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ABSTRACT 
The stability of the floating object is a key factor in near-field acoustic levitation, which has an extensive 
application prospect in manufacturing of micro-electromechanical system parts. This study presents a 
numerical study of the restoring force based on the theory of gas film lubrication. Finite difference scheme 
is used to solve the Reynolds equation considering the movement of reflector and to obtain the air pressure 
distribution. After coordinate transformation, the restoring force which acts on the levitator can be acquired. 
An experimental rig is constructed to measure the restoring force with different eccentricity. The 
experimental results show that the restoring force increases with the increase of eccentricity. The numerical 
results match well with experimental results. 
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1. INTRODUCTION 
Recently, near-field acoustic levitation (NFAL) technology has been rapidly developed. Comparing with 

the traditional non-contact levitation technology, such as air cushion (1) and magnetic system (2), NFAL 
system is a very compact system, which don’t need an additional air compressor to provide high pressure air 
and don’t produce an undesirable magnetic field. However, the manufacture and installation error will 
produce the acoustic viscous force caused by the gradient of the sound field in the fluid, which will affect the 
stability of floating object (3). Owing to the existence of the viscous force, if the floating object has a little 
eccentricity, it will push the object toward center, which is also called restoring force. In 2000, Koike et. al 
(4) used the block-spring model to evaluate the stability and calculated acoustic viscous forces in two 
direction based on the theory of the near-boundary acoustic streaming. Li et. al (5) pointed out that the block-
spring system model can only treat small amplitude oscillation because of its linear approximation. They 
used Stokes micro-continuum theory and acoustic radiation potential method to solve the restoring force. 
However, the corresponding experimental results were not given in that paper.  

This paper introduces a suggested method to acquire the restoring force when centers between radiator 
plate and reflector plate are misaligned. At first, an updated Reynolds Equation which considering the 
movement of reflector is derived based on the gas film lubrication. After coupled the gas film thickness and 
Reynolds Equation, the pressure distribution can be acquired by using finite difference methods (FDM). 
Secondly, the shear force which produced by pressure gradient can be decomposed into reflector. In the 
meantime, the experimental setup has been built to verify the relationship between eccentricity and restoring 
force.  

2. GOVERNING EQUATION 

2.1 Reynolds Equation 
For a symmetrical model, which means centers of radiator and reflector are concentric, the reflector 

will keep equilibrium in horizontal direction. However, in this study, the centers between radiator 
plate and reflector plate are misaligned. The distance between them is called eccentricity and is 
defined as e, as shown in Figure 1. In this condition, the reflector will do a damping oscillation in the 
horizontal direction until it stops at the equilibrium position. In order to simplify the numerical model, 
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the effect of inclination will be neglected in this study. 

 
Figure 1 – Misaligned squeeze film model in the cylindrical coordinate 

Some assumptions are introduced to simplify the momentum equations. First of all, since the radius of 
the plate L is considerably greater than the mean thickness of the air film h0, the pressure gradient in the film 
thickness direction can be neglected (6). Secondly, this squeeze film is assumed as isothermal film (7). 
Meantime, the fluid inertia force and body force compared with the viscous force can be neglected in the 
lower Reynolds number (8). Therefore, the momentum equations in the r- and θ-direction reduced to (9) 
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where rv  and v  are the airflow velocity in the r- and θ-direction, a  is the air dynamic viscosity, 
and , p  are the density and pressure of the air in the squeeze film, respectively. Assuming no 
relative slip between the air and the bottom surface of the reflector,  for laminar flow, velocity profile 
in the r- and θ-directions derived from equation (1) are (10) 
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where u  and  are the reflector relative horizontal displacement and rotational angle, and h  is the 
film thickness. Combined the airflow velocity expression and the continuity equation, the Reynolds 
equation in cylindrical coordinate system can be expressed as 
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2.2 Boundary Conditions 
Since the reflector will do a damping oscillation in the horizontal direction, the connection line between 

O  and 1O  can be set as x-axis, as shown in Figure 2. The whole solving domain  contains two parts: 
squeeze domain s  and no squeeze domain n . The domain  is decided by the radius L and closed by 
boundary Γ r L  . The squeeze domain boundary s  which represented by heavy line in Figure 2 can 

be expressed by 2 2
s r L (e sin ) e cos L . 

Therefore, the thickness of the air film in squeeze domain can be expressed by 
 0 0h h Z r sin wt ,  (4) 
where 0  and Z r  are the maximum vibration amplitude and mode shape of the radiator in Figure 1, 
respectively. The pressure in no squeeze domain always equals to the ambient pressure, which means 
 s ap p .  (5) 
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The boundary Γ contact with the ambient air means 
 ap p .  (6) 

The pressure gradient at the center O is zero, which means
 / ( 0, ) 0p r r t .  (7) 

At the beginning, the reflector plate still placed in the radiator, the film thickness equals zero, and the 
pressure equals to atmosphere pressure. Thus, 
 ( , 0) , ( , 0) 0ap r t p h r t .  (8) 

Combined the finite difference methods with Newton-Raphson method, the pressure distribution within 
the solving domain can be obtained (11, 12). 

 
Figure 2 – Schematic diagram of the boundary condition  

2.3 Motion Equations 
Three types force which caused by squeeze film are applied on reflector: levitation force zF , horizontal 

thrust force tF muu   and rotational moment 2 / 2tM mL / 2  . The forces which calculated in the polar 
coordinate O  need to decomposed to polar coordinate 1O , as shown in Figure 3. Since the solving domain 
and boundary conditions are symmetry about x-axis, the pressure distribution will be also symmetric about 
the x-axis. Thus, the rotational moment rM  will equals to zero and thrust force tF  points to positive x-
direction. Shear stresses zr  and z  are produced by air flow in r- and θ-direction acting on a surface 
normal to the z-axis. In the coordinate 1O , both zr  and z  have one component in r1- and θ1-direction, 
respectively. Thus, the thrust force tF  can be expressed by 
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The position of N in coordinate 1O  can be expressed by 

 2 2
1 11r r e 2recos , arcsin e sin / r .  (10) 

For a Newtonian fluid, combined equation (2) with the shear stresses in the flow acting on a surface 
normal to the z-axis in cylindrical coordinate, the expression for the shear stress on the bottom surface of the 
reflector are expressed as 
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Equation (11) shows the shear stress mainly depends on pressure gradient and the relative movement of 
reflector. The levitation force zF  is the integral of pressure in the solving domain, which is given by 
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Figure 3 – Geometric diagram for the resolution of shear forces 

3. EXPERIMENTAL VALIDATION 

 
Figure 4 – Schematic diagram of experimental test system 

Based on the same transducer and radiator in reference (12), a new reflector plate is used to measure the 
relationship between eccentricity and restoring force. It made of AL2024 and has the same diameter as 
radiator which is 120 mm. The thickness and gravity of this plate are 3 mm and 0.9244 N, respectively. 
Reference the experimental measurement method (13), a universal tilting indexing disc is used to 
approximately measure the restoring force. A schematic diagram of the experimental setup is shown in Figure 
4. It includes a universal tilting indexing disc, transducer and the corresponding control unit, as well as a 
digital single-lens reflex camera for monitoring the levitation performance of the plate. The transducer was 
fixed on the universal tilting indexing disc, which can be tilted in a certain angle  by adjusting the control 
system. Therefore, the eccentricity e is adjusted until the restoring force and the gravity component balanced 
each other, which means sintF mg . 

4794



 

 

4. RESULTS 

4.1 Pressure Distribution 
Figure 5 shows the pressure distribution in radiator coordinate O  at the start time of one stable cycle. 

The excitation amplitude, levitation force and eccentricity are 16 μm, 0.9244 N and 10 mm, respectively. The 
radiator works in second order vibration mode and the excitation frequency is 19 kHz. Note that the shape of 
pressure is corresponding with the mode shape in the squeeze domain s . The reason for this is that the 
vibration mode shape is one boundary condition to accurate the gas film thickness. If the eccentricity equals 
to zero, the pressure distribution will be symmetrical in squeeze domain as shown in reference (12) and the 
reflector will keep stable situation. In the non-squeeze domain n , the pressure value equals to 1, which 
means the pressure equals to atmospheric pressure. 

 

Figure 5 – Pressure distribution in solving domain 

4.2 Eccentricity 

 
Figure 6 – Comparison of the restoring force versus eccentricity 

In general, eccentricity is the most important factor which affect the restoring force distribution. Thus, the 
influence of the eccentricity e on restoring force is shown in Figure 6. The hollow and solid dot denote the 
numerical and experimental result, respectively. Notably, the numerical results exhibit reasonably good 
agreement with the experimental results in lower eccentricity. Since the calculation with the assumption of 
the inclination of reflector is neglectful. In the lower eccentricity, this assumption is acceptable. However,  
with the increase of eccentricity, the inclination is a very important factor which affect the stability of reflector. 
In two different excitation amplitude, the restoring force increases with the increase of eccentricity. It is noted 
that the increase gradient will be decrease with the eccentricity increases. The same variation tendency has 
also been reported in reference (3). 
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5. CONCLUSIONS 
This study presents a novel theoretical analysis method for calculating the restoring force based on gas 

film lubrication theory. At first, an updated Reynolds Equation which considering the movement of reflector 
is derived. Combined with the levitation height, the pressure distribution can be acquired by using Finite 
Difference Methods. Secondly, by using the coordinate transformation, the restoring force acting on the 
reflector can be calculated. Numerical results show that the restoring force increases as the increasing of 
eccentricity and the relationship between them is nonlinear. Meanwhile, the experimental setup which used 
to prove this relationship is built. The numerical experimental results show good agreement with the 
experimental numerical results, which means the method is effective for predict the stability of NFAL system. 
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