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a b s t r a c t

A high performance implementation of a discontinuous Galerkin discretizationwith explicit Runge–Kutta
and arbitrary derivative (ADER) time integration schemes is presented to solve the acoustic wave equa-
tion. For ADER, both a global and a local time stepping variant is supplied. The implementation is based on
the matrix-free framework of the deal.II finite element library providing efficient evaluation routines
for quadrilaterals and hexahedra. The implementation is generic and its applicability is demonstrated
for academic examples as well as real world problems like urban acoustics. We present the physical and
numerical problem description, the general code structure, and the design principles.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Legal Code License LGPL v.2.1
Code versioning system used Git
Software code languages, tools, and services used C++, MPI
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If available Link to developer documentation/manual github.com/kronbichler/exwave
Support email for questions kronbichler@lnm.mw.tum.de

1. Motivation and significance

The acoustic wave equation is used in a wide range of applica-
tions. Amongst others it allows to predict room acoustics for con-
struction projects or to optimize urban planning and city design in
terms of noise. Countless numerical tools exist to solve the acoustic
wave equation each with its advantages and disadvantages. Most
challenging is the accurate simulation of high frequency waves be-
cause they require high spatial and temporal resolution. One group
of solution techniques circumventing the difficulties induced by
high frequencies and applicable to room acoustics are geometric
methods based on ray-tracing, which however are not sufficiently
accurate for low-frequencies and diffraction [1]. Another approach
is to assume that acoustic waves propagate diffusely in rooms after
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a sufficient number of reflections and a diffusion equation model
is solved (for example, see [2]).

The prediction of acoustics over a wide frequency range re-
quires to solve the acoustic wave equation either with purely
numerical schemes with a sufficiently fine discretization or semi-
analytic schemes relying partly on fundamental solutions of
the wave equation. Straightforward finite difference time domain
(FDTD) methods are widely used but due to limited computational
resources only applied to lower frequencies [3]. More recently,
adaptive rectangular decomposition has been proposed, which is
a domain decomposition technique relying on the analytic so-
lution of the wave equation in rectangles and additional inter-
face handling [4,5]. They are currently limited to homogeneous
sound speed distributions. Besides finite difference schemes, also
conventional finite elements, mixed elements, spectral elements,
discontinuous Galerkin (DG) methods and finite volume methods
have been applied to the acoustic wave equation, see [6–10],
respectively.
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Table 1
Implemented time integration schemes. The indicated orders refer to the order
of the time integration scheme. For ADER, also order k + 2 can be reached if a
reconstruction as in [12] is applied.
Name Description Order Stages

ExplEuler Explicit Euler 1 1
clRK4 Classical RK 4 4
LSRK45R2 Low-storage RK, two registers [17] 4 5
LSRK45R3 Low-storage RK, three registers [17] 4 5
LSRK33R2 Low-storage RK, two registers [17] 3 3
LSRK59R2 Low-storage RK, two registers [17] 5 9
SSPRK Strong-stability preserving RK [18] 4 8

ADER ADER as in (4) or [12] k + 1 —
ADERLTS ADER LTS as in [12] k + 1 —
ADERADCONFULL adjoint consistent ADER [12] k + 1 —

The basis for this work are the publications [11,12] on DG
methods for the acoustic wave equation. In this contribution, we
present a high performance high-order DG solver for the acoustic
wave equation that is general in terms of geometries, frequency
range, and speed of sound distributions and is combined with
explicit Runge–Kutta as well as arbitrary derivative (ADER) time
stepping schemes [13]. Our code supports adaptive mesh refine-
ment in space as well as local time stepping in time, to con-
centrate the computational work in the regions where the most
interesting physics happen. The implementation is based on the
deal.II finite element library [14] supplying efficientmatrix-free
evaluation routines for quadrilaterals and hexahedra [15,16]. The
algorithm provides a very high performance on modern hardware
in terms of throughput, degrees of freedom processed per second,
and scalability [13].

ExWave is valuable for the scientific computing community
because it balances high performance and code optimizationswith
applicability to real world problems and available hardware. For
the community of computational acoustics, this code allows to
approach currently unexplored scenarios because of its high flex-
ibility in geometry, mesh generation, or in terms of adaptivity
(as in [12]) but also delivers solutions of predictable accuracy in
reasonable time with moderate computational resources.

Theoretical background

The acoustic wave equation written as first order system in
terms of the pressure p and the particle velocity v is given as

∂v

∂t
+

1
ρ
∇p = 0, (1)

∂p
∂t

+ c2ρ∇ · v = 0, (2)

with the speed of sound c and the mass density ρ. This equation
holds on a d-dimensional spatial domain Ω ∈ Rd and in the
time interval [0, T ] with final time T . The first equation represents
the conservation of momentum while the second enforces the
conservation of mass. The acoustic wave equation is accompanied
by initial conditions on the pressure and the velocity as well as
boundary conditions. Currently, Dirichlet boundary conditions for
the pressure, homogeneous Neumann boundary conditions for the
normal component of the velocity, and a first-order absorbing
boundary condition are implemented in ExWave.

Spatial discretization is carried out by the DG method using
the accurate fluxes from the hybridized DG method as described
in [11]. Temporal discretization is carried out by explicit Runge–
Kutta schemes as presented in [11] or by ADER time stepping as
derived in [12,13]. The solution is expressed by time-dependent

unknowns summarized in the vectors V , P . The update rule for an
s-stage Runge–Kutta scheme reads[
V ti+1
P ti+1

]
=

[
V ti
P ti

]
+ ∆t

s∑
j=1

bjK j with (3)

K j = −Q−1K

([
V ti
P ti

]
+ ∆t

j−1∑
l=1

ajlK l

)
,

and the coefficients ajl, bj from the Butcher tableau of the respec-
tive scheme. Therein, ∆t is the time step and the matrices Q and
K are the mass and stiffness matrix resulting from the spatial
discretization as shown in [12]. For ADER time discretization, the
update rule is[
V ti+1
P ti+1

]
=

[
V ti
P ti

]
− Q−1KQ−1

k+1∑
j=0

∆t j+1

(j + 1)!
(−1)j

×

∫
Ω

NTSjNdΩ

[
V ti
P ti

]
, (4)

where k is the polynomial degree of the utilized shape functions,N
is thematrix holding the shape functions, the operator S comprises
the spatial derivatives representing the wave equation, see [12]
for details. Both methods (3) and (4) yield optimal convergence
of order k + 1 in the pressure p and the velocity v. By means of
reconstruction and postprocessing, even superconvergent results
of order k + 2 in p can be obtained.

Numerical example

While the implementation is quite general (see e.g. the example
in Section 3.3), we will explain it along with an academic example
forwhich the parameter file is provided in the current code version.
The example is a vibrating membrane problem for which analyt-
ical solutions are available and implemented, therefore allowing
for straightforward convergence tests. On the d-dimensional cube
with Ω = [0, 1]d, a vibrating membrane with m modes per
coordinate obeys the exact solution

p = cos
(
m

√
dπ t

)
·

d∏
e=1

sin(mπxe) (5)

with homogeneous Dirichlet boundary conditions. adaptations to
more general setups can be easily introduced by extensions of the
code as shown in Section 3.3.

The parameter file allows to adapt the spatial dimension (d =

2,3), the spatial discretization (i.e., mesh, mesh refinement, mesh
transformation). Additionally, parameters concerning the tempo-
ral discretization can be adapted. For time integration, one can
choose between the schemes listed in Table 1. Also, the user inputs
the final time, output time steps, and the Courant number from
which the time step is derived. The parameter m in Eq. (5) is
specified by membrane_modes. Other than that, ADER and ADER
LTS specific parametersmay be setwith use_ader_post enabling
the reconstruction and spectral_evaluation referring to the
fast evaluation introduced in [13].

2. Software description

The presented code is based on version 9.1-pre1 of the deal.II
finite element library [14]. In order to ensure the functionality
and correctness of the code and to ease further developments,
unit tests checking the convergence orders for several setups are
incorporated using the ctest testing framework.

1 Any commit after 102d808 from Nov. 28, 2018.
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Fig. 1. The main class WaveEquationProblem contains an operator to evaluate the spatial discretization WaveEquationOperationBase and a time integrator derived
from ExplicitIntegrator. The shaded regions indicate how spatial and temporal operator are combined.

Themain class of ExWave isWaveEquationProblem. Itsmethod
run() executes the time loop. The main components are a time
integrator derived from ExplicitIntegrator and a spatial op-
erator derived from WaveEquationOperationBase, as shown in
Fig. 1. The time integrators execute the vector updates and call
the spatial operator application. For ADER, spatial and temporal
evaluation are strongly interlinked and the entire evaluation takes
place in WaveEquationOpeationADER. The LTS requires a com-
plex update call, which is handled by a ClusterManager which
in turn is called by WaveEquationOperationADERLTS.

The class WaveEquationOperation is templated on the di-
mension d and the polynomial degree k of the shape functions.
It relies heavily on the MatrixFree class of the deal.II library
and uses the optimized evaluation routines FEEvaluation and
FEFaceEvaluation. Matrix-free operator evaluation allows for
a much higher performance compared to classical matrix-based
schemes, which is due to a higher arithmetic density. Also, fast
integration techniques relying on sum factorization utilizing the
tensor product structure of the shape functions are used and ex-
plicit cross-cell vectorization is enabled. Details on matrix-free
methods with sum factorization techniques and performance in
the context of DG for the acoustic wave equation can be found
in [15,16] and [13], respectively. WaveEquationOperationBase
can be flexibly switched between single and double precision by a
typedef value_type.

In the file time_integrators.h, not only the time integrators
but also an optimized vector updater are implemented. The vector
updater RKVectorUpdater merges several vector updates into a
single loop over the entries and thereby reduces the number of
required vector reads from five to two per stage. This contribu-
tion allows one to increase performance by a factor of 1.7× for
LSRK45R2 on modern processors where performance is typically
memory-bandwidth limited [13].

One aspect of the code we want to mention explicitly is that it
allows to run an iterative CFL stability analysis based on a stability
criterion in terms of L2 pressure errors to find a tight fit of the
critical Courant number for a certain problem configuration.

3. Illustrative examples

In this chapter, one academic example is presented, followed
by two performance tests, and last a representative for real world
problems.

3.1. A convergence test

The correctness of the methods and code is demonstrated with
convergence tests. To run a convergence test based on the vibrat-
ing membrane, a basic set of input parameters must be speci-
fied and then several simulations are run varying the parameter
n_refinements. The L2 pressure error at the final time is output.

Results are shown for two different exemplary configurations.
The first setup is a two-dimensional geometry and the tempo-
ral discretization relies on ADER LTS. Furthermore, the parame-
ter use_ader_post=true is set to obtain superconvergent re-
sults [12]. The second setup is three-dimensional and temporal
discretization is based on LSRK33R2. For both setups, the number
of membrane modes in the analytic solution is set to the poly-
nomial degree of the shape functions and cfl_number=0.1 with
n_initial_intervals = 5 . All other parameters are set as in
the default parameter file.

Fig. 2 summarizes the results for the tested polynomial degrees
k = 1, 2, 3, 4, 5, 6. The expected convergence orders of k + 1
for the pressure p and k + 2 for the postprocessed pressure p∗

are obtained for all tested polynomial degrees with ADER LTS. For
LSRK33R2, the expected convergence rates are only obtained for
coarse discretizations. For fine discretizations, the temporal error
dominates because LSRK33R2 is only of order three.

3.2. Performance evaluation

Wecompare ADER and LSRK45R2 in terms of the throughput on
28 cores of a dual-socket Intel Xeon Broadwell E5-2690v4machine
operating at 2.6 GHz, compiled with the g++ compiler, version 6.2,
at optimization level -march=haswell -03 -funroll-loops.
The setup is as in Section 3.1 with a three dimensional geometry
meshedwith 803 elements for k = 1, 2, 3 and 403 elements for k =

4, . . . , 12. Fig. 3 plots the results. A throughput up to 6.33 ·108 de-
grees of freedomper second for ADERwith k = 3 is reached, which
is 3.9 times higher than the respective throughput for LSRK45R2.
For higher polynomial degrees, the advantage of ADER decreases
slowly due to the fact that ADER is of order k + 1 with additional
computations for the higher orderswhile LSRK45R2 is of order four
for all polynomial degrees.

To demonstrate parallel capabilities, we perform a strong scal-
ing experiment with h-adaptivity based on a three-dimensional
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Fig. 2. Convergence study in two dimensions for ADER LTS and in three dimension for LSRK33R2.

Fig. 3. Throughput for ADER and LSRK45R2 for d = 3 and k = 1, . . . , 12 on one
node of 28 cores.

setup as in [13], Section 4.7, incorporating amaterial inhomogene-
itywith an impedancemismatch of four and an unstructuredmesh
capturing a curved interface between the two materials with a
high-order mapping. An adaptive update is carried out every 500
time steps at a Courant number of 0.1. Fig. 4 shows the results
obtained on the SuperMUC Phase 2 system using 112 to 7168 cores
of Intel Haswell E5-2697 v3, running at a frequency of 2.1 GHz. The
computational time scales almost ideally while a slowdown can
be observed for the adaptation as explained in [19–21] and due to
the fact that data structures for h-adaptivity in deal.II are not as
optimized as the matrix-free implementations. The weak scaling
is better since the main cost of the adaptivity is due to the cost
of deal.II’s generic transfer routines between mesh levels, the
geometry evaluation at ghost cells, and cost of data transfer while
repartitioning. Writing output scales good for small numbers of
cores but degrades after 1792 cores.

3.3. Urban acoustics

This example examines sound propagation in a village repre-
senting outdoor acoustics, which is relevant for urban planning
and city design [22] or useful for gun shot localization in the
context of crime control [23]. The geometry under consideration
is based on the artificial village presented in [24,25], where a FDTD
method and an adaptive rectangular decomposition approach are

Fig. 4. Strong scaling of full simulationwith 43,000 time steps andup to 180million
spatial unknowns with ADER for d = 3 and k = 5.

Fig. 5. Geometry of the training village.

used to solve the acoustic wave equation. The geometry consists
of fifteen buildings of different height. Fig. 5 depicts the geometry
of the buildings. The computational domain is a cuboid of size
175 × 140 × 14 with the buildings cut out. Surfaces correspond-
ing to walls, roofs, and the ground are assumed to be perfectly
reflecting, whereas the first order absorbing boundary condition
is applied on all other boundaries. A sound source is located at
(62, 104, 1) corresponding to SP1 from [25]. To read in the exter-
nally generated mesh and set corresponding boundary conditions
and initial pressure fields, adaptations to input_parameters.h
are necessary as shown in the branch urbanacoustics of the
supplied software. In [25], simulationswere run on amesh consist-
ing of 1.1 · 107 grid points and a time step size of ∆t = 3.85 · 10−4

with 2000 time stepswhich corresponds to a simulation frequency
of 450Hz, taking 20minon a single core CPUmachine. Here,we run
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Fig. 6. Pressure snapshots in the training village on the xy plane at z = 1 and on the yz plane at x = 62.

simulations on a discretization of average grid spacing 1.2, k = 3,
resulting in 1.15 · 107 grid points with ∆t = 2.45 · 10−5 and
19704 time steps to reach the same final time. Fig. 6 plots several
pressure snapshots to give an impression of the sound propagation
patterns. Simulation on 28 cores of a two socket Intel Xeon E5-
2690 v4 Broadwell 2.6 GHz system requires 2.5 · 103 seconds
which corresponds to 76 CPU minutes for 2000 time steps. Hence,
a computation on the same geometry with the same number of
grid points and time steps is only 3.8 times slower compared to
the adaptive rectangular decomposition. This is a very good result,
considering that the adaptive rectangular decomposition relies on
a semi-analytic approach using the discrete cosine transform in the
decomposed rectangles and considering that their time integration
is not of order five but a two step type. A comparison of the
computational performance considering accuracy and temporal
stability should be addressed by future work.

4. Impact

The presented algorithm was used in several research pa-
pers [11–13]. The code impacts two communities. First, for the
scientific computing community, this code is a representative of a
very efficient implementation of matrix-free operator evaluation
with throughput close to much simpler finite difference meth-
ods, despite support for complex meshes, including local mesh
refinement and curved meshes. The code allows to run conclusive
performance tests as shown in [13] and Section 3.2, and therefore
enables researchers concerned with high performance computing
to test and validate new methods to reduce computational time.
This new concept can be applied in a wide variety of problems
beyond the acoustic wave equation, such as other wave propaga-
tion problems in electromagnetics or seismics. Furthermore, the
Runge–Kutta related code part can be easily adapted to nonlinear
problems, such as the compressible Navier–Stokes equations with
explicit time stepping schemes. As demonstrated by results in [26],
the present concepts are faster by a factor three to five over the
state of the art in the DG literature. In addition, it is an ideal test
bed for introducing advanced features, such as cut finite element
technology for representing complicated geometries on unfitted
meshes, e.g. by the ongoing work [27].

Secondly, this code will have an impact on computational
acoustics. Historically dominated by finite difference and semi-
analytic methods, we now have a code at hand which is not
only high performing but also applicable to problems of practical
relevance. It offers more flexibility compared to finite difference
solvers, e.g. in terms of meshes and adaptivity.

5. Conclusions

We presented the high performance code ExWave to solve the
acoustic wave equation based on higher order DG spatial dis-
cretization in combination with explicit Runge–Kutta and ADER

global and local time stepping relying on the deal.II finite ele-
ment library, or, more precisely, the matrix-free framework sup-
plying fast quadrature with sum factorization. Also, ExWave al-
lows to validate implementations in terms of spatial and tempo-
ral convergence, to determine temporal stability limits in terms
of a CFL stability analysis, as well as to measure and compare
computational performance for different discretizations. Urban
acoustic simulations, as exemplary shown in Section 3.3, enable
city planning or street canyon designminimizing noise exposure. A
potential extension is the implementation of a variety of boundary
conditions that are commonly used in room and urban acoustics.
A future study should compare this solver to adaptive rectangular
decomposition methods not only in terms of computational time
but also accuracy.
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