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Abstract
For stochastic vibration analysis of the composite plate in-situ stochastic data of the elastic parameters and
damping loss factors are essential. Deterministic values of the elastic and damping parameters of the compos-
ite plates can be identify using various optimization technique. In recent decades various stochastic inverse
identification procedures are shown to evaluate the in-situ stochastic parameters of the elastic constants of the
composite plate. However, identification of the damping loss factor of the composite plate has received less
attention. A stochastic Bayesian inverse identification technique is used here to evaluate the in-situ uncertainty
of the damping loss factors of the glass-epoxy composite plate. Experimentally evaluated first 4 modal damping
ratio of the glass-epoxy composite plate are incorporated in Bayesian inverse inference formulation through
likelihood function. Novelty of the study lies in the development Bayesian inverse formulation considering
modal damping response to identify the stochastic damping loss factors of the glass-epoxy composite plate.

Keywords: Bayesian inverse inference, Loss factors, Composite plate.

1 INTRODUCTION
Inverse identification of the material parameters of a composite structure is popularly done by minimization of

the error function between experimentally evaluated response and model response by using some optimization

technique. This error function minimization technique can identify the material parameters of the system as a

design variable. The identification of the material parameters using this approach can estimate the parameters

deterministically without considering uncertainty involve in the modeling and material properties [1, 2, 3]. The

randomness in the composite plate is arise due to variability of several factors such as fiber orientations, lam-

inate sequences and various manufacturing uncertainty. The randomness of the material parameters should be

considered while estimating the stochastic dynamic response of the composite plate. Generally an assumption

of the variation of material properties are made prior to the stochastic dynamic analysis instead of considering

in-situ variability of the material parameters. Therefore, a inverse framework for stochastic estimation of the

in-situ uncertainty of the material properties of the composite plate is essential. In such cases stochastic repre-

sentation of the experimentally evaluated modal response in terms of a probability distribution function (PDF)

are necessary.

In recent years, stochastic inverse identifications of the material parameters such as elastic parameters and

Poisson’s ratio are done by generalized polynomial chaos (gPC) expansion method by Sephavand and Mar-

burg [4, 5]. A collocation based gPC expansion method [8, 9, 6] is used for stochastic inverse identification

of the parameters of the composite plate. The stochastic inverse identification of the parameters involve estima-

tion of the unknown deterministic coefficients of the gPC expansion by optimization algorithm [7]. However,

Bayesian inverse identification technique is also quite popular among the researchers [10, 11, 12] to identify

the elastic properties of a dynamic system since 1979 [13]. Statistical properties such as mean and standard

deviation (SD) of the identified parameters can be derived from the posterior distributions. The basic advantage

of the Bayesian inverses technique is posterior PDF can be develop from a limited numbers of experimental

observations. The evaluation of integral is most challenging task in multi-parameter Bayesian inverse inference.

However, Markov Chain Monte Carlo (MCMC) [14, 15] became an efficient alternative to determine the pos-

terior density without evaluating the integral. Various sampling based approaches such as, Metropolis-Hasting
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(M-H) algorithm and Gibbs sampler [16] algorithm have been developed for improvement of the MCMC al-

gorithm. Memory less M-H algorithm can efficiently derive the multi-parameter posterior PDF. More recently,

Nagel [17] discussed Bayesian inverse problem with a direction to overcome the limitations of sampling based

technique for determining the posterior probability density functions of the system parameters. Various ad-

vanced techniques and improvements of Bayesian inference technique are proposed in stochastic identification

of the elastic constant [18, 19]. Gogu et al. [19] identified the elastic constants of the unidirectional lami-

nate by tensile strength test. Of late, Rappela and Beex [20] identified material randomness of the discrete

strut using Bayesian inverse updation and corresponding influences of the geometric randomness of the fiber.

Rosić et al. [21] have proposed a linear Bayesian estimation of the unknown parameters in combination with

the Karhunen-Loève and Polynomial Chaos expansion without using any sampling based technique such as,

MCMC. This method can efficiently update non-Gaussian uncertainties. However, stochastic identification of

the elastic parameters of multilayer bi-directional composite plate using Bayesian inverse inference technique

from modal experimental data has not explored yet. Moreover, researchers have paid much attention to identify

the elastic constants of the composite plate, while identification of the damping loss factors of the composite

plate is indispensable requirement for the damped vibration analysis of the composite plate.

Yesilyurt and Habibe [22] have deterministically identified modal damping ratio of a composite beam by using

short time Fourier transformation (STFT). Cherif et al. [23] have determined damping loss factors of a two di-

mensional orthotropic plate using inverse Wave method and compared with the classical methods. Li et al. [24]

have identified loss factors of a carbon-epoxy composite plate using modal test data using complex modulus

approach. However, stochastic identification of the damping loss factor has not been reported earlier. Here,

loss factors of the multilayer bi-directional composite plate is identified using Bayesian inverse technique from

experimentally evaluated modal damping ratio.

2 MATHEMATICAL FORMULATIONS
2.1 Finite element formulation of laminated composite plate
Classical thin plate theory is used for analysis of a laminated composite plate using first order shear deformation

theory (FSDT). The stress σσσ ′′′ and strain εεε ′′′ relationship for a thin unidirectional lamina is presented by the

generalized Hook’s law with reference to the principal material axes (1, 2, 3) as

σ ′ =CCCε ′′′. (1)

Here, CCC is principal stress-strain relationship matrix [25] along the principal axes of the kth lamina for the multi-

layer bi-directional laminated composite plate. The elements of the CCC matrix for the kth orthotropic lamina are

C11 = E11/(1−ν12ν21), C12 = ν21E11/(1−ν12ν21), C22 = E22/(1−ν12ν21), C33 = G12, C44 = G23 and C55 = G13.

Here Eii, Gi j and νi j are the set of elastic constants such as, Young’s moduli, shear moduli and Poisson’s

ratio of the lamina, respectively. The stress σσσ and strain εεε relationship of the lamina with reference to global

laminate axes (x, y, z) is written as

σσσ = QQQεεε , (2)

in which,

QQQ = T −1CCCT . (3)

Here T is transformation matrix [25] to relate the principal lamina axes and laminate axes. The element

stiffness matrix is of the laminated is presented as

KKKeee =
∫

Ae

BBBTDDDBBBdAe. (4)

In which, BBB [25] is the strain-displacement matrix and written as

ε̄εε = BBBδδδ . (5)
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where ε̄εε = [εx εy εxy κx κy κxy εxz εyz]
T is the strain and curvature vector and δδδ = [u0 j v0 j w0 j θx j θy j]

T

is the nodal displacement vector of the composite plate. Eight-nodded element is used for finite element (FE)

analysis of te composite plate.The mid-plane stress resultant σ̄σσ and strain ε̄εε of the laminate are related by

stiffness matrix DDD as [25]

σ̄σσ = DDDε̄εε . (6)

In which σ̄σσ = [Nx Ny Nxy Mx My Mxy Qx Qy]
T and DDD is given by⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A16 B11 B12 B16 0 0

A12 A22 A26 B12 B22 B26 0 0

A16 A26 A66 B16 B26 B66 0 0

B11 B12 B16 D11 D12 D16 0 0

B12 B22 B26 D12 D22 D26 0 0

B16 B26 B66 D16 D26 D66 0 0

0 0 0 0 0 0 A44 A45

0 0 0 0 0 0 A45 A55

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7)

where Ai j,Bi j,Di j =∑N
k=1

∫ zk
z(k−1)

(Qi j)k(1,z,z2)dz, i, j = 1,2,6 and Ai j =∑N
k=1

∫ zk
z(k−1)

κ(Qi j)kdz, i, j = 4,5, κ = 5/6.

The elemental mass matrix is written as

MMMeee =
∫

Ae

NNNTρρρNNNdAe, (8)

where ρρρ is the inertia matrix. The global stiffness matrix KKK and the global mass matrix MMM are developed after

assembling the elemental stiffness and mass matrices, KKKeee and MMMeee, respectively. Therefore, Undamped modal

analysis involves the solution of

[λ 2
i MMM+KKK]φi = 0, i = 1,2, ...,n (9)

and extract the modal frequency λi and mode shape φi of the laminated composite plate with n numbers of

degree of freedom (DOF) in FE model.

2.2 Modal damping formulation of laminated composite plate
During vibration, dissipation of the specific energy in the form of heat and acoustic radiation is responsible for

the passive damping of the composite plate. Mathematical estimation of the damping of the composite plate

is necessarily simple and yet accurately represent the damping of the composite plate. Viscoelastic damping

model is efficiently represent the energy dissipation from the vibrating composite plate via complex modulus

approach. It is assumed that stress and strain are harmonically time dependent for linear viscoelastic material

and are presented as σ = σ0eiωt and ε = ε0eiωt . Linear viscoelastic constitutive relationship is expressed as

σ(t) =
∫ t

−∞
C∗(t − τ)dε(τ), (10)

where complex modulus is expressed as a combination of a real and a imaginary component as C∗ =C′+ iC′′.
Real component C′ and imaginary component C′′ of the elastic moduli are termed as storage moduli and loss

moduli, respectively. Complex elastic constants of the composite material in the principal lamina direction are

evaluated as

E11 = E11(1+ iη11), E22 = E22(1+ iη22), G12 = E12(1+ iη12). (11)

Here in η11, η22 and η12 are the damping loss factors along the longitudinal, transverse and shear directions

of the lamina, respectively. Accordingly, complex elastic constants are inserted in Eq. (2) and corresponding

complex stiffness matrix is presented as

KKK∗ = KKKR + iKKKI. (12)
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Here KKKR storage stiffness matrix and KKKR is loss stiffness matrix. Hence, damped dynamic equation of the

composite plate is written as

MMMẍ+KKK∗x = fff . (13)

Assumed solution of the Eq. (13) is x = {φ ∗
i }eiλ ∗

i t , where φ ∗
i and λ ∗

i are nth complex eigen mode and complex

eigen frequency. Homogeneous solution of the Eq. (13) is written as

[λ ∗2
i MMM+KKK]φ ∗

i = 0, i = 1,2, ...,n. (14)

The complex eigen frequency is written as

λ ∗
i = λ ∗

iR(1+ iηi)
1/2. (15)

Thus modal loss factor ηi of the composite plate is written as

ηi =
Im(λ ∗2

i )

Re(λ ∗2
i )

. (16)

The ideal forward problem to estimate the modal loss factor ηi of the composite plate stated in the following

form with reference to the Eqs. (14), (16)

ηi = G(η11, η22, η12, E11, E22, G12) i = 1,2, ...,n. (17)

Considering the fact that nominal values of the elastic parameters are known and distributions of the ηi are

evaluated experimentally, then stochastic damping loss factors η11, η22 and η12 along the principal directions

of the lamina can be identified by inverse stochastic procedure. Corresponding forward model in close form is

written as

ddd = G(mmm), (18)

where set of simulated modal loss factors for ideal case is define by ddd = {ηi}T and mmm = {η11 η22 η12}T is the

vector of identifiable parameters of the inverse problem.

2.3 Bayesian inverse model
Considering the forward formulation stated in Eq. (18), classical inverse problem involves identification of model

parameter mmm from the actual observation of data set d̃dd. Thus, model lead to relation

d̃dd = G(mmm)+ εεε , (19)

where εεε is modal additive error account for deviation between simulated value ddd and observed values d̃dd. The

components of εεε are i.i.d. random variables. The Bayesian inverse problem concerned with estimating the

parameters mmm given a set of observation data d̃dd. The posterior probability density of the model parameters mmm
takes the form

p(mmm|d̃dd) = p(d̃dd|mmm)p(mmm)∫
p(d̃dd|m)p(mmm)dmmm

. (20)

Herein p(mmm) indicate the prior probability of the parameters mmm. Likelihood p(d̃dd|mmm) is define as a function of

mmm, such as L (mmm) = p(d̃dd|mmm). A typical assumption for likelihood function for observed data d̃ j are normally

distributed with a SD σ and expected value G(mmm) and can write as

p(d̃ j|mmm) =
1

σ
√

2π
exp

(
− (d̃ j −G(mmm))2

2σ2

)
(21)
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and likelihood is stated for n numbers of observational data as

L (mmm) =
n

∏
j=1

p(d̃ j|mmm) (22)

L (mmm) =
1(

σ
√

2π
)n

[
exp

(
− (d̃ j −G(mmm))2

2σ2

)]n

. (23)

The integral at the numerator of Eq. (20) is a normalizing constant and described by c. Inverse identification of

parameters mmm from md set of modal data can be written using the theory of total probability as [26]

p(mmm|d̃dd) =
md

∏
i=1

p(mmm|d̃i) (24)

p(mmm|d̃dd) ∝ p(mmm)md
md

∏
i=1

Li(mmm) (25)

p(mmm|d̃dd) ∝ p(mmm)md 1(
(2π)md/2 ∏md

i=1 σi
)n exp

[ md

∑
i=1

(−0.5AT
i σ−2

i Ai)

]
, (26)

where Ai is define as ∑n
j=1

{
(d̃i j −G(mi))

2
}

. The strategy for numerical solution of the stochastic inverse

problem to identify the parameters is proposed using Markov chain Monte Carlo (MCMC) method. The idea

behind the MCMC is to construct posterior distribution without evaluating the normalizing constant c. The

Metropolis-Hastings (M-H) algorithm construct a stationary Markov chain whose stationary distribution equal

to the target distribution. M-H algorithm involve generating new sample point y of Markov chain from a

proposal distribution q(·|x(k)) conditional to the current state x(k) and then accepts and rejects the new sample

y with certain probability of acceptance. Generation of sufficient numbers of sample of a Markov chain with a

stationary distribution is equivalent to the target posterior distribution p′′X (x). The stationary distribution of the

Markov chain is obtained by ignoring the initial burn-in period of the proposal distribution.

Here in mmm denotes vector of model parameters and ddd is set of simulated data for ideal case. The forward model

operator G predicts the model output data set ddd in terms of eigen frequency as a function of model parameters

m. In the present paper, model parameters are Eii and Gi j, and the forward model yield the data output in the

form of modal frequency λi.

3 NUMERICAL EXAMPLE
A spectral modal Bayesian inverse inferences technique is presented herein to identify the stochastic damping

loss factors of the glass-epoxy composite plate. An experimental free vibration analysis is conducted on 12-

layers glass-epoxy composite plate in free-free boundary conditions. 100 numbers of identical composite plate

of dimension 250×125×2 mm3 are used for the free vibration analysis. The modal frequency and modal damp-

ing ratio of the composite plate is determine by impulse hammer technique. To identify stochastic damping loss

factors, elastic parameters of the glass-epoxy composite plate are considered as deterministic and nominal values

of the elastic parameters are identified in [27] using inverse gPC identification. The nominal vales of the elastic

parameters and mass density are given in Table 1. These values were identified from the first 4 experimentally

evaluated eigen frequency. In this paper the loss factors of the composite plate are evaluated from experi-

mentally evaluated first 4 modal damping ratios using Bayesian inference technique. An innovative MCMC is

used to construct the posterior distribution of the loss factors. The innovation lies on the construction of the

likelihood function from the 4 modal data and simultaneously identified 3 loss factors by inverse operation.

Experimentally evaluated modal sampling data is used to update the damping loss factors from uninformative

prior. Random walk of the M-H algorithm, is used to generate posterior samples of {η11 η22 η12}T using 50
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Figure 1. MCMC sample for posterior distribution of the loss factors due to proposal SD

ση = {0.005 0.025 0.1}T.

and 100 experimentals sample data. The choice of proposal distribution is very important to specify the jump

towards the target distribution. Generally normal distribution, centered about the current sample point, is used

as a proposal distribution. However, asymmetric proposal distribution like log-normal distribution [28] is used

here to avoid the generation of the sample points smaller than 0. The SD of the proposal PDF is proposed as

ση = {0.005 0.025 0.1}T with log-normal distribution. Same starting points of the identifiable parameters are

considered here as {x(0)η11
x(0)η22

x(0)η12
}T = {0.2 0.2 0.2}T. However, in Fig. 1 it is observed that each loss factors

are converged towards its target distributions after initial burn-in period for both cases from a uninformative

prior. Sample statistics of the parameters are obtained after discarding initial 400 samples. The stochastic pa-

rameters of the identified loss factors are given in Table 2 discarding the initial burn-in period. Table 2 reveals

that variation of the statistical parameters of the identified loss factors are remain within a limited range of

variation for two types of sample data. Therefore, proposed modal Bayesian inverse inferences technique can

efficiently identify the stochastic loss factors of the composite plate from the modal experimental data.

Table 1. Mean values of the elastic parameters and density of the investigated plate as identified in [27]

Elastic moduli [GPa] E11 = 68.714 E22 = 27.401 G12 = 6.122

Poisson’s ratio [-] ν12 = 0.24 ν21 = 0.24 −
Density [gm/cm3] 2.1143 − −
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Table 2. Identified stochastic loss factors of the glass-epoxy composite plate

Parameters Prior Posterior Posterior

(50 samples) (100 samples)

Mean SD Mean SD Mean SD

η11 [%] 0.8 0.32 0.47 0.12 0.42 0.11

η22 [%] 3 1.20 1.16 0.15 1.20 0.13

η12 [%] 5 2 4.46 0.09 4.56 0.05

4 CONCLUSION
An stochastic Bayesian inverse identification technique is used to identify the loss factors of the glass-epoxy

composite plate from the experimentally evaluated modal damping ratio. In Bayesian inverse formulation the

likelihood function is developed from the sufficient numbers of modal data and the same likelihood function

is used to identify the three loss factors of the composite plate simultaneously. 50 and 100 numbers of first 4

modal damping ratios are used to update the posterior distribution via likelihood functions. To avoid calculation

of the integration in the denominator of the Bayesian equation MCMC algorithm has been used to determine

the posterior distribution of the loss factors. Sufficient numbers of posterior sample points are generated using

MCMC approach. The efficient learning of the inverse model is indicated in Fig. 1 by suitable convergence

of the identifiable parameters with 50 and 100 numbers of sample. Random walk of MCMC is supported log-

normal proposal distribution. Thus efficient stochastic identification of the set of loss factors of the glass-epoxy

composite plate are shown in this paper using Bayesian inverse identification technique.
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