
sensors

Article

Towards Establishing Cross-Platform Interoperability
for Sensors in Smart Cities

Kanishk Chaturvedi * and Thomas H. Kolbe

Chair of Geoinformatics, Technical University of Munich, Arcisstrasse 21, 80333 Munich, Germany;
thomas.kolbe@tum.de
* Correspondence: kanishk.chaturvedi@tum.de; Tel.: +49-89-289-22974

Received: 28 November 2018; Accepted: 24 January 2019; Published: 29 January 2019
����������
�������

Abstract: Typically, smart city projects involve complex distributed systems having multiple
stakeholders and diverse applications. These applications involve a multitude of sensor and IoT
platforms for managing different types of timeseries observations. In many scenarios, timeseries
data is the result of specific simulations and is stored in databases and even simple files. To make
well-informed decisions, it is essential to have a proper data integration strategy, which must
allow working with heterogeneous data sources and platforms in interoperable ways. In this paper,
we present a new lightweight web service called InterSensor Service allowing to simply connect
to multiple IoT platforms, simulation specific data, databases, and simple files and retrieving their
observations without worrying about data storage and the multitude of different APIs. The service
encodes these observations “on-the-fly” according to the standardized external interfaces such as
the OGC Sensor Observation Service and OGC SensorThings API. In this way, the heterogeneous
observations can be analyzed and visualized in a unified way. The service can be deployed not only by
the users to connect to different sources but also by providers and stakeholders to simply add further
interfaces to their platforms realizing interoperability according to international standards. We have
developed a Java-based implementation of the InterSensor Service, which is being offered free as
open source software. The service is already being used in smart city projects and one application for
the district Queen Elizabeth Olympic Park in London is shown in this paper.

Keywords: smart cities; sensors; Internet of Things; interoperability; sensor web enablement;
OGC standards

1. Introduction and Motivation

With the rapidly increasing urban population, it is essential for local governments to efficiently
manage the city’s resources, development, and operation. Smart Cities is an emerging field in the same
direction that "relies on advanced data processing with the goals of making city governance more efficient,
citizens happier, businesses more prosperous and the environment more sustainable" [1]. It allows managing
city resources such as energy and water with the help of advanced information and communication
technologies such as Sensors and the Internet of Things (IoT) [2], Big Data [3], Cloud Computing [4],
and also geospatial technologies [5]. Ubiquitous sensors and IoT devices are essential parts of several
smart infrastructures providing detailed information by sensing the environment. Many application
domains, such as home and industrial automation, intelligent energy management and smart grids,
traffic management, and others benefit from the use of real-time sensor observations. These sensors
can be stationary such as smart meters [6] and weather stations [7]. Some of the sensors can also be
non-stationary such as moving sensors for measuring air quality [8]. We believe that there is also
another category of virtual sensors which are not necessarily located physically, but their sensing
observations can be studied to get better information about our surroundings and environment.

Sensors 2019, 19, 562; doi:10.3390/s19030562 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-8084-1720
http://dx.doi.org/10.3390/s19030562
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/19/3/562?type=check_update&version=2

Sensors 2019, 19, 562 2 of 29

For example, real-time social media analytics like Twitter feeds can be used for behavioral and
sentiment analysis and to make better decisions [9].

The Smart City concept is emerging rapidly and many cities worldwide are developing their
smart infrastructures. Commercial implementations include IBM Smarter Planet [10], CityNext [11]
from Microsoft, and The Internet of Everything for Cities [12] by CISCO. Some of the projects
are also run by consortia of universities, companies and city councils in a collaborative
manner such as Smart Sustainable Districts [13], under Climate-KIC of the European Institute
of Innovation & Technology (EIT) and the project EU ICT 30-2015 (Internet of Things and
Platforms for Connected Smart Objects) (http://ec.europa.eu/research/participants/portal/desktop/
en/opportunities/h2020/topics/ict-30-2015.html) funded by the European Union Horizon 2020
Programme. In most smart city projects, multiple stakeholders and companies are involved who may
be the owners, operators, utility companies, sensor providers, citizens, and visitors. These stakeholders
usually are interested in specific applications or simulations and collect data for their own purposes.
For example, an energy provider company participating in a project owns the energy consumption
data for buildings. In general scenarios, this data is meant to be used with the application owned by
the same energy provider company. Most often, the structure of the data is not standardized and lacks
explicit semantics, and hence, is not suitable to work with other datasets. This is typically also the case
for sensor and IoT platforms being used in such projects. In most scenarios, stakeholders use their
own sensors which are built for specific purposes and are based on specific platforms (c.f. Section 2.2).
These platforms may be open or proprietary, however, most of the time, they are not standardized.
Another challenge is that the APIs associated with these platforms are subsequently changed without
notifying the users. Moreover, the observations retrieved from these sensors are not always associated
with an API. In many scenarios, such timeseries observations are the results of simulations [14] which
are stored in databases or even simple files (c.f. Section 2.3). This leads to a major challenge to work in
unified ways with a wide variety of data sources and their data types which are completely different
from each other.

It shows that such smart city projects involve complex distributed systems having multiple
stakeholders, diverse applications, a multitude of sensor and IoT platforms and data sources. To make
well-informed decisions, it is very important to achieve a proper data integration strategy, which
must allow working with heterogeneous data sources and platforms in a common operational
framework. Such integrated information leads to joint and real-time analytics to manage aspects
of how a city functions and is managed e.g., by using smart city dashboards [15] as shown in Figure 1.
However, as highlighted by Moshrefzadeh et al. [16], due to data privacy concerns and competition
between several stakeholders, it does not make sense to try to collect all available data resources
within a central data repository. Rather, the data should remain with their owners and should be
combined flexibly according to specific applications or stakeholders. This leads to the requirement of
interoperability in order to deal with the heterogeneous sensor and IoT platforms. Such interoperability
can be achieved by using open and international standards which, on the one hand, allow modeling
and representing the data sources and, on the other hand, allow interfacing the distributed components
that give access to data, visualizations, and analytical tools.

Sensor Web Enablement (SWE) [17], an initiative from the Open Geospatial Consortium (OGC),
has already developed a suite of standards enabling the discovery, access, tasking, as well as
eventing and alerting of the sensor resources in a standardized way. The OGC SWE standards suite
comprises well-defined information models such as (i) SensorML [18], which not only represents sensor
description and metadata, but also sensor calibration records and accuracy and precision information,
and (ii) Observations and Measurements (O&M) [19] for describing real-time sensor observations.
The SWE also provides comprehensive interface models and web services such as Sensor Observation
Service (SOS) [20] and SensorThings API [21] for retrieval of sensor descriptions and observations
with the help of standardized requests. In comparison to SOS, SensorThings API is a relatively new
standard, which is REST-ful, lightweight, and based on JSON. The Timeseries API [22] developed by

http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/ict-30-2015.html
http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/ict-30-2015.html

Sensors 2019, 19, 562 3 of 29

a company called 52° North is not an international standard, however, provides a REST-ful web binding
to the OGC Sensor Observation Service in order to be easily queried and visualized by lightweight web
applications. Other than OGC SWE, there are also several projects such as bIoTope [23], VICINITY [24],
BIG IoT [25], and FIWARE [26] (more details in Section 2) dealing with interoperability issues over
heterogeneous sensor and IoT devices in the Smart Cities domain.

Figure 1. Illustration of heterogeneous data sources for sensor and timeseries data and the requirement
to integrate and use them by common applications.

Such sensor web infrastructures play an important role in establishing interoperability for
heterogeneous sensors and are considered as one of the keys to work in distributed scenarios.
They allow encoding sensor description and observations using well-defined standards as well
as accessing them using standardized interfaces. In this way, applications and tools can be
developed based on these standards without worrying about what different kinds of sensors they use.
Multiple sensors can be attached to these infrastructures and their interfaces will always be common
for different applications. There are several projects which are already realizing such sensor web
infrastructures (c.f. Section 2.1). However, such infrastructures always require a data storage to store
sensor metadata and their observations, based on which web services can query and retrieve data
and observations. The issue is that in a distributed environment, where multiple stakeholders and
sensor owners are involved with proprietary sensors, not all of them would be willing to inject their
proprietary data into a third-party data storage in the sensor web. Moreover, in a running distributed
system having another data storage for the sensor web will require regular maintenance. It can also be
a complex affair while moving the infrastructure to different locations, for example, from one server to
another or into the cloud. Additionally, not many standardized sensor web infrastructures yet consider
supporting virtual sensors such as information coming from Twitter feeds or simple files. In these
cases, it is needed to have an intermediate service which can connect to a specific data source and
encodes the observations “on-the-fly” according to the standardized interfaces without worrying about
the data storage and multitude of data sources (see Figure 2). In other words, this intermediate service
should be like a “Babel Fish” from the Hitchhiker’s Guide to the Galaxy [27] which is a "universal
translator that neatly crosses the language divide between any species".

Sensors 2019, 19, 562 4 of 29

Figure 2. Comparison of the OGC SWE implementations for integrating IoT platforms with them.
The implementations of OGC Sensor Observation Service and SensorThings API require importing the
observations to their respective data storages. The motivation of this work is a lightweight intermediate
service (shown in dark green) allowing connecting to the respective platform, retrieving observations
and encoding them “on-the-fly” according to the OGC SWE standardized interfaces.

This paper provides solutions for the above-mentioned issues by introducing the lightweight
InterSensor Service [28]. This service provides several data adapters which can be used for establishing
connections to not only different IoT platforms, but also to external databases, CSV files, Cloud-based
spreadsheets, GPS feeds, and real-time Twitter feeds. While querying, the service opens a data
source connection and retrieves the observations based on querying parameters directly from the
data source. The service encodes these observations “on-the-fly” according to the international
standardized interfaces such as the OGC Sensor Observation Service and OGC SensorThings API.
In this way, applications compliant to such OGC standardized interfaces can simply be used to
interact with heterogeneous observations without worrying about their data storage. The major
reasons for initial development for the responses according to the OGC SWE interfaces are as follows.
First, the OGC SWE framework is completely based on released and published Open Standards
adopted internationally. When implementing something that is not standardized, there is a high risk
that the developed and suggested encodings/APIs will be abandoned, replaced, or vanish after the
project is over. Second, in Smart Cities, a lot of other data and presentation services such as web maps,
3D visualizations, data with geographic coverages like weather data, air quality, wind fields etc. are
provided by Spatial Data Infrastructures (SDIs). All of these services are also provided using OGC
standards. Hence, Sensor and IoT services just add another category of web service to SDIs and it is
beneficial to make the IoT service compliant to SDIs such that they can be used with similar protocols
and tools already used in the framework of SDIs. Third, it also makes the observations suitable to be
visualized and managed with the other numerous OGC geospatial standards such as CityGML [29].
Also, no other implementation yet provides such “on-the-fly” interfaces for international OGC SWE
standards. However, the concept is not limited to only the OGC standards. In the future, interfaces can
also be developed according to other standards/protocols such as FIWARE. The InterSensor Service is
a Java-based application and is available for free as Open Source software [30].

This paper is a substantially extended version of earlier work presented at the IEEE International
Smart Cities Conference 2018 [28] and provides a comprehensive analysis of the InterSensor Service
by comparing it with other research work and by implementing data adapters and interfaces

Sensors 2019, 19, 562 5 of 29

for supporting more use cases. The paper also discusses deployment options for different
distributed scenarios considering the security and privacy of the data sources and platforms.
Furthermore, the paper presents a first evaluation of the InterSensor Service by comparing original
response times and data payload sizes against “on-the-fly” data and protocol conversion using
InterSensor Service when connecting to different data sources. The rest of this paper is structured as
follows: Section 2 gives a comprehensive literature review of existing sensor web infrastructures and
IoT platforms being used in smart city initiatives. This section also reviews different possibilities for
storing and managing observations, which can be retrieved by the InterSensor Service. The architecture
and details of the data model of the service are described in Section 3. Section 4 demonstrates the
details of implementing and using the InterSensor service by giving configuration examples to connect
to individual data sources. This section also shows the details of standardized interfaces generated
automatically by the service. Section 5 shows demonstration scenarios of the InterSensor Service being
already used in a smart city project based in the Queen Elizabeth Olympic Park in London. The last
section draws the conclusions about the presented work and outlines the relevant aspects of our future
research and development tasks.

2. Literature Review

Depending on the use cases and sensor hardware, there are numerous possibilities for managing
sensor observations. These observations can be stored and managed using different platforms and
APIs, databases, and simple external files as shown in Table 1.

Table 1. Overview of different types of data sources which are used for storing, managing, and accessing
timeseries data for diverse purposes.

Source Type Description Examples

Platforms & APIs

(i) allow attaching sensor and IoT
devices to them;
(ii) allow managing, analyzing,
and visualizing real-time observations
using sophisticated client applications
and well-defined APIs

ThingSpeak [31]
OpenSensors [32]
The Things Network [33]
Weather Underground [34]
OGC Sensor Observation Service [20]
OGC SensorThings API [21]
52° North Timeseries API [22]
FIWARE [26]
BIG IoT [25]
bIoTope [23]
VICINITY [24]
symbIoTe [35]
Inter-IoT [36]
Thingful [37]
Smart Emission [38]
SenML [39]

Databases

(i) storing and managing time varying
observations retrieved from sensor and
IoT devices;
(ii) managing timeseries values
obtained as a result of simulations

Oracle [40]
MySQL [41]
PostgreSQL [42]
TimescaleDB [43]
InfluxDB [44]
MongoDB [45]

Basic Files can be used to store timeseries data in
structured ways

Comma Separated Values (CSV)
Microsoft Excel Sheets

Cloud-based Systems
can be used to store timeseries data in
structured ways on the Cloud allowing
easy retrieval of the data

Google Fusion Table [46]
Google Spreadsheet [47]
Microsoft OneDrive [48]

Sensors 2019, 19, 562 6 of 29

Table 1. Cont.

Source Type Description Examples

Moving Objects
involve scenarios and applications
where the location of an object vary
w.r.t. time

GPS Exchange Format (GPX) [49]
Keyhole Markup Language (KML) [50]
Cesium Language (CZML) [51]
Waze API [52]

Social Media
involve real-time social media analytics
to be used for behavioral and
sentiment analysis

Twitter API [53]
Flickr API [54]

Semantic 3D
City Models

involve time-dependent and dynamic
data from sensors and simulations
linked with 3D city objects

CityGML Dynamizers [55]

2.1. Smart Cities, Sensors and Interoperability

Owing to the well-defined and comprehensive set of open and international standards, the Sensor
Web Enablement (SWE) standard suite is already being used worldwide in various domains such
as early warning systems [56], disaster management [57], marine science [58,59], citizen science [60],
environmental and air quality monitoring [61,62] and many more. Smart City initiatives are also
recognizing the importance of such sensor web infrastructures. The “Smart Cities Spatial Information
Framework” [63] is based on the integration of OGC open standards and geospatial technology
and is critical achieving the benefits of spatial communication for smart cities. The OGC Innovation
Program [64] also includes testbeds and pilots for smart city infrastructures. One such initiative
recognizing the importance of such open and interoperable standards recently completed its first
phase in Europe: OGC’s Future City Pilot [65]. The Future City Pilot Phase 1 (FCP1) is an OGC
Interoperability Program initiative in collaboration with buildingSMART International (bSI). The pilot
aimed at demonstrating and enhancing the ability of spatial data infrastructures to support quality
of life, civic initiatives, and urban resilience. One of the objectives of the pilot was to demonstrate
“how dynamic city models can provide better services to the citizens as well as can help to perform the
better analysis?”. Within this use case, the city’s static data such as buildings or houses with elderly
citizens having special needs could be integrated with dynamic data such as outside temperature
or air humidity using interoperable OGC standards such as CityGML [29] and Sensor Observation
Service [20]. Such potential integration within council owned assets could lead to better decision
making in case of extreme weather or other emergency scenarios matching human needs to the right
housing or resources. Another initiative is the ESPRESSO project [66] aiming to provide cities and
communities the ways for implementing enhanced interoperable and standards-based architecture for
their specific city contexts. This project defines key elements and concepts required to be addressed to
achieve interoperability between various services within a city and also to increase the interoperability
between different cities. The concepts developed under this project have already been tested and
proven in Rotterdam (the Netherlands) and Tartu (Estonia). For managing heterogeneous resources
within complex distributed systems, Moshrefzadeh et al. [16] propose a new concept called Smart
District Data Infrastructure (SDDI). This framework allows integrating diverse components such as
stakeholders, sensors, IoT devices and simulation tools with a virtual district model representing the
physical reality of the district. To access distributed resources, the framework uses a well-defined set
of OGC-based service interfaces such as Web Feature Service [67], Web Coverage Service [68], Catalog
Service for the Web [69], Sensor Observation Service [20] and SensorThings API [21]. There are also
several projects and frameworks using OGC-based standards in smart city contexts such as Smart
Cities Intelligence System (SMACiSYS) [70], MONICA project [71], i_city project for visualizing e-bike
usages [72], and Smart Emission project [38]. The open source implementations such as 52° North
Sensor Observation Service [73] and the FRaunhofer Opensource SensorThings (FROST) Server [74]

Sensors 2019, 19, 562 7 of 29

allow inserting, querying, and visualizing arbitrary sensor data and observations according to the
OGC Sensor Observation Service and OGC SensorThings API standards respectively.

Apart from OGC Sensor Web Enablement, there are also other architectures and frameworks
which focus on interoperability of sensor and IoT devices and being applied in different projects.
The FIWARE [26] is a generic and open-source platform that aims to make interoperable city
services, to provide access to real-time context information, and to implement smart city applications.
The platform enables developers and communities to create their services based on commonly defined
APIs and data models. The FIWARE is already being used in several smart city initiatives such as
“City Enabler” [75]. It is a FIWARE-based software product allowing scattered and distributed urban
data to be collected and organized in a central repository, which can be fed to different applications
with the help of the standard APIs. Other than FIWARE, another project called BIG IoT [25] focuses
on cross-standard, cross-platform, and cross-domain IoT services and applications. The approach
is to register an individual IoT platform to their so-called “BIG-IoT Marketplace”, which acts as
a catalog. Using the Marketplace, the BIG-IoT API allows discovering, authenticating/authorizing
multiple IoT resources and allows using them in a single application. Similarly, the bIoTope project [23]
under the European Union’s Horizon 2020 Programme provides an ecosystem allowing registering
heterogeneous IoT platforms and accessing them using standardized and open APIs. Like BIG-IoT
Marketplace, the bIoTope project also includes a Marketplace called IoTBnB which can be used for
discovering and authenticating the different IoT platforms. In the similar ways, another EU Horizon
2020 project VICINITY [24] provides a decentralized ecosystem offering “interoperability as a service”.
Its architecture involves a VICINITY Cloud acting as a Marketplace used for registering and then
discovering and accessing the numerous IoT platforms using the standardized APIs. Other pertinent
initiatives carried out within the EU Horizon 2020 Programme are symbIoTe [35], INTER-IoT [36],
and Thingful [37]. Another interesting initiative is Smart Emission Data Infrastructure [38] which
includes the use of international open standards to achieve interoperability and provide open access to
the sensor data. It involves a centralized repository where the raw sensor data is harvested and using
ETL processes, the data is published according to the OGC Sensor Observation Service, SensorThings
API, and FIWARE. Sensor Measurement Lists (SenML) [39] is also a specification working towards
interoperability of sensors. In this specification, representations share a common SenML data model.
A simple sensor, such as a temperature sensor, could use this media type in protocols such as HTTP
to transport the measurements of the sensor or to be configured. Jazayeri et al. [76] also provide
a comprehensive evaluation of four open interoperable standards for the IoT devices: OGC PUCK
over Bluetooth, TinySOS, SOS over CoAP, and OGC SensorThings API.

The importance of open and interoperable solutions for smart cities is also being recognized in
the form of developing user guides for cities and stakeholders and by organizing hackathons and
webinars for encouraging innovative application ideas. The Smart City Interoperability Reference
Architecture (SCIRA) project [77] is an initiative by the OGC Innovation Program. The purpose of
this project is to advance standards for Smart Safe Cities and develop open and interoperable designs
for incorporating IoT sensors into city services. The project aims to provide free deployment guides,
reusable design patterns, and other resources that municipalities can use to plan and implement
standards-based Smart City systems using technologies such as IoT, Sensor Webs, and Geospatial
Frameworks. As part of SCIRA, a hackathon “Hacks and the City” (https://scira.ogc.org/hack)
has been organized which encouraged participants to design and implement new application ideas
that use a variety of city datasets and data sources to improve public safety, responder awareness,
and community resilience. Similarly, another hackathon “Neue Wege für die Mobilität in Augsburg”
(www.neue-wege-augsburg.de) also aims to develop new ideas and solutions for mobility by using
a data platform based on open and international OGC-based standards. The project Enabling Smarter
Cities [78] initiated by EIT Climate-KIC organizes a series of webinars intending to provide key
decision-makers with awareness on the importance and needs of interoperable smart city solutions.

https://scira.ogc.org/hack
www.neue-wege-augsburg.de

Sensors 2019, 19, 562 8 of 29

As mentioned, there are several projects, initiatives, and frameworks which are dealing with
interoperability of sensor and IoT observations in their own ways. However, the implementation
of all of the approaches always requires a data storage (e.g., a database repository) to store sensor
metadata and their observations. This data storage allows interfaces and web services to query and
retrieve sensor data and observations. The issue is that in a distributed environment, where multiple
stakeholders and sensor owners are involved with proprietary sensors, not all of them would be willing
to inject their proprietary data into such third-party data storage in the sensor web. Moreover, in a
running distributed system having another data storage for the sensor web will require regular
maintenance. It can also be a complex affair while moving the infrastructure to different locations,
for example, from one server to another or into the cloud.

2.2. Different Sensor and IoT Platforms

There are several platforms which consist of a complete suite for managing sensor observations.
These platforms include their own data storage, visualization clients, and the APIs to query and
retrieve the observations. ThingSpeak [31] is an IoT platform that allows users to register different
sensors attached to simple microcontrollers such as Arduino and Raspberry Pi, collect and store
sensor observations in the Cloud and develop IoT applications. The ThingSpeak platform provides
applications to analyze and visualize observations. The system also allows querying by location,
allowing the user to have access to data from various locations in the world. OpenSensors [32] which
is termed as “Twitter for Sensors” [79] allows users to connect diverse sensor devices and publish
their observations for free. The data is publicly accessible, shareable and reusable by and for anyone.
The platform provides real-time and historical access to public and private data through the API
and in-browser data view. The Things Network [33] is a relatively new initiative aiming at building
a network for the Internet of Things by creating abundant data connectivity. The network focuses
on a technology called LoRaWAN [80] which allows for things to talk to the Internet without 3G or
WiFi, so no WiFi codes and mobile subscriptions are required. It features low battery usage, long range
and low bandwidth, which is ideal for the IoT devices. The Things Network also supports publishing
observations to other platforms such as OpenSensors [81] and OGC Sensor Observation Service [82].
Such integration makes discovering, analyzing, and visualizing sensor observations even easier.
The weather has a major influence on city systems ranging from energy and water, to sanitation,
transportation, health care, to disaster management. Weather Underground [34] is a commercial
weather service providing real-time weather information via the Internet. It provides weather reports
for most major cities across the world on its website. It also uses observations from members with
automated personal weather stations (PWS). Weather Underground currently uses observations from
over 250,000 personal weather stations worldwide.

Likewise, there may even be more platforms being used in smart city projects. Such platforms
may be open or proprietary in nature, however, most often, their associated APIs are not publicly
documented. Another challenge is that these APIs are subsequently changed without notifying the
users. Also, these platforms are meant for different purposes. For example, Weather Underground
is used for weather stations while Thingspeak can be used for attaching an indoor DHT22 sensor.
The completely different APIs for such platforms make it difficult for end-user applications to analyze
and visualize them together. One possibility is to attach these multiple platforms to the OGC Sensor
Web Enablement-based implementations such as 52° North SOS and FROST Server in order to
analyze them using common interfaces. However, such implementations require importing the
observations from the original platform and storing them in their own data storages. The issue with
such an approach is that it leads to data redundancy. The respective platform such as Thingspeak
already stores observations in its own data storage. Another challenge is that in some cases, these
platforms may also be proprietary. In this case, the owners would like to avoid storing their proprietary
data to a third-party data storage.

Sensors 2019, 19, 562 9 of 29

2.3. Other Sources of Timeseries Data

The timeseries data retrieved from the sensors and IoT devices are not always associated with an
API. In many scenarios, such timeseries data are also stored in databases. Traditional relational database
management systems such as Oracle [40], MySQL [41], and PostgreSQL [42] are already being used
with many sensor platforms such as the 52° North Sensor Observation Service implementation [73] and
the FROST server implementation for the SensorThings API [74]. They provide standard SQL functions
to query and analyze sensor data. In most scenarios, sensors continuously produce a huge amount
of time series data, which creates a demand for efficient time series data analysis. TimescaleDB [43]
and InfluxDB [44] are good examples of Open Source timeseries databases which are being used
in the fields of IoT and real-time analytics. When it comes to managing more heterogeneous data
generated by millions of sensors, devices and gateways, each with their own data structures, databases
require new levels of flexibility, agility, and scalability. In this environment, NoSQL databases such
as MongoDB [45] are proving their value. Another new concept in this direction is the Data Stream
Management System (DSMS). Such management systems continuously process arriving data without
having to persist them, this speeds up the data evaluation process, achieving more timely results in
comparison to traditional DBMSs. Anjos et al. [83] explore the feasibility of Data Stream Management
Systems (DSMSs) to support Energy Management applications, pointing out how to implement
an Energy Management System capable of real-time data processing.

In many scenarios, especially, when observations are not very highly frequent, time-varying
data are stored in external files such as Comma Separated Values (CSV) and Excel sheets. Such files
are usually generated once for a specific scenario and do not update continuously. There are also
cloud-based systems such as Google Fusion Table [46], Google Spreadsheet [47], and Microsoft
OneDrive [48] which allow users to store such time series data in a cloud environment.
Applications such as traffic simulations and navigation involve locations which change with respect to
time. Such moving objects can be stored using different file formats such as GPS Exchange Format
(GPX) [49], Keyhole Markup Language (KML) [50] and Cesium Language (CZML) [51]. There are also
platforms such as Waze API [52] allowing accessing real-time crowd-sourced traffic information using
API requests.

In the field of semantic 3D city models, ongoing research allows supporting time-dependent
and dynamic data from sensors and simulations with the city objects. CityGML [29], which is
an international OGC standard to represent semantic 3D city models, is going to have a new module
called Dynamizer [55]. It allows, on the one hand, representing time-dependent data and sensor data
in standardized ways within a CityGML file, and on the other hand, providing a method for injecting
dynamic variations of city object properties (like the electricity consumption of a building or the
traffic density within a road segment) into the static representations. This concept has already been
implemented within the initiative OGC Future City Pilot Phase 1 to support time-dependent solar
power potential simulation results and to link real-time observations from Sensor Observation Services
with 3D city objects [84,85].

Currently, there is no Sensor Web Enablement implementation which covers such data sources for
retrieving timeseries data. The 52° North SOS Implementation and FROST Server support importing
the timeseries data from a CSV file, however, the data is first imported to their data storage.

3. Cross-Platform Interoperability Using the InterSensor Service

As we learned in the previous section, there are numerous sources which may be used for accessing
sensor information ranging from a multitude of platforms, databases, and simple files. For managing
such heterogeneous data sources, we have developed the InterSensor Service, which is a very basic
and lightweight web service. It allows users to connect to different data sources (as mentioned in
Section 2) and retrieve their time-varying observations directly from the source without requiring any
additional data storage. The simplified structure of the service allows linking heterogeneous sensor
observations to be analyzed and visualized together. Additionally, the service also allows encoding

Sensors 2019, 19, 562 10 of 29

observations according to international standardized interfaces such as the OGC Sensor Observation
Service and OGC SensorThings API. We have also developed an interface for the 52° North Timeseries
API. Although it is not an international standard, it provides a REST-ful web binding to the OGC Sensor
Observation Service in order to be easily queried and visualized by lightweight web applications.
In this way, different observations from heterogeneous data sources can be accessed by common
applications compliant to these OGC SWE specifications.

3.1. Architecture

As shown in Figure 3, the architecture comprises of three layers.

Figure 3. The three-layer architecture of InterSensor Service. The service can be instantiated for
individual data sources using adapters and provides standardized external interfaces.

3.1.1. Data Adapters

This layer is responsible for establishing the connection to multiple data sources. The data sources
can be (i) existing sensor and IoT platforms such as Thingspeak, OpenSensors, The Things Network,
and OGC SWE standards, (ii) running databases such as Oracle, PostgreSQL, and TimescaleDB,
and (iii) any external files located on a local machine, server, or cloud such as CSV and Excel sheets,
GPX file (or GPS feeds embedded in a KML or CZML file), Google Fusion Tables, and CityGML
Dynamizer files.

3.1.2. Standardized External Interfaces

This layer is responsible for encoding queried observations from data sources according to
well-defined interfaces. These interfaces include international standards such as the OGC Sensor
Observation Service (SOS). The SOS interface allows querying data using operations such as
DescribeSensor to retrieve sensor metadata according to the SensorML standard and GetObservation to
retrieve sensor observations according to the O&M format. Another interface is Timeseries API [22],
which is a RESTful web binding to the OGC Sensor Observation Service. It allows querying and

Sensors 2019, 19, 562 11 of 29

visualizing sensor locations and real-time observations using the so-called Helgoland web client [86].
Similarly, observations can also be encoded and queried according to the SensorThings API interface.

3.1.3. InterSensor Service

This is an intermediate layer which acts as a “Babel Fish” between the data sources and the
interfaces. This layer is responsible for establishing connections to the individual data sources using
adapters. After a successful connection, the service provides resources according to the data model
(c.f. Section 3.2), which allows querying sensor observations and metadata using specified filters.
The observations are mapped to the relevant resources in this layer. Furthermore, multiple interfaces
can read the observations from this layer and encodes the data according to the desired interface. In this
way, InterSensor Service, on the one hand, can query observations from heterogeneous and distributed
data sources and map them using common and simple objects, and on the other hand, encodes them
using standardized interfaces in order to analyze and visualize them together in a unified way.

3.2. Data Model

The InterSensor Service defines a few classes to connect to individual data sources. These classes
contain specific attributes which can be used to connect to a particular data source. After successful
connection to the data sources, the InterSensor Service forms three resources named DataSource,
Timeseries, and Observation as shown in Figure 4. DataSource contains all the details of a specific data
source whose link can be established using DataSourceConnection.

The details of each class are mentioned as follows.

Figure 4. Key resources of InterSensor Service.

3.2.1. DataSourceConnection

As shown in Figure 5, this class allows users to specify parameters to connect to individual data
sources. It contains metadata attributes such as name and description of the data source, what type
of connection it is (e.g., a CSV file, JDBC connection, a web service etc.). Furthermore, it contains
subclasses to connect to different resources. ExternalFilesConnection provides connection details to
external files such as CSV, GPX, KML and CZML, and also to Cloud-based documents such as a Google
Fusion Table. DatabaseConnection contains parameters to connect to a specific database. In similar ways,
InterSensor Service can also be used to connect to CityGML Dynamizers using DynamizerConnection.

Sensors 2019, 19, 562 12 of 29

Figure 5. Representation of types of data sources which can be used by the InterSensor Service.

PlatformConnection is designed for connecting to different sensor and IoT platforms. This class has
further subclasses for each platform, for example, ThingSpeak, OpenSensors, OGC SensorThings, OGC
Sensor Observation Service, and Twitter. Each subclass contains specific properties for the connection to
be established. For example, in case of the SensorThings API, ThingId is a unique ID to determine the
details and metadata of a “Thing” (e.g., a weather station) such as https://example.sensorup.com/v1.
0/Things(8774755). One “Thing” can deliver different observations (e.g., temperature, humidity etc.).
Each observation can be determined by a DatastreamId such as https://example.sensorup.com/v1.0/
Datastreams(8774757).

Hence, in order to add a timeseries property from the above mentioned SensorThings stream,
the minimal inputs required will be a baseURL such as https://example.sensorup.com/v1.0, ThingId
such as 8774755 and DatastreamId such as 8774757. Similarly, a valid Thingspeak channel consists of
a baseURL, a channelID, and fieldID. By providing these details, the InterSensor Service generates valid
request calls and establishes a connection to the Thingspeak channel.

3.2.2. DataSource

After providing details for the data source connection, the InterSensor Service validates the
connection. Upon successful connection to the data source, it instantiates three resources. DataSource
creates a unique ID for the data source and contains the details of DataSourceConnection. It also contains
a list of available timeseries associated with it.

3.2.3. Timeseries

Each DataSource can have multiple Timeseries. For example, if a data source is a running Thingspeak
channel with two timeseries associated with it: temperature and humidity. In this case, the InterSensor
Service creates two timeseries (one for temperature and the other for humidity) with two unique
timeseries IDs associated with a common datasource ID. However, as per requirements, it is also
possible to establish a connection to a specific timeseries from a data source connection (for example,
only to the temperature stream).

3.2.4. Observations

Both DataSource and Timeseries classes contain properties to connect to the data source.
By providing querying filters such as time range, the InterSensor Service connects to the data
source, retrieves observations according to the filter and maps them using the Observation class.

https://example.sensorup.com/v1.0/Things(8774755)
https://example.sensorup.com/v1.0/Things(8774755)
https://example.sensorup.com/v1.0/Datastreams(8774757)
https://example.sensorup.com/v1.0/Datastreams(8774757)
https://example.sensorup.com/v1.0

Sensors 2019, 19, 562 13 of 29

This means that for every query, relevant observation objects are created dynamically without having
any local data storage. It allows encoding observations in common ways for no matter what the data
source is. These common observations can then be used further by multiple interfaces for joint analysis
and visualizations.

Depending on the sensor type, scenarios, use cases, and applications, sensor observations can
be of different data types. For example, a temperature observation is a number while a single
observation from a GPS feed is a location. As shown in Figure 4, the Observations class allows
encoding observations with different data types and hence providing flexibility to users to encode
many possible types of observations.

4. Implementing and Configuring the InterSensor Service

The InterSensor Service is a Java application based on the Spring framework [87] and has been
released as Open Source software [30]. It includes well-defined classes for each of the mentioned
resources. The service can be installed very easily as a standalone application using JAVA JAR
commands and can also be deployed on a running server using WAR files.

4.1. Adding a Data Source

To work with an InterSensor Service, the first step is to establish a data source connection.
The data source connection details can be provided in a configuration file. These configuration files
allow defining all the required parameters in order to connect to a specific data source. For example,
one publicly available Thingspeak channel is https://thingspeak.com/channels/64242, which can be
connected to the InterSensor Service by using the configuration as shown below:

{
datasource−connect ion :
name : " Thingspeak_Humidity_Sensor "
d e s c r i p t i o n : "New thingspeak connect ion recording Humidity "
connectionType : " Thingspeak "
observat ionProperty : " Humidity_Thingspeak "
observationType : "OM_Measurement"
unitOfMeasure : " Percent "
serviceName : " Thingspeak "
serviceType : "JSON"
channel : 64242
f i e l d : 2
}

It shows a DHT22 sensor located in Munich, Germany and comprises two observation properties:
Field 1 (Temperature) and Field 2 (Humidity). The above-mentioned configuration allows adding
a specific property (e.g., Field 2—Humidity) from the Thingspeak channel (with the id 64242) to the
InterSensor Service.

Some of the data sources may also require authentication parameters such as username/passwords
or an OAuth 2.0 access tokens. The following is an example of a connection to the Twitter API which
require the authentication parameters such as apiKey, apiSecret, accessToken, and accessTokenSecret in
order to retrieve the tweets. The Twitter API supports querying geo-tagged tweets using the geocode
parameter. It requires a point location (latitude, longitude) and a radius (e.g., 1 km) around that point.
Additionally, even a search keyword can also be provided, however, it can be left blank for retrieving
all the tweets. Such parameters can directly be provided in the configuration files.

https://thingspeak.com/channels/64242

Sensors 2019, 19, 562 14 of 29

{
datasource−connect ion :
name : " TwitterConnection "
d e s c r i p t i o n : "Geo−Tagged Tweets around a l o c a t i o n "
connectionType : " Twit ter "
observationType : " J s o n S t r i n g "
unitOfMeasure : " Tweet "
serviceName : " Twit ter API "
serviceType : "JSON"
baseUrl : " h t tps :// api . t w i t t e r . com/1.1/ search/tweets . j son "
apiKey : " * * * * * * * * * * "
a p i S e c r e t : " * * * * * * * * * * "
accessToken : " * * * * * * * * * * "
accessTokenSecret : " * * * * * * * * * * "
l a t i t u d e : 51 .54347 # Locat ion of a point
longi tude : $−$0 .01652 # Locat ion of a point
radius : 1 #Radius in km
}

Likewise, connections to arbitrary data sources such as external databases, different IoT platforms
(for example, OpenSensors, Weather Underground, SensorThings API) and different file systems such
can also be established in easier ways using the pre-defined configuration files. As mentioned in
Section 2.3, there might be scenarios where the timeseries data is stored in basic files such as CSV.
In these cases, the configuration details can be specified accordingly by providing the file path, and the
columns for timestamps and their respective values. Additionally, the information can also be given
for other metadata such as the unit of measurement being used and geo-location of the sensor device.

Alternatively, new data sources can be added using an HTTP POST request with the help of any
REST client, cURL commands or using software systems such as “HTTP Caller” from the ETL software
Feature Manipulation Engine (FME) being very popular in the geospatial domain.

4.2. Automated Generation of the Standardized Interfaces

Upon establishing the connection successfully to a data source, the InterSensor Service generates
three primary classes DataSource, Timeseries, and Observation. These three classes act as an intermediate
layer to connect to a data source, retrieve observations and encode observations “on-the-fly” according
to the standardized interfaces OGC SensorThings API and OGC Sensor Observation Service, and the
open source Timeseries API. Upon a successful connection, the interfaces for the above-mentioned
standards with appropriate classes are automatically generated.

Assuming the server hostname is 127.0.0.1 and the port is 8080, the three classes can be accessed
and queried with the help of the following HTTP GET requests:

Base URL
http : / / 1 2 7 . 0 . 0 . 1 / i n t e r−sensor−s e r v i c e /
Accessing DataSource d e t a i l s
ht tp : / / 1 2 7 . 0 . 0 . 1 / i n t e r−sensor−s e r v i c e /datasources /{ id }
Accessing Timeser ies metadata
ht tp : / / 1 2 7 . 0 . 0 . 1 / i n t e r−sensor−s e r v i c e / t i m e s e r i e s /{ id }
Accessing Observations
ht tp : / / 1 2 7 . 0 . 0 . 1 / i n t e r−sensor−s e r v i c e / t i m e s e r i e s /{ id }/ observat ions

4.2.1. OGC SensorThings API

The SensorThings API comprises of a well-defined data model [21] with different resources such
as Thing, Locations, Datastream etc. The InterSensor Service translates the connected data source details
according to the SensorThings API data model, which can simply be accessed as follows:

Sensors 2019, 19, 562 15 of 29

Base URL f o r the SensorThings API standard
http : / / 1 2 7 . 0 . 0 . 1 / OGCSensorThingsApi/v1 . 0
#Thing
http : / / 1 2 7 . 0 . 0 . 1 / OGCSensorThingsApi/v1 .0/ Things
Locat ion
http : / / 1 2 7 . 0 . 0 . 1 / OGCSensorThingsApi/v1 .0/ Locat ions
H i s t o r i c a l L o c a t i o n
http : / / 1 2 7 . 0 . 0 . 1 / OGCSensorThingsApi/v1 .0/ H i s t o r i c a l L o c a t i o n s
Datastream
http : / / 1 2 7 . 0 . 0 . 1 / OGCSensorThingsApi/v1 .0/ Datastreams
Sensor
ht tp : / / 1 2 7 . 0 . 0 . 1 / OGCSensorThingsApi/v1 .0/ Sensors
Observations
ht tp : / / 1 2 7 . 0 . 0 . 1 / OGCSensorThingsApi/v1 .0/ Observations ?
$ f i l t e r =phenomenonTime l t ’2018−08−10T00 : 0 0 : 0 0 ’ and
phenomenonTime ge ’2018−08−15T00 : 0 0 : 0 0 ’
ObservedPropert ies
ht tp : / / 1 2 7 . 0 . 0 . 1 / OGCSensorThingsApi/v1 .0/ ObservedPropert ies
F e a t u r e s O f I n t e r e s t
ht tp : / / 1 2 7 . 0 . 0 . 1 / OGCSensorThingsApi/v1 .0/ F e a t u r e s O f I n t e r e s t

4.2.2. OGC Sensor Observation Service

The Sensor Observation Service (SOS) is a widely adopted web service to query sensor description
and metadata and real-time observations. It comprises of well-defined operations such as DescribeSensor
to retrieve sensor description according to the SensorML standard [18] and GetObservation to retrieve
real-time observations according to the Observations and Measurements (O&M) standard [19].

For example, the observations from an established InterSensor Service can be queried according
to the O&M format by simply using the following GetObservation request:

GetObservation Request f o r the I n t e r S e n s o r S e r v i c e

ht tp : / / 1 2 7 . 0 . 0 . 1 / OGCSensorThingsApi/v1 .0/ ogc−sos−webapp/ s e r v i c e ?
s e r v i c e =SOS&vers ion = 2 . 0 . 0
&request=GetObservation
&t e m p o r a l F i l t e r =om: phenomenonTime ,
2018−08−05T00 :00:00/2018−08−05T18 : 0 0 : 0 0

4.2.3. 52° North Timeseries API

The Timeseries API [22] developed by 52° North is a REST-ful web binding to the OGC Sensor
Observation Service. While it is not a standard, we decided to support this API because it allows
querying and visualizing sensor locations and their observations using the so-called Helgoland Open
Source web client [86]. Like the SensorThings API, The Timeseries API also comprises of a well-defined
data model and its classes. The observations from an established InterSensor Service can be queried
according to the Timeseries API by using the standardized requests:

Sensors 2019, 19, 562 16 of 29

Base URL f o r the Timeser ies API
ht tp : / / 1 2 7 . 0 . 0 . 1 / 5 2 n−r e s t−api/
S e r v i c e s
ht tp : / / 1 2 7 . 0 . 0 . 1 / 5 2 n−r e s t−api/ s e r v i c e s
S t a t i o n s
ht tp : / / 1 2 7 . 0 . 0 . 1 / 5 2 n−r e s t−api/ s t a t i o n s
Timeser ies
ht tp : / / 1 2 7 . 0 . 0 . 1 / 5 2 n−r e s t−api/ t i m e s e r i e s
Of fer ings
ht tp : / / 1 2 7 . 0 . 0 . 1 / 5 2 n−r e s t−api/ o f f e r i n g s
Procedures
ht tp : / / 1 2 7 . 0 . 0 . 1 / 5 2 n−r e s t−api/procedures
Features
ht tp : / / 1 2 7 . 0 . 0 . 1 / 5 2 n−r e s t−api/ f e a t u r e s
#Phenomena
http : / / 1 2 7 . 0 . 0 . 1 / 5 2 n−r e s t−api/phenomena

The querying of the data using the standardized requests and responses allow them to be used
on the OGC SWE compliant applications. For example, by providing these requests to the Helgoland
application, the sensor information can be visualized irrespective of its platform. This is later illustrated
in Section 5.2.

5. Using the InterSensor Service in Smart City Projects

The InterSensor Service is being employed in the Queen Elizabeth Olympic Park, London under
the Smart District Data Infrastructure (SDDI) framework [16]. This project runs within the Smart
Sustainable Districts Program [13] of the Climate-KIC of the European Institute for Innovation and
Technology (EIT). The SDDI framework allows integrating diverse components such as multiple
stakeholders, sensors, IoT devices, simulation tools with a virtual district model representing
the physical reality of the district. Within the project, the owners of the district, London Legacy
Development Corporation (LLDC), have identified different use cases related to the reduction of
resource and energy usage, reduction of waste, reduction of emissions, improvements of well-being,
mobility, and in general concerning efficiency.

As shown in Figure 6, for different use cases, the district has access to multiple sensors and IoT
devices owned by different stakeholders and partners. For example, two weather stations are located
in the park determining the real-time environmental properties such as outside temperature, humidity,
wind speed etc. These weather stations are registered with the Weather Underground platform [34].
As a part of the Nature-Smart Cities program (www.naturesmartcities.com), a network of 15 bat
monitors is installed across the Olympic Park. The program assumes that bats are considered to be
a good indicator species, reflecting the general health of the natural environment. So, a healthy bat
population correlates with a healthy biodiversity in the local area. Hence, the smart bat monitors
are installed in different habitats across the park and continuously capture data on bat species and
activity levels. The observations from these bat monitors are accessed using another platform called
OpenSensors [32]. There are smart meters installed in important buildings such as Aquatic Center
and Copper Box Arena. These smart meters are used for determining real-time energy consumption
(e.g., electricity and gas usage) for the buildings. These meters belong to a company called Engie and
are managed within a proprietary platform called C3NTINEL [88]. Similarly, a use case also requires to
gather the visitor’s sentiments or experiences by studying the Twitter activity around the park. For this
use case, the access to the Twitter API [53] was required to retrieve real-time geo-tagged tweets around
the park. For another use case, the park administrators require to assess the impact of scheduled events
in the park on the other properties. For example, “if a football match is scheduled in the stadium,
what is its impact on the gas consumption of the stadium on that particular day?”. The information

www.naturesmartcities.com

Sensors 2019, 19, 562 17 of 29

of such scheduled events is listed in basic CSV files, which can also be treated as a data source with
a timeseries in this context.

Figure 6. Implementation scenario of the InterSensor Service (ISS) establishing interoperability for
different sensor platforms and observations in the district Queen Elizabeth Olympic Park, London.

As mentioned, these data sources are heterogeneous in nature in a way that they (i) belong
to different stakeholders, (ii) are used for different purposes, (iii) based on different platforms and
APIs, and (iv) provide different types of observations. However, it is essential to analyze them
together for making well-informed decisions. To bring all of them within a common operational
framework, the InterSensor Service is being used to connect to all of them. It allows encoding all
sensors, their descriptions, metadata and recorded real-time observations using common and mature
standards, as well as querying and analyzing them using common interfaces on the OGC Sensor Web
Enablement (SWE) compliant applications.

5.1. Deployment Options

In the distributed working scenarios having many stakeholders, it is crucial to consider the
interests of the stakeholders and types of their platforms before connecting them to the InterSensor
Service. It is important to determine whether (i) the platform is open or proprietary, (ii) the platform
requires establishing trust by authentication mechanisms, (iii) the stakeholder is willing to share their
information to all the users or only to a specific group of users, and so on. For instance, in the case of BIG
IoT (as mentioned in Section 2.1), Schmid et al. [89] have defined different integration modes in order
to integrate heterogeneous IoT platforms into the BIG IoT ecosystem. These different modes mainly
address three major challenges: (i) Interaction of an existing platform with the BIG IoT Marketplace
by extending the existing or a new IoT Platform by using the well-defined SDK; (ii) Interaction of
the proprietary platforms (with no access to their source code) with the BIG IoT Marketplace using
a gateway service, and (iii) Interaction of the constrained device-level platform (e.g., mobile phones or
battery-powered sensors) with the BIG IoT Marketplace by using a proxy-service. This proxy-service
stores informational resources that are offered by the device-level platform and serve them to the
interested consumers upon request.

The InterSensor Service provides several deployment possibilities in a similar way in order to
meet the interests of different types of stakeholders. Similar to the Integration Mode 1 as described
by Schmid et al. [89], the InterSensor Service allows users to configure a data source connection by

Sensors 2019, 19, 562 18 of 29

extending the existing or a new IoT platform by using the simple Java classes. A medium skilled Java
programmer is capable of implementing a new adapter within a day based on the already provided
examples. This would allow the user to retrieve sensor observations from all the connected data
sources. The provision of the additional standardized interfaces by the InterSensor Service allows users
to visualize and analyze the heterogeneous sensor locations and observations within an application
in a homogeneous and integrated way as shown in Figure 7a. Such implementations are ideal for
scenarios where the involved platforms are open in nature and do not require establishing a trusted,
i.e., a secured, connection between the stakeholder and the user.

(a) (b)
Figure 7. An InterSensor Service can be deployed (a) by a user connecting to different data sources,
as well as (b) by a stakeholder by setting up a trusted connection within same organization.

However, there might be scenarios when a data source e.g., C3NTINEL is proprietary in nature
and contains confidential and secure information. In such cases, it is necessary to establish the trust
between the stakeholder and the user. The platform requires secure credentials which may be in the
form of username/password or OAuth 2.0 access tokens. Due to privacy concerns, the stakeholder
would like to avoid revealing the secure credentials to the users of the InterSensor Service. In such
cases (similar to the integration mode 2 of the BIG IoT), the respective stakeholder can configure an
instance of the InterSensor Service by using the appropriate secure credentials and allow real-time
observations to be accessed by the standardized interfaces (as shown in Figure 7b). In this case, without
revealing the credentials to a user, the observations can jointly be analyzed with other properties.
In this way, it is also possible to configure an additional layer of security facade for providing the
appropriate access control. This access control layer allows the stakeholder to configure whether a set
of users are allowed to retrieve the observations or not. Such additional security layers can be set up
on the OGC-based web services by using an approach proposed by Chaturvedi et al. [90]. In this way,
multiple stakeholders can set up the instances of the InterSensor Service for their respective platforms
and ensure secure access to their information with the proper access control (see Figure 8).

Sensors 2019, 19, 562 19 of 29

Figure 8. Configuration of the InterSensor Service with an additional security layer by the respective
stakeholder. It allows ensuring secure access to the platform with proper access control.

5.2. Joint Visualization and Analysis of Heterogeneous Sensor Platforms and Data Sources

After establishing the connections to multiple heterogeneous data sources, the sensor data and
observations could be retrieved according to the external interfaces such as OGC Sensor Observation
Service, OGC SensorThings API, and 52° North Timeseries API. This allows applications supporting
such OGC SWE interfaces to retrieve the sensor information being retrieved from multiple sensor and
IoT platforms.

Figure 9 is a screenshot taken from the Helgoland application developed for visualizing
and interacting with sensor data based on the 52° North Timeseries API. The interface from the
InterSensor Service can directly be used with the Helgoland application allowing us to interact
with observations being retrieved directly from a weather station (outside temperature retrieved
from Weather Underground platform), smart meter located in an important building (electricity
consumption per minute retrieved from the proprietary C3NTINEL platform) and scheduled events
in the same important building (visitor counts during the scheduled event retrieved from a CSV
file). Such joint visualization is helpful in determining the correlation between different properties,
e.g., ”what is the impact of the weather or any scheduled event on the electricity consumption of a
building?”. Of course, such a common standard-based API will also be very valuable for any other
kind of application or analysis tool.

Sensors 2019, 19, 562 20 of 29

Figure 9. Joint visualizaion of observations being retrieved directly from heterogeneous data sources:
(i) electricity consumption from a proprietary C3NTINEL platform in pink, (ii) Outside Temperature
readings from the Weather Underground platform in blue, and (iii) scheduled event and visitor count
from a CSV file in green. Screenshot taken from the Helgoland web client application.

5.3. Visualization of Sensor Observations with Other OGC Standards

For a different use case in the Queen Elizabeth Olympic Park, it is required to visualize
real-time twitter feeds around the park in order to study sentiments and experience of visitors.
Using the InterSensor Service, a secure connection to the Twitter API could be established in
order to retrieve geo-tagged tweets around the park. The response according to the OGC SWE
interfaces makes it suitable to be visualized together with other OGC standards. One such example is
shown in Figure 10, where the geo-tagged tweets being retrieved using the InterSensor Service are
visualized together with the 3D city objects which are represented according to the OGC CityGML
standard. This figure is a screenshot taken from the 3DCityDB-Web-Map application [91] which allows
visualizing and interacting with large-scale CityGML-based objects directly within web browsers.
The 3DCityDB-Web-Map application is extended for this work to support the OGC SWE interfaces
making the application more dynamic. In this way, arbitrary sensor observations can be visualized
along with city objects to which they are associated with.

Another similar implementation is done for the city of Augsburg in Germany where the
InterSensor Service is used to connect to a proprietary car sharing application. The car sharing
application is based on an open interface called the Interface for X-Sharing Information (IXSI)
(https://github.com/RWTH-i5-IDSG/ixsi). Using its defined API, it is possible to retrieve information
about available rental cars throughout the city in a real-time manner. The InterSensor Service is
used to connect to this interface and retrieve the responses according to the OGC SWE interfaces.
The standardized response by using the InterSensor Service made it suitable to be visualized along
with CityGML-based 3D objects using the 3DCityDB-Web-Map application (see Figure 11).

https://github.com/RWTH-i5-IDSG/ixsi

Sensors 2019, 19, 562 21 of 29

Figure 10. Joint visualization of geo-tagged tweets retrieved by the InterSensor Service along
with CityGML-based 3D building objects in the district Queen Elizabeth Olympic Park, London.
Screenshot taken from 3DCityDB-Web-Map application [91].

Figure 11. Joint visualization of available rental car information being retrieved by the InterSensor
Service along with CityGML-based 3D building objects in the city of Augsburg in Germany.
Screenshot taken from 3DCityDB-Web-Map application [91].

Sensors 2019, 19, 562 22 of 29

5.4. Performance Evaluation

This sub-section shows the performance of the application by a comparison between the original
payload sizes and total response times when directly querying the different platforms and when
querying using a standardized interface with the help of the InterSensor Service (as shown in Table 2).
In the latter case, payload sizes and response times are calculated for retrieving the observations from
an individual data source and encoding them “on-the-fly” according to the OGC SWE interfaces in
order to visualize them on an OGC SWE compliant application. For both cases, the mentioned values
are the average of five measurements for each data source. However, the performance evaluation for
multiple concurrent applications and users is out of scope of this paper and the load tests for this
purpose will be performed in the future.

Table 2. Comparison between the original payload sizes and total response times when directly
querying the different platforms and when querying using a standardized interface with the help of
the InterSensor Service. The payload sizes and total response times shown are average of five requests
that were made against each platform for the time ranges as shown in Figures 9–11. The InterSensor
Sensor Service and OGC web client applications mentioned in this paper are hosted at servers located
in the Technical University of Munich, Germany. Locations of the hosted platforms mentioned in the
table are determined using www.iplocation.net.

Data Source Location

Direct Connection Connection Using ISS
Latency Added

Payload
Size (KB)

Total
Response
Time (ms)

Interface Payload
Size (KB)

Total
Response
Time (ms)

by ISS (ms)

C3NTINEL
Platform

Plymouth,
U.K. 41.0 604 OGC SOS 46.5 837 233

Weather
Underground

San Jose, CA,
U.S.A. 10.1 884 OGC SOS 13.3 1234 350

CSV File London, U.K. 0.212 NA OGC SOS 0.264 387 387

Twitter API San Francisco,
CA, U.S.A. 31.3 765 OGC STA 39.8 1278 513

Car Sharing
Platform

Nürnberg,
Germany 34.4 779 OGC STA 40.9 1185 406

As shown, the observations were retrieved from multiple sources for different use cases:
(i) electricity consumption from a proprietary C3NTINEL platform hosted, (ii) Outside Temperature
readings from the Weather Underground platform, and (iii) scheduled event and visitor count from
a CSV file, (iv) real-time geo-tagged tweets using the Twitter API, and (v) a proprietary car sharing
application API. The locations of the running servers are mentioned in the second column. The third
column shows the payload sizes and total response times when directly querying the different
platforms. The mentioned values are average of five requests that were made against each platform for
the time ranges as shown in Figures 9–11.

Furthermore, the fourth column shows the values for the requests made against each platform
for the same time ranges, however, queried using the standardized interfaces with the help of the
InterSensor Service. The payload sizes and the response times, in this case, sum up the requests
made to the platform, retrieval of the observations from the data source, encoding the observations
“on-the-fly” according to the OGC SWE interfaces and web server latency times. As shown in
Figure 9, the observations were retrieved from C3NTINEL platform, Weather Underground platform,
and scheduled event and visitor count from a CSV file were encoded according to the OGC Sensor
Observation Service (in this paper, according to the 52° North Timeseries API providing a JSON-based
RESTful web binding to the SOS in order to be visualized together in the Helgoland web client
application). The InterSensor Service and the Helgoland client application are hosted at two different
servers located in Technical University of Munich in Germany. Similarly, Figures 10 and 11 show

www.iplocation.net

Sensors 2019, 19, 562 23 of 29

the use cases for connecting to the Twitter API and a proprietary car sharing application API. In this
use case, observations were encoded according to the OGC SensorThings API using the InterSensor
Service which were used for visualization together with 3D city models on the 3DCityDB-Web-Map
application (also hosted in Technical University of Munich).

The last column in Table 2 reflects the latency added by the InterSensor Service in order to retrieve
the observations from a data source and encode them “on the-fly” according to the interfaces such as
SOS and SensorThings API. The results show that the addition of the InterSensor Service to a sensor
platform (or putting the InterSensor Service with a chain of services) adds a latency time up to a few
hundred milliseconds. One of the reasons for this additional time is the OGC compliant encodings of
original observations from the data sources. The platforms mentioned in the table such as C3NTINEL
and Weather Underground provide APIs based on JSON. In this paper, the SWE interfaces (a RESTful
web binding of the OGC SOS and the SensorThings API) are also based on JSON, due to which,
the payload size and the total response time do not increase significantly compared to the original
payload sizes. However, the Observations & Measurements (O&M) encoding of the SOS (which is
based on XML encoding and not on JSON encoding) will most likely increase the payload size of
the observations compared to the original payload sizes due to difference in encodings. It will be
tested in the future. Another determining factor for the additional response time added to the total
response time when querying a sensor platform via the InterSensor Service is the network distance.
As shown in Table 2, most of the platforms are hosted in different parts of the world such as U.K. and
U.S.A. and the InterSensor Service and OGC Web client applications are hosted in Munich (Germany).
Since the InterSensor Service is not running on the same machine or same local network as either
the original sensor platform or the user application, thus network travel time would also add to the
overall response time. Hence, the InterSensor Service ideally should either be running very close to
the original sensor platform or to the application (on the same machine or at least in the same local
network). If the original platform would be running in China, the InterSensor Service in the U.S. and
the application in Europe, then latency would be significantly extended causing performance issues
especially in large or real-time observations.

5.5. Dealing with Pagination in the Cases of Large Number of Observations

Some of the data sources such as Twitter and SensorThings API provide pagination in order
to support efficient retrieval of observations by putting a maximum limit on them. In the case of
a request with a very large time period, there might be the possibility of retrieving a large number of
observations which may lead to performance issues. The pagination allows dividing the total number
of observations in different pages which can be accessed using a cursor. That means it allows retrieving
a fixed number of observations (e.g., 100 observations) at one request. The next 100 observations can
then be retrieved using a cursor within another request and so on. It makes them suitable to work with
lightweight applications and avoid performance issues in case of a very large amount of observations.
The InterSensor Service allows dealing with such pagination options while working with different
data sources. In the case of the requests with a large time period, the InterSensor service retrieves all
the observations by iterating itself to the multiple pages and generate the response according to the
respective interface.

6. Conclusions and Future Work

This paper describes how interoperability can be established over heterogeneous sensor and IoT
platforms and other timeseries data sources using the lightweight InterSensor Service. On the one hand,
it allows establishing connections to multiple data sources by using data adapters. On the other hand,
it allows querying and visualizing observations from data sources using widely adopted international
standards such as the OGC Sensor Observation Service and OGC SensorThings API, and also the open
source Timeseries API. In this way, applications and tools can be developed based on these standards
without worrying about what different kinds of sensors they use. Multiple sensors can be attached to
these infrastructures and their interfaces will always be common for different applications.

Sensors 2019, 19, 562 24 of 29

The service allows configuring the appropriate security and access controls making it suitable to
work with open as well as proprietary data sources in a distributed environment. An important aspect
to be considered is the GDPR (General Data Protection Regulation) (https://eugdpr.org/) enabling
the InterSensor Service users to view collected personal information. The paper also gives a first
performance evaluation by a comparison between the original payload sizes and total response times
when directly querying the different platforms and when querying using a standardized interface
with the help of the InterSensor Service. However, the performance evaluation for multiple concurrent
applications and users is out of scope of this paper and the load tests for this purpose will be performed
in the future.

The InterSensor Service is a Java application based on the Spring framework and is available
for free as Open Source software (www.intersensorservice.org). The service already supports data
adapters for multiple sources such as Thingspeak, OpenSensors, SensorThings, Wunderground and
CSV files. In the future, adapters will be developed for other IoT platforms discussed in the paper.
Similarly, the support of non-relational databases such as MongoDB and InfluxDB is still an ongoing
work. New data adapters can be developed programmatically using the Open Source data model and
simple Java classes. A medium skilled Java programmer is capable of implementing a new adapter
within a day based on the already provided examples.

The service already supports specific metadata for individual timeseries. Considering observations
from heterogeneous data sources, it will be investigated what further metadata will be required.
Moreover, current OGC SWE-based standards lack discussions on supporting data sources such as
real-time Twitter feeds. It will be discussed with the Standard Working Groups for the respective
standards on developing ways to support such virtual sensors as a part of the standard. In the future,
the InterSensor Service will also have support for Docker containers to quickly set up instances of the
service and move them to the Cloud environment.

Author Contributions: Conceptualization, K.C. and T.H.K.; Investigation, K.C. and T.H.K.; Methodology, K.C.
and T.H.K.; Software, K.C. and T.H.K.; Supervision, T.H.K.; Validation, K.C. and T.H.K.; Visualization, K.C.;
Writing—original draft, K.C.; Writing—review & editing, K.C. and T.H.K.

Funding: This work has been carried out within the project Smart District Data Infrastructure (SDDI) funded by
the Climate-KIC of the European Institute of Innovation and Technology (EIT). Publication was supported by the
German Research Foundation (DFG) and the Technical University of Munich within the Open Access Publishing
Funding Programme.

Acknowledgments: We acknowledge our project partners London Legacy Development Corporation (LLDC),
Imperial College London, and virtualcitySYSTEMS GmbH for supporting this work. We also thank the reviewers
for their critical remarks and constructive suggestions helping in the further improvement of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

API Application Program Interface
CityGML City Geography Markup Language
Climate-KIC Knowledge and Innovation Community on Climate Change and Mitigation
EIT European Institute of Innovation and Technology
IoT Internet of Things
ISS InterSensor Service
O&M Observations & Measurements
OGC Open Geospatial Consortium
SensorML Sensor Modelling Language
SOS Sensor Observation Service
STA Sensor Things API
SWE Sensor Web Enablement

https://eugdpr.org/
www.intersensorservice.org

Sensors 2019, 19, 562 25 of 29

References

1. Yin, C.; Xiong, Z.; Chen, H.; Wang, J.; Cooper, D.; David, B. A literature survey on smart cities. Sci. China
Inf. Sci. 2015, 58, 1–18. [CrossRef]

2. Hancke, G.P.; Silva, B.D.C.; Hancke, G.P., Jr. The Role of Advanced Sensing in Smart Cities. Sensors 2013,
13, 393–425. [CrossRef] [PubMed]

3. Hashem, I.A.T.; Chang, V.; Anuar, N.B.; Adewole, K.; Yaqoob, I.; Gani, A.; Ahmed, E.; Chiroma, H. The role
of big data in smart city. Int. J. Inf. Manag. 2016, 36, 748–758. [CrossRef]

4. Suciu, G.; Vulpe, A.; Halunga, S.; Fratu, O.; Todoran, G.; Suciu, V. Smart Cities Built on Resilient Cloud
Computing and Secure Internet of Things. In Proceedings of the 2013 19th International Conference on
Control Systems and Computer Science, Bucharest, Romania, 29–31 May 2013; pp. 513–518. [CrossRef]

5. Roche, S. Geographic Information Science I: Why does a smart city need to be spatially enabled?
Prog. Hum. Geogr. 2014, 38, 703–711. [CrossRef]

6. Patel, S.; Kumar, U.R.Y.; Kumar, P.B. Role of smart meters in smart city development in India. In Proceedings
of the 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems
(ICPEICES), Delhi, India, 4–6 July 2016, pp. 1–5. [CrossRef]

7. Quarati, A.; Clematis, A.; Roverelli, L.; Zereik, G.; D’Agostino, D.; Mosca, G.; Masnata, M.
Integrating Heterogeneous Weather-Sensors Data into a Smart-City App. In Proceedings of the 2017
International Conference on High Performance Computing Simulation (HPCS), Genoa, Italy, 17–21 July 2017;
pp. 152–159. [CrossRef]

8. Hagemann, R.; Corsmeier, U.; Kottmeier, C.; Rinke, R.; Wieser, A.; Vogel, B. Spatial variability of particle
number concentrations and NOx in the Karlsruhe (Germany) area obtained with the mobile laboratory
‘AERO-TRAM’. Atmos. Environ. 2014, 94, 341–352. [CrossRef]

9. Batty, M.; Axhausen, K.W.; Giannotti, F.; Pozdnoukhov, A.; Bazzani, A.; Wachowicz, M.; Ouzounis, G.;
Portugali, Y. Smart cities of the future. Euro. Phys. J. Spec. Top. 2012, 214, 481–518. [CrossRef]

10. IBM. Smarter Cities—Future Cities. 2016. Available online: https://www.ibm.com/smarterplanet/us/en/
(accessed on 27 November 2018).

11. Microsoft. CityNext. 2015. Available online: https://partner.microsoft.com/en-US/Solutions/CityNext
(accessed on 27 November 2018).

12. CISCO. The Internet of Everything for Cities. 2013. Available online: https://www.cisco.com/c/dam/en_
us/solutions/industries/docs/gov/everything-for-cities.pdf (accessed on 27 November 2018).

13. Climate-KIC. Smart Sustainable Districts. 2015. Available online: http://www.climate-kic.org/areas-of-
focus/urban-transitions/our-initiatives/smart-sustainable-districts/ (accessed on 27 November 2018).

14. Willenborg, B.; Sindram, M.; Kolbe, T.H. Applications of 3D City Models for a better understanding of
the Built Environment. In Trends in Spatial Analysis and Modelling; Geotechnologies and the Environment;
Behnisch, M., Meinel, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; Volume 19, pp. 167–191,
doi:10.1007/978-3-319-52522-8_9.

15. Kitchin, R. The real-time city? Big data and smart urbanism. GeoJournal 2014, 79, 1–14. [CrossRef]
16. Moshrefzadeh, M.; Chaturvedi, K.; Hijazi, I.; Donaubauer, A.; Kolbe, T.H. Integrating and

Managing the Information for Smart Sustainable Districts—The Smart District Data Infrastructure (SDDI).
In Geoinformationssysteme 2017—Beiträge zur 4. Münchner GI-Runde; Kolbe, T.H., Bill, R., Donaubauer, A., Eds.;
Wichmann Verlag: Heidelberg, Germany, 2017.

17. Bröring, A.; Echterhoff, J.; Jirka, S.; Simonis, I.; Everding, T.; Stasch, C.; Liang, S.; Lemmens, R.
New Generation Sensor Web Enablement. Sensors 2011, 11, 2652–2699. [CrossRef] [PubMed]

18. Botts, M. Sensor Model Language (SensorML)|OGC Document No. 12-000. 2014. Available online:
http://www.opengeospatial.org/standards/sensorml (accessed on 25 November 2018).

19. Cox, S. Observations and Measurements (O&M)|OGC Document No. 10-004r3. 2013. Available online:
http://www.opengeospatial.org/standards/om (accessed on 25 November 2018).

20. Bröring, A.; Stasch, C.; Echterhoff, J. Sensor Observation Service Interface Standard (SOS)| OGC Document
No. 12-006. 2012. Available online: http://www.opengeospatial.org/standards/sos (accessed on 25
November 2018).

http://dx.doi.org/10.1007/s11432-015-5397-4
http://dx.doi.org/10.3390/s130100393
http://www.ncbi.nlm.nih.gov/pubmed/23271603
http://dx.doi.org/10.1016/j.ijinfomgt.2016.05.002
http://dx.doi.org/10.1109/CSCS.2013.58
http://dx.doi.org/10.1177/0309132513517365
http://dx.doi.org/10.1109/ICPEICES.2016.7853363
http://dx.doi.org/10.1109/HPCS.2017.33
http://dx.doi.org/10.1016/j.atmosenv.2014.05.051
http://dx.doi.org/10.1140/epjst/e2012-01703-3
https://www.ibm.com/smarterplanet/us/en/
https://partner.microsoft.com/en-US/Solutions/CityNext
https://www.cisco.com/c/dam/en_us/solutions/industries/docs/gov/everything-for-cities.pdf
https://www.cisco.com/c/dam/en_us/solutions/industries/docs/gov/everything-for-cities.pdf
http://www.climate-kic.org/areas-of-focus/urban-transitions/our-initiatives/smart-sustainable-districts/
http://www.climate-kic.org/areas-of-focus/urban-transitions/our-initiatives/smart-sustainable-districts/
http://dx.doi.org/10.1007/s10708-013-9516-8
http://dx.doi.org/10.3390/s110302652
http://www.ncbi.nlm.nih.gov/pubmed/22163760
http://www.opengeospatial.org/standards/sensorml
http://www.opengeospatial.org/standards/om
http://www.opengeospatial.org/standards/sos

Sensors 2019, 19, 562 26 of 29

21. Liang, S.; Huang, C.Y.; Khalafbeigi, T. SensorThings API Part 1: Sensing|OGC Document No.
15-078r6. 2015. Available online: http://docs.opengeospatial.org/is/15-078r6/15-078r6.html (accessed on
25 November 2018).

22. TimeseriesAPI. A RESTful web binding to OGC Sensor Observation Service. 2018. Available online:
http://sensorweb.demo.52north.org/sensorwebclient-webapp-stable/api-doc/index.html (accessed on
25 November 2018).

23. Robert, J.; Kubler, S.; Kolbe, N.; Cerioni, A.; Gastaud, E.; Främling, K. Open IoT Ecosystem for Enhanced
Interoperability in Smart Cities—Example of Métropole De Lyon. Sensors 2017, 17, 2849. [CrossRef]
[PubMed]

24. Mynzhasova, A.; Radojicic, C.; Heinz, C.; Kölsch, J.; Grimm, C.; Rico, J.; Dickerson, K.; García-Castro, R.;
Oravec, V. Drivers, standards and platforms for the IoT: Towards a digital VICINITY. In Proceedings of the
2017 Intelligent Systems Conference (IntelliSys), London, UK, 7–8 September 2017; pp. 170–176. [CrossRef]

25. Bröring, A.; Schmid, S.; Schindhelm, C.K.; Khelil, A.; Kabisch, S.; Kramer, D.; Le Phuoc, D.; Mitic, J.;
Anicic, D.; Teniente López, E. Enabling IoT ecosystems through platform interoperability. IEEE Softw. 2017,
34, 54–61. [CrossRef]

26. FIWARE. Open Source Platform for the Smart Digital Future. 2018. Available online: https://www.fiware.
org/ (accessed on 27 November 2018).

27. Adams, D. The Hitchhiker’s Guide to the Galaxy; Pan Books: London, UK, 1979.
28. Chaturvedi, K.; Kolbe, T.H. InterSensor Service: Establishing interoperability over heterogeneous Sensor

Observations and Platforms for Smart Cities. In Proceedings of the 4th IEEE Annual International Smart
Cities Conference (ISC2 2018), Kansas City, MI, USA, 16–19 September 2018; p. 8.

29. Gröger, G.; Kolbe, T.H.; Nagel, C.; Häfele, K.H. OGC City Geography Markup Language (CityGML)
Encoding Standard|Version 2.0.0|OGC Document No. 12-019. 2012. Available online: http://www.
opengeospatial.org/standards/citygml (accessed on 27 November 2018).

30. InterSensorService. Homepage. 2018. Available online: www.intersensorservice.org/ (accessed on 25
January 2019).

31. Maureira, M.A.G.; Oldenhof, D.; Teernstra, L. ThingSpeak—An API and Web Service for the Internet of
Things.World Wide Web 2011. Available online: https://staas.home.xs4all.nl/t/swtr/documents/wt2014_
thingspeak.pdf (accessed on 27 November 2018).

32. OpenSensors. Creating Smarter Workspaces. 2018. Available online: https://opensensors.com/ (accessed
on 27 November 2018).

33. TheThingsNetwork. Building a Global Internet of Things Network Together. 2018. Available online:
https://www.thethingsnetwork.org/ (accessed on 27 November 2018).

34. WeatherUnderground. Weather Service Providing Real-Time Weather Information. 2018. Available online:
https://www.wunderground.com/ (accessed on 27 November 2018).

35. Gojmerac, I.; Reichl, P.; Podnar Žarko, I.; Soursos, S. Bridging IoT islands: The symbIoTe project.
e & i Elektrotechnik und Informationstechnik 2016, 133, 315–318. [CrossRef]

36. Ganzha, M.; Paprzycki, M.; Pawlowski, W.; Szmeja, P.; Wasielewska, K. Semantic Technologies for
the IoT—An Inter-IoT Perspective. In Proceedings of the 2016 IEEE First International Conference on
Internet-of-Things Design and Implementation (IoTDI), Berlin, Germany, 4–8 April 2016; pp. 271–276.
[CrossRef]

37. Thingful. A Search Engine for the Internet of Things. 2018. Available online: www.thingful.net (accessed on
27 November 2018).

38. Grothe, M.; Broecke, J.V.; Carton, L.; Volten, H.; Kieboom, R. Smart Emission-Building a Spatial Data
Infrastructure for an Environmental Citizen Sensor Network. In Proceedings of the Geospatial Sensor Webs
Conference, Münster, Germany, 29–31 August 2016; Volume 1762.

39. Jennings, C.; Shelby, Z.; Arkko, J.; Keranen, A.; Bormann, C. Media Types for Sensor Measurement Lists
(SenML). 2018. Available online: https://tools.ietf.org/html/draft-ietf-core-senml-13 (accessed on 27
November 2018).

40. Oracle. Homepage. 2018. Available online: https://www.oracle.com/index.html (accessed on 25
November 2018).

41. MySQL. Homepage. 2018. Available online: https://www.mysql.com/ (accessed on 25 November 2018).

http://docs.opengeospatial.org/is/15-078r6/15-078r6.html
http://sensorweb.demo.52north.org/sensorwebclient-webapp-stable/api-doc/index.html
http://dx.doi.org/10.3390/s17122849
http://www.ncbi.nlm.nih.gov/pubmed/29292719
http://dx.doi.org/10.1109/IntelliSys.2017.8324287
http://dx.doi.org/10.1109/MS.2017.2
https://www.fiware.org/
https://www.fiware.org/
http://www.opengeospatial.org/standards/citygml
http://www.opengeospatial.org/standards/citygml
www.intersensorservice.org/
https://staas.home.xs4all.nl/t/swtr/documents/wt2014_thingspeak.pdf
https://staas.home.xs4all.nl/t/swtr/documents/wt2014_thingspeak.pdf
https://opensensors.com/
https://www.thethingsnetwork.org/
https://www.wunderground.com/
http://dx.doi.org/10.1007/s00502-016-0439-1
http://dx.doi.org/10.1109/IoTDI.2015.22
www.thingful.net
https://tools.ietf.org/html/draft-ietf-core-senml-13
https://www.oracle.com/index.html
https://www.mysql.com/

Sensors 2019, 19, 562 27 of 29

42. PostgreSQL. Homepage. 2018. Available online: https://www.postgresql.org/ (accessed on 25
November 2018).

43. TimescaleDB. Open Source Database for Timeseries Data. 2018. Available online: https://www.timescale.
com/ (accessed on 25 November 2018).

44. InfluxDB. Open Source Timeseries Database. 2018. Available online: https://www.influxdata.com/
(accessed on 25 November 2018).

45. MongoDB. Open Source Cross-Platform NoSQL Database. 2018. Available online: https://www.mongodb.
com/ (accessed on 25 November 2018).

46. Google. Fusion Table REST API Documentation. 2018. Available online: https://developers.google.com/
fusiontables/ (accessed on 25 November 2018).

47. Google. Google Spreadsheet—Homepage. 2018. Available online: https://www.google.com/sheets/about/
(accessed on 25 November 2018).

48. Microsoft. OneDrive—Homepage. 2018. Available online: https://onedrive.live.com (accessed on 25
November 2018).

49. GPX. GPS Exchange Format (GPX) 1.1 Schema Documentation. 2004. Available online: www.topografix.
com/GPX/1/1/ (accessed on 25 November 2018).

50. Burggraf, D. OGC Keyhole Markup Language (KML) 2.3)|OGC Document No. 12-007r2. 2015.
Available online: http://www.opengeospatial.org/standards/om (accessed on 25 November 2018).

51. Cesium. Cesium Language (CZML) Guide. 2016. Available online: www.github.com/AnalyticalGraphicsInc/
czml-writer/wiki/CZML-Guide (accessed on 25 November 2018).

52. Waze. API Documentation. 2018. Available online: https://developers.google.com/waze/ (accessed on 25
November 2018).

53. Twitter. API for Twitter Developers. 2018. Available online: https://developer.twitter.com/en/docs
(accessed on 25 November 2018).

54. Flickr. The App Garden—API Documentation. 2018. Available online: https://www.flickr.com/services/
api/ (accessed on 25 November 2018).

55. Chaturvedi, K.; Kolbe, T.H. Integrating Dynamic Data and Sensors with Semantic 3D City Models in
the context of Smart Cities. In ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information
Sciences; Dimopoulou, E., van Oosterom, P., Eds.; ISPRS: Athens, Greece, 2016; Volume IV-2/W1,
doi:10.5194/isprs-annals-IV-2-W1-31-2016.

56. Wupperverband. TaMIS—Development of a Dam Surveillance and Information System for the
Management of Natural Hazards. 2017. Available online: https://52north.org/references/tamis-
talsperrenmessinformationssystem/ (accessed on 25 November 2018).

57. Jirka, S.; Bröring, A.; Stasch, C. Applying OGC Sensor Web Enablement to risk monitoring and
disaster management. In Proceedings of the GSDI 11 World Conference, Rotterdam, The Netherlands,
15–19 June 2009.

58. Partescano, E.; Brosich, A.; Lipizer, M.; Cardin, V.; Giorgetti, A. From heterogeneous marine sensors to sensor
web: (Near) real-time open data access adopting OGC sensor web enablement standards. Open Geospat. Data
Softw. Stand. 2017, 2, 22. [CrossRef]

59. Toma, D.M.; del Rio, J.; Jirka, S.; Delory, E.; Pearlman, J.; Waldmann, C. NeXOS smart electronic interface
for sensor interoperability. In Proceedings of the OCEANS 2015—Genova, Genoa, Italy, 18–21 May 2015;
pp. 1–5. [CrossRef]

60. Pfeil, M.; Bartoschek, T.; Wirwahn, J.A. OPENSENSEMAP—A Citizen Science Platform For Publishing
And Exploring Sensor Data as Open Data. Free Open Source Softw. Geospat. (FOSS4G) Conf. Proc. 2015, 15.
[CrossRef]

61. IRCELINE. Air Quality Belgium App. 2018. Available online: https://github.com/irceline/air-quality-
belgium-app (accessed on 27 November 2018).

62. Jirka, S.; Wieman, S.; Brauner, J.; Jürrens, E.H. Linking Sensor Web Enablement and Web Processing
Technology for Health-Environment Studies. In Proceedings of the Integrating Sensor Web and Web-based
Geoprocessing Workshop at the AGILE, Utrecht, The Netherlands, 18 April 2011.

63. Percivall, G. OGC Smart Cities Spatial Information Framework White Paper|OGC Doc. No. 14-115.
2015. Available online: http://www.opengeospatial.org/pressroom/pressreleases/2181 (accessed on 25
November 2018).

https://www.postgresql.org/
https://www.timescale.com/
https://www.timescale.com/
https://www.influxdata.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://developers.google.com/fusiontables/
https://developers.google.com/fusiontables/
https://www.google.com/sheets/about/
https://onedrive.live.com
www.topografix.com/GPX/1/1/
www.topografix.com/GPX/1/1/
http://www.opengeospatial.org/standards/om
www.github.com/AnalyticalGraphicsInc/czml-writer/wiki/CZML-Guide
www.github.com/AnalyticalGraphicsInc/czml-writer/wiki/CZML-Guide
https://developers.google.com/waze/
https://developer.twitter.com/en/docs
https://www.flickr.com/services/api/
https://www.flickr.com/services/api/
https://52north.org/references/tamis-talsperrenmessinformationssystem/
https://52north.org/references/tamis-talsperrenmessinformationssystem/
http://dx.doi.org/10.1186/s40965-017-0035-2
http://dx.doi.org/10.1109/OCEANS-Genova.2015.7271586
http://dx.doi.org/10.7275/R56971SW
https://github.com/irceline/air-quality-belgium-app
https://github.com/irceline/air-quality-belgium-app
http://www.opengeospatial.org/pressroom/pressreleases/2181

Sensors 2019, 19, 562 28 of 29

64. OGC IP. OGC Innovation Program. 2017. Available online: http://www.opengeospatial.org/ogc/programs/
ip (accessed on 25 November 2018).

65. OGC. Future City Pilot Phase 1. 2016. Available online: http://www.opengeospatial.org/projects/
initiatives/fcp1 (accessed on 25 November 2018).

66. Exner, J.P.; Elisei, P. Smart Cities and standards–The Approach of the Horizon 2020-Project ESPRESSO.
In Proceedings of the REAL CORP 2016–SMART ME UP! How to Become and How to Stay a Smart City,
and Does This Improve Quality of Life?—21st International Conference on Urban Planning, Regional
Development and Information Society, Hamburg, Germany, 22–24 June 2016; pp. 937–943.

67. Vretanos, P.A. OpenGIS Web Feature Service 2.0 Interface Standard OGC Document No. 09-025r1. 2010.
Available online: http://www.opengeospatial.org/standards/wfs (accessed on 15 October 2018).

68. Baumann, P. OpenGIS Web Coverage Service 2.0 Interface Standard OGC Document No. 09-110r4. 2012.
Available online: http://www.opengeospatial.org/standards/wfs (accessed on 15 October 2018).

69. Douglas, N.; Arliss, W.; Panagiotis, V. OpenGIS Catalogue Services Specification OGC Document
No. 07-006r1. 2007. Available online: http://www.opengeospatial.org/standards/cat (accessed on 15
October 2018).

70. Bhattacharya, D.; Painho, M. Smart Cities Intelligence System (SMACiSYS) Integrating Sensor Web with
Spatial Data Infrastructures (SENSDI). ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 4, 21–28.
[CrossRef]

71. Meiling, S.; Purnomo, D.; Shiraishi, J.A.; Fischer, M.; Schmidt, T.C. MONICA in Hamburg: Towards
Large-Scale IoT Deployments in a Smart City. arXiv 2018, arXiv:1803.06854.

72. Santhanavanich, T.; Schneider, S.; Rodrigues, P.; Coors, V. Integration and Visualization of Heterogeneous
Sensor Data and Geospatial Information. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, IV-4/W7,
115–122. [CrossRef]

73. 52NorthSOS. Sensor Observation Service Implementation by 52° North. 2018. Available online:
https://52north.org/software/software-projects/sos/ (accessed on 15 October 2018).

74. FROST-Server. A Server Implementation of the OGC SensorThings API. 2018. Available online:
https://github.com/FraunhoferIOSB/FROST-Server (accessed on 15 October 2018).

75. CEDUS. City Enabler for Digital Urban Services. 2018. Available online: www.cedus.eu (accessed on 15
October 2018).

76. Jazayeri, M.A.; Liang, S.H.L.; Huang, C.Y. Implementation and Evaluation of Four Interoperable Open
Standards for the Internet of Things. Sensors 2015, 15, 24343–24373. [CrossRef] [PubMed]

77. SCIRA. OGC Smart City Interoperability Reference Architecture. 2018. Available online: www.opengeospatial.
org/projects/initiatives/scira (accessed on 15 October 2018).

78. EIT. Enabling Smarter Cities; An Initiative by European Institute for Innovation and Technology
Climate-KIC. 2018. Available online: https://wiki.tum.de/display/enablingsmartercities/Enabling+
Smarter+Cities (accessed on 15 October 2018).

79. Wired. The Internet of Anything: A Social Network for the World’s Online Sensors. 2014. Available online:
https://www.wired.com/2014/12/the-internet-of-anything-opensensorsio/ (accessed on 15 October 2018).

80. LoRaWAN. Long Range Wide Area Network. 2018. Available online: https://www.thethingsnetwork.org/
docs/lorawan/ (accessed on 15 October 2018).

81. TTN-OpenSensors. The Things Network and OpenSensors Integration. 2018. Available online: https:
//www.thethingsnetwork.org/docs/applications/opensensors/ (accessed on 15 November 2018).

82. Roosen, N. The Things Network—OGC SensorWeb Integration. 2017. Available online: https://github.
com/52North/ttn-ogcswe-integration (accessed on 15 November 2018).

83. Anjos, D.; Carreira, P.; Francisco, A.P. Real-time integration of building energy data. In Proceedings of the
2014 IEEE International Congress on Big Data (BigData Congress), Anchorage, AK, USA, 27 June–2 July
2014; pp. 250–257.

84. Chaturvedi, K.; Willenborg, B.; Sindram, M.; Kolbe, T.H. Solar Potential Analysis and Integration of
the Time-dependent Simulation Results for Semantic 3D City Models Using Dynamizers. ISPRS Ann.
Photogramm. Remote Sens. Spat. Inf. Sci. 2017, IV-4/W5, 25–32. [CrossRef]

85. Chaturvedi, K.; Kolbe, T.H. OGC Future City Pilot 1 Engineering Report | OGC Document No. 16-098. 2017.
Available online: http://docs.opengeospatial.org/per/16-098.html (accessed on 25 November 2018).

http://www.opengeospatial.org/ogc/programs/ip
http://www.opengeospatial.org/ogc/programs/ip
http://www.opengeospatial.org/projects/initiatives/fcp1
http://www.opengeospatial.org/projects/initiatives/fcp1
http://www.opengeospatial.org/standards/wfs
http://www.opengeospatial.org/standards/wfs
http://www.opengeospatial.org/standards/cat
http://dx.doi.org/10.5194/isprs-annals-IV-4-W3-21-2017
http://dx.doi.org/10.5194/isprs-annals-IV-4-W7-115-2018
https://52north.org/software/software-projects/sos/
https://github.com/FraunhoferIOSB/FROST-Server
www.cedus.eu
http://dx.doi.org/10.3390/s150924343
http://www.ncbi.nlm.nih.gov/pubmed/26402683
www.opengeospatial.org/projects/initiatives/scira
www.opengeospatial.org/projects/initiatives/scira
https://wiki.tum.de/display/enablingsmartercities/Enabling+Smarter+Cities
https://wiki.tum.de/display/enablingsmartercities/Enabling+Smarter+Cities
https://www.wired.com/2014/12/the-internet-of-anything-opensensorsio/
https://www.thethingsnetwork.org/docs/lorawan/
https://www.thethingsnetwork.org/docs/lorawan/
https://www.thethingsnetwork.org/docs/applications/opensensors/
https://www.thethingsnetwork.org/docs/applications/opensensors/
https://github.com/52North/ttn-ogcswe-integration
https://github.com/52North/ttn-ogcswe-integration
http://dx.doi.org/10.5194/isprs-annals-IV-4-W5-25-2017
http://docs.opengeospatial.org/per/16-098.html

Sensors 2019, 19, 562 29 of 29

86. Helgoland. Sensor Web Client for Visual Exploration and Analysis of Sensor Web Data. 2018.
Available online: https://github.com/52North/helgoland (accessed on 25 November 2018).

87. Spring. Application Framework for the Java Platform. 2018. Available online: https://spring.io/ (accessed
on 25 November 2018).

88. C3NTINEL. Online Energy Management Application. 2017. Available online: www.c3ntinel.com (accessed
on 25 November 2018).

89. Schmid, S.; Bröring, A.; Kramer, D.; Käbisch, S.; Zappa, A.; Lorenz, M.; Wang, Y.; Rausch, A.; Gioppo, L.
An Architecture for Interoperable IoT Ecosystems. In Interoperability and Open-Source Solutions for the Internet
of Things; Podnar Žarko, I., Broering, A., Soursos, S., Serrano, M., Eds.; Springer: Cham, Switzerland, 2017;
pp. 39–55.

90. Chaturvedi, K.; Matheus, A.; Nguyen, S.H.; Kolbe, T.H. Securing Spatial Data Infrastructures in the Context
of Smart Cities. In Proceedings of the 2018 International Conference on CYBERWORLDS (CW 2018),
Singapore, 3–5 October 2018; pp. 403-408. [CrossRef]

91. Yao, Z.; Nagel, C.; Kunde, F.; Hudra, G.; Willkomm, P.; Donaubauer, A.; Adolphi, T.; Kolbe, T.H.
3DCityDB—A 3D geodatabase solution for the management, analysis, and visualization of semantic 3D city
models based on CityGML. Open Geospat. Data Softw. Stand. 2018, 3, 5. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://github.com/52North/helgoland
https://spring.io/
www.c3ntinel.com
http://dx.doi.org/10.1109/CW.2018.00078
http://dx.doi.org/10.1186/s40965-018-0046-7
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction and Motivation
	Literature Review
	Smart Cities, Sensors and Interoperability
	Different Sensor and IoT Platforms
	Other Sources of Timeseries Data

	Cross-Platform Interoperability Using the InterSensor Service
	Architecture
	Data Adapters
	Standardized External Interfaces
	InterSensor Service

	Data Model
	DataSourceConnection
	DataSource
	Timeseries
	Observations

	Implementing and Configuring the InterSensor Service
	Adding a Data Source
	Automated Generation of the Standardized Interfaces
	OGC SensorThings API
	OGC Sensor Observation Service
	52° North Timeseries API

	Using the InterSensor Service in Smart City Projects
	Deployment Options
	Joint Visualization and Analysis of Heterogeneous Sensor Platforms and Data Sources
	Visualization of Sensor Observations with Other OGC Standards
	Performance Evaluation
	Dealing with Pagination in the Cases of Large Number of Observations

	Conclusions and Future Work
	References

