𝑘 for a feasible solution 𝑥𝑥∗ is 

called an objective vector or an outcome “ (Multi-objective optimization, 2019).  
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The goal of a MOO is to find a set of nondominated solutions. A solution 𝑥𝑥1 ∈ X domi-

nates another solution, if 

1. 𝑓𝑓𝑖𝑖(𝑥𝑥1) ≤ 𝑓𝑓𝑖𝑖(𝑥𝑥2) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖 ∈ {1, 2, … ,𝑘𝑘}  and 

2. 𝑓𝑓𝑗𝑗(𝑥𝑥1) < 𝑓𝑓𝑗𝑗(𝑥𝑥2) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑗𝑗 ∈ {1, 2, … , 𝑘𝑘}. (Miettinen, 1999) 

All solutions not dominated by any other solution form the Pareto frontier. It is the goal 

of generative design to deliver a diverse set of solutions converging near the Pareto 

frontier. This enables a human decision-maker to pick a favorable design solution 

knowing that it cannot be optimized further.  

 

2.3 Genetic Algorithms 

Genetic algorithms (GA) are used for solving multi-objective optimization (MOO) prob-

lems. The first-ever GA was proposed by John Holland in his book “Adaptation in Nat-

ural and Artificial Systems” (1975).  

 “It is possible to give genetic processes an algorithmic formulation that 

makes them available as control procedures in a wide variety of situa-

tions. By using an appropriate production (rule-based) language, it is even 

possible to construct sophisticated models of cognition wherein the ge-

netic algorithm, applied to the productions, provides the system with the 

means of learning from experience.”  

John Holland (Holland, 1984). 

Figure 8 “Point C is not on the Pareto frontier because it is dominated by both 
point A and point B. Points A and B are not strictly dominated by any other, 
and hence lie on the frontier” (Dréo, 2006); inspired by Dréo (2006) 
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Holland translated the principles of evolution into a computational algorithm. His model 

proved to “search the space of chromosomes in a way much more subtle than a ‘ran-

dom search with preservation of the best ‘” (Holland, 1984). 

In general, the workflow of a GA can be described as follows:  

An initial population of individuals is created randomly. They form the parent population 

of the first generation. Then the fitness of each individual is calculated. If the fitness 

value of one of the solutions satisfies a stop criterion, the algorithm ends. If not, the 

evolutionary principles of selection, breeding, and mutation are applied. Two individu-

als of the first generation are selected to mate, meaning their chromosomes get 

crossed over to form a new individual – the children population of the first generation. 

Then mutation is randomly applied to the children to bring in random fresh, possibly 

fitter DNA.  

Afterward, the fitness of the individuals in the children population is calculated. To-

gether with the parent population, all individuals of the first generation get sorted by 

their achieved fitness level. The process of ranking the children population together 

with the parent population is called elitism. It ensures the preservation of previously 

found good solutions. The highest-ranking individuals form the next generation in the 

optimization process.  

Figure 9 Basic model of a genetic algorithm (GA); inspired by Nagy, 2017b 
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Since the early model developed by Holland, different variations of the genetic algo-

rithms (GA) or evolutionary algorithms (EA) have been proposed. They vary mostly in 

the way they rank and select solutions for the new parent population.  

Early GAs with low computational complexity but no elitism are (Samuelson Hong, 

2012):  

• VEGA (Vector evaluated GA) (Schaffer, 1985) 

• MOGA (Multi-objective GA) (Fonseca & Fleming, 1993) 

• NPGA (Niched Pareto GA) (Horn, Nafpliotis & Goldberg, 1994) 

They either fail to provide a diverse set of solution or converge to the Pareto frontier 

very slowly. Elitism, however, has shown to speed up the performance of a GA while 

preserving good solutions once they are found (Deb, Pratap, Agarwal, & Meyarivan, 

2002). In the following three commonly known elitist GAs are discussed (Samuelson 

Hong, 2012). 

PAES – Pareto Archived Evolution Strategy (Knowles & Corne, 1999) 

The PAES is the simplest of the three. It keeps a population size of 1 and uses local 

search to optimize the solution. Previously found solutions are stored in a reference 

archive against which candidate solutions are compared by Pareto dominance 

(Knowles & Corne, 1999).  

While it ensures the preservation of previously found solutions, the lack of population 

size slows down the system, and the overall performance is based on the size of the 

searched neighborhood (Samuelson Hong, 2012).  

SPEA – Strength Pareto Evolutionary Algorithm (Zitzler & Thiele, 1999) 

SPEA uses an external archive as well as a population size that is usually bigger than 

the size of the archive (Brownlee, 2015). It ranks solutions based on a combination of 

domination and estimation of density of the Pareto front. However, these calculations 

are computationally expensive (Samuelson Hong, 2012).  

NSGA – Nondominated Sorting GA (Srinivas & Deb, 1994) 

NSGA uses fast nondominated sorting to compute the domination rank of a solution 

and crowding-distance computation to achieve a diverse set of solutions. Initially, the 

algorithm lacked elitism and had a computational complexity of O(MN³) for M objec-
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tives and N population size, making the algorithm cubically more expensive with in-

creasing population size. However, a new version of the algorithm was introduced in 

2000 called NSGA-II. It has a computational complexity of O(MN²) and is elitist as the 

parents and the offspring are combined before ranking. NSGA-II gained much appre-

ciation and is widely used in optimization problems (Samuelson Hong, 2012) (Garcia 

& Trinh, 2019) (Machairas, Tsangarassoulis, & Kleo, 2014). 

Different MOO problems require different solution strategies. In the design problem at 

hand, it is very important to provide a diverse set of solutions, so that a human decision-

maker can choose a design favorite based on his or her subjective preferences.   

NSGA-II has proven to outperform PAES and SPEA in its ability to find a diverse set 

of solutions (Deb, Pratap, Agarwal, & Meyarivan, 2002). This is also the case when 

compared to the improved version SPEA2 (Zitzler, Laumanns, & Thiele, 2001). SPEA2 

shows less clustering, but NSGA-II provides a broader spread of solutions, i.e., “found 

solutions closer to the outlying edges of the Pareto-optimal front” (Kunkle, 2005). 

Therefore, it is chosen for the study at hand and explained in more detail in the follow-

ing chapter. 

 

2.4 NSGA-II 

Any algorithm striving to solve a MOO problem can be rated by its capability to accom-

plish the following goals (Chiandussi, Codegone, Ferrero, & Varesio, 2012):  

• its preservation of previously found nondominated points 

• its progress toward the Pareto front (convergence rate) 

• the diversity of points on the Pareto front it provides  

• its ability to provide the human decision-maker with an appropriately sized num-

ber of solution points for selection  

NSGA-II uses three characteristic properties to enhance its optimization – a fast non-

dominated sorting approach, a fast crowded distance estimation procedure, and a sim-

ple crowded-comparison operator (Yusoff, Ngadiman, & Zain, 2011). The algorithm 

sorts a population into hierarchic sub-populations based on their rank of Pareto domi-

nance. Within a group, the similarity of solutions is measured to maintain diversity. Deb 

et al. (2002) state that in several different test problems “NSGA-II was able to maintain 
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a better spread of solutions and converge better in the obtained nondominated front 

comparted to […] PAES and SPEA” (Deb et al., 2002). 

A closer look into the elements that make up NSGA-II is given in the following chapter 

concluded by an overview of the entire workflow.  

2.4.1 Fast Nondominated Sorting 

A crucial question concerning MOO problems is: In the face of multiple objectives, how 

do you compare one solution to another? How can the overall fitness of a solution be 

calculated so that the solutions of a population can be ranked amongst each other?  

The NSGA-II uses a fast procedure of sorting solutions into groups. Every solution p 

receives a domination count np “the number of solutions which dominate the solution 

p” and  Sp “a set of solutions that the solution p dominates” (Deb et al., 2002). This 

involves O(MN²) comparisons (Deb et al., 2002). 

 

Figure 10 When we look at A, it is not dominated by any other solution. Therefore, its domination count is 0. 

 

Figure 11 When we look at B, it is dominated by A and F. Therefore, its domination count is 2 and B is added to the 
dominated set Sp of A and F. 
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All solutions that have a domination count np = 0 lie on the first nondominated front.  
Now for each solution with np = 0, the members of its set Sp are visited, and their dom-

ination count is reduced by one (Deb et al., 2002).  

 

 

 

 

A

B
C

f1

f2

E

F

D

np Sp

A 0 {B, C, D}

B 2 {D}

C 2 null

D 3 null

E 0 null

F 0 {B, C, D}

Figure 12 After all comparisons are finished, each solution is equipped with a domination count and a set of 
dominated solutions. 

Figure 13 Pseudocode of the fast nondominated-sorting algorithm; from: Deb et al. (2002) 
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Afterward, all solutions with np = 0 are grouped as the second nondominated front. Now 

the members in the sets of these solutions are visited. This process is continued until 

all solutions are grouped into fronts (Deb et al., 2002). 

 

 

 

 

Figure 14 In the first step, all solutions with a domination count of 0 are grouped into the first 
front. The members of their dominated sets Sp receive a reduction of 1 in their domination count 

 

Figure 15 In the second step, this process repeated with the solutions that now have a  
domination count of 0. 

Figure 16 This process is repeated until all solutions are sorted 
into fronts. 
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2.4.2 Crowding Distance Computation and Operator 

As earlier mentioned, it is desired that, along with convergence to the Pareto optimal 

front, the algorithm also maintains a level of variety in its solutions. This helps to avoid 

convergence to local minima and offers a diverse set of options to the human decision-

maker. This means – when at the same fitness level – a solution from a less crowded 

region is preferred to a solution in a crammed region. To estimate the density of a 

solution’s neighborhood, the NSGA-II established the crowding distance computation.  

For a solution p, the average distance of two points on either side of this point along 

each of the objectives is calculated (Deb et al., 2002).  

In the case of two objectives f1, f2 the crowding distance of the ith solution is the average 

side length of the rectangle formed by the two closed points within its rank (marked in 

purple) (Deb et al., 2002).  

After the crowding-distance computation, every solution is equipped with two  

attributes: a nondomination rank irank based on its nondominated front and a crowding 

distance idistance. When the crowded-comparison operator <𝑛𝑛 is presented with two so-

lutions, it returns the solution with the lower rank, or if the rank is equal, it prefers the 

solution from a less crowded region (Deb et al., 2002). 

 

Figure 17 Crowding distance calculation (Points 
marked in purple are solutions of the same non-
dominated front); inspired by Deb et al. (2002) 

𝑖𝑖 <𝑛𝑛  𝑗𝑗  𝑖𝑖𝑓𝑓 (𝑖𝑖𝑟𝑟𝑎𝑎𝑛𝑛𝑘𝑘  <  𝑗𝑗𝑟𝑟𝑎𝑎𝑛𝑛𝑘𝑘) 

𝑜𝑜𝑟𝑟 ((𝑖𝑖𝑟𝑟𝑎𝑎𝑛𝑛𝑘𝑘 = 𝑗𝑗𝑟𝑟𝑎𝑎𝑛𝑛𝑘𝑘) 

𝑎𝑎𝑛𝑛𝑑𝑑 (𝑖𝑖𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡𝑎𝑎𝑛𝑛𝑐𝑐𝑒𝑒 >  𝑗𝑗𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡𝑎𝑎𝑛𝑛𝑐𝑐𝑒𝑒)) 

Figure 18 The crowded-comparison operator <𝑛𝑛 

i-1

f1

f2

i

0

1
i+1
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2.4.3 Main loop 

For every generation t (t ≠ 0)1 there exists a set of parent solutions Pt and offspring 

solutions Qt. Each set is of size N. They form the combined population Rt = Pt U Qt.  

In a first step, the population Rt is sorted into fronts according to nondominated sorting. 

Since the combined population is sorted, previously found well-performing solutions 

are included, and Elitism is guaranteed. 

Now, the parent population Pt+1 of the next generation is to be created from the best 

members of the previous generation. If the size of F1 is smaller than N, all members of 

F1 are transferred Pt+1. Subsequent sets are chosen in the same fashion until Pt+1 con-

tains N members. If the last chosen set has more members than the remaining posi-

tions in Pt+1, crowding distance sorting is applied to the set in order to find the best 

solution to complete the population (Deb et al., 2002). 

 

The advantage of this practice is that sorting within a rank is not necessary unless it is 

split up, which makes the algorithm faster. The new parent population Pt+1 is now used 

to create its offspring population Qt+1 through selection, crossover, and mutation.  

  

 

                                            

1 Since the first generation has no parent population, the first population P0 is generated randomly. 

Non-dominated 
sorting

Crowded 
distance sorting

Pt

Qt

Rt

F1

F2

F3

Pt+1

Rejected

Figure 19 The NSGA-II procedure; inspired by Deb et al. (2002) 
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2.4.4 Tournament selection 

In the selection process members of a parent population are chosen to be inserted into 

a mating pool. The solutions in the mating pool are used to generate offspring. Better 

solutions are to procreate more than lower-performing solutions in hopes of creating 

offspring with higher fitness. The selection pressure describes the “degree to which the 

better individuals are favored” (Sivanandam & Deepa, 2008). The selection pressure 

pushes the GA to improve the population fitness. Therefore, a higher selection pres-

sure accelerates the convergence rate to the Pareto front. However, when the selec-

tion pressure is too high, the GA might prematurely converge to a local minimum.  

To select solutions for mating, tournaments are held among the members of a parent 

population. How these tournaments are executed, determines the selection pressure. 

The procedure used in NSGA-II is called binary tournament selection. Two individuals 

are randomly chosen and compete against each other. The winner gets determined 

through the crowding distance operator, which means the solution with the lower dom-

ination rank irank wins unless the competitors have the same rank in which case the 

solution with lower crowding distance idistance wins (Deb et al., 2002).  

 

A copy of the winner enters the mating pool. The original solution is still available for 

tournament, which means better solutions have a higher chance of entering the mating 

pool several times. Consequently, it will produce more offspring (Sivanandam & 

Deepa, 2008). The tournaments get repeated until the mating pool is filled.  For in-

stance, a binary tournament for a population of 6 solutions {A, B, C, D, E, F} (in order 

of fitness) could look like this:  
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Changing the number of tournament participants or hosting two-stage tournaments in-

creased the selection pressure. If e.g., 4 participants enter the tournament it is much 

more likely that the best solution is part of the tournament and therefore it will occur 

more often in the mating pool.  

 

 

2.4.5 Crossover and Mutation 

Crossover is the process of recombining the chromosomes of two parents for repro-

duction. The chromosomes in a generative design study are the design variables of 

the parametric model. The values of these variables are stored in bit arrays. To cross-

over two parents are randomly chosen from the mating pool. Since better solutions 

have entered the mating pool multiple times, they have a higher probability of being 

chosen. Next, the chromosomes of the parents form an offspring.  

There are multiple ways to determine which chromosome from which parent enters the 

genome of the child, the simplest being the single-point crossover. A random point is 

chosen on both parents’ chromosomes. The sections behind that point get switched to 

form two child solutions. Each of them carries some genetic information from each of 

its parents. 

Figure 20 Single-point crossover 

Parent 1
Parent 2

Offspring 1
Offspring 2

Crossover 
Point
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This form of crossover can be performed with more than one point, in which case it is 

called two-point or multi-point crossover (Sivanandam & Deepa, 2008). 

A completely different approach is presented by the uniform crossover. A random bi-

nary mask is generated with the same length as the number of chromosomes. Now 

the offspring is created by copying parent chromosomes according to the crossover 

mask. For the first child, if there is a 1 in the crossover mask, the chromosome is taken 

from the first parent, and if there is a 0 in the mask, the second parent’s chromosome 

is copied. For the second child, the rules are switched. (Sivanandam & Deepa, 2008).  

 

Other crossover strategies include three-parent crossover, shuffle crossover, prece-

dence preservative crossover (PPX), partially matched crossover (PMX), etc. 

(Sivanandam & Deepa, 2008). 

Crossover is made in the hope that good parts of the parents’ chromosomes are com-

bined and together makeup even better chromosomes and increase the fitness of an 

offspring solution. However, it does not add any new genetic information to the popu-

lation. Therefore, after crossover, mutation is applied to the newly formed solutions. It 

ensures the exploration of the entire solution space and hence contributes to the avoid-

ance of local minima.  

The frequency in which mutation occurs is determined by the mutation probability (Pm). 

If the mutation probability is set to a low value, the population is subjected to very little 

mutation, and the GA might run the risk of converging to a local minimum. If the prob-

ability is set to a very high value, then GA is equal to a random search (Sivanandam & 

Deepa, 2008). 

 

  

Figure 21 Uniform crossover; inspired by Sivanandam & Deepa (2008) 

1 0 1 1 0 0 1 1Parent 1

Parent 2

Offspring 1

Offspring 2

0 0 0 1 1 0 1 0

1 1 0 1 0 1 1 0

1 0 0 1 1 0 1 0

0 0 1 1 0 0 1 1

Mask
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Three common forms of mutation are: 

Flipping 

A chromosome is chosen for flipping according to Pm, which means the bit is changed 

from 0 to 1 and 1 to 0. The higher Pm, the more bits are flipped. This is true for all three 

mutation methods. 

 

Interchanging 

Two random positions on the string are chosen, and their bits are exchanged. 

 

Reserving 

Two neighboring bits are chosen and switched.  

 

  

Before

After

1 0 1 1 0 1 0 1

1 0 0 0 1 0 0 1

0 0 1 1 1 1 0 0

Mutation 
chromosome

Before

After

1 0 1 1 0 1 0 1

1 1 1 1 0 0 0 1

Figure 22 Flipping; inspired by Sivanandam & Deepa (2008) 

Figure 23 Interchanging; inspired by Sivanandam & Deepa (2008) 

Figure 24 Reserving; inspired by Sivanandam & Deepa (2008) 
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2.4.6  Summary 

 

G
en

er
at

io
n 

R
t

co
ns

is
tin

g 
of

 
pa

re
nt

 p
op

ul
at

io
n 

P
ta

nd
 o

ffs
pr

in
g 

po
pu

la
tio

n 
Q

t

P
t

Q
t

R
t

F 3
i-1

i

i+
1

f 1

f 2

In
di

vi
du

al
s 

F 1F 2F 4

F 4F 1 F 2 F 3

R
t+

1 P
t+

1

1
3

5
6

1
5

P
t+

1

Q
t+

1

R
t+

1

In
di

vi
du

al
s 

of
 b

ot
h 

po
pu

la
tio

ns
 a

re
 

so
rte

d 
in

to
 fr

on
ts

 
ac

co
rd

in
g 

to
 n

on
-

do
m

in
at

ed
 s

or
tin

g

P
ar

en
t p

op
ul

at
io

n 
of

 th
e 

ne
xt

 
ge

ne
ra

tio
n 

is
 fi

lle
d 

up
 w

ith
 fr

on
ts

.
In

 c
as

e 
of

 a
 fr

on
t 

ne
ed

ed
 to

 b
e 

sp
lit

, 
cr

ow
de

d 
di

st
an

ce
 s

or
tin

g 
is

 u
se

d 
to

 
de

te
rm

in
e 

ra
nk

 w
ith

in
 fr

on
t

To
ur

na
m

en
t 

se
le

ct
io

n,
 

cr
os

so
ve

r 
an

d 
m

ut
at

io
n 

cr
ea

te
s 

th
e 

ne
w

 o
ffs

pr
in

g 
po

pu
la

tio
n

P
ar

en
ts

O
ffs

pr
in

g

M
ut

at
io

n 



Methodology  29 

3.1 Project Development 

Project development marks the first phase of a potential construction project. During 

this phase, it is evaluated if and how a project could be beneficial or profitable. At the 

end of this stage, the developer should be able to make an educated decision about 

the realization of the project (Zimmermann, 2017).  

 

To make this decision, a series of studies, investigations, and calculations are carried 

out. One element is cost-benefit-analysis in which the anticipated costs of construc-

tions are challenged against the potential revenue from rent or sale (Zimmermann, 

2017).  

However, since a reliable design of the project does not exist yet, the developer has to 

rely on assumptions and benchmarks to make the calculations. The less that is known 

about the geometry and the equipment of the project, the vaguer are the predictions.  

The goal of this paper is to find out if generative design can be of help to these early 

stages of a project. Can some of the planning decisions already be made in project 

development, so that the relevant numbers can be based on design rather than bench-

marks?  

Siemens Real Estate (SRE) serves as an example in this study. They develop and 

operate Siemens’ offices and factories all over the world.  

3 Methodology 

Figure 25 Phases of real estate development; inspired by Zimmermann (2017) 

Area 
development

Project 
development

Project 
realization Operation

Developer Operator
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Siemens Real Estate (SRE) is responsible for all of Siemens’ real estate 

activities – managing the company’s real estate portfolio, optimizing the 

utilization of space, and overseeing the operation of its real estate hold-

ings including all real-estate-related services, as well as having responsi-

bility for leasing and disposing of real estate assets and implementing all 

construction projects Siemens-wide. 

Siemens Real Estate Website (Siemens, 2019) 

 

The focus of the research is to develop a generative design tool that delivers and opti-

mizes the design of an SRE office building for a specific project. The generated model 

should deliver the relevant information for project development and should be opti-

mized to the requirements of both Siemens and specific project conditions.  

 

3.2 Siemens Real Estate Construction Excellence 

The Siemens Real Estate Construction Excellence (ConEx) is a technical and archi-

tectural standard developed by SRE.  

“Construction Excellence […] is a strategic approach to provide market-ready office 

buildings, which are suitable for Siemens and/or other users. Those buildings incorpo-

rate Construction Excellence Standards and Siemens’ branding features.” 

(Construction Excellence Office EMEA „Design Principles“, 2015).  

It describes the elements that compose a Siemens office building from a single work-

place to complex ventilation systems. Its modular approach is adaptive to different cli-

mate zones, market levels, site conditions, and market-typical office typology.  
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Depending on the function of the office, two 

different quality levels can be chosen - mar-

ket-level B for administrative functions and 

market-level C for administration, research, 

and sales. The market-typical office typol-

ogy decides the choice between a narrow 

and a wide layout. Each layout can then be 

used in different configurations like block 

shape, H-shape, E-shape, or courtyard type.   

 

Standardized buildings are specifically convenient for parametric modeling – and con-

sequently generative design – since there is a predefined set of design variables and 

design restrictions. In case of ConEx, there is a fixed building width of 15.60 m in the 

narrow and 24.00 m in the wide building type.2 In a broader sense, the building consists 

of three basic elements: core units, office units, and seam units. 

Core units contain the elements necessary for vertical circulation like stairs and eleva-

tors as well as sanitary and maintenance facilities. The office units accommodate the 

workplaces. Apart from standard workplaces, there is also a choice of hot desks, think 

tanks, phone boxes, and lounges provided to the employees. The seam units are of 

                                            

2 In case of structural grid width of 8.40 m. Structural grid width may vary according to local standards. 

Figure 26 Quality levels in ConEx 

Figure 27 Core unit (yellow), office units (blue) and seam units (orange) in a standard ConEx layout 
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the same dimensions as the office units but contain fewer workplaces as they include 

a second pair of stairways.  

For reasons of fire safety and building services, a sequence of four consecutive office 

units must be followed by either a core or a seam unit.  

Analogous to ConEx, only the implementation of the block-shaped office is described 

in detail in this generative design study. The implementation of other configurations is 

discussed in Chapter 7 Discussion and Outlook. 

 

3.3 Parametric Model 

“Parametric models used in design are composed of a variety of modules 

that combine computation with geometric operations, none of which are 

easily differentiable.”  

Danil Nagy (The problem of learning, 2017)  

As illustrated in 2.1, the parametric model lies at the heart of a generative design study. 

Its parameters represent the design variables which ultimately serve as inputs for the 

GA. The goal of the optimization ultimately is to find a set of parameter values that 

produce the best possible design performance. 

The parameters with their individual value range dictate the size of the explorable de-

sign space. They are chosen and defined by the human designer shifting his task from 

developing a single object to describing an abstract multidimensional concept (Nagy,  

2017c). The parameters should be picked with care since too many inputs might lead 

to a design space too big to explore, while too few inputs could exclude a potential 

optimum. 

In the case of Siemens, two different kinds of inputs must be differentiated: parameters 

with fixed values and parameters with variable values. The fixed parameters contain 

all the project-specific information. These are:  

• Number of employees scheduled to be accommodated in the new office building 

(Integer) 

• Outline of the property on which the building is developed (Polyline)  

• Site entry points, e.g., from parking lot or public streets (Points by coordinates)  

• Ground floor height (Double) 
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• Regular floor height, usually 3.6 m (Double) 

• Grid width, usually 1.2 or 1.35 m (Double)  

The parameters that describe design variables serve as input parameters to the GA. 

Their value can be changed by the algorithm to generate different designs and explore 

the solution space. 

The parametric model is implemented in Dynamo, which is a visual programming tool 

for design. For that reason, it is best to describe the variables in the order of their 

appearance in the script.  

Looking at the blank site, the first thing to be determined is the position and the orien-

tation of the building. This is described by a total of four parameters:  

• Start Point X-Coordinate (double, range: 0 to 1, step: 0.01) 

• Start Point Y-Coordinate (double, range: 0 to 1, step: 0.01) 

The start point is described in relation to a bounding 

box surrounding the site. At (0/0) the start point 

would be located at the lower left corner of the 

bounding box (min point), and at (1/1) it lies on the 

upper right corner of the bounding box (max point).  

• Orientation U-value (double, range: -1 to 1, 

step: 0.1) 

• Orientation V-value (double, range: -1 to 1, 

step: 0.1) 

Figure 28 The site polyline defined by corner points in form of coordinates 

0 1

1

y

0
x

Figure 29 Determination of the start point  
according to a virtual bounding box 
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The two orientation values span a vector used as the x-vector of the coordinate system 

in which the building is created.  

With this information, the boundaries of the construction space can be determined by 

calculating the largest inscribed rectangle. Since the width of the building is fixed, the 

rectangle is bound to be of the same width. The purpose of the rectangle is to provide 

a simple checking method to test if the building is fully within the boundaries of the site.  

As a next step, the length of the building must be determined. First, a core unit is placed 

onto the start point.  

The length is mainly dependent on how many office units (and potential core units) are 

attached to this core. Consequently, two more parameters are needed: 

Figure 30 Different directions of the orientation 
vector based on u and v values 

Figure 31 Step one: The largest inscribed 
rectangle is created 

Figure 32 Step two: The core is placed so 
that its centre lies on the start point 

(1/0)

(1/1)
(0/1)

(-1/1)

(-1/0)

(1/-1)
(0/-1)

(-1/-1)
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• Number of units left (integer, range: 2 to ~10, step: 1) 

• Number of units right (integer, range: 2 to ~ 10, step: 1) 

The upper range limit should be set in accordance with the size of the property. If it is 

impossible to fit a building with 20 office units into the site, then the range should be 

narrowed to avoid having an unnecessarily big design space.  

 

The office units are then attached onto the core, adding another core unit if there are 

more than 4 consecutive office units. Afterward, the last office units on each side are 

turned into seam units. At this point, the footprint of the building is established.  

 

 

The height of the building depends on the number of floors needed to accommodate 

all workplaces. Studying the ConEx showed that there is a total of six possibilities to 

position desk in the office units of the upper floor – ranging from a very dense combi-

nation of 20 desks in one unit to an airier arrangement of 11 desks.  

Figure 33 Step three: The units are placed on 
either side of the core 

Figure 34 Step four: The last unit on each 
side is turned into a seam unit 
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The desk placement is controlled by a parameter called 

• Workplace density ρwp (double, range: 0 to 5, step: 0.1) 

An algorithm translates this number into a value between 11 and 20 and now distrib-

utes desks in the units in a way that the average number of desks comes as closest 

as possible to this value. 

 

In the ground floor, there are only three workplace configurations since the layout is a 

bit different (see Figure 33). To achieve a similar workplace density, the number of 

desks is translated from the units above. So, whenever there are 11 or 12 workplaces 

in the first floor unit, the corresponding units on the ground floor are equipped with 10 

workplaces. 14 or 15 workplaces in the first floor lead to 13 workplaces in the ground 

unit, and 17 or 20 first floor workplaces lead to 16 ground floor workplaces.  

Figure 35 The 6 different workplace configurations, from left: 20, 17, 15, 14, 12, 11 desks per unit 

Figure 36 Step five: Each unit is  
assigned with a number of work-
places  
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 At this point, the ground floor, as well as the first floor, are established. If the sum of 

all workplaces on the ground and first floor is below the total number of required work-

places, another floor with the same desk configuration is added. This is repeated until 

the required amount of workplaces is reached or exceeded. This concludes the gener-

ation process of the building.  

 

In summary, there is a total of 7 design variables. Whenever the value of one of them 

changes a completely new building arises. For example, when more office units are 

added, there are more workplaces on one floor. Consequently, less floors might be 

needed, and the building shrinks. The workplace density has a similar effect. More 

workplaces per office unit might make a complete floor obsolete, while a more lavish 

workplace density requires more floors place all workplaces.  

 

The orientation and the position of the building, on the other hand, are in relation to the 

site of the building. There are some combinations of start point, orientation, and num-

Figure 38 Step six: Floors are repli-
cated until total number of work-

places is reached 

Figure 37 Different workplace configurations on the 
ground floor, from left: 16, 13, 10 desks per unit 
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ber of slices that will lead to invalid designs since the resulting building would be (par-

tially) outside of the property. In these cases, the design will be marked with a bad 

value in the evaluation phase to teach the algorithm where to position the building. 

   

Figure 39 Three versions of a model with different parameter values; left: workplace density set to a very low value, 
hence more floors have to be installed to accommodate all employees; centre: workplace density set to a very low 
value, some upper floors become obsolete since workplaces are more densely arranged; right: increased number of 
units on the right, number of floors sinks even more, but model becomes invalid because it exceed the borders of the 
site 
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3.4 Design Goals 

The design goals describe what makes a good design. These measures can be sub-

jective to the human decision-maker like aesthetics or comfort, or rational like profit or 

the hours of daylight inside of the building. Once the design goals are decided, they 

must be paired with indicators that are quantitatively measurable. This allows for the 

designs to be compared amongst each other on an objective level.  

Together with the project development team of Siemens, 8 design goals were identi-

fied. 

1) Comfort 
Indicator: rentable area/workplace 

Calculation: according to ConEx, 8% of floor space is consumed by construction. Of 

the remaining area, technical-functional space and vertical traffic space cannot be 

rented. Since it is known exactly how much space is consumed by these functions, the 

remaining rentable area can be precisely calculated for the different units. 

Therefore, rentable area/workplace Ar,w is calculated as:  

𝐴𝐴𝐴𝐴,𝑤𝑤 =  
(48.576 ∗  𝑛𝑛𝑛𝑛 +  120.5568 ∗  𝑛𝑛𝑛𝑛 +  98.9568 ∗  𝑛𝑛𝑛𝑛)  ∗  𝑓𝑓 

 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
 ;  

nc = number of core units = 1, unless nunit,left or nunit,right < 4;  

no = number of office units = (nunit,left -1) + (nunit,right -1); 

ns = number of seam units = 2;  

f = number of floors; 

wtotal = total number of workplaces on all floors (not to be confused with wrequired); 

 

Objective: Maximize – the more rentable area per workplace, the more comfortable for 

the working employee 

Core unit Office unit Seam unit

total floor area 243.36 131.04 131.04

net floor area 223.8912 120.5568 120.5568

rentable area 48.576 120.5568 98.9568

Table 1 Rentable area in each kind of unit 
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2) Functionality 

Indicator: meeting area/workplace 

Calculation: the meeting rooms are located on the ground floor of the building and 

preferable in one bulk on one side of the main core. So, it is assumed that the meeting 

rooms are all positioned in the right units on the ground floor. To calculate the meeting 

area, the horizontal traffic space must be subtracted from the rentable area. The meet-

ing area/workplace Am,w is calculated as: 

𝐴𝐴𝑚𝑚.𝑤𝑤  =
 (𝑎𝑎𝑚𝑚,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  ∗  (𝑛𝑛𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢,𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡  − 1)  +  𝑎𝑎𝑚𝑚,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

𝑤𝑤𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 ; 

am,regular = Meeting area in regular unit = 95.357 m² ; 

am,seam = Meeting area in seam unit = 77.357 m² ; 

wtotal = total number of workplaces on all floors 

Objective: Maximize – the more meeting area / workplace, the more likely there is a 

meeting room available when needed 

 

3) Soil sealing  

Indicator: footprint 

Calculation: 

𝐴𝐴𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑙𝑙 ∗ 𝑤𝑤 ; 

l = length of all units combined; 

w = 15,6 m/ 24,00 m; 

Objective: Minimize – the smaller the footprint, the less invasive in terms of soil sealing 
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4) Cost 

Indicator: façade area (because it has the highest price/m² in construction and contrib-

utes to the operating costs in terms of heat loss) 

Calculation:  

𝐴𝐴𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 2 ∗ 𝑙𝑙 ∗ ℎ + 2 ∗ 𝑤𝑤 ∗ ℎ ; 

l = length of all units combined; 

w = 15,6 m; 

h = hground floor + (f - 1) * hupper floor ; 

Objective: Minimize – the less façade area, the lower the construction as well as oper-

ating cost 

 

5) Energy consumption 

Indicator: form factor (surface to volume ratio) 

Calculation:  

𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
2 ∗ 𝑙𝑙 ∗ ℎ + 2 ∗ 𝑤𝑤 ∗ ℎ + 𝑙𝑙 ∗ 𝑤𝑤

𝑙𝑙 ∗ 𝑤𝑤 ∗ ℎ
 ; 

l = length of all units combined; 

w = 15,6 m; 

h = hground floor + (f - 1) * hupper floor ; 

Objective: Minimize – the smaller the form factor, the less energy is consumed by the 

building 

 

6) Daylight exploitation 

Indicator: orientation in relation to east-west axis 

Calculation: the orientation value a ranging from 0 to 1 is used to describe the “east-

west-ness” of the building. At 0 the building is directed from north to south, at 1 the 

building is directed from east to west.  
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The orientation value a is calculated as:  

𝑎𝑎 =  
𝑥𝑥

90
; 

𝑥𝑥 =  |90 −  𝛼𝛼| ; 

𝛼𝛼 = 𝑐𝑐𝑐𝑐𝑐𝑐−1 �
𝑢𝑢 ∗ 𝑣𝑣

|𝑢𝑢| ∗  |𝑣𝑣|� ; 

𝑢𝑢 =  �
1
0
� ; 

𝑣𝑣 = 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑏𝑏𝑏𝑏 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =  �
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑢𝑢
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑣𝑣

� ; 

Objective: maximize for W-E-orientation, minimize for N-S-orientation (the objective 

varies depending on the latitudinal position) 

 

7) Circulation 

Indicator: length of all paths from site entry points to building entrance 

Calculation: The shortest path from a site entry point to the building entrance cannot 

easily be calculated but is found through a series of iterations on a 2D grid with diago-

nal connections  (Walmsley, 2019).  

Objective: Minimize – the shorter the pathways, the more efficient the circulation on 

the property 

Figure 40 Explanation of orientation value 

Figure 41 Computation of pathways (in pink) 

90°

0 / 180°

90°45°0° 135° 180°Orientation

Value 00.51 0.5 1
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8) Workplace accuracy  

Indicator: excess workplaces 

Calculation: 

𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  𝑤𝑤𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 −  𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

 

Objective: Minimize – the fewer excess workplaces, the more accurate to the demand  
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3.5 Evolution 

To carry out the optimization study, the Dynamo graph was paired with a generative 

design tool called Refinery. The design variables of the parametric model serve as 

inputs in its optimization algorithm. Refinery docks onto these parameters and changes 

their values. It registers the corresponding outcomes and can thereby learn what input 

values generate a good design. To optimize the designs, Refinery makes use of 

NSGA-II. The number of generations and the population size is defined by the user.  

Besides optimization, Refinery offers three other methods to generate designs. How-

ever, they do not offer any intelligence and are purely deterministic methods.  

Randomize  

Generates a user-defined number of random parameter configurations 

 

Cross Product 

Creates designs to all possible parameter combinations to a user-defined sampling 

density 

 

 

Like This 

Applies slight variations to a parameter configuration 

 

Figure 44 The Like This method 

Parameter 1 5 DESIGNS
# defined by userParameter 2

5 x 3 = 15 DESIGNS
user defines sampling 
density

Parameter 1
Parameter 2

Parameter 1
Parameter 2

5  DESIGNS
# defined by user

Figure 42 The Randomize method 

Figure 43 The Cross Product method 
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4.1 Arithmetic Verification 

In order to prove that the Genetic Algorithm (GA) is capable of finding the best solution, 

it is tested on a smaller example. A model that resembles a simple trade-off situation 

is set up. In this case, it is possible to calculate the optimum of the example, because 

the design is composed of a single differentiable function. The result found through 

calculation can then be compared to results found through optimization by the GA.  

The example model consists of a simple cuboid with a constant width of 30 m and a 

constant volume of 50 000 m³. The length and the height of the volume are variable 

with the length defined as x. Therefore, h is defined as a function of x. 

𝑉𝑉 = 50 000 = 𝑥𝑥 ∗ ℎ ∗ 30; 

ℎ = 𝑓𝑓(𝑥𝑥) =  
50 000
30 𝑥𝑥 

 ;  

 

The form factor proves itself as an ideal design goal in this situation, as it shrinks with 

increasing length up to a certain minimum after which it continues to grow again. The 

form factor is calculated as the ratio between the exposed surface and the volume of 

the cuboid. It can be calculated as:  

 

 

 

4 Verification 

Figure 45 Example cuboid 

x
30

h = f(x)= V/(30*x)

V = 50 000 m³
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𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑔𝑔(𝑥𝑥) =  
2𝑥𝑥ℎ + 2 ∗ 30ℎ + 30𝑥𝑥 

𝑉𝑉
; 

                         𝑔𝑔(𝑥𝑥) =  
2𝑥𝑥ℎ + 60ℎ + 30𝑥𝑥 

50 000
 ; 

                                                                   =  
2𝑥𝑥 �50 000

30𝑥𝑥 � + 60 �50 000
30𝑥𝑥 � + 30𝑥𝑥

50 000
; 

                                         =
3𝑥𝑥 +  1000𝑥𝑥 + 30 000

3𝑥𝑥
5000

; 

  

The function g(x) can be differentiated as:  

𝑔𝑔′(𝑥𝑥) =  
1

5 000
∗ �3 −  

10 000
5 000 𝑥𝑥2

� ; 

=  
3 𝑥𝑥2 − 10 000

5 000 𝑥𝑥²
 ;      

To calculate the minimum of g(x), the derivative is set to zero: 

0 =  
3 𝑥𝑥2 − 10 000

5 000 𝑥𝑥²
 ;  

0 ∗ 5000 ∗ 𝑥𝑥2 = 3𝑥𝑥2 − 10 000 ;   

 0 = 3𝑥𝑥2 − 10 000; 

Figure 46 The form factor of the cuboid according to growing values of x 
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𝑥𝑥2 =  
10 000

3
 ; 

𝑥𝑥 =  ±�
10 000

3
 ; 

 𝑥𝑥1 = 57.735 = 𝑚𝑚𝑚𝑚𝑚𝑚 ; 

( 𝑥𝑥2 = − 57.735 ) ; 

𝑔𝑔(57,735) = 0.136 ; 

 

The minimum of g(x) can be found at x = 57.735 with a form factor of 0.136. 

To find the minimum through optimization by a GA, a parametric model is created. The 

length of the cuboid is the only variable. The height is calculated accordingly, and the 

width is set to 30 m. A simple graph generates the parametric model and draws the 

form factor from it.  

 

Figure 47 Dynamo graph 

 

The length is set to be the input parameter of the GA, and the form factor serves as an 

output. The length is limited to a range from 0 to 100 with a step size of 0.1.  

 

Figure 48 Dynamo node 
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An optimization study with a population size of 20 showed the following results when 

instructed to minimize the form factor. 

It can be seen that the algorithm quickly narrows is results down to the minimum. In 

generation 6, the desired length of 57.7 m appears for the first time. By generation 10, 

all members of the population are Pareto optimal.  

At first, the algorithm generates a diverse set of solutions and then learns which of 

these perform best.  

 

  

Figure 49 Results after 1 generation (left), 6 generations (centre) and 10 generations (right) 

Form factor Length
0.136462 65.2
0.136771 49.5
0.137687 72.2
0.13815 44.9
0.13831 44.5
0.138633 76.2
0.138685 76.4
0.138836 43.3
0.139355 78.9
0.14075 83.6
0.141099 84.7
0.142924 90.1
0.144531 94.5
0.160398 25.5
0.167743 22.9
0.22396 13.4
0.285073 9.4
0.713688 3.1
0.782632 2.8
1.5 0.2

Form factor Length
0.135949 57.7
0.135949 57.9
0.135949 57.5
0.135956 56.9
0.135965 56.5
0.135968 56.4
0.135977 56.1
0.135985 55.9
0.135985 55.9
0.135985 55.9
0.135985 55.9
0.136009 60.2
0.136009 60.2
0.136014 60.3
0.136024 55.1
0.136047 60.9
0.136095 54.1
0.136109 61.8
0.136109 61.8
0.136109 61.8

Form factor Length
0.135949 57.7
0.135949 57.7
0.135949 57.7
0.135949 57.7
0.135949 57.7
0.135949 57.7
0.135949 57.7
0.135949 57.7
0.135949 57.7
0.135949 57.7
0.135949 57.7
0.135949 57.7
0.135949 57.7
0.135949 57.7
0.135949 57.7
0.135949 57.7
0.135949 57.7
0.135949 57.7
0.135949 57.7
0.135949 57.7
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4.2 Brute Force Verification 

A different approach to verify the results found by the GA would be to generate all 

possible solutions in the design space. In the last example, there was only one perfect 

solution. However, in design, there is usually a set of Pareto optimal solutions. If the 

entire design space is generated, it can be determined if the GA finds all of these so-

lutions. Therefore, a more complex model is needed with functions that are not easily 

differentiable.  

The cuboid in the second example is fixed in its dimensions with x = 57.7 m. Instead, 

by introducing site boundaries, the placement of the cuboid is evaluated. Three varia-

bles are installed:  

• Position x 

• Position y  

• Orientation α 

The position is described in relation to a bounding box surrounding the site. At (0/0) 

the start point would be located at the lower left corner of the bounding box (min point), 

and at (1/1) it lies on the upper right corner of the bounding box (max point).   

 

The orientation is given as an angle between 0 and 90 by which the cuboid is rotated.   

To keep the design space at a viable size, the range of the parameters is set to: 

• Position x E {0..1}, step size 0.1  10 variations 

• Position y E {0..1}, step size 0.1  10 variations 

• Orientation α E {0..90}, step size 30  4 variations 

Figure 50 Position and orientation of the cuboid 
0

0
1

1

y

x

α
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Thus, the design space consists of 10*10*4 = 400 possible combinations. It can be 

imagined as a 3-dimensional space with 4 layers of cuboids at every possible position 

within the bounding box of the side. In each layer, the cuboids are rotated to a different 

degree.  

 

The solutions are evaluated according to a containment value and an orientation value. 

The containment value describes whether the cuboid lies fully within the borders or 

not. It returns either 0 for correct placement or 10 000 in case of an insufficient place-

ment. Because of the irregular shape of the site, it is not easy to describe the behavior 

of the model in a function that could then be differentiated.  

The orientation value rates the daylight exposure of the design. Assuming an N-S-

orientation is favored, the orientation value should be minimized.   

Therefore, all solutions that lie within the site and are rotated to an N-S-orientation are 

Pareto optimal. They have a minimal containment value and a minimal orientation 

value.  

Refinery’s cross over option allows for the entire design space to be generated.  

 

Figure 51 All possible solutions sorted by their position on x and y axis;  
each dot contains 4 solutions with different rotations 

Figure 52 Overview of the generated solutions, each line represents one solution 
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The results of the cross over study show that of the 400 generated designs, 20 lie fully 

within the site. Of these 20, 5 have minimal orientation value.   

These solutions have the following coordinates: 

Solution set = {(0.4/0.2), (0.5/0.2), (0.5/0.3), (0.5/0.4), (0.6/0.5)} 

 

 

 

 

An optimization study will reveal if the GA finds the same set of solutions. The study is 

executed with a population size of 60.  

 

 

Figure 53 Solutions filtered by containment value and orientation value 

Figure 54 Coordinates of the selected solutions 

Figure 55 Visualisation of the 5 solutions found through the brute force approach 
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After 6 generations it returns a set of 5 solutions. They match exactly the Pareto optimal 

designs found in the brute force approach. Thus, the GA did not only find all the desired 

solutions, but it also only needed to generate 360 designs to do so. This is a reduction 

of 10% compared to the brute force approach.  

It should also be noticed that the actual number of different designs created is much 

smaller than 360 since well-performing solutions are passed on through the genera-

tions. Hence the GA found the solution by exploring only a fraction of the design space. 

With a larger design space, the effect can be expected to rise significantly.  

 

 

 

Figure 57 Visualisation of the 5 solutions found in the optimization study 

Figure 56 Solutions found in the optimization study 
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To execute the generative design study, two different software products are used: Dy-

namo, a visual programming software, and Refinery, an optimization tool for the AEC 

industry in its beta phase.  

 

 

In Dynamo, a graph is developed that generates a ConEx office building when paired 

with input values. It also evaluates the generated building and returns its fitness ac-

cording to the design objectives. 

 

Refinery is a plug-in for Dynamo and uses NSGA-II for its optimization. It runs locally 

and is controlled by its own GUI. It docks onto the graph, generates new sets of input 

values, and registers the corresponding outputs. It learns what values result in high 

5 Implementation 

Figure 58 Workflow of the generative design study 

GENERATE
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Objectives
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performing solutions and optimizes the designs in that direction through crossover and 

mutation. 

Summarizing previous chapters, the constraints, variables, and objectives of the study 

manifest as follows:  

 

 

 

  

 

  

Figure 59 Constraints, variables and objectives of 
the generative design study 

Number of required workplaces
Site polyline
Site entry points
Ground floor height
Regular floor height
Grid width

CONSTRAINTS

Start point (X and Y)
Orientation (U and V)
Number of units left
Number of units right
Workplace density

VARIABLES

Rentable area / workplace
Meeting area / workplace
Footprint
Façade area
Form factor
Orientation
Length of outside paths
Excess workplaces

OBJECTIVES

Start point (X and Y)
Orientation (U and V)
Number of units left
Number of units right
Workplace density

VARIABLES
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5.1 Dynamo 

In visual programming, textual commands are replaced with graphical elements. These 

can be combined and manipulated to execute a desired task. In Dynamo, the graphical 

elements are called nodes. “Each node performs an operation - sometimes that may 

be as simple as storing a number, or it may be a more complex action such as creating 

or querying geometry” (The Dynamo Primer, 2018). 

Dynamo comes with a choice of pre-installed node libraries. To add further functional-

ity, it offers three options: 

• Install more libraries – Nodes developed by other users can be downloaded 

and installed through the package manager 

• Create custom nodes – In case of a repetitive task, several nodes can be 

combined to form a custom node 

• Run external script – There are multiple ways to run a textual script in Dy-

namo, the easiest being through a Python node. It allows writing a set of 

commands directly in Dynamo as well as process information within the 

graph 

Dynamo’s node syntax is very convenient for creating visual objects, but it does not 

allow recursion and looping. Therefore, combining it with a textual scripting language 

like Python facilitates more complex operations. 

In the case of the ConEx design problem, a graph must be implemented that produces 

a parametric model which is able to explore the entire solution space as well as meas-

ure a solution’s performance. The following two chapters will explain how the graph is 

designed to fulfill this task. The graph consists of a total of 380 nodes and 536 connec-

tions. Therefore, the description will only focus on the most important aspects and al-

gorithms of the graph.  
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5.1.1 Generate 

The workflow to generate a design solution consists of three algorithms and two tests. 

A color scheme structures the nodes according to their function. Red marks con-

straints, green indicates variables. Nodes that execute a certain command are sorted 

into grey groups, and tests are highlighted in orange.   

 

Largest Inscribed Rectangle 

From the start point and the orientation vector, the largest inscribed rectangle can be 

created. It marks the area in which the building can spread. It will help to determine 

whether the building is placed fully within the borders of the property.  

 

First, the start position is determined. It is defined 

in relation to a bounding box surrounding the site 

by two variables x, y. Their values vary between 

0 and 1.  

 

 

Start 
Point

Is rectangle 
within site?

Orien-
tation

# units 
right

# units 
left

Workplace 
density

Create largest 
inscribed rectangle

Calculate 
coordinates for 

units

Replicate floor until 
total wp ≥ required wp

Project 
data

Are all slizes
within rectangle?

Figure 60 Implementation of the parametric model 

Figure 61 The start point is positioned in relation 
to the bounding box 

0
0

1
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x

y
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The two orientation variables u and v 

span a vector that serves as the x-vector 

of the coordinate system, that the building 

is built in. To create a rectangle of the 

right width, two points are found that are 

half the building’s width away from the 

start point in positive and negative y-di-

rection.  

 

From these points, vectors are shot in both 

positive and negative x-direction until they in-

tersect with the property outline. From the four 

intersection points, the two that lie closest to 

the start position are chosen and mirrored 

onto the opposite vector line so that a rectan-

gle is formed.   

 

After the largest inscribed rectangle is found, a test is carried out to check whether the 

rectangle lies fully inside the boundaries of the sit. Through irregular site shapes, there 

is a chance that the rectangle includes an area that does not belong to the site. Or if 

the start point itself lies outside the site, the algorithm will not be able to form a rectan-

gle at all. In both cases, the test will be marked as failed.  

 

 

  

Figure 62 The width of the rectangle is created 

Figure 63 The rectangle is closed 

Figure 64 Failed construction of the rectangle 

v
u
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Position of Core, Office and Seam Units 

All units are created by calculating its corner coordinates, connecting them to form a 

rectangle and then extruding the rectangle by the floor’s height.  

At first, the core unit of the ground floor is placed. Its coordinates are calculated in a 

Python node. A Python node can take multiple inputs, runs a set of commands, and 

returns an output. When double-clicked, an editor window shows up in which a script 

can be written. The algorithm to calculate the core coordinates is straight forward. It 

scales the x- and y-vectors of the buildings coordinate system (goRight, goUp) to half 

the size of the core and copies the start point (seed) four times according to a combi-

nation of the resulting vectors. 

The algorithm to place the office and seam units is similar but slightly more compli-

cated. It must reflect on the number of units for each side. To create the units on the 

right side, the two right corners of the core are copied by a vector in x-direction scaled 

to the width of an office unit. The original and the new points form the corner points of 

the new office unit. The two new points are then copied by the same vector to generate 

the next unit and so forth. This is repeated until all units are created. However, when 

the number of units is larger than 4, after the fourth unit, another core unit must be 

added. This process works analogously for the left side of the building. 

After all units are placed, the second test is executed to check if the building exceeds 

borders of the largest inscribed rectangle.   

Figure 65 Example of a custom Python node to calculate the 
corners of the core 

Figure 66 Left: The corner points of the units are calculated, right: The rectangles are ex-
truded to form the units of the ground floor 
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Workplace Distribution 

All floors above ground level receive the same desk layout. The workplace density 

determines how concentrated the desks are placed. It is given as a decimal number 

between 0 and 5 because there are six different workplace variations:  

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =  [11, 12, 14, 15, 17, 20]; 

The density number i relates to the ith item in the array. A workplace density of 0 will 

result in 11 workplaces in all office units. A density of 2 leads to 14 workplaces per unit. 

For every decimal, the workplaces are distributed by an algorithm to average to the 

given workplace density. For instance, if the workplace density is 3.2, the average of 

workplaces per unit calculates as: 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  options[3] +  0.2 ∗ (options[4]–  options[3]) =  15 +  0.2 ∗ 2 =  15.4 ;  

The office units then get assigned with workplaces while the current average is con-

stantly calculated and compared to the goal average. If the average is below the goal, 

the lower workplace option is chosen for the next unit. If it is higher than the goal, the 

upper option is chosen.  

For the example above, it is assumed that the number of units is 8 on the left side and 

4 on the right side. The last unit on each side is turned into a seam unit with a fixed 

number of 13 workplaces. Thus, there are 10 office units per floor. A workplace density 

of 3.2 would result in the following desk configuration:  

Figure 67 Example of the workplace distribution algorithm 
for a density of 3.2 

Unit Workplaces Average

1 17 17

2 15 16

3 15 15.667

4 15 15.5

5 15 15.4

6 15 15.333

7 17 15.571

8 15 15.5

9 15 15.444

10 15 15.4
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Since the layout of the ground floor is different from the upper floors, there are only 

three workplace configurations:  

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =  [10, 13, 16]; 

To achieve a similar workplace density, the number of desks is translated from the 

units above. So, whenever there are 11 or 12 workplaces in the first floor unit, the 

corresponding units on the ground floor are equipped with 10 workplaces. 14 or 15 

workplaces in the first floor lead to 13 workplaces in the ground unit, and 17 or 20 first 

floor workplaces lead to 16 ground floor workplaces. It should be kept in mind that on 

the ground floor only the units on the left side are equipped with workplaces since the 

units on the right are turned into meeting rooms.  

In the above example, this would lead to the following workplace distribution in the 7 

office units of the ground floor: [16, 13, 13, 13, 13, 13, 16]. The seam units on the 

ground floor hold 8 workplaces. 

Consequently, there are 180 workplaces on the first floor and 105 workplaces on the 

ground floor. This results in a current total of 285 workplaces.  

The first floor is replicated until the total number of required workplaces is reached. 

Assuming the building is developed to contain 600 workplaces, this adds two more 

floors to the building resulting in a total of 645 workplaces. 

All units are colored according to their function. Cores appear yellow, and seam units 

are depicted in orange. The color of office units varies according to the number of 

workplaces they accommodate from pink to blue. Office units with meeting rooms ap-

pear in turquoise.  

This concludes the generation process for the different design solutions. 
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5.1.2 Evaluate 

Once a design is generated, its fitness can be evaluated according to the indicators of 

the 8 design goals. 

Footprint, Façade area, Form factor 

At first, a Boolean union is performed on all the cuboids that make up the building. 

Dynamo is well-equipped with nodes for graphical operations. So, drawing the volume 

from the resulting cuboid can easily be done with a single node. The cuboid can also 

be exploded into its surfaces that can then be analyzed for their area. This way, the 

calculation of these three objectives is executed. 

In the example above the results are:  

Footprint = 2059.2 m² 

Façade area = 5018.4 m² 

Form factor = 0.202 

 

Rentable Area/wp, Meeting Area/wp, Excess workplaces 

First, the total rentable area and meeting area must be calculated. This is done by 

multiplying the number of office, core and seam units with their according rentable and 

meeting area (see 3.4 Design Goals) and dividing the result by the total number of 

workplaces.  

In the case of the example office, this results in 6002.53 m² of rentable area and 363.43 

m² of meeting area. With 645 workplaces in total, the rentable area/wp is 9.31 m², and 

meeting area/wp is 0.57 m². The rentable area is critically low in this case, as should 

preferably range between 10 – 12 m² per workplace. It is a result of high workplace 

Figure 68 The solid formed by all units is exploded 
into its surfaces 
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density. When the workplace density is changed to 0.6, for instance, the rentable 

area/wp rises to 11.83 m². However, since another floor has to be added to accommo-

date all workplaces, the façade area rises to 6081.12 m². 

 

 

Circulation 

To implement pathfinding, custom nodes from a package called Space Analysis were 

used. They work with a SpaceLattice object, which is a 2D grid with diagonal connec-

tions. The building is set to be a barrier on the grid, which means paths have to go 

around it.  An object called PathField allows for multiple routes to one endpoint to be 

calculated at the cost of a single calculation. The site entry points act as the start points 

to these routes.  

Figure 69 When the workplace density is changed to a lower value more floors are needed 

Figure 71 Custom nodes from the Space Analysis package 

Figure 70 Path finding in Dynamo 
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Visualization  

After the evaluation is concluded, the results are visualized in a radar chart. The chart 

is created by placing concentric octagons and spanning vectors from the center to the 

outer corners. The vector is then scaled according to the results in each objective and 

used to place a point at its end. These points are connected to form a polygon. The 

closer to the center a point is the worse is the fitness according to the corresponding 

objective. When variables are altered, the chart offers an intuitive overview of the per-

formance of the resulting solution. 

Figure 72 Different versions of the model with a radar chart of their evaluation 



Implementation  64 

5.2 Refinery 

5.2.1 Punishment Methods 

Some combinations of position, orientation, and building length will lead to invalid de-

sign solutions. In these cases, one or both tests in the generation phase of the design 

will fail. In some way, this has to be reflected in the evaluation phase. The invalid de-

signs need to be recognized by the GA and discarded in the evolution. 

There are different methods of how to mark these solutions so that they are not fa-

vored. The model from chapter 4.1 can be used to examine which method works best. 

 

In chapter 4.1, the model is equipped 

with one input value (length) and op-

timized to one output (minimal form 

factor).  

 

The GA proved to be capable of quickly finding the optimal length. Introducing a site 

polyline to the model, it can also be evaluated based on its position. The algorithm is 

faced with two problems: it has to optimize the cuboid’s length as well as fit the cuboid 

into the site.  

 

Figure 73 An invalid solution 

Figure 74 The example cuboid 

Figure 75 Workflow of generating and evaluating the cuboid 

Length Create Cuboid Form factor
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To identify invalid solutions, their fitness has to be diminished significantly so that they 

do not further procreate. Three different methods of how to punish invalid solutions are 

identified. They all use four inputs to describe the cuboid: the length, which determines 

its shape, its position on x- and y-axis and a rotation degree α.  

 

1) Fixed penalty 

First, the cuboid is generated. Afterward, a test determines whether the cuboid is fully 

enclosed in the site. If the test is passed, the output is set to the true value of the form 

factor taken from the cuboids shape. If the test is failed, then the form factor is set to a 

very high penalty value, e.g., 10 000. Since the GA is set to minimize the form factor, 

it will rule out the solutions that lie outside the site. 

 

 

 

 

 

Figure 76 The algorithm is now faced with the challenge to optimize length as well as position of the cuboid 

Figure 77 The fixed penalty method 

Length Create Cuboid Form factor

Position x, y

Orientation α
Within 
site?

Yes 
FF = true 
value No

FF = 10 000
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2) Added objective 

In this method, instead of penalizing the form factor output, a second objective is intro-

duced to the system. It can have either of two values: 0 if the cuboid is within the site 

and 100 if the cuboid is outside the site. The GA is then set to minimize containment. 

Thus, it will favor solutions with a lower form factor and a lower containment value over 

solutions with higher values in either or both outputs.  

  

3) Penalty factor 

This method is similar to the first method. However, instead of replacing the true value 

of the form factor with a penalty value, the form factor is multiplied with a penalty factor 

for all solutions that fail the containment test. This way the dimensions of the cuboid 

are still regarded, even when the building lies outside the site. Of the failed solutions, 

those with a lower form factor are preferred. The hopes of this is that the algorithm 

learns to find the right length of the cuboid simultaneously with learning about the bor-

ders of the site. However, this might put lighter pressure on the solutions to move into 

the site, since solutions can also improve by optimizing their length without optimizing 

their position. With a fixed penalty, solutions must always move into the site to improve 

their fitness. 

 

Figure 78 The added objective method 

Figure 79 The penalty factor method 

Length Create Cuboid Form factor

Position x, y

Orientation α
Within 
site? Containment

Yes, C = 0

No, C = 100

Length Create Cuboid Form factor

Position x, y

Orientation α
Within 
site?

Yes 
FF = true 
value

No
FF = true value * 100
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For each of the method, a graph is implemented, and a generative design study is 

carried out in Refinery. They are compared by the number of generations it takes until 

all members of a population of a) 20 and b) 100 are within the site and have the optimal 

length of 57.7 m (minimal form factor, see Chapter 4 Verification).  

For the basic script with no regards to the site the GA takes  

a) 9 generations 

b) 8 generations  

to optimize the design to minimal form factor.   

The results for the three different punishment methods are: 

1) Fixed penalty  

a) 71 generations 

b) 16 generations 

2) Second objective 

a) 15 generations 

b) 12 generations 

3) Penalty factor 

a) 26 generations 

b) 17 generations 

Figure 80 Number of generations each method needed to optimize its solutions 

0

10

20

30

40

50

60

70

80

Basic script Fixed penalty Second objective Penalty factor

a) p = 20 b) p = 100



Implementation  68 

The best performance is achieved by the second method. Even with a small population 

size, it was able to optimize the entire population within a low number of generations 

by introducing a second objective. However, translating the effect to the ConEx study 

might be difficult, since there are eight design goals. Introducing a containment objec-

tive might not add the same kind of pressure on the optimization. The fixed penalty-

method performed bad for the small population size because the algorithm cannot de-

tect any changes in the output values unless there is a design within the site. Therefore, 

when none of the solutions lie within the site in the first generations, it cannot learn 

anything about which length produces a good form factor. It depends on the randomi-

zation of the first generation and the mutation afterward how fast the designs find its 

way into the site. With a larger population size the chances of a valid solution within 

the first generations rise, and then the algorithm performs decently because the selec-

tion pressure is quite high as the output of the valid solutions is so significantly lower 

compared to invalid solutions.  

The penalty factor method performs better than the fixed penalty method for a smaller 

population size because of its ability to simultaneously learn about sizes and site limits. 

However, its performance does not increase significantly when introduced to a bigger 

population size. This might be due to the selection pressure not being high enough. 

Depending on the value of the penalty factor itself, it can happen that an invalid solution 

with a low form factor is favored over a solution within the site but with a high form 

factor. 

A clear decision as to which method suits the ConEx optimization problem best is hard 

to draw from these results. Further experiments on the actual problem are needed to 

answer the questions: 

- Does introducing a single objective concerning containment add enough signif-

icance to the position to cancel out invalid solutions? 

- Does introducing a fixed penalty add too much pressure to the system, making 

it impossible for the GA to learn? 

- Does a penalty factor put enough pressure on the GA to favor solutions within 

the site?  

The goal is to rule out the invalid solutions as soon as they occur so that the optimiza-

tion can focus mainly on improving good solutions. 
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Therefore, the three punishment methods are tested on the ConEx optimization graph 

in a short run of 5 generations to see which method is able to remove invalid solutions 

as quickly as possible. The three optimizations start with the same set of solutions for 

the first population. It consists of 200 solutions, of which only 6 are valid (3%). After 5 

generations, it is counted how well the solutions propagated. The results are as follows:  

1) Fixed penalty: 127/200 (63.5%)  

2) Added objective: 14/200 (7%) 

3) Penalty factor: 163/200 (81.5%) 

The results of the second method increased to 28/200 (14%) when the containment 

output was duplicated four times, so it would have a bigger weight on the evolution 

compared to the other 8 objectives. However, it can be seen that the factoring method 

performed best at removing invalid solutions. When comparing the quality of the valid 

solutions, the overall fitness of the penalty factor method population was slightly higher 

than the population of the fixed penalty method. Therefore, the penalty factor method 

was chosen for the ConEx optimization. Fine-tuning the factors can improve the effects 

of the method even further. A penalty factor of 100 for objectives that are supposed to 

be minimized and -100 for objectives to be maximized proved to enhance performance. 

 

5.2.2 Population Size, Number of Generations and other NSGA-II settings 

When Refinery is installed in Dynamo, it adds the functionality to define nodes in the 

graph as inputs and outputs of the optimization. 

 

Figure 81 Inputs and outputs in the Dynamo user interface 
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This way, Refinery gains the control to change the input nodes’ values and read the 

value of the output nodes. The inner workings of the script remain of no interest to 

Refinery.  

To start a new optimization study, Refinery has to be launched. A window opens in 

which a new study can be created. Before initializing the study, several decisions must 

be made.  

First of all, the outputs should be set to their equivalent objective (maximize / minimize). 

In the case of ConEx, the following outputs should be minimized:  

• Footprint 

• Façade area 

• Form factor 

• Excess workplaces 

• Length of all exterior paths 

On the other hand, the algorithm should strive to 

maximize: 

• Rentable area / workplace 

• Meeting area / workplace 

The orientation value should be minimized when 

an N-S-orientation is desired and maximized for 

a W-E-orientation. 

Figure 82 Creating a new study in Refinery 

Figure 83 Objectives in the Refinery user interface 



Implementation  71 

As a next step, the population size has to be 

set as well as the number of generations the 

study is supposed to run. The population size 

must be a multiple of four because Refinery 

uses binary tournament selection. 

The seed is a number that triggers the ran-

domization of the first generation. Different 

seed values produce different values for the 

inputs of the first generation. Executing an-

other study with the same seed value will pro-

duce the same set of values in the initializa-

tion.  

Other settings of NSGA-II cannot be directly manipulated by the user. This includes:  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =  0.8 ; 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  0.4 ; 

𝐹𝐹𝐹𝐹𝐹𝐹 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  1 – 0.5
1

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ; 

However, the developers of Refinery plan to make these settings available to be mod-

ified by the user in Advance Settings in the future. 

 

  

Figure 84 Settings in the Refinery user interface 
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5.2.3 Presentation of Results 

After the study is concluded, the results are presented in two different forms: in Refin-

ery itself and exported into CSV files. Inside the Refinery GUI, the so-called “Hall of 

Fame” of results is presented. It features those solutions that belong to the first non-

dominated front. They appear with a small 3D preview of the design and can be sorted 

and filtered. A graph offers the possibility to map them based on the different inputs 

and outputs. 

 

To examine the solutions in more detail and further process the information, four CVS 

files are offered, which can be imported into Excel: 

• Solution set: the solutions of the last generation 

• Solution set history: the solutions of each generation 

• Hall of Fame: the best solutions in the last generation 

• Hall of Fame history: the best solutions of previous generations  

The files include the values of all inputs and all outputs of each solution. They can be 

used to filter and process the solutions further. 

It contains a list of all solutions in each generation with their input and output values. 

Figure 85 Presentation of results in Refinery 
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6.1 Set-Up 

To create a realistic setting, the graph is tested on a property that has been recently 

developed by Siemens Real Estate. It is located in Hannover, Germany, and will ac-

commodate approximately 600 employees. The planning phase of the project is al-

ready completed, and the building is currently under construction. 

 

The site can be described by 15 corner points with 3 site 

entries. Besides the building, the SRE project also con-

tains parking area. Consequently, when choosing a so-

lution from the generative design study, it should also be 

reflected whether there is enough space available to in-

clude the same amount of parking lots.  

 

6 Experiments 

Figure 86 Siemens Real Estate project in Hannover 

Figure 87 Representation of the site 
in Dynamo (turquoise: site entry 
points) 
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With an assumed workplace ratio of approximately 0.8 per employee, the total number 

of required workplaces is 500. The ground floor height, as well as the regular floor 

height,  was chosen to be 4m. Since the project is located in Middle Europe, the narrow 

layout option was chosen, and an N-S-orientation is preferred.   

 

6.2 Limitations and Assumptions 

Population size and number of generations have a big effect on the performance of the 

GA and the results it finds. However, research has not yet found rules for how to best 

set these two parameters, since two different optimization problems can vary signifi-

cantly in their behavior.  

Vrajitoru (2000) and Gotshall & Rylander (2002) conclude that larger population sizes 

will improve the accuracy of the GA. The greater the initial population, the higher are 

the chances that one of the solutions lies on the Pareto front (Vrajitoru, 2000) (Gotshall 

& Rylander, 2002). However, a greater population size also causes the number of gen-

erations needed to converge to the Pareto front to increase. In greater populations, 

more mutation will occur, and more generations are needed to eliminate those muta-

tions that do not cause the fitness to increase (Gotshall & Rylander, 2002).  

The optimal population size is at the balance between the accuracy of the algorithm 

and the number of generations needed to converge. This problem itself can be defined 

as another optimization problem, which could then be solved by another GA. This pro-

cess is called meta-optimization and requires large resources of computation power 

and time, as it simultaneously runs multiple optimizations (Nagy, Evolving design, 

2017d). In practice, this process is more often done by experimentation. Starting with 

smaller sizes, the population size is increased to a point at which it performs best. 

Afterward, the number of generations can be increased to see at which point the solu-

tions do not improve further.   

In this scenario, eight population sizes ranging between 60 and 200 are tested to see 

in which case the GA provided the best results after a short run of 10 generations. To 

compare the different runs, the overall fitness of the populations has to be estimated. 

This is done by looking at the Hall of Fame solutions of each run.  
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First, the fitness of each solution is estimated by normalizing its results in the different 

objectives and then adding them. Then the average fitness of these solutions is calcu-

lated. For instance, there are two solutions with the following results:  

 

They are normalized with the overall highest and lowest values from all runs. For the 

maximizing objectives (rentable area/wp, meeting area/wp), the results must be in-

versed (1 – normalized value).  

 

The sum of the normalized values serves as a fitness estimate, with low values indi-

cating a high fitness. In the case of the two example solutions, the fitness estimate is 

3.31 for solution 1 and 3.14 for solution 2. Assuming that the population only contains 

these two solutions on the Pareto front, the average fitness of that run would result in 

3.225. This way, the runs of varying population sizes can be compared.  

BGF Facade Form 
factor

Rent. 
area

Meet. 
area

Circu-
lation

Orien-
tation

Excess 
wp 

1 1 535 4 560 0.1985 9.95 0.52 256 0.24 12

2 767 5 702 0.1915 10.55 0.39 292 0.50 8

BGF Façade Form 
factor

Rent. 
area

Meet. 
Area

Circu-
lation

Orien-
tation

Excess 
wp

1 0.59 0.52 0.37 0.61 0.65 0.73 0.24 0.12

2 0.05 0.90 0.23 0.48 0.77 0.13 0.50 0.08

Table 2 Two example solutions 

Table 3 After normalization 
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After analyzed in the described fashion, the results for the different test runs of 10 

generations appear as such:  

The results show that at about a population size of 120 solutions, the performance 

peaks. Now, this population size can be chosen for further optimization with increasing 

numbers of generations.  

In further experimentation, the optimal number of generations is determined. For this, 

studies with rising numbers of generations are executed until the found solutions im-

prove no further or very little. Looking at the Hall of Fame solutions found after each 

number of generations and estimating their average fitness, it can be seen that the 

improvement starts to flatten after 40 generations. Therefore, after 50 generations, the 

optimization was ended. 

Figure 88 Average fitness estimate after 10 generations of different population sizes 

60 80 100 120 140 160 180 200
Population size tested with 10 

generations

P = 60 3.12772

P = 80 3.127512

P = 100 2.96939

P = 120 2.96784

P = 140 2.994057

P = 160 3.02282

P = 180 3.090961

P = 200 3.135763
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As Refinery runs locally, its performance can be influenced by the power of the ma-

chine it is used on. In that case, time might also play a role in setting the population 

size and number of generations. If the optimization time needs to be reduced, it is 

recommended to reduce the number of generations rather than diminishing the popu-

lation size. Research has shown that larger populations tend to improve the effective-

ness more than a high number of generations (Vrajitoru, 2000).  
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Figure 89 Average fitness estimate after increasing numbers of generations 
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6.3 Results 

After 50 generations and with a population size of 120 solutions, the algorithm presents 

14 design options that lie on the Pareto front 3 (for details, see Appendix A).  

Contrary to the chosen design in Hannover, the GA favors a position on the left side of 

the property. It seems to be ideal as it allows for an N-S-orientation as well as short 

paths to the entrance of the building. 

                                            

3 After the removal of duplicates 

Figure 90 Results found in the optimization; for details see Appendix A 
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Deviance from that strategy can be seen in case of a longer building, that only fits the 

site diagonally, or when there is a trade-off situation between minimal pathways and 

optimal solar orientation. In that case, a position at the center of the site is chosen.    

Furthermore, it can be seen that – if not equal – the number of units on the right is 

usually higher than on the left. This is to provide sufficient meeting area for the em-

ployees.   

 

 

 

 

Figure 92 Design chosen by SRE for comparison 

Figure 91 Solutions (selected) with paths highlighted 
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It can also be seen that higher workplace densities are avoided. With one exception, 

the solutions do not exceed a workplace density of 2.3, which is equivalent to 14.3 

workplaces per unit. The effects of a denser workplace configuration are less ground 

area covered or fewer levels needed to fit all workplaces, which leads to higher scores 

in footprint or façade area. However, these benefits do not seem to increase in the 

same volume as the benefits of a looser layout, which leads to more rentable area per 

workplace.  

Figure 94 Input values of the solutions 

Figure 93 Output values of the solutions 

Solution # Footprint Facade area Form factor Rentable 
area/wp

Meeting 
area/wp Excess wp Orientation 

value Circulation

1 1535.04 5472 0.190197 12.1479889 1.10167157 3 0.13920897 243.6091

2 1029.6 4569.6 0.19422244 10.1816719 0.72540359 1 0.06345103 244.7991

3 1535.04 4560 0.19853033 10.184064 0.5361408 0 0.06345103 246.2073

4 1535.04 5472 0.190197 11.5074169 1.04357966 31 0.06345103 244.4528

5 1291.68 4723.2 0.19402638 11.5685535 0.72251928 3 0.25776212 278.8179

6 1160.64 4320 0.19675352 10.1709413 0.72540359 1 0.06345103 248.9874

7 1160.64 5040 0.19080113 11.0500283 0.67551524 38 0.06345103 246.0619

8 1535.04 6384 0.18424462 12.0419676 0.77497297 92 0.12566592 250.7488

9 1029.6 4569.6 0.19422244 9.94350409 0.70843509 13 0.06345103 242.4554

10 2040.48 5856 0.19349565 12.5778462 0.88227692 20 0.70483276 307.7948

11 767.52 4665.6 0.19663331 8.31141818 0.32710909 28 0.10513691 258.1264

12 898.56 4684.8 0.19417735 9.65333333 0.53188571 4 0.06345103 258.7746

13 1404 5913.6 0.18614164 10.9684942 0.80067016 73 0.06345103 242.566

14 1404 5068.8 0.19209402 10.6464379 0.90668775 6 0.06345103 242.8643

Solution #       

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Orientation 
u

Orientation 
v

Start Point
 x

Start Point 
y

No. Units 
Left

No. Units 
Right

Workplace 
Density

-0.1 -1 0.36 0.61 2 6 0.9

-0.1 -1 0.4 0.64 2 4 1.7

0.1 1 0.34 0.54 5 3 2

-0.1 -1 0.38 0.59 2 6 1.4

-0.3 0.7 0.38 0.65 4 4 0.2

-0.1 -1 0.38 0.61 3 4 1.9

-0.1 -1 0.36 0.53 3 4 0.9

-0.1 -0.5 0.39 0.59 3 5 0.4

-0.1 -1 0.38 0.56 2 4 2

0.6 0.3 0.53 0.56 5 5 0.5

0.1 0.6 0.48 0.75 2 2 4.1

0.1 -1 0.46 0.56 2 3 2.3

-0.1 -1 0.36 0.56 2 5 1.7

-0.1 -1 0.36 0.58 2 5 2.2
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There is one exception to this observation, which is Solution #11. It follows a high-rise 

approach. In this extreme case, the aspect of very low ground area and a low façade 

area might outbalance the effect of a high workplace density. 

 

For Siemens Real Estate it is good practice when developing a new building not to 

exceed 5 floors. This is to meet low-rise standards and avoid additional conditions and 

regulations that apply to high-rise buildings. These regulations exist mainly for fire 

safety reasons. In Germany, for instance, in case of a high-rise building, 2 fire escapes 

need to be available at any point in the building and within walking distance of max. 35 

m. Therefore, it was agreed within SRE that high-rise buildings are uneconomic and 

should be avoided.  

Interestingly, in the optimization, most results have more than 5 floors. The number of 

floors rages between 5 and 9, with an average of 6.57 floors. Some of the best scores 

for form factor are achieved by designs with 6 to 7 floors. From an energetic perspec-

tive, a lower form factor leads to lower heat loss in cold temperatures and less heat 

intake in hot weather.  

So, to fit all workplaces, from an operation’s perspective, it can be better to add more 

levels instead of widening the layout by attaching more units and worsening the scores 

in form factor and footprint.  

 

With a parametric model, it is also very easy to check if the high-rise standards for 

escape routes are met. Designs with escape routes longer than 35 m can be ruled out. 

This way, high-rise designs can be found that are economically sensible in construction 

as well as operation. 

Figure 95 A solution with 6 floors and 3 fire escapes  
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The 5-floor-limit might serve as an example of a rule that makes sense in traditional 

design but becomes obsolete in the face of optimization. It is a rule of thumb that was 

put in place to avoid high-rise regulations. However, sometimes, high-rise regulations 

might be met without creating higher costs. So, limiting the building height to a maxi-

mum of 5 floors might unnecessarily narrow the solution space with some optima lying 

outside the searchable space. 
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6.4 Interview with Siemens 

Six SRE project managers are interviewed on the findings of the experiment as well as 

the generative design process in general. The results were presented to them as in 

Appendix A. All answers can be found in Appendix B. 

In general, the generative design is perceived well. It is viewed as a good approach to 

achieve an objective and data-driven basis for decision making. The interviewees like 

that advantages and disadvantages of different design/layout options are presented 

and think it will prevent manipulation of the decision process by personal, internal, or 

political interests. In comparison to a human, the computer is able to look at a much 

higher number of designs. However, one interviewee stresses that it cannot be the 

single source of truth. “The human touch, emotional evaluation, and inclusion of non-

tangible soft facts” still need to play a role in the evaluation. But the advantage of gen-

erative design would be that potential options would not be ruled out by “the human 

nature of pre-selection and early limitation of ideas.” One interviewee states that he 

“would expect this to lead to better-designed buildings as we get better at defining and 

quantifying soft facts to define ‘a good indoor / outdoor environment.’” 

Most interviewees agree that generative design would be beneficial for SRE. Their 

standardized buildings and office modules form “a perfect basis” for generative design, 

once the other configurations are implemented and rules are refined. It is seen as an 

additional base for discussion and decision making and “can lead to being more effi-

cient, effective, and faster.” 

One interviewee, however, has a more pessimistic view on the implementation of gen-

erative design in SRE. New processes would need to be implemented, and the educa-

tion, tools are resources are not available. Also, the parameters would need to be re-

adjusted for each project, which is seen as a hurdle.  

Another point of criticism is that the set of evaluation parameters is incomprehensive 

and seems arbitrary. There is a wish to include objectives like site topology, local code 

requirements, and surrounding landscape and buildings. 

The size of the solution set, however, is perceived as pleasant. They enjoy the possi-

bility of choice and agree the last decision should always be made by humans. The 

generative design process provides a solid base upon which soft criteria can lead to a 

preferred option. One suggests “it would be better to review – say max. 10 – solutions, 

pick three and then run an optimization process – possibly with altered parameters or 
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an altered weigh of the parameters. This way, people and computer could complement 

each other in this iterative process”. 

The Hannover experiment shows “what possibilities algorithms can offer in the early 

project phase.” However, it is hard to compare the solutions to the actual design in 

Hannover. One interviewee explains: “The chosen design was an H formed building. 

A direct comparison would be quite difficult also because not all ConEx specification 

were followed. I cannot say why but I assume there were good reasons for the deci-

sion”. 

 



Discussion and Outlook  85 

Having a clear concept of the constraints, variables, and design measures is crucial to 

the success of a generative design study. In case of standardized buildings like the 

Siemens Real Estate Construction Excellence, this concept already exists and only 

needs to be broken down into parameters which is particularly adjuvant to a generative 

design study. 

When this kind of concept does not exist, it lies in the hands of the architect to be able 

to abstract his vision into a set of variables and constraints, as well as carefully select 

a set of objectives. 

It is crucial to the outcome of the study to know exactly what objectives the design 

should be optimized to. There is a virtually limitless amount of measures that a design 

can be evaluated by – functional, energetic, sustainable, financial. Some might even 

not be possible to asses, such as beauty or emotional stimulus. But knowing which 

ones are most important to the stakeholders is key. In case of Siemens Real Estate, 

there has been a well-defined process in place for how designs coming from different 

architects are compared which this study could build on. But other institutions might 

have to evaluate and analyze their workflows before being able to use generative de-

sign for their purposes.  

Furthermore, some aspects of the design evaluation might seem trivial to the human 

designer but are hard to translate into calculatable scores. For example, it is easy for 

a human to solve geometric operations like placing a rectangle inside another shape if 

both shapes are visually available. However, since a computer lacks this form of per-

ception, it proved difficult to implement this capacity into the system. A lot of focus was 

spent on teaching the algorithm how to produce designs that lie within the site as illus-

trated in Chapter 5.2. Other aspects like beauty are even harder to implement as they 

are highly subjective and hard to translate into abstract rules. 

 

Personally, the effect of the computer taking over part of one’s work was perceived as 

liberating by the researcher. Setting up the parametric model allowed for creativity, 

combined with the certainty that the best versions of the parametric model would then 

be found by the algorithm shifted focus on the former. In a real-life scenario, with less 

7 Discussion and Outlook 
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time spent on refining design parameters in the end, the human designer has more 

time to focus on the creative process in the beginning. It allows for a deeper reflection 

on the idea leading to the design concept. The process of developing the concept itself 

seemed similar to the traditional design process despite the outcome being more for-

mal. Afterward, the tool took over the task of fine-tuning the concept into a reasonable 

and optimized design solution. 

Hence, the term generative design might be misleading to some extent. The computer 

does not generate the design. It finds the best design options out of a large pool of 

combinations through optimization. The pool however – meaning the form and extent 

of the design options - is generated by the human designer.  

The responsibility of picking a final design option also remains with the user. However, 

the process becomes very transparent and can be entirely data-based. The relevant 

information is provided, and solutions can easily be compared – especially when the 

data from the CSV-file is processed in Excel and depicted in radar charts. It allows the 

user to choose what objectives are most important to him or her and then focus on 

these while sorting through the provided options.   

Once a solution in the Refinery GUI is selected, the model in Dynamo is immediately 

changed to match the chosen design option. To integrate this into the BIM process, a 

data exchange with Revit would be conceivable. In a closed-loop, the polyline of the 

site can be imported into Dynamo from Revit. After the optimization the final design is 

chosen and automatically generated in Revit by using pre-modeled families of each 

kind of unit.   

Figure 96 Integration of Revit 

Revit

Dynamo

Refinery

1. Polyline export

2. Inputs/Outputs

4. Automated BIM model

3. Favored solution
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To further develop the parametric model for the purposes of Siemens Real Estate, 

more building configurations like H-shape, L-shape, etc. could be implemented along 

with an option for the wide layout.  

Furthermore, the inclusion of more objectives might make the findings more compre-

hensive. The topology of the site, as well as the area surrounding the site, also plays 

a significant role in design finding. Corresponding objectives can easily be added to 

the evaluation. However, this would require the existence of an adequate environmen-

tal model.  
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Overview of results

Solution #1

Variable Input
11 Orientation u -0.1
12 Orientation v -1
13 Start Point x 0.36
14 Start Point y 0.61
15 No. Units Left 2
16 No. Units Right 6
17 Workplace Density 0.9

Item Result
2 Footprint 1535.04
3 Facade area 5472
4 Form factor 0.190197
5 Rentable area/wp 12.1479889
6 Meeting Area/wp 1.10167157
7 Excess WP 3
8 Orientation value 0.13920897
9 Circulation 243.6091

Model output

Input variables

Results radar chart 

Graphical overview of result

Footprint
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area/wp

Meeting
Area/wp

Excess WP

Orientation
value

Circulation
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Overview of results

Solution #2

Variable Input
11 Orientation u -0.1
12 Orientation v -1
13 Start Point x 0.4
14 Start Point y 0.64
15 No. Units Left 2
16 No. Units Right 4
17 Workplace Density 1.7

Item Result
2 Footprint 1029.6
3 Facade area 4569.6
4 Form factor 0.19422244
5 Rentable area/wp 10.1816719
6 Meeting Area/wp 0.72540359
7 Excess WP 1
8 Orientation value 0.06345103
9 Circulation 244.7991

Input variables

Model output Results radar chart 

Graphical overview of result
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Facade area

Form factor
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area/wp

Meeting
Area/wp

Excess WP

Orientation
value

Circulation
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Overview of results

Solution #3

Variable Input
11 Orientation u 0.1
12 Orientation v 1
13 Start Point x 0.34
14 Start Point y 0.54
15 No. Units Left 5
16 No. Units Right 3
17 Workplace Density 2

Item Result
2 Footprint 1535.04
3 Facade area 4560
4 Form factor 0.19853033
5 Rentable area/wp 10.184064
6 Meeting Area/wp 0.5361408
7 Excess WP 0
8 Orientation value 0.06345103
9 Circulation 246.2073

Input variables

Model output Results radar chart 

Graphical overview of result
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area/wp

Meeting
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Orientation
value

Circulation
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Overview of results

Solution #4

Variable Input
11 Orientation u -0.1
12 Orientation v -1
13 Start Point x 0.38
14 Start Point y 0.59
15 No. Units Left 2
16 No. Units Right 6
17 Workplace Density 1.4

Item Result
2 Footprint 1535.04
3 Facade area 5472
4 Form factor 0.190197
5 Rentable area/wp 11.5074169
6 Meeting Area/wp 1.04357966
7 Excess WP 31
8 Orientation value 0.06345103
9 Circulation 244.4528

Input variables

Model output Results radar chart 

Graphical overview of result
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Overview of results

Solution #5

Variable Input
11 Orientation u -0.3
12 Orientation v 0.7
13 Start Point x 0.38
14 Start Point y 0.65
15 No. Units Left 4
16 No. Units Right 4
17 Workplace Density 0.2

Item Result
2 Footprint 1291.68
3 Facade area 4723.2
4 Form factor 0.19402638
5 Rentable area/wp 11.5685535
6 Meeting Area/wp 0.72251928
7 Excess WP 3
8 Orientation value 0.25776212
9 Circulation 278.8179

Input variables

Model output Results radar chart 

Graphical overview of result
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Meeting
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Excess WP

Orientation
value

Circulation
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Overview of results

Solution #6

Variable Input
11 Orientation u -0.1
12 Orientation v -1
13 Start Point x 0.38
14 Start Point y 0.61
15 No. Units Left 3
16 No. Units Right 4
17 Workplace Density 1.9

Item Result
2 Footprint 1160.64
3 Facade area 4320
4 Form factor 0.19675352
5 Rentable area/wp 10.1709413
6 Meeting Area/wp 0.72540359
7 Excess WP 1
8 Orientation value 0.06345103
9 Circulation 248.9874

Input variables

Model output Results radar chart 

Graphical overview of result

Footprint

Facade area

Form factor
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area/wp

Meeting
Area/wp

Excess WP

Orientation
value

Circulation
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Overview of results

Solution #7

Variable Input
11 Orientation u -0.1
12 Orientation v -1
13 Start Point x 0.36
14 Start Point y 0.53
15 No. Units Left 3
16 No. Units Right 4
17 Workplace Density 0.9

Item Result
2 Footprint 1160.64
3 Facade area 5040
4 Form factor 0.19080113
5 Rentable area/wp 11.0500283
6 Meeting Area/wp 0.67551524
7 Excess WP 38
8 Orientation value 0.06345103
9 Circulation 246.0619

Input variables

Model output Results radar chart 

Graphical overview of result

Footprint

Facade area

Form factor
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area/wp

Meeting
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Excess WP

Orientation
value

Circulation
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Overview of results

Solution #8

Variable Input
11 Orientation u -0.1
12 Orientation v -0.5
13 Start Point x 0.39
14 Start Point y 0.59
15 No. Units Left 3
16 No. Units Right 5
17 Workplace Density 0.4

Item Result
2 Footprint 1535.04
3 Facade area 6384
4 Form factor 0.18424462
5 Rentable area/wp 12.0419676
6 Meeting Area/wp 0.77497297
7 Excess WP 92
8 Orientation value 0.12566592
9 Circulation 250.7488

Input variables

Model output Results radar chart 

Graphical overview of result
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Meeting
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Excess WP

Orientation
value

Circulation
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Overview of results

Solution #9

Variable Input
11 Orientation u -0.1
12 Orientation v -1
13 Start Point x 0.38
14 Start Point y 0.56
15 No. Units Left 2
16 No. Units Right 4
17 Workplace Density 2

Item Result
2 Footprint 1029.6
3 Facade area 4569.6
4 Form factor 0.19422244
5 Rentable area/wp 9.94350409
6 Meeting Area/wp 0.70843509
7 Excess WP 13
8 Orientation value 0.06345103
9 Circulation 242.4554

Input variables

Model output Results radar chart 

Graphical overview of result
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Meeting
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Excess WP

Orientation
value

Circulation
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Overview of results

Solution #10

Variable Input
11 Orientation u 0.6
12 Orientation v 0.3
13 Start Point x 0.53
14 Start Point y 0.56
15 No. Units Left 5
16 No. Units Right 5
17 Workplace Density 0.5

Item Result
2 Footprint 2040.48
3 Facade area 5856
4 Form factor 0.19349565
5 Rentable area/wp 12.5778462
6 Meeting Area/wp 0.88227692
7 Excess WP 20
8 Orientation value 0.70483276
9 Circulation 307.7948

Input variables

Model output Results radar chart 

Graphical overview of result

Footprint
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area/wp

Meeting
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Excess WP

Orientation
value

Circulation
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Overview of results

Solution #11

Variable Input
11 Orientation u 0.1
12 Orientation v 0.6
13 Start Point x 0.48
14 Start Point y 0.75
15 No. Units Left 2
16 No. Units Right 2
17 Workplace Density 4.1

Item Result
2 Footprint 767.52
3 Facade area 4665.6
4 Form factor 0.19663331
5 Rentable area/wp 8.31141818
6 Meeting Area/wp 0.32710909
7 Excess WP 28
8 Orientation value 0.10513691
9 Circulation 258.1264

Input variables

Model output Results radar chart 

Graphical overview of result
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area/wp

Meeting
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Excess WP

Orientation
value

Circulation
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Overview of results

Solution #12

Variable Input
11 Orientation u 0.1
12 Orientation v -1
13 Start Point x 0.46
14 Start Point y 0.56
15 No. Units Left 2
16 No. Units Right 3
17 Workplace Density 2.3

Item Result
2 Footprint 898.56
3 Facade area 4684.8
4 Form factor 0.19417735
5 Rentable area/wp 9.65333333
6 Meeting Area/wp 0.53188571
7 Excess WP 4
8 Orientation value 0.06345103
9 Circulation 258.7746

Input variables

Model output Results radar chart 

Graphical overview of result
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Form factor

Rentable
area/wp

Meeting
Area/wp

Excess WP

Orientation
value

Circulation
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Overview of results

Solution #13

Variable Input
11 Orientation u -0.1
12 Orientation v -1
13 Start Point x 0.36
14 Start Point y 0.56
15 No. Units Left 2
16 No. Units Right 5
17 Workplace Density 1.7

Item Result
2 Footprint 1404
3 Facade area 5913.6
4 Form factor 0.18614164
5 Rentable area/wp 10.9684942
6 Meeting Area/wp 0.80067016
7 Excess WP 73
8 Orientation value 0.06345103
9 Circulation 242.566

Input variables

Model output Results radar chart 

Graphical overview of result

Footprint
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Form factor
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area/wp

Meeting
Area/wp

Excess WP

Orientation
value

Circulation
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Overview of results

Solution #14

Variable Input
11 Orientation u -0.1
12 Orientation v -1
13 Start Point x 0.36
14 Start Point y 0.58
15 No. Units Left 2
16 No. Units Right 5
17 Workplace Density 2.2

Item Result
2 Footprint 1404
3 Facade area 5068.8
4 Form factor 0.19209402
5 Rentable area/wp 10.6464379
6 Meeting Area/wp 0.90668775
7 Excess WP 6
8 Orientation value 0.06345103
9 Circulation 242.8643

Input variables

Model output Results radar chart 

Graphical overview of result

Footprint

Facade area

Form factor
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area/wp

Meeting
Area/wp

Excess WP

Orientation
value

Circulation
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What are your thoughts on the generative design approach overall?  

Interviewee A 

It’s a very good approach to show up an objective and data driven basis for decision 

making. Presented pros and cons of different building design/layout possibilities - i.e. 

decision processes are often kind of “manipulated” by personal, internal, political, stra-

tegic or other stakeholder interests, with sometimes significant consequences in plan-

ning and execution phase or even in the end for the customer during/after handover. 

This approach supports transparent and objective prioritizing of design criteria and 

data bases decision making.  

Needless to say all the positive commercial aspects like cost calculation, rating of de-

sign/concept changes, etc.. 

Interviewee B 

Ein guter Ansatz für die Optimierung von Gebäuden in der frühen Phase. In Kombina-

tion mit dem Wissen über die örtlichen und baurechtlichen Gegebenheiten ist das in 

Zukunft eine gute Unterstützung zur Bestimmung des optimalen Designs. Mir fehlen 

jedoch die Parameter, die sich aus den Gegebenheiten des Grundstücks ergeben 

(z.B.: Zufahrt, Höhenverlauf). 

Interviewee C 

In my opinion generative design generally offers an enormous potential in the field of 

architecture – especially in the early project phases. Wherever design plays a role, 

generative design and artificial intelligence can help due to the very high number of 

design variants. For example, in other industries generic design is almost standard. 

For example, in the automotive or food industries. I think the example of the Hannover 

building already shows SRE, what possibilities algorithms can offer in the early project 

phase. An automatic configuration tool for office buildings, based on ConEx, could be 

a first step for SRE. But it can’t be the single source of truth. 
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Interviewee D 

The future for (building) design is via parametric design, as I see it. The opportunity to 

connect design parameters and letting them interact via modelling will bring new in-

sights into the prioritizing of technical parameters and quantifiable soft facts. Will it fix 

all? No. The “human touch”, emotional evaluation and inclusion of non-tangible soft 

facts will still need to be added as part of an evaluation of the machine generated out 

option. The upside, as I see it, is that the human nature of pre-selection or early limita-

tion of ideas is not limiting theoretical options up front. I would expect this to lead to 

better designed buildings as we get better at defining and quantifying soft facts to de-

fine “a good indoor / outdoor environment”. 

Interviewee E 

In general, it is an interesting approach to finding optimal design alternatives. It is, 

however, very limited with the typical constraints that we are facing in the conceptual 

phase. Most decision in the end are arbitrary and based on aesthetics and the sur-

rounding landscape or how the landscape will be altered to make a comfortable envi-

ronment. 

Interviewee F 

A suitable approach for very early design phases and for evaluations regarding the 

possibilities of suing a site. Local code requirements 8for example: if a building has to 

stand on a certain line, not “somehow” on the site, should be possible to enter, to en-

sure that the options generated are actually – at least somewhat – realistic. 

It would also be helpful if the parameters can be changes – this is what happens in an 

iterative design process: not only the solutions develop, but also the parameters they 

are measured against, because we never know everything from the beginning.
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Do you think that it can be beneficial to Siemens Real Estate in the near future? 

Interviewee A 

Yes! Standardized building configurations and office modules are a perfect basis for 

this approach.  

Interviewee B 

Ja. Für die Entwicklung zukünftiger Design ist das eine gute Unterstützung und bietet 

einen zusätzlichen Diskussions- und Entscheidungsansatz.   

Interviewee C 
Yes, it may be beneficial for SRE to use an iterative generic design process in the near 

future. Generative design can help SRE to find the most efficient form in the early 

project phase. If SRE has such an automatic configuration tool, SRE could consider a 

wide range of solutions for customers. This can lead to being more efficient, effective 

and faster. With generic design and artificial intelligence, architects and designers can 

be supported in the planning process with a high level of design solutions. 

Interviewee D 

Yes ;-) 

Interviewee E 

Unfortunately, I do not see any benefits for now. It also depends on what you mean by 

“near future”? One year? Ten years? Even if it is ten years, the responsibilities would 

have to be specified to implement new processes (education, tools etc). It does not 

seem to me that the resources for this are available and I do not see an immediate 

financial benefit as the task is more an architect (established in the thesis also) task 

then it is the task of the building owner i.e. we would be helping the architect (see 2 

paragraphs down for the reasoning why I do not see the immediate benefit with Sie-

mens). The thesis also states “There is a virtually limitless amount of measures that a 

design can be evaluated by” which kind of confirms the impossible implementation of 

this method in real projects. Two of the more pressing “parameters” would be for ex-

ample surrounding landscape and buildings because they already influence the exist-

ing eight parameters but were not considered. 
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Also, based on the eight parameters you were considering (if not weighted) and taking 

into account all forms in ConEx, the solutions would converge to TYPE B_OPTION 9 

(from ConEx), unless the site geometry is elongated (mostly not the case) due to the 

simple reason that it positively influences (compared to other available forms) the high-

est number of parameters considered (BGF, Façade area, form factor, rentable and 

meeting area as well as circulation).This is due to a simple geometry fact which in its 

extreme turns out to be a circle (sphere). The effect can be observed in the thesis on 

page 8 Figures 2 and 3. 

It must be clear that the algorithm does not find the most efficient design alternative it 

finds a design alternative based on arbitrary parameters that can vary from project to 

project and would have to be specified first. Also, the parameters would have to be 

adjusted to incorporate all influences. To use the method, it would have to be resolved 

who decides this and does it really represent a benefit for Siemens? Maybe a topic for 

another thesis? 

There are many other factors influencing the implementation in real projects. The ones 

I specified here should give a good basis though. 

Interviewee F 

Generally yes, but the range of solutions needs to be expanded to other configurations 

as well and the configuration rules need to be refined. Currently too many uneconomic 

options are generated and too many options favour an east-west orientation, which 

would not be given preference over a north-south orientation in reality.
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How happy are you with the size of the solution set? Would you have preferred 
to be presented with one optimal solution or do you enjoy the possibility of 
choice? 

Interviewee A 

Following my statements in 1) and 2) I would like to have the possibility of choice. 

Especially for decision making process, this different view may also help to find a com-

promise when different/contrary needs, requirements or boundary conditions have to 

be considered. 

Interviewee B 

Die Vielzahl an Lösungen ist gut. Es wird eine Entscheidungsgrundlage gegeben auf 

Basis derer unter Berücksichtigung weiterer weicher Faktoren und einer angepassten 

Entscheidungsmatrix die optimale Lösung gefunden werden kann. 

Bei Reduzierung auf nur ein oder zwei Lösungen würde die ganzheitliche Betrachtung 

und Diskussion nicht mehr stattfinden würde. 

Interviewee C 

For me it is extremely exciting to see what is possible with the use of algorithms. I think 

it is helpful to have more than just one optimal computer-generated solution. I think 

with the variety of possible solutions, there will always be solutions that can be pre-

ferred and solutions that cannot. I think the last decision should always be made by 

humans. However, in order to make an optimal decision, it is helpful and necessary for 

designers and architects to know as many solutions as possible. Of course, a lot of 

soft variables still need to be considered, which are self-evident to the human eye, but 

not for a program. So far it exists no “one size fits all”-solution – at least not yet. 

Interviewee D 

The set of 14 is fine. I do not believe in “one optimal solution”. Adding the human touch 

or adding additional design parameters would, as I see, it be the next step to select a 

preferred option. 
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Interviewee E 

As stated in the previous answers, there are many other factors that determine the 

decision on the placement of the building that were not considered. Whether one al-

ternative is better than the other would require an interpretation based on the parame-

ter values for every solution. This interpretation might vary from project to project but 

just looking at 8 arbitrary numbers does not aid in the decision. The interpretation would 

also have to weigh the factors because they might have a different influence on the 

design. The problem of the eight factors is that they all favour one type of form. 

Interviewee F 

There are too many solutions, and they are too much alike. It would be better to review 

– say max. 10 – solutions, pick three and then run an optimization process – possibly 

with altered parameters or an altered weigh of the parameters. This way, people and 

computer could complement each other in this iterative process.  

The range of choice is preferable, as it is not possible to enter all parameters and the 

decision for a certain design will be based on many more factors. For example, the 

usability of the site is not very good, if the building stands diagonally on the site, but 

accommodating enough parking on the site might be critical. I think, it could provide a 

good first guess, but needs more work  
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How do the solutions compare to the design chosen for Hannover? (If possible, 
please include numbers) 

Interviewee A 

I’m not involved in detail in Hannover project.  

Interviewee B 

Der Vergleich der Lösungen aus dem Modell mit dem geplanten Objekt in Hannover 

ist eigentlich nicht möglich, da dem Lösungsansatz aus dem Modell zusätzliche Pa-

rameter fehlen, die für die Entwicklung des Konzepts in Hannover relevant waren 

(Erschließung, Höhenprofil, Schaffung zusätzl. Baurechts, Hochhausgrenze). 

Für einen direkten Vergleich würde ich die Varianten 6 und 7 heranziehen. Bei beiden 

Varianten erscheint es Möglich die o.g. Faktoren ebenfalls entsprechend umzusetzen.   

Interviewee C 

--- 

Interviewee D 

No idea. 

Interviewee E 

The chosen design was an H formed building. A direct comparison would be quite 

difficult also because not all ConEx specification were followed. I cannot say why but I 

assume there were good reasons for the decision. 

BGF was1350 m2, Façade area 5343 m2, 13m2/wp primary usable area (not to be 

confused with rentable area / wp which would result in 17m2/wp), think tank area 228 

m2, phone box area 21 m2, meet & talk area 181 m2, 11 individual offices. 

Interviewee F 

Hannover is an H shaped building and it is very hard to compare the options.  

The H shape is of course very efficient with regard to circulation, as there is only one 

central core in the building. The block-shaped buildings seem to take up much more of 

the site and leave less are for parking etc. Due to the sometimes arbitrary looking 
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placement, the site gets cut into some inefficient shapes, where is would be hard to 

accommodate parking etc.  

I think, several options should not have “survived”: option 1, 3, 4, 8, 10 and 13 have 

either two or even three cores which are placed at the end of the building with another 

staircase next to them. This does not make sense. But I guess, it shows the limitations, 

if you don’t tell the machine that this is not an option, it may think, it is a good one!   

I would have liked to see more options which are placed parallel to the main street like 

the actual design.
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If you had to pick one or two of the solutions, which ones would be your favorite? 
Why? 

Interviewee A 

I’m not involved in detail in Hannover project.  

Interviewee B 

Mein Favoriten sind 5 und 6. Beide erscheinen sehr kompakt und wirtschaftlich. 

Interviewee C 

--- 

Interviewee D 

Looking only at the existing parameters I would tend to focus less on build space and 

façade area and lean more towards functional parameters such as circulation and 

meeting area/WP as I believe these parameters leads to a “better building”. I believe it 

would depend on the parameters not included in the parametric set of goals. 

Interviewee E 

If I had to pick, I would probably go for #12 or #9. The elongated alternatives block a 

lot of the panoramic view of the site and I prefer symmetry in regard to neighbouring 

sites in this scenario since I do not have information on neighbouring buildings and the 

landscape developments around the building. It seems safer to have a more centrally 

positioned building. 

Interviewee F 

Probably one of the solutions which has a single core. 
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