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Abstract

In today’s engineering applications, the quantification of uncertainties, which are inherent
to a dynamic system, is of growing importance to describe and understand the complex
behavior of systems in a complete way. Thus, it is also of importance in open-loop direct
optimal control (OC) applications (“trajectory optimization”), i.e., when an optimal trajec-
tory of a dynamic system with respect to a cost function is calculated. Here, the presence
of uncertainties normally requires a trade-off between the optimality of the cost function
and the robustness, i.e., the reduction of the uncertainty influence.

To improve methodologies in OC with uncertainties, this thesis connects the method of
generalized polynomial chaos (gPC), which is used for efficient uncertainty quantification,
with OC techniques. By this, the solution of robust open-loop direct optimal control
problems (ROCPs), i.e., open-loop direct optimal control problems (OCPs) that connect
optimality with robustness considering uncertainties, is possible. To this end, the thesis
introduces efficient formulations to connect the gPC method with the ROCP, e.g., by
means of distributed open-loop direct optimal control (DOC) or chance-constrained open-
loop direct optimal control (CC-OC): For DOC, the thesis provides novel formulations of
the distribution of the statistical moments from the gPC method that enable an efficient
solution of the ROCP. This is especially viable for large OCPs that benefit from being
solved unconnected and in smaller parts.

Furthermore, the CC-OC formulation utilizes a developed transcription method for
the OCP that is based on the gPC expansion. By this, the optimization is made in
the gPC domain and statistical moments can directly be optimized. In addition, chance
constraints (CCs) can be solved efficiently by sampling techniques, as the gPC expansion
provides an analytic approximation of the dynamic system response. This representation
is then also used for the introduction of rare-event CCs in the ROCP formulation based on
subset simulation (SubSim). The connection gives e.g., the possibility to use the developed
method in future aviation certification processes as well, as a risk analysis of the system
when operated at the optimal point can be conducted.

Overall, the developed robust open-loop direct optimal control (ROC) frameworks are
examined in different case studies ranging from controller gain design over air race applica-
tions to obstacle avoidance to show their applicability in a very general context. The case
studies also prove the viability and real-world applicability of the chosen methodologies.
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Kurzfassung

In aktuellen Ingenieursfragestellungen bekommt die Beschreibung von Unsicherheiten, wel-
che sich inhärent in dynamischen Systemen befinden, eine immer größere Bedeutung, um
das komplexe Systemverhalten in vollständiger Weise zu beschreiben und zu verstehen.
Deswegen ergibt sich natürlicherweise auch ihre Bedeutung in der Optimalsteuerung („Tra-
jektorienoptimierung“), also wenn die optimale Trajektorie eines Systems auf Basis einer
Kostenfunktion berechnet werden soll. Hierbei wird durch vorhandene Unsicherheiten nor-
malerweise eine Abwägung zwischen Optimalität und Robustheit, also der Verringerung
des Unsicherheitseinflusses, nötig.

Um die Methoden der Optimalsteuerung mit Unsicherheiten weiter zu entwickeln,
kombiniert die vorliegende Arbeit die Methode des generalisierten Polynomchaos zur
effizienten Unsicherheitsbeschreibung mit Optimalsteuerungsmethoden. Dadurch wird
die Lösung robuster Optimalsteuerungsprobleme, also der Verbindung von Optimalität
und Robustheit, ermöglicht. Dies wird in der vorliegenden Arbeit durch eine effiziente
Verbindung des Polynomchaos mit der Optimalsteuerung erreicht, was mit der Entwicklung
verteilter und wahrscheinlichkeitsbeschränkter Optimalsteuerungsmethoden endet: Im
Bereich der verteilten Optimalsteuerung werden besonders die statistischen Momente so
formuliert, dass sich eine effiziente Lösung des Problems ergibt. Das Anwendungsgebiet
der verteilten Optimalsteuerung sind dabei hauptsächlich große Optimierungsprobleme.

In der wahrscheinlichkeitsbeschränkten Optimierung wird entsprechend die determi-
nistische Problemformulierung so abgeändert, dass das Polynomchaos direkt mittels der
Optimierungsvariablen optimierbar ist. Dadurch können sowohl statistische Momente
als auch Wahrscheinlichkeitsbeschränkungen direkt optimiert werden. Hierbei wird u.a.
ausgenutzt, dass das Polynomchaos eine analytische Näherung der exakten Systemant-
wort liefert und somit effizient Stichproben zur Wahrscheinlichkeitsberechnung erstellt
werden. Die Wahrscheinlichkeitsbedingungen werden weiterhin insbesondere zur Model-
lierung seltener Fehlerwahrscheinlichkeiten mittels Subset Simulation genutzt. Dies kann
den zukünftigen Einsatz der entwickelten Methoden z.B. in der Luftfahrtzertifizierung
oder der Risikoanalyse ermöglichen.

Schlussendlich wird die Anwendbarkeit der entwickelten Methoden zur robusten Opti-
malsteuerung in verschiedenen Anwendungsbeispielen gezeigt (Reglerauslegung, Luftren-
nen, Hindernisvermeidung). Im Besonderen soll hierbei die Möglichkeit der Anwendung
in realen Optimalsteuerungsproblemen gezeigt werden.
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Here, a further index D is added within the bracket, which denotes the kind of the velocity,
e.g., kinematic K. Furthermore, a superscript E is added outside the bracket, which
describes the coordinate frame with respect to whom the time derivative is taken.

Finally, an acceleration is defined as follows:
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Once more, the added superscript F outside the bracket depicts the coordinate frame with
respect to whom the second time derivative is taken.

Scalars are generally depicted by lower- or uppercase Latin, e.g., a, or Greek, e.g., α,
letters in normal font and angles are depicted by lowercase Greek letters, e.g., β.
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Chapter 1

Introduction

This thesis makes developments and proposes specifically tailored formulations of frame-
works in the context of open-loop direct optimal control (OC) (“trajectory optimization”)
with uncertainties (i.e., non-deterministic influences in e.g., the dynamic model), which is
further on denoted as robust open-loop direct optimal control (ROC). The developed ROC
frameworks are applicable to a wide range of problems in the context of dynamic model op-
timization as they are relying on the basic principles of OC (e.g., the transcription method).
The focus of the work is laid on efficiently introducing uncertainties into the open-loop
direct optimal control problem (OCP) (“trajectory optimization problem”), mainly regard-
ing the computational performance, using the method of generalized polynomial chaos
(gPC). Based on this efficient uncertainty quantification within the OCP, the frameworks
that are used to directly calculate robust, optimal results for the dynamic model are
developed. These rely on distributed open-loop direct optimal control (DOC) and chance
constraints (CCs) (i.e., probabilistic constraints) The robust trajectories, i.e., the optimal
trajectories that are insensitive to the uncertainties influencing the dynamic model, are
then resulting from the optimization procedure.

A general motivation on the necessity to calculate robust trajectories and the resulting
problem statement is given in Section 1.1. Then, the state of the art is reviewed in
Section 1.2, while the emerging mission statement is detailed in Section 1.3. Afterward,
Section 1.4 summarizes the resulting contributions of this thesis. The chapter concludes
with an outline in Section 1.5.

1.1 Motivation and Problem Statement

Optimization plays an important and immensely growing role in our society and economy
mainly because of fading resources and growing competition. Nowadays, optimization is
used in almost every major engineering discipline such as civil engineering (e.g., life-cycle
analysis of roads and buildings), control engineering (e.g., controller design), or electrical
engineering (e.g., filter design). Apart from engineering applications, optimization also
plays a major role in e.g., economics and finance (risk-averse profit optimization). These
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fields show that the application of optimization techniques is very important to ensure
the competitiveness and longevity of companies, but also to maximize the environmental
and economic sustainability.

The goals of competitiveness and sustainability are also of special importance within
the aviation industry as airlines must operate as efficient as possible considering e.g.,
the flight time and fuel consumption as well as the grounding hours and turn-around
times. Additionally, the market is highly competitive as there are many airlines to choose
for the customers. Thus, methods that e.g., optimize the fleet scheduling, flight paths/-
trajectories, aircraft design, engine control, and the fuel consumption have always been
an important topic in research. Especially reducing the fuel consumption was consis-
tently a major research area that led to the development of e.g., supercritical airfoils and
winglets by Richard Whitcomb [20]. Furthermore, new materials, such as carbon, are
introduced in the aircraft design to reduce the overall mass, while also trying to increase
the payload.

Regarding optimization, the increase in the available onboard computational power
allows algorithms that optimize parts of the flight online, e.g., a time or fuel optimal climb
segment, to become applicable and makes them an integral part of future aviation [39].
Additionally, not only the optimization of a single aircraft will be important in the future,
but also the optimization of multiple aircraft within connected problems: An interesting
example in this field is the approach of aircraft to an airport, where a strict assignment of
the aircraft into an arrival sequence is necessary. Here, no single aircraft should be put at
disadvantage (e.g., delayed arrival or increased fuel consumption), yielding the necessity
for optimizing the sequence as a whole.

The questions and chances related to aircraft optimization utilizing the increased
onboard computational capability are combined as a core part of Europe’s Flight-
path 2050 program to achieve a safe, secure, and connected European air transport
system, while simultaneously protecting the environment by reducing the emissions [39].
A major task of this program is done in the Single European Sky ATM Research (SESAR)
framework that tries to modernize the European Air Traffic Management (ATM) system
resulting in a “free” airspace: The idea of this “free” airspace is that all air vehicles (e.g.,
general aviation, helicopters, or air taxis) operate on their preferred flight paths (“trajecto-
ries”) while not being restricted by airspace limitations (e.g., flight levels), except for safety
considerations [107]. Initial tests in the SESAR framework show the significant emission
reduction capability, when the flight is optimized as a whole rather than segment-wise as
currently done [108].

Especially, this planning as a whole is one of the strengths of the OC methods used
in this thesis: They provide the capability to plan the flight trajectory with respect to
an optimization criterion (e.g., reducing the emissions or flight time), while also considering
the operational aircraft limitations (e.g., passenger comfort and load factor limits). These
optimal trajectories from OC theory can then be used within the developed SESAR ATM
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system (e.g., for the already mentioned sequencing). Additionally, OC methods can be
applied in the context of air taxi route planning to fully utilize the capacity of the air space.
Furthermore, it is also important in the air taxi route planning to consider an appropriate
sequencing and thus, the mentioned ATM systems are applicable as well. Thus, OC theory
has a broad application range in future aviation. It should be reminded here, once more,
that the term optimal control refers to open-loop direct optimal control
in the context of this thesis, i.e., no feedback is considered and the solution is obtained
by solving a nonlinear program (NLP), i.e., a numerical parameter optimization problem.

To expand the available tools in creating robust, optimal trajectories, this thesis
concentrates on calculating these for aircraft (as they would e.g., be used in the context
of Flightpath 2050 in an Arrival Manager (AMAN), which optimizes the arrival
sequence at an airport), by using the OC theory with add-ons to consider uncertainties.
Here, time as well as fuel optimal trajectories can be calculated to fully exploit and
increase the efficiency of the aircraft’s flight performance. In this case, it is clear that
a trade-off between time and fuel optimality must be made. Additionally, the standard
OCP formulation does not consider uncertainties (an uncertainty in the context of this
thesis is a system (“dynamic model”) influence (“parameter”) with known probability
density function (PDF)), such as wind, model (e.g., mass), as well as aerodynamic (e.g.,
lift coefficient) parameters. These can significantly alter the optimal flight paths for both
time and fuel optimality. The jet stream the transatlantic flight routes is an example
that can be considered as an uncertainty, which can significantly alter the optimal aircraft
routing. In the context of the AMAN, an aircraft in an emergency situation, i.e., a high
priority in the arrival sequence, can be also considered as an uncertainty. Furthermore,
the already mentioned air taxi routing is normally subject to a number of uncertainties:
Here, not only the environment (e.g., wind fields) can be considered as such, but also
other air taxis, which require an update of the routing to avoid collisions.

Disregarding these uncertainties yields that optimized trajectories, obtained from stan-
dard OC theory without uncertainties, are very specific and only valid locally around
the design point. This design point is normally the point without uncertainties (i.e.,
the “mean/nominal” configuration). Here, in reality even small deviations (e.g., distur-
bances by wind) from the design point can lead to quite large deviations in the real system
behavior, when operated with the result obtained for the design case. This deviated system
behavior might then no longer be optimal but rather inefficient, although it was origi-
nally planned to be an optimal scenario. Additionally, constraints (i.e., operational limits
of the system) might be violated in the deviated (“disturbed”) case that were fulfilled
for the nominal solution. This can then create safety critical situations during the real
operation.

Thus, uncertainties have to be considered for the calculation of optimal trajectories
and within the formulation of the OCP. This gives an idea on how the real behavior
of the system changes with these uncertainties and can then be used for a re-evaluation
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of the optimization to get more robust results. Additionally, robust results can also be
obtained by directly calculating trajectories that are insensitive to (i.e., only influenced
“mildly” by) the uncertainties. Modeling the OCP with uncertainties and finding optima
that are least sensitive, and thus, robust with respect to uncertainties, is the main goal
of this thesis. For this, the next section reviews already conducted studies in the field of
optimization with uncertainties.

1.2 State of the Art

This section gives an overview on the state of the art of solving OCPs with uncertainties.
Generally, the basic OCP is solved in the presented studies, and also this thesis, by using
direct OC methods, i.e., by discretizing the continuous (i.e., infinite dimensional) OCP into
a large-scale, finite-dimensional parameter optimization problem, which is subsequently
solved using an NLP solver [16]. Here, the NLP algorithm numerically searches for
the optimal point by Newton-type optimization schemes [5, p. 294]. The state of
the art review begins with a general overview of methods to quantify uncertainties within
a dynamic system.

Uncertainty Quantification: Overview Uncertainty quantification is a popular topic
within the engineering research community. Its origin is the Monte Carlo analysis (MCA),
i.e., the random sampling and deterministic simulation of dynamic systems to get their
response surface [89]. As MCA is inefficient, especially in the context of OC because
the solution of an OCP is time-consuming and must be done thousands of times for a MCA,
there have been multiple improvements and developments to calculate the uncertain system
response more efficiently.

At first, stochastic control was an important topic in order to calculate optimal robust
gains for control loops [6]. Here, analytic results for the optimal gains of linear systems,
e.g., the linear–quadratic–Gaussian regulator (LQG), i.e., a linear system with Gaussian
process and measurement noise, were initially calculated [6].

Later on, robust optimization was extended using (stochastic) dynamic programming
approaches, which split a large, complicated problem into smaller sub-problems solved in
a recursive manner to simplify the solution process [13]. For instance, this recursive nature
of dynamic programming is used in combination with a Markov chain to find the maximum
likelihood estimates of transition probabilities in study [66]: Here, the authors use their
approach to achieve robust results with respect to the limited knowledge available for
the transition probabilities of the Markov process (i.e., a process that only depends on
the current and no previous states). It should be noted that a basic problem with high-
dimensional models in dynamic programming approach is the high computation effort
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and storage requirement when solving the problem recursively. Thus, the methods are
normally not considered in applications with complex dynamics and large state spaces
(“curse of dimensionality”), which are present in the aviation studies of this thesis.

In general, the incorporation of uncertainties within dynamic systems became very pop-
ular with the introduction of gPC by Xiu and Karniadakis in 2002 [143]. The gPC
method provides a fast, accurate, and efficient way to approximate the response surface,
and by this the statistical moments, of an uncertain dynamic system. It is based on
Wiener’s polynomial chaos [135], published in 1938, where Norbert Wiener
introduced a polynomial expression for systems subject to Gaussian uncertainties us-
ing Hermite polynomials. The gPC method extends this principle to polynomials from
the Wiener-Askey scheme of orthogonal polynomials [143]. Generally, the gPC
expansion is similar to the well-known Fourier analysis of an oscillating system [5,
p. 1043ff.]. Thus, gPC creates a finite, generally low order, expansion of the dynamic
system response to uncertainties. As this thesis concentrates on the application of gPC
in OCPs, the literature overview starting from now is mostly dedicated to work on this
topic.

As already mentioned, gPC became a major contributor to the scientific community
in terms of accurate, efficient, and fast uncertainty influence characterization. By this,
the calculation of statistical moments for dynamic systems becomes possible. It was,
for instance, used within the following engineering applications: In fluid dynamics, gPC
is used to model the uncertainties, e.g., in wall boundary conditions and free stream
conditions, within a flow field [144]. Here, the authors use a Galerkin projection [5,
p. 1094] to calculate the gPC expansion and show the improved efficiency by their method
compared to a MCA. Another study [134] uses gPC to model uncertainties within steady
as well as unsteady three-dimensional heat transfer problems. Again, the Galerkin
projection is used to solve the problems. The authors show results for up to 38
stochastic dimensions (i.e., uncertainties) as well as 150 million unknowns in their problems.
This shows the applicability of gPC for large-scale problems, which are also present in
OC.

Furthermore, the propagation of uncertainties within spacecraft attitude kinematics is
discussed in [129]: Here, the authors combine gPC with Gaussian mixture models (i.e.,
a combination of multiple Gaussian PDFs). By this, the authors can describe different
continuous PDFs by the standard Gauss-Hermite gPC expansion. This extends the basic
gPC theory to PDFs not covered by the Wiener-Askey scheme. Additionally, they
show a good convergence of the gPC expansion even for low gPC expansion orders.

Finally, the highly unsteady flow within an internal combustion engine is combined
with gPC in [149]. Here, the uncertainties within the combustion chamber are modeled
by gPC and the response surface results of the combustion simulation are compared to
MCA. As an outcome, gPC is shown to be more efficient than MCA, while also reaching
a good match with experimental results.
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Overall, the literature review shows that gPC is a very important and also versatile
method in engineering applications. Therefore, it is suited to develop the algorithms in
this thesis that deal with the calculation of robust and optimal trajectories.

As a remark, it should be noted here that gPC has a fundamentally different philoso-
phy compared to the stochastic dynamic programming approach mentioned in a previous
paragraph: The idea of gPC is, essentially, to have an uncertainty that is once “ran-
domly” defined and otherwise constant (i.e., time-invariant; “parametric uncertainty”)
along the system trajectory (e.g., the initial mass of an aircraft). Therefore, gPC looks
at a single perturbation of the dynamic system. Stochastic dynamic programming ap-
proaches, however, consider an uncertainty that is varying along the trajectory, i.e., it
is time-variant (e.g., measurement noise). Thus, the uncertainty can randomly change
along the trajectory. Consequently, the control policies obtained from gPC and stochastic
dynamic programming-based OC solutions will differ in application as the basic solution
procedure differs. Nonetheless, gPC methodologies could be extended to time-varying
uncertainties (simply speaking by time-varying the uncertainty along the trajectory and
solving the gPC problem at each time instant individually), which would then consequently
also suffers from the curse of dimensionality encountered by dynamic programming ap-
proaches. As the single perturbation case covered by gPC is sufficient for the work in this
thesis no further details and extensions regarding this topic are discussed.

Uncertainty Quantification: Optimization One of the most fundamental problems
in ROC (in this case in the context of closed-loop ROC) with uncertainties is the LQG
problem to design the optimal feedback controller gain for a linear dynamic system (“plant”)
that minimizes a cost functional [6, p. 257ff.]: Here, the well-known linear–quadratic
regulator (LQR) baseline problem formulation [122, p. 397ff. & 470ff.] is extended by
adding Gaussian white noise to the system dynamics as well as the measurement
equation. The general problem formulation reduces to an optimal estimation problem as
well as an OCP that are separable and can be solved by two time-dependent Ricatti
equations [6, p. 257ff.]. Within this thesis, methods for nonlinear systems as well as
more general cost functionals, in mainly an open-loop OC setup, are developed. Still,
the LQG problem is an important milestone and the idea of feedback controller design
with uncertainties is extended within this thesis as well.

As mentioned, this work concentrates on the application of gPC in trajectory optimiza-
tion problems to calculate robust optimal trajectories (now again meant in the open-loop
OC context). These robust, optimal trajectories should be sufficiently insensitive to
the chosen parametric uncertainties. In previous applications, the gPC expansion was
often used as an add-on to the standard OCP formulation. This work, on the other
hand, tries to find a suitable combination of both standard OC and gPC for an integrated
solution. The approach can be regarded as a primal composition of the two major parts of
ROC, i.e., the uncertainty quantification as well as the direct OC discretization method.
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Previous studies on gPC within the OC field comprise the following topics: In [30],
the author solved OCPs using the Gauss pseudo-spectral discretization method. The op-
timization did run for multiple samples (“nodes/evaluation points”) calculated from the un-
certainty’s PDF by the rules of Gaussian quadrature [5, p. 1184], in sequence and is
afterward combined to the gPC expansion (this procedure is also called: “non-intrusive
method”). Thus, the OCPs are decoupled and optimized deterministically and an un-
certain representation is derived. The developed algorithm is applied to a target search
with threat areas and does generally not yield robust trajectories, but only uncertain
trajectories. Building upon the previous work in [30], study [58] introduces a result check
methodology to compare the generated trajectories from the analytic gPC expansion with
OC results at random parameter samples of the uncertainties. Here, the author compares
the system response when simulating the system forward in time based on the calculated
controls from gPC. The author uses this methodology to check the applicability and
viability of the gPC results with varying parameters and found the results to be a good
match with a sufficient gPC expansion order.

Furthermore, study [19] introduces the gPC methodology within differential dynamic
programming, which is a development of dynamic programming and uses locally-quadratic
models in the recursive dynamic programming framework. In this context, the authors in-
troduce variational integrators (i.e., momentum conserving integrators specifically designed
to numerically integrate the Hamiltonian system [126, ch. 1]) to increase the numerical
stability of the algorithm. Then, the work in [86] uses the gPC expansion to calculate
the conflict probability of aircraft in ATM scenarios. The authors incorporate gPC within
a Gauss pseudo-spectral transcription method and calculate 4D conflict resolving op-
timal trajectories. The gPC method is used as an efficient way to estimate the conflict
probability for these scenarios and the authors evaluate the performance and effectiveness
of their algorithm, which shows good results.

Study [80] formulates a large scale, deterministic OCP using the non-intrusive gPC
expansion for a supersonic aircraft climb. The authors transform the general stochastic
OCP into a robust, deterministic OCP. The solution of the OCP is, again, based on
the Gauss pseudo-spectral method and the authors consequently also use these trajec-
tories to calculate the expansion coefficients of the gPC within their robust open-loop
direct optimal control problem (ROCP). Additionally, the authors compare their results
with the results based on the algorithm given in [30], which, as mentioned before, merely
calculates an uncertain representation of the system by evaluating specific samples of
the system. Additionally, they show the improved robustness by their approach.

Furthermore, the authors of study [94] use a similar approach as in [80] to optimize air-
craft trajectories for landing in severe weather conditions. Again, a Gauss pseudo-spectral
method is applied to discretize and solve the OCP. The authors rewrite the stochastic
OCP into a deterministic baseline OCP using the non-intrusive gPC expansion and verify
their method by comparison with a MCA, which shows the increased performance.
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Additionally, study [139] introduces an incorporation of gPC in robust design opti-
mization. Due to the high dimension of the uncertainty space, the author introduces
sparse grid techniques for the non-intrusive gPC formulation. To achieve a robust design,
the author suggests the use of a sensitivity-based measure instead of the commonly used
variance-based measure. This approach ensures that the uncertainty influence on the opti-
mal design point is reduced. Here, the approach utilizes the fact that the gPC expansion
provides an (approximate) analytic representation of the uncertain system response.

Finally, study [109] decomposes the ROCP formulation by using a bi-level OC frame-
work for noise minimal approach trajectories. The upper level problem consists of param-
eters for a Bézier curve (i.e., a spline curve) to shape the horizontal flight path in
order to decrease the noise level. The lower level contains multiple deterministic OCP
subject to wind uncertainty. Post-optimal sensitivities [45] are used to update the upper
level parameters efficiently. This bi-level approach is also known as primal decomposition
method.

Robust Controller Gain Design by Optimization Techniques As already men-
tioned, optimal gain design for controllers (here in the context of feedback gains) has
always been an important topic in general closed-loop control but also in OC theory.
Again, the LQR and LQG controller design are important steps in the development. Fur-
thermore, looking at adaptive control, the choice of the adaptation gains (e.g., in model
reference adaptive control (MRAC)) is of paramount importance for the stability and
performance of the control loop. This is studied in [124] and it is found that depending
on the range of the uncertainties, different gains are suitable regarding performance and
stability. Therefore, a robust, optimal design of the gains is also of interest and within
the scope of this thesis. Take into account that the following literature overview gives
an insight into gain design methods using optimization techniques. Thus, it should not
serve as an overview to general robust gain design in control loops, but to methods of
interest for this thesis.

For standard (i.e., non-adaptive) control loops, the following studies have been con-
ducted: In study [117], the optimal gain design for linear systems with time delay is
researched. For this, the authors consider a parametric optimization on the largest abso-
lute eigenvalue of the linear mapping matrix (named like this because of the time delay)
and minimize it by varying the parameters. They show the robustness improvement by
their method in case studies and by root locus analysis. On the other hand, study [70]
uses a particle swarm optimization, i.e., the evaluation of multiple sets of controller gains
and a successive “push” of the gains into the direction of the optimum, to calculate
the optimal feedback gains for a direct current motor. The authors use the particle swarm
to trade-off the objectives of minimum rise time vs. minimal maximum overshoot vs.
minimal settling time and compare their results with standard tuning methods to show
their superiority. Finally, [120] uses unscented transformations and a performance-based
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controller design methodology. This method has the benefit that the design with respect
to uncertainties does not need to be conservative and closed-loop statistical performances
can be guaranteed.

Particle swarm optimization is also used in MRAC adaptation gain calculation [1]: In
this study, the MRAC reference models are switched based on the current operating point.
The adaptation gain of the MRAC structure is chosen using the particle swarm based on
a tracking error minimization in a pre-processing step for reference cases. The authors
achieved an improvement in transient performance compared to standard MRAC.

Furthermore, study [93] introduces an online optimization method for the adaptation
gain based on model predictive control (MPC) for a class of input-affine dynamic sys-
tems with single input and single output. The optimal adaptation gain is calculated by
minimizing the control energy. The authors additionally take precautions to stay within
the feasible domain by means of Lyapunov analysis [121, ch. 3]. Finally, the research
presented in [3] suggests a further online MRAC scheme that uses two Newton-type
optimizations: One to calculate an appropriate control signal and another one to update
the adaptation gain. Both optimizations yield a better tracking than the reference adaptive
control loop, by minimizing the error between plant and reference model.

Robust Model Predictive Control Robust MPC is an important research topic as
deterministic MPC algorithms can largely benefit from robustifications (e.g., in the context
of quality and stability of the results). Generally, it can be stated that MPC is a develop-
ment of OC regarding online applicability of the optimization algorithm as well as online
control capability, in an optimal sense, on a receding horizon in a closed control loop.
The studies within this field are therefore also relevant for the developed open-loop robust
trajectory optimization frameworks in this thesis. Additionally, the developed methods
in this thesis can be extended to MPC or nonlinear model predictive control (NMPC)
in future works. Therefore, some standard methodologies are looked at in the following
paragraphs. A general overview on robust MPC (linear system)/NMPC (nonlinear system)
and its basics can be found in [14]. Further overview on more recent methods is given
in [87].

A very popular choice for robust MPC are so-called min-max algorithms (related to
the “tube-based” algorithms), which try to achieve a worst-case optimal control command
design in the presence of uncertainties to increase the robustness [33, 83, 128]. Generally,
the min-max algorithms (most often done in the open-loop context because of a too
high complexity in the closed-loop) try to find the worst-case (“max”) plant reaction to
the uncertainties (which is most often at the boundary of the uncertainty domain) and
then optimize (“min”) the control policy such that it minimizes the cost functional for
this worst-case plant reaction. Overall, min-max algorithms normally yield conservative
control policies. In [128], the authors describe a min-max differential inequality describing
the forward propagation of the system within an invariant tube. The proposed approach
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is generally applicable to tube-based MPC methods, i.e., MPC methods that try to
keep the disturbed trajectory in an invariant tube around the design/nominal solution.
Additionally, it does not rely on a discretization of the control policy, which is instead
implicitly defined by the solution of the min-max optimization problem. It should be
noted here that tube-based MPC schemes often also introduce an ancillary controller that
keeps the deviation between the desired and actual state in an invariant tube and thus,
keeping the MPC scheme stable in the presence of uncertainties [127].

Furthermore, study [33] deals with the development of a min-max algorithm that is
suitable for linear constrained systems with piecewise affine cost functionals. The algorithm
results in a robust dynamic programming problem. Study [83] introduces a quasi-min-
max algorithm (the authors use the word “quasi” because the first stage cost can be
computed without any uncertainty) for linear systems with parameter variations. The ap-
proach is specifically meaningful for gain scheduling applications within controllers. Then,
study [127] describes the computation of ellipsoid tubes for NMPC that approximate
the min-max MPC problem. It is closely related to study [128] and benefits from the fact
that the control policy does not need to be discretized. The authors illustrate their method
using a spring-mass-damper system.

Additionally, authors also already incorporated gPC within MPC [72, 73]: In study [72],
the authors apply a gPC algorithm for probabilistic collision avoidance. Therefore, they
implement a CC (“probabilistic constraint”) and use the gPC method to approximate
the probability of exceeding this CC within the MPC scheme. Furthermore, study [73]
gives a more general algorithm for the MPC with an additive Gaussian process. This
Gaussian process is again described using a gPC expansion, which yields a relaxation
of the probabilistic CC into a convex, deterministic constraint that can be solved using
a standard MPC algorithm.

Finally in study [11], the authors use gPC and CCs for the uncertainty propagation
within NMPC. They use Bayes’ rule to estimate the probability distribution of the un-
certain system response at each sampling point and apply only Gaussian PDFs to solve
a deterministic MPC OCP with joint CCs.

Distributed Optimization A powerful tool in standard OC is the method of DOC:
It defines a methodology to split up a large OCP into smaller OCPs that are coupled by
connection variables without making simplifications on the originally desired solution of
the non-distributed OCP. These distributed OCPs are then easier to solve because they
are smaller (i.e., have a smaller number of constraints and optimization parameters) and
can be solved independently of each other (i.e., they are parallelizable). As a drawback,
the smaller OCPs must be solved multiple times, instead of only once as a coupled problem.
Still, it is generally easier regarding both computational time as well as complexity, to
solve multiple smaller, parallelized OCPs instead of a single, large, and coupled OCP
(which might not even be possible due to the size). Thus, this study applies the method
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of DOC to ROC with gPC. The resulting OCPs can be distributed well due to the linear
nature of the gPC expansion. A general overview on different methods for DOC is given
in [88], while the following overview introduces initial work on DOC with gPC.

Developed gPC-DOC frameworks for MPC, and generally with intrusive changes to
the dynamic model by inserting the gPC expansion, can be found in [32, 37, 67]: At first,
study [32] shows a combination of DOC in the context of MPC with gPC. The authors
apply their method to linear systems and use an intrusive gPC formulation to rewrite
the deterministic equations into a stochastic form, i.e., the authors insert the gPC expan-
sion in the model equations and rewrite them (this is also called: “intrusive method”).
Their goal is to solve a linear probabilistic CC. It should be noted that rewriting dynamic
equations is opposite to the formulation of this thesis that conserves the deterministic dy-
namic system formulation and thus does not require and alteration of the original dynamic
model formulation.

Furthermore, study [67] introduces a similar idea as study [32] in the context of stochas-
tic DOC for non-convex problems. The authors again use an intrusive reformulation by
the gPC method to change the problem formulation from the deterministic to the stochas-
tic domain. Finally, study [37] once more uses the gPC method and directly inserts it
into the DOC formulation for optimization. The authors show that box constraints can
be fulfilled with a high accuracy using the gPC method.

Chance Constraints in Optimal Control The formulation of an OCP in the form of
a chance-constrained open-loop direct optimal control problem (CC-OCP) is a frequently
used formulation in ROC. Still, these formulations remain computational expensive and
difficult to solve exactly. The following research has been conducted within the field:
In study [130], a general overview of different methods for handling CCs (“probabilistic
constraints”) is given. The author introduces both analytical methods (e.g., ellipsoid
relaxation, i.e., approximating a multivariate Gaussian distribution in the OCP by
a cone constraint) and sampling-based methods (e.g., mixed integer programming, i.e.,
optimization with a cost function, constraints, and (some) integer optimization param-
eters). These methods are subsequently combined in a hybrid approach. Additionally,
a feedback controller is used to satisfy the system constraints. The author introduces
an approach to assure feasible solutions by making a risk allocation, i.e., the violation
probability of each individual CC is an optimization parameter. These are then summed
and constrained by the total violation probability, in a two-stage optimization procedure.
In addition, the author shows the applicability of the algorithm in a real-time experimental
demonstration.

Furthermore, study [147] introduces a strategy to approximate a CC based on split
Bernstein polynomials in a Gauss pseudo-spectral OC framework. This approximation
is combined with a Markov chain Monte Carlo (MCMC) algorithm that estimates the ex-
pectations of tabulated samples to solve the CC-OCP. Additionally, study [95] introduces
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another method for chance-constrained open-loop direct optimal control (CC-OC) using
a mixed control strategy. This strategy is a convexification of the original, non-convex
CC-OCP. The authors show that two deterministic control strategies are sufficient to
achieve robust optimality. Study [25] then introduces a CC-OC framework that is based
on Kernel density estimation, i.e., approximating the PDF by basis functions. The approx-
imated PDF can directly be used to estimate the corresponding probability of fulfilling (or
violating) the CC. The authors show that their approach is also working for only a small
number of available samples.

As already mentioned, CCs are often applied in MPC/NMPC applications. Many
approaches apply the already introduced tube-based/min-max theory [33, 83, 128]. Ad-
ditionally, in order to assure real-time applicability the algorithm, study [50] transforms
Gaussian uncertainties to explicit algebraic constraints (“ellipsoid relaxation”). The au-
thors apply their method to spacecraft rendezvous calculation and show that the mission
cost is increased by the robust scheme but that the success of the mission can be assured.
It should be noted that this trade-off is most common in robust OC applications.

Furthermore, frameworks in CC-OC use the randomization technique to calculate
the robust control policy [146]. This technique is generally a MCA method and thus, it is
very important to find suitable samples for the evaluation in order to reduce the overall
number of MPC problems that need to be solved. Overall, this randomization can then
directly be used to estimate the probability of the CC.

Finally, methods of MPC with CCs use feasible set approaches that can guarantee
to satisfy the probabilistic constraint [116]. The general idea is to find a maximal set
of feasible control policies that all satisfy the CC. Here, this set can be calculated by
an optimization algorithm, specifically, by running multiple optimization for different
parameter combinations.

Subset Simulation in Optimization In order to deal with rare-event CCs (i.e., events
with a small occurrence probability), as also desired for the frameworks developed in
this thesis, the method of subset simulation (SubSim) can be applied [7, 9, 81]. This
methodology starts the rare-event probability estimation process with a general MCA
solution of the OCP and afterward gradually exploits different samples within the failure
domain(s), using e.g., a Metropolis-Hastings algorithm (MHA) or modified Metropolis-
Hastings algorithm (MMHA). This so-called MCMC algorithm converges to a series of
conditional probabilities, which are easier to calculate than directly working on the rare-
event, but nonetheless yield the failure probability of the desired rare-event.

As SubSim is very often used in reliability engineering, optimization frameworks of
interest for this thesis are also developed in this area: In study [71], SubSim is incorpo-
rated in a risk-cost optimization setup for pipelines to minimize the failure occurrence.
The authors show that the proposed algorithm is computationally more efficient than
standard techniques based on genetic algorithms.
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Further work is conducted by introducing SubSim into design optimization [77]: Here,
SubSim is combined with a genetic algorithm including constraint handling. The basic
idea is that optimal points are rare events, which can therefore be calculated by SubSim.
The authors show the efficiency and robustness of the proposed approach compared to
standard techniques (e.g., basic genetic algorithms).

Additional work also combines SubSim with global, unconstrained optimization prob-
lems [76]: Here, design variables are assigned an artificial PDF and can therefore be
treated with SubSim. Then, the maximum of the now probabilistic objective function is
searched for. Again, benefits in comparison to a standard genetic algorithms are shown.

Finally, study [123] shows the viability of SubSim in the context of multi-objective
optimization. Here, the SubSim provides a fast and reliable way to explore the Pareto
optimal region and generate the Pareto frontier. The applicability of this approach is
shown in multiple case studies and shows good results compared to standard methods
from literature based on genetic algorithms.

Continuing after the general literature review and the state of the art overview, the next
section deals with the mission statement of this thesis considering the state of the art in
robust, optimal trajectory calculation. Here, the developments by this thesis to the current
situation are stated.

1.3 Mission Statement

Looking at the state of the art and literature review in Section 1.2, it is clear that un-
certainty quantification is an important topic in engineering applications. But, although
major effort has already been put in developing new and efficient methods, especially
the open-loop OC formulation with uncertainties is still not fully exploited and researched
(e.g., in terms of modeling the uncertainties within the OCP and the NLP transcription
as well as an efficient evaluation routine of the resulting probabilistic problem). In this
context, it is important to note that the goal of the work at hand is to represent the un-
certainties by their real PDF and influence on the dynamic system, rather than making
simplifying assumptions or approximations (e.g., ellipsoid relaxation).

To this end, there also has not yet been any deep analysis on rare-event failure prob-
abilities in CC-OC. Still, these rare-event failure probabilities are of major importance
in the context of future aircraft certification that is based on fulfilling probability crite-
ria [40–42]. These probabilistic criteria must fulfill high safety standards and thus, low
failure margins, where the margins can be achieved using suitable probabilistic constraints
in OC methods.

Additionally, due to the already mentioned increase in onboard computational power,
the online OC of e.g., commercial aircraft, becomes feasible. Here, considering uncertain-
ties will be a prominent topic to achieve robust, and therefore, safe as well as optimal
trajectories. In future applications, this can be combined with gateway controller archi-
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tectures that are checking the results obtained from ROC for sanity and validity (i.e., is
the result feasible and does it fulfill the safety criteria). If the result is valid, the robust,
optimal trajectory can be commanded to the aircraft for trajectory following purposes.
Otherwise, fallback strategies are used, which might be based on post-optimal sensitivities
or simplified analytic representations. These ensure that the aircraft follows a sub-optimal,
but feasible trajectory until the ROC again returns valid solutions. Thus, efficient methods
in the context of formulating and solving ROCPs, specifically for the online applicability,
ensuring the availability of sensitivities (i.e., first order updates of the system for perturbed
parameters), must be developed. Here, not only the already mentioned CCs, but also
DOC algorithms with uncertainties can prove viable to achieve fast and more reliable
convergence, and thus require further research.

Therefore, the main mission of this thesis is to evolve the theory and available frame-
works in ROC: Here, it must be considered that an efficient uncertainty quantification is
required in OC formulations and that future applications require probabilistic constraints,
especially also for rare-events, which should also be covered by the developed methodologies
without simplifying assumptions.

1.4 Contributions of this Thesis

Following the mission statement in Section 1.3, the contributions of this thesis can be
summarized as follows:

C. 1 Development of a full discretization (“collocation”) transcription for a direct OCP
using gPC within the FSD optimal control tool for MATLAB R© (FALCON.m) frame-
work (Chapter 5): This direct collocation method reformulates the baseline deter-
ministic OCP into a larger, parallelized OCP using a non-intrusive gPC formulation,
specifically, the stochastic collocation (SC) method (Subsection 2.3.3). By this,
the gPC description, and thus the uncertain description of the trajectory, can di-
rectly be incorporated within the OCP and the statistical moments can be optimized.
This method is specifically tailored to the requirements of the trapezoidal collocation
discretization method and the FALCON.m software package to solve OCP that was
developed at the Institute of Flight System Dynamics (FSD). An important aspect
of the developed gPC collocation scheme is the derivation of an analytic Jacobian
and Hessian that is used to efficiently solve the created NLP and can be used to
calculate sensitivities, which can be applied in online applications.

C. 2 Calculation of optimal gains for adaptive or standard control loops, combining
the method of gPC, the system response to reference commands, sensitivities, and
CCs within a bi-level OCP (Chapter 3). Using this methodology the statistical mo-
ments are again part of, in this case, the bi-level OCP and gains for the adaptive or
standard controllers can be calculated that are robust and least-sensitive to a variety
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of uncertainties acting on the system. Additionally, these gains can fulfill constraints
in the form of probabilities that can e.g., be defined by certification regulations in
future applications. Here, a major part is also the combination of gPC and sensi-
tivity analysis for a fast calculation of the controller gains. It should be noted that,
although applied here in the context of gain design, the proposed method is more
generally applicable to any parameter optimization required in a system subject
to uncertainties (e.g., design parameters). This is also clarified when introducing
the general methodology in Chapter 3.

C. 3 Development of a framework to distribute the gPC expansion calculation from one
large OCP into smaller, parallelizable, and more efficiently to solve OCPs (Chap-
ter 4). These small OCPs are initially solved unconnected and are then connected
within a coordination/connection problem (this is similar to the bi-level OCP in Con-
tribution 2). Here, the size of the solved ROCP is significantly reduced as the sub-
problems are smaller and can be distributed to different workers (i.e., parallelized).
Additionally, an efficient formulation for the statistical moments is developed that
can be used to the solve the coordination problem without the necessity to have
sensitivities from the sub-problems. Still, it is important to note that the distributed
open-loop direct optimal control problems (DOCPs) recover the original solution
of the connected, large-scale OCP without simplifications, which is achieved by
choosing appropriate connection variables ensuring this behavior.

C. 4 Development of a framework to incorporate CCs within an OCP using the developed
gPC OC transcription in Contribution 1 (or the DOC in Contribution 3; see Chap-
ter 6). This CC-OC framework is based on the efficient sampling that is possible from
the gPC expansion, such that the probability of fulfilling the CC within a constraint
function (along the trajectory: “path function”; at specific points on the trajec-
tory: “point function”) can be calculated if the gPC expansion is available within
the OC formulation. It should be noted that the real system response, at least if
a sufficiently accurate gPC expansion is available, is sampled in this context. Thus,
no conservatism (by simplifications or assumptions) is introduced into the OCP,
which generally yields a very good trade-off between robustness and optimality. Ad-
ditionally, a method to approximate the sharp CC bound for the Newton-type
NLP algorithm by a differentiable function is developed. Furthermore, a homotopy
strategy is implemented to gradually approximate the original, sharp CC as accurate
as possible. This combined direct gPC transcription and CC formulation can also
prove viable for MPC applications with probabilistic constraints.

C. 5 Combination of SubSim with the CC-OC framework to be able to calculate the prob-
ability of rare event failures (e.g., failure probabilities in the range of 10−6 − 10−8

and smaller; see Chapter 6). Here, the MCMC algorithm of SubSim is incorporated
within the already developed CC-OC framework. Therefore, a homotopy strategy

15



1.5 Structure of this Thesis

can be used to gradually decrease the failure probability constraint until the de-
sired probability value is fulfilled. Additionally, direct updates of the SubSim within
the OCP by sensitivities or in an external homotopy step can be considered. The gen-
eral goal of this contribution is to define the rare-event CC-OC framework such that
the deterministic solution of the ROCP is conserved. This is done to ensure good
convergence as well as to be able to use off-the-shelf NLP solvers. Overall, this
contribution is a step towards connecting trajectory optimization with safety-critical
trajectory planning/design.

In summary, the major contributions of this thesis are in the field of connecting gPC with
OC to form general frameworks for ROC. These frameworks are specifically viable for
probabilistic events, including also rare-events. Thus, optimality and robustness are con-
nected within ROCPs that generally do not introduce additional conservatism when solved
(as e.g., by the previously mentioned relaxation techniques or worst-case approximations).
An important aspect of the proposed framework is that adaptations of the deterministic
dynamic model formulation are not required, which allows for the use of already tested
and validated model structures. Additionally, the developed distribution capability can be
exploited to efficiently calculate robust results without making simplifications on the solved
problem, which is a further development to the state of the art. Finally, in specific the in-
troduction of a method to evaluate rare-event CCs in ROC is an important development
to the state of the art made by this thesis.

1.5 Structure of this Thesis

As stated in the previous four sections, the main goal of this thesis is the development of
trajectory optimization frameworks that are, first of all, able to incorporate uncertainties
and, second of all, able to optimize the trajectory in a way that the uncertainties have
a reduced influence on the results. This means that the trajectory should be robust
with respect to the incorporated uncertainties. In order to show the implementation and
viability of the developed robust trajectory optimization/ROC frameworks, the thesis is
organized as follows:

In Chapter 2, the theoretical background on general and advanced OC theory as well as
general and efficient uncertainty quantification methods is established. Here, Section 2.1
starts with introducing the general OCP and the direct OC methods used for solving
the problem within the FALCON.m framework. Afterward, Section 2.2 introduces clas-
sical methods of uncertainty quantification, e.g., MCA, that are mainly used to compare
the implemented algorithm viability. Here, also the SubSim as a method to calculate
rare-event failure probabilities applying the principles of the MCMC algorithm is intro-
duced. Furthermore, Section 2.3 introduces the gPC method that is used in this thesis to
incorporate uncertainties within the OCP. Here, the main points are the introduction of
the general expansion formula, the SC method that allows for a deterministic sampling
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of the basic OCP to calculate the uncertain system response, as well as the fast and easy
statistical moment calculation. The theory chapter then concludes with some advanced
optimization techniques such as (post-optimal) sensitivity analysis, DOC, and CC-OC in
Section 2.4 that are important for the ROC frameworks developed in this thesis.

After the theoretical introduction, Chapter 3 introduces the first framework developed
for ROC in this thesis: This framework is based on a bi-level setup, in which an upper
level solves a parameter optimization problem, while the lower levels calculate the gPC
expansion of the system based on OC. The main feature is the calculation of the statistical
moments not only for the desired OCP outputs, which should be optimized in the upper
level, but also their (post-optimal) sensitivities (Section 3.2). This makes it possible
to use the (post-optimal) sensitivities in the upper level for the Newton-type update
and solution of the OCP. Additionally, the upper level can also feature a differential
evolution algorithm (DEA), which does not require post-optimal sensitivities, for models
that either do not provide these or to find the region of the global optimum in order to
apply the Newton-type optimization (Section 3.1).

Continuing with the framework development, Chapter 4 introduces the developed DOC
framework including gPC (which is a development of the bi-level framework in Chapter 3):
The basic idea of the framework is to split up the deterministic sampling of the gPC
expansion coefficients using SC into DOCPs. Afterward, these DOCPs are combined in
a connection problem that allows to solve a ROCP (Section 4.1). To achieve this, one part
of the chapter is concerned with deriving a distributed representation of the statistical
moments that are normally of interest in ROC (Section 4.2). Here, a representation is
developed that does not require any sensitivities to update the connection problem. Then,
the general DOCP statement is given in Section 4.4. Additionally, an example distribution
for a cost function depending on mean and variance is given. The chapter concludes with
the derivation of the Karush-Kuhn-Tucker (KKT) conditions for the DOC framework that
show the mathematical viability of the developed methods.

Then, Chapter 5 introduces the developed and implemented gPC discretization frame-
work using trapezoidal collocation within FALCON.m. Here, a method is introduced that
use the expansion coefficients as optimization variables (Section 5.1). Additionally, the OC
collocation defect (CD) is calculated by applying a differential equation for the expansion
coefficients. Thus, the approach transforms the OCP from the physical into the gPC
domain. This makes it possible to directly optimize or constrain statistical moments in
the OCP and additional calculate CCs. Finally, an intuition on the viability of the ap-
proach is given in Section 5.2 by showing that it is merely a change in the considered state
variables, i.e., a nonlinear transformation using the gPC expansion.

Based on the gPC collocation methods in Chapter 5, Chapter 6 introduces the CC-
OC framework developed in this study: This framework uses the possibility provided by
the gPC collocation framework, as well as the fast sampling that is then possible using
the gPC expansion, to get a good estimate on fulfilling a CC in each iteration of the NLP
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solution. Therefore, an initial framework is introduced in Section 6.1 that is based on
standard MCA sampling of the CC inside e.g., a path function of the OCP. A major point
of this initial framework is the development of a differentiable approximation of the CC for
Newton-type optimization, while also calculating the desired CC with a high accuracy.
For this purpose, an approximation based on sigmoid functions is developed and combined
with a homotopy strategy to iteratively sharpen the sigmoid function such that the desired
CC is approximated accurately. As a development, the incorporation of SubSim within
the framework is explained in Section 6.2 to be able to solve CC-OCPs with rare-event
failure probabilities. Within this framework it is possible to calculate failure probabilities
that cannot be covered by standard MCA because they are too rare.

Then, Chapter 7 gives an overview on the results of the first example that was used for
testing the developed ROC frameworks: Here, the bi-level OC framework of Chapter 3 is
used to calculate the optimal adaptation gain of an adaptive controller. For this, a short
period approximation of a F16 is used (Section 7.1), where parameters in the state and
control matrix are assumed to be uncertain. Using this model, Section 7.2 introduces
the problem formulation for the design for the adaptations gains in an adaptive control
loop in a robust manner. The robust design results are then introduced in Section 7.3,
which especially also introduces the results containing a CC in Subsection 7.3.3.

An example for the DOC framework, introduced in Chapter 4, is given in Chapter 8.
Here, an aerobatic aircraft within an race track under wind uncertainties is optimized
(Section 8.1). Here, to determine the required gPC expansion order, for an accurate
description of the statistical moments of the dynamic model, the dynamic equations are
analyzed and the model is optimized and compared to a MCA in Section 8.2. Afterward,
Section 8.3 checks and verifies the validity of the DOC framework in application by
comparing a distributed mean value cost function with a standard generalized polynomial
chaos-stochastic collocation framework (gPC-SC) expansion. Finally, a robustifying cost,
which yields a Pareto problem, is added to the DOC formulation and the possible
robustness improvements are shown.

As a final application case, Chapter 9 introduces results of the CC-OC framework,
here, based on the methods developed in Chapter 6. Here, a quadcopter is optimized in
an environment with obstacles (Section 9.1). The dynamic quadcopter model has both
uncertainties in internal parameters (rotor efficiency) and external parameters (obstacle
size). Once more, the required gPC expansion order is determined by analyzing the dy-
namic model equations as well as comparison to MCA (Section 9.2). Afterward, a frequent
event CC by the MCA-based CC-OC formulation of Section 6.1 is introduced in Sec-
tion 9.3. Here, the CC should ensure an avoidance of the obstacles with a high probability.
A comparison between the optimality reduction and the robustness gain is made as well.
Finally, Section 9.4 extends the CC for the obstacle avoidance to also cover rare-event
CCs (applying the method in Section 6.2). An important aspect of the application is
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the use of the Beta PDF estimation of the failure probability, available from SubSim, in
the CC-OC framework to improve the confidence in the robust, optimal trajectory. Once
more, robustness improvements as well as optimality reduction are compared.

Concluding the thesis is Chapter 10, which gives some remarks on the developed
methods and an outlook on future developments of the methods as well as generally in
the field of ROC.
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Chapter 2

Open-Loop Optimal Control and
Uncertainty Quantification

This chapter introduces the theoretical background for the basic parts of the developed
robust open-loop direct optimal control (ROC) frameworks in this thesis. Therefore,
the chapter is organized as follows: Section 2.1 introduces the general open-loop di-
rect optimal control problem (OCP) formulation and how this OCP is solved using
Newton-type, nonlinear program (NLP) solvers. Then, Section 2.2 introduces classic,
sampling-based uncertainty quantification methods, while Section 2.3 presents the method
of generalized polynomial chaos (gPC), which is used in this work as the main method to
efficiently model uncertainties in the ROC frameworks. Section 2.4 concludes the theoret-
ical part with more sophisticated open-loop direct optimal control (OC) methodologies,
such as chance-constrained open-loop direct optimal control (CC-OC) and distributed
open-loop direct optimal control (DOC), which are applied in the ROC formulations of
this thesis.

2.1 Continuous Open-Loop Optimal Control

In general, the continuous OCP (which in this thesis refers to the open-loop) defined
in (2.1) is solved in the case of trajectory optimization [16, 51, 74]: Here, the overall
goal is to find the optimal control history uopt (t) ≡ uopt ∈ Rnu that corresponds to
the optimal state history xopt (t) ≡ xopt ∈ Rnx , as well as relevant time-invariant optimal
parameters popt ∈ Rnp (these parameters might e.g., be a model dimension that should be
optimized) minimizing a cost function J : Rnx×Rnu×Rnp×Rnq → R as follows (take into
account that the time dependence · (t) of e.g., states and controls, is omitted throughout
this thesis for the sake of brevity):
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minu,p J (x,u,p; q)

s.t. xlb ≤ x ≤ xub,

ulb ≤ u ≤ uub,

plb ≤ p ≤ pub,

f(x,u,p;θ,q) = .x,

c(x,u,p; q) ≤ 0,

ψ(x,u,p; q) = 0

(2.1)

Here, f : Rnx×Rnu×Rnp×Rnθ×Rnq → Rnx provides an equation of motion (EoM) for each
state, i.e., the state dynamics, while c : Rnx×Rnu×Rnp×Rnq → Rnc depicts the inequality
path and point constraints, and ψ : Rnx × Rnu × Rnp × Rnq → Rnψ are the equality path
and point constraints. It should be noted that all inequality path/point constraints that
are fulfilled, i.e., for whom it is c < 0, are said to be inactive, while inequality constraints
with c = 0 are called active. As tracking active inequality constraints is important e.g.,
during the solution process of the OCP and for sensitivity analysis, the active constraints
are collected in the set A. Invariant parameters, i.e., parameters within the OCP that are
not optimized, are denoted as q ∈ Rnq in (2.1). These invariant parameters are later on e.g.,
used in the sensitivity analysis (Subsection 2.4.2) to assess their influence on the optimal
solution and are therefore also denoted as “sensitive” parameters. It should be noted
that non-optimizable parameters are generally separated from optimizable parameters
using a semicolon. Further take into account that the optimization parameters (“decision
variables”), i.e., x, u, and p, are generally limited by box constraints, i.e., they have
a lower “lb” and an upper bound “ub” (equality constraints are consequently described
by ·lb = ·ub).

An important aspect of the OCP formulation in (2.1) is the incorporation of ran-
dom/uncertain parameters θ ∈ Rnθ in the EoMs (see Appendix B for the definition of
a random variable (RV) and general probability theory). These random parameters are
not optimizable, like e.g., the relevant parameters p, but are uncertain, i.e., defined by
a probability density function (PDF) (ρΘ (θ); thus, (2.1) solves the OCP at a single real-
ization of this random parameter). It should be noted that by the definition of the OCP
in (2.1), the structural influence of the uncertainties in the OCP, and specifically the state
dynamics, is required to be known. This is generally not a hard constraint to fulfill as
the model structure must anyways be known in standard OC applications.

The efficient incorporation of the uncertainties acting on the state dynamics in (2.1)
within the robust open-loop direct optimal control problem (ROCP) is a major scope of
this thesis and dealt with in the next chapters. Take into account that the constraints in
the OCP (except for the chance constraints (CCs) introduced later on) as well as the cost
function are not functionally depending on the uncertain parameters but only indirectly,
i.e., through the state and control history, in this thesis. This formulation has proven to
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be sufficient as it is normally desired to have deterministic constraints (especially bounds),
while the cost function is generally specified by the user in a deterministic way (i.e., without
uncertain parameters). Still, the principles of this thesis can be extended directly to adapt
the problem formulation in (2.1) as desired.

It is important to see that (2.1) does not incorporate expectation operators or similar
that one might expect in OC with uncertainties. This is due to the fact that the gPC
methodology, introduced in Section 2.3, relies on a deterministic sampling. Therefore, all
OCPs are also solved deterministically although they are uncertain in nature. This relation
to gPC clears the choice for the OCP formulation given in (2.1) without expectation
operators, while required adaptations to (2.1), e.g., for CC-OC, are introduced when
necessary (Chapter 6). Thus, as also stated before, (2.1) can be viewed as a single
realization of the uncertain OCP.

In (2.1), the scalar valued cost functional J is expressed by a Bolza cost func-
tional as follows [16, p. 131]:

J (x,u,p; q) = e (x (tf ) ,u (tf ) ,p; q) +
∫ tf

t=t0
L (x,u,p; q) dt (2.2)

Here, the first addend, e, is the so-called Mayer term, i.e., a term that is related to
the end values of the OCP. The second addend, i.e., the integral of L, corresponds to
the Lagrange term that adds a cost related to the OCP time interval (“running cost”;
the initial time t0 and final time tf can be part of the optimization parameters p). It
should be noted here that generally a minimum of this cost function is calculated in (2.1).
A maximization can consequently be achieved by minimizing the negative cost function.
Further take into account that other cost function influences, e.g., further addends, can
also be added to (2.2) by summation if desired.

The constrained OCP in (2.1) is then solved using a Lagrange function that
connects cost and constraints as follows [16, p. 13ff.]:

L (z,λ,µ;θ,q) = J (z; q) + λTc (z; q) + µTψ (z;θ,q) (2.3)

Here λ ∈ Rnλ and µ ∈ Rnµ are the Lagrange multipliers for the inequality and
the equality constraints, respectively. Take into account that the notation in (2.3) is further
simplified by introducing the optimization parameter vector (also: “decision variable
vector”) z =

[
pT xT uT

]T
∈ Rnz with nz = np + nx + nu that represent the time

invariant optimization parameters (e.g., the final time), states, and controls. This decision
variable vector holds the discretization of the optimal trajectory for the OCP, which
is detailed in Subsection 2.1.2. Additionally, the EoMs are essentially represented by
an equality path constraint and are therefore, included in ψ. Finally, the box constraints on
the optimization parameters are generally represented by inequality or equality constraints,
based on their definition, and can therefore be treated as part of these for the simplicity
of writing as well.
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Then, an optimal solution of the Lagrange function in (2.3) must fulfill the first
order necessity conditions. These are known as the Karush-Kuhn-Tucker (KKT) optimality
conditions and defined as follows [16, p. 196ff.], [51, p. 87ff.], or [110, p. 19f.]:

Definition 2.1 (Karush-Kuhn-Tucker Optimality Conditions). Let zopt be a local optimum
of the standard constrained optimization problem in (2.1) with the Lagrange function
defined as in (2.3) and the functions J , c, and ψ be continuously differentiable. Then, there
exist optimal Lagrange multipliers λopt ∈ Rnλ and µopt ∈ Rnµ that fulfill the following
four KKT conditions:

K. 1 Sign condition fulfilled for all inequality constraint Lagrange multipliers (part of
so called “dual feasibility”), i.e.,

λopt ≥ 0

K. 2 Optimality condition fulfilled (part of so called “dual feasibility”), i.e.,

∇zL (zopt,λopt,µopt;θ,q) = 0

K. 3 Feasibility fulfilled, i.e., all constraints are satisfied (so called “primal feasibility”):

∇λL (zopt,λopt,µopt;θ,q) = c (zopt; q) ≤ 0

∇µL (zopt,λopt,µopt;θ,q) = ψ (zopt;θ,q) = 0

K. 4 Complementary condition (/slackness) fulfilled, i.e.,

λT
optc (zopt; q) = 0

For the KKT conditions in Definition 2.1 to hold, certain regularity conditions (also
called: “constraint qualifications”) should be valid to ensure a feasible descent direction
and unique Lagrange multipliers [16, p. 28f. & 40ff.], [51, p. 95ff.]. These generally state
that constraints must be linearly independent (e.g., linear independence of the gradients
of the active inequality constraints). If the regularity conditions hold, the KKT conditions
are a necessary optimality criterion. Thus, the KKT conditions give candidates for optimal
points. Sufficient conditions can e.g., be found in [17, p. 47f.] or [51, p. 100 & p. 295ff.]
and mainly rely on the determination of the definiteness of the Hessian of the Lagrange
function (only using the active inequality constraints). It should be noted that the NLP
optimization algorithms, used in this thesis to solve OCPs, are essentially KKT solvers, i.e.,
they calculate candidates for optimal points that satisfy the KKT conditions. Further take
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into account that Definition 2.1, in connection with the application to NLP optimization
algorithms and the Hessian of the Lagrange function, requires that the OCP in (2.1)
is sufficiently smooth (i.e., continuous and differentiable) [16, p. 42ff.].

2.1.1 Indirect Solution Methods

This section gives a brief overview of the so-called indirect solution method for the OCP
in (2.1). This technique can be mainly described by the optimize, then discretize principle
and is based on the calculus of variation and Pontryagin’s minimum princi-
ple [17, p. 58 ff.] [51, ch. 3] [74, ch. 5]. Due to the fact that this method is normally not
applicable to large-scale OCPs, especially with multiple inequality constraints as present
with aircraft trajectory optimization, it is not further considered for the ROC solution of
the examples in this work. But, it can e.g., be used to derive the linear–quadratic regulator
(LQR) and linear–quadratic–Gaussian regulator (LQG) solutions mentioned before. Thus,
the principle is important to understand in order to get the general goal of OC and how
this goal is achieved by the direct solution method presented in Subsection 2.1.2.

To show the general procedure of the indirect method, an unconstrained OCP for-
mulation, i.e., the formulation for which there are no equality constraints (other than
the EoMs) or inequality constraints in (2.1) and only a Lagrange cost term, is looked
at. Additionally, the initial time is fixed and no optimizable parameters are considered.
Then, the Hamiltonian is defined as follows [17, p. 59]:

H (x,u,µ;θ,q) = L (x,u; q) + µTf (x,u;θ,q) (2.4)

Now, this Hamiltonian must fulfill the necessary conditions from the Pontryagin
minimum principle given as follows [74, p. 233]:

P. 1 Minimum condition: H (xopt,uopt,µopt;θ,q) = min
u∈U⊂Rnu

H (xopt,u,µopt;θ,q)

P. 2 Adjoint differential equation: .µ = −∇xH (xopt,uopt,µ;θ,q)

P. 3 Transversality condition (no terminal cost/constraint): µ|t0,tf = 0

P. 4 For free final time: H (x,u,µ;θ,q) |tf = 0

P. 5 For time-autonomous systems: d
dt H (xopt,uopt,µ;θ,q) = 0

Thus, the indirect method at first tries to formulate the minimum conditions (see Pon-
tryagin P. 1–Pontryagin P. 5) and afterward, solves the two-point boundary value problem,
given by the state dynamics and the adjoint equation (Pontryagin P. 2). The solution of
the two-point boundary value problem normally requires the discretization of the prob-
lem. Additionally, depending on the chosen simulation method, a good initial guess for
the backward simulation of the adjoint variables might be required for this (Pontryagin P. 2
and Pontryagin P. 3).
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It is interesting to note that the co-states, i.e., the solution of the adjoint differential
equation, can be interpreted as the sensitivity of the solution. Thus, they show how
the solution, i.e., the cost, could be improved, when the constraints are changed [17, p. 62].
The concept of sensitivities is further detailed in Subsection 2.4.2.

2.1.2 Direct Solution Methods

The direct solution methods for OCPs are the basis of this work because the nonlinear
model as well as constraints can generally not be treated by indirect OC methods [16,
p. 91]. These methods are best described by the discretize, then optimize principle. In
fact, with direct OC one solves a large-scale NLP [16] (it should be noted that the terms
NLP and OCP can be used synonymously as only discretized OCPs, which are essentially
NLPs, are solved in this thesis). This NLP then computes an approximation of the real
optimal solution that would be obtained by the indirect method (Subsection 2.1.1).

A method to discretize the OCP in (2.1) to get an NLP is given in Subsection 2.1.2.1
with the collocation technique. Further methods, like shooting [16, p. 93ff.] or pseudo-
spectral transcription [15], can also be used, but are not introduced within this thesis as
it focuses on the collocation method.

The collocation technique is the discretization method used in the software FSD optimal
control tool for MATLAB R© (FALCON.m) developed at the Institute of Flight System
Dynamics (FSD) and is extended by the gPC methodology in this work. Therefore,
Subsection 2.1.2.2 also introduces the FALCON.m framework to get an overview on
the current capabilities of the software.

To solve discretized OCPs, i.e., NLPs, there mainly exist two methodologies: The first is
the interior point (IP) method introduced in Subsection 2.1.3 and the second is the sequential
quadratic programming (SQP) method introduced in Subsection 2.1.4. The main differ-
ence of these methods is the treatment of the inequality constraints within the NLP, which
is described in the subsections.

2.1.2.1 Collocation Technique and Nonlinear Programming

Collocation techniques are the chosen method for the OC discretization of this work.
They rely on a full discretization of both the state and control history, which transforms
the continuous OCP in (2.1) into a discretized nonlinear program (NLP). For the following
derivations, the discretization of states and controls is on a common grid for simplicity.
Extensions to non-common grids are e.g., discussed in [110, p. 75 & p. 133ff.] and also
implemented in FALCON.m. Generally, the OC time interval for collocation is mapped to
a non-dimensional/normalized time grid with nτ time steps that is discretized as follows:

τ i ∈ [0, 1] , i = 1, . . . , nτ , τ i < τ i+1 (2.5)
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Chapter 2: Open-Loop Optimal Control and Uncertainty Quantification

Consequently, the optimization parameter vector (“decision variable vector”), i.e., the vec-
tor the optimizer is adapting to find an optimal point, is discretized at these time steps
as well. It is defined as follows:

z̃ =
[
pT xT

1 uT
1 xT

2 uT
2 . . . xT

nτ−1 uT
nτ−1 xT

nτ uT
nτ

]T
∈ Rnz̃ (2.6)

The indices denote the nτ time steps and the size is nz̃ = np + (nx + nu) · nτ . Take into
account that by construction of the optimization parameter vector in (2.6), the constraints
for optimizable parameters, states, and controls are directly enforced within this vector in
the NLP. It should be further noted that the optimizable parameters are time-invariant
and therefore, do not need to be discretized on the non-dimensional time grid.

The transformation between the non-dimensional and physical time is then given as
follows:

τ = t− t0
tf − t0

= t

tf
, t0 = 0 (2.7)

The time transformation in (2.7) is used to ensure that the integration is always per-
formed with the same step size. Additionally, the initial and final time are then the sole
optimization parameters required to specify the time history. Take into account that
the initial time is set to zero without loss of generality and just for the sake of brevity.
The discretization step itself (e.g., evenly or unevenly spaced) is selected by the user.

Applying (2.7), the state dynamics must be scaled as well to fulfill the integration on
the non-dimensional time grid as follows:

f (xi,ui,p;θ,q) = .xi = 1
tf

x′i (2.8)

Thus, the state dynamics are essentially scaled with the final time to account for a solution
of the discretized NLP on a normalized time grid.

Then, an integration scheme for the transcription is defined, which is called the collo-
cation scheme. This scheme propagates the EoMs over the discretized time grid. The re-
sulting NLP parameter optimization problem can then be passed to a numerical optimizer.
A general first-order/single-step collocation scheme is defined as follows:

CDi,i+1 = xi+1 − xi − g (xi+1,ui+1,xi,ui,p, hτ ) != 0 ∈ Rnx (2.9)

The discretization step size vector on the non-dimensional time grid is depicted by hτ

and g (·) is the function that defines the collocation scheme. It should be noted that (2.9)
is given in the form of a defect equation, the collocation defect (CD). The CD symbolizes
the error of the integration algorithm between two integration time steps. This error must
consequently be zero and is enforced as an equality constraint between all discretized time
steps in the NLP.

Within this work, the trapezoidal rule is applied as the collocation integration method.
Thus, (2.9) becomes (applying (2.8)):
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2.1 Continuous Open-Loop Optimal Control

Figure 2.1: Visualization of general idea for collocation techniques with full state and
time discretization (red dots), one step integration (black line), and collocation defects
(orange arrows) (after [64]), [110, p. 38].

CDi,i+1 = xi+1 − xi −

g(xi+1,ui+1,xi,ui,p,hτ )=
x′
i+1+x′

i
2︷ ︸︸ ︷

hτ︸︷︷︸
=τ i+1−τ i

tf
2 ( .xi+1 + .xi) != 0 (2.10)

Take into account that the trapezoidal rule is an implicit integration scheme part of
Lobatto integrators [57]. It therefore exhibits A-stability [31, 57], i.e., is able to integrate
stiff differential equations without theoretical limitations on the discretization step size.
Thus, it is suited as the collocation scheme for an OCP [16, p. 100].

The introduced discretization procedure is also depicted in Figure 2.1. Here, the x-axis
shows the time history t, while the y-axis illustrates the state values x at different times.
The red dots are the state values chosen by the optimizer during the NLP evaluation.
The black squares symbolize the integrated values using e.g., the trapezoidal rule. The or-
ange arrows depict the value of the CD at the time steps. This CD must be zero for
the NLP algorithm to converge to an optimum (KKT Condition 3).

Using the CD in (2.10), an objective/a residual vector for the NLP can be defined.
This vector must fulfill the optimality criteria (Definition 2.1), i.e., the minimization of
the cost as well as the fulfillment of path and point constraints and is given as follows:

F̃ =
[
J yT

1 CDT
1,2 yT

2 CDT
2,3 . . . yT

nτ−1 CDT
nτ−1,nτ yT

nτ

]T
∈ RnF̃ (2.11)

The size of the residual vector is given by nF̃ = 1 + nτ · ny + (nτ − 1) · nx.
In (2.11), yi ∈ Rny depicts path or point constraints, e.g., for outputs like the load

factor, that are added at the discretized time steps (not necessarily at each) by the user
to constrain the optimal trajectory. These outputs are defined by the following nonlinear
function of states, controls, and parameters:

yi = h (xi,ui,p; q) (2.12)

Thus, any desired quantity of the dynamic model can be constrained.
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Overall, the discretization by (2.6), (2.10), and (2.11) yields the following basic NLP
transformation for the original continuous OCP definition in (2.1):

min
z̃

J (z̃; q)

s.t. z̃lb ≤ z̃ ≤ z̃ub,

c(z̃; q) =



y1,lb − y1

y1 − y1,ub
...

ynτ ,lb − ynτ
ynτ − ynτ ,ub


≤ 0,

ψ(z̃;θ,q) =


x2 − x1 − tf

2 hτ ( .x2 + .x1)
...

xnτ − xnτ−1 − tf
2 hτ ( .xnτ + .xnτ−1)

 = 0

(2.13)

Here, z̃lb is the lower bound vector of the optimization parameters, while z̃ub is its upper
bound. Further take into account that box constraints, normally used for the inequality
constraints, are transformed to the standardized description, i.e., c ≤ 0, by introducing
two constraints. Here, the first constraint is related to the lower bound yi,lb and the second
constraint is related to the upper bound yi,ub. Further note that the EoMs are directly
incorporated in the equality constraints by the trapezoidal integration scheme. It should
be further considered that (2.13) forms the basic description of the discretized NLP, which
can be extended using additional equality and inequality constraints as desired. But, for
the sake of consistency, the following derivations are only made using the form in (2.13),
which is also most common.

It is important to note that the cost function in (2.2) is discretized as well using
the trapezoidal integration scheme (see (2.10)) as follows:

J (z̃; q) = e (xnτ ,unτ ,p; q) + hτ
tf
2

nτ−1∑
i=1

[L (xi,ui,p; q) + L (xi+1,ui+1,p; q)] (2.14)

Then, in order to understand the principle of the NLP solution, an NLP with box con-
straints on the optimization parameters and otherwise only equality constraints is consid-
ered at. Thus, (2.13) becomes:

min
z̃

J (z̃; q)

s.t. ψ(z̃;θ,q) =


x2 − x1 − tf

2 hτ ( .x2 + .x1)
...

xnτ − xnτ−1 − tf
2 hτ ( .xnτ + .xnτ−1)

 = 0
(2.15)

Problem (2.15) can be solved using the following Lagrange function:
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L (z̃,µ;θ,q) = J (z̃; q) + µTψ (z̃;θ,q) (2.16)

Applying the KKT conditions in Definition 2.1 on the Lagrange function in (2.16)
yields the following optimality conditions that must be fulfilled by the decision variables
and Lagrange multipliers:

∇z̃L (z̃opt,µopt;θ,q) != 0

ψ (z̃opt;θ,q) != 0
(2.17)

Then, the Newton method [5, p. 294] can be applied on the KKT conditions in (2.17) to
iteratively calculate an update on the primal (optimization) ∆z̃ and the dual (multiplier)
variables ∆µ at the current iterate k as follows [16, p. 12ff.]:

∇2
z̃L (z̃k,µk;θ,q) ∇2

z̃,µL (z̃k,µk;θ,q)T

∇z̃ψ (z̃k;θ,q) 0

 ·
∆z̃

∆µ

 = −
∇z̃L (z̃k,µk;θ,q)

ψ (z̃k;θ,q)

 (2.18)

The symmetric Hessian of the Lagrange function is denoted by ∇2
z̃L (z̃k,µk). The up-

dates can then be used to calculate the new primal and dual variables:

z̃k+1 = z̃k + ∆z̃

µk+1 = µk + ∆µ
(2.19)

It should be reminded here that k is an iteration index in the NLP procedure and not
a discretized time index. Take into account that NLP solvers, such as Interior Point
Optimizer (Ipopt), additionally implement more sophisticated update strategies using
line-search methods [133, p. 30ff.]. This is not considered here for the sake of simplicity.

The procedure in (2.18) and (2.19) is iterated until the KKT conditions in (2.17) are
satisfied (Definition 2.1). Then, (2.19) converged to a candidate for an optimal solution
with corresponding multipliers. It should be noted that the procedure in (2.18) and (2.19)
requires an initial guess for the primal and dual variables. Further take into account that
in a numerical optimization procedure, i.e., when applied to the discretized NLP, the KKT
conditions cannot be fulfilled exactly but only approximately. Here, a stopping criterion,
which the optimal point must fulfill, of the following kind is normally used:

||∇z̃L (z̃opt,µopt;θ,q) ||∞ ≤ εopt

||ψ (z̃opt;θ,q) ||∞ ≤ εfeas
(2.20)

Thus, primal and dual feasibility of the KKT conditions (Definition 2.1), specifically their
infinity norm || · ||∞, are fulfilled up to a numeric tolerance of εopt and εfeas respectively.

It should be noted that (2.18) can also be rewritten using the identities [16, p. 13]:
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Chapter 2: Open-Loop Optimal Control and Uncertainty Quantification

∇z̃L (z̃k,µk;θ,q) = ∇z̃J (z̃k; q) +∇z̃µ
T
kψk (z̃k;θ,q)︸ ︷︷ ︸
ψk(z̃k;θ,q)Tµk

∇2
z̃,µL (zk,µk;θ,q) = ∇z̃ψ (z̃k;θ,q)

(2.21)

Applying (2.19) and (2.21), the first row in (2.18) becomes [16, p. 15f.]:

∇2
z̃L (z̃k,µk;θ,q) ·∆z̃ +∇z̃ψ (z̃k;θ,q)T · (∆µ̃+ µk)︸ ︷︷ ︸

µk+1

= −∇z̃J (z̃k; q) (2.22)

This can be inserted in (2.18) yielding:
∇2

z̃L (z̃k,µk;θ,q) ∇z̃ψ (z̃k;θ,q)T

∇z̃ψ (z̃k;θ,q) 0


︸ ︷︷ ︸

KKT matrix

·

 ∆z̃
µk+1

 = −
∇z̃J (z̃k; q)
ψ (z̃k;θ,q)

 (2.23)

The equation can be solved efficiently using linear solvers e.g., provided in the Harwell
Subroutine Library1. These solvers make use of the sparsity pattern [17, ch. 7] and
the symmetry to be able to solve the large-scale NLP. Interfaces to these solvers are also
provided in the Ipopt NLP algorithm used in FALCON.m (Subsection 2.1.2.2). Equa-
tion (2.23) is furthermore beneficial as is shows the symmetry of the KKT matrix, directly
updates the equality constraint Lagrange multipliers (i.e., an evaluation step is saved),
and does not require the Jacobian of the Lagrange function, but only the Jacobian
of the cost function. Take into account that the KKT matrix is invertible as long as
the previously mentioned regularity conditions (Section 2.1), e.g., linear independence of
constraints, hold and the Hessian of the Lagrange function in feasible directions
(e.g., only along equality constraints) is positive definite (i.e., the second order sufficient
conditions are fulfilled).

It should be noted that the incorporation of inequality constraints poses the major
difficulties within the application of the Newton method to the general NLP in (2.13).
Methods to cope with this issue are introduced in Subsections 2.1.3 and 2.1.4. Generally,
the working principle of an NLP optimizer (here, only with equality constraints for the sake
of simplicity) can be summarized as in Algorithm 2.1.

Generally, the information flow, iteration scheme, and different parts of the NLP
solution process can also be visualized as in Figure 2.2 (note that sensitive as well as
uncertain parameters are removed for the sake of simplicity). The NLP solution process
starts with the provision of an initial guess for the decision variable vector in (2.6). From
this initial guess, and all subsequent iterations k, the states, controls, and time-invariant
parameters can be extracted as the structure of the decision variable vector is known
by (2.6). Knowing these values, the model as well as the constraints (including their

1HSL-Ipopt reference (Retrieved: April 23, 2019)
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2.1 Continuous Open-Loop Optimal Control

Algorithm 2.1 General working principle of an nonlinear program optimizer applying
the Newton method to the Karush-Kuhn-Tucker conditions.
Require:

Initial guess for primal variables z̃0.
Initialize guess for Lagrange multipliers: µ0

Termination conditions εfeas, εopt, and kmax (i.e., the maximum number of iterations).

1: Initialize iteration counter: k = 0
2: Calculate KKT conditions for initial point: ∇z̃L (z̃0,µ0) and ψ (z̃0;θ,q)
3: while k < kmax | (||∇z̃L (z̃k,µk) ||∞ > εopt & ||ψ (z̃k;θ,q) ||∞ > εfeas) do
4: Evaluate: ∇2

z̃L (z̃k,µk) and ∇z̃ψ (z̃k;θ,q)
5: Calculate an update of the primal and the dual variables by (2.18) or (2.23).
6: Calculate the new iterates z̃k+1 and µk+1 by (2.19).
7: Calculate KKT conditions for new point: ∇z̃L (z̃k+1,µk+1) and ψ (z̃k+1;θ,q)
8: Increase counter: k = k + 1
9: end while

10: return Optimal decision variable solution z̃opt with corresponding optimal La-
grange multipliers µopt, and optimal cost Jopt.

Jacobian and Hessian) can be evaluated. Then, the information can be used to calculate
the objective vector in (2.11) and the corresponding Jacobian and Hessian. This Jacobian
and Hessian information is used in the NLP solver to check the convergence (see (2.20)) and
update the decision variables (see (2.19) and (2.23)) to get a new iterate z̃k+1 that is used
for the next iteration. This procedure is iterated until (2.20) is fulfilled and a candidate
for an optimal point z̃opt has been calculated.

An important aspect of the application of the Newton-type method in an NLP
is that the update step in (2.18) or (2.21) requires the availability of the Jacobian of
the cost function as well as the Hessian of the Lagrange function. Additionally, the Ja-
cobian of the constraints is required. Although the Hessian can e.g., be approximated
by the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update [48, p. 345ff.], which in turn
requires the Jacobian of the Lagrange function, the Jacobians must be available analyt-
ically. To summarize, the Jacobian of the objective vector with respect to the optimization
parameter vector J̃ = dF̃

dz̃ is required at a minimum, while the Hessian of the objective
vector with respect to the optimization parameter vector H̃ = d2F̃

dz̃2 is beneficial.

The following paragraphs state the derivation of the analytical Jacobian for the CD
(see (2.10)) with respect to the optimization parameters (see (2.6)), which is the main
part of the objective vector (see (2.11)). At first, the derivative with respect to the final
time is given as follows:
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z̃k

NLP
solver

(2.19)
(2.20)

(2.23)

xk(z̃k),uk(z̃k),
pk(z̃k)

OC
transcription

F̃k

J̃k= dF̃k
dz̃k

H̃k= d2F̃k
dz̃2
k

.xk=f(xk,uk,pk)

yk=h(xk,uk,pk)

Model
evaluation

c(xk,uk,pk)≤0

ψ(xk,uk,pk)=0

z̃init

z̃opt

z̃k xk,uk,pk

F̃k,J̃k,H̃k
.xk,ck,ψk

Figure 2.2: Information flow and general iteration procedure in nonlinear program solution
process (after [64], [17, p. 73]).

∂CDi,i+1

∂tf
= −hτ2 · ( .xi+1︸ ︷︷ ︸

f(xi+1,ui+1,p;θ,q)

+ .xi)︸︷︷︸
f(xi,ui,p;θ,q)

(2.24)

The derivative with respect to the i-th collocation time point for states and controls is
calculated as follows:

∂CDi,i+1

∂xi
= −∂xi

∂xi
− hτ

tf
2
∂
.xi

∂xi
= −I− hτ

tf
2 Jxi (2.25a)

∂CDi,i+1

∂ui
= −hτ

tf
2
∂
.xi

∂ui
= −hτ

tf
2 Jui (2.25b)

The identity matrix of appropriate size is depicted by I. The symbol J is used as an ab-
breviation for the Jacobian of the state dynamics. The index symbolizes the vector (e.g.,
states x) with respect to whom the Jacobian was derived and evaluated. It is noted here
that the FALCON.m toolbox provides all model Jacobians in an analytic manner leading
to a fast and accurate solution of the OCP [111].

Similar to (2.25a)–(2.25b), the derivative of the (i + 1)-th collocation time point for
states and controls is derived as follows:

∂CDi,i+1

∂xi+1
= ∂xi+1

∂xi+1
− hτ

tf
2
∂
.xi+1

∂xi+1
= I− hτ

tf
2 Jxi+1 (2.26a)

∂CDi,i+1

∂ui+1
= −hτ

tf
2
∂
.xi+1

∂ui+1
= −hτ

tf
2 Jui+1 (2.26b)
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In addition to the CD, the derivatives of the path/point constraints of e.g., the model
outputs are required. The calculation is simple, as these do not depend on an integration
scheme and are only related to a single time step. The equations are as follows:

∂yi
∂xi

= Jy,xi (2.27a)

∂yi
∂ui

= Jy,ui (2.27b)

The Jacobian Jy with respect to the outputs y is considered and evaluated with respect
to the states or controls (stated by the second index).

A feature of the collocation method is creating a sparse gradient. This sparsity pattern
is illustrated in Table 2.1. Optimizable time-invariant parameters are neglected here for
the simplicity of expression although they can be incorporated in a manner similar to
that of the final time (with variable sparsity influence). Here, the banded structure as
well as the multiple zeros from discretized times that do not influence another discretized
time is observed (e.g., the first discretized time step never depends on the final discretized
time step). The cost function influence is illustrated by asterisks since the derivative is
dependent on the relevant cost terms (i.e., Mayer or Lagrange).

Take into account that the Hessian can be derived similarly. This is omitted here
for the sake of brevity and only conducted afterward for the gPC collocation scheme
(Chapter 5). Generally, the introduced baseline trapezoidal collocation scheme of this
section is extended in Chapter 5 to directly incorporate the gPC method in order to solve
ROCPs. Here, the structure (e.g., sparsity) should be conserved as an efficient solution
for this structure is possible in the NLP. The next section introduces FALCON.m, which
applies the given trapezoidal collocation scheme.

2.1.2.2 FSD optimAL CONtrol tool for MATLAB: FALCON.m

The FALCON.m core framework [111] was developed during different Ph.D. theses at
the FSD [17, 110]. It is a publicly available free-of-charge OC tool for Matrix Laboratory R©

(MATLAB R©) that uses direct OC techniques with full discretization and Newton-type
NLP solvers such as Ipopt [131] (Subsection 2.1.3) and Sparse Nonlinear Optimizer
(SNOPT) [53] (Subsection 2.1.4). Within this work, the FALCON.m framework is extended
by the later on introduced uncertainty analysis methods (Sections 2.2 and 2.3) to create
a robust add-on to the basic core framework. It should be noted that the developed robust
add-on is currently not yet part of the public FALCON.m version and only available for
internal use at the FSD.

Generally, FALCON.m uses the trapezoidal collocation method introduced in Sub-
section 2.1.2.1. The analytic model Jacobian and Hessian are provided by a symbolic
differentiation of the model subsystems using the chain rule [110, p. 86ff.]. This allows
for a fast and reliable provision of the model Jacobian and Hessian to the Newton-type
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Table 2.1: Sparsity pattern of standard trapezoidal collocation gradient J̃ = dF̃
dz̃ .

J̃ tf x1 u1 x2 u2 x3 u3 . . . xn−1 un−1 xn un

J ∗ ∗ ∗ ∗ ∗ ∗ ∗ . . . ∗ ∗ ∗ ∗

y1 0 (2.27a) (2.27b) 0 0 0 0 . . . 0 0 0 0

CD1,2 (2.24) (2.25a) (2.25b) (2.26a) (2.26b) 0 0 . . . 0 0 0 0

y2 0 0 0 (2.27a) (2.27b) 0 0 . . . 0 0 0 0

CD2,3 (2.24) 0 0 (2.25a) (2.25b) (2.26a) (2.26b) . . . 0 0 0 0

... ... ... ... ... ... ... ... . . . ... ... ... ...

yn−1 0 0 0 0 0 0 0 . . . (2.27a) (2.27b) 0 0

CDn−1,n (2.24) 0 0 0 0 0 0 . . . (2.25a) (2.25b) (2.26a) (2.26b)

yn 0 0 0 0 0 0 0 . . . 0 0 (2.27a) (2.27b)

NLP optimizer [110, p. 126ff.]. The model evaluation routine is then coded to a mex2

to provide a fast evaluation. In case the model Hessian is not provided, the NLP solver
(e.g., Ipopt) uses its readily implemented limited-memory BFGS update to approximate
the Hessian [131, p. 39].

It should be noted here that FALCON.m also provides numerical scaling and offset of
the optimization and residual parameters [111] to achieve a better conditioned NLP. This
conditioning means that all parameters should have approximately the same magnitude
and thus, influence. Generally, the optimization parameters in (2.6) and the residual
vector in (2.11) are transformed for the NLP optimizer as follows:

z̃sq = diag [z̃sc] · (z̃− z̃off)
F̃sq = diag

[
F̃sc

]
·
(
F̃− F̃off

) (2.28)

Here, diag [·] is the operator to create a diagonal matrix from a vector. The constant
scaling and offset vector for the optimization parameters are denoted by z̃sq and z̃off

respectively, while the corresponding vectors for the residual vector are given by F̃sq

and F̃off . The scaled optimization parameter and residual vector are denoted by z̃sq

and F̃sq in (2.28) respectively. For convenience, the notation for the physical, i.e., non-
scaled, values is used throughout the thesis, while keeping in mind that the NLP solver only
“sees” the scaled problem in (2.28). Here, (2.28) also directly implies that the Jacobian
and Hessian must be scaled, which is easily done applying the definition in (2.28) and
the knowledge that the scaling and offset vectors are constant (i.e, their derivative is zero).

2MATLAB mex documentation (Retrieved: April 23, 2019)
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The basic problem structure of FALCON.m, which is implemented in object-oriented
MATLAB R©, is illustrated in Figure 2.3. Here, it is also already depicted how the uncer-
tainty analysis methods are incorporated into the FALCON.m OCP structure: On the one
hand, the uncertain parameters are added to the model parameters to allow for a model
evaluation at specific uncertain values. On the other hand, it is clear that special dis-
cretization techniques are implemented that are then directly used to solve the uncertain
OCP. Furthermore, it can be seen that the OCP also directly carries all information on
the statistical properties of the optimal results.

The following listing summarizes the different elements of Figure 2.3 as well as their
purpose in FALCON.m and for the solution of the NLP (a more detailed introduction can
also be found in [17, p. 102ff.] or [110, p. 73ff.]):

Problem: Main instance of the OCP in FALCON.m. The Problem interacts with
the NLP solver and contains the information for its solution.

• Phases: Handle the general structure of the OCP, i.e., states, controls, boundary
conditions, or models. Multiple phases can be connected to optimize e.g., a varying
dynamic model or multiple waypoints (i.e., different boundary conditions)

− Model: Handles all model relevant connections and interactions, e.g., definition
and evaluation.

� ModelHandle: Function handle to the implemented model dynamics
(created e.g., by the FALCON.m simulation model builder). Calculates
the state derivatives and outputs with their corresponding Jacobian and
Hessian.
� StateDotGrid: Time history of the state derivatives with the Jacobian

and Hessian.
� ModelOutputGrid: Time history of the model outputs with the Jacobian

and Hessian.
� ModelParameters: Parameters required to evaluate the model, includ-

ing the optimization, sensitive, and uncertain parameters.

− StateGrid: Time history of the states with bounds for the OCP. If no initial
guess is provided, FALCON.m creates one based on the bounds.

− ControlGrids: Time history of the controls with bounds for the OCP. There
can be multiple grids with different time discretizations. If no initial guess is
provided, FALCON.m creates one based on the bounds.

− DefectGrid: Time history of the CD (see (2.10)) for the OCP.

− PathConstraints: Contains all path constraints, i.e., constraints that are
enforced at each point of the discretized time grid, their boundaries, numeric
values, and evaluation functions.
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Figure 2.3: Object-oriented, class-based structure of FALCON.m framework with a top-
level optimal control problem, phases, cost and constraint functions, dynamic models, as
well as the incorporation of random parameters (adapted from [17, p. 103]).
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− LagrangeCosts: Contains all Lagrange cost terms, i.e., all running costs,
with the numeric values and evaluation functions.

− Times: Initial and final time of the phase.

• Parameters: Contains all optimizable, non-optimizable, and uncertain parameters,
their boundaries, and their numeric values. An initial value is always provided by
the user.

• PointConstraints: Contains all point constraints, i.e., constraints that are only
enforced at specific time points, but can connect multiple phases, their boundaries,
numeric values, and evaluation functions.

• MayerCosts: Contains all Mayer cost terms, e.g., cost influence at a specific time
point of the optimization interval, with the numeric values and evaluation functions.

• DiscretizationMethod: Specifies the method how the discretized NLP is cre-
ated from the continuous OCP (e.g., trapezoidal collocation in Subsection 2.1.2.1)

• StatisticalMoments: Array that contains the time history of the statistical
moments, e.g., mean and variance, for states, controls, and outputs.

After this general introduction, the Newton-type NLP optimizers, used by FALCON.m,
are introduced in the following.

2.1.3 Interior-Point Optimization

Generally, interior point (IP) optimization, which is most often applied in the context
of barrier optimization, relies on the principle of introducing inequality constraints into
the cost function by a logarithmic barrier function. The barrier goes to infinity close to
the boundary of the inequality constraint and therefore, a point close to the boundary
becomes unlikely to be optimal as it then has a large cost value. Using a more sophis-
ticated methodology, which makes it easier to deal with general inequality constraints,
the introduction of the inequality constraints in the cost function can be done by slack
variables s. This results in the following OCP formulation [17, p. 49], [133]:

min
z̃, s

J (z̃)− µ
nc∑
i=1

ln (si)

s.t. z̃lb ≤ z̃ ≤ z̃ub,

c(z̃) + s = 0, si > 0, i = 1, . . . , nc,
ψ(z̃) = 0

(2.29)

The solution of the IP-OCP in (2.29) can now be obtained by e.g., the Newton method.
Therefore, the barrier parameter µ is steadily decreased until the influences of the loga-
rithmic term in the cost function vanishes to recover the originally desired cost function
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and its optimal point. For more details one can consult [131–133] or [16, p. 73ff.]. IP
methods are e.g., used within the NLP solver Ipopt [131]. It should be noted here that
the Newton method, and thus, the use of a Newton-type optimization scheme, does
not ensure to find a global optimum.

The major benefit is the applicability to large scale OCPs present in trajectory opti-
mization, as a determination of active and inactive constraints is automatically done by
the barrier term. Thus, the set of active constraints A does not need to be calculated.
Additionally, primal-dual barrier methods like Ipopt use the barrier approximation in
the complementary slackness condition (KKT Condition 4) rather than the cost. Thus,
these algorithms solve the same OCP [133].

Take into account that the extension of the Newton step in (2.23) for the IP method
is not shown here for the sake of brevity. The derivation can be found in e.g., [133, p. 29f.]
and is similar to the already introduced formula in (2.23).

2.1.4 Sequential Quadratic Programming

The sequential quadratic programming (SQP) methods are based on a local quadratic
optimization of the OCP as described by the Newton method. Therefore, the constraints
are at first linearized as follows [53, p. 7]:

c (z̃∗) ≈ c (z̃) +∇z̃c (z̃)T (z̃∗ − z̃)︸ ︷︷ ︸
d

ψ (z̃∗) ≈ ψ (z̃) +∇z̃ψ (z̃)T (z̃∗ − z̃)︸ ︷︷ ︸
d

(2.30)

Here, d is called SQP step in the following and describes the difference from the current
parameter vector z̃ to an updated vector z̃∗. The SQP step is optimized in the SQP
method.

In addition to linearizing the constraints, a quadratic cost function based on the second
derivative of Lagrange function in (2.3) and the original cost function in (2.2) is
defined [53, p. 7]:

J̌ = 1
2dT∇2

z̃L (z̃,λ,µ) d +∇z̃J (z̃)T d (2.31)

It should be noted that this definition of the cost function ensures that the KKT update
in (2.23) is recovered by the SQP method and thus, the SQP method directly applies
the Newton method without simplification. This can be seen, when looking at the SQP
Lagrange function (with only equality constraints for the sake of simplicity):

Ľ (z̃,µ) = 1
2dT∇2

z̃L (z̃,λ,µ) d +∇z̃J (z̃)T d + µTψ (z̃;θ,q) (2.32)

This Lagrange function must fulfill the following KKT conditions:
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∇dĽ (z̃opt,µopt) = ∇2
z̃L (z̃,λ,µ) d +∇z̃J (z̃)T + µT∇dψ (z̃;θ,q) != 0

∇dψ (z̃opt;θ,q) != 0
(2.33)

Then, the connection to the standard Newton method applied to the KKT conditions
(first row of (2.23)) can be seen when using the connection between the optimization
parameters and the SQP step as introduced in (2.30). After subtracting the derivative
of the cost function from both sides and exchanging the transposition of Lagrange
multipliers and equality constraints, the update for the SQP step created in (2.33) is
identical with the update in (2.23). Thus, quadratic programming is a reasonable choice
to solve an NLP [51, p. 219f.].

Then, combining (2.30) and (2.31) gives the following quadratic programming mini-
mization problem with d as the SQP step size vector [17, p. 48]:

min
d

1
2dT∇2

z̃L (z̃,λ,µ) d +∇z̃J (z̃)T d

s.t. z̃lb ≤ z̃ + d ≤ z̃ub,

ci (z̃) +∇z̃ci (z̃)T d ≤ 0, i = 1, . . . , nc,
ψj (z̃) +∇z̃ψj (z̃)T d = 0, j = 1, . . . , nψ

(2.34)

This quadratic programming problem is then solved in each NLP iteration. Further
descriptions of the method can be found in e.g., [53], [16, p. 60ff.], or [51, p. 227ff.]. This
method is e.g., used in the NLP solver package SNOPT [53]. Again, only locally optimal
solutions are found, because of the application of the Newton method.

A benefit of the SQP method is the generally fast convergence and numerically exact
solution of the original problem. A disadvantage is often the size of the OCPs that can
be solved, as SQP methods often apply active set strategies, i.e., direct tracking of active
and inactive constraints, and thus, the tracking of the set A of the active and inactive
inequality constraints can become an issue. Still, SQP methods can also be designed using
an IP strategy (see Subsection 2.1.3): For such SQP IP designs, the major difference to
basic IP methods is the number of required function evaluations in an NLP step, which is
mostly problem dependent and thus, no general statement on the better-suited method
can be made.

Take into account that the extension of the Newton step in (2.23) for SQP methods
can be found in [53, p. 8ff.].
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2.2 Sampling-based Methods for Uncertainty Analy-
sis

This section gives an overview on classic/sampling-based methods for uncertainty anal-
ysis such as Monte Carlo analysis (MCA) (Subsection 2.2.1) and Latin hypercube sampling
(LHS) (Subsection 2.2.2) with their confidence interval (CI) determination (Subsection 2.2.3).
These methods are used to verify the results of the more advanced gPC method intro-
duced in Section 2.3, which is used in the OCP for uncertainty analysis. Therefore, only
the general procedure of the methods is explained in the following. The interested reader
is referred to [54, 82, 89–91, 96, 125] for a more detailed insight. Generally, the classic
methods rely on the principle of sampling from the RV PDF and are therefore also called
sampling methods.

Concluding the classic sampling methods, Subsection 2.2.4 introduces a method to con-
duct an uncertainty analysis specifically tailored for rare-events with the subset simulation
(SubSim). This method is ultimately an evolution of MCA applying Markov chain Monte
Carlo (MCMC) techniques and required in this thesis for the rare-event CC-OC framework
(Chapter 6).

2.2.1 Monte Carlo Analysis

Monte Carlo analysis (MCA) is a very simple, but powerful tool for uncertainty analysis
of a system [54, 89–91, 125], which in principle relies on the central limit theorem (CLT)
(Theorem B.13). Thus, MCA is based on a deterministic sampling of the model multiple
thousand or even ten thousands of times. The sampling relies on a random number
generation from the PDF of the uncertain parameters.

For the case of trajectory optimization, this means that the OCP in (2.1) must be
solved at each of these sampling points. This procedure is, in general, very time consuming,
although it can be parallelized. It is therefore not applicable for our purpose of calculating
robust trajectories in an efficient manner. The long lasting convergence history is based
on the fact that the CLT only converges with the square root of the number of samples ns
to the real solution. In order to partially overcome the issues of MCA, Subsection 2.2.2
introduces LHS that is ultimately a MCA with guarantees that the generated samples are
representative for the real PDF.

After sampling the system response, statistical moments (Appendix B.2.2) can be
easily calculated from MCA. For instance, the mean/expected value of general system
outputs y is given as follows:

E [y (z;θ)] = µ [y (z;θ)] = µy ≈
1
ns

ns∑
i=1

y
(
z;θ(i)

)
(2.35)
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Here, ns is the number of samples used in the MCA and θ(i) is a vector of deterministic
samples drawn from the single PDF, i.e., created from a sample θ(i)

j where θj ∼ ρΘj (θj).
Furthermore, ρΘj (θj) is the PDF of the j-th random parameter. The system response, i.e.,
OCP result, at the deterministic sample θ(i) is denoted by y

(
z;θ(i)

)
. It should be noted

that MCA yields an unbiased estimator, i.e., the exact solution is recovered [81, p. 14].
The variance, i.e., the square of the standard deviation σ, has an equally simple

representation using the mean value in (2.35) as follows:

σ2 [y (z;θ)] = σ2
y = var [y (z;θ)] = E

[
(y (z;θ)− E [y (z;θ)])2

]
≈ 1
ns − 1

ns∑
i=1

{
y
(
z;θ(i)

)
− E [y (z;θ)]

}2 (2.36)

Thus, a statistical analysis of the OCP is fairly easy, but time-consuming, using a MCA
because the solution of the OCP at the random samples normally takes a significant
amount of time.

Another issue with the MCA is that the statistical analysis assumes that samples from
the complete uncertainty domain have been taken. In OCPs, this can generally never be
assured due to the constraints (see (2.1)) that might result in infeasible solutions (e.g., when
considering CCs). These yield that some parameter combinations might create infeasible
results which must be discarded for the statistical analysis as they can be unphysical. This
is visualized in Figure 2.4: Here, a standard Uniform, i.e., PDF θ ∼ U (a = −1, b = 1), is
used as the uncertainty and the output is given by an exponential relation. As a constraint,
the output is not allowed to be larger than exp(0.95), which is also visualized by the dotted
magenta lines. The feasible function values are given by the blue line, while the infeasible
are denoted by the red line. These infeasible values are discarded for the statistical analysis,
as especially in a Newton-type NLP scheme based on collocation, an infeasible result
suggests an unphysical results, which should not be used for analysis purposes. This
discarding, especially when it is located in a specific domain of the PDF, introduces a bias
in the statistical moment estimation is introduced. This is visualized in Figure 2.4 by
the error bars. The magenta error bar visualizes the standard deviation around the real
mean value (i.e., the value calculated by sampling over the whole uncertainty domain not
considering the constraint), while the blue error bar shows the standard deviation around
the constrained mean value. It is clear that both the mean as well as the standard deviation
are biased in the constrained case. Depending on the nonlinearity and the number of
uncertainties this bias might be difficult to describe. Thus, an MCA must be used with
caution in OC and the results must be critically reviewed, especially when infeasible
solutions are encountered.
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Figure 2.4: Comparison of constrained and unconstrained Monte Carlo analysis with
calculated mean and standard deviation.

2.2.2 Latin Hypercube Sampling

Ultimately, Latin hypercube sampling (LHS) is a stratified way of conducting a MCA [82,
96]. It still relies on the deterministic sampling and the CLT [96], but stratifies the proce-
dure of deciding at which points to sample, i.e., how the vector of random samples is drawn.
While MCA relies on random (or at least on pseudo-random) sampling, LHS relies on
sampling within hypercubes. These hypercubes basically split up the uncertainty domain
and secure that the amount of samples taken from a specific domain of the uncertain
input PDF corresponds to their probability of appearance. For a Uniform PDF, these
domains are defined by the following intervals [82]:

[
0, 1
ns

]
,
[ 1
ns
,

2
ns

]
, . . . ,

[
ns − 1
ns

, 1
]

(2.37)

By this procedure, it is secured that exactly one sample from each domain is taken and
that the original Uniform PDF is recovered by the LHS approach. It is important to
note that the sampling procedure in (2.37) can be extended to more general domains [82]
and multiple dimensions, which is skipped here for the sake of brevity. Additionally, it
should be noted that the LHS procedure again yields an unbiased estimator [82, p. 2059],
which is important because it is an estimator that has no bias (“offset”) between the real
and the estimated statistical moments.

In Figure 2.5, the samples created from a Uniform PDF by MCA (left plot) and
LHS (right plot) are depicted by the blue crosses (25 samples). Here, the LHS domain
grid, defined in (2.37), is visualized in the right plot using the dashed green lines. It
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Figure 2.5: Comparison of Latin-hypercube sampling and Monte Carlo analysis created
samples (25 samples; blue crosses) for Uniform distribution with hypercube grid (green
lines) for Latin-hypercube sampling.

is clear that the LHS sampling produces better distributed samples, i.e., has a better
spread over the uncertainty domain. It is also clear that, by splitting the domain, there is
generally a minimum separation between the different samples (i.e, they are not clustered
like in the random sampling at e.g., the right corner) and there is exactly one sample in
each one-dimensional grid interval. Thus, the LHS method “explores” the PDF in a more
reasonable way and consequently creates a better statistical moment approximation with
fewer samples.

Although the sampling procedure in (2.37) makes the method faster converging, still
hundreds or thousands of samples may be required to achieve a good convergence. Then,
the mean and standard deviation can, again, be calculated by (2.35) and (2.36). Addi-
tionally, the LHS methods suffers from the same problem within constrained optimization
as the MCA method, i.e., a bias when infeasible results are encountered (Figure 2.4).

2.2.3 Confidence Intervals

To assess the accuracy of both MCA (Subsection 2.2.1) and LHS (Subsection 2.2.2),
confidence intervals (CIs) are a very common choice [81, 125]. Generally, a CI is the interval
around the calculated statistical moment that contains the true value with a certain
confidence level 1− ξ.

For the mean value, the CI is defined as follows [125, p. 93f.]:

P
[
µy − |tξ/2| ·

σy√
ns
≤ µ∗y ≤ µy + |tξ/2| ·

σy√
ns

]
≈ 1− ξ (2.38)
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Figure 2.6: Confidence interval development (i.e., spread factor) for lower and upper
bound of mean value over number of samples and for different confidence levels.

Equation (2.38) is exact for Gaussian distributed RVs and generally a good approxi-
mation for a non-Gaussian distributed RV due to the CLT (Section B.7). Take into
account that µ∗ is the unknown true mean value, while µ and σ are the sampled values for
mean and standard deviation respectively (e.g., from (2.35) and (2.36)). The Student’s
t-distribution is denoted by t [2, p. 948f.].

The general interpretation of (2.38) is the following: The CI describes the probability
(“confidence level”) that the exact mean value is in the interval described by the sampled
mean value and standard deviation. The spread of this interval is depending on the Stu-
dent’s t-distribution and the desired confidence level. It should be noted that, as
the Student’s t-distribution is depending on the number of samples ns, the interval
in (2.38) tightens with an increasing number of samples. It is further important to note
that (2.38) also covers the case of an unknown standard deviation, i.e., only approximated
by (2.36), which is normally present [125, p. 93].

To get a better overview on the CI definition in (2.38), Figure 2.6 shows the development
of the CI bounds with changing number of samples and for different confidence levels. Here,
the y-axis denotes the multiplication factor of the standard deviation in (2.38) including
the sign. It is clear from Figure 2.6 that the CI is symmetric around zero and tightens with
the number samples. This tightening is initially fast, but starting from approximately 200
samples reduces to the familiar convergence with the square root of the samples, which is
known from the CLT. Generally, it can also be seen in Figure 2.6 that the CI increases
with a higher accuracy requirement on the confidence level.
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Figure 2.7: Confidence interval development (i.e., spread factor) for lower and upper
bound of standard deviation over number of samples and for different confidence levels.

Equation (2.38) can be similarly extended to the standard deviation. A CI definition,
with the same interpretation as for the mean value, i.e., that the real standard deviation is
in the created CI with the probability of the confidence level, is then given as follows [119,
p. 166ff.]:

P
[√

ns − 1
χ21−ξ/2

σy ≤ σ∗y ≤
√
ns − 1
χ2

ξ/2
σy

]
≈ 1− ξ (2.39)

In (2.39), σ∗ is the exact, unknown standard deviation, while χ2 represents the χ2-
distribution [2, p. 940ff.]. Take into account that the χ2-distribution depends on the num-
ber of samples, like the Student’s t-distribution, and thus, a tighter CI is again
achieved by increasing the number of samples. Once again, (2.39) is exact for Gaussian
distributed RVs and sufficiently accurate, due to the CLT, for non-Gaussian distributed
RVs [119, p. 167f.].

Similar to Figure 2.6, Figure 2.7 depicts the development of the CI for the standard
deviation over the number of samples and for different confidence levels. A major difference
to the CI for the mean value is that the CI for the standard deviation is non-symmetric
and converges to 1 instead of 0 (as it is also natural from (2.39)). Still, similarities
like the initial fast converges and afterward, the slow convergence with approximately
the square root of the samples, are also seen for the standard deviation CI.

Both, (2.38) and (2.39) can be used in the following to get an idea of the approxima-
tion quality and accuracy of e.g., the gPC methodology introduced in Section 2.3, when
comparing the results to MCA or LHS.
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2.2.4 Subset Simulation

This final subsection of the classic uncertainty quantification methods introduces the subset
simulation (SubSim) method that is often used in reliability engineering to calculate
the probabilities of rare-events, i.e., events that only have a small probability of occurring
(e.g., 10−6 or smaller) [7–9, 81]. These rare-events are generally encountered in risk and
failure analysis, while this thesis considers rare-events in the context of the latter. In
general, rare-events can no longer be treated by a standard MCA (Subsection 2.2.1) or
LHS (Subsection 2.2.2) as a very large amount of samples is required even to just capture
the failure event once (let alone sufficiently often for a statistical analysis) [9, p. 38ff.].
Thus, instead of directly trying to sample the rare-event, SubSim works on a conditional
probability level, which is introduced in the following.

2.2.4.1 Basic Idea

The basic idea of SubSim is the definition and expansion of the failure probability as
a series of conditional failure probabilities as follows [5, p. 1277ff.], [7]:

P [F ] = P [Fm] = P
[
nss⋂
k=0
F i
]

= P [F0] ·
nss∏
k=1

P [Fk|Fk−1] (2.40)

In (2.40), F = Fnss is the desired rare-event failure domain (with nss being the number
of levels required in the SubSim to reach that event) and F0 ⊃ F1 ⊃ . . . ⊃ Fnss = F is
a sequence of failure event domains with decreasing failure probability (i.e., the failure
becomes less likely), i.e., there are nss − 1 intermediate failure events required to capture
the rare-event. It is important to see that these failure events contain each other and
converge to the desired rare-event. The conditional probability of failure events is denoted
by P [Fk|Fk−1] and is the probability that the failure event Fk occurs, assuming that
the failure event Fk−1 has already occurred.

Thus, instead of evaluating the rare-event P [F ] = P [Fnss ] directly by e.g., increasing
the number of samples to obtain more samples in the failure domain, one must only
evaluate a fairly frequent event P [F0] by e.g., MCA or LHS. Afterward, one can continue
to evaluate the conditional probabilities P [Fk|Fk−1] regions that are more likely to occur
and can be efficiently simulated by, again, MCA or LHS.

Consequently, the SubSim algorithm tries to generate samples from the RV PDF in
a way that the failure domain is accurately explored. To this end, it chooses samples itera-
tively such that these best explore the failure domain by following a series of intermediate
failure events. These intermediate failure events are described by the conditional probabil-
ity. Following these intermediate failure events, the rare-event failure probability is given
by (2.40). Take into account that this procedure based on intermediate failure events is
generally favorable for risk or failure analysis although being computationally demanding:
This is due to the fact that the result of the SubSim is then not only the rare-event
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failure probability, but also the failure probabilities for each intermediate event. Thus,
it is possible to get a good overview on the system characteristics and how the failure
probability evolves [81, p. 29].

Summarizing, the important aspect of the SubSim is the calculation of the conditional
failure samples that explore the conditional failure domains. This is achieved by the MCMC
algorithm introduced in the following.

2.2.4.2 Markov chain Monte Carlo

Generally, the evaluation of the conditional probabilities is the major task within SubSim
and achieved using the Markov chain Monte Carlo (MCMC) approach. The MCMC
approach is normally applied when samples cannot be created, or can only be created with
major effort, from (unknown) PDFs. A more detailed introduction to MCMC can e.g., be
found in [81, p. 31ff.].

Generally, there exist multiple algorithms to create Markov chains, e.g., Metropolis-
Hastings algorithm (MHA) [9, p. 122ff.], modifiedMetropolis-Hastings algorithm (MMHA) [9,
p. 152ff.], or infinity sampling [81, p. 37ff.]. In SubSim, the MMHA is often ap-
plied [148]: The algorithm creates new samples for the RVs in the random vector (i.e.,
a vector of one-dimensional random variables) (RVec) based on a local sampling around
the current RV and accepts the new RVec if the result lies in the failure domain. Thus,
a fast convergence of the MCMC algorithm by using the MMHA is assured. Additionally,
the MMHA works component-wise on the RVec and thus, does not suffer from the curse of
dimensionality, i.e., small acceptance rates of new samples with a large number of uncertain
parameters [9, p. 151f.]. A general requirement of this component-wise sampling is the inde-
pendence of the RVs (Appendix B.5), which can e.g., be assured by a Karhunen-Loève
transformation [68]. As the MMHA is a frequent choice in SubSim applications [7–9, 81],
it is also applied in this thesis and thus, the next paragraphs introduce the algorithm.

The component-wise MMHA for the RVec, is given in Algorithm 2.2 [7, 9, 81, 97]: Here,
at first a (symmetric) proposal PDF ρ∗Θ,i

(
θ̃|θi

)
for each element of the RVec is defined

in Step 0. In this context, the notation means that the new sample θ̃ is created based
on the current sample θi, i.e., the proximity of the current sample is explored (Step 2 in
Algorithm 2.2). Based on this new sample an acceptance ratio r (Step 3 in Algorithm 2.2)
is calculated as follows [9, p. 214ff.] or [81, p. 47f.]:

r =
ρΘ,t

(
θ̃
)

ρΘ,t (θi)
·
ρ∗Θ,i

(
θ̃|θi

)
ρ∗Θ,i

(
θi|θ̃

) sym.=
ρΘ,t

(
θ̃
)

ρΘ,t (θi)
(2.41)

Here, ρΘ,t (·) is the desired/target PDF, which is the stationary/equilibrium PDF of
the Markov chain [81, p. 32ff. & 37]. Take into account that the proposal PDF cancels
when it is chosen symmetric (“sym.”).
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It can be stated for (2.41) that one should choose a target PDF similar to the real one,
if information about it is available. If no information is available, the target PDF can be
chosen as the standard Gaussian, i.e., ρΘ,t ∼ N (0, 1). This is an assumption without loss
of generality for uncorrelated samples [8, p. 67] and can be achieved by proper probability
integral transformations for non-Gaussian RVs [60, p. 4] (e.g., a general PDF can be
transformed to the standard Gaussian by using the cumulative and inverse cumulative
distribution function; see (B.2)). If one must create correlated samples, the work in [60]
can be considered. This is not required in this thesis.

Based on the acceptance ratio in (2.41), the proposed sample vector is created in Step 7
of Algorithm 2.2. Following, this proposed sample vector is accepted as the new sample
vector in Step 14, if it yields a system response in the failure domain.

Normally, the MCMC algorithm based on the MMHA introduced in Algorithm 2.2
is fast converging, as especially the sampling of new candidates is done locally around
the current sample value (Step 2 in Algorithm 2.2). Thus, the acceptance rate (Step 7 in
Algorithm 2.2) is normally very high and progress is made fast. It should be noted that
the acceptance rate can even be improved by using e.g., infinity sampling [81, p. 50ff.].
Using this approach, all candidate samples θ̃ are accepted in Step 7 of Algorithm 2.2, but
a specific proposal PDF must be applied [81, p. 50ff.].

Take into account that the sampling, acceptance, and exploration is crucial for the con-
vergence of the algorithm: If the spread of the chosen proposal PDF (defined in Step 0
of Algorithm 2.2) is too small, i.e., only samples very close to the current sample are
created, the acceptance rate is high, but the spatial dependence of the samples is high as
well [9, p. 123]. This can ultimately lead to bias when using the samples for statistical
estimations [9, p. 123]. On the other hand, a too large spread is also not desired, as
then the acceptance ratio becomes too small and the next sample is more likely to be
the current sample, which is again increasing their spatial dependence [9, p. 123]. Thus,
a balance between exploration, i.e., spreading, and acceptance must be found [9, p. 123].
Generally, study [148] suggest to have an acceptance ratio of 30% to 50% in order to
achieve a good variance reduction of the MCMC algorithm. This can e.g., be achieved by
adapting the spread of the proposal PDF adaptively [81, p. 50].

Thus, the issue of the MMHA in Algorithm 2.2 is the choice of an appropriate proposal
PDF: Generally, a Uniform PDF or a Gaussian PDF can be chosen, to have a simple
evaluation, the symmetric property, and a good overview of the PDF spread [9, p. 124]
(Algorithm 2.2). In general, study [9, p. 123] suggests to use a spread similar to that of
the target PDF, which is given, for uncorrelated samples, by the standard Gaussian [8]
(achieved by appropriate transformations if necessary [60, p. 4]). This standard spread
can be easily reproduced by using a Gaussian or Uniform proposal PDF.
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Algorithm 2.2 Modified Metropolis-Hastings algorithm used in subset simulation for
each component of the random vector to create new sample for random parameter vector θ
(after [9, p.152], [81, p. 48ff.] and [7, 60, 102]).
Require:

Current sample vector for the random parameters: θ =
[
θ1 . . . θi . . . θnθ

]T
.

Symmetric proposal PDF, ρ∗Θ,i
(
θ̃|θi

)
= ρ∗Θ,i

(
θi|θ̃

)
, for each element θi of the RVec θ.

1: for i = 1, . . . , nθ do
2: Generate candidate sample θ̃ ∼ ρ∗Θ,i

(
θ̃|θi

)
3: Calculate the ratio between the proposed and the candidate sample evaluated at

the target PDF, i.e., r = ρΘ,t(θ̃)
ρΘ,t(θi)

4: Set the acceptance ratio of the candidate sample θ̃ as follows: a = min [1, r]
5: Draw a random sample from the standard uniform PDF U (lower bound: a = 0;

upper bound: b = 1) as follows: s ∼ U (a = 0, b = 1).
6: Create the vector of proposal samples θp based on the following condition:
7: if s ≥ a then
8: Set proposed sample: θp,i = θ̃

9: else
10: Set proposed sample: θp,i = θi

11: end if
12: end for
13: Update the new sample vector by the rule:
14: if y (z;θp) ∈ F i then
15: Set new sample vector: θnew = θp

16: else
17: Set new sample vector: θnew = θ

18: end if

19: return New sample vector for the random parameters: θnew.

Finally, it can be stated that the introduced MCMC algorithm converges to the sta-
tionary PDF under the assumption of ergodicity, i.e., that the whole parameter space, and
thus, all failure regions, are explored [9, p. 124f.]. This is normally achieved by choosing
suitable exploration parameters in the MMHA.

The described MCMC algorithm is now part of the SubSim strategy introduced in
the following. Here, the major remaining point is the definition of the conditional failure
domains as the MCMC algorithm takes care of the sample creation.

50



Chapter 2: Open-Loop Optimal Control and Uncertainty Quantification

2.2.4.3 Basic Procedure of Subset Simulation

Applying the MMHA in Algorithm 2.2, the general SubSim method can be stated as given
in Algorithm 2.3 [7, 9, 81]: Here, the SubSim starts with a basic MCA or LHS (Step 3)
and afterward, subsequently explores the failure region by the MMHA (Step 8), yielding
the chain of conditional probabilities. Hereby, the algorithm follows a pre-defined number
of Markov chains nc and the number of samples nsc within those Markov chains in each
SubSim simulation level (Step 8 in Algorithm 2.3). It should be noted that the split in
different chains is an important feature of the SubSim method to ensure the ergodicity,
and thus, convergence, of the MCMC algorithm [9, p. 161f.]. Furthermore, the fact
that the seeds {θ(j)

k−1,seed : j = 1, . . . , nc}, used for generating the conditional samples in
the MCMC algorithm (Step 9 in Algorithm 2.3), are discarded after use provides confidence
in the failure probability estimation and reduces the correlation between samples [9, p. 162].
Take into account that the seeds are chosen as those samples, which are closest to the failure
domain (Step 5 in Algorithm 2.3).

It should be noted that there are essentially two options on how to conduct the SubSim
in real applications: The first option is to choose the intermediate failure events in (2.40)
before making the SubSim and create samples within the resulting conditional failure

Algorithm 2.3 Basic algorithm used for a subset simulation (after [9, p. 158ff.]).
Require:

Number of samples per level ns.
Conditional probability p0.
Critical threshold b.
Maximal MCMC level nss,max.
Counter variable: k = 1

1: Calculate the number of Markov chains nc = p0 · ns and the number of samples nsc =
p0
−1 for each of the chains.

2: Initialize the SubSim by creating the random sample set {θ(i)
0 : i = 1, . . . , ns}.

3: Calculate the output set {y(i)
0

(
z;θ(i)

0

)
: i = 1, . . . , ns} related to {θ(i)

0 : i = 1, . . . , ns}.
4: Normalize the output set {y(i)

0

(
z;θ(i)

0

)
: i = 1, . . . , ns} such that larger values indicate

samples closer to or in the failure domain.
5: Sort {y(i)

0

(
z;θ(i)

0

)
: i = 1, . . . , ns} in ascending order to create {b(i)

0 : i = 1, . . . , ns}.
Here, b(i)

0 is an estimate of the exceedance probability P [y (z;θ) > b] = ns−i
ns
, i =

1 . . . , ns.
6: Set b0 = b(ns−nc)

0 and {θ(j)
0,seed : j = 1, . . . , nc} corresponding to {b(ns−nc+j)

0 : j =
1, . . . , nc} as the threshold and the seeds for the next level respectively

7: Estimate the current failure probability using the indicator function in (2.44)
by: pf (0) = 1

ns

ns∑
i=1
Ĩ
[
y(i)

0

(
z;θ(i)

0

)]

51



2.2 Sampling-based Methods for Uncertainty Analysis

Algorithm 2.3 Basic algorithm used for a subset simulation (after [9, p. 158ff.]) (contin-
ued).

8: while k ≤ nss,max &
ns∑
i=1
Ĩ
(
y(i)
k−1

(
z;θ(i)

k−1

))
< p0ns do

9: Use e.g., the MMHA (Algorithm 2.2) to generate the samples
{θ(j)(i)

k : i = 1, . . . , nsc} of the conditional PDF ρ∗j (.|Fk−1) for each seed
{θ(j)

k−1,seed : j = 1, . . . , nc}. This creates nc Markov chains with nsc samples.
10: Calculate the output set {y(j)(i)

k

(
z;θ(j)(i)

k

)
: j = 1, . . . , nc, i = 1, . . . , nsc}

related to {θ(j)(i)
k : j = 1, . . . , nc, i = 1, . . . , nsc}.

11: Normalize the output set {y(j)(i)
k

(
z;θ(j)(i)

k

)
: j = 1, . . . , nc, i = 1, . . . , nsc} such

that larger values indicate samples closer to or in the failure domain.
12: Sort the normalized set {y(j)(i)

k

(
z;θ(j)(i)

k

)
: j = 1, . . . , nc, i = 1, . . . , nsc} in

ascending order to create {b(i)
k : i = 1, . . . , ns}. Here, {b(i)

k } is an estimate of the
exceedance probability P [y (z;θ) > b] = p0

k ns−i
ns
, k = i, . . . , ns.

13: Set bk = b(ns−nc)
k and {θ(j)

k+1,seed : j = 1, . . . , nc} corresponding to the set
{b(ns−nc+j)

k : j = 1, . . . , nc} as the threshold and the seeds for the next level.
14: Estimate the current failure probability using the indicator function in (2.44)

and the failure probability estimation in (2.43).
15: Increase level counter k + 1.
16: end while
17: Set the number of SubSim level: nss = k − 1.
18: Calculate the failure probability pf based on (2.43) or (2.47).
19: Calculate the coefficient of variation cV based on (2.45).

20: return Failure probability pf and coefficient of variation (CoV) cV . Number of SubSim
levels nss.

domains. As this procedure, and especially the sampling in the conditional failure domain,
is not straightforward [7], the opposite procedure is generally applied (this procedure is
also already introduced in Algorithm 2.3): Instead of defining the intermediate failure
events in advance, they are chosen during the SubSim evaluation, while the conditional
probabilities are set to a fixed, pre-defined value (i.e., p0 ∈]0, 1[). Therefore, the system
responses are appropriately normalized, such that larger values indicate output responses
closer to the failure domain, and sorted in ascending order (Step 12 in Algorithm 2.3).
Then, the (ns − nc)−th value is the intermediate failure event threshold bk for the next
SubSim level (i.e., it defines the intermediate failure event). The last nc values in the sorted
normalized vector provide the corresponding seeds (samples) for the next SubSim level
(Step 13 in Algorithm 2.3).
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This choice gives exactly the p0 percentile of the samples that define the next conditional
failure domain (i.e., those samples lie in the conditional failure domain). Thus, the failure
domains and conditional samples are adaptively chosen to follow the conditional probability
chain of the SubSim in (2.40). A fairly often used, and normally very efficient conditional
probability value, is p0 = 0.1 [7]. This value comes from a theoretical minimization of
the CoV by choosing an appropriate SubSim level probability [9, p. 175ff.]. The CoV here
is a measure of the confidence in the results, where a smaller value indicates a higher
confidence (see (2.45)). Further research in study [148] also shows that choosing 0.1 ≤
p0 ≤ 0.3 results in similar efficiency and thus, specific fine-tuning of the conditional
probability level is not necessary in most cases.

The introduced procedure based on choosing the intermediate failure events adaptively,
yields the following conditional probability estimation (based on (2.40)) [9, p. 163]:

P [y (z;θ) > b0] ≈ P [y (z;θ) > b1|y (z;θ) > b0]
≈ . . . ≈ P [y (z;θ) > bnss|y (z;θ) > bnss−1] ≈ p0

(2.42)

Here, bk, k = 0, . . . , nss are the calculated SubSim thresholds (Step 13 in Algorithm 2.3).
As seen, this procedure makes the SubSim probability calculation in (2.40) straightforward
to evaluate as the conditional failure probabilities are equal to the defined threshold p0.
Thus, it is straightforward to calculate the failure probability of the rare-event, which is
introduced in the next subsection.

2.2.4.4 Statistical Analysis

Generally, the failure probability of the SubSim with respect to the desired band all
intermediate thresholds bk can be estimated by using the threshold and system response
sets from Steps 12 and 13 in Algorithm 2.3 as follows [9, p. 179]:

pf
(0) = P [F0] = 1

ns

ns∑
i=1
Ĩ
[
y(i)

0

(
z;θ(i)

0

)]
, b < b0

pf
(k=1,...,nss−1) = P [Fk=1,...,nss−1] = 1

ns
p0
k
nc∑
j=1

nsc∑
i=1
Ĩ
[
y(j)(i)
k

(
z;θ(j)(i)

k

)]
, bk−1 < b < bk

pf = P [F ] = 1
ns
p0
nss

nc∑
i=1

nsc∑
j=1
Ĩ
[
y(j)(i)
nss

(
z;θ(i)(j)

nss

)]
, b > bnss

(2.43)

In (2.43), y(i)
0 is the system responses of the random samples θ(i)

0 given by the MCA
solution (i.e., the zeroth subset), while y(j)(i)

k is the system response of the j-th MCMC
element with the i-th random sample of this chain element within the k-th SubSim run
(Algorithm 2.3). Furthermore, nss is the number of SubSim levels required for the SubSim
to converge (Step 17 in Algorithm 2.3). Additionally, Ĩ [y (z;θ)] is the indicator function,
which indicates whether or not the system response is in the failure domain (i.e., it makes
a logic decision), for the SubSim defined as:
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Ĩ [y (z;θ)] =

1, for y (z;θ) ∈ F
0, else

(2.44)

It should be noted that (2.43) and (2.44) give a failure probability estimate that can be
regarded as one realization of the real rare-event probability. This is due to the fact that
there is only limited information available to calculate the value (e.g., a limited number
of samples) and thus, the probability will not resemble the real value exactly [148, p. 292].
For instance, changing the evaluation samples will lead to a (slightly) different failure
estimate (due to the CLT and the associated CIs). Thus, the failure probability can
be treated as a RV itself and its relative plausibility and accuracy can be assessed by
statistical analysis [148, p. 292].

As already mentioned: To assess this accuracy of the SubSim, the CoV, which connects
the mean and the standard deviation of the failure probability, can be used [9, p. 25f.].
This is generally necessary because only looking at the standard deviation is no longer
informative when considering small failure probabilities because those must be seen in
relation to each other. Thus, the CoV is defined as follows:

cV [pf ] = σ [pf ]
E [pf ]

(2.45)

In general, the goal is to have a small CoV as then the dispersion of the data is small and
the certainty to fulfill the rare-event probability is high. Thus, a value of cV � 1 should
be achieved by the SubSim. Indeed it can be shown that the CoV can never be larger than
one, if there is at least one sample within the failure domain [81, p. 17]. In this context
in can be stated that the SubSim result obtained by Algorithm 2.3 is to be taken with
caution if the CoV is greater than one.

To calculate this CoV, an estimate of the standard deviation of the failure probability
is required as the mean value is known from (2.43). Therefore, the method introduced
in [148] can be used: Here, the posterior/marginal PDF of the SubSim is estimated by
a Beta PDF, which is proven to coincide with the first two moments of the exact failure
RV (i.e., it returns the exact mean and standard deviation). In other words, the PDF of
the failure probability is estimated by a Beta PDF. By this, an estimate of the mean
failure probability is available, which should coincide with the probability calculated
in (2.43), and an estimate of its standard deviation, which can be used to calculate the CoV.
The shape parameter α and rate parameter β of the Beta PDF, B (a = 0, b = 1, α, β),
are defined as follows [148, p. 293]:
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α = c1 ·
1− c2

c2 − c1

β = (1− c2) · 1− c2

c2 − c1

with c1 = (p0 · ns + 1)nss ·

ns∑
i=1
Ĩ
[
y(i)
nss

(
z;θ(i)

nss

)]
+ 1

(ns + 2)nss+1

with c2 = (p0 · ns + 2)nss ·

ns∑
i=1
Ĩ
[
y(i)
nss

(
z;θ(i)

nss

)]
+ 2

(ns + 3)nss+1

(2.46)

Again, nss is the number of SubSim levels that were required for the SubSim to converge.
It should be taken into account that here the sum over all samples ns is taken for simplicity
as it is known that the MCMC, based on its definition in Step 1 of Algorithm 2.3, creates
exactly this amount of samples.

Then, the mean and standard deviation of the Beta PDF are calculated, based on
the definitions in (2.46), as follows [148, p. 293]:

E [pf ] = α

α + β

σ [pf ] =
√√√√ α · β

(α + β)2 · (α + β + 1)

(2.47)

Thus, (2.47) provides the possibility to calculate and check the CoV after the SubSim
(Algorithm 2.3) is finished using (2.45), in order to check the convergence and significance
of the results. In addition, by comparing the resulting CoV from Algorithm 2.3 with
e.g., literature values [97], the viability of calculated SubSim results can be assessed.
In general, the magnitude of the CoV in SubSim has been proven to be influenced by
the subset probability p0 [9, p. 175ff.]. Thus, this value must be chosen with care and
adapted, if necessary, to get a suitable CoV.

2.2.4.5 Illustrative Example

To show how the SubSim, and especially the MMHA sampling, works, the following il-
lustrative example is discussed (similar to [102]): Here, the two uncertainties are dis-
tributed with a uniform PDF on a two-dimensional grid in the interval [−10; 10],
i.e., θ1 ∼ U (a = −10, b = 10) and θ2 ∼ U (a = −10, b = 10). In the left lower corner
of this rectangle, a quarter of a circle with radius r = 1.0 depict one failure region. A sec-
ond failure region is given by a full circle at the position

[
θ1 θ2

]T
=
[
1 2

]T
with the same

radius of r = 1.0. This example shows the capabilities of the SubSim with MMHA to
distribute samples to different failure domain of different size, as well as to unconnected
failure domains. Thus, it provides a viable example to understand the working principle
of the algorithms.
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It is possible to analytically evaluate the probability to be within the failure regions
as: pf ∗ = P [F ] = 5

4
π·r2

202 ≈ 0.982% (which is not a rare-event but used here for the purpose
of demonstration and the possibility of visualization). In the following, two conditional
probability values are used: p0 = 0.01 with nc = 50 Markov chains and nsc = 100 elements
in each chain (ns = 5000; Figure 2.9; “first case”) and p0 = 0.125 with nc = 125 Markov
chains and nsc = 8 elements in each chain (ns = 1000; Figure 2.8; “second case”). This
depicts different SubSim parameter settings and thus, different convergence behaviors of
the SubSim. The first case shows an example with a small number of Markov chains, but
a large number of samples within those chains. The second case depicts a SubSim with
a larger number of Markov chains and a smaller number of samples within these chains.

The results for the first case are shown in Figure 2.8, while Figure 2.9 gives an overview
of the second case. Generally, green crosses mark samples in the allowed domain, while red
crosses mark samples in the failure domain. The failure domains are depicted by dashed
red lines. SubSim level 0 is the initial MCA solution, while all subsequent levels show
the results when applying Algorithm 2.2 (with the MMHA) to choose new samples. Here,
it should be noted that the blue circles around the failure domains depict the threshold
values bk, k = 0, . . . , nss for the different SubSim simulation levels. In this example,
the normalized threshold is defined as the minimal distance to the closest circle centers,
i.e., the center of the failure domain. This is exactly what is achieved by the normalizing,
sorting, and seed choosing in Step 5 of Algorithm 2.3. It can be directly seen that each
new SubSim level only creates new samples that are within this conditional failure domain
as required by the SubSim.

Another property that can be observed directly in Figures 2.8 and 2.9 is that the first
example (with p0 = 0.01) converges with one less level. Overall, both examples distribute
the samples to the failure domain fairly good and it can be seen that all SubSim levels
fulfill the requirement that the generated samples are within the conditional failure set,
i.e., the thresholds. Additionally, more and more samples are created in the actual failure
domain, which is achieved using the MMHA in Algorithm 2.2.

Then, applying the method in Subsection 2.2.4.4, the following failure probabilities
and CoVs can be estimated. The first case (p0 = 0.01) results in:

pf = P [F ] ≈ 1.017%, cV [pf ] ≈ 13.93% (2.48)

The second case (p0 = 0.125) yields:

pf = P [F ] ≈ 0.911%, cV [pf ] ≈ 12.11% (2.49)

It is evident that both examples (see (2.48) and (2.49)) give a good, although not perfect,
approximation of the failure probability. This is to be expected as the SubSim algorithm
was not specifically tuned for the “frequent” failure probability looked at in this example.
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Figure 2.8: General behavior of subset simulation with p0 = 0.01 and movement of
the samples (ns = 1000; red: in failure domain, green: in allowed domain) over the different
subset simulation runs (blue circles are conditional failure regions based on threshold)
applying the modified Metropolis-Hastings algorithm in Algorithm 2.2.

Overall, the first example has a larger CoV, while the second example has a worse
approximation of the true failure probability. Thus, it is always necessary to try different
conditional probability levels with different number of samples to check for the appropriate
convergence and magnitude of the CoV. Additionally, (2.49) shows in application, why
subset thresholds in between p0 = [0.1, . . . , 0.3] have proven to be viable, especially to
achieve a small CoV [9, p. 175ff.].

Although not a standard application of CIs, (2.38) can be used to estimate the CI for
the first and second example (here with ξ = 0.05):

p0 = 0.010 : P [0.739% ≤ pf
∗ = 0.982% ≤ 1.294%] ≈ 95%

p0 = 0.125 : P [0.694% ≤ pf
∗ = 0.982% ≤ 1.127%] ≈ 95%

(2.50)

Thus, a 95%-CI with both chosen probability levels p0 is fulfilled. As it was already seen
in (2.48) and (2.49), the bounds for p0 = 0.125 are tighter due to the smaller CoV.

This basic SubSim method is extended in Chapter 6 to the needs of this thesis and
the general gPC collocation framework (Chapter 5) with CCs. Here, the efficient solution
of the SubSim within the OCP context is of paramount importance and achieved by
the gPC method introduced next.
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Figure 2.9: General behavior of subset simulation with p0 = 0.125 and movement of
the samples (ns = 5000; red: in failure domain, green: in allowed domain) over the different
subset simulation runs (blue circles are conditional failure regions based on threshold)
applying the modified Metropolis-Hastings algorithm in Algorithm 2.2.

2.3 Generalized Polynomial Chaos

In contrast to the classic sampling methods for the uncertainty description, introduced
in Section 2.2, generalized polynomial chaos (gPC) does rely on the approximation of
the uncertain system response by analytic functions (in this case: orthogonal polynomials).
Thus, gPC fits orthogonal polynomials to the actual response of the system and is therefore
said to be a non-sampling method. This non-sampling based procedure by a response
surface function approximation is also visualized in Figure 2.10. Here, it can be seen that
the gPC method transcribes the general (unknown) nonlinear model response (“output”)
with uncertainties into an equivalent finite sum expansion formula. One benefit of this new
representation is that the influence of the uncertainties is decoupled from the deterministic
parameters. This makes the stochastic analysis simple and straightforward.

The origin of the gPC methodology was introduced by Wiener in 1938 to model
Gaussian uncertainties [135]. In 2002, Xiu and Karniadakis extended this original
methodology to general orthogonal polynomials using the Wiener-Askey scheme,
calling the method generalized polynomial chaos [143]. This generalization
allowed the use of not only the Gaussian, but also further uncertainty PDFs. Some

58



Chapter 2: Open-Loop Optimal Control and Uncertainty Quantification
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Figure 2.10: General procedure of generalized polynomial chaos chaos transcription
method for nonlinear model with multiple uncertainties resulting in a finite sum approxi-
mation.

comprehensive reviews, which are the basis for the following description, have previously
been conducted [36, 140, 141]. Additional information on required probability theory is
given in Appendix B, while Appendix C deals with the basics of orthogonal polynomials,
which are required in this thesis for the gPC expansion. The following subsections introduce
the general gPC expansion procedure, starting with the gPC expansion for a scalar RV in
Subsection 2.3.1.

2.3.1 Expansion with Scalar Random Variable

Within this subsection, the gPC expansion for a scalar RV Θ (Appendix B.1) with prob-
ability distribution function FΘ(θ) = P(Θ ≤ θ) (Definition B.3; this is the well-known
cumulative distribution function, see (B.2)) is considered. Here, the scalar random pa-
rameter is denoted by θ. This is done to give an insight into the general procedure.
An extension to multiple dimensions is straightforward and conducted in Subsection 2.3.2.

First of all, the RV must have finite second order, i.e., even, moment (Subsection B.2.2)
for the gPC expansion to be applicable, meaning that the following condition must be
fulfilled [141, p. 58]:

E
[
|Θ|2m

]
=
∫

Ω
|θ|2m dFΘ(θ)︸ ︷︷ ︸

=ρΘ(θ) dθ, after (B.2)

<∞, m ∈ N0 = {0, 1, . . .} (2.51)

Thus, the statistical moments of the random parameter must exist. This is generally
applicable to all physical systems that are considered in this thesis and thus, gPC can
be applied. It should be noted that Ω is the support of the uncertainty/random space
(Appendix B), i.e., where it is defined.
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2.3 Generalized Polynomial Chaos

If (2.51) is fulfilled, the dth-order gPC expansion of the random solution y (z; θ) ∈ R
(sensitive parameters q are omitted for the sake of brevity) is given by the orthogonal
projection operation P (d) of order d onto the polynomial space W (d) (Definition 2.2) as
follows [141, p. 31]:

y (z; θ) ≈ P (d)y = y(d) (z; θ) =
d−1∑
m=0

ŷ(m) (z)φ(m) (θ) (2.52)

Take into account that (2.52) is basically a Fourier decomposition of the original
stochastic problem in an uncertain and a non-uncertain/deterministic part. Here, d is
the degree of the polynomial (also called “expansion order” in the following) and ŷ(m) ∈ R is
an expansion coefficient (deterministic part) of orderm (also called “Fourier coefficient”).
The orthogonal polynomials (uncertain part; also called “basis functions”) are represented
by φ(m) ∈ R and describe an orthogonal polynomial of order m (i.e., it has m as the largest
polynomial exponent; Appendix C).

The polynomial space W (d) of these orthogonal polynomials is then defined by a so-
called orthogonal polynomial measure: This measure is the orthogonality with respect to
the probability measure, i.e., the PDF ρΘ (θ), of the RV as follows (after [140, p. 251f.]):

Definition 2.2 (Continuous Orthogonal Space). A one–dimensional, continuous orthog-
onal polynomial space with respect to the measure (PDF) ρΘ (θ) in Ω is defined by:

W (d) ≡
{
v : Ω→ R : v ∈ span

{
φ(m) (θ) , m = 0, . . . , d− 1

}}
Here,

{
φ(m) (θ) ,m = 0, . . . , d− 1

}
are a set of orthogonal polynomials that satisfy the or-

thogonality relation in the L2-Hilbert space [5, p. 1073] defined by:

E
[
φ(m)(θ)φ(n)(θ)

]
=
∫

Ω
φ(m)(θ)φ(n)(θ)ρΘ (θ) dθ =

[
h(m)

]2
δmn, m, n ∈ N0

The Kronecker delta function is denoted by δmn =

1, if m = n

0, else
, while

[
h(m)

]2
=
∫

Ω

[
φ(m)(θ)

]2
ρΘ (θ) dθ

is the normalization constant to get an orthonormal polynomial basis.

Within this work, only orthonormal polynomials are used, i.e., they are normalized
using

[
h(m)

]2
in the sense of Definition 2.2. Therefore, the terms orthogonal and orthonor-

mal are synonymous throughout this thesis. Appendix C gives a more detailed insight
into the properties of orthogonal polynomials and defines the relevant ones for this work.
A summary is given in Table 2.2 with corresponding PDFs and supports. It should be
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Chapter 2: Open-Loop Optimal Control and Uncertainty Quantification

noted that Table 2.2 introduces the common relations of orthogonal polynomials and PDFs
in the Wiener-Askey scheme. Extensions, using the theory of arbitrary polynomial
chaos [98, 136] or Gaussian mixture models [103, 129] are also available. These are not
specifically treated in this thesis as the introduced PDFs in Table 2.2 are sufficient for
the considered problems. Nonetheless, the developed methods can be directly extended
using the aforementioned theories, as shown e.g., by the author in [103].

Table 2.2: Continuous probability density function-orthogonal polynomial connection for
standard generalized polynomial chaos and scalar random variable (after [140]).

Probability Distribution Probability Density Function ρΘ (θ) Support Ω Symbol Orthogonal Polynomial

Gaussian/Normal 1√
2π exp

(
− θ2

2

)
]−∞,∞[ N (µ = 0, σ = 1) Hermite (Definition C.3)

Gamma θα exp(−θ)
Γ(α+1) [0,∞[ γ (µ = α, σ =

√
α, α) Laguerre (Definition C.4)

Beta Γ(α+β+2)
2α+β+1Γ(α+1)Γ(β+1) (1− θ)α (1 + θ)β [−1, 1] B (a = −1, b = 1, α, β) Jacobi (Definition C.5)

Uniform 1
2 [−1, 1] U (a = −1, b = 1) Legendre (Definition C.2)

A basic example of the idea behind the gPC expansion in (2.52) is given in Figure 2.11:
Here, an uncertain parameter is influencing the output by an exponential function depen-
dence (this function is shown in solid red). The parameter is distributed according to
a standard Uniform PDF, i.e., θ ∼ U (a = −1, b = 1), i.e., the lower bound of the PDF
support is a = −1 and the upper bound is b = 1. The gPC expansion in (2.52), which
is fitted to the exact exponential functions, is shown for the orders d = 2, . . . , 5. Here,
the Legendre polynomials (Appendix C), as suggested in Table 2.2, are applied as
the orthogonal polynomials in (2.52). It can be seen that the gPC expansion yields a bad
approximation for only a second order expansion (solid cyan), which is a first-order, linear
fit, while the approximation accuracy of the system response by gPC is already signifi-
cantly increased with a third order expansion (dashed green; quadratic fit). Starting from
the fourth order expansion (dash-dotted blue; cubic fit), there is virtually no difference
between the exact and the gPC expansion solution. Thus, the gPC expansion converges
to the exact solution fast, as already noted before. This is especially the case if the func-
tion, which is to be approximated, is smooth. It should be noted here, without further
details at this point, that the determination of the expansion coefficients, required in (2.52)
to plot Figure 2.11, is based on the stochastic collocation (SC) approach introduced in
Subsection 2.3.3.

Looking at a mathematical description, the convergence and accuracy of (2.52) can
also be described by the Cameron-Martin theorem [26] and the Weierstrass
theorem (Theorem C.6) as follows [141, p. 59]:

||y (z; θ)− P (d)y||L2
d
→ 0, d→∞ (2.53)
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Figure 2.11: Polynomial chaos approximation of exponential function by different gener-
alized polynomial chaos expansion orders with Legendre polynomials.

This convergence type is often referred to as “mean-square convergence” [141, p. 59] and
states that the gPC approximation converges to the exact solution for a sufficiently large
expansion order. As Figure 2.11 has shown, the necessary expansion order depends on
the nonlinearity, the uncertainty is introducing in the system response.

For (2.53) to hold, the function must be square-integrable, i.e., its squared value must
be integrable over the random space, which is a general requirement for the gPC method
(see (2.51)). It is important to note in this context that the convergence rate of (2.52)
depends on the smoothness of the function with respect to the uncertain parameters [141,
p. 59f.]. Generally, it can be stated that a smoother function can be approximated by
the gPC method with a lower expansion order. Take into account that this also directly
implies a strategy on how to choose the expansion order, as the uncertain parameter influ-
ence on the system output is functionally known. Thus, a good “guess” on the smoothness
and the nonlinearity of the response can be made and an appropriate expansion order d can
be chosen. It should further be noted that the convergence in (2.53) implies that the gPC
expansion converges in probability (Definition B.10) [141, p. 59], i.e., it is a consistent
estimator that converges to the true function when using a sufficiently large expansion
order.

Take into account that (2.52) can also be written as a matrix-vector operation:
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Chapter 2: Open-Loop Optimal Control and Uncertainty Quantification

y(d) (z; θ)︸ ︷︷ ︸
∈R

≈
[
ŷ(0) (z) . . . ŷ(d−1) (z)

]
︸ ︷︷ ︸

∈R1×d

·


φ(0) (θ)

...
φ(d−1) (θ)


︸ ︷︷ ︸

∈Rd

(2.54)

Here, it becomes clear that there are d expansion coefficients that have d corresponding
orthogonal polynomials to create the scalar random output response. This also shows that
sampling the response surface is possible by a linear mapping (“matrix-vector operation”),
which is later used in the CC-OC framework (Chapter 6).

As observed in Table 2.2, the orthogonal polynomials in (2.52) are defined by the chosen
PDF for the RV. Thus, the remaining issue in (2.52) is the calculation of the expansion
coefficients. Therefore, an error ε is defined as follows that should ultimately approach
zero (i.e., the gPC expansion should approximate the actual response):

ε = y (z; θ)−
d−1∑
m=0

ŷ(m) (z)φ(m) (θ)→ 0 (2.55)

Looking at ε = 0, a Galerkin projection [5, p. 1094] with the orthogonal polynomials
and the PDF can be made. Therefore, (2.55) is multiplied by an n-th order orthogonal
polynomial φ(n) (θ) (“shape function”) and integrated over the probability space as follows:

∫
Ω
y (z; θ)φ(n) (θ) ρΘ (θ) dθ −

∫
Ω

d−1∑
m=0

ŷ(m) (z)φ(m) (θ)φ(n) (θ) ρΘ (θ) dθ ≡ 0 (2.56)

From Definition 2.2, it is known that the second integral in (2.56) is only non-zero if m = n

(orthogonality property in Definition 2.2). Therefore, only this case can be used to calculate
the expansion coefficients and consequently, all n are set to m in (2.56). As the m-th
orthogonal polynomial is now part of the first integrand as well, the sum operation can
consequently be extended over both integrals, yielding:

d−1∑
m=0

[∫
Ω
y (z; θ)φ(m) (θ) ρΘ (θ) dθ − ŷ(m) (z)

∫
Ω
φ(m) (θ)φ(m) (θ) ρΘ (θ) dθ︸ ︷︷ ︸
[h(m)]2, after Definition 2.2

]
≡ 0 (2.57)

Additionally, it is used in (2.57) that the expansion coefficients are independent of the in-
tegration over the PDF support as they are specifically independent of the RVs. Therefore,
they can be put in front of the integration.

Then, (2.57) can be solved for each expansion coefficients individually as the sum is
generally only zero if all addends are zero. Furthermore, Definition 2.2 for the normalization
constant can be applied resulting in [140, p. 260]:

ŷ(m) (z) = 1
[h(m)]2

∫
Ω
y (z; θ)φ(m) (θ) ρΘ (θ) dθ, m = 0, . . . , d− 1 (2.58)
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It is clear that (2.58) cannot be solved directly as the expansion coefficients depend on
the system response y (z; θ) (also: “response surface”), which is to be approximated by gPC.
Thus, it is necessary to find a way to calculate/approximate the integral in (2.58) without
requiring any knowledge on the response surface over its (complete) support. Within
this thesis, the SC approach to calculate the integral in (2.58) is used. The procedure is
introduced in more detail in Subsection 2.3.3, while at first the multivariate gPC expansion
is introduced in Subsection 2.3.2.

2.3.2 Expansion with Multivariate Random Variable

Definition 2.2 provided a description of the orthogonal polynomial space for a scalar RV.
This subsection gives an extension to multiple dimensions by using the tensor product of
one-dimensional grids. Thus, it holds for the N -dimensional orthogonal space (i.e., there
are N RVs) [140, p. 252f.]:

Definition 2.3 (N -dimensional Continuous Orthogonal Space). An N -dimensional orthog-
onal space is defined by a tensor grid expansion of one-dimensional orthogonal polynomial
spaces in the following manner:

W
(D)
N ≡

⊗
|d|≤D

W (di)

Here, |d| is a multi-index operator defined by |d| =
N∑
i=1

di.

Definition 2.3 defines a combination of one-dimensional orthogonal spaces in a manner
that a tensor grid of maximum order D is achieved. Figure 2.12 shows a visualization of
a two-dimensional tensor grid: Here, the red crosses give the positions of the values in
the created tensor grid from the one-dimensional grids (θ1 ∼ N (µ = 0, σ = 1) and θ2 ∼
U (a = −1, b = 1)). These are depicted by the blue (first uncertain parameter) and

green circles (second uncertain parameter) and provide the basic values. Here, the one-
dimensional grid of the first uncertain parameter has a dimension of four (d1 = 4), while
the second one has a dimension of two (d2 = 2). This shows the possibility to combine
different order one-dimensional grids as well as how the tensor grid is created from them
by applying Definition 2.3.

A general prerequisite of the gPC expansion in the N -dimensional case is now that
a properly defined probability space is used, as given in e.g., Definition B.2: Here, all RVs
must be mutually independent (Section B.5). Take into account that this independence
can be achieved using e.g., a Karhunen-Loève transformation [68], if necessary. This
transformation is essentially a principle axis transformation.
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Figure 2.12: Visualization of two-dimensional tensor grid based on one-dimensional grids
and full expansion.

Having defined a proper probability space as well as secured mutual independence, all
PDFs of the scalar RVs and their respective supports can be multiplied according to (B.2)
as follows [140, p. 249]:

ρΘ (θ) =
N∏
i=1

ρΘi (θi) ∈ R, Ω =
N∏
i=1

Ωi ⊂ RN (2.59)

With (2.59), the N -dimensional orthogonal polynomial space is defined by multiplying all
one-dimensional orthogonal polynomials as follows [140, p. 253]:

Φ(m) (θ) =
N∏
i=1

φ(mi) (θi) ∈ R, m1 + ...+mN ≤ D (2.60)

It should be noted that the multivariate expansion order of the orthogonal polynomial
is D (see Definition 2.3). Additionally, the normalization constants of the orthogonal
polynomials can also be multiplied like the orthogonal polynomials in (2.60).

Using (2.59) and (2.60), (2.52) can directly be expanded to the N -dimensional space
as follows [140, p. 254]:

y (z;θ) ≈ P
(D)
N y = y(D)

N (z;θ) =
M−1∑
m=0

ŷ(m) (z) Φ(m) (θ) , M − 1 =
(
N +D

N

)
(2.61)

Here, M is the expansion order of the gPC and ŷ(m) (z) ∈ Rny are the multi-dimensional
expansion coefficients matching the size of the output vector. It should be noted that
the full tensor grid, i.e., the multi-index operator in Definition 2.3 for the tensor grid
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2.3 Generalized Polynomial Chaos

allows all polynomial order combinations, is also sometimes used [140, p. 253]. This yields
an expansion order of M − 1 = DN , which is normally much larger than the binomial
coefficient in (2.61) and does not improve the accuracy significantly [140, p. 253ff.]. Thus,
this thesis applies the tensor grid and multivariate gPC expansion with the corresponding
expansion order as introduced in Definition 2.3 and (2.61) respectively.

Further take into account that, just like for the scalar case in (2.54), (2.61) can be
rewritten as a matrix-vector operation:

y (z;θ)︸ ︷︷ ︸
∈Rny

≈
[
ŷ(0) (z) . . . ŷ(M−1) (z)

]
︸ ︷︷ ︸

∈Rny×M

·


Φ(0) (θ)

...
Φ(M−1) (θ)


︸ ︷︷ ︸

∈RM

(2.62)

Here, it is again clear that there exist M expansion coefficients with M corresponding or-
thogonal polynomials. Further, it can be seen that each of the output expansion coefficients
is multiplied using the same series of orthogonal polynomials because the uncertainties
acting on the dynamic system are the same.

The expansion coefficients themselves are then also directly obtained by expand-
ing (2.58) as follows [140, p. 254]:

ŷ(m) (z) = 1
[h(m)]2

∫
Ω

y (z;θ) Φ(m) (θ) ρΘ (θ) dθ, m = 0, . . . ,M − 1 (2.63)

Take into account that the orthogonal space defined in Definition 2.3 grows rapidly with
the number of uncertainties due to the fact that a standard tensor product is used (“curse
of dimensionality”). To overcome this issue, sparse grids can be implemented that use
a suitable subset of tensor grids to achieve a good approximation of the tensor grid with
fewer required expansion coefficients. As a rule of thumb, a sparse grid is generally
required starting from N ≥ 5 and the origins of this method date back to the Russian
mathematician Smolyak. Within this thesis, a sparse grid is defined as follows [142,
p. 1127]:

Definition 2.4 (Smolyak Sparse Grid). A sparse collocation grid, in the sense of
Smolyak, is defined as a subset of standard tensor products in the following manner:

W
(D)
N =

∑
ksg+1≤|d|≤ksg+N

(−1)ksg+N−|d|
(

N − 1
N + ksg − |d|

)(
W (d1) ⊗ ...⊗W (dN )

)

Here, ksg is the approximation level of the Smolyak grid. Again, |d| symbolizes the multi-
index operator.
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Figure 2.13: Visualization of two-dimensional sparse grid based on Smolyak rule in
comparison to full tensor grid based on one-dimensional grids from sparse grid algorithm.

Definition 2.4 states that an arbitrary accurate representation of a tensor grid can be
achieved by a sparse grid using a sufficiently large approximation level ksg [142].

The sparse grid given in Definition 2.4 can also be visualized as shown in Figure 2.13.
The same definition for the uncertainties (θ1 ∼ N (µ = 0, σ = 1); θ2 ∼ U (a = −1, b = 1))
as in Figure 2.12 is applied. The approximation order of the sparse grid is chosen to
be ksg = 3. In Figure 2.13, the blue circles depict the created sparse grid (number of
points: Q = 37), while the red crosses denote the tensor grid (number of points: Q = 169)
that is created from the one-dimensional grids that are used to create the sparse grid.
A first observation in Figure 2.13 is that the sparse grid only requires 22% of the points that
the tensor grid requires. Thus, the sparse grid is more efficient in the approximation. In
addition, it is clear that the sparse grid mainly uses points that are on the coordinate axes
or close to the coordinate axes. This is due to the fact that points close to the coordinate
axes normally have an increased influence on the response surface compared to points far
away. Thus, it is reasonable to “cluster” points around the center. Further examples and
comparisons of sparse and tensor grids, especially regarding the efficiency with a large
number of uncertainties, can also be found in study [142].

With the gPC expansion defined for the scalar as well as the multivariate case, the next
subsection deals with the calculation of the expansion coefficients, which requires the ap-
proximation of the integral in (2.63).
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2.3.3 Stochastic Collocation

This subsection introduces one possible method to calculate an approximation for the in-
tegral in e.g., (2.63), and thus the expansion coefficients, by means of stochastic
collocation. This is also known as discrete expansion. The definition of the stochastic
collocation (SC) method in a single dimension, in the context of the gPC framework, is
given as follows (after [141, p. 79]):

Definition 2.5 (Stochastic Collocation). Let ΘQ =
{
θ(j), j = 1, . . . , Q

}
⊂ IΘ ⊂ RQ be

a set of (prescribed) collocation nodes in the random space, where Q ≥ 1 is the number
of nodes, and let y (ΘQ) =

{
y(j), j = 1, . . . , Q

}
be the set of solutions obtained from e.g.,

the OCP (see (2.1)), at those nodes ΘQ. Then find w (ΘQ) ∈ Π (ΘQ) in a proper polynomial
space Π (ΘQ) such that w (ΘQ) is an approximation of the true solution y (ΘQ) in the sense
that ‖w (ΘQ)− y (ΘQ) ‖ is sufficiently small in a strong norm defined in IΘ, i.e.,

‖w (ΘQ)− y (ΘQ) ‖ → 0, Q→∞

The norm is to be determined by the approximation approach and is typically a Lp norm.

Take into account that posterior error estimations on the approximation accuracy of
the SC method are also available from e.g., [56].

It should be noted that in the context of gPC the full tensor grid for the SC, i.e.,
the multi-index operator in Definition 2.3 allows all polynomial order combinations, is
normally used [140, p. 253]. This yields a number of nodes of Q = DN . This expansion
on the full grid is generally required to have the correct weighting of the solutions and
is also employed in this thesis for the tensor grid examples (sparse grids, as defined in
Definition 2.4, can be applied analogously to reduce the number of required nodes).

Thus, the basic problem is to find nodes that yield a good approximation of the response
surface to calculate the integral in (2.58) or (2.63) respectively: As orthogonal polynomials
and their corresponding PDFs, according to Table 2.2, are used in the gPC expansion co-
efficient calculation, a best fit approximation is given by Gaussian quadrature (also:
“pseudo-spectral projection”). This is due to the fact that Gaussian quadrature is
defined with respect to the used PDF as follows [5, p. 1184]:

∫
Ω
y (z; θ) ρΘ (θ) dθ ≈

Q∑
j=1

y
(
z; θ(j)

)
︸ ︷︷ ︸

y(j)

α(j) (2.64)

The expansion formula in (2.64) is exact for all polynomial integrands up until degree 2Q−
1 [5, p. 1184]. Thus, even for a small number of nodes a high accuracy is achieved. In (2.64),
α(j) are the normalized quadrature weights and θ(j) are the quadrature nodes (“sampling
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points”). These are chosen according to Table 2.2, i.e., in connection with the orthogonal
polynomials and the PDF. It should be noted that the quadrature weights must be
normalized, i.e.,

Q∑
j=1

α(j) ≡ 1, to fulfill that the integral over the PDF is one (see (B.3)).

This is different compared to a standard Gaussian quadrature [5, p. 1184].
Take into account that the quadrature nodes in (2.64) are the zeros of the orthogonal

polynomial of order d, i.e.:

Φ(d)
(
θ(j)

)
≡ 0, j = 1, . . . , Q (2.65)

There are then always Q = d distinct, real-valued nodes located in the support of Ω for
a scalar orthogonal polynomial [2, p. 787]. Thus, it is secured that the model is evaluated
within the specified bounds.

The weights for the Gaussian quadrature are calculated by integrating Lagrange
polynomials of the quadrature nodes from (2.65) over the uncertainty domain weighted
by the PDF. For the scalar quadrature node this is defined as follows [141, p. 40]:

α(j) =
∫

Ω
ρΘ (θ)

Q∏
i=1
i 6=j

θ − θ(i)

θ(j) − θ(i) dθ, j = 1, . . . , Q (2.66)

It should be mentioned here that it is important to calculate the nodes in (2.65) and
the weights in (2.66) with respect to the PDF as defined in Table 2.2. Otherwise, the SC
in (2.68) returns wrong expansion coefficients. This may require adapting readily imple-
mented Gaussian quadrature schemes [30, p. 127].

Some node and weight combinations for Gaussian quadrature with Hermite poly-
nomials (Gaussian PDF) and Legendre polynomials (Uniform PDF) are listed in
Table 2.3 and Table 2.4 respectively. It should be noted that the tables merely provide
an overview and should not be seen as a complete reference. Here, it can be observed that
the nodes and weights are distributed symmetrically for these symmetric PDFs. Addition-
ally, it is clear that nodes with a higher probability in the PDF (here e.g., in the context
of the center values in the Gaussian PDF) are weighted with a larger magnitude than
nodes at the edges (i.e., far away from the center). Furthermore, it can also be seen
that the weights are indeed normalized. It should additionally be noted in Table 2.3
and Table 2.4 that the SC nodes are deterministic values, which can be used to solve
deterministic OCPs. This is a major benefit of the generalized polynomial chaos-stochastic
collocation framework (gPC-SC) approach, as it does not require changes in the determin-
istic model formulation. Finally, the nodes in Table 2.3 and Table 2.4 are not “clustered”
around the center, but actually they are “clustered” at the boundaries of the random
space. This is specifically seen for the Legendre polynomials in Table 2.4. Although this
seems to be non-intuitive in the first place, this behavior has the specific reason to cancel
the Runge’s phenomenon [114]: This phenomenon occurs when increasing the num-
ber of SC points on an equidistant grid and results in oscillations close to the bound values.
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Table 2.3: Nodes and weights for Hermite polynomials/Gaussian uncertainty in gen-
eralized polynomial chaos stochastic collocation for Gaussian quadrature.

Order d Nodes θ(j) Weights α(j)

2
θ(1)

θ(2)

 ≈
−0.7071

0.7071

 α(1)

α(2)

 =
0.5

0.5



3


θ(1)

θ(2)

θ(3)

 ≈

−1.2247

0
1.2247



α(1)

α(2)

α(3)

 ≈


0.1667
0.6666
0.1667



4


θ(1)

θ(2)

θ(3)

θ(4)

 ≈

−1.6507
−0.5246
0.5246
1.6507




α(1)

α(2)

α(3)

α(4)

 ≈


0.0459
0.4541
0.4541
0.0459



Table 2.4: Nodes and weights for Legendre polynomials/Uniform uncertainty in gener-
alized polynomial chaos stochastic collocation for Gaussian quadrature.

Order d Nodes θ(j) Weights α(j)

2
θ(1)

θ(2)

 ≈
−0.5774

0.5774

 α(1)

α(2)

 =
0.5

0.5



3


θ(1)

θ(2)

θ(3)

 ≈

−0.7746

0
0.7746



α(1)

α(2)

α(3)

 ≈


0.2778
0.4445
0.2778



4


θ(1)

θ(2)

θ(3)

θ(4)

 ≈

−0.8611
−0.34
0.34

0.8611




α(1)

α(2)

α(3)

α(4)

 ≈


0.1739
0.3261
0.3261
0.1739



These oscillations can be reduced by “clustering” points at the interval edges, i.e., by using
a non-equidistant grid, and thus, is generally used in polynomial interpolation/integration
methods, for which gPC-SC is an example.

As a reminder, Table 2.2 introduced the orthogonal polynomials for gPC within their
standardized support and parameter setting (e.g., the PDF of the Hermite polynomials is
the standard Gaussian PDF). Thus, especially the nodes are also calculated with respect
to this standard setting (Tables 2.3 and 2.4). If a non-standard PDF support or parameter
setting should be used, an iso-probabilistic interval transformation can be conducted [30,
p. 89]. The transformed parameter is then used as the sampling point for the model (i.e.,
to calculate y

(
θ(j)

)
), but not for the orthogonal polynomials (as these are defined with

respect to the standard domain). As an example, the iso-probabilistic transformation
for the uniform PDF from its basic domain (basic), [−1; 1], to a transformed domain
(tra), [a; b], is given as follows:
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θ
(j)
tra = b− a

2 · θ(j)
basic + b+ a

2 , j = 1, . . . , Q (2.67)

This transformation can also be conducted for other PDFs of Table 2.2 [30, p. 89 &
142ff.]. It should be noted that it is not specifically distinguished between basic and
transformed domain in the following for the sake of readability. But, it can be stated that
the orthogonal polynomials are always evaluated with the samples from the basic domain,
while the system response is generally evaluated in the transformed domain.

Furthermore, it is important to note that it is sufficient to look at the scalar case
for the calculation of quadrature nodes by (2.65) and weights by (2.66), due to the fact
that multi-variate gPC expansions are generally created using a tensor (Definition 2.3)
or a sparse grid (Definition 2.4). As these merely combine one-dimensional (scalar)
grids, (2.64) can directly be used in (2.63) (or equivalently in (2.58)) as follows to ap-
proximate the integral by Gaussian quadrature (normalized orthogonal polynomials
according to Definition 2.2 are assumed from now on and therefore, the normalization
constant

[
h(m)

]2
is left out of the equations for the sake of simplicity):

ŷ(m) (z) ≈
Q∑
j=1

y
(
z;θ(j)

)
︸ ︷︷ ︸

y(j)

Φ(m)
(
θ(j)

)
α(j) (2.68)

Here, (2.68) states that it is only necessary to solve the OCP, defined in (2.1), on the set
of independent quadrature nodes and weights

{
θ(j), α(j)

}
to get the desired system re-

sponse y(j) = y
(
z;θ(j)

)
and be able to calculate the expansion coefficients ŷ(m) (z). There-

fore, only deterministic OCPs must be solved, in order to get a stochastic representation of
the system in the form of (2.61) (or equivalently (2.52)). Once more, this shows the huge
benefit of the gPC-SC, as it does not require the alteration of the deterministic OCP that
is normally extensively tested and therefore, can be assumed to be a good representation
of the real system behavior (except for the uncertainties).

Take into account that the multi-dimensional case in (2.68) allows the combination of
different uncertain parameter PDFs (as long as these are mutually independent) as well
as different expansion orders for each of the uncertain parameters. This allows a tailored
adaptation to the problem structure.

Finally, it is once more reminded that the approach applied in this thesis uses the con-
nection of the PDF to an orthogonal polynomial from the Wiener-Askey-Scheme
(Table 2.2). Nonetheless, extensions to arbitrary PDFs using arbitrary polynomial chaos
[136] or Gaussian mixture models [103, 129] can be applied as well within the methods
developed in this thesis, which was already shown by the author in [103].
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2.3 Generalized Polynomial Chaos

2.3.4 Statistical Information from Generalized Polynomial Chaos

A major advantage of the gPC method is the fact that (2.52), and consequently also (2.61)
for the multivariate case, become an analytic representation of the uncertain system (or
at least a good approximation). Here, it is only necessary to consider enough expansion
coefficients to reach a desired accuracy. This makes it simple to calculate statistical
information from the gPC representation, and thus, the system. A more detailed derivation
of the formulas given in the following can be found in Appendix D. The definition of
general statistical moments is given in Subsection B.2.2.

For the expected/mean value, the calculation using the gPC expansion in (2.61) is as
follows [141, p. 254]:

E [y (z;θ)] = µ [y (z;θ)] ≈ E
[
y(D)
N (z;θ)

]
=
∫

Ω

(
M−1∑
m=0

ŷ(m) (z) Φ(m) (θ)
)
ρΘ (θ) dθ = ŷ(0)

(2.69)

The variance, i.e., the square of the standard deviation σ, has an equally simple represen-
tation (again using (2.61)) [141, p. 255]:

var [y (z;θ)] = σ2 [y (z;θ)] = E
[
(y (z;θ)− E [y (z;θ)])2

]
≈

M−1∑
m=1

[
ŷ(m) (z)

]2
(2.70)

Using (2.69) and (2.70), the statistical properties of optimal trajectories can easily be
calculated. It should be noted that both results only depend on the expansion coefficients,
which makes it convenient to evaluate them. On the other hand, further statistical mo-
ments, e.g., covariance, skewness, and kurtosis, can also be derived and used. These are
then generally depending on the orthogonal polynomials, in addition to the expansion
coefficients. Their formulas are given in Appendix D.

The applications within this thesis concentrate on mean values and variances, mainly
because the direct computation of higher order moments become quite expensive (and
can also be done via sampling the gPC expansion in (2.52)), the formulas given in (2.69)
and (2.70) are most relevant.

As already noted, for the SubSim methodology (Subsection 2.2.4) the variance in (2.70)
is no longer a suitable measure to describe the dispersion of the data for small failure
probabilities. Therefore, the CoV, cV , which is a standardized measure of dispersion
for statistical moments can be used. Compared to the standard deviation, it is non-
dimensional and independent of the original data magnitude. In the gPC framework,
the CoV, using the results of (2.69) and (2.70), is as follows [9, p. 25]:

cV [y (z;θ)] = σ [y (z;θ)]
E [y (z;θ)] ≈

√
M−1∑
m=1

[ŷ(m) (z)]2

ŷ(0) (z) (2.71)
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Deterministic OCP (parallelizable)

Figure 2.14: General, basic procedure of combining generalized polynomial chaos method
using stochastic collocation with an optimal control framework to calculate response surface
of system to uncertain parameters.

As mentioned, this standardization is especially important with the rare-events considered
in this study, as the mean value will be small and therefore, the standard deviation must
be seen with respect to this small value.

2.3.5 Generalized Polynomial Chaos in Optimal Control

This subsection gives an overview on the basic idea of incorporating the gPC method
(Section 2.3) in an OCP (Section 2.1). Here, Figure 2.14 shows the idea of the fundamental
framework: It can be seen that each OCP is solved in an independent way at the SC
nodes, provided by the generalized polynomial chaos-stochastic collocation framework
(gPC-SC). The responses are afterward used to calculate the gPC expansion. This
fundamental framework does not calculate robust trajectories, but only a response surface
of the uncertain trajectories. In order to calculate robust trajectories, the framework is
elaborated on in the thesis.
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2.3 Generalized Polynomial Chaos

Additionally, Figure 2.15 gives a formal overview on the parts of the framework, their
dependencies developed throughout this chapter, and how they interact with each other.
This should give a complete overview on how the gPC framework with OC is set up and
what parts are necessary to get to the finite sum gPC approximation. It is important that
the gPC-SC provides the samples to evaluate the OCP, while neither changing the OCP
itself nor the underlying dynamic model. This means that the model is evaluated in
the deterministic domain as desired.

Overall, it can be stated that the incorporation of the gPC-SC in the OCP formula-
tion is straightforward because gPC can be considered as a wrapper around the already
implemented FALCON.m OC framework in its basic form. This is due to the fact that
only deterministic OCPs must be solved, which is what FALCON.m is designed to do.
Therefore, it is easy to use and does not interfere with the core functionalities of the OC
software, in this case FALCON.m.

Finally, an important aspect of the discussion of gPC in OC is the question if it
leads to biased statistical moments like the MCA (Figure 2.4; e.g., for the application in
CCs). The general idea of approaching the question remains similar to the MCA case and
is visualized in Figure 2.16: Again, the feasible function values are shown in green and
the infeasible in red. The blue error bar is, once more, obtained from the constrained MCA
(i.e., discarding infeasible samples). The black circles denote the SC nodes used in a fifth-
order gPC expansion. It should be noted that these are all located in the feasible domain.
By the gPC-SC procedure the black error bar is calculated, which matches the exact error
bar (around magenta cross in black square) both in mean as well as standard deviation
very well. Thus, the gPC expansion recovers the actual solution without bias due to
the fact that it approximates the uncertain output response as a whole. Therefore, as
long as all SC node NLP solutions are successful, it can be assumed that the gPC-SC
method gives a good approximation of the response surface, which can be used for detailed
analysis of also the infeasible regions, e.g., in the context of CCs (Subsection 2.4.4).

2.3.6 Accuracy and Convergence Properties of Generalized Poly-
nomial Chaos Expansion

This final section of the introduction to gPC deals with a convergence analysis of the gPC
expansion. It covers both a comparison to MCA (ns = 1000) as well as a comparison of
different gPC expansion orders. The main idea is to get an overview on the convergence
properties of the statistical moments, in this case for mean value and standard deviation.
Mathematical concepts and derivations of this convergence properties can e.g., also be
found in [38, 138].

As an example, a first order lag with uncertainty in the time constant T is considered
(u is the command, y the measured output with corresponding dynamics, and t the time;
see [21, p. 161]):
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Figure 2.15: Dependencies between different parts of the optimal control problem, gener-
alized polynomial chaos, as well as the dynamic model and how they are connected with as
well as influenced by each other.
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Figure 2.16: Comparison of constrained and unconstrained Monte Carlo analysis as well
as generalized polynomial chaos for calculated mean and standard deviation.

.
y (t;T ) = 1

T
(u− y) (2.72)

The time constant T is defined using a uniform PDF as follows:

T ∼ U (a = 0.5s, b = 1.5s) , ρΘ (θ) = 1 (2.73)

This choice ensures a simpler form of the emerging integrals for the statistical moments
as the PDF has a simple representation.

A step response of this first-order lag system is considered as the response example
and defined as follows [21, p. 200]:

y (t;T ) = 1− exp
(
t

T

)
(2.74)

Using (B.4) (definition of the mean value) and the PDF in (2.73), a semi-analytic solution
for the mean value can be derived (Appendix E):

E [y] =
[
Ei (−2t)− Ei

(
−2t

3

)]
t+ exp (−2t)

2 −
[
1.5 · exp

(
−2t

3

)]
+ 1 (2.75)

Here, the exponential integral Ei is defined as follows [2, p. 228]:

Ei (t) =
∫ t

τ=−∞

exp (τ)
τ

dτ, t > 0 (2.76)
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Similarly, a formula for the standard deviation can be derived that is not stated here for
the sake of brevity, but given in Appendix E.

The time development of the gPC solution (solid lines) for the mean value and the stan-
dard deviation of different gPC expansion orders (d = M = Q = 2, . . . , 10) with respect
to the semi-analytic solution (dashed red line) can be seen in Figure 2.17. It is clear
that there are basically no differences between the gPC solutions of different order for
the mean value. The standard deviation, however, is not accurate with only a second
order expansion but also gets very accurate when increasing the expansion order.

The convergence history of gPC and MCA (ns = 1000), in comparison to the semi-
analytic solution for mean and standard deviation, is depicted in Figure 2.18. Furthermore,
Figure 2.19 shows the same results as in Figure 2.18 zoomed-in for the initial samples
to better compare the convergence properties for only few samples. Both figures depict
the semi-analytic solution in dashed-red, the gPC solution in solid green, and the MCA
solution (ns = 1000) in solid blue. The figures show the step response result at t = 1s:
This is the time after which the step response for the mean system (i.e., with T = 1s)
reaches approximately 63% of the stationary value and thus, is still in the transient phase
(see Figure 2.17). Therefore, this point can be seen as a good indicator for the convergence
properties and accuracy of the different approximation algorithms.

Figure 2.18 shows that the MCA converged to the semi-analytic solution after approxi-
mately 100 samples for both mean value and standard deviation, while gPC shows almost
no difference to the semi-analytic solution even with only two samples. This is especially
evident by looking at the zoomed-in plot given in Figure 2.19. Here, the mean value shows
a very good accordance with two samples, while the standard deviation shows a good
convergence starting from three samples on. This was also already clear from Figure 2.17.
It is additionally clear that a MCA with this number of samples is still fairly far off from
the semi-analytic solution and thus, not as efficient in the approximation like the gPC
method.

Overall, this section, together with literature results as in e.g., [38, 138], justifies the use
of gPC in OCPs, as it provides a very fast and efficient method to calculate the statistical
properties of an uncertain system accurately.
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Figure 2.17: Comparison of mean value and standard deviation convergence for different
generalized polynomial chaos expansion orders to analytic solution over step time.
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Figure 2.18: Comparison of mean value and standard deviation convergence for gener-
alized polynomial chaos and Monte Carlo analysis to semi-analytic solution one second
after step initiation.
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Figure 2.19: Comparison of mean value and standard deviation convergence for general-
ized polynomial chaos and Monte Carlo analysis to semi-analytic solution zoomed-in for
the first 20 samples one second after step initiation.

2.4 Advanced Optimization Methods

This section gives an overview on advanced optimization methods to conduct a detailed
analysis of the dynamic system and its optimal result, which is required in this thesis.
These methods rely on the NLP transcription and solution (Subsection 2.1.2) and thus,
provide add-ons to this formulation. Here, Subsection 2.4.1 gives an overview on Pareto
analysis techniques, i.e., methods to calculate optima for multiple (opposing) objectives in
the OCP formulation. Then, Subsection 2.4.2 introduces methods for sensitivity analysis.
These methodologies are used to calculate the influence of an invariant parameter on
the optimal solution when varying it (“sensitive parameter”). Thus, the methods can
be used to update trajectories based on varying parameters online, as they represent
a first-order Taylor series expansion [45, p. 295]. Subsection 2.4.3 gives an overview on
bi-level OC methods. These methods are often used to decompose a single OCP into
multiple, smaller OCPs, which are dependent on a dynamic model, and (generally) one
parameter optimization problem that shapes their behavior. Afterward, Subsection 2.4.4
introduces the concept of OC with chance constraints (CCs). These CCs are then used
to assign probabilistic constraints within the OCP formulation. Finally, Subsection 2.4.5
introduces the concept of distributed open-loop direct optimal control (DOC) that provides
an efficient way to split the introduced gPC-SC framework (Subsection 2.3.5) by solving
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the different sub-problems independently of each other, and finally combining them in
a connection level using connection variables. These ensure that the original OCP is still
solved.

Especially the final two sections introduce basic methods that are required and applied
in the following chapters to calculate robust, optimal trajectories.

2.4.1 Pareto Analysis

A Pareto analysis (also: Pareto optimization) is conducted when there are multiple (op-
posing) objectives within an OCP, specifically the cost function. It is therefore also called
multi-criterion optimization. The resulting optimal points create a so-called Pareto fron-
tier, i.e., a boundary where an improvement of one cost function part would automatically
lead to a deterioration of another cost function part. Comprehensive introductions and
reviews have recently been conducted in e.g., [28, 69, 75].

Pareto problems are very common in OC, although they are seldom analyzed in the way
of a Pareto analysis, because most often only one point on the Pareto frontier is calculated.
Figure 2.20 shows the general Pareto problem with two opposing objectives in the cost
function. The blue line is the Pareto frontier, while the green crosses are sub-optimal
solutions. In this example, solutions left of the Pareto frontier cannot be reached as they
are unphysical (“utopia points”; e.g., if J1 is the flight time between two points even
with maximal speed there is a minimal time required to travel between them; this would
then also increase the J2, which might be the fuel consumption). Thus, each change on
the Pareto frontier normally benefits one cost function part, while it is non-beneficial for
the other part(s). Here, it is up to the user to calculate the Pareto point in a manner that
it suits the application requirements well. This is normally done by weighting the cost
function influences appropriately.

One straightforward way of calculating a Pareto frontier is thus by a so-called “weighted
sum scalarization” [17, p. 90]: Here, the different cost function parts are summed up and
weighted to create a scalar cost function. Depending on the weights, different points on
the Pareto frontier can be calculated. Mathematically, the Pareto problem can then be
stated as follows [17, p. 90]:

min J sum =
n∑
i=1

wi · J i

s.t. wi > 0, i = 1, . . . , n,
n∑
i=1

wi = 1

(2.77)

Here, the Pareto problem in (2.77) creates two issues: First of all, non-convex Pareto
frontiers cannot be covered by this approach and second of all, the choice of the weights
to calculate an accurate representation of the Pareto frontier is not straightforward [17,
p. 91ff.]. Therefore, multiple developments have been made to this approach [17, p. 91ff.],
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Figure 2.20: Visualization of Pareto frontier (solid blue line) with two different, opposing
cost function influences (each of the cost influences seeks to be minimal), the sub-optimal
solution space above the Pareto frontier (green crosses), and infeasible region below Pareto
frontier (“utopia points”).

which are not required in this thesis. Still, (2.77) provides the most common Pareto
frontier approximation techniques that can be used to e.g., calculate the Pareto frontier
in Figure 2.20.

2.4.2 Sensitivity Analysis

This section covers techniques for sensitivity analysis by means of post-optimal as well as
integrator sensitivities.

Post-optimal Sensitivity

First of all, the post-optimal sensitivity analysis is introduced to analyze the optimal
solution of an OCP, when invariant (“sensitive”) parameters in the OCP are perturbed
at this optimal point. It relies on the implicit function theorem (IFT) given as follows
(using the required definitions for sensitivities; after [52, p. 28], [45], [23, p. 23]):
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Theorem 2.6 (Implicit Function and Sensitivity Theorem). Let w =
[
z µ λA

]T
(here λA are the Lagrange multipliers of the active inequality constraints) be implicitly
given by the C1 function (i.e., it is continuously differentiable at least once) [5, p. 290]:

R (w; q0) = 0, with ∇wR (w; q0) full rank

A full rank is guaranteed if the constraint qualifications as well as sufficient optimality
conditions hold. Then, for any q0 (“linearization point”) there is a C1 function ξ (q) such
that

R (ξ (q) ; q) = 0

holds in a neighborhood of q0.
That means it is w (q) = ξ (q) around q0. Consequently, this means that w (q) is locally
well defined and differentiable and that sensitivities can be calculated.

From the IFT, a sensitivity equation can be derived by differentiating the implicit function
with respect to the invariant (sensitive) parameters as follows:

dR (w; q)
dq

= ∂R (w; q)
∂w︸ ︷︷ ︸

∇wR(w;q)

∂w
∂q

+ ∂R (w; q)
∂q

= 0 (2.78)

Solving (2.78) gives the sensitivities of the optimization parameters and constraint multi-
pliers with respect to the sensitive parameters as follows:

∂w
∂q

= −
[
∂R (w; q)

∂w

]−1
∂R (w; q)

∂q
(2.79)

Thus, the remaining issue is to define the matrices in (2.79) for the OCP and check if they
are invertible. In case they are, the equation can be solved for the sensitivities.

In the OC context, the post-optimal sensitivity equation is calculated by applying
the IFT on the KKT conditions (Definition 2.1). This defines an implicit function, with
only equality constraints for the sake of simplicity, as follows [23, p. 22f.], [45]:

R (w; q) =
∇zL (z,µ; q)

ψ (z; q)

 = 0

∂R (w; q)
∂w

=
H (z,µ; q) ∇zψ (z; q)T

∇zψ (z; q) 0

 (2.80)
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As the derivative of the implicit function in (2.80) is indeed the KKT matrix that is e.g.,
used to calculate the Newton step to update the OCP in (2.23), the matrix is invertible
(assuming that the regularity conditions mentioned in Section 2.1 hold). Therefore, (2.79)
provides the sensitivities of the OCP. The required properties of the KKT matrix and
a more detailed derivation of the sensitivity equation for Ipopt can also be found in [106].

Take into account that H in (2.80) is the Hessian matrix of the OCP. Thus, a sensitivity
analysis is only meaningful if the exact Hessian or a fairly good approximation is available
and assessible (e.g., from a converged BFGS update and by directly using the factorized
KKT matrix of the NLP from e.g., Ipopt [133]).

It should be further noted that the derivative of the implicit function, with respect to
the sensitive parameters in (2.79), is also straightforward to calculate as follows:

∂R (w; q)
∂q

=
∇z,qL (z,µ; q)
∇qψ (z; q)T

 (2.81)

The same derivation can as well be made for OCPs with inequality constraints. Here,
a major part is the split up into the active and inactive constraints and considering
the complementary condition. The derivation is therefore not done in this work and it
is referred to the literature, where both the derivation as well as the assumptions are
stated [23, p. 22f.], [45]. As a result, one gets the KKT matrix of the OCP with inequality
constraints that is also invertible (assuming the fulfillment of the regularity and sufficient
optimality conditions). Therefore, it is possible to calculate sensitivities with inequality
constraints as well.

Integrator Sensitivity

In case (2.80) cannot be evaluated, because the Hessian is not available or only a simu-
lation instead of an OCP is solved, a further option to calculate sensitivities is given by
propagating an additional first order differential equation. It should be noted that this
method does not result in the same sensitivities as for the post-optimal method, as e.g.,
the constraints are not considered.

For integrator sensitivities, the EoMs are generally derived with respect to the sensitive
parameters and the chain rule is used [17, p. 69f.]:

d
dt

(
dx
dq︸︷︷︸
S

)
= d .x (x; q)

dq︸ ︷︷ ︸
.
S

= ∂
.x (x; q)
∂x︸ ︷︷ ︸
Jx

dx
dq︸︷︷︸
S

+ ∂
.x (x; q)
∂q︸ ︷︷ ︸
Jq

(2.82)

Here, S is the matrix that contains the desired (state) sensitivities. It should be noted
that (2.82) is derived with respect to the states and sensitive parameters only for the sake of
brevity. The case with controls and optimizable parameters is straightforward to calculate
as well by suitably applying the chain rule.

Using (2.82), the sensitivity EoM system can be written as follows:
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.
S = Jx · S + Jq

S (t0) = S0
(2.83)

Therefore, knowing the initial sensitivity of the system (which is e.g., zero with a fixed
initial condition), it is possible to propagate the sensitivity based on the knowledge of
the model Jacobian (e.g., from FALCON.m).

2.4.3 Bi-level Optimal Control

Bi-level OC is a form of OC that separates different objectives (e.g., as in Pareto problems)
into two levels. These levels are normally organized in one upper level problem and
multiple lower level problems. In this work, the lower level contains multiple OCPs, while
the upper level contains a single parameter optimization problem, i.e., a problem with no
state dynamics.

Bi-level (or more general: multi-level) OC is frequently used in technical applications.
The following references provide an overview on the application areas: A general introduc-
tion to the topic is given in [10, 29, 145]. Aircraft related topics are dealt with in [46, 47].

Figure 2.21 depicts the general structure of a bi-level OCP: The upper level problem is
typically a (small scale) parameter optimization problem, i.e., it does not have a dynamic
model and only few constraints. The lower level is combined from multiple OCPs that are
solved at the parameter set provided by the upper level. The lower level gives back the opti-
mal trajectories to the upper level that are used to update the parameter values. Take into
account that the upper level should also be a Newton-type optimization to be efficient.
Therefore, at least a gradient must be provided by the lower levels, which is normally
calculated using the already introduced (post-optimal) sensitivities (Subsection 2.4.2).

A general workflow for a bi-level optimization is also given in Algorithm 2.4. It is clear
that multiple OCPs must be solved within each iteration of the upper level. This means
that the OCPs must be implemented efficiently as well as parallelization techniques should
be used. The formal bi-level optimization problem can then be stated as follows:

min
zUL

JUL
(
zUL; z(i)

LL

)
s.t. zUL,lb ≤ zUL ≤ zUL,ub,

c(zUL; z(i)
LL) ≤ 0,

ψ(zUL; z(i)
LL) = 0

with z(i)
LL = argmin J

(i)
LL

(
z(i)
LL; zUL

)
, ∀i

s.t. z(i)
LL,lb ≤ z(i)

LL ≤ z(i)
LL,ub,

f (i)
(
z(i);θ(i), zUL

)
= .x(i),

c(z(i)
LL; zUL) ≤ 0,

ψ(z(i)
LL; zUL) = 0

(2.84)
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Upper Level Problem
“Parameter Optimization”

Lower Level Problem 1

Lower Level Problem 2

Lower Level Problem n

Lower Level Problems
“Optimal Control”

Initial

Parameters

Optimal

Parameters

Parameters
Optimal

Trajectories

Figure 2.21: General structure of a bi-level optimal control framework.

Here, UL denotes quantities of the upper level and LL of the lower level. It is clear that
the upper level assigns its optimization parameters to the lower level as additional non-
optimizable parameters, which shape the optimal trajectories. In turn, the upper level is
provided the lower level trajectories, as non-optimizable parameters again, and updated
according to these. Thus, the cooperation character (“master-slave” or “leader-follower”)
of the bi-level OCP is clear, while it is also imminent that the solution process is quite
time consuming due to the fact that, especially, the lower level OCPs must be solved
multiple times in each iteration of the upper level to provide the new response.
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Algorithm 2.4 Basic algorithm implemented in a bi-level optimal control framework.
Require:

Initial guess for bi-level parameters zUL.
Initial guess for lower level optimization parameters zLL.

1: while Upper level not converged do
2: for all i do
3: Solve OCP in (2.1) (e.g., FALCON.m) at each parameter set in

parallelized manner, i.e., independent of each other, with current bi-level
parameter values.

4: Calculate the (post-optimal) sensitivities (Subsection 2.4.2) of the OCPs
with respect to the bi-level parameters.

5: end for
6: Calculate the upper level cost and constraints based on all lower level

OCP solutions.
7: Update the bi-level parameters using an optimization algorithm for the

cost and constraints applying e.g., the post-optimal sensitivities.
8: end while

9: return Optimal bi-level parameters zUL and optimal trajectories z(i)
LL.

2.4.4 Chance-constrained Optimization

The usage of chance constraints (CCs) is frequently required in robust programming and
optimization strategies [79, 130, 137]. The basic idea is to add a constraint to the general
OCP formulation in (2.1) that takes the form of a probability as follows:

P [y ∈ P ] ≥ ξ (2.85)

Here, P is the probability operator (i.e., the probability of the condition in brackets is
calculated) and P is the domain in which the probability of the CC must be fulfilled with
the confidence/probability level ξ. It should be noted that CCs are generally defined with
respect to the system outputs in this thesis as this includes the optimization parameters
as well as dependent values according to (2.12). Thus, using the outputs provides a more
general statement than, for instance, just using the optimization parameters.

Take into account that (2.85) can also be described in the context of a failure event F
(e.g., required for the SubSim in Subsection 2.2.4) with the failure probability pf as follows:

P [y ∈ F ] = 1− P [y ∈ P ] = pf ≤ 1− ξ (2.86)

Due to the fact that (2.85) normally provides a better scaled OCP than (2.86) (in terms
of the magnitude of the values), the formulation in (2.85) is used in the following.
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For chance-constrained open-loop direct optimal control (CC-OC), the standard OCP
formulation in (2.1) is thus adapted to:

minz J(z; q)

s.t. zlb ≤ z ≤ zub,

f(z;θ,q) = .x,

c(z; q) ≤ 0,

ψ(z; q) = 0,

P [y ∈ P ] ≥ ξ

(2.87)

It should be noted that it is deliberately distinguished between probabilistic and deter-
ministic constraints in (2.87). This is due to e.g., the fact that the state integration is
generally carried out in the deterministic domain (in our case, the specific evaluation
nodes provided by the gPC-SC theory are used), while there are also constraints that are
specifically designed in the probabilistic domain (i.e., the CCs).

It is clear that (2.85) and (2.87) are largely depending on the functional dependence for
the output PDF that is normally not assessable directly using e.g., the gPC method. Thus,
the probability in (2.85) must either be approximated by probability inequalities, as given
in Appendix B.8, or the PDF must be approximated as a whole using e.g., the maximum
entropy principle [113]. Additionally, the probability can be approximated by sampling,
e.g., MCA.

General methods to solve the chance-constrained open-loop direct optimal control
problem (CC-OCP) are normally based on sampling techniques that try to approximate
the probability in (2.85): At first, the already introduced MCA is a very simple method
(Subsection 2.2.1). Further, more sophisticated methods include e.g., importance sam-
pling [22] like the MHA [112, 118]. In order to use these methods, normally some additional
information on the system, e.g., a general knowledge on the shape of the output PDF,
must be applied. Therefore, the approach used in this thesis to approximate CCs is by
directly applying the gPC expansion (see (2.52)) as a sampling alternative. This approach
of sampling can be mainly used if the probability of failure occurrence is still fairly frequent
(e.g., 1%).

In cases, where a rare event (e.g., 10−6%) should be optimized, different methods
must be applied, as the standard sampling methods cannot handle these. One example of
these specialized methods is the SubSim (Subsection 2.2.4) that uses a MCMC MMHA
relying on conditional probability. Within this approach, the MCMC basically moves from
frequent event probabilities to rare-event probabilities by a chain and calculates the desired
rare-event probability based on the conditional probability of this chain. The necessary
sampling can again be done using the gPC expansion.

The general method developed in this thesis to incorporate CCs in OCPs, using the gPC
expansion, is introduced in Chapter 6 and based on the formulation in (2.87).
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2.4.5 Distributed Optimal Control

A fairly well-known and often used method in OC, and here especially in model predictive
control (MPC), is distributed open-loop direct optimal control (DOC). DOC is based
on splitting up a large-scale OCP into smaller OCPs that are easier to solve. These
smaller OCPs are solved independently of each other. For this, a small set of connection
variables must be introduced to ensure that the original large-scale OCP is still satisfied and
solved. This is also depicted in Figure 2.22: Here, the upper level provides the connection
variables ν to the lower levels, while the lower level OCPs provide their optimal results
to the upper level. Again, (post-optimal) sensitivities (Subsection 2.4.2) can be used to
update the Newton-type NLP of the upper level.

Formally, DOC can directly be derived from the KKT conditions in Definition 2.1 [78].
A derivation of this, to prove the viability of the distributed open-loop direct optimal
control problem (DOCP) of this thesis, is also done in Section 4.4. From a methodological
point of view, the implementation and solution of DOCPs is very similar to the bi-level OCP
methods of Subsection 2.4.3. Overall, the implementation of the robust DOC framework
using gPC is introduced in Chapter 4, while the general methodology can be described as
follows (similar to (2.84)):

min
ν

JCP
(
ν; z(j)

)
s.t. ν lb ≤ ν ≤ νub,

cCP(ν; z(j)) ≤ 0,
ψCP(ν; z(j)) = 0

with z(j) = argmin J (j)
(
z(j);ν

)
, ∀j

s.t. z(j)
LL,lb ≤ z(j) ≤ z(j)

LL,ub,

f (j)
(
z(j);θ(j),ν

)
= .x(j),

c(z(j);ν) ≤ 0,
ψ(z(j);ν) = 0

(2.88)

Here, ν are the connection variables and the index CP denotes the connection problem. It
is clear that the DOCP is very similar to the bi-level OC framework in the way that there
is parameter exchange between the lower, distributed levels and the upper, connection
level. The main difference is the way how the upper level cost function is formulated
(generally, the connection error should be reduced) and that the lower levels must be split
up, i.e., distributed. This has to be done in a very specific way to recreate the originally
desired OCP and is introduced in detail in Chapter 4 in the context of ROC with gPC. It
is important to state that, in general, DOC makes no simplifying assumptions and thus,
solves the original large-scale OCP.
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Upper Level
“Connection Problem”

Calculate and update connection
variables using Newton step or

optimization problem (“Newton-type”)

Lower Level
“Distributed Optimal Control”
Contains Q Newton-type, par-

allelizable, distributed NLP
OCP (one for each SC node)

• Calculate new optimal trajectory for
each of the Q distributed problems

• Distributed problem solved indepen-
dently on SC nodes

• Connection variables are constant
within OCP NLP iteration

Initial

Variables

Optimal

Variables

ν(1)

...
ν(Q)

z(1)

...
z(Q)

Figure 2.22: General structure of distributed optimal control problem framework with
connection problem in upper level, exchange of parameters, and distributed optimal control
in lower level.
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Chapter 3

Robust Bi-level Optimal Control

This chapter introduces the developed robust bi-level open-loop direct optimal control
(OC) framework that is related to Contribution 2 of this thesis. Here, Section 3.1 gives
an overview on the bi-level approach, using the generalized polynomial chaos-stochastic
collocation framework (gPC-SC) (Section 2.3) in the lower level OC nonlinear programs
(NLPs) and a differential evolution algorithm (DEA) (a genetic algorithm) in the upper
level problem. Then, Section 3.2 introduces the use of sensitivities within the gPC-
SC bi-level approach to speed up the solution process, especially within the upper level
problem. It should be noted that a similar bi-level structure was already introduced in [109],
while results by the author of this work with similar structures were already published
in [104, 105]. This work extends on the previous studies by introducing constraints,
especially chance constraints (CCs), and giving a clearer picture on the combination of
sensitivities and generalized polynomial chaos (gPC).

3.1 Bi-level Framework using Generalized Polynomial
Chaos and Stochastic Collocation

This section introduces the bi-level OC framework used in this work to calculate robust
optimal results e.g., for the controller gain design example in Chapter 7. The general
structure of the framework is illustrated in Figure 3.1: It is depicted that the lower
level uses the gPC formulation and the SC approach to calculate statistical moments
of the optimal trajectories. Here, Newton-type OC techniques are used to calculate
the non-robust, optimal trajectories (Subsection 2.1.2.1). This structure was initially
proposed by the author in [104, 105].

The resulting trajectory representation by statistical moments is then exchanged with
the upper level that in turn tries to optimize the uncertainty influence on the trajectory
to e.g., be minimal (i.e., minimizing the standard deviation of a quantity). For this, an op-
timization based on a DEA is proposed in this section. The upper level ultimately assigns
parameters, q1, . . . ,qnpop (e.g., control authority factors or controller gain parameters),
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Upper Level Problem
“Differential Evolution”

• Calculate new values for invariant
parameters, e.g., control authority
or controller gains

• Cost function: e.g., minimize the
standard deviation of the trajectory
with uncertainty

Lower Level Problems
“Optimal Control”

Contains Q Newton-type,
parallelizable NLP OCP

• Calculate gPC representation of tra-
jectory with uncertain parameters
by discrete expansion

• Cost function: e.g., minimize flight
time

Initial

Population

θ(1),...,θ(Q)

Optimal

Population

q1...
qnpop

E[y(z;θ,q)]

var[y(z;θ,q)]

E[ ∂y(z;θ,q)
∂θ ]
...

Figure 3.1: Structure of bi-level optimal control problem with lower level generalized
polynomial chaos expansion calculation by optimal control using discrete expansion and
upper level parameter optimization.

denoting the current population of the DEA, to the lower levels that shape the trajectory
by influencing e.g., the state dynamics and thus, changing the statistical moments of
the optimal trajectory. It should be noted that these parameters can either be constant
along the trajectory, i.e., a trade-off for the whole trajectory is sought or they can vary
over time, i.e., an adaptation for different trajectory states is possible.

The overall optimization procedure can be summarized as follows: The upper level
problem optimizes the parameters q1, . . . ,qnpop that are e.g., control effectiveness pa-
rameters, and are able to shape the trajectory (e.g., by influencing the state dynamics).
These parameters are assigned to the lower level open-loop direct optimal control problems
(OCPs) that are evaluated with these upper level optimization parameters at the stochastic
collocation (SC) nodes to create the gPC expansion. This yields the response of the air-
craft to uncertain parameters. Finally, this response is used to calculate the statistical
moments of the uncertain trajectory (e.g., mean and standard deviation) that are then
again provided to the upper level problem and its cost function. This cost function can be
e.g., the minimization of the standard deviation of the optimal trajectory. Overall, this
procedure leads to a robust trajectory, as the optimized trajectory is subject to a reduced
uncertainty influence based on the upper level cost function and the optimal invariant
parameters.

In the following, a detailed overview of the structural parts of the bi-level framework
depicted in Figure 3.1 is given:
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Lower Level Problem Formulation The lower level OCP in the bi-level OC frame-
work is relying on Newton-type OC. The problem formulation is given as in (2.1),
discretized as in Subsection 2.1.2.1, and optimized using a Newton-type optimization
strategy from Subsection 2.1.3 or 2.1.4.

The optimization model is based on the equation of motion (EoM) representation
introduced in the examples’ chapters. The lower level OCP is e.g., optimized with respect
to a minimal flight time, i.e., JLL = tf (LL denotes the lower level), in a deterministic
way and evaluated according to the gPC expansion (Section 2.3) using the SC method
(Subsection 2.3.3). The statistical moments are calculated according to Subsection 2.3.4.

Thus, the lower level OCP provides a non-robust, optimal response surface with respect
to the defined uncertainties to the upper level. This response surface is calculated by
the gPC-SC methodology.

Upper Level Problem Formulation The upper level problem is a parameter opti-
mization problem with no dynamic model and only few additional constraints. Initially, it
uses a DEA strategy [44] to optimize the statistics of the lower level OCPs, by applying
an own upper level cost function JUL (UL denotes the upper level). Take into account that
the upper level optimization parameter vector is constructed as: zUL =

[
qT

1 . . . qT
npop

]T
.

The upper level provides these parameters, which are able to influence the optimal trajec-
tory, to the lower levels and therefore, robustifies the solution.

The structure of the implemented DEA, also shown in Figure 3.2, is introduced in
the following paragraph:

Differential Evolution Algorithm This algorithm is part of the broader range of
genetic algorithms that can be used in bi-level OC [145]. The general procedure of
the DEA is visualized in Figure 3.2 and described in Algorithm 3.1. Compared to standard
Newton-type OC algorithms (e.g., Subsections 2.1.3 or 2.1.4), the DEA does not rely
on the gradient to solve the optimization problem. It rather is a search algorithm within
the solution space and tries to find the best overall cost. Therefore, the algorithm normally
converges globally compared to the only local results of Newton-type algorithms. As
a drawback, the DEA is generally very slow in convergence and requires a population
npop of solution points that are adapted throughout the optimization (see e.g., Step 1 in
Algorithm 3.1). This means that significant computational overhead is introduced, as
the solution of multiple OCPs at optimization parameters, which are later on discarded
because they are not optimal, is required. Additionally, the introduction and fulfillment
of constraints is not trivial as e.g., a choice for a new point normally does not fulfill these
(Steps 9–11 in Algorithm 3.1).

Because of this, the DEA is only used within this thesis for small parameter optimization
problems that are present in the upper level of the bi-level OCP (Subsection 2.4.3). Here,
the benefits of a global optimal solution, which is possible to achieve by the DEA [44,
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Algorithm 3.1 Description of differential evolution algorithm.
Require:

Population size: npop
Backtrack steps: nbt
Maximum number of iterations kmax and optimality εopt as well as feasibility εfeas tol-
erance
Define cost function J , bounds on optimization parameters zlb and zub as well as
nonlinear constraint functions c and ψ.

1: Define initial population: zinit ∈ Rnz×npop (e.g., by random sampling in optimization
parameter bounds).

2: Calculate initial cost J0 and constraint values c0,ψ0 for all population members.
3: Punish population members that do not fulfill the desired constraints for c0 and ψ0

(e.g., logarithmic barrier to increase cost function).
4: Get the best cost function, i.e., the lowest cost value: J0,best = min J0

5: Set the counter and the initial tolerance: k = 1, εDE,opt > εopt, εDE,feas > εfeas

6: while k ≤ kmax & εDE,opt > εopt & εDE,feas > εfeas do
7: Mutate the previous population zk−1 to create a new population

zk,donor by random sampling of new population members (“donor vector”).
8: Ensure that the donor vector zk,donor fulfills the constraints zlb and zub.
9: Crossover of previous population zk−1 and donor population zk,donor

by binomial crossover (i.e., random selection of parameters below “crossover”
margin) to create zk,trial (“trial vector”).

10: Calculate trial cost Jk,trial and constraints ck,trial and ψk,trial for all
trial population members zk,trial.

11: Punish trial population members that do not fulfill the desired constraints
for ck,trial and ψk,trial (e.g., by logarithmic barrier to increase cost function).

12: Select the new population members zk by a tournament selection of the
previous population zk−1 and trial population zk,trial, i.e., by selecting
the npop samples corresponding to the npop best cost functions of both
previous and trial population vector.

13: Calculate current cost Jk and constraints ck,ψk for all population members zk.
14: Get the best cost function, i.e., the lowest cost: Jk,best = min Jk
15: Calculate current optimality: εDE,opt = ||Jk,best − Jk−nbt+1,best||∞
16: Calculate current feasibility: εDE,feas = max {||ck||∞, ||ψk||∞}
17: Increase counter: k = k + 1
18: end while

19: return Best cost function Jk−1,best with corresponding best population member zopt.
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p. 1f.], are desired. Additionally, the convergence speed in the bi-level context is normally
dependent on the convergence speed of the lower level OCPs rather than the upper level.
Furthermore, the computation of sensitivities (Subsection 2.4.2) for uncertain trajectories
to update the upper level can be more complicated and not trivial for OCPs, whose
(analytic) Hessian is costly to evaluate and non-smooth (e.g., in cases where large look-up
tables are used in the dynamic model). Therefore, the DEA is of benefit for the convergence
in such cases and might even just enable them.

In addition, the DEA can be used to restrict the original search space to the area of
the global optimum. Subsequently, a Newton-type NLP technique with sensitivities can
be applied to find the exact optimum. This is described in Section 3.2.

Finally, the optimization problem for the bi-level structure can be formulated as follows
(after (2.84)):

min
zUL

JUL
(
zUL; z(j)

LL

)
s.t. zUL,lb ≤ zUL ≤ zUL,ub,

c(zUL) ≤ 0,
ψ(zUL) = 0,

P [yUL ∈ P ] ≥ ξUL
with z(j)

LL = argmin J
(j)
LL

(
z(j)
LL; zUL

)
, ∀j

s.t. z(j)
LL,lb ≤ z(j)

LL ≤ z(j)
LL,ub,

f (j)
(
z(j);θ(j), zUL

)
= .x(j),

c(z(j)
LL; zUL) ≤ 0,

ψ(z(j)
LL; zUL) ≤ 0,

P
[
y(j)
LL ∈ P

]
≥ ξ(j)

LL

(3.1)

Problem (3.1) is the basic formulation of a bi-level NLP and is used for both the DEA-
based framework of this subsection as well as the sensitivity-based framework introduced in
the next subsection. It should be noted that (3.1) directly includes CCs (Subsection 2.4.4)
that can be used to robustify the bi-level OC solution by constraints rather than in the cost
function.
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Figure 3.2: Flowchart of differential evolution algorithm used in this thesis.
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3.2 Bi-level Framework using Generalized Polynomial
Chaos Statistics and Stochastic Collocation with
Sensitivity Update

This section introduces a bi-level framework with improved efficiency compared to Sec-
tion 3.1 that is connected by the exchange of the statistics of (post-optimal or simulated)
sensitivities (Subsection 2.4.2). The sensitivities give the possibility to use gradient infor-
mation within the upper level optimization algorithm and thus, solve the bi-level OCP
in (3.1) more efficiently. This leads to a faster convergence than with the DEA approach
in Section 3.1. The structure of the bi-level framework with sensitivities is illustrated in
Figure 3.3.

The main development of the proposed approach is that by using the sensitivities
not only the mean or standard deviation values of a quantity are provided to the upper
level, but also the derivative of the mean and the standard deviation with respect to
the optimization parameters. These values are calculated as follows: At each of the SC
nodes the (post-optimal or simulated) sensitivities are calculated as given in (2.79) or (2.83).
For the optimization states, controls, or further outputs, the corresponding expansion
coefficients can be calculated using the SC in (2.68). Consequently, the statistics for
the sensitivities are also given as described in Subsection 2.3.4 using the SC. Thus, using
sensitivities is very convenient from an implementation point of view, as only already
available information is used to calculate the sensitivities and afterward, the already
implemented gPC-SC can be used to evaluate the statistics. Take into account that, as it
is generally difficult to calculate a second order sensitivity (i.e., the Hessian), the upper
level normally only runs the NLP solution only with the Jacobian and gets the Hessian
by the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update.

It should be noted that the bi-level OCP remains as defined in (3.1) with the upper
level optimization parameters now given by zUL = q. Thus, no population but only
a single parameter set is required. As now a Newton-type NLP scheme is also applied
in the upper level, the chain rule for the statistical moments of the sensitivity must be
applied. Assuming a mean value for the cost function in the upper level, the gradient can
be calculated as follows:

E
[

dJUL

dzUL

]
= E

[
∂JUL

∂zUL
+ ∂JUL

∂zLL
· ∂zLL
∂zUL

]

= E
[
∂JUL

∂zUL

]
+ E

[
∂JUL

∂zLL

]
· E

[
∂zLL
∂zUL

]
+ cov

[
∂JUL

∂zLL
,
∂zLL
∂zUL

] (3.2)

Here, all mean values (see (2.69)) as well as the covariance (cov; see (D.3)) can be directly
calculated using the gPC expansion coefficients for the sensitivity. Thus, (3.2) is applicable
in the context of bi-level OC. Take into account that for most applications, the derivative
of the cost function with respect to the upper level parameters is zero.
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Take into account that (3.2) can be extended to other statistical moments as well by
calculating suitable higher order joint statistical moments. For instance, the co-kurtosis
is required for the standard deviation. As seen in Appendix D, the calculation of higher
order moments for the gPC expansion becomes non-trivial. Thus, the best option in these
cases is to sample the required higher order statistical moments using the gPC expansion.

It should be further noted that the approach in (3.2) is different from the iterative
approaches in e.g., [139, p. 497] or [140, p. 255], which calculate the sensitivity based
on deriving the gPC response surface directly. Thus, they do not consider constraints
that change the sensitivity. These are considered in the proposed approach, because gPC
is used to calculate a response surface for the (post-optimal) sensitivity that considers
the constraint.

It is once more reminded that the upper level parameters are invariant parameters in
the lower level. Therefore, the second part of the product in the second line of (3.2) is
easily calculated using the (post-optimal or simulated) sensitivities in Subsection 2.4.2.
The statistics are then available using the gPC-SC method. The first part of the product in
the second line of (3.2) is normally readily available by calculating the analytic derivative of
the upper level cost function. Finally, the covariance is given by (D.3) for gPC and therefore,
also directly available. Thus, the bi-level OCP can be solved efficiently using the gPC-SC
methodology and (post-optimal) sensitivities. Take into account that the equations for
constraint gradients in the upper level can be derived analogous to (3.2).

Summarizing, the frameworks introduced in Sections 3.1 and 3.2 provide one possible
way of calculating robust trajectories. Although easy to implement and based on determin-
istic OCP evaluation, a drawback is the necessity to introduce artificial parameters that
are able to shape the OC trajectories. These are not trivial to define and different choices
might lead to different robust, optimal solutions. Additionally, the proposed method is
computationally high-demanding as the upper level requires the solution of multiple full
OCPs in each iteration. Thus, the proposed framework of the previous sections is evolved
in the following to e.g., increase the efficiency.
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Upper Level Problem
“Optimization Algorithm”

• Calculate new values for invariant
parameters, e.g., control authority
or controller gains

• Usage of sensitivities expanded by
gPC-SC

• Cost function: e.g., minimize the
standard deviation of the trajectory
with uncertainty

Lower Level Problems
“Optimal Control”

Contains Q Newton-type,
parallelizable NLP OCP

• Calculate gPC representation of tra-
jectory with uncertain parameters
by discrete expansion

• Cost function: e.g., minimize flight
time

Initial

Parameters

θ(1),...,θ(Q)

Optimal

Parameters

q

E[y(z;θ,q)],E[ ∂y(z;θ,q)
∂θ ]

var[y(z;θ,q)],var[ ∂y(z;θ,q)
∂θ ]

...
E[ ∂y(z;θ,q)

∂q ]
var[ ∂y(z;θ,q)

∂q ]

Figure 3.3: Structure of cooperative bi-level optimal control problem with lower level
generalized polynomial chaos expansion calculation and upper level parameter optimization
using sensitivity updates.
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Chapter 4

Distributed Optimal Control with
Generalized Polynomial Chaos

This chapter introduces the developed distributed open-loop direct optimal control (DOC)
framework of Contribution 3 in this thesis. Within this framework the standard, large-
scale open-loop direct optimal control problem (OCP) that arises when using a generalized
polynomial chaos (gPC) transcription with stochastic collocation (SC) on the deterministic
OCP is reduced to multiple smaller OCPs that are then evaluated in a distributed way.
The framework is based on the standard gPC expansion with SC, introduced in Section 2.3,
and the basic distributed open-loop direct optimal control problem (DOCP), introduced in
Subsection 2.4.5. Here, the general idea of the method is similar to the bi-level framework
in Chapter 3 with a specific mathematical derivation of the upper level optimization
parameters.

It should be noted that the connection of DOC and gPC was already studied in
e.g., [32, 37, 67]. The main difference of the studies compared to the thesis at hand is
the fact that the studies rely on intrusive changes to the OCP by the gPC expansion.
This thesis, on the other hand, uses the SC method and thus, conserves the deterministic
baseline structure of the OCP. The initial idea of this framework was published by
the author in [101]. Within this thesis, the published method is extended by a proof of
convergence based on the Karush-Kuhn-Tucker (KKT) conditions as well as a distributed
solution of constraints, e.g., in the context of chance constraints (CCs).

4.1 Distributed Optimal Control

Generally, Chapter 3 already introduced a robust open-loop direct optimal control (ROC)
framework, based on bi-level open-loop direct optimal control (OC), that can be used to
calculate robust, optimal trajectories. A drawback of this method was the fact that artifi-
cial parameters had to be introduced in the OC procedure that shape a robust trajectory
and are assigned by the upper level. Although the introduction of these parameters is
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4.1 Distributed Optimal Control

generally always possible, it might be difficult to find meaningful parameters. Addition-
ally, the introduction of artificial parameters might constrain the robust open-loop direct
optimal control problem (ROCP) inherently and thus, different parameter sets can lead
to different robust, optimal solutions.

To mitigate the issues arising with the formulation in Chapter 3, this chapter introduces
a direct formulation of the ROCP, which is solved by distributing a number of unconnected
OC sub-problems based on the gPC expansion. The general goal is to solve the following
large-scale OCP in the context of the generalized polynomial chaos-stochastic collocation
framework (gPC-SC) for ROC:

min
z̄

J (z̄; q)

s.t. z̄lb ≤ z̄ ≤ z̄ub,

f (j)
(
z(j);θ(j),q

)
= .x(j), j = 1, . . . , Q,

c(j)
(
z(j); q

)
≤ 0, j = 1, . . . , Q,

ψ(j)
(
z(j); q

)
= 0, j = 1, . . . , Q,

c̄ (z̄; q) ≤ 0,

ψ̄ (z̄; q) = 0,

P [ȳ ∈ P ] ≥ ξ

(4.1)

Here, z̄ =
[[

z(1)
]T

. . .
[
z(Q)

]T]T
∈ R(Q·nz) is the vector of decision variables containing

all states and controls at each SC node (i.e., the deterministic trajectories). It should
be noted that there are constraints in (4.1) that are merely depending on each SC node
individually (e.g., state dynamics), while other constraints as well as the cost function
can depend on all decision variables (e.g., probabilistic constraints; “robustification”).
By the definition in (4.1), the expansion coefficients of the gPC expansion are available
within the ROCP, because the deterministic OCPs are solved at each SC node, which gives
the expansion coefficients using the SC formula in (2.68). Thus, (4.1) can directly optimize
statistical moments and therefore produces a robust, optimal trajectory representation.

Generally, the ROCP given in (4.1) could be solved like a standard OCP as it is
a deterministic representation of a large-scale OCP due to the SC. But, as already
mentioned in Subsection 2.3.2, the required number of SC nodes and thus, required
number of decision variables, grows rapidly with the expansion order and the number
of uncertainties (Definition 2.3). Thus, the ROCP in (4.1) might become too large to
be solvable by a nonlinear program (NLP) optimization scheme. To resolve this issue,
and also utilize the structure of the ROCP in (4.1), in which most of the constraints are
unconnected, i.e., independent of each other, the following paragraphs show the derivation
of a DOCP structure that parallelizes most of the required calculations, while still solving
the original ROCP in (4.1) without simplification (basic idea: Subsection 2.4.5).
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Chapter 4: Distributed Optimal Control with Generalized Polynomial Chaos

Generally, the ROCP in e.g., (4.1) is distributed, i.e., divided into multiple smaller
OCPs that can be solved independently. This independence must be secured by intro-
ducing connection variables ν(i) ∈ Rnν that enforce constraints or mitigate an interaction
between the DOCPs to ensure that the original large-scale OCP in (4.1) is still satisfied.
These connection variables are constants within the DOCPs (i.e., the “lower” levels) and
the overall strategy is also referred to as primal decomposition. The connection problem,
i.e., the calculation of the connection variables, is solved separately from the DOCPs in
an upper level connection problem. Take into account that the introduction of connec-
tion variables and the separate solution of unconnected OCPs is a deliberate relaxation
of the OC formulation. The applicability of this approach is proven in the application
examples of Chapter 8 as well as in the KKT derivation of Section 4.4.

It should be noted that connection variables are used as the sensitive parameters in
the DOCPs, i.e., the sensitivities (Subsection 2.4.2) can be calculated and used within

the connection problem. Thus, it is q =
[[
ν(1)

]T
. . .

[
ν(Q)

]T]T
(take into account that

this is already defined in the context of gPC-SC with Q SC nodes). Overall, the j-th
DOCP, i.e., the OCP solved at the gPC-SC node θ(j), can then be stated according to (2.1)
and (4.1) as follows:

min
z(j)

J (j)
(
z(j)

)
+ J̃

(j) (z(j); q
)

s.t. z(j)
lb ≤ z(j) ≤ z(j)

ub ,

f (j)
(
z(j);θ(j)

)
= .x(j),

c(j)
(
z(j)

)
+ c̃(j)

(
z(j); q

)
≤ 0,

ψ(j)
(
z(j)

)
+ ψ̃(j) (z(j); q

)
= 0,

P
[
y(j) ∈ P

]
≥ ξ(j)

(4.2)

Here, a ·̃ over a function denotes dependencies on the connection variables, i.e., the sensitive
parameters. Thus, (4.2) solves a deterministic OCP with the optimization variables z(j)

and external influences q. Remember that the connection variable vector is not a part of
the optimization parameters in the single DOCP, but is adapted according to a connection
problem to ensure that the original solution of the large-scale, connected OCP (see (4.1))
is calculated. Overall, the connection variables merely provide an additional gradient
shaping, i.e., descent direction, in the DOC context for the lower level OCPs. Take into
account that the discretized form of (4.2) can be derived as for (2.13), which is omitted
here because it is no new information.

As stated, the DOCPs in (4.2) must fulfill the original connected OCP formulation
in (4.1). Thus, e.g., the cost function must e.g., fulfill the following condition:

Q∑
j=1

[
J (j)

(
z(j)

)
+ J̃

(j) (z(j); q
)]
≡ J (4.3)
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4.1 Distributed Optimal Control

The same also applies for the constraints in (4.2). Take into account that (4.3) also directly
implies a strategy to update the connection variables in the connection problem such that
the original, connected OCP is solved.

Overall, a general connection problem, i.e., the update of the connection parameters
to recover the original connected OCP, can be stated for gPC-SC as follows:

υ(j) = ν(j) − y
(
z(j);θ(j),q

)
︸ ︷︷ ︸

y(j)

!= 0 ∈ Rny , j = 1, . . . , Q (4.4)

Here, υ(j) is the error between the connection variables and the physical trajectories
of the considered output quantity y(j) that is used in the robustification. It should
be noted that the connection variable errors for all connection problems are combined
in the vector υ =

[[
υ(1)

]T
. . .

[
υ(Q)

]T]T
∈ R(ny×Q). It is further important to note

that (4.4) updates the j-th connection variable with the j-th OCP result. This means that
the updated variables are given with respect to the j-th normalized time grid (see (2.5)).
Thus, an interpolation might be required if different time grids are used. In addition,
even if the same normalized time grid is used, the trajectories are given on a different
physical time grid, as the initial and final time are generally optimization parameters and
change the physical time grid (see (2.7)). Therefore, if e.g., a robust Lagrange cost is
used, i.e., a function that requires an integration over the physical time, an appropriate
interpolation (e.g., time-based, distance-to-end-point-based, covered-distance-based,...)
must be conducted. This ensures that the time-based function is evaluated correctly using
the connection variables. Take into account that this interpolation is automatically defined
using a collocation method by using the applied collocation scheme.

Overall, the connection variables mitigate the solutions of other DOCPs, required
for the robustification, to the currently considered DOCP. This makes it possible to
calculate e.g., statistical moments by gPC-SC. As seen in the following, the choice of
connection variables is directly depending on the statistical moment calculation of gPC
(Subsection 2.3.4). Thus, the exact relations for the connection problem in (4.4) are based
on the specifics of the implemented DOCP. Here, Section 4.2 derives the distributed
formulation of common statistical moments, i.e., mean and variance in gPC, and gives
an example on their distribution in the DOC context.

Further take into account that (4.4) can be used as long as the connection variables do
not have to fulfill any constraints or bounds. If such should be considered or the efficiency
of an NLP solver is desired in the connection problem, the following formulation can be
used:
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Chapter 4: Distributed Optimal Control with Generalized Polynomial Chaos

min
ν

JCP = υTυ

s.t. ν lb ≤ ν ≤ νub,

cCP (ν) ≤ 0,

ψCP (ν) = 0,

P [ν ∈ PCP] ≥ ξCP,
υTυ ≤ δ

(4.5)

Here, the subscript CP denotes the connection problem. It should be noted that in (4.5),

the NLP is adapting the optimization parameters ν =
[[
ν(1)

]T
. . .

[
ν(Q)

]T]T
until

the connection error υ, as defined in (4.4), becomes minimal. Take into account that
the multiplication of the connection error υ with itself assures that the minimum is indeed
at υ = 0 because the cost function is quadratic. Additionally, the connection variables
fulfill the desired box as well as nonlinear equality and inequality and probabilistic con-
straints.

It should be further noted that (4.5) is formulated as a min-max problem, because
the connection error should be minimized and thus, reach a value close to zero. As some
constraint combinations might lead to optimal solutions with large connection errors, there
is a maximal bound δ enforced on the connection error, which ensures that the optimal
solution is only feasible close to a vanishing connection error.

Thus, although (4.4) provides the basic connection problem, which also gives a good
idea of the characteristics of the connection problem, (4.5) provides a more general defini-
tion of the connection problem. Therefore, (4.5) is normally applied, especially as it allows
the use of NLP solvers, which are specifically tailored to solve the connection problem
formulation efficiently by e.g., sophisticated line-search procedures.

Overall, the DOC formulation used for ROC can be written as follows:

min
ν

JCP = υTυ

s.t. ν lb ≤ ν ≤ νub,

cCP(ν; z(j)) ≤ 0,
ψCP(ν; z(j)) = 0,
P [ν ∈ PCP] ≥ ξCP

υTυ ≤ δ

with z(j) = argmin J (j)
(
z(j)

)
+ J̃

(j) (z(j); q
)
, j = 1, . . . , Q,

s.t. z(j)
lb ≤ z(j) ≤ z(j)

ub ,

f (j)
(
z(j);θ(j)

)
= .x(j),

c(j)
(
z(j)

)
+ c̃(j)

(
z(j); q

)
≤ 0,

ψ(j)
(
z(j)

)
+ ψ̃(j) (z(j); q

)
= 0,

P
[
y(j) ∈ P

]
≥ ξ(j)

(4.6)
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Here, the bi-level structure of the DOC is clear (see Figure 2.22). It is reminded that
the upper level connection problem gives the connection variables to the lower level.
The lower level then provides the updated trajectories that the upper level uses to improve
on the connection variables. The procedure stops when the error in the connection variables
converged to zero. Thus, the remaining issue in (4.6) is the choice of the connection
variables ν, which is introduced in Section 4.2.

Before that, the algorithm that solves the DOC framework, and is used within this
thesis, can also be schematically written as given in Algorithm 4.1. The algorithm is written
for the general version of the connection problem using the optimization formulation
in (4.5). Nonetheless, it can also be directly applied to the case where the simple constraint
in (4.4) is used in the connection problem. Once more, it is reminded that, as it is
generally difficult to calculate a second order sensitivity (i.e., the Hessian), the connection
problem normally only runs the NLP solution with the Jacobian and gets the Hessian by
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update.

Algorithm 4.1 Generic distributed optimal control framework algorithm with generalized
polynomial chaos.
Require:

Initialize iteration counter k = 1.
Set the optimality εopt,CP,∗ and feasibility tolerance εfeas,CP,∗ of the connection problem.
Define maximum number of iterations kmax.
Initialize connection variables ν0 (e.g., physical initial guess).
Calculate optimality εopt,CP,0 and feasibility εfeas,CP,0 of initial connection problem.

1: while εopt,CP,k−1 > εopt,CP,∗ & εfeas,CP,k−1 > εfeas,CP,∗ & k ≤ kmax do
2: Assign the connection variables νk−1 to the lower level OCPs.
3: for all θ(j) do
4: Solve the DOCPs in (4.2) by e.g., an NLP solver (Algorithm 2.1) at each θ(j)

independent of other DOCPs, with current connection variables ν(i)
k−1.

5: Extract the optimal trajectories y
(
z(j);θ(j),q

)
required for the

connection problem.
6: end for
7: Get connection cost and constraints as well as their Jacobians.
8: Update the connection variable ν

(j)
k using y

(
z(j);θ(j),q

)
and (4.5).

9: Check the current optimality tolerance εopt,CP,k and feasibility
tolerance εfeas,CP,k.

10: Increase counter: k = k + 1
11: end while

12: return Optimal connection variables νopt and optimal robust trajectory zopt.
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4.2 Definition of Statistical Moments and Connec-
tion Variables

Generally, the DOC robustification in e.g., (4.1) is based on the statistical moments and,
depending on the formulation, the gPC response surface. Thus, especially the statistical
moments must be distributed and connection variables must be defined for these, which
is shown in the following.

Evaluating the statistical moments for mean and variance from gPC in the DOC
framework requires rewriting (2.69) and (2.70). This is due to the fact that the DOC
framework relies on a distributed evaluation of the trajectories at the SC nodes, θ(j), while
the statistical moments are evaluated using the gPC expansion coefficients. To achieve
this projection, the SC expansion formula in (2.68) must be inserted in the statistical
moment calculation of (2.69) and (2.70). Overall, this then allows the distribution of
the statistical moments and the optimization of robust trajectories in DOC. As noted,
a similar DOC formulation was already introduced by the author in [102].

At first, the mean value in (2.69) can be rewritten as follows [102]:

E [y (z;θ,q)] ≈ ŷ(0)
(
z(j),q

)
≈

Q∑
j=1

y
(
z(j);θ(j),q

)
Φ(0)

(
θ(j)

)
︸ ︷︷ ︸

=1

α(j) (4.7)

It should be noted that (4.7) is already the desired distributed representation of the mean
value even without introducing connection variables. This is due to the fact that the ad-
dends in (4.7) can be solved for each SC node individually. Thus, a DOC setup that only
tries to optimize/constrain a mean value is indeed perfectly decoupled and can be solved
independently in one step, i.e., without a connection problem. Therefore, only an OCP
at each SC node must be solved.

Then, the variance in (2.70) can be written in a distributed form by [102]:

σ2 [y (z;θ,q)] ≈
M−1∑
m=1

[
ŷ(m) (z,q)

]2
≈

M−1∑
m=1

 Q∑
j=1

y
(
z(j);θ(j),q

)
Φ(m)

(
θ(j)

)
α(j)

2

(4.8)

Here, the following binomial formula can be applied [5, p. 69f.]
 Q∑
j=1

x(j)

2

=
Q∑
j=1

[
x(j)

]2
+
∑
j 6=i

x(i)x(j) (4.9)

Then, the squared sum in (4.8) can be rewritten, based on (4.9), as follows [102]:

σ2 [y (z;θ,q)] ≈
M−1∑
m=1

Q∑
j=1

[
y
(
z(j);θ(j),q

)]2 [
Φ(m)

(
θ(j)

)]2 [
α(j)

]2

+
M−1∑
m=1

∑
j 6=i

y
(
z(j);θ(j),q

)
Φ(m)

(
θ(j)

)
α(j)y

(
z(i);θ(i),q

)
Φ(m)

(
θ(i)

)
α(i)

 (4.10)
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Then, (4.10) can be split in parts that are only dependent on the expansion coefficient
summation m and the SC summation j respectively as follows [102]:

σ2 [y (z;θ,q)] ≈
Q∑
j=1

[
y
(
z(j);θ(j),q

)]2 [
α(j)

]2 M−1∑
m=1

[
Φ(m)

(
θ(j)

)]2

+
∑
j 6=i

y
(
z(j);θ(j),q

)
y
(
z(i);θ(i),q

)
︸ ︷︷ ︸

ν(i)

α(j)α(i)
M−1∑
m=1

Φ(m)
(
θ(j)

)
Φ(m)

(
θ(i)

)
(4.11)

Take into account that the first addend in (4.11) is again decoupled from other SC nodes
and can be handled distributed (as the orthogonal polynomials and integration weights
are known because they are defined by the uncertainty). On the other hand, the second
addend in (4.11) does not exhibit this preferable behavior: Here, a connection between
the current DOCP j and all other DOCPs i is clear, because the outputs are exchanged.
Thus, when optimizing/constraining the variance the introduction of connection variables
in the DOC framework is required. These are defined for the trajectories y

(
z(i);θ(i),q

)
that are from different DOCPs.

It should be noted in the context of (4.11) that the connection problem still remains
easy to solve. To show this, the second line of (4.11) is looked at and the connection
variables ν(i) are used as follows [102]:

σ̃2 [y (z;θ,q)] =
∑
j 6=i

[
y
(
z(j);θ(j),q

)
ν(i)α(j)α(i)

M−1∑
m=1

Φ(m)
(
θ(j)

)
Φ(m)

(
θ(i)

)]
(4.12)

As already mentioned, this is an exchange of trajectories, and thus, information, between
the different DOCPs.

Now, the connection variables for each DOCP j must fulfill the following condition
enforced within the connection problem, as already introduced in (4.4) (take into account
that the formulation using the OCP in (4.5) is not used due to simplicity of description
but is analogous) [102]:

υ(j) = ν(j) − y
(
z(j);θ(j),q

) != 0 (4.13)

In (4.13), y
(
z(j);θ(j),q

)
are known values in the connection problem after having solved

all DOCPs unconnected. Thus, (4.4) can be solved by e.g., the Newton method. Here,
the directional derivative of (4.4) with respect to the connection variables, required for
the Newton method, is given as follows [102]:

(
υ(j)

)′
= dυ(j)

dν(j) = I−
dy
(
z(j);θ(j),q

)
dν(j)︸ ︷︷ ︸

=0

(4.14)
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It should be noted that the second addend equates to zero as a direct consequence of (4.11)
and (4.12): Here, it is clear that the connection variables only introduce a cross-coupling
of the DOCPs, while no direct coupling is introduced. This means that the connection
variables are here only evaluated for elements that are not equal to the current DOCP j.
Thus, the connection variables ν(j) are not a part of the j-th DOCP and consequently
have no influence on its optimal trajectory.

The structure in (4.14) is desirable, as no sensitivities must be calculated and provided
to the upper level connection problem and also justifies the seemingly complex rewriting
of (4.8) to (4.11). Then, the update of (4.4), using a Newton step [5, p. 294], with
the derivative in (4.14) is given as follows [102]:

ν(j)
new = ν(j) − β

[
υ(j)

(υ(j))′
]

= ν(j) − β
[
ν(j) − y

(
z(j);θ(j),q

)]
(4.15)

Here, β ∈]0; 1] is a step size (line search) parameter to find the best possible update to
get as close to the exact problem solution in (4.13) as possible. It should be noted that
this line search is crucial for the convergence of the DOC framework. This is a further
reason to generally choose the formulation of the connection problem as presented in (4.5),
because NLP solvers have sophisticated line search methods internally available.

Overall, also further statistics, e.g., covariance, skewness, and kurtosis, can be derived
for the DOC framework and thus, multiple kinds of robustifying cost and constraint
functions can be implemented. As the examples in this thesis concentrate on mainly mean
and variance, the derived formulas in (4.7) and (4.11) are suitable and show the general
procedure.

As an example for the definition of the DOC with statistical moments, the following
cost function is looked at:

J = E [y (z;θ,q)] + w · σ2 [y (z;θ,q)] (4.16)

Here, y the variable whose mean and variance should be optimized (in the scalar context
for simplicity) and w is a scaling factor that weighs the influence of mean and standard
deviation (similar to the Pareto optimization in Subsection 2.4.1). Take into account that
the mean and standard deviation are not required to be taken for the same value, although
this is done here for the simplicity of writing.

Now, (4.7) and (4.11) can be used to rewrite (4.16) as follows:

J =
Q∑
j=1

y
(
z(j);θ(j),q

)
α(j) + w

{ Q∑
j=1

[
y
(
z(j);θ(j),q

)]2 [
α(j)

]2 M−1∑
m=1

[
Φ(m)

(
θ(j)

)]2

+
∑
j 6=i

[
y
(
z(j);θ(j),q

)
y
(
z(i);θ(i),q

)
︸ ︷︷ ︸

ν(i)

α(j)α(i)
M−1∑
m=1

Φ(m)
(
θ(j)

)
Φ(m)

(
θ(i)

)]} (4.17)
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Here, (4.17) directly provides the rule to split up the cost function for the DOCPs (see (4.2))
as the first line is only dependent on the j-th DOCP, while the second line has the additional
influence of the connection variables:

J (j)
(
z(j)

)
= y

(
z(j);θ(j),q

)
α(j) + w ·

[
y
(
z(j);θ(j),q

)]2 [
α(j)

]2 M−1∑
m=1

[
Φ(m)

(
θ(j)

)]2
J̃

(j) (z(j); q
)

= w ·
∑
j 6=i

y
(
z(j);θ(j),q

)
ν(i)α(j)α(i)

M−1∑
m=1

Φ(m)
(
θ(j)

)
Φ(m)

(
θ(i)

) (4.18)

Thus, (4.18) is a standardized representation for a mean and variance cost function. It
should be noted that (4.18) can directly be extended to further statistical moments in
the cost function as well as different or multiple outputs. Therefore, robustness modifica-
tions can be introduced as desired by the user.

4.3 Constraints in Distributed Optimal Control

Building upon the derivations in Section 4.2, it is also possible to distribute constraints
in the context of a DOCP. Here, a major part is splitting up the respective boundary
values of e.g., the box constraint for each DOCP as each sub-problem only fulfills a part
of the constraint. To illustrate the procedure, a generic box constraint for the i-th system
output is defined as follows:

ylb,i ≤ yi (z;θ,q) ≤ yub,i (4.19)

This constraint can be generally solved in the NLP context using two inequality constraints
as introduced in (2.13):

ylb,i − yi (z;θ,q) ≤ 0
yi (z;θ,q)− yub,i ≤ 0

(4.20)

Here, yi (z;θ,q) is the random response of the system, which should fulfill the robust
constraint, and is e.g., distributed according to (4.7) for the mean value or (4.11) for
the variance (or any other combination of statistical moments). Thus, only the j-th
part of this variable is available in the j-th DOCP. Consequently, the j-th DOCP also
only fulfills a portion of the constraint such that the original constraint is fulfilled in
the connected problem, yielding:

ω
(j)
lb,i · ylb,i − yi

(
z(j);θ(j),q

)
≤ 0

yi
(
z(j);θ(j),q

)
− ω(j)

ub,i · yub,i ≤ 0
(4.21)
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Here, ω(j)
lb,i and ω

(j)
ub,i are the weights for the lower and upper bound of the constraint

respectively, which may not be equal (but generally are). These weights are combined
in the weight vector defined by ω =

[
ω

(1)
lb,1,...,ny ω

(1)
ub,1,...,ny . . . ω

(Q)
lb,1,...,ny ω

(Q)
ub,1,...,ny

]T
and

are the portion to which the j-th DOCP is fulfilling the constraint. It should be noted
that this is very similar to the cost function distribution in (4.18): Here, the addend of
the cost function that is related to the j-th DOCP, i.e., does not contain any connection
variables, also only minimizes a portion of the cost function. This portion is given by
the SC weight α(j). Thus, the SC weight can be viewed as the weight multiplier for
the cost, i.e., ωlb = α(j) = ωub. For the constraint, this procedure is just generalized
because the bound value must be distributed such that the nonlinear constraint is fulfilled
in the connected problem. As this bound is not given by the gPC expansion, the chosen
weight is also not directly obvious and must be optimized accordingly.

Then, the weight vector is added as an additional optimization variable in the connec-
tion problem of (4.5), thus, defining an extended version as follows:

min
ν,ω

JCP = υTυ

s.t. ν lb ≤ ν ≤ νub,

cCP
(
ν; z(j)

)
≤ 0,

ψCP
(
ν; z(j)

)
= 0,

P [ν ∈ P ] ≥ ξCP,

υTυ ≤ δ,

Q∑
j=1

ω
(j)
lb,i = 1 ∀i,

Q∑
j=1

ω
(j)
ub,i = 1 ∀i,

0 < ωlb ≤ ω ≤ ωub < 1

(4.22)

Here, the optimization goal still is to minimize the error between the connection vari-
ables and the physical trajectories as in (4.5). In addition, it must be considered that
the original constraint should be satisfied in the connected problem, which yields the fact
that the weightings of the distributed constraint bounds must be equal to one in sum.
Furthermore, these constraint weights must be greater than zero and smaller than one,
which consequently states that each distributed trajectory must have an influence and
the optimizer is not allowed to “remove” particular extreme trajectories in order to fulfill
the constraint easier.

To get an understanding of the weights introduced for the distributed constraint
in (4.21), the distribution of the mean value in (4.7) is looked at: From Theorem C.1, it is
known that the zeroth orthogonal polynomial is always equal to one and thus, the distri-
bution weight in (4.7) can be considered similar to the SC weight α(j). Thus, in a simple
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setup ω(j) = α(j) can be assumed within the connection problem, which would here exactly
recover the mean value. Therefore, the weights introduced when distributing a constraint
can be viewed as the weights required for the SC to appropriately weigh the trajectories
to get the correct statistical moments. In this context, it is also straightforward to define
bounds and initial values for the weights ω(j) as they will be similar to the SC weights α(j).
Still, due to the nonlinearity of e.g., the standard deviation, the SC weight α(j) is not
always the exact solution obtained from the connection problem. Thus, it is of special
importance to choose appropriate weight bounds such that the DOCPs can be solved
but the solution quality is still sufficient. This means that all SC trajectories should
significantly contribute to the constraint.

Take into account that the connection problem formulation in (4.22) always requires
sensitivities from the DOCPs due to the introduced constraint weights. As shown, this
is not necessary in some cases with only distributed statistical moments in e.g., the cost
function (see (4.14)). Thus, a distribution of constraints comes at an additional cost. It
should be further noted that this issue can be mitigated by approximating the full, exact
constraint, i.e., non-distributed, in each DOCP. This can be done by using the avail-
able connection variables and also removes the necessity to provide suitable bounds for
the constraint weights. On the other hand, this might yield to fairly poor convergence
due to the “wrong” approximation of the constraint in each DOCP. Generally, bad initial
values for the connection variables might not even permit convergence at all. Therefore,
the best-suited solution strategy for the DOC must be found individually.

4.4 Derivation of Karush-Kuhn-Tucker Conditions for
Distributed Optimal Control

This section covers the derivation of the KKT conditions for the DOC with gPC-SC as
developed in this thesis (see (4.1), (4.2), and (4.5)). The goal is to show that DOC still solve
the original connected problem in the ROC gPC-SC framework (see (4.1)). It is important
to note that the DOCPs are solved individually using an NLP solver (e.g., Interior Point
Optimizer (Ipopt) or Sparse Nonlinear Optimizer (SNOPT)). Thus, the DOCPs on their
own fulfill the KKT optimality conditions (Definition 2.1), which is a necessary condition.
This optimality of the single DOCP is important for the derivation of the optimality of
the connected, large-scale OCP. Additionally, the connection problem is considered to be
solved and thus, fulfills the KKT conditions. As an example for the derivation of the KKT
conditions, the distributed cost function in (4.1) is used. This results in a DOCP as
follows:
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min
z(j)

J (j)
(
z(j)

)
+ J̃

(j) (z(j); q
)

s.t. z(j)
lb ≤ z(j) ≤ z(j)

ub ,

f (j)
(
z(j);θ(j)

)
= .x(j),

c(j)
(
z(j)

)
≤ 0,

ψ(j)
(
z(j)

)
= 0

(4.23)

It should be noted here that the constraints are not distributed, i.e., they are not coupled
by statistical moments for the sake of simplicity.

For the DOCP defined in (4.23), the overall optimization parameter vector is defined
as already introduced:

z̄ =
[[

z(1)
]T

. . .
[
z(Q)

]T]T
(4.24)

Due to the fact that the constraints do not have to be distributed, the Lagrange
multipliers can be split analogously:

λ̄ =
[[
λ(1)

]T
. . .

[
λ(Q)

]T]T
, µ̄ =

[[
µ(1)

]T
. . .

[
µ(Q)

]T]T
(4.25)

Generally, the feasibility condition (KKT Condition 3 in Definition 2.1) is directly extended
to the concept of DOC. In this context, the extension is according to (4.24) as well as (4.25)
and can be stated as follows:

c (z̄opt; qopt) =



c(1)
(
z(1)

opt

)
︸ ︷︷ ︸

≤0

+ c̃(1)
(
z(1)

opt; qopt
)

︸ ︷︷ ︸
≡0

...
c(Q)

(
z(Q)

opt

)
︸ ︷︷ ︸

≤0

+ c̃(Q)
(
z(Q)

opt ; qopt
)

︸ ︷︷ ︸
≡0


≤ 0

ψ (z̄opt; qopt) =



ψ(1)
(
z(1)

opt

)
︸ ︷︷ ︸

=0

+ ψ̃(1) (z(1)
opt; qopt

)
︸ ︷︷ ︸

≡0...
ψ(Q)

(
z(Q)

opt

)
︸ ︷︷ ︸

=0

+ ψ̃(Q) (z(Q)
opt ; qopt

)
︸ ︷︷ ︸

≡0


= 0

(4.26)

It is clear that (4.26) is fulfilled within the connected OCP as long as it is fulfilled within
each DOCP (see (4.23)). Due to the fact that the DOCPs on their own fulfill the KKT
conditions (as they are optimal), it is clear that they automatically fulfill the connected
OCP in (4.26) as well.

As a next step, the derivative of the Lagrange function is looked at (KKT Condi-
tion 2 in Definition 2.1) that yields the dual feasibility as follows:

113



4.4 Derivation of Karush-Kuhn-Tucker Conditions for Distributed Optimal Control

∇z̄L
(
z̄opt, λ̄opt, µ̄opt; qopt

)
= ∇z̄J (z̄opt; qopt)

+ λ̄T
opt∇z̄c (z̄opt; qopt) + µ̄T

opt∇z̄ψ (z̄opt; qopt) != 0
(4.27)

Now, the DOCPs for cost and constraints in (4.27) can be inserted yielding:

∇z̄

Q∑
j=1

[
J (j)

(
z(j)

opt

)
+ J̃

(j) (z(j)
opt; qopt

)]
+
[[
λ

(1)
opt

]T
. . .

[
λ

(Q)
opt

]T]∇z̄


c(1)

(
z(1)

opt

)
...

c(Q)
(
z(Q)

opt

)


+
[[
µ

(1)
opt

]T
. . .

[
µ

(Q)
opt

]T]∇z̄


ψ(1)

(
z(1)

opt

)
...

ψ(Q)
(
z(Q)

opt

)


(4.28)

As differentiation is a linear operator, (4.28) can be rewritten as follows (this is possible
in this case as the constraints are unconnected):

Q∑
j=1
∇z̄

[
J (j)

(
z(j)

opt

)
+ J̃

(j) (z(j)
opt; qopt

)]
+
[[
λ

(1)
opt

]T
. . .

[
λ

(Q)
opt

]T]∇z̄


c(1)

(
z(1)

opt

)
...

c(Q)
(
z(Q)

opt

)


+
[[
µ

(1)
opt

]T
. . .

[
µ

(Q)
opt

]T]∇z̄


ψ(1)

(
z(1)

opt

)
...

ψ(Q)
(
z(Q)

opt

)


(4.29)

Finally, differentiation and summation are commutative for smooth functions [5, p. 1037f. & p. 1129]
and the order can be rearranged once more. Equation (4.29) simplifies as follows:

Q∑
j=1

[
∇z̄J

(j)
(
z(j)

opt

)
+∇z̄J̃

(j) (z(j)
opt; qopt

)
+
(
λ

(j)
opt

)T
∇z̄c(j)

(
z(j)

opt

)
+
(
µ

(j)
opt

)T
∇z̄ψ

(j)
(
z(j)

opt

)
︸ ︷︷ ︸

≡0, KKT Condition 2

]
!= 0 (4.30)

It is clear that (4.30) is fulfilled as each of the DOCPs in (4.23) fulfills the KKT conditions
and the connection problem is solved, i.e., the optimal connection variables and therefore
the exact trajectories are assigned.

Using the knowledge gained from (4.26) and (4.30), the Lagrange multiplier condi-
tion (KKT Condition 1 in Definition 2.1) as well as the complementary slackness condition
(KKT Condition 4 in Definition 2.1) are easily shown to be fulfilled in the distributed
setup. The Lagrange multiplier condition can be stated as follows:

λopt =


λ

(1)
opt
...

λ
(Q)
opt

 ≥ 0 (4.31)
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Similarly, the slackness condition is as follows:

λT
optc (zopt) =


(
λ

(1)
opt

)T
c(1)

(
z(1)

opt

)
...(

λ
(Q)
opt

)T
c(Q)

(
z(Q)

opt

)
 = 0 (4.32)

Once more, (4.31) and (4.32) are fulfilled because the DOCP (see (4.23)) does fulfill
the KKT optimality conditions.

Thus, (4.26), (4.30), (4.31), and (4.32) show that the DOC framework fulfills the op-
timality conditions of the original connected OCP based on the optimality of lower level
DOCPs (see (4.1)). It is therefore a solution of this original OCP and the proposed
DOC algorithm can be used to calculate robust trajectories of a complex ROCP without
simplifications.

It should be noted that there are also other (more general) ways to prove the conver-
gence of distributed (bi-level) optimization frameworks [49, 55, 78]. These are not covered
in this thesis, as merely the developed DOC algorithm based on gPC-SC should be proven
to be optimal. Additionally, the functionality of the algorithm is further examined in ap-
plication cases. Still, it is important to note that the main prerequisite for the convergence
of the DOC algorithm is that the lower level DOCPs remain feasible and result in optimal
trajectories as well as that the connection problem is solved. This must be assured by e.g.,
choosing suitable initial values as well as optimality and feasibility conditions for the lower
levels and the connection problem. Additionally, the convergence behavior of the NLPs
can be controlled to assure better convergence, e.g., by an appropriate adaptation of
the barrier parameter in Ipopt. This also improves the convergence speed.
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Chapter 5

Optimal Control Transcription Using
Generalized Polynomial Chaos

This chapter introduces the developed generalized polynomial chaos (gPC) transcription
for the robust open-loop direct optimal control problem (ROCP) of this thesis. Thus, Con-
tribution 1 of the thesis is covered in this chapter. Within this framework, the standard
open-loop direct optimal control (OC) nonlinear program (NLP) transcription, introduced
in Subsection 2.1.2.1, is changed to a representation using the gPC expansion coefficients.
This transcription procedure is also illustrated in Figure 5.1. A benefit of the method is
the fact that it provides the opportunity to directly optimize statistical moments within
e.g., the cost function, as the expansion coefficients are part of the optimization parame-
ters. Additionally, the method gives the capability to evaluate chance constraints (CCs)
as the gPC expansion is available for sampling within the NLP as well.

In contrast to the distributed open-loop direct optimal control (DOC) framework,
which was introduced in Chapter 4 and can also be applied to solve ROCPs, the proposed
gPC collocation method does not rely on a distribution and thus, multiple solutions of
the open-loop direct optimal control problem (OCP). Instead it creates a large-scale OCP
that can be solved in a single optimization run. To reduce the already mentioned dimen-
sionality problem, it does directly apply the expansion coefficients rather than the physical
stochastic collocation (SC) trajectories, as the expansion coefficients are evaluated on a re-
duced tensor grid (Definition 2.3). Therefore, fewer optimization parameters are required.
Overall, the DOC in Chapter 4 and the gPC collocation, introduced in this chapter
can be considered as complementary frameworks, where the DOC can e.g., be applied
to large-scale OCPs that cannot be solved by the introduced gPC collocation method,
while the gPC collocation method provides an embedded method without computational
overhead.
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To illustrate the developed method, at first, the general framework applying a colloca-
tion scheme (i.e., the trapezoidal integration) on the expansion coefficients is introduced
in Section 5.1. Therefore, a differential equation for the expansion coefficients, based on
the physical state derivatives, is derived. An intuition on the introduced method is then
given in Section 5.2.

Take into account that initial ideas on using gPC in a large-scale OCP were already
proposed in e.g., [80, 94]: Compared to the thesis, these studies use a pseudo-spectral OC
transcription, do not provide the derivation of Jacobian and Hessian analytically, and, most
importantly, do not propagate the gPC expansion coefficient in the collocation scheme
directly. These developments are made by this thesis and thus, available methods are
extended. It should further be noted that an initial framework of this kind was published
by the author in [102], which did not yet calculate the collocation defect (CD) based on
the expansion states, but on the physical SC state derivatives. Additionally, the control
history was not yet expanded.

Definition of
uncertainties

Calculation of
expansion nodes

Transcription using gPC
expansion coefficients

Calculation of physical
states by gPC expansion

and parallelized
evaluation of model

Cost using expansion
coefficients and
physical states

Robust trajectory w.r.t.
uncertainties and cost

gPC Collocation

OCP

Figure 5.1: Structure of optimal control framework with generalized polynomial chaos
transcription methodology.
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5.1 Transcription Using Expansion States in Colloca-
tion Defect

At first, the gPC collocation OC parameter (“decision variable”) vector is extended com-
pared to the standard OC decision variable vector in (2.6) as follows (note that the final
time is explicitly introduced to make the following derivations clearer):

ẑ =
[
t̂f

(0)
, . . . t̂f

(M−1)
, p̂(0), . . . , p̂(M−1), x̂(0)

1 , . . . , x̂(M−1)
1 , û(0)

1 , . . . , û(M−1)
1 , . . . ,

x̂(0)
n , . . . , x̂(M−1)

nτ , û(0)
n , . . . , û(M−1)

nτ

]T
∈ Rnẑ

(5.1)

Take into account that t0 = 0 = const. can be assumed, like in Subsection 2.1.2.1, without
loss of generality and is done in this chapter for the sake of brevity. Additionally, the sizes
of the vector is nẑ = (nx + nu) ·M · nτ + np ·M . It should be further noted that (5.1) is
an extension of the decision variable vector already introduced by the author in [102], which
did not yet expand the control history and optimizable parameters. Thus, (5.1) provides
a generalization of the work in [102]. Compared to the definition in [102], the decision
variable vector in (5.1) has the benefit that e.g., non-expanded as well as an expanded
control history can be calculated. A non-expanded control history can e.g., be used to
calculate a single, robust control command such that only a single control history must
be applied in an application and the dynamic system follows the optimal trajectory under
uncertainty. This is a major benefit compared to the distributed open-loop direct optimal
control problem (DOCP) that always calculates a distributed, i.e., expanded, control
history as the optimal control history varies for each SC node. Therefore, e.g., large
deviations in the control history can occur. A drawback of the non-expanded control
history is that it might be very conservative, because all uncertainty combinations must
fulfill the constraints by one control command, which might even lead to infeasibilities.
In these cases, and especially when an online estimation of the uncertainty (e.g., by
monitoring the dynamic system or wind estimation) can be made, an expanded control
history provides the best option as an online update of the command can be made by
the gPC expansion. Thus, the expanded control history is generally less conservative and
might improve optimality.

The benefits of a single robust control history were initially studied by the author
in [102] and showed good applicability in the context of robust open-loop direct optimal
control (ROC). More specifically, the single control history ensures that no updates of
the robust trajectory dependent on the measurement of the random variable (RV) are
required in e.g., onboard applications. This makes the usage straightforward and easy to
implement. Still, some ROCP formulations might require an expanded control history
due to e.g., constraints that cannot be fulfilled by only a single control history. Then,
measuring the RVs might be required to apply the robust trajectory in e.g., an onboard
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application, because this enables to update the expanded control history. Thus, depending
on the application and the problem formulation, the proposed framework gives the user
the opportunity to choose a desired representation.

Further take into account that, compared to the ROCP used for the DOC in (4.1),
the decision variable vector in (5.1) does not grow as fast as the SC expansion vector with
the expansion order and the number of uncertainties applied. This is based on the fact
that the gPC expansion is evaluated on a reduced tensor grid (Definition 2.3), as there is
no accuracy improvement by applying the full tensor grid, which is required for the SC.
Thus, the proposed gPC collocation also remains applicable for larger OCPs.

It should be further noted that (5.1) is written for this tensor grid collocation. Thus,
the following derivations are also made for a tensor grid (Definition 2.3). The implementa-
tion of sparse grids is also possible by a suitable adaption of the optimization parameter
vector according to the used sparse grid method (e.g., Definition 2.4), i.e., considering
the combination of lower order tensor grids. However, the derivation is more complex
in terms of writing and skipped within this thesis for the sake of clarity and brevity.
Nonetheless, a sparse grid gPC collocation methods can also be implemented following
the structure of this section.

Remember that in (5.1), the incorporation of the expansion coefficients for states and
controls as opposed to directly using the physical states and controls yields the possibil-
ity to directly optimize the statistical moments for the trajectory and the control effort
(e.g., by (2.69) and (2.70)). Additionally, the introduction of CCs by sampling the gPC
expansion becomes possible. The physical state and control history, required to evaluate
the dynamic model, is calculated by using the gPC expansion (2.61). This is valid as
long as the expansion order is large enough and thus an accurate analytic representation
of the system by the gPC expansion is available. Using the dynamic model, the state
derivatives and output values at the SC nodes can also be obtained, and thus, a minimiza-
tion of their statistical moments is also possible by using (2.68) to obtain their expansion
coefficients. Thus, (5.1) basically describes a change of variables used to describe the OCP.
This change of variables is directly given by the gPC expansion formula in (2.61), i.e., by
the projection using the orthogonal polynomials, and its inverse.

Then, the residual vector in (2.11) is expanded according to (5.1) as well, to have a CD
for each expansion coefficient and a path constraint for each of the SC nodes as follows:

F̂ =
[
J,y(1)

1 , . . . ,y(Q)
1 , ĈD

(0)
1,2, . . . , ĈD

(M−1)
1,2 , . . . , ĈD

(0)
nτ−1,nτ , . . . ,

ĈD
(M−1)
nτ−1,nτ , . . . ,y

(1)
nτ , . . . ,y

(Q)
nτ

]T
∈ RnF̂

(5.2)

It should be noted that the cost function is not expanded here, i.e., a robust cost value
instead of a statistical representation of the cost value is calculated. Still, the following
derivations can directly be extended to a distributed cost index as well. Additionally,
the size of the vector is nF̂ = nx ·M ·(nτ−1)+ny ·nτ ·Q+1. It is also important to note that
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the outputs are constrained at the SC nodes (“physical values”), i.e., j = 1, . . . , Q, while
the CD is calculated within the gPC (expansion coefficient) domain, i.e., m = 0, . . . ,M−1.
This shows the desired mixture of the gPC and SC domain that is used to efficiently solve
the ROCP and is in contrast to the optimization parameter vector in (5.1), which is only
defined for m = 0, . . . ,M − 1. This distinction is important for the ROCP and continued
while deriving the gradient (Jacobian; Subsection 5.1.1) and the Hessian (Subsection 5.1.2)
in the following.

Further, take into account that the path constraints in (5.2) may also contain the con-
straints for the physical states and controls at each SC node. This might be necessary
as the optimization parameter vector contains the expansion coefficients, but does not
include the physical values that are normally bounded in this vector. Now, the calculated
trajectories may no longer make physical sense if it is not possible to meaningfully bound
the expansion coefficients. Therefore, constraining the physical state and control history in
the residual vector, instead of the expansion coefficients in the decision vector, is generally
required and also used in this thesis. In this context, it should further be noted that
it might not be possible, desired, or even necessary to constrain all physical trajectories
at each SC node (i.e., from j = 1, . . . , Q). This is due to the fact that there cannot be
more constraints than decision variables, i.e., optimization parameters. In such cases, it
is therefore also possible to only constrain a subset of the Q SC trajectories to achieve
a physical trajectory representation by the gPC collocation scheme.

Continuing the derivation, contrary to the basic discretization in Subsection 2.1.2.1,
the CD in (2.10) is redefined for the transcription method given by (5.1) and (5.2) directly
using the state expansion coefficients and their derivatives as follows:

ĈD
(m)
i,i+1 = x̂(m)

i+1 − x̂(m)
i − t̄f

2 hτ
( .
x̂

(m)
i+1 +

.
x̂

(m)
i

)
!= 0 ∈ Rnx , m = 0, . . . ,M − 1 (5.3)

Take into account that (5.3) directly allows the NLP algorithm to control the integration
error of the expansion coefficients and therefore, the statistical moments. This control of
the statistical moment accuracy is generally desired in ROC as it can enhance the statistical
results, their significance, as well as the confidence in them. It is further important to
note that the scaling using the final time is denoted here by t̄f , which is a yet to be
determined quantity. In general, it is already known that the time transformation for
the physical state derivatives is given by the physical time in (2.8). Thus, the derivation in
the following also introduces the physical time at each of the SC nodes to weigh the time
derivatives of the states.

To calculate the CD given in (5.3), at first a differential equation for the time devel-
opment of the expansion coefficients is required. Therefore, the coefficient calculation by
the SC (see (2.68)) for a general output variable must be differentiated with respect to
time as follows (sensitive parameters are left out for the sake of readability):
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∂ŷ(m) (z)
∂t

=
.
ŷ

(m)
(z) =

Q∑
j=1

.y
(
z;θ(j)

)
Φ(m)

(
θ(j)

)
α(j), m = 0, . . . ,M − 1 (5.4)

Take into account that (5.4) is valid as long as the uncertainty is not changing over time
and thus, the orthogonal polynomials as well as the Gaussian quadrature weights
can be considered constant. If a time-varying uncertainty is used, the chain rule can
be applied to extend (5.4) accordingly. It should be further noted that (5.4) contains
the desired expansion state derivative by using a linear output mapping in (2.12) with
the state derivatives of the model.

Thus, using (5.4) and the definition of the state dynamics, the CD in (5.3) can be
reformulated as follows:

ĈD
(m)
i,i+1 = x̂(m)

i+1 − x̂(m)
i − hτ

2 ·

·
[ Q∑
j=1

(
x(j)
i+1

)′
︷ ︸︸ ︷
tf

(j) .x(j)
i+1︸ ︷︷ ︸

f (j)
(

x(j)
i+1,u

(j)
i+1;θ(j)

)Φ(m)
(
θ(j)

)
α(j) +

Q∑
j=1

(
x(j)
i

)′
︷ ︸︸ ︷
tf

(j) .x(j)
i︸︷︷︸

f (j)
(

x(j)
i ,u(j)

i ;θ(j)
)Φ(m)
(
θ(j)

)
α(j)

]
!= 0

(5.5)

Take into account that the final time influences each of the addends within the gPC expan-
sion individually, as each state derivative must be scaled properly with its corresponding
final time at the SC nodes to achieve the desired non-dimensional representation. Addition-
ally, it is assumed that orthonormal polynomials are used and therefore, the normalization
constant is not specifically included in the formulas.

Then, the discretization by (5.1), (5.2), and (5.5) yields an NLP, extending the original
continuous OCP in (2.1), as follows:
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min
ẑ

J

s.t. ẑlb ≤ ẑ ≤ ẑub,

c(ẑ;θ,q) =



y(j)
1,lb − y(j)

1

y(j)
1 − y(j)

1,ub

x1,lb − x(j)
1 = x1,lb −

M−1∑
m=0

x̂(m)
1 Φ(m)

(
θ(j)

)
x(j)

1 − x1,ub =
M−1∑
m=0

x̂(m)
1 Φ(m)

(
θ(j)

)
− x1,ub

u1,lb − u(j)
1 = u1,lb −

M−1∑
m=0

û(m)
1 Φ(m)

(
θ(j)

)
u(j)

1 − u1,ub =
M−1∑
m=0

û(m)
1 Φ(m)

(
θ(j)

)
− u1,ub

...
y(j)
nτ ,lb − y(j)

nτ

y(j)
nτ − y(j)

nτ ,ub

xnτ ,lb − x(j)
nτ = xnτ ,lb −

M−1∑
m=0

x̂(m)
nτ Φ(m)

(
θ(j)

)
x(j)
nτ − xnτ ,ub =

M−1∑
m=0

x̂(m)
nτ Φ(m)

(
θ(j)

)
− xnτ ,ub

unτ ,lb − u(j)
nτ = unτ ,lb −

M−1∑
m=0

û(m)
nτ Φ(m)

(
θ(j)

)
u(j)
nτ − unτ ,ub =

M−1∑
m=0

û(m)
nτ Φ(m)

(
θ(j)

)
− unτ ,ub



≤ 0,

ψ(ẑ;θ,q) =



x̂(m)
2 − x̂(m)

1 − hτ
2

[
Q∑
j=1

tf
(j) .x(j)

2 Φ(m)
(
θ(j)

)
α(j)

+
Q∑
j=1

tf
(j) .x(j)

1 Φ(m)
(
θ(j)

)
α(j)

]
...

x̂(m)
nτ − x̂(m)

nτ−1 − hτ
2

[
Q∑
j=1

tf
(j) .x(j)

nτ Φ(m)
(
θ(j)

)
α(j)

+
Q∑
j=1

tf
(j) .x(j)

nτ−1Φ(m)
(
θ(j)

)
α(j)

]



= 0

(5.6)

It is imminent from (5.6) that the physical trajectories x(j)
i and u(j)

i , obtained from the gPC
expansion, are, as mentioned before, constrained to achieve physical results.

It should be noted that the NLP in (5.6) is, as already mentioned, an extension of
the work presented by the author in [102]. In comparison to [102], (5.6) uses the CD for
the expansion state derivative rather than the physical state derivative. Thus, a structure
is used that completely remains in the gPC domain and therefore, a development compared
to [102] is made.

It is further important to note that the cost function in (2.14) is extended as well
for (5.6) by using the expansion coefficients as follows:
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J = e (ẑnτ ; q) + hτ
t̂f

(0)

2

nτ−1∑
i=1

[L (ẑi; q) + L (ẑi+1; q)] (5.7)

This allows e.g., the optimization of statistical moments, available from the gPC expan-
sion coefficients, in the cost functional. Additionally, (5.6) generally allows to constrain
statistical moments using the gPC expansion coefficients appropriately in the constraints.

For the efficient solution of the NLP in (5.6), the required Jacobian and Hessian are
derived in the following subsections.

5.1.1 Derivation of Jacobian

For the Jacobian, the directional derivative of (5.4) for the expansion state derivatives,
with respect to the physical states at the SC nodes, is given as follows:

∂
.
x̂

(m)
(z)

∂x(j) = J(j)
x Φ(m)

(
θ(j)

)
α(j) (5.8)

Take into account that the directional derivative with respect to the controls is calculated
analogously.

Additionally, the derivative of the gPC expansion formula in (2.52), with respect to
the expansion coefficients, is calculated as follows:

∂y (z;θ)
∂ŷ(m) (z) ≈

∂

∂ŷ(m) (z)

(
M−1∑
m=0

ŷ(m) (z) Φ(m) (θ)
)

= Φ(m) (θ) (5.9)

Then, in order to calculate the Jacobian of the CD with respect to the expansion states,
it must be considered whether the derivative is calculated with respect to the same gPC
expansion order m or a different expansion order n yielding to two different cases. In
the following formulas, these different cases are directly evaluated applying (5.8) and (5.9):

∂ĈD
(m)
i,i+1

∂x̂(m)
i

= −I− hτ
2

 Q∑
j=1

tf
(j)J(j)

xi

[
Φ(m)

(
θ(j)

)]2
α(j)

 (5.10a)

∂ĈD
(m)
i,i+1

∂x̂(m)
i+1

= I− hτ
2

 Q∑
j=1

tf
(j)J(j)

xi+1

[
Φ(m)

(
θ(j)

)]2
α(j)

 (5.10b)

∂ĈD
(m)
i,i+1

∂x̂(n)
i

= −hτ2

 Q∑
j=1

tf
(j)J(j)

xi Φ(m)
(
θ(j)

)
Φ(n)

(
θ(j)

)
α(j)

 , n 6= m (5.10c)

∂ĈD
(m)
i,i+1

∂x̂(n)
i+1

= −hτ2

 Q∑
j=1

tf
(j)J(j)

xi+1
Φ(m)

(
θ(j)

)
Φ(n)

(
θ(j)

)
α(j)

 , n 6= m (5.10d)

∂ĈD
(m)
i,i+1

∂û(n)
i

= −hτ2

 Q∑
j=1

tf
(j)J(j)

ui Φ(m)
(
θ(j)

)
Φ(n)

(
θ(j)

)
α(j)

 (5.10e)
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∂ĈD
(m)
i,i+1

∂û(n)
i+1

= −hτ2

 Q∑
j=1

tf
(j)J(j)

ui+1
Φ(m)

(
θ(j)

)
Φ(n)

(
θ(j)

)
α(j)

 (5.10f)

Furthermore, the path constraint Jacobian is calculated similar to (2.27a) and (2.27b),
using (5.9) and the chain rule as follows:

∂y(j)
i

∂x̂(m)
i

= ∂y(j)
i

∂x(j)
i

∂x(j)
i

∂x̂(m)
i

= J(j)
y,xiΦ

(m)
(
θ(j)

)
(5.11a)

∂y(j)
i

∂û(m)
i

= ∂y(j)
i

∂u(j)
i

∂u(j)
i

∂û(m)
i

= J(j)
y,uiΦ

(m)
(
θ(j)

)
(5.11b)

Additionally, it must be considered that each of the derivatives is depending on the SC
trajectory final times, because the addends in the gPC expansion sum are scaled by those.
This is due to the fact that each of the SC nodes must be evaluated on its specific non-
dimensional time grid scaled, which is calculated by the physical times. The CD in (5.5)
is thus expanded by introducing the gPC expansion for the final time at the SC nodes
(see (2.61)) as follows:

ĈD
(m)
i,i+1 = x̂(m)

i+1 − x̂(m)
i − hτ

2 Q∑
j=1

(
M−1∑
n=0

t̂f
(n)Φ(n)

(
θ(j)

)) .x(j)
i+1Φ(m)

(
θ(j)

)
α(j)

+
Q∑
j=1

(
M−1∑
n=0

t̂f
(n)Φ(n)

(
θ(j)

)) .x(j)
i Φ(m)

(
θ(j)

)
α(j)

 != 0

(5.12)

Then, the derivative of (5.12) with respect to the final time expansion coefficient is given
as follows:

∂ĈD
(m)
i,i+1

∂t̂f
(k) = −hτ2

 Q∑
j=1

Φ(k)
(
θ(j)

) .x(j)
i+1Φ(m)

(
θ(j)

)
α(j)

+
Q∑
j=1

Φ(k)
(
θ(j)

) .x(j)
i Φ(m)

(
θ(j)

)
α(j)

 (5.13)

Overall the Jacobian sparsity structure and the corresponding equations are shown in
Table 5.1. The table shows that the sparse and banded structure of the original trapezoidal
collocation scheme (Table 2.1) is conserved, which is beneficial for the NLP algorithm
because efficient methods to solve equation systems with sparse matrices exist [35].
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5.1 Transcription Using Expansion States in Collocation Defect

Table 5.1: Sparsity pattern of generalized polynomial chaos collocation transcription
Jacobian Ĵ = dF̂

dẑ using the expansion states to calculate the collocation defect.

G t̂f
(0)

. . . t̂f
(M−1) x̂(0)

1 . . . x̂(M−1)
1 û(0)

1 . . . û(M−1)
1 x̂(0)

2 . . . x̂(M−1)
2 û(0)

2 . . . û(M−1)
2 x̂(0)

3 . . . x̂(M−1)
3 û(0)

3 . . . û(M−1)
3

J ∗ . . . ∗ ∗ . . . ∗ ∗ . . . ∗ ∗ . . . ∗ ∗ . . . ∗ ∗ . . . ∗ ∗ . . . ∗

y(1)
1 0 . . . 0 (5.11a) . . . (5.11a) (5.11b) . . . (5.11b) 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

... . . .
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

. . . . . . . . .
. . . . . .

y(Q)
1 0 . . . 0 (5.11a) . . . (5.11a) (5.11b) . . . (5.11b) 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

ĈD
(1)
1,2 (5.13) . . . (5.13) (5.10a) . . . (5.10c) (5.10e) . . . (5.10e) (5.10b) . . . (5.10d) (5.10f) . . . (5.10f) 0 . . . 0 0 . . . 0

... . . .
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

. . . . . . . . .
. . . . . .

ĈD
(Q)
1,2 (5.13) . . . (5.13) (5.10c) . . . (5.10a) (5.10e) . . . (5.10e) (5.10d) . . . (5.10b) (5.10f) . . . (5.10f) 0 . . . 0 0 . . . 0

y(1)
2 0 . . . 0 0 . . . 0 0 . . . 0 (5.11a) . . . (5.11a) (5.11b) . . . (5.11b) 0 . . . 0 0 . . . 0

... . . .
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

. . . . . . . . .
. . . . . .

y(Q)
2 0 . . . 0 0 . . . 0 0 . . . 0 (5.11a) . . . (5.11a) (5.11b) . . . (5.11b) 0 . . . 0 0 . . . 0

ĈD
(1)
2,3 (5.13) . . . (5.13) 0 . . . 0 0 . . . 0 (5.10a) . . . (5.10c) (5.10e) . . . (5.10e) (5.10b) . . . (5.10c) (5.10e) . . . (5.10e)

... . . . . . .
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

. . . . . . . . . . . .

ĈD
(Q)
2,3 (5.13) . . . (5.13) 0 . . . 0 0 . . . 0 (5.10c) . . . (5.10a) (5.10e) . . . (5.10e) (5.10d) . . . (5.10b) (5.10e) . . . (5.10e)

y(1)
3 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 (5.11a) . . . (5.11a) (5.11b) . . . (5.11b)

... . . .
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

. . . . . . . . .
. . . . . .

y(Q)
3 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 (5.11a) . . . (5.11a) (5.11b) . . . (5.11b)

5.1.2 Derivation of Hessian

This section deals with the calculation of the Hessian for the gPC collocation using
the expansion coefficients within the CD. Thus, at first the second order derivative
of the expansion state derivative given in (5.8) is required. It is calculated as follows
(assuming that Schwarz’s theorem [5, p. 800] can be applied, which is the case as
smooth functions are required for the OC theory):

∂2 .x̂
(m)

(z)
∂ (x(j))2 = H(j)

x Φ(m)
(
θ(j)

)
α(j)

∂2 .x̂
(m)

(z)
∂x(j)∂u(j) = H(j)

xuΦ(m)
(
θ(j)

)
α(j) = ∂2 .x̂

(m)
(z)

∂u(j)∂x(j)

∂2 .x̂
(m)

(z)
∂ (u(j))2 = H(j)

u Φ(m)
(
θ(j)

)
α(j)

(5.14)

Using (5.14), the second derivative of the CD in (5.5) is calculated as follows (take into
account that zero entries, e.g., cross-time index coupling, are directly omitted for simplicity
of writing):

∂2ĈD
(m)
i,i+1

∂x̂(n)
i ∂x̂(k)

i

=− hτ
2

 Q∑
j=1

tf
(j)H(j)

xi Φ(m)
(
θ(j)

)
Φ(n)

(
θ(j)

)
Φ(k)

(
θ(j)

)
α(j)

 (5.15a)
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∂2ĈD
(m)
i,i+1

∂x̂(n)
i+1∂x̂(k)

i+1
=− hτ

2

 Q∑
j=1

tf
(j)H(j)

xi+1
Φ(m)

(
θ(j)

)
Φ(n)

(
θ(j)

)
Φ(k)

(
θ(j)

)
α(j)

 (5.15b)

∂2ĈD
(m)
i,i+1

∂û(n)
i ∂û(k)

i

=− hτ
2

 Q∑
j=1

tf
(j)H(j)

ui Φ(m)
(
θ(j)

)
Φ(n)

(
θ(j)

)
Φ(k)

(
θ(j)

)
α(j)

 (5.15c)

∂2ĈD
(m)
i,i+1

∂û(n)
i+1∂û(k)

i+1
=− hτ

2

 Q∑
j=1

tf
(j)H(j)

ui+1
Φ(m)

(
θ(j)

)
Φ(n)

(
θ(j)

)
Φ(k)

(
θ(j)

)
α(j)

 (5.15d)

∂2ĈD
(m)
i,i+1

∂x̂(n)
i ∂û(k)

i

=− hτ
2

 Q∑
j=1

tf
(j)H(j)

xi,uiΦ
(m)

(
θ(j)

)
Φ(n)

(
θ(j)

)
Φ(k)

(
θ(j)

)
α(j)

 (5.15e)

∂2ĈD
(m)
i,i+1

∂x̂(n)
i+1∂û(k)

i+1
=− hτ

2

 Q∑
j=1

tf
(j)H(j)

xi+1,ui+1
Φ(m)

(
θ(j)

)
Φ(n)

(
θ(j)
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Φ(k)

(
θ(j)

)
α(j)

 (5.15f)

Then, the Hessian entries regarding the final time can also be calculated by using the struc-
ture given in (5.12), (5.13), and (5.14) as follows (zero derivatives are directly omitted):

∂2ĈD
(m)
i,i+1

∂t̂f
(n)
∂x̂(k)

i

=− hτ
2

 Q∑
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Φ(n)
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θ(j)

)
J(j)

xi Φ(m)
(
θ(j)
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α(j)

 (5.16a)

∂2ĈD
(m)
i,i+1

∂t̂f
(n)
∂û(k)

i

=− hτ
2

 Q∑
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(
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ui Φ(m)
(
θ(j)

)
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 (5.16b)

∂2ĈD
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∂t̂f
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=− hτ
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Φ(k)
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α(j)

 (5.16c)

∂2ĈD
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i,i+1

∂t̂f
(n)
∂û(k)

i+1

=− hτ
2

 Q∑
j=1
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(
θ(j)

)
J(j)

ui+1
Φ(m)

(
θ(j)

)
Φ(k)

(
θ(j)

)
α(j)

 (5.16d)

The sparsity structure of the Hessian is depicted in Table 5.2. It should be noted that
Schwarz’s theorem [5, p. 800] can again be assumed to hold. Similar to the Jacobian,
the main changes in the OCP definition and solution come with the different methods of
calculating the entries of the matrix (here by the CD), but likewise the structure is similar
to the standard trapezoidal collocation.
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Table 5.2: Sparsity pattern of generalized polynomial chaos collocation transcription
Hessian Ĥ = d2F̂

dẑ2 using the expansion states to calculate the collocation defect with no
specific cost influence.

Ĥ tf
(0) . . . tf

(M−1) x̂(0)
1 . . . x̂(M−1)

1 û(0)
1 . . . û(M−1)

1 x̂(0)
2 . . . x̂(M−1)

2 û(0)
2 . . . û(M−1)

2 x̂(0)
3 . . . x̂(M−1)

3 û(0)
3 . . . û(M−1)

3

tf
(0) 0 . . . 0 (5.16a) . . . (5.16a) (5.16b) . . . (5.16b) (5.16a) . . . (5.16a) (5.16b) . . . (5.16b) (5.16a) . . . (5.16a) (5.16b) . . . (5.16b)

... . . .
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

. . . . . . . . .
. . . . . .

tf
(M−1) 0 . . . 0 (5.16a) . . . (5.16a) (5.16b) . . . (5.16b) (5.16a) . . . (5.16a) (5.16b) . . . (5.16b) (5.16a) . . . (5.16a) (5.16b) . . . (5.16b)

x̂(0)
1 (5.16a) . . . (5.16a) (5.15a) . . . (5.15a) (5.15e) . . . (5.15e) 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

... . . .
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

. . . . . . . . .
. . . . . .

x̂(M−1)
1 (5.16a) . . . (5.16a) (5.15a) . . . (5.15a) (5.15e) . . . (5.15e) 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

û(0)
1 (5.16b) . . . (5.16b) (5.15e) . . . (5.15e) (5.15c) . . . (5.15c) 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

... . . .
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

. . . . . . . . .
. . . . . .

û(M−1)
1 (5.16b) . . . (5.16b) (5.15e) . . . (5.15e) (5.15c) . . . (5.15c) 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

x̂(0)
2 (5.16a) . . . (5.16a) 0 . . . 0 0 . . . 0 (5.15a) . . . (5.15a) (5.15e) . . . (5.15e) 0 . . . 0 0 . . . 0

... . . .
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

. . . . . . . . .
. . . . . .

x̂(M−1)
2 (5.16a) . . . (5.16a) 0 . . . 0 0 . . . 0 (5.15a) . . . (5.15a) (5.15e) . . . (5.15e) 0 . . . 0 0 . . . 0

û(0)
2 (5.16b) . . . (5.16b) 0 . . . 0 0 . . . 0 (5.15e) . . . (5.15e) (5.15c) . . . (5.15c) 0 . . . 0 0 . . . 0

... . . .
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

. . . . . . . . .
. . . . . .

û(M−1)
2 (5.16b) . . . (5.16b) 0 . . . 0 0 . . . 0 (5.15e) . . . (5.15e) (5.15c) . . . (5.15c) 0 . . . 0 0 . . . 0

x̂(0)
3 (5.16a) . . . (5.16a) 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 (5.15a) . . . (5.15a) (5.15e) . . . (5.15e)

... . . .
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

. . . . . . . . .
. . . . . .

x̂(M−1)
3 (5.16a) . . . (5.16a) 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 (5.15a) . . . (5.15a) (5.15e) . . . (5.15e)

û(0)
3 (5.16b) . . . (5.16b) 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 (5.15e) . . . (5.15e) (5.15c) . . . (5.15c)

... . . .
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

. . . . . . . . .
. . . . . .

û(M−1)
3 (5.16b) . . . (5.16b) 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 (5.15e) . . . (5.15e) (5.15c) . . . (5.15c)

5.2 Intuition on Generalized Polynomial Chaos Col-
location Methods

An intuition on the viability of the proposed transcription method of Section 5.1 is given
in the following. Additionally, an initial validation of the results by simulation is made.
Furthermore, this section clarifies why an exchange of the physical states in the transcrip-
tion from Subsection 2.1.2.1 is possible to the gPC expansion coefficients in Section 5.1.
Therefore, a second order lag, defined as follows, is considered [21, p. 302ff]:

 .x1
.
x2

 =
 0 1
−ω2

0 −2 · ζ · ω0

 ·
x1

x2

+
 0
ω2

0

u (5.17)
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In (5.17), the two states are denoted by x1 and x2 respectively, while the control is given
by u and in this case is a unit step at the initial time. The natural frequency is given
by ω0 = 10 rad

s
and the relative damping is ζ. The relative damping is the uncertain

parameter in this case. It is defined by a Gaussian probability density function (PDF)
as follows:

θ1 = ζ ∼ N (µ = 0.5, σ = 0.1) (5.18)

Then, there exist two options on how to obtain an uncertain representation of the system
with a unit step in the control by simulation: The first one is the standard approach
using (5.17) and simulating the system at the SC nodes, as introduced in Subsection 2.3.3.
With the results of these simulations, the expansion coefficients are calculated according
to (2.68) and a statistical analysis is made similar to Subsection 2.3.4. This is the standard
approach often used within the research community [30, 58, 109, 129, 149]. In this case,
the system in (5.17) is simulated within the physical state domain (see (5.18)).

A further, not that intuitive method, is the transformation of the problem to another set
of state variables x̂1 and x̂2, i.e., the expansion coefficients. In this case, the transformation
is given by the inverse of the gPC expansion in (2.52) and the new set of state variables
are the expansion coefficients. In general, the following transformation relation, based
on (2.52), holds:

x̂
Φ−−⇀↽−−

Φ−1
x (5.19)

This is possible as the gPC expansion is indeed, for a sufficiently large expansion order,
an analytic representation of the system and therefore, converges to the true system
response [144]. It should be noted that (5.19) also holds for the state derivatives as
the uncertainty PDF is not time-varying:

.
x̂

Φ−−⇀↽−−
Φ−1

.
x (5.20)

The proposed approach is generally known as “intrusive” gPC method. Analogous to
the first option, the dynamic system in (5.17) can be evaluated at the physical states.
These physical states are consequently used to calculate the expansion states by the gPC
expansion (see (2.52)). It should be noted that this change of variables for evaluating
the system model distinguishes the proposed method from the intrusive gPC method, which
would also directly evaluate the dynamic system in the expansion coefficient domain.

Thus, the usage of the gPC expansion coefficients is generally just a wrapper around
the physical, deterministic system. Take into account that the integration algorithm
indeed integrates the expansion coefficients. This is possible e.g., using the transformation
given by the time derivative of (2.68). Here, a direct connection between the expansion
coefficients and the state derivatives at the SC nodes is given using (5.4):
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.̂
x

(m)
i (u) ≈

Q∑
j=1

.
xi
(
u; ζ(j)

)
Φ(m)

(
ζ(j)

)
α(j), i = 1, 2 (5.21)

Remember that this is possible as only the expansion coefficient history is time variable
(because of the states and controls), while both the orthogonal polynomials as well as the in-
tegration weights are time-invariant. If a time-variable uncertainty is considered, (5.21)
must be adapted by the chain rule accordingly.

Consequently, the transformed system can be written as follows, starting with the ex-
tended dynamic model in (5.17):



.
x

(1)
1
.
x

(1)
2
...
.
x

(Q)
1
.
x

(Q)
2


=



0 1 . . . 0 0
−ω2

0 −2 · ζ(1) · ω0 . . . 0 0
... ... . . . ... ...
0 0 . . . 0 1
0 0 . . . −ω2

0 −2 · ζ(Q) · ω0


·



x
(1)
1

x
(1)
2
...

x
(Q)
1

x
(Q)
2


+



0
ω2

0
...
0
ω2

0


u (5.22)

Then, the state derivatives of the expansion coefficients can be directly calculated us-
ing (5.21) as follows:


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1
.̂
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α(1) Φ(0)

(
ζ(1)

)
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(
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Φ(0)
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(
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·


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(1)
1
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(1)
2
...
.
x

(Q)
1
.
x

(Q)
2


(5.23)

Thus, the transformed dynamics equation, i.e., the equations in the expansion coefficient
domain, can directly be used in the simulation by combining (5.22)–(5.23).

Following the argumentation of the previous paragraphs, it is clear why a transforma-
tion of the OC transcription from the physical states to the expansion coefficients is merely
a change in the set of variables describing the problem. Although this transformation is
at first more expensive in calculation, because the transformation in (5.21) needs to be
made in e.g., each OC iteration, it opens the possibility to use the statistical moments
within the optimization as an uncertain representation of the system is available. This is
the overall goal of ROC.

Figure 5.2 and Figure 5.3 show the results for the standard simulation (solid blue; “Std”)
and the simulation with the gPC expansion coefficients (dashed green; “gPC”) for a unit
step in the control input. The gPC expansion is calculated using a third order expansion.
Here Figure 5.2 depicts the mean values, while Figure 5.3 illustrates the standard deviation.
It is seen that the results lie on top of each other. This shows the viability of the approach.
Minor errors are related to the third order expansion and should reduce using higher

130



Chapter 5: Optimal Control Transcription Using Generalized Polynomial Chaos

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.40

0.5

1

1.5

E[
x 1
]i
n
[-]

Comparison of Mean Values

Std
gPC

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
−2

0

2

4

6

t in [s]

E[
x 2
]i
n
[-]

Std
gPC

Figure 5.2: Mean value comparison for PT2 element with standard (“physical” states)
and generalized polynomial chaos (“expansion” states) simulation for a unit step.

order expansions. Additionally, the errors are related to the different dynamics being
integrated by the integration algorithm: Here, the Matrix Laboratory R© (MATLAB R©)
ODE45 solver1 is used as integration algorithm.

These minor errors are also visualized in Figure 5.4 that depicts the relative errors
obtained for the mean values (Figure 5.2). The relative error is calculated as the difference
error divided by the mean value of the standard simulation. The figure shows that
the relative error in the transient and convergence phase (up until approximately 3s) is
negligibly small for the first state. The second state exhibits a larger error but mainly in
the areas where the standard simulation is close to zero (Figure 5.2). Here, the definition of
the relative error is problematic due to numerical instabilities encountered when dividing
by a small value. Additionally, the error gets larger at sharp curvatures because of the fact
that here errors introduced due to the smooth approximation by the gPC expansion
become dominant. Nonetheless, the results show that the approximation is fairly good
for most of the trajectory. This again strengthens the previously made statement that
the gPC expansion coefficients are merely a change of the state variables.

Overall, the use of the gPC expansion shows their applicability for simulation purposes
and thus, the introduction of the gPC expansion in OC applications is also valid. Therefore,
the next chapter uses the introduced method to incorporate CCs in the ROCP.

1MATLAB ODE documentation (Retrieved April 23, 2019)
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Figure 5.3: Standard deviation comparison for PT2 element with standard (“physical”
states) and generalized polynomial chaos (“expansion” states) simulation for a unit step.
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Figure 5.4: Relative error of mean values for PT2 element between standard (“physical”
states) and generalized polynomial chaos (“expansion” states) simulation for a unit step
in percent (calculated as difference error related to the standard simulation result).
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Chapter 6

Chance-constrained Optimal Control
with Polynomial Chaos

This chapter introduces the chance-constrained open-loop direct optimal control (CC-OC)
framework developed in the thesis: Within this framework, methods to add probabilis-
tic constraints, i.e., chance constraints (CCs), to the open-loop direct optimal control
problem (OCP) are discussed. Thus, Contribution 4 and Contribution 5 of the thesis are
covered by this chapter. The methods have the common goal to maintain a determin-
istic baseline OCP formulation with probabilistic robustifications provided by the CCs.
Thus, the discretization method of the framework is based on e.g., the direct transcription
methods using the generalized polynomial chaos (gPC) expansion coefficients introduced
in Chapter 5 or the distributed open-loop direct optimal control (DOC) formulation in
Chapter 4.

To show the incorporation of CCs in open-loop direct optimal control (OC), Section 6.1
introduces a CC-OC framework that is based on a Monte Carlo analysis (MCA) of the gPC
expansion inside a constraint function, the CC, of the OCP. The framework can mainly be
used for “frequent” events, but is very efficient to use in robust open-loop direct optimal
control (ROC), because the sampling is based on a matrix-vector operation. A major part
of this section is also dedicated to the introduction of a differentiable approximation of
the exact CC by a smooth function, such that it can be used within the Newton-type
nonlinear program (NLP) scheme (see Contribution 4).

Afterward, Section 6.2 incorporates the subset simulation (SubSim) method within
the CC-OC framework, which makes it possible to calculate the failure probability of
rare-events within the CC (Contribution 5). These rare-events are e.g., encountered in
reliability and safety engineering. Specifically, this framework extends currently available
methods in chance-constrained open-loop direct optimal control problem (CC-OCP).

Generally, an original work of this framework was already published by the author
in [102]. This thesis operates on the basis of this work and extends the principles to cover
more general cases by e.g., deriving the analytic Jacobian and Hessian of the multivari-
ate sigmoid CC approximation (Subsection 6.1.2). Furthermore, this thesis generalizes
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the incorporation and mathematical description of CCs within the robust open-loop direct
optimal control problem (ROCP), e.g., by introducing confidence intervals (CIs) (Sub-
section 6.1.1). Finally, the capability of approximating and robustifying the rare-event
failure probabilities by SubSim is extended by using the probability density function (PDF)
estimation of the failure probability introduced in (2.46) (Section 6.2). Here, once more
the derivation of the Jacobian and Hessian for the Newton-type NLP solver is made.

6.1 Sampling-based Chance-constrained Optimal Con-
trol

Within this section, the thesis looks at the introduction of the CC-OC framework based on
a gPC approximation of the response surface (Contribution 4). It is assumed in this section
and chapter that the expansion coefficients are directly used as decision variables (“gPC
collocation”; Chapter 5) or can be calculated because all required stochastic collocation
(SC) trajectories are available (“DOC framework”; Chapter 4). Thus, the expansion
coefficients are available for the CC probability calculation by e.g., sampling the gPC
expansion within each NLP iteration.

Applying this idea, the generic CC-OCP in (2.87) can be extended by e.g., applying
the gPC collocation scheme in (5.6) as follows (it should be noted that the following
derivation is made for the gPC collocation only for the sake of compactness; nonetheless
the DOC formulation can be treated similarly):
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min
ẑ

J(ẑ; q)

s.t. ẑlb ≤ ẑ ≤ ẑub,

c(ẑ; q) =
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y1 (ẑ;θ) =
M−1∑
m=0

ŷ(m)
1 (ẑ) Φ(m) (θ)

)
/∈ F

]
...

P
[(

ynτ (ẑ;θ) =
M−1∑
m=0

ŷ(m)
nτ (ẑ) Φ(m) (θ)

)
/∈ F

]

 ≥ ξ

(6.1)

Thus, the CC-OCP in (6.1) adds a probabilistic constraint P [·], i.e., a CC, to the deter-
ministic OC formulation that is used to robustify the optimal trajectory. The probability
is calculated to not be in the failure set/domain F and must fulfill a minimum probabil-
ity of ξ. These CCs are generally calculated using the gPC expansion and the efficient
sampling that is possible by using it. The following sections elaborate on the procedure:
Here, the general formulation of the CC in the deterministic OCP is introduced in Sub-
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section 6.1.1. Afterward, Subsection 6.1.2 introduces a differentiable approximation of
the exact CC and Subsection 6.1.3 concludes with a homotopy strategy to iteratively
sharpen the developed differentiable CC representation.

6.1.1 Derivation of Chance Constraint Formulation

As stated in Subsection 2.2.1, MCA is a powerful, but computationally expensive tool
for stochastic analysis purposes. Generally, it can be used to estimate the non-failure
probability in (6.1) as the samples that are not within the failure domain can be counted
and compared to the total number of samples. As already mentioned, this way of sampling
is generally very expensive (in terms of computational time) because thousands of samples
might be required for the central limit theorem (CLT) to converge and thus, to have
a reasonably small CI (Subsection 2.2.3) for the MCA.

When using direct methods to solve ROCPs with Newton-type NLP solvers, a further
issue is to provide sufficiently smooth cost and constraints with their Jacobians and Hes-
sians to the Newton-type NLP solver. Especially, with some iterative MCA techniques,
e.g., Metropolis-Hastings algorithm (MHA) or modified Metropolis-Hastings algorithm
(MMHA) (Algorithm 2.2), which improve the convergence speed, the derivatives might not
be trivial to calculate or approximate. This is due to the fact that these algorithms select
samples adaptively, depending on whether or not they are e.g., in or closer to the failure
set, to have an efficient approximation. As this selection process would be required in
each iteration of the NLP, the samples and thus, the depending derivatives are adapted
constantly as well, which would most likely yield to bad convergence. In general, this
would therefore require the introduction of stochastic gradient updates within the NLP
solver [4, 24], which would require major updates in the off-the-shelf solvers, such as
Interior Point Optimizer (Ipopt) or Sparse Nonlinear Optimizer (SNOPT), used in this
thesis.

Thus, this thesis uses a deterministic MCA sampling alternative that is differentiable
and uses the same samples throughout the NLP solution process. Looking at the gPC
expansion in (2.52), an approximation for any output quantity of the OCP with respect
to a stochastic disturbance is directly available (this idea of sampling the gPC expansion
was e.g., already used in [102, 139]). Thus, in cases where the expansion coefficients
are available within the NLP, as e.g., in the ROCP of (6.1), the gPC expansion can be
sampled for thousands of samples via a matrix-vector operation in a MCA-type way, but
with improved efficiency due to the simple evaluation. The fact that thousands of samples
can be used also removes the task to update the samples in each NLP step as “enough”
samples to cover the CC/random variable (RV) evaluation domain can be chosen (both
with respect to the CLT as well as CIs).
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To illustrate the MCA character of the CC evaluation by sampling the gPC expansion,
consider ns random samples obtained from the PDFs of θ ∼ ρΘ (θ), labeled θ(1), . . . ,θ(ns).
These samples yield corresponding samples, y(1) = y

(
z;θ(1)

)
, . . . ,y(ns) = y

(
z;θ(ns)

)
, for

the output y, applying the gPC expansion in (2.61), as follows [102]:

[
y(1) . . . y(ns)

]
︸ ︷︷ ︸

Rny×ns

=
[
ŷ(0) (z) . . . ŷ(M−1) (z)

]
︸ ︷︷ ︸

Rny×M


Φ(0)

(
θ(1)

)
. . . Φ(0)

(
θ(ns)

)
... . . . ...

Φ(M−1)
(
θ(1)

)
. . . Φ(M−1)

(
θ(ns)

)


︸ ︷︷ ︸
RM×ns

(6.2)
Thus, the output samples are provided from a simple matrix-vector operation on the ex-
pansion coefficients ŷ. As mentioned, these are part of the ROCP formulation in (6.1)
(either via the state and control expansion coefficients in the decision variable vector or by
the SC trajectories in the DOC framework). Thus, thousands of random trajectories can
be created and the failure probability can be easily calculated by checking the random
trajectories for failures. It should be noted that (6.2) is the natural extension of (2.62).

Take into account that the derivative of (6.2) with respect to the expansion coefficients
is generally required for the Newton-type NLP scheme and is given as follows:

[
∂y(1)

∂ŷ(m)(z) . . . ∂y(ns)

∂ŷ(m)(z)

]
=
[
Φ(m)

(
θ(1)

)
. . . Φ(m)

(
θ(ns)

)]
(6.3)

Thus, the derivative of the output samples with respect to the gPC expansion is the or-
thogonal polynomial evaluated at this random parameter sample. This was also already
introduced and used in (5.9), when deriving the gPC collocation scheme. With the output
samples available from (6.2), the general equation for fulfilling the CC, i.e., not being in
the failure domain, is as follows [102]:

P [y (z;θ) /∈ F ] =
∫

Ω
I [y (z;θ)] ρΘ (θ) dθ ≈ 1

ns

ns∑
i=1
I
[
y(i)

]
(6.4)

Here, (6.4) converges in the sense of the CLT (Section B.7) and I [y (z;θ)] is the indicator
function defined by [102]:

I [y (z;θ)] =

1, if y (z;θ) /∈ F
0, else

(6.5)

Take into account that the probability is defined to not be in the failure domain, as e.g.,
opposed to other probabilistic methods like the SubSim approach in Subsection 2.2.4.
These definitions are interchangeable, but the formulation to not be in the failure domain
is preferred in this work as it generally yields a better conditioned NLP (mainly because
the numeric probability values do not get too small, i.e., converge to zero, but remain
close to one).
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It should be further noted here that (6.4) provides one realization of the exact prob-
ability (i.e., a value that should be close to the exact probability, but is generally not
exactly the same) due to e.g., the fact that only a finite amount of samples is used (this
is due the CLT in Section B.7 and results in the CIs from Subsection 2.2.3). Addition-
ally, the sampling of the gPC expansion in (6.2) only gives an approximation of the real,
exact system response. Summarizing, the fact that (6.4) does not calculate the exact
probability is based on the fact there are only limited information available to calculate
it, i.e., it is consequently only approximated. Thus, as already mentioned for the SubSim
in Subsection 2.2.4.4, the calculated probability can be treated as a RV, the relative plau-
sibility/accuracy can be assessed, and statistical moments can be calculated accordingly
(for SubSim e.g., according to [148, p. 292ff.]).

Consequently, for safety critical applications, i.e., applications where it must be as-
sured to fulfill the CC, it can be meaningful to optimize the CI bounds rather than only
the mean value in (6.4), even though the optimality might be reduced by this. Here,
the CI for the mean value can be calculated as e.g., introduced in (2.38) or by a one-sided
representation [81, p. 20f.] because in a CC-OCP formulation like in (6.1) the lower bound
is generally of main interest.

For this CI, the standard deviation of the probability is required, which can be calcu-
lated as given in [81, p. 16]:

σ [P [y (z;θ) /∈ F ]] = P [y (z;θ) /∈ F ] · (1− P [y (z;θ) /∈ F ])
ns − 1 (6.6)

With this estimation, the bounds of the CI can be used within the optimization to assure
a threshold to the desired minimum probability level. Generally, this CI-based CC-OC
procedure gives more certainty that the optimal trajectory is indeed fulfilling the desired
CC, while it normally comes at the cost of getting a less optimal trajectory. This is
the already mentioned trade-off between optimality and robustness in ROC.

It is important to note that the indicator function I in (6.5) is trivial to evaluate
but non-differentiable. Thus, it can create difficulties when being used in the context of
a Newton-type NLP algorithm. Therefore, a smooth approximation function s [·] of
the indicator function in (6.5) is introduced to solve the ROCP. This smooth approximator
should have the following properties [102]:

s [y (z;θ)] ∈ [0; 1]
s [y (z;θ)] ≈ 1 y (z;θ) /∈ F
s [y (z;θ)] ≈ 0 y (z;θ) ∈ F

(6.7)

The functional choice and the properties of the smooth approximator are introduced in
the next section.
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6.1.2 Smooth Approximator for Chance Constraints

A group of smooth functions that can be used to approximate the indicator function
in (6.5), which also fulfill the conditions given in (6.7), are the logistic functions. Using
logistic functions as CC approximator is similar to e.g., the Bernstein polynomial approach
proposed in [147], but logistic functions generally have easier to calculate derivatives, which
is beneficial for OC. This approach was already introduced by the author in [102].

An example of the logistic functions is the sigmoid, which is defined as follows for
a scalar system response y(i) = y(z;θ(i)) (done here for the simplicity of writing, but
extended to the multi-dimensional case in the following) obtained from (6.2) [102]:

s
[
y(i); as, bs

]
= 1

exp [−as · (y(i) − bs)] + 1 (6.8)

The parameters as and bs are the scaling and offset parameter of the sigmoid respectively.
These are used to shape the sigmoid in order to suitably approximate the desired CC
domain. It should be noted that the use of a sigmoid is generally a conservative way of
approximating CCs as the sigmoid does not reach an exact value of 1. Thus, the exact
CC probability is generally underestimated if the sigmoid is sharp enough, i.e., has a large
enough scaling. This is a natural behavior of most available approximator functions and
might even be a desired feature to e.g., assure safety. It is also useful when applying
the gPC expansion to approximate the system response, as introduced errors are reduced.

Naturally, the scalar sigmoid in (6.8) can be combined by e.g., multiplication, in
order to approximate a desired (multi-dimensional) uncertainty interval. This is shown
in Figure 6.1, which depicts the combination of two sigmoids by multiplication (solid
blue) with one gradual descend (dashed green; number 1) and one steeper ascend (dashed
red; number 2). Take into account that the following derivations are, once more, done
for a scalar output variable at first for the sake of simplicity and afterward, extended to
multiple dimension.

In order to calculate the non-failure probability by the sigmoid, the function values of
the sigmoid must only be summed and divided by the number of samples taken:

P [y /∈ F ] ≈

ns∑
i=1

s
[
y(i); as, bs

]
ns

(6.9)

Furthermore, the sigmoid has a simple derivative that can be used to efficiently calculate
the gradient necessary for the NLP optimizer as follows [65, p. 107]:

ds
[
y(i); as, bs

]
dy(i) =

−(−as) exp
[
−as ·

(
y(i) − bs

)]
(exp [−as · (y(i) − bs)] + 1)2

= as
exp [−as · (y(i) − bs)] + 1 ·

(
exp

[
−as ·

(
y(i) − bs

)]
+ 1

)
− 1

exp [−as · (y(i) − bs)] + 1
= as · s

[
y(i); as, bs

]
·
[
1− s

[
y(i); as, bs

]]
(6.10)
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Figure 6.1: Multiplication of two scalar sigmoids with different scaling and offset param-
eters to approximate a box bound chance constraint domain (after [102]).

Additionally, the second derivative of the sigmoid, required for the Hessian, can also be
calculated directly by applying the rule of the first derivative in (6.10) as follows:

d2s
[
y(i); as, bs

]
d (y(i))2 = as ·

ds
[
y(i); as, bs

]
dy(i) ·

[
1− s

[
y(i); as, bs

]]

+ as · s
[
y(i); as, bs

]
·

1−
ds
[
y(i); as, bs

]
dy(i)


= as

2 · s
[
y(i); as, bs

]
·
[
1− s

[
y(i); as, bs

]]
·
[
1− 2 · s

[
y(i); as, bs

]]
(6.11)

Thus, (6.10) and (6.11) show that the first and second derivative of the sigmoid only
depend on the sigmoid value in (6.8) itself. This makes the evaluation very efficient in
the context of numerical optimization as only the anyway necessary sigmoid function
evaluation is required. It should be noted that (6.10) and (6.11) can be connected directly
with (6.3) using the chain rule to calculate the derivative with respect to the expansion
coefficients, which is required in the NLP optimization.

The concept from (6.8)–(6.11) can then be extended to multiple dimensions, i.e., a mul-
tidimensional failure domain depending on multiple output variables by e.g., multiplication
of scalar sigmoids (leaving out the random sample index for the sake of readability):

s [y; as,bs] =
n∏
j=1

s [yj; as,j, bs,j] (6.12)

This is possible because the sigmoid mainly returns function values of one and zero, except
for the small transition area (see Figure 6.1). Therefore, a combination of multiple sigmoids
is possible by multiplication, which also conserves the desired smoothness properties
in (6.7).
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In (6.12), the different sigmoids, denoted by the index j, can e.g., be used to design
the box constraint in Figure 6.1. Generally, there might be n sigmoids required to recreate
the shape of the failure/non-failure domain. It should be noted that the multiplication
in (6.12) can be used to create box constraints defined by hyper-rectangles. By combining
different hyper-rectangles (e.g., by weighting and rotating) also more complex shapes can
be created. This is omitted here for the sake of brevity and the fact that box constraints,
as defined by hyper-rectangles, are the main constraint type in OC.

Then, the derivative of (6.12) with respect to each output variable, required in the NLP,
can be calculated as follows:

ds [y; as,bs]
dyk

= ds [yk; as,k, bs,k]
dyk

·
n∏
j=1
j 6=k

s [yj; as,j, bs,j] , ∀k (6.13)

This is a combination of the direct derivative with respect to the currently considered
output k as well as the product of the remaining original sigmoid values and a direct
consequence of the product rule.

The Hessian is then consequently given by applying the chain rule once more:

ds [y; as,bs]2

dykdyl
= ds [yk; as,k, bs,k]

dyk
· ds [yl; as,l, bs,l]

dyl
·
n∏
j=1
j 6=k
j 6=l

s [yj; as,j, bs,j] , ∀k, l (6.14)

Thus, also in the multi-dimensional case, here for hyper-rectangular domains, the Jacobian
and Hessian can be provided to the NLP (see (6.13) and (6.14)). Again, this shows the vi-
ability of the proposed approach using sigmoid functions to approximate the probabilistic
constraint in CC-OC.

6.1.3 Homotopy Strategy for Smooth Approximator

As given in (6.7), a smooth approximator is required for the Newton-type NLP scheme
(especially for the calculation of the Jacobian and Hessian). This can be achieved by using
sigmoids as defined in (6.8), which are shaped using the two parameters as (scaling) and bs
(offset). Specifically, the scaling factor must be large enough to approximate the exact CC
bound accurately (see Figure 6.1).

To enable convergence of the NLP algorithm, these parameters must be adapted
suitably: Here, a smooth approximation (based on the problem characteristics) is normally
used in the beginning, e.g., |as| = 1, and afterward continuously increased by a homotopy
factor as,hom > 1. Then, the value of bs can be calculated appropriately. Therefore,
the value is split into two parts:

bs,lb/ub = ylb/ub − cs,lb/ub (6.15)
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Here, the known bound value ylb/ub (i.e., the lower or the upper bound of the CC domain)
is used and a shift cs is introduced on that bound. This is required because only using
the bound value results in s

[
ylb/ub; as,lb/ub, bs,lb/ub

]
= 0.5 by the definition of the sigmoid.

This is clearly not desired, as the bound value should be 1 (or at least sufficiently close
to 1).

Inserting (6.15) in (6.8), an equation that can be solved for the bound shift value is
resulting:

s
[
ylb/ub; as,lb/ub, bs,lb/ub

]
= 1

exp
[
−as,lb/ub ·

(
y − ylb/ub + cs,lb/ub

)]
+ 1
≡ BLs (6.16)

Here, the value BLs (“bound level”) is introduced that defines the value the sigmoid should
have at the boundary value of the constraint (i.e., the failure domain bound). This is
required due to the fact that the sigmoid, as mentioned, never exactly reaches the value
of 1. It should be noted that this bound level should be much larger than the desired
probability the CC must fulfill (from the author’s experience at least three orders of
magnitude, i.e., if ξ = 0.99, then BLs = 0.99999, should be chosen). Then, the value of bs
can be calculated by solving (6.16) using (6.15). By this, the sigmoid is fully defined and
the ROCP can be solved.

Generally, the described procedure in the previous paragraph, also called “homotopy”
and as described in Algorithm 6.1, requires the repetitive solution of multiple ROCPs
(Step 5 in Algorithm 6.1) until a sigmoid shape is reached that approximates the exact
CC bound by the indicator function in (6.5) reasonably accurate. Take into account
that this procedure introduces computational overhead. Still, it is reasonable to use such
a procedure, because it might enable convergence in the first place. Here, the smooth
approximation (by a small scaling) in the beginning normally ensures that a good initial
optimal trajectory for the CC-OCP is found. When gradually increasing the sharpness of
the sigmoid, the optimization can always be started with the previous optimal solution
(Step 6 in Algorithm 6.1). By this procedure, the optimizer is generally converging
very fast, as the previous solution should already fulfill most of the constraints and only
the CC might require minor adaptations (due to the sharper bound). Thus, the homotopy
procedure for the CC domain is generally reasonable to apply, especially if no suitable
initial guess is available.

An important aspect of the sigmoid homotopy procedure is the determination of a suit-
able final/desired value for the sigmoid scaling as,desired (see Step 0 Algorithm 6.1). This
factor is crucial as also already seen in Figure 6.1: A too small value yields a too smooth
approximation of the CC and thus, failure events might still have a large sigmoid ful-
fillment value although they should be zero in reality. On the other hand, a too large
value might introduce significant computational overhead, as the problem is solved with
a higher accuracy than required. Clearly, the terms “small” and “large” must be seen in
this context with respect to the magnitude of the considered quantity in the CC. Here,
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Algorithm 6.1 Implemented homotopy strategy for sigmoid scaling and offset parameter
in chance-constrained optimal control framework (after [102]).
Require:

Define the homotopy factor as,hom > 1.
Define the desired final sigmoid scaling as,desired.
Define the initial sigmoid scalings as,init.
Define the bound level BLs.
Define the bound value of the sigmoid ylb/ub (i.e., the bound value of the CC).

1: Initialize the sigmoid scalings as,lb/ub = as,init.
2: while as,lb/ub < as,desired do
3: Calculate the sigmoid values to use in the optimization:

Sigmoid bound shift: cs,lb/ub = − ln( 1
BLs
−1)

as,lb/ub

Sigmoid offset: bs,lb/ub = ylb/ub − cs,lb/ub
4: Assign the sigmoid values to the CC-OCP.
5: Solve the CC-OCP in (6.1):

Use initial guess from last homotopy step (if available).
6: Increase as,lb/ub by homotopy factor: as,lb/ub = as,hom · as,lb/ub.
7: Save the optimal trajectory as an initial guess for the next homotopy step.
8: end while

9: return Robust optimal trajectory with desired CC approximation accuracy.

a straightforward way to check if the homotopy parameter is already sufficient is given
by evaluating the gPC expansion response, after solving the CC-OCP with the current
homotopy parameter (Step 5 in Algorithm 6.1) and checking the CC bounds by the indi-
cator function approach in (6.4) directly (i.e., without the sigmoid approximation error).
If the calculated probability is fulfilling the desired probability level, the sigmoid scaling is
sufficient to create feasible trajectories for the desired CC-OCP with the indicator function.
If not, the scaling factor should be increased. Take into account that this procedure does
not significantly increase the computational effort as the sampling of the gPC expansion
outside the NLP iteration is, as already mentioned, very efficient (see (6.2)).

Another strategy in the context of choosing an appropriate final scaling parameter for
the sigmoid, is by looking at the sigmoid offset parameter calculated in the homotopy step
(Step 3) of Algorithm 6.1. As noted in Subsection 6.1.3, and also seen in Figure 6.1, this
offset defines the point at which the sigmoid reaches the value 0.5. As the bound value of
the CC is known, the difference between it and the offset gives an indicator on how smooth
or sharp the sigmoid is. Especially, when looking at the relative error (|cs−ylb/ub|)/(ylb/ub),
it has proven to be sufficient that this ratio is at least smaller than 10−3. More generally,
it can also be aimed that the ratio is smaller than the feasibility tolerance of the ROCP.
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Then, the sigmoid is sharp enough such that even small violations of the CC bound yield
to a notable decrease in the CC fulfillment probability, which is detected by the optimizer.
Thus, solutions outside the CC domain become unlikely and the scaling parameter can be
considered sufficiently large.

Overall, both mentioned approaches have proven to be efficient in the application cases
of this work and can also be combined to improve the confidence in the ROCP result.
Nonetheless, there might still be more suited strategies/methodologies for specific problem
formulations. Thus, further investigations can be done in this direction.

6.2 Subset Simulation based Chance-constrained Op-
timal Control

Although the MCA-like CC approximation based on the gPC expansion in Section 6.1 can
already be applied to solve CC-OCPs, it has limitations with regard to calculating rare-
event CC probabilities, i.e., probabilities of events that occur with a very low frequency (e.g.,
“one in one million”). Thus, this section introduces the extension of the sampling method
presented in Section 6.1 to cover rare-event CC probabilities, which is Contribution 5
of this thesis. Therefore, the method of subset simulation (SubSim) (Subsection 2.2.4;
a Markov chain Monte Carlo (MCMC) algorithm), which is specifically tailored to calculate
rare-event probabilities, is incorporated within the CC-OC framework.

Summarizing, the necessity for introducing SubSim comes with the fact that the ap-
proximation of the probability by (6.4) can normally only be used if rather loose bounds
on the probability (e.g., domain of ξ = 99%) are considered. For tighter bounds (i.e.,
rare-events; e.g., ξ = 99.9999%), as often used in e.g., reliability of safety engineering,
better suited algorithms to calculate and sample the probability are required. Indeed,
a reliable estimation of the probability of rare-events normally requires a very large number
of samples.

This approach has also already been used by the author in [102]. Building on this,
the thesis offers extensions to the work in [102] by e.g., applying a PDF approximation
of the failure probability domain. This PDF can then be used to improve the robustness
of the calculated results as e.g., the CI of the CC can be optimized. It should be noted
that this section also uses the approximations of the CC domain by sigmoids and thus,
mitigates the same benefits and limitations within OC (Section 6.1).

Before giving the technical details of the developed algorithm, it is important to note
that the feasibility tolerance of the ROCP (see (2.20)) must be adapted accordingly when
solving a rare-event CC-OCP. This means that the feasibility tolerance must be chosen
much smaller than the failure probability such that the desired high probability and thus,
confidence in the ROC solution is achieved.
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6.2.1 Combination of Subset Simulation and Optimal Control

As already introduced in Subsection 2.2.4, a classical approach to circumvent the issue of
requiring a large number of samples to get a reliable estimate of the rare-event probability
is the use of the SubSim method. This method is tailored to evaluate such rare-events [7–
9, 81]. The basic SubSim algorithm (see Subsection 2.2.4) is adapted to the needs of
the CC-OC framework in the following.

In this thesis, it is proposed to use the SubSim algorithm (Algorithm 2.3), which
is based on a MMHA (Algorithm 2.2), in a homotopy step of the CC-OC algorithm.
The basic algorithm that results from this connection in a homotopy step is as shown
in Algorithm 6.2 (the steps in the algorithm are detailed within the next paragraphs).
Take into account that this homotopy step does not necessarily increase the computational
burden of the CC-OCP solution process, as it can be combined with the anyway required
homotopy step for the sigmoid sharpening (Algorithm 6.1). The idea of the homotopy
update is to calculate the evaluation samples, created during the MMHA in Algorithm 2.3
(Step 9), outside the NLP iteration (Step 19 in Algorithm 6.2). This removes the task to
run the time-consuming and stochastic sample creation in each iteration of the NLP, i.e.,
while solving the ROCP. Additionally, the MMHA would require a stochastic Newton-
type update of the NLP iteration because of the stochasticity of the sample creation. Thus,
it is not desired to have the MMHA in a deterministic NLP scheme and rather create
the samples independent of the NLP.

Summarizing, SubSim is considered in this thesis as an add-on to the CC-OCP that
mainly provides the evaluation samples for the CC evaluation within the NLP iteration.
The core idea here is the separation of the stochastic sample creation and the determin-
istic NLP. Thus, SubSim runs “outside” of the solution process for the CC-OCP. In
the following, the calculation of the CC probability is introduced as well as the connection
to the calculated SubSim probability is cleared. Specifically, the relationship character of
SubSim and NLP is detailed.
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Algorithm 6.2 Basic strategy of homotopy for the subset simulation algorithm within
the chance-constrained optimal control framework (after [102]).
Require:

ROCP as e.g., in (6.1) with initial guess for decision variables ẑ.
Define the desired bound level that the rare-event CC should be fulfilled to (“CC
probability level”): ξ.
Number of samples per level ns.
Conditional probability p0.
Critical threshold b.
Maximal MCMC level nSubSim,max.
Maximal number of homotopy steps: lmax.
Homotopy factor for CC probability: 0 < ξhom < 1

1: Calculate an optimal solution for a likely failure (e.g., ξ = 99%) using the MCA-type
ROC (Section 6.1) and use it as initial guess.

2: Obtain the subset probability PSubSim [y (z;θ) /∈ F ] for the MCA-type ROC by apply-
ing Algorithm 2.3 (e.g., by simulation or sampling the gPC expansion).

3: Save the generated samples {θ(m−1)
jk : j = 1, . . . , nc, k = 1, . . . , nsc} used for the cal-

culation of the previous system response set, i.e., the set that was used to calcu-
late PSubSim [y (z;θ) /∈ F ] (Algorithm 2.3 Step 10). These are used as the constant
samples to evaluate the CC in the NLP.

4: Save the number of SubSim levels nss, which is also used as a constant within the NLP
CC evaluation.

5: Set counter: l = 1
6: Set the CC probability that the CC-OCP is currently solved by: ξOCP = ξ

7: while PSubSim [y (z;θ) /∈ F ] > ξ & POCP [y (z;θ) /∈ F ] > ξ & l ≤ lmax do
8: Assign the current CC probability ξOCP to the NLP CC.
9: Assign the SubSim samples {θ(nss)

jk : j = 1, . . . , nc, k = 1, . . . , nsc} and the
number of SubSim levels nss from the last iteration to the evaluation
routine of the CC within the OCP.

10: Solve the CC-OCP (see (6.1)) to get the updated probability POCP [y (z;θ) /∈ F ].
11: if Optimization not successful then
12: Relax the CC-OCP: ξOCP = ξhom · ξOCP

13: else
14: if ξOCP 6= ξ then
15: Increase the CC probability for the CC-OCP: ξOCP = ξOCP

ξhom

16: end if
17: end if
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Algorithm 6.2 Basic strategy of homotopy for the subset simulation algorithm within
the chance-constrained optimal control framework (continued; after [102]).
18: Obtain the new subset probability PSubSim [y (z;θ) /∈ F ] by applying

Algorithm 2.3 (e.g., by simulation or sampling the gPC expansion).
19: Save the generated samples {θ(nss)

jk : j = 1, . . . , nc, k = 1, . . . , nsc} used for the
calculation of the previous system response set, i.e., the set that was used to
calculate PSubSim [y (z;θ) /∈ F ] (Algorithm 2.3 Step 10). These are used as the
constant samples to evaluate the CC in the NLP.
Store the number of SubSim levels nss, which is also used as a constant within
the NLP CC evaluation.

20: Increase counter: l = l + 1
21: end while

22: return Optimal decision variables zopt and CC probabilities PSubSim [y (z;θ) /∈ F ] as
well as POCP [y (z;θ) /∈ F ].

6.2.2 Probability Calculation in Subset Simulation based Chance-
constrained Optimal Control

First of all, it should be noted that there are two different implemented strategies to
calculate the probability of the rare-event failure in the ROCP of (6.1) by SubSim (de-
sired fulfillment probability: ξ): Within the NLP iteration the sampling-based approach
(Subsection 6.1.1 using Algorithm 6.2) using the sigmoid (Subsection 6.1.2) is applied.
Here, the sigmoid is used to evaluate the failure probability by (2.43) or (2.47). Take into
account that the fulfillment probability of this CC, ξOCP, can be updated while solving
the CC-OCP with SubSim (Steps 11–17 in Algorithm 6.2). This might be necessary if
the initial guess does not allow the NLP iteration to converge and a relaxed NLP should
therefore be solved initially. It is further reminded here that the formulation in (2.47) is
generally preferred because it gives a continuous representation of the failure probability
(due to the Beta PDF approximation), while it also provides the possibility to calculate
the standard deviation, which can be used to robustify the solution by CIs and calculate
the coefficient of variation (CoV). Thus, (2.47) is applied in the following derivations and
the examples of this thesis.

For the probability calculation, e.g., in the ROCP, it is further important to note that
the failure probability in both (2.43) and (2.47) is calculated for being inside the failure
domain F . As also already stated, it is generally preferred to calculate the probability to
not be in the failure domain, due to the numeric scaling of the NLP, which has the simple
relation P [y (z;θ) /∈ F ] = 1−P [y (z;θ) ∈ F ]. Thus, it is easy to change between the two
descriptions. In Algorithm 6.2, the calculated probability at the optimal point of the NLP
is further on denoted by POCP [y (z;θ) /∈ F ].
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Furthermore, the SubSim in the homotopy step (Step 18 in Algorithm 6.2) is based on
a full simulation of the model (e.g., by a standard Runge-Kutta scheme [16, p. 145f.]
or a hybrid Matrix Laboratory R© (MATLAB R©) differential equation integrator1). Here,
the robust control history from the previous optimization result is used for the simulation.
The results can then be evaluated using the indicator function to have an independent
formulation of the ROCP, which is based on the sigmoid. By this, it is secured that
the calculated control history does also fulfill the rare-event CC probability without the er-
rors introduced by e.g., using the gPC expansion for the sampling, the tolerances of
the NLP algorithm (i.e., the optimality and feasibility tolerances), as well as the sigmoid
approximation. Additionally, the errors occurring by taking the random samples from
the previous SubSim run are also mitigated. The corresponding probability calculated by
the SubSim in the homotopy is further on denoted by PSubSim [y (z;θ) /∈ F ] (see Step 18
of Algorithm 6.2).

It should be further noted that the random samples, created in Step 18 of Algorithm 6.2,
as well as the corresponding number of SubSim levels nss for these samples, are directly used
in the NLP algorithm to evaluate the CC and remain constant during the NLP solution
process. As mentioned, this moves the stochasticity of the SubSim to the homotopy step.

As also already stated, the basic procedure of the SubSim within CC-OC, and especially
the two step SubSim evaluation procedure, once within the NLP using the gPC expansion
with constant level samples and the other time within the homotopy step using a simulation
with the calculated robust control history, is illustrated in Algorithm 6.2 as well: Here, it is
clear that the CC-OCP is only considered to be solved if both the CC within the NLP as well
as the SubSim homotopy step fulfill the desired CC probability level Pdes [y (z;θ) /∈ F ] = ξ

(Step 7 in Algorithm 6.2).
It is important to note that the procedure of assigning constant samples as well as

using the number of SubSim from the homotopy step (Steps 9 and 19 in Algorithm 6.2),
makes it straightforward to calculate the Jacobian and Hessian of the failure probability
estimate from the Beta PDF in (2.46) and (2.47). This is based on the fact that
the derivative must only be taken with respect to the expansion coefficients. To illustrate
this, the parameters c1 and c2, which are used for the calculation of the Beta PDF shape
and rate parameter (see (2.46)), are looked at:

c1 = (p0 · ns + 1)nss

(ns + 2)nss︸ ︷︷ ︸
const.

·
[
ns∑
i=1
Ĩ
[
y(i)
nss

(
z;θ(i)

nss

)]
+ 1

]

c2 = (p0 · ns + 2)nss

(ns + 3)nss︸ ︷︷ ︸
const.

·
[
ns∑
i=1
Ĩ
[
y(i)
nss

(
z;θ(i)

nss

)]
+ 2

] (6.17)

1https://mathworks.com/help/matlab/math/choose-an-ode-solver.html (Retrieved
April 23, 2019)
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Here, the indicator function is approximated by the sigmoid representation within the NLP
for smoothness reasons (it should be reminded that the sigmoid in (6.9) is defined for
the non-failure domain and thus, the sigmoid must be subtracted from one to get the failure
domain probability):

c1 = (p0 · ns + 1)nss

(ns + 2)nss︸ ︷︷ ︸
const.

·

1−

ns∑
i=1

s
[
y(i)
nss ; as,bs

]
ns

+ 1


c2 = (p0 · ns + 2)nss

(ns + 3)nss︸ ︷︷ ︸
const.

·

1−

ns∑
i=1

s
[
y(i)
nss ; as,bs

]
ns

+ 2


(6.18)

Then, the derivative with respect to the expansion coefficients is given by the chain rule
combining (6.3), (6.10), and (6.13) as follows:

∂c1

∂ŷ(m) = (p0 · ns + 1)nss

(ns + 2)nss︸ ︷︷ ︸
const.

·

− 1
ns

ns∑
i=1

 ∂s
[
y(i)
nss ; as,bs

]
∂y(i)

nss︸ ︷︷ ︸
(6.13)

·
∂y(i)

nss

∂ŷ(m)︸ ︷︷ ︸
(6.3)



∂c2

∂ŷ(m) = (p0 · ns + 2)nss

(ns + 3)nss︸ ︷︷ ︸
const.

·

− 1
ns

ns∑
i=1

 ∂s
[
y(i)
nss ; as,bs

]
∂y(i)

nss︸ ︷︷ ︸
(6.13)

·
∂y(i)

nss

∂ŷ(m)︸ ︷︷ ︸
(6.3)


(6.19)

Thus, the necessary Jacobian of the probability for the NLP algorithm using (6.19) can
be calculated.

Take into account that the Hessian can be derived in the same manner as (6.19)
using (6.14). Additionally, the chain rule for the product of derivatives in (6.19) as well
as the fact that the derivative of (6.3) with respect to the expansion coefficients is zero
must be considered. Then, the Hessian is given as follows:

∂2c1

∂ŷ(m)∂ŷ(n) = (p0 · ns + 1)nss

(ns + 2)nss︸ ︷︷ ︸
const.

·

− 1
ns

ns∑
i=1

∂2s
[
y(i)
nss ; as,bs

]
∂
(
y(i)
nss

)2

︸ ︷︷ ︸
(6.14)

·
∂y(i)

nss

∂ŷ(n)︸ ︷︷ ︸
(6.3)

·
∂y(i)

nss

∂ŷ(m)︸ ︷︷ ︸
(6.3)



∂2c2

∂ŷ(m)∂ŷ(n) = (p0 · ns + 2)nss

(ns + 3)nss︸ ︷︷ ︸
const.

·

− 1
ns

ns∑
i=1

∂2s
[
y(i)
nss ; as,bs

]
∂
(
y(i)
nss

)2

︸ ︷︷ ︸
(6.14)

·
∂y(i)

nss

∂ŷ(n)︸ ︷︷ ︸
(6.3)

·
∂y(i)

nss

∂ŷ(m)︸ ︷︷ ︸
(6.3)


(6.20)

Then, (6.19) and (6.20) provide the Jacobian and Hessian for the coefficients used to
calculate the shape and rate parameter of the Beta PDF respectively, which is used to
estimate the failure probability. Thus, the Jacobian and Hessian calculation must be ex-
tended for the NLP to the e.g., mean and standard deviation value in (2.47) applying (2.46)
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(using the coefficients in (6.19) and (6.20)). These results can directly be calculated using
e.g., symbolic derivations and the chain rule and are thus, left out here for the sake of
compactness.

To conclude the SubSim-based CC-OC framework, the following two paragraphs discuss
the convergence as well the choice of SubSim parameters for the developed algorithm:

Convergence Discussion of Proposed Algorithm
As a general statement, it can be said that the proposed SubSim homotopy strategy is
viable for the use within NLPs as especially the Jacobian and Hessian can be provided
efficiently. On the other hand, it should be noted that by using the SubSim samples
calculated from the previous optimal solution within the new optimization, a bias might
be introduced as the samples drawn from the Markov chain are based on the optimal
result created by the previous NLP solution. Generally, the samples would have to
adapted in each iteration of the NLP, as the system response changes and therefore,
the MMHA might create different results. As this is not done within the NLP, but within
the homotopy step after a new optimal solution has been calculated, the CC and its rare-
event probability is solved using “non-ideal” samples compared to the ones that would be
calculated within the SubSim (still, the used samples could be a possible outcome set of
the random MMHA within the SubSim nonetheless). This issue is coped with in this thesis
by checking the fulfillment of the CC probability both in the CC-OCP as well as after
the CC-OCP is solved by the SubSim in the homotopy step, i.e., with the new response
surface. Thus, the CC-OCP is only considered to be solved if both results show that
the CC is fulfilled to the desired probability level. As stated, within this thesis, the CC-
OCP converges fine, but further studies can explore the effects and influences of this bias
and how to reduce it (e.g., by introducing importance sampling techniques [81, p. 23ff.]).
Additionally, sensitivity analysis techniques could be used to update the samples based
on the difference to the previous optimal solution, i.e., the change in the response surface
(this would require “inverse” sensitivities, i.e., parameter updates based on the decision
variable changes rather than decision variable updates based on the sensitive parameters
changes). Still, the application cases of this thesis show that the proposed algorithm
converges well even omitting these issues. As mentioned, this is due to the two-step
procedure and independent SubSim evaluation in the NLP and the homotopy to assure
a feasible solution.

Choice of Subset Simulation Proposal Distribution
A further important aspect of the SubSim, and especially the used MMHA within it, is
the choice of the proposal PDF around the current samples in Step 0 of Algorithm 2.2.
Here, generally the choice of a proposal PDF is difficult, because the required “spread” is
largely depending on the original PDF of the samples and the weighting of acceptance rate
and spatial dependence. Using the gPC method, this choice of a proposal PDF becomes
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more straightforward: This is due to the fact that the samples are created in a way that
they can be evaluated in the orthogonal polynomial domain. This consequently means
that the samples are always defined such that they are in their “standard” domains of
gPC expansion as defined in Table 2.2. Thus, it is not necessary to adapt the proposal
PDF choice for different parameter settings, but instead it is possible to define a standard
relation between the parameter’s PDF and the proposal PDF. As stated in [9, p. 123],
a safe strategy to choose the standard deviation is the use of the standard deviation
of the target distribution. Thus, for an uncertain parameter with a Gaussian PDF,
the proposal PDF can also be chosen as the standard Gaussian PDF. By this, a good
exploration of the failure region can be assured. Furthermore, for a Uniform PDF,
the exploration can be done with the standard Uniform spread around the current
sample and be clipped at the standard domain bounds accordingly. This has proven to
be efficient as well. Therefore, the gPC algorithm actually has some benefits for SubSim,
due to its standard definition in terms of the PDFs.

Concluding, both introduced CC-OC framework, with MCA-based sampling for “fre-
quent” events (Section 6.1) as well as the SubSim-based sampling for rare-events, are
tested in Chapter 9 to show their applicability in the OC context.
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Chapter 7

Design of Robust Gains for Control
Loop

This chapter covers the first application example of the developed robust open-loop di-
rect optimal control (ROC) frameworks of this thesis. Within this chapter, the bi-level
framework, introduced in Chapter 3, is applied to calculate robust controller gains and
thus, results for Contribution 2 are shown. An adaptive control loop is considered to show
the applicability of the methodology to calculate robust, optimal adaptation gains.

Generally, the calculation is done by at first applying the framework in Section 3.1, i.e.,
with the differential evolution algorithm (DEA) in the upper level, to restrict the domain
of the (globally) optimal gains. Afterward, the framework from Section 3.2 is used, in
the domain around the optimal gains from the DEA result, to find the numerically exact
optimum. This procedure is applied to be more certain that the calculated optimal gains
are globally optimal.

To show the procedure and the results, the chapter is organized as follows: In Sec-
tion 7.1, the dynamic model for the control loop is introduced. Then, Section 7.2 depicts
the application of the bi-level framework to the calculation of the adaptation gain in
an adaptive control loop with Section 7.3 illustrating the results. Here, especially proba-
bilistic constraints, i.e., chance constraints (CCs), are applied to achieve a robustification.

7.1 Dynamic Model for Gain Design

In this example, a short period approximation of an F-16 is used to show the robust
gain design based on the bi-level generalized polynomial chaos (gPC) method (Chapter 3;
after [122, p. 259] and [59, p. 29f.]):

 .
αK
.
qK


︸ ︷︷ ︸
.x∈R2×1

=
 ZαK 1 + ZqK
θαK ·MαK θqK ·MqK


︸ ︷︷ ︸

A∈R2×2

·

αK
qK


︸ ︷︷ ︸
x∈R2×1

+
 0
θη ·Mη


︸ ︷︷ ︸

B∈R2×1

η︸︷︷︸
u∈R1×1

(7.1)
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Table 7.1: Description of constants in the state and control matrix of the F-16 short
period approximation dynamic model.

Meaning Symbol Value
Lift force due to angle of attack ZαK −1.8406
Lift force due to pitch rate ZqK −0.0908
Pitch moment due to angle of attack MαK −30.7874
Pitch moment due to pitch rate MqK −3.7534
Pitch moment due to elevator Mη −12.7528

Here, the states are given by the angle of attack αK and the pitch rate qK . The elevator
deflection η is the control. The multiplicative uncertainties for the angle of attack, pitch
rate, and elevator deflection influence on the pitch acceleration .

qK are denoted by θαK , θqK ,
and θη respectively. The constant entries in the state and control matrix with their meaning
are introduced in Table 7.1. These values were calculated by a linearization of the nonlinear
rigid-body F-16 model [122, p. 714ff.], using a steady-state horizontal flight condition with
a velocity of 135m

s . This model is used in the following for the gain design.

7.2 Gain Design for Adaptive Control Loop

In this section, the calculation of the adaptation/learning gains for an adaptive controller
structure is looked at. Generally, adaptive controllers have a different philosophy compared
to standard controllers: Instead of using a fixed control gain matrix, they are continuously
adapting their control gain matrix to recover a desired system performance. This system
performance is often defined by a reference model and the procedure is known as model
reference adaptive control (MRAC). A structural breakdown of the MRAC scheme, used
in this thesis, is also given in Figure 7.1. A detailed description of all parts in this figure
is given in the following paragraphs.

Generally, the goal for the gain calculation of the adaptive controller structure is
not the calculation of the control gain matrix but the adaptation gain matrix. These
adaptation gains must allow a reasonable fast adaptation of the system, while securing
a “good” transient behavior. A transient behavior is considered to be “good”, if oscillations
and overshoots of the system are minimal.

At first, the state predictor/reference model is introduced: This reference model uses
the plant model in (7.1) for the nominal case (i.e., no uncertainties). For this nominal
model, a desired dynamic behavior by means of pole placement is specified [122, p. 381ff.].
The general idea of this procedure is to use a control gain matrix such that the closed-
loop system (i.e., when inserting the control law in the state dynamics) fulfills predefined
dynamics defined by the eigenvalues of the state dynamic matrix. Generally, the following
equation is looked at in the context of pole placement:
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Control Law
(see (7.6))

Plant (with
uncertainty)
(see (7.1))

Adaptation
(see (7.10)
with (7.11))

Reference/Predictor
Model

(see (7.9) with (7.2))

r u

x,u

x

−

xP

e

x

Θ

Θ,Λ

Figure 7.1: Structure of implemented model reference adaptive control loop for robust
adaptation/learning rate design.

AP = A−BK (7.2)

For (7.2), the eigenvalues λ can be calculated as follows [5, p. 594ff.]:

det (AP − λI) ≡ 0 (7.3)

Take into account that the operator det (·) in (7.3) is the determinant operator [5, p. 547f.]
and I is the identity matrix of appropriate size. Equation (7.3) results in a polynomial of
the order of the number of states in the eigenvalues. By assigning eigenvalues to the system,
the entries to the, yet unknown, control gain matrix K can be calculated. These values
are then chosen such that the closed-loop system fulfills desired dynamics.

For the model of this thesis, the eigenvalues are assigned as follows:

λ1,2 = −3± 3i (7.4)

Here, i is the imaginary unit [5, p. 124f.] with the property i2 = −1 and thus, a stable
oscillatory pole is assigned to the system, which yields the control gain matrix as follows:

K ≈
[
1.5220 −0.0318

]
(7.5)

Then, (7.2) provides the state dynamics of the reference model for the MRAC.
After defining the reference model state dynamic matrix, the control law for the adaptive

controller is formulated as follows:

u = Λ−1 (Krr−Θx) (7.6)
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Here, Λ is the matching matrix for the control uncertainty (“control matching matrix”),
while Θ is the matching matrix for the state uncertainties (“state matching matrix”).
Both of these matrices are adapted in the MRAC scheme to cancel out uncertainties.
The reference command, i.e., the desired trajectory, is defined by r and Kr is the corre-
sponding control gain matrix of the reference command to achieve a desired closed-loop
performance (e.g., steady-state accuracy). It should be noted that Kr is designed to be
the inverse of the low-frequency gain for the first state of the closed-loop dynamic model
(this assures steady-state accuracy) as follows [84, p. 167ff.]:

Kr =
[
−
[
1 0

]
A−1
P B

]−1
≈ −1.5524 (7.7)

The goal of the adaptive control loop is to control the error between the reference model
and the real plant behavior to zero. This error is defined as follows:

e = xP − x (7.8)

Here, the state vector x includes the uncertainties from the real plant model in (7.1),
while xP is the state vector obtained from the reference/predicted plant, defined as follows:

.xP =
[ .
αK,P

.
qK,P

]T
= AP · xP + BΛu + BΘx (7.9)

It should be noted that inserting (7.6) in (7.9) yields the desired plant dynamics with
reference command tracking.

In addition to the plant and the predictor dynamics model, an adaptive controller
additionally comprises the dynamic equations for the matching conditions. These are
dynamically updated by the error between prediction and plant and thus, try to reduce
this error. The dynamic equations are given as follows [63, ch. 3c, p. 24]:

.
Θ = −ΓΘxeTPLB
.
Λ = −ΓΛueTPLB

(7.10)

Thus, the matching condition matrices are updated based on the error in (7.8) until it
approaches zero. Here, the adaptation gain matrices ΓΛ and ΓΘ for the control and state
matching matrix respectively play an important role as they define the adaptation “speed”.
Generally, a fast adaptation (i.e., a large gain is desired), while there should not be any
excessive oscillation (i.e., a smaller gain is required). This trade-off is approached within
this thesis using the bi-level ROC approach. It should be noted that ΓΛ and ΓΘ are
positive definite and, generally, diagonal matrices (Table 7.2). Further take into account
that (7.10) is derived in such a way that the Lyapunov function of the closed-loop
remains stable [63, ch. 3c, p. 24].

In (7.10), the matrix PL refers to the Lyapunov matrix that is the solution of
the following Lyapunov equation [85, p. 300]:
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Table 7.2: Control and feed-forward gain values used for the adaptive closed-loop F-16
model optimization.

Meaning Symbol (Rounded) Value

Lyapunov scaling matrix QL

1 0
0 1


Lyapunov matrix PL

 0.7627 −0.0794
−0.0794 0.1028


Reference adaptation gain matrix ΓΘ

ΓαK 0
0 ΓqK

 =
20 0

0 1


Control gain matrix ΓΛ 1
Feedforward gain Kr −1.5524
Feedback gain matrix K

[
1.5220 −0.0318

]

AT
PPL + PLAP = −QL (7.11)

Here, QL is a positive definite scaling matrix.
In Table 7.2 the numeric values of the matrices used in the bi-level open-loop direct

optimal control problem (OCP) are introduced. The diagonal entries of the adaptation
gain matrix for the states ΓΘ are the optimization parameters for the bi-level algorithms
and thus, Table 7.2 shows the reference values. All other matrices and values in Table 7.2
are constants in the bi-level procedure and chosen such that a reasonable closed-loop
behavior of the adaptive control loop is achieved.

7.3 Gain Design Results for Adaptive Control Loop

This section covers the results of the bi-level ROC gain design for the adaptive controller.
At first, Subsection 7.3.1 introduces the problem definition of the bi-level ROC framework
applied to the adaptive control loop. Then, Subsection 7.3.2 introduces the minimization
of the mean and standard deviation of the control command area, while Subsection 7.3.3
introduces CCs in the previous bi-level ROC to robustify the results of the gain design.

7.3.1 Problem Definition

Generally, the adaptive control loop is subject to the following uncertainties in the state
dynamics (see (7.1)), defined by their probability density functions (PDFs) as follows:

θαK ∼ U (a = 0.5, b = 1.5)
θqK ∼ U (a = 0.5, b = 1.5)
θη ∼ U (a = 0.5, b = 1.5)

(7.12)
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This means that the mean values, defined in Table 7.1, can vary up to ±50 %. Take
into account that this is a quite large uncertainty, but it can illustrate the capabilities
of the ROC algorithm very well. A Uniform PDF is used as it can be assumed to be
a worst-case PDF.

The reference command is defined to be a step as follows:

r =

0, for 0s ≤ t < 1s
10 ◦ · π

180 ◦ , for 1s ≤ t ≤ 10s
(7.13)

It should be noted that a step excitation is used in this thesis due to the fact that it is
a very common test excitation in controller design.

Take into account that the step height in (7.13) is deliberately large to show the po-
tential of the ROC approach, although in a real application the assumption of having
the same linear system for such a step might be violated. Further take into account that
the final time is set to 10s, which is a long enough time horizon for the system to be in
a steady-state again.

Take into account that the bi-level robust open-loop direct optimal control problem
(ROCP) is as follows, using the adaptive controller dynamic equations and the control law
at each stochastic collocation (SC) node as follows:

min
ΓΘ

JUL

s.t. ΓΘ,lb ≤ ΓΘ ≤ ΓΘ,ub

s.t. x(j) = x(j)
0 +

∫ tf
t=t0

.x(j) dt

x(j)
P = x(j)

0,P +
∫ tf
t=t0

.x(j)
P dt

Θ(j) = Θ(j)
0 +

∫ tf
t=t0

.
Θ

(j) dt

Λ(j) = Λ(j)
0 +

∫ tf
t=t0

.
Λ

(j)
dt

.x(j) = A(j)x(j) + B(j)u(j)

.x(j)
P = A(j)

P x(j)
P + BΛ(j)u(j) + B(j)Θ(j)x(j)

.
Θ

(j) = −ΓΘx(j)
(
e(j)

)T
PLB(j)

.
Λ

(j)
= −ΓΛu(j)

(
e(j)

)T
PLB(j)

u(j) =
(
Λ(j)

)−1 (
Krr−Θ(j)x(j)

)

(7.14)

The initial conditions used for the simulations in (7.14) are as follows:

x(j)
0 = x(j) (t = t0) =

[
0 0

]T
x(j)

0,P = x(j)
P (t = t0) =

[
0 0

]T
Θ(j)

0 = Θ(j) (t = t0) =
[
1.5220 −0.0318

]T
Λ(j)

0 = Λ(j) (t = t0) = 1

(7.15)
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It should be noted that the initial values for the matching matrix of the states are the ideal
matching condition values, which can be calculated for this simple system analytically [63,
ch. 3c, p. 23] and thus, provide a very good initial guess for the simulation. In other
applications, appropriate values must be defined by the user.

It is reminded here that the initial solution of the problem is calculated by a DEA and
afterward, the sensitivity based approach is applied. Here, the bounds for the DEA are
chosen as ΓΘ,lb,DE = 0.1 and ΓΘ,ub,DE = 150 for each diagonal entry of the gain matrix
to cover the main range of normally used adaptation gain values. For the bounds of
sensitivity-based optimization conducted after the DEA, the adaptation gains bounds are
calculated based on the optimal gains from the DEA:

ΓΘ,lb/ub,sen = ΓΘ,DE,opt ± 0.25 · |ΓΘ,DE,opt| (7.16)

Furthermore, the following setup for the DEA is used (Algorithm 3.1):

• Population size: npop = 25

• Backtrack steps: nbt = 15

• Maximum number of iterations: kmax = 250

• Optimality tolerance: εopt = 10−3

• Feasibility tolerance: εfeas = 10−3

• gPC polynomial order: di = 3

• SC expansion nodes (tensor grid): Q = 27

For the sensitivity/Newton-type optimization step, Interior Point Optimizer (Ipopt)
as version 3.12.12 is used. Here, the optimality and feasibility tolerances are set to εopt =
εfeas = 10−5 respectively and the linear solver ma97 is used.

7.3.2 Minimization of Control Area Mean and Standard Devia-
tion

Within this section, the minimization of the mean control area and its standard deviation
is looked at. Specifically the mean control area is a standard cost for control loops as
a small control area, and thus, control effort, is generally desired. Additionally, the spread,
i.e., the standard deviation, in the control effort should not be too large, which provides
a robustification. Thus, the upper level cost function in (7.14) is defined by:

JUL =
∫ 10

t=0

(
E
[
uT
]
E [u]

)
dt+

∫ 10

t=0

(
σ
[
uT
]
σ [u]

)
dt (7.17)

159

https://coin-or.github.io/Ipopt/


7.3 Gain Design Results for Adaptive Control Loop

Take into account that due to the nonlinearity in the adaptive control loop introduced
in e.g., (7.9) and (7.10), the mean value of the control command u and the result when
simulating the system in (7.1) for the nominal parameter uncertainty value (i.e., no
uncertainty influence) is generally not the same. Thus, the calculation of a gPC expansion
to even calculate the mean value is required in this application.

The solution of the bi-level OCP in (7.14) with the cost function in (7.17) yields
the following optimal gain matrix:

ΓΘ,sen,opt ≈

9.294 0
0 0.075

 (7.18)

It is imminent that the calculated adaptation gains are smaller than the reference/initial
gains defined in Table 7.2. This is mainly based on the fact that with a smaller adaptation
gain, the adaptive controller is not trying to reduce the errors created by the uncertainty
fast. This yields smaller required control effort, but also worse tracking. Take into account
that, as only the statistics of the control effort are considered as the cost function, fast
tracking is not a requirement for the controller.

To examine the optimal gains for the adaptive control loop, the time history of the plant
angle of attack in Figure 7.2 is looked at. Here, the optimal gains are depicted by a solid,
blue line, while the reference gains from Table 7.2 is depicted by a dashed red line.
Additionally, a worst-case (i.e., the combination of uncertainties that yields the maximal
angle of attack) is depicted for the reference gains in solid magenta and for the optimal
gains in solid cyan. It can be seen that the convergence to the desired 10 ◦ step takes
around 6 s for both gains, which is rather slow but a consequence of the chosen cost
function that only tries to minimize the control area. Here, the steady-state step value
should be achieved with a small control effort which in turn yields a slow convergence.
From an overall perspective, both gains behave similar with the smaller optimal gains
lagging slightly behind in transient phases. This is also seen in the standard deviation,
where the optimal gain convergences to zero at a later time instance and has generally
a larger value. It should be noted here that the uncertainties and the slow adaptation
yield standard deviations of more than 4 ◦, which is generally an undesired behavior. This
is also seen in the worst-case approximations, which show that an angle of attack of more
than twice the step size is reached with the optimal gains for the worst-case parameter
combination. Thus, further robustifications are required in this context.

A similar behavior is also seen for the control history in Figure 7.3: The mean control
command is similar for both reference and optimal gains, while the standard deviation is
smaller for the optimal gains. This consequently creates less adaptation to the uncertainty
influences and worse tracking. It should be noted that the magnitude of the values is
related to the magnitude of the uncertainties and the fact that the control command is
not limited. Thus, it might not be fully feasible for real applications but merely shows
the general applicability.
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Figure 7.2: Mean and standard deviation of plant angle of attack reaction to step input
including worst-case approximations for reference and optimal adaptation gains.

0 1 2 3 4 5 6 7 8 9 10
−40

−20

0

E[
u]
=
E[
η
]i
n
[◦ ]

Mean and standard deviation of control history

Optimal Gain
Reference Gain

0 1 2 3 4 5 6 7 8 9 100

5

10

15

t in [s]

σ
[u
]=
σ
[η
]i
n
[◦ ]

Optimal Gain
Reference Gain

Figure 7.3: Mean and standard deviation of control history during step input for reference
and optimal adaptation gains.
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Figure 7.4: Convergence history of mean value and standard deviation of control area
for optimal and reference adaptation gains from minimization of control area mean and
standard deviation in adaptive control loop.

Furthermore, Figure 7.4 looks at the convergence history of the control area over time,
i.e., the bi-level cost function. As already seen in Figures 7.2 and 7.3, the mean control
area is very similar, with the optimal gain reaching a slightly smaller value. The standard
deviation also shows that the optimal gain has a smaller variation in the control effort
and thus, control area. Thus, the bi-level OCP achieves the desired cost goal.

Overall, the previous results show that the minimization of the control area statis-
tics yields rather slow adaptation results, i.e., small adaptation gains, in order to keep
the control area small (which is the goal of the cost function). Thus, the results cannot
be considered safely robust (i.e., they are robust with respect to the uncertainty but lack
a high safety, which is in this case e.g., not exceeding a maximal angle of attack). This is
also imminent from Figure 7.5: Here, the probability of having an angle of attack smaller
than 11 ◦ over the simulation time is depicted. It should be noted that this probability
is calculated from sampling the simulation results using the optimal and reference gains
with ns = 5000 in a Monte Carlo analysis (MCA). From an application point of view,
this bound can be reasoned by the fact that a too large angle of attack yields to a stall.
Additionally, as the uncertainty domain is rather large (see (7.12)), a 10 % overshoot
should generally be allowed for a step command. In Figure 7.5, it can be observed that
the desired CC is actually violated by up to 40 % of the trajectories at approximately 2 s for
both optimal as well as reference gain respectively. Additionally, the integrated area (see
legend text box in Figure 7.5) of fulfillment is reduced by around 5.5 % using the robust
optimal gains (see values in Figure 7.5).
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Figure 7.5: Probability of not exceeding angle of attack limitation of eleven degrees over
simulation time for optimal and reference adaptation gains.

Thus, it must be secured in the following that the controller and resulting control
commands create a safe and robust trajectory. This trajectory should only have a small
(or at best no) probability of, in this case, violating the maximal allowable angle of attack.
Concluding, the calculated adaptation gain cannot be considered as safely robust to
the uncertainties with the standard cost function for control area statistics minimization
and robustness modifications in the gain optimization process are required. This is
examined in the next subsection by introducing CCs.

7.3.3 Minimization of Control Area Statistics with Chance Con-
straint Fulfillment

Although the previous section already gave an idea of the robustness improvements that
are possible using the gPC bi-level approach, the improvements were not yet considered
safely robust. This is dealt with in this section, which introduces CCs in the formulation.
This is a distinctive feature of the gPC bi-level approach and can normally not be achieved
using standard robust gain design techniques.

Generally, robustness modifications could be introduced in the cost function (see
standard deviation in (7.17)) naturally requiring the solution of a Pareto optimization
problem (which is omitted here for the sake of simplicity). Because Pareto problems
are generally cumbersome to solve, this section directly uses the probability of fulfilling
the desired CC bound, in this case for the angle of attack, as a constraint in the upper
level of the bi-level problem. Thus, the bi-level problem formulation in (7.14) is adapted
as follows:
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min
ΓΘ

JUL

s.t. ΓΘ,lb ≤ ΓΘ ≤ ΓΘ,ub

P [x ∈ P ] ≥ ξ

s.t. x(j) = x(j)
0 +

∫ tf
t=t0

.x(j) dt

x(j)
P = x(j)

0,P +
∫ tf
t=t0

.x(j)
P dt

Θ(j) = Θ(j)
0 +

∫ tf
t=t0

.
Θ

(j) dt

Λ(j) = Λ(j)
0 +

∫ tf
t=t0

.
Λ

(j)
dt

.x(j) = A(j)x(j) + B(j)u(j)

.x(j)
P = A(j)

P x(j)
P + B(j)Λ(j)u(j) + B(j)Θ(j)x(j)

.
Θ

(j) = −ΓΘx(j)
(
e(j)

)T
PLB(j)

.
Λ

(j)
= −ΓΛu(j)

(
e(j)

)T
PLB(j)

u(j) =
(
Λ(j)

)−1 (
Krr−Θ(j)x(j)

)

(7.19)

Here, ξ is the desired probability level achieved by the probabilistic/chance constraint
(Subsection 2.4.4) on the states. It should be noted that the upper level cost function
in (7.19) remains as defined in (7.17).

The evaluation of the CC for the bi-level formulation in (7.19) can be directly done
using the methods in Subsection 6.1.1 to estimate the probability and Subsection 6.1.2 to
create a differentiable approximation for the nonlinear program (NLP) solver.

Take into account that the CC is evaluated in an integral form, i.e., over the com-
plete time interval. This must be done here as the DEA is generally bad performing
with constraints, specifically a lot of constraints which would be present when enforcing
the CC at each time point. Thus, the integral representation is a suitable choice for this
purpose and defined as follows (already using the sigmoids for the smooth approximation
of the indicator function as introduced in Subsection 6.1.2):

P [x ∈ P ] = 1
ns

ns∑
i=1

[
1

tf − t0

∫ tf

t=t0
s
[
x(i); as,bs

]
dt
]
≥ ξ (7.20)

It should be noted that the time integration is carried out by the trapezoidal rule and
the integral result is appropriately normalized using the time horizon. Furthermore,
the number of samples is given by ns. Thus, the probability is calculated by integrating
all ns random trajectories over time to get the probability of fulfillment for each individual
trajectory. Afterward, the probability value of fulfilling the CC is calculated by division
through the number of samples.

In this application, the angle of attack αK is considered as the state that should fulfill
the probabilistic constraint P [αK ≤ 11 ◦] in (7.20) with a desired minimal probability
level of ξ = 99 %. Take into account that the shape and offset parameter of the sigmoid
in (7.20) are chosen as as = 250 and bs ≈ −0.05 ◦. By this, a very good, i.e., steep
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(Subsection 6.1.2), approximation of the original CC is achieved. It should be further
noted that this approximation quality could be achieved without a homotopy, as the DEA
already provides a feasible initial solution to the sensitivity optimization.

Then, solving the bi-level OCP in (7.19) results in the following optimal adaptation
gains for the robust case:

ΓΘ,sen,opt ≈

0.077 0
0 52.059

 (7.21)

It is imminent from comparing the gains in (7.21) with the gains for the bi-level OCP
without CC (“not safely robust”) in (7.18) that the gain corresponding to the angle
of attack is reduced, while the gain related to the pitch rate is significantly increased.
The increase in the pitch rate adaptation gain can directly be explained from the fact that
the uncertain parameters are mainly, and significantly, influencing the pitch rate dynamics
(see (7.1) and (7.12)). Thus, a fast adaptation is required here to reduce the uncertainty
influence. On the other hand, the reduction of the adaptation gain for the angle of attack
is a consequence of the cost function that still tries to reduce the control area statistics.
Due to the increase in control effort caused by the pitch rate adaptation gain, the angle
of attack gain must be reduced consequently. This yields worse tracking of the reference
command. Thus, for different applications a tracking cost or constraint could also be
considered as supplement in (7.19).

Looking at the results, Figure 7.6 depicts the mean value and standard deviation time
development of the angle of attack (the dashed black line is the maximal allowed angle
of attack). Here, the robust gain result (solid blue line) is the result with the gains as
given in (7.21), while the non-robust reference gain case (dashed red line) is simulated
with the reference gains in Table 7.2. Additionally, the worst-case approximation, i.e.,
the trajectory that yields the maximal angle of attack, is depicted (solid magenta: reference
gain; solid cyan: optimal gain). It is seen that the angle of attack has slightly worse
tracking as already expected from the smaller angle of attack adaptation gain. But, more
importantly, the maximal standard deviation is reduced by approximately 33 % with
the robust gains in (7.21). Additionally, the maximal standard deviation for the robust
gain case does not occur at the first overshoot of the mean value (at approximately 2 s) as in
the non-robust case, but at the first undershoot (at approximately 2.8 s). As a consequence,
this also directly reduces the maximal angle of attack of the worst-case trajectory. Still,
there remains a non-zero standard deviation with the optimal gains after 10 s, which is
the already mentioned deteriorated tracking.

The reduction of the maximal standard deviation and the shift to the first undershoot
also consequently increases the CC fulfillment probability as seen in Figure 7.7: Here, it
is imminent that the maximum failure probability of around 40 % is reduced to a level of
around 5 %. Thus, it is very certain that the CC bound for the angle of attack of 11 ◦ is not
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Figure 7.6: Mean and standard deviation of plant angle of attack reaction to step input
including worst-case approximations for reference and optimal adaptation gains.

violated, even considering the large uncertainty domain in (7.12). Specifically, Figure 7.7
shows that the integrated failure probability is reduced to 0.2 %, which now combines
robustness and safety.

Take into account that the increase of the fulfillment probability for the CC comes at
the cost of an increased control effort and, especially, a non-smoother control command.
This behavior can be examined in Figure 7.8. Here, it is clear that the control effort largely
varies for different uncertainties after the step initiation, because of the large standard
deviation. This is mainly based on the large adaptation gain for the pitch rate, which
tries to directly cancel out the uncertainties in the transient phase. Additionally, the large
control effort after the step initiation is required because the CC must be fulfilled.

Concluding the CC-based gain design, Table 7.3 compares the control area statistics
and the fulfillment probabilities for the two robust gain and the reference gain results. It
should be noted that the control areas are calculated with the control command in radiant
rather than in degrees and thus, the values are comparably small. It can be seen that
the robust gain results without CC from Subsection 7.3.2 yield the best (i.e., smallest)
control area statistics. On the other hand, the robust gains with the CC (Subsection 7.3.3)
have the worst (i.e., largest) control area statistics. In specific, the optimality of the mean
control area is reduced by around 7 % for the CC-based robust gains, while the optimality
of the standard deviation of the control area is reduced around 33 %. By reducing the op-
timality, an improvement of the robustness in the fulfillment probability of 12 % can be
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and reference adaptation gains.
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Table 7.3: Comparison of adaptation gains for different robust and reference test cases.

Case Mean Control Standard Deviation Integrated Fulfillment
Area Control Area Probability

Reference Gains (Table 7.2) ≈ 2.7792 ≈ 1.6313 ≈ 93.2 %
Optimal Gains (see (7.18)) ≈ 2.6572 ≈ 1.2799 ≈ 87.8 %
Optimal Gains with CC (see (7.21)) ≈ 2.8448 ≈ 1.7090 ≈ 99.8 %

achieved. This illustrates the well-known trade-off of robustness and optimality in ROC.
As the reference case shows, there are multiple gain combination that yield intermediate
results. Thus, gains specific to requirements can be calculated as well.

Overall, the example in this chapter has shown that the proposed robust bi-level
approach (Contribution 2) to calculate controller gains (or also generally parameters in
a dynamic system) is viable and can indeed sufficiently improve the robustness and safety.
Especially, if design parameters and constraints in the form of probabilities should be
considered, the proposed approach provides a generic framework applicable to multiple
design tasks.
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Chapter 8

Distribution of Polynomial Chaos
Problems for Air Race Application

This chapter introduces an application for the distributed open-loop direct optimal control
(DOC) framework introduced in Chapter 4 and thus, shows results for Contribution 3
of this thesis. As the application example, an air race is chosen. Here, a chicane-like
maneuver with wind is used to show the robustness improvement that is possible by
applying the DOC framework. Take into account that the chicane-like maneuver is taken
as the example, because the wind influence, which is used as the uncertainty, is crucial in
these high-maneuvering passages as e.g., exceeding the load factor limits as well as hitting
a pylon leads to time penalties in the air race, which must be avoided.

The used dynamic model (Section 8.1) as well as initial studies on optimal air race
trajectories were originally published in [17, 46]. Based on these initial studies, it can be
stated that the air race application of this chapter has proven to be a challenging open-loop
direct optimal control problem (OCP) [17, 46]. This is due to the fact that the resulting
OCP get very large and multiple local optima can be encountered by the Newton-type
nonlinear program (NLP) solver. Thus, the application is suited for the DOC approach
introduced in Chapter 4, as the methodology splits up a large and complicated OCP into
smaller OCPs that should be easier to solve.

To show the applicability of DOC, the chapter is organized as follows: In Section 8.1,
the distributed open-loop direct optimal control problem (DOCP) is formulated and
an equation of motion (EoM) for each state of the air race aircraft model is introduced.
Then, Section 8.2 shows a comparison of the generalized polynomial chaos (gPC) method
and Latin hypercube sampling (LHS) to determine the required expansion order for gPC.
Afterward, a comparison between the standard generalized polynomial chaos-stochastic
collocation framework (gPC-SC) of Subsection 2.3.5 and a DOCP with only a mean value
cost function is made in Section 8.3. This is done to show the viability of the DOC
approach and verifies it. Finally, Section 8.4 shows how DOC can be used to calculated
robust trajectories by introducing robustifications in the cost function.
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Table 8.1: States with bounds, scaling, and offset as well as their dynamic influence used
in air race optimization model.

Description Symbol xlb xub xsc xoff Unit Dynamics

xN -Position in a local frame xN −∞ ∞ 10−2 0 [m] Position

yN -Position in a local frame yN −100 150 10−2 0 [m] Position

zN -Position in a local frame zN = −h −∞ 10 10−2 0 [m] Position

Kinematic course angle χK −∞ ∞ 100 0 [rad] Kinematics

Kinematic climb angle γK −π
3

π
3 100 0 [rad] Kinematics

Kinematic bank angle µK −∞ ∞ 100 0 [rad] Kinematics

Kinematic velocity VK 25 102.9 10−1 0
[

m
s

]
Translation

Kinematic angle of attack αK −0.17 0.35 100 0 [rad] Translation

Kinematic angle of sideslip βK −0.17 0.17 100 0 [rad] Translation

Kinematic roll rate pK −7.33 7.33 100 0
[

rad
s

]
Rotation

Kinematic pitch rate qK −π π 100 0
[

rad
s

]
Rotation

Kinematic yaw rate rK −π π 100 0
[

rad
s

]
Rotation

Table 8.2: Controls with bounds, scaling, and offset as well as their dynamic influence
used in air race optimization model.

Description Symbol ulb uub usc uoff Unit Influence
Aileron deflection ξ −π

8
π
7 100 0 [rad] Roll Rate

Elevator deflection η −π
7

π
7 100 0 [rad] Pitch Rate

Rudder deflection ζ −π
6

π
6 100 0 [rad] Yaw Rate

8.1 Air Race Problem Formulation and Dynamic Model

The following section summarizes the dynamic equations of a rigid-body aerobatic aircraft.
For the definition of coordinate frames and the transformation matrices, Appendix A can
be consulted. The following description relies on the work of [46, chs. 3 & 6] as well as [17,
chs. 2 & 11] and starts with the problem formulation.

8.1.1 Air Race Problem Formulation

The air race model uses the states with the respective lower and upper bounds xlb, xub,
scaling xsc as well as offset xoff defined in Table 8.1. Furthermore, the table introduces
the dynamics the state belongs to, which is detailed within the derivation of the EoMs.
Additionally, the controls with the respective lower and upper bounds ulb,uub, scaling usc

as well as offset uoff are given in Table 8.2. Here, also their main influence on the EoMs
is stated. It should be noted that the thrust command is not used as a control because
previous studies suggested that a time-optional solution of the air race OCP results in
a full thrust command along the trajectory [17, p. 236ff.].
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Table 8.3: Gate positions for the air race course and kinematic fly-through conditions
used as initial and final boundary conditions for the optimal control problem [17, p. 215f.].

Phase IBClb IBCub

1 [0 0 0 − 0.174 0 − 0.1745]T [0 0 0 − 0.174 0 0.1745]T

2 [237.63 − 58.55 0 − 0.174 0 − 0.1745]T [237.63 − 58.55 0 − 0.174 0 0.1745]T

3 [565.00 54.45 0 − 0.172 0 − 0.1745]T [565.00 54.45 0 − 0.172 0 0.1745]T

4 [880.01 − 29.25 0 0 0 − 0.1745]T [880.01 − 29.25 0 0 0 0.1745]T

Phase FBClb FBCub

4 [1127.08 − 79.46 0 0 0 − 0.1745]T [1127.08 − 79.46 0 0 0 0.1745]T

Table 8.4: Final time optimization parameter definition for different phases.

Phase i tf ,init,i tf ,lb,i tf ,ub,i tf ,sc,i tf ,off,i

1 2.5 s 0 s 40 s 100 100

2 6.0 s 0 s 40 s 100 100

3 9.0 s 0 s 40 s 100 100

4 12.0 s 0 s 40 s 100 100

Furthermore, the OCP consists of multiple phases that model the different race gate
positions, which are to be passed in wings-level position (µK = [−10; 10] ◦) as well as in
horizontal flight (safety aspect; γK = 0) and a defined direction χK . The initial boundary
condition (IBC) for the states

[
xN yN zN χK γK µK

]T
define these gate conditions

in the beginning of each OCP phase (see Subsection 2.1.2.2) and is defined in Table 8.3.
Here, also the final boundary condition (FBC), i.e., the condition at the final gate of
the last phase, is defined in the same manner. Take into account that all positions are
defined relative to the first gate, where also the local coordinate frame N is fixed.

It should be further noted that the velocity at the first gate, i.e., when entering the track,
is constrained to be smaller than 102.9 m

s and larger than 100 m
s . In addition, the OCP

constrains the kinematic angle of attack as well as kinematic angle of sideslip at the first
gate to be within −5 ◦ ≤ αK ≤ 5 ◦ and −0 ◦ ≤ βK ≤ 0 ◦ respectively. Additionally, here
the rotational rates are enforced to be zero. This is to have a close to steady-state flight
condition at the first gate, which is reasonable.

The track definition of Table 8.3 is also visualized in Figure 8.1: Here, the gates are
denoted by circles, while a trajectory based on a Dubins path [17, p. 222f.] is used for
the visualization. This result is also further on used as an initial guess. It can already be
observed from Figure 8.1 that a high maneuverability, especially in the passage from Gate
2 to Gate 3, is required.

As a further part of the OCP, the final times (optimization parameters) of the phases
with the initial guess tf ,init, respective lower and upper bounds tf ,lb, tf ,ub, scaling tf ,sc as
well as offset tf ,off are defined in Table 8.4.

In addition to the state, control, and time limitation, the load factor (nT ,z)B in nega-
tive zB-direction of the B frame is constrained for all phases (due to air race regulations):

171



8.1 Air Race Problem Formulation and Dynamic Model

0 200 400 600 800 1,000

−400

−200

0

200

400

xN in [m]

y N
in

[m
]

Dubin’s path for air race track

Phase 1
Phase 2
Phase 3
Phase 4
Gate 1
Gate 5

Figure 8.1: Top view on Dubins path through defined air race track used as initial guess
for optimization.

− 2 ≤ − (nT ,z)B = −nT ,z ≤ 11 (8.1)

Furthermore, the aerodynamic angle of attack is limited as follows:

− 10 ◦ ≤ αA ≤ 15 ◦ (8.2)

This limitation is based on the aerodynamic profile of the aircraft’s wing and prevents
complete stall, i.e., loss of control, of the aircraft [17, p. 217ff.].

The objective of the OCP is to finish the track in minimum time, i.e.,

J = tf ,4. (8.3)

It should be noted that this cost function generally yields a large control effort (especially
with steps in the control command channel). Thus, when the optimal solution should be
applied to the real aircraft adding a control cost should be considered. This is omitted
in this thesis as the influences of the different cost parts (especially the later on used
robustness modification) would get mixed, which complicates the analysis of the influences
and showing the benefits of the robustness modifications.

For the open-loop direct optimal control (OC) method, there are nτ = 101 time steps
chosen in each phase. This corresponds to 6, 064 optimization parameters and 5, 245
constraints for the standard OCP (i.e., without uncertainties), which can be considered
large-scale [17] and is therefore, suitable to show the benefits of the DOC algorithm.
The air race OCP is solved to an optimality tolerance of εopt = 10−8 and a feasibility
tolerance of εfeas = 10−8. The NLP solver Interior Point Optimizer (Ipopt) is used for
the optimization, applying the linear solver ma97. Furthermore, the analytic Hessian,
provided by FSD optimal control tool for MATLAB R© (FALCON.m), is used.
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Table 8.5: Configuration and references values as well as environment parameters of
the air race optimization model [17, p. 218].

Description Symbol Value Unit

wing reference are S 8.928 [m2]
half wing span s 3.75 [m]
mean aerodynamic chord c̄ 1.44 [m]
aircraft mass mB 693 [kg]

inertia tensor I


420.3035 0 0

0 726.7184 0
0 0 827.3201

 [kg ·m2]

reference thrust T ref 5500 [N]
reference velocity VA,ref 30

[
m
s

]
thrust command δT 1 [−]
air density ρ 1.225

[
kg
m3

]
gravitational constant g 9.80665

[
m
s2

]

Finally, the uncertain parameters in this example are the northward and eastward
wind velocities. Their probability density functions (PDFs) are defined as follows:

(uW )N ∼ U
(
a = −10 m

s , b = 10 m
s

)
(vW )N ∼ U

(
a = −10 m

s , b = 10 m
s

) (8.4)

These uncertainties influence e.g., the aerodynamic angle of attack as well as the aerody-
namic velocity. Thus, they have a significant influence on the dynamic model. It should
be noted that the interval of the PDF is chosen such that it is already difficult to control
for an aerobatic aircraft (as seen the bounds are approximately 10 % of the maximal flight
velocity) and represent wind velocities up until “medium wind” on the Beaufort scale.
The Uniform PDF is also meaningful as there is no specific race (i.e., a location) chosen,
where a more exact wind distribution could be applied. Thus, a Uniform PDF can be
regarded as a worst-case.

8.1.2 Equations of Motion for Aerobatic Aircraft

This section introduces the EoMs for the rigid-body dynamic model on a fixed-flat earth
(FFE) (i.e., the earth is non-rotating and a plane). This is a standard assumption in
aviation, which only takes place in a restricted air space [122, p. 41f.] as the air race, and
thus, is also viable for the example of this thesis. Here, the states (Table 8.1), controls
(Table 8.2), and configuration parameters and reference values, as defined in Table 8.5, are
used. A detailed introduction to e.g., the coordinate frames can be found in Appendix A.
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Position The propagation of the xN , yN , and zN position for a local coordinate system
N (FFE), fixed at the initial gate, is defined as follows:


.
xN
.
yN
.
zN

 =


VK · cos(χK) · cos(γK)
VK · sin(χK) · cos(γK)
−VK · sin(γK)

 (8.5)

Thus, the position propagation is based solely on the translational states with the dynamics
introduced in the following.

Translation The translational EoMs are described by using the kinematic velocity VK ,
the kinematic course angle χK , and the kinematic climb angle γK . From Newton’s
second law, the translational dynamics on a FFE are given as follows:

.
V K = 1

mB

· F T ,x (8.6a)

.
χK = 1

mB · VK · cos(γK) · F T ,y (8.6b)

.
γK = − 1

mB · VK
· F T ,z (8.6c)

In (8.6a)–(8.6c), the components of the total force vector
(
~FT

)
K
, denoted in the kinematic

frame K, are computed from the component load factors as follows (see Section 8.1.3):

(
~FT

)
K

=
[
F T ,x F T ,y F T ,z

]T
K

= mB · g · [(nA+P )K + (nG)K ] (8.7)

Here, nA+P combines the aerodynamic and propulsive load factor, while nG denotes
the gravitational load factor. These are defined in more detail in Subsection 8.1.3.

Attitude The attitude EoMs are described by the kinematic angle of attack αK , the kine-
matic bank angle µK , and the kinematic sideslip angle βK as follows:

.
µK =

(
ωK

KB
,x

)
K
− tan(βK)

[(
ωK

KB
,y

)
K

cos(µK) +
(
ωK

KB
,z

)
K

sin(µK)
]

(8.8a)
.
αK = 1

cos(βK)
[(
ωK

KB
,y

)
K

cos(µK) +
(
ωK

KB
,z

)
K

sin(µK)
]

(8.8b)
.
βK =

(
ωK

KB
,y

)
K

sin(µK)−
(
ωK

KB
,z

)
K

cos(µK) (8.8c)

In (8.8a)–(8.8c), the components of
(
ωK

KB
)
K

denote the kinematic rotational velocities
between the K frame and the B frame (here B rotates with respect to K), denoted in
the K frame. These are calculated as follows:

(
ωK

KB
)
K

=


ωK

KB
,x

ωK
KB
,y

ωK
KB
,z


K

=


.
χK · sin(γK)
− .γK

− .χK · cos(γK)


K

+ MKB ·


pK

qK

rK


B

(8.9)
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The first addend in this equation is known from (8.6b) and (8.6c), while the second addend
can be calculated using the rotational dynamics as follows.

Rotation The final set of EoMs for the rigid-body dynamics are the rotational dynamics,
obtained from the momentum conservation law (again on a FFE). These describe the evo-
lution of the kinematic roll rate pK , pitch rate qK , and yaw rate rK . Using the aerodynamic
moments

(
~MA

)
B
(note that neither propulsion nor gravity create a moment in this ex-

ample) and the inertia tensor IBB with respect to the center of gravity in the body-fixed
frame, the angular accelerations are computed as follows:

( .
ωK

OB
)
B

=
[ .
pK

.
qK

.
rK
]T

= I−1
BB

[(
~MA

)
B
−
(
ωK

OB
)
B
× IBB ·

(
ωK

OB
)
B

]
(8.10)

Thus, in order to solve the EoMs, the forces, i.e., load factors, and moments are required.
These are introduced in the following.

8.1.3 Forces/Load Factors and Moments for Aerobatic Aircraft

The aerodynamic load factor (nA)A in the aerodynamic frame A and the propulsive load
factor (nP )B in the B frame are computed as follows:

(nA)A = q̄ · S
mB · g

[
−CD CQ −CL

]T
, q̄ = ρ

2VA
2 (8.11a)

CD = CD0 + (CQβA · βA)2 · kβA + (CLαA · αA)2 · k (8.11b)

CQ = CQβA · βA + S

VA
· CQpA · pA + S

VA
· CQrA · rA + CQζ · ζ (8.11c)

CL = CL0 + CLαA · αA + c̄

2 · VA
· CLqA · qA + η · CLη (8.11d)

and

(nP )B =
[
δT · VA,refVA

· Tref
mB ·g

0 0
]T

(8.12)

Here, q̄ is the dynamic pressure calculated from the density ρ and the aerodynamic
velocity VA. The mass of the aircraft is denoted by mB, while the gravitational constant is
given by g. The required aerodynamic force coefficients are introduced in Table 8.6, while
the constants and parameters (especially of the thrust) are as defined in Table 8.5.

It is important to note that the aerodynamic velocity is calculated using the kinematic
and the wind velocity as follows:

VA = VK − VW , VW =
√

(uW )2
N + (vW )2

N (8.13)

Thus, the major influence of the wind on the dynamics of the aircraft becomes clear.
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It is further important to note that the aerodynamic angles can be calculated as well
using the kinematic and the wind influence. This is necessary when calculating the forces
and moments and the aerodynamic angles are defined as follows:

αA = atan
(

(wA)B
(uA)B

)
, βA = atan

 (vA)B√
(uA)2

B + (wA)2
B


(uA)B =

[
uA vA wA

]T
B

=
[
uK vK wK

]T
B
−
[
uW vW wW

]T
B

(8.14)

Here, the aerodynamic velocity components are calculated from the wind and kinematic
velocity and are defined in the body-fixed frame. Therefore, the transformation matrices
from Appendix A must be applied appropriately.

Aerodynamic and Propulsive Load Factors in the Kinematic Frame K The
sum of the aerodynamic load factor (nA)K and the propulsive load factor (nP )K , required
in (8.7), is calculated as follows:

(nA+P )K = MKA (nA)A + MKB · (nP )B (8.15)

It should be noted that the propulsive load factor must be transformed using the trans-
formation matrix MKB (see Appendix A) from the B frame to the K frame. Similarly,
the aerodynamic load factor must be transformed using the transformation matrix from
the A frame to the K frame (see Appendix A).

Gravitational Load Factors The gravitational load factor (nG)K in the K frame,
required in (8.7), is computed as follows:

(nG)K =
[
− sin(γ) 0 cos(γ)

]T
(8.16)

Thus, the gravitational load factor depends on the climb/descent angle of the trajectory.

Load Factor in the B frame Finally, the total load factor (nT )B in the B frame is
computed by transforming the total load factor in the K frame (nT )K to the B frame
using the transformation matrix MBK (Appendix A):

(nT )B = MBA · (nT )A (8.17)

This load factor is required to impose the path constraint in (8.1) within the DOCP.
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Table 8.6: Aerodynamic force parameters used in the rigid-body air race optimization
model [17, p. 218].

Description Symbol Value Unit

zero drag coefficient CD0 0.0295 [−]

induced drag coefficient k 0.05134 [−]

induced drag coefficient (slip) kβA 1.696770
[

1
rad

]
drag due to aileron CD,ξ 0.05

[
1
rad

]
drag due to elevator CD,η 0.05

[
1
rad

]
drag due to rudder CD,ζ 0.05

[
1
rad

]
side force coefficient due to slip CQ,βA −0.589355

[
1
rad

]
side force coefficient due to roll rate CQ,pA 0.042480

[
1
rad

]
side force coefficient due to yaw rate CQ,rA 0.048340

[
1
rad

]
side force coefficient due to rudder CQ,ζ −0.195313

[
1
rad

]
zero lift coefficient CL,0 0.055 [−]

side force coefficient due to roll rate CL,αA 4.75
[

1
rad

]
side force coefficient due to yaw rate CL,η −0.073242

[
1
rad

]
side force coefficient due to rudder CL,qA −3.479492

[
1
rad

]

Table 8.7: Aerodynamic moment parameters used in the rigid-body air race optimization
model [17, p. 219].

Description Symbol Value Unit

roll coefficient due to slip Cl,βA 0.024902
[

1
rad

]
roll coefficient due to roll rate Cl,pA −0.583008

[
1
rad

]
roll coefficient due to yaw rate Cl,rA 0.087891

[
1
rad

]
roll coefficient due to aileron Cl,ξ −0.2126

[
1
rad

]
roll coefficient due to roll rate Cl,ζ 0.001

[
1
rad

]
zero pitch coefficient Cm,0 −0.004883 [−]

pitch coefficient due to elevator Cm,η −0.317383
[

1
rad

]
pitch coefficient due to pitch rate Cm,qA −16.930176

[
1
rad

]
pitch coefficient due to angle of attack Cm,αA −0.145406

[
1
rad

]
yaw coefficient due to slip Cn,βA 0.149902

[
1
rad

]
yaw coefficient due to roll rate Cn,pA 0.014648

[
1
rad

]
yaw coefficient due to yaw rate Cn,rA −0.4731

[
1
rad

]
yaw coefficient due to aileron Cn,ξ −0.0073

[
1
rad

]
yaw coefficient due to rudder Cn,ζ 0.170898

[
1
rad

]
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8.1.4 Aerodynamic Moments

The aerodynamic moment
(
~MA

)
B
in the B frame for the rotational EoMs are composed

(neglecting influences of thrust and gravitation) as follows:

(
~MT

)
B

= q̄ · S
[
s · Cl c̄ · Cm s · Cn

]T
(8.18)

Here, the following aerodynamic model, with the required aerodynamic moment coefficients
defined in Table 8.7, is used:

Cl = Clξ · ξ + s

VA
· ClpA · pA + s

VA
· ClrA · rA + ClβA · βA (8.19a)

Cm = Cm0 + Cmη · η + c̄

2 · VA
· CmqA · qA + CmαA · αA (8.19b)

Cn = Cnζ · ζ + s

VA
· CnpA · pA + s

VA
· CnrA · rA + CnβA · βA (8.19c)

Thus, the aerodynamic moments are mainly depending on the controls. Additionally,
the uncertain wind is influencing the dynamics by the aerodynamic velocity as well as
the aerodynamic angles.

8.2 Accuracy Determination for Polynomial Chaos
Expansion by Comparison to Latin-Hypercube
Sampling

Due to the complexity and nonlinearity of the air race OCP, a first issue is to define
a suitable gPC expansion order that represents the system dynamics with uncertainties
accurately. Therefore, this section is used to find a suitable expansion order by first of all
looking at and analyzing the uncertainty influence in the dynamic equations, introduced
in the previous section. Additionally, a comparison to LHS results, and specifically
the 95 %-confidence intervals (CIs), is made. For this case, the LHS results are obtained
by calculating the exact optimal trajectories at random samples.

At first, a general look at the EoMs can be taken to estimate the required gPC expansion
order: One main influence by the wind in the EoMs results in a change of the aerody-
namic velocity (see (8.13)) and consequently influences e.g., the load factor calculation
in (8.11a). Due to the fact that the load factor is depending on the aerodynamic velocity
quadratically and thus, by the definition of the aerodynamic velocity in (8.13), the largest
polynomial influence by the wind is at least quadratically as well. As the resulting forces
and moments then influence the EoMs linearly, the quadratic influence remains unchanged.
It should be noted that this quadratic influence should be comparably small with respect
to the kinematic velocity as the wind can only be around 10 % of the kinematic velocity.
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A further influence of the wind is related to the aerodynamic angles, e.g., the aerody-
namic angle of attack: Here, the relation is generally described by trigonometric functions
(see (8.14)). Although these functions are actually highly nonlinear (at least cubic),
the application in this thesis allows for a linearized look at them, because the angles are
“small” enough. Thus, the influence of the wind velocity on the aerodynamic angles is
well-described by at least a linear relation.

Summarizing, the highest polynomial degree from this look at the model dynamics
suggests that an expansion order of three, i.e., quadratic, should be sufficient to describe
the dynamic system accurately by gPC. This simple deduction is verified in the following
using a comparison to LHS.

In Figure 8.2, a comparison of the mean trajectories (flight paths) between a LHS
with ns = 500 successful samples (solid blue line; Figure 2.4) and the gPC orders di =
2, 3, 4, 5 is made. Here, the same gPC order is used for both the north- and eastward
wind uncertainty as they have a similar influence on the dynamic system and thus, should
be expanded similarly. It should be reminded here that the LHS results will not fully
resemble the real statistical moments due to infeasible optimal solutions (see Figure 2.4).
Additionally, the CIs are calculated based on the assumption that the considered quantity
is Gaussian-distributed (Subsection 2.2.3). Thus, the results must be discussed with
care.

Take into account that the calculation of the LHS result took around 14, 402 s (≈ 4h)
on a personal computer1, while the optimization time for the gPC expansion (sequential
evaluation) ranged from 229.2 s (di = 2) to 1, 180.5 s (di = 5). Thus, the required
computational time is reduced by at least 91 %. Once more, this shows the necessity to
apply the gPC method to calculate the DOC results, as the calculation of the LHS would
be required in each iteration of the DOC connection problem (including line searches).
This would not be feasible in application as the results should be obtained in a reasonable
amount of time.

The analysis begins by showing the optimal trajectory through the track: Therefore, in
Figure 8.2, the five gates are depicted by circles (first gate red, final gate green). Overall,
the four gPC expansion orders recover the mean solution obtained from LHS very well.
Thus, as already discussed in Subsection 2.3.6, even small expansion orders are suitable for
a mean value estimated. This is also illustrated in Figure 8.3, which shows the trajectory
position separately. It should be noted that the passing times of the gates are depicted
by the vertical lines, which show that LHS and the different gPC orders match very well.
Furthermore, the 95 %-CI of the LHS is given by the upper and lower bound as well
as the different gPC orders. The gPC expansion orders give very good matches for all
positional states. This is also seen when looking at the standard deviation for the positions

1Architecture: x64 Intel R© CoreTM i7-6700K CPU @4.00GHz, 16.0GB RAM
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Figure 8.2: Mean value of trajectory through gates for different generalized polynomi-
alchaos orders compared to Latin-hypercube sampling result.

in Figure 8.4. Once more, all higher gPC orders show a good approximation quality with
minor benefits for the third order, i.e., quadratic, expansion. Only the second order
expansion yields too small results, especially in the second phase.

Another interesting observation that can be made for the trajectories in Figure 8.3 and
Figure 8.4 is that the altitude h variation is generally quite large, especially in the second
phase. This is due to the fact that specifically the load factor constraint must be fulfilled
for each uncertain parameter and therefore, the steep turns, as required during the chicane-
like maneuver, need an adaptation of the flight velocity, which is here achieved by altitude
changes. This is further examined in the following.

As mentioned, depending on the uncertainty value, adaptations to especially the flight
velocity are required to fulfill both the load factor constraint as well as the gate (phase)
constraints. Among other things, this is achieved by changing the altitude, which in turn
changes the velocity. This is visualized in Figure 8.5 and Figure 8.6 that show the mean
and standard deviation of the translational states. Here, it is seen that the velocity
is significantly reduced after the first phase and by this creates an increased standard
deviation. Thus, it can be concluded that the pilot must make significant adaptations,
specifically in the velocity, for different wind conditions. It can further be seen that
the kinematic angles of attack as well as sideslip remain on a similar level, especially
in the standard deviation, over the different phases. Specifically, the angle of attack
does not reach its allowed maximum value, which shows that the wind also reduces
the allowable range due to the constraint on the aerodynamic angle of attack to avoid
stall (see (8.2)). Additionally, this already suggests that the load factor is the restricting
constraint. Thus, the pilot must make very specific adaptations, based on the current
environmental conditions, to follow an optimal trajectory and avoid critical stall situations.
Once more, all gPC orders give good results compared to the 95 %-LHS CI, with the third
order being slightly superior and the second order being the worst.
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Figure 8.3: Mean value of position through air race track for different generalized poly-
nomial chaos orders compared to 95 %-confidence intervals of Latin-hypercube sampling
result.
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Figure 8.4: Standard deviation of position through air race track for different generalized
polynomial chaos orders compared to 95 %-confidence intervals of Latin-hypercube sampling
result.
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Figure 8.5: Mean value of translational states on air race track for different generalized
polynomial chaos orders compared to 95 %-confidence intervals of Latin-hypercube sampling
result.
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eralized polynomial chaos orders compared to 95 %-confidence intervals of Latin-hypercube
sampling result.
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Figure 8.7: Mean and standard deviation of load factor through air race track for differ-
ent generalized polynomial chaos orders compared to 95 %-confidence intervals of Latin-
hypercube sampling result (horizontal, dashed magenta lines: lower and upper bound).

As a final part of the comparison of gPC and LHS, as well as the derivation of a suit-
able gPC expansion order, a look at the statistical moments of the load factor is made in
Figure 8.7. This quantity is of special interest for the pilot as exceeding the limits in (8.1),
which are depicted by the dashed, horizontal magenta lines, yields penalties, which reduce
the chances of winning for the pilot. Thus, fulfilling the bounds with a high probability
is generally desired. First of all, it can again be seen that the third order gPC expansion
once more yields the best approximation results. The second order gives the worst approx-
imation (especially in the standard deviation). Therefore, the third order gPC expansion
is the final choice for the order used for the DOC in the following as it has proven to be
the best approximator compared to the results of LHS with its CIs, which can be assumed
to be a good approximation of the real solution. Furthermore, it is seen in Figure 8.7
that the standard deviation of the load factor is especially large in the first two phases. In
these two phases, the mean value is also particularly close to the bound values (visualized
by horizontal dashed magenta lines), which in turn means that the probability to violate
the constraint will be fairly large here. Thus, robustifications to reduce the violation
probability are introduced in the following.

But first of all, to further show the applicability of the DOC algorithm to the air race
problem and also to validate the methodology, the next section introduces a DOCP with
only a mean cost function, here, the time. This DOCP is perfectly decoupled, as derived
in (4.7), Section 4.2, and Section 4.4, and thus, can be compared to the standard gPC-SC.
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8.3 Comparison of Distributed and Standard Polyno-
mial Chaos Result

This section introduces a comparison of the DOC algorithm, developed in Chapter 4, to
the standard gPC-SC of Subsection 2.3.5, i.e., the sequential optimization of the OCPs
at the stochastic collocation (SC) nodes. This is done to verify the DOC methodol-
ogy based on a distributed mean value in the cost function, where it is still possible to
have a comparison by the gPC-SC (Subsection 2.3.5). Additionally, this section verifies
the Karush-Kuhn-Tucker (KKT) condition based derivation in Section 4.4. In specific,
the mean optimal flight time through the air race track is distributed in the cost function.
From (4.7) it is known that this DOCP is perfectly decoupled and thus, no connection
variables must be introduced as well as that the DOCP can be solved in a single step.
Consequently, the DOCP for each SC node is given as follows:

min
z(j)

J (j)
(
z(j)

)
= α(j) · tf (j)

s.t. z(j)
lb ≤ z(j) ≤ z(j)

ub ,

f (j)
(
z(j);θ(j)

)
= .x(j),

c(j)
(
z(j)

)
≤ 0,

ψ(j)
(
z(j)

)
= 0

(8.20)

Here, the decoupled natural of the DOCP with only a mean value cost function is seen
and a comparison to the gPC-SC is possible because the OCPs are mathematically equiv-
alent. The main difference in the DOCP case is that the SC weight α(j) is present in
the cost function as the mean value should be optimized. Take into account that, although
mathematically equivalent, this changes the scaling of the NLP and thus, can converge to
a slightly different optimum based on the feasibility and optimality tolerances.

In the following, results for a third order gPC expansion are depicted as this has shown
to be viable in Subsection 8.2. It should be noted that the connected OCP with a third
order expansion and nτ = 101 would already have 54, 576 optimization variables and 47, 197
constraints and therefore, would be hard to solve on a general desktop computer (due to
memory and solver restrictions). Thus, the DOC approach is viable for this application,
as here only the unconnected problem with 6, 064 optimization parameters and 5, 245
constraints must be solved.

After solving the OCPs, only minor differences can be seen, when looking at the calcu-
lated cost function, i.e., the mean final time: The result from the DOC framework calculates
is t̂f

(0)
,distr ≈ 12.08261 s, while the reference gPC-SC problem results in t̂f

(0)
,ref ≈ 12.08260 s.

Thus, the minor difference is in the order of the NLP tolerances and therefore, the re-
sults show very good resemblance. Overall, this also shows that no systematic error is
introduced by the DOC approach.
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Figure 8.8: Mean trajectory with error bars on air race track comparing standard gener-
alized polynomial chaos expansion with distributed solution for mean final time.

This is further illustrated by Figure 8.8, which shows the comparison of the position
states for the air race course. In the following, the solid blue line with circles denotes
the results of the DOCP in (8.20) (“Distr.”), while the dashed red line with crosses is
the result from the gPC-SC (“gPC–SC.”). The results show the errors bars, i.e., the mean
value and the standard deviation. These error bars are used for the states as well as the time,
thus giving the spread in both dimensions. It is seen in Figure 8.8 that the positional
accuracy of the DOC as well as the gPC-SC is good. The magnitude of the standard
deviation is also well matching over the phases, which is depicted by the error bars. It
should be noted that the dotted, vertical lines show the phase times, which are also well
matching, i.e., overlying.

After the verification of the DOC algorithm via the positional states, a further veri-
fication by means of the translational states is given in Figure 8.9: Here, the error bars
of the translational states, i.e., kinematic velocity, angle of attack, and angle of sideslip,
are shown. Once more, the match for the mean values is good for the optimal trajectory.
The standard deviations visualized by the error bars show a good match in the magnitude
as well. It can especially be seen that the velocity is largely varying, which is mainly
a consequence of the wind uncertainty and the constraint fulfillment.

Continuing with the verification, Figure 8.10 shows the comparison of the load factor
statistics for the distributed and the standard gPC solution over the mean time. The match-
ing is very well for both mean and standard deviation. Some minor differences between
the distributed and the reference standard deviation occur in the middle of the first and
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Figure 8.9: Translational states with error bars comparing standard generalized polynomial
chaos expansion with distributed solution for mean final time.

beginning of the third phase, where the distributed result seems to be slightly more ag-
gressive, i.e., creating sharper changes (“high frequency oscillations”) and overall larger
values in the standard deviation. This high frequency oscillation might also be based on
the NLP tolerances. It can be seen that the mean load factor is close to its limits in
the first and second phase, where there is also a significant standard deviation. Thus,
exceeding the desired limits becomes fairly likely.

This is also visualized in Figure 8.11 for only the distributed results and over the mean
time: Here, the dashed-black lines denote the interval ±3σ [nT ,z] of the load factor. This
interval is standard in robustness analysis, as it creates a high confidence in the safety
of the results: For instance, a Gaussian-distributed variable would imply that at
least 99.7 % are within this interval. As the assumption of having a Gaussian-distributed
variable is normally a strong one, probability inequalities such as the Chebyshev’s
inequality (Theorem B.14) or the Vysochanskij–Petunin inequality (Theo-
rem B.15) can be applied as well, which give probabilities of at least 88.8 % and 95.0 %
respectively. As these probability inequalities, compared to the assumption of a Gaussian
PDF, are very conservative, the ±3σ has proven to be viable in stochastic applications.
If it is fulfilled, the result is generally considered to be robust. As seen in Figure 8.11,
the optimal trajectory fulfills the desired probability interval for most parts of the trajec-
tory and thus, a high confidence that the trajectory will not exceed the load factor bounds
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Figure 8.10: Comparison of load factor statistics between distributed and standard gen-
eralized polynomial chaos for distributed solution with mean final time (horizontal, dashed
magenta lines: lower and upper bound).

is established. Still, especially in the first and second phase, there are multiple longer
time periods of exceedance, which are dealt with in the following by applying robustness
modifications on the basic air race DOCP in (8.20).
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Figure 8.11: Mean load factor with three standard deviation interval and bound values
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8.4 Distributed Optimal Control with Robustifying
Load Factor Cost

Compared to the previous section, which only considered a distributed mean value as
the cost function, this section introduces an additional robustness modification. Thus,
this DOCP is no longer solvable by the standard gPC-SC in Subsection 2.3.5, but can be
solved efficiently using the DOC approach. Generally, the variance of the load factor is
added to the cost function to inherently reduce the probability of violating the load factor
constraint.

To this end, the basic DOCP in (8.20) is adapted as follows:

min
z(j)

J (j)
(
z(j)

)
+ J̃

(j) (z(j); q
)

s.t. z(j)
lb ≤ z(j) ≤ z(j)

ub ,

f (j)
(
z(j);θ(j)

)
= .x(j),

c(j)
(
z(j)

)
≤ 0,

ψ(j)
(
z(j)

)
= 0

(8.21)

Here, the cost function addends are defined as follows:
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J (j)
(
z(j)

)
= α(j) · tf (j) + w ·

tf
(j)∫

t=t0(j)

[
n

(j)
T ,z

]2 [
α(j)

]2 M−1∑
m=1

[
Φ(m)

(
θ(j)

)]2
dt

J̃
(j) (z(j); q

)
= w ·

tf
(j)∫

t=t0(j)

∑
j 6=i

n
(j)
T ,zν

(i)α(j)α(i)
M−1∑
m=1

Φ(m)
(
θ(j)

)
Φ(m)

(
θ(i)

)
dt

(8.22)

The factor w is a weighting factor to weigh the cost influences. Thus, ultimately a Pareto
problem (Subsection 2.4.1) between the mean time and the load factor variance is solved.

It should be noted that the connection problem, required to update the connection
variables, q = ν, for the DOCP in (8.21), is solved using the optimization problem
formulation in (4.5). Therefore, the NLP solver Ipopt is used with a feasibility tolerance
of εfeas,CP,∗ = 10−7 as well as an optimality tolerance of εopt,CP,∗ = 10−3. Take into
account that it is difficult to achieve a higher optimality tolerance due to the tolerances of
the DOCPs themselves. Still, the chosen tolerance is small enough for the DOC application
case, especially considering the normal magnitude of the load factor.

In the following, the results of the robust DOC are looked at: At first, Table 8.8
shows the different cases that were evaluated in this example. Here, the reference case
(w = 0), i.e., no robustification in the cost function by the variance of the load factor, is
the DOC result from Section 8.3. The other five cases describe different weights (w =
0.001, 0.005, 0.01, 0.05, 0.1) used for the robust cost function in (8.22). Generally, the table
also shows the optimal time through the specified track (Table 8.3 and Figure 8.1) as well as
the integrated area of the mean and standard deviation of the load factor. These integrals
were calculated in a post-processing step: Here, it can first of all be seen that the optimal
time is increased by less than 0.2 %, while increasing the robustness of the trajectory
(with increasing Pareto weight) is increased by up to 44 %. This is the already mentioned
trade-off between optimality and robustness and is also visualized in Figure 8.12 by
an estimated Pareto frontier. Here, it becomes clear that a reduction in the load factor
standard deviation requires an increase in the flight time. The desired trade-off must be
specified by the user. It should be noted that the time increase of the robust results is
smaller than the time penalty for the pilot, if e.g., exceeding the load factor limit (at
least 1 s; see2). Thus, the applicability of the robust trajectories in the real air race is
reasonable and of no disadvantage for the pilot.

Generally, this behavior, i.e., increasing the robustness by reducing the optimality,
is an indicator of a less aggressive and thus, safer and more robust trajectory, which is
the goal that should be achieved by the robust DOC. It should be further noted that
the mean load factor area in Table 8.8 is not significantly altered by the robustification,
which suggests that a similar mean trajectory is calculated, while the robustification mainly
changes the spread around this trajectory.

2https://airrace.redbull.com/de/rules “OVER G” (retrieved on 20.07.2019)
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Figure 8.12: Estimation of Pareto frontier of the distributed optimal control air race
results showing the trade-off between the optimal flight time and the integrated load factor
standard deviation.

Table 8.8: Comparison of robust distributed optimal control results with different Pareto
weights and reference solution.

Case Optimal Time Relative Optimality Mean Load Standard Deviation Relative Robustness
Reduction Factor Area Load Factor Area Improvement

w = 0 (Ref.) 12.082610 [s] − −36.172372 [−] 3.509992 [−] −
w = 0.0010 12.082750 [s] 0.001155 % −36.302507 [−] 3.001506 [−] 14.486801 %
w = 0.0050 12.083073 [s] 0.003833 % −36.387159 [−] 2.975478 [−] 15.228353 %
w = 0.0100 12.083302 [s] 0.005721 % −36.412630 [−] 2.954847 [−] 15.816121 %
w = 0.0500 12.089251 [s] 0.054950 % −36.531652 [−] 2.529981 [−] 27.920588 %
w = 0.1000 12.102292 [s] 0.162901 % −36.556320 [−] 1.959223 [−] 44.181556 %
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Figure 8.13: Comparison of robust and reference trajectories with distributed robust cost
function.

The fact that mainly the spread of the trajectories is influenced by the DOC, which is
also desired, can furthermore be seen in Figure 8.13 and Figure 8.14. These show the mean
position states of the trajectories, which are overall fairly similar. It should be noted once
more that the dashed-vertical lines depict the phase times, i.e., when the gates are passed
by the different trajectories. The reference DOC result (denoted by “Distr. Ref. (w = 0)”)
is further on depicted by the dashed red line, while the robust trajectories are shown in
colors from green (denoted by “Distr.”; smallest Pareto weight: w = 0.001) to blue (largest
Pareto weight: w = 0.1) with different line types. The main difference is in the altitude
state, which is, as already introduced before, the main influence factor of the optimization
for the thrust/velocity control and thus, robustness.

This behavior is also seen in Figure 8.15, which shows the standard deviation of
the position states. Here, it is visible that the standard deviation in xN , yN , and zN

direction is reduced for the robust DOC results.
The already mentioned decrease of the kinematic velocity is also visualized in Fig-

ure 8.16 by error bars: Here, it is seen that the robust trajectories achieve a smaller mean
velocity than the reference case. Furthermore, it can be seen that the standard deviation
for the robust cases is reduced in the final two phases compared to the reference case. To
achieve this reduction, it is necessary to allow a wider range of velocities, i.e., an increased
standard deviation, in the second phase. This is a further trade-off in robust optimization,
i.e., that improvements on the global behavior (here in the context of the load factor
standard deviation) normally lead to deterioration in local behavior. For the robust DOC
results only minor differences can be seen, but generally smaller Pareto weights remain at
a higher mean value, i.e., closer to the reference trajectory, with larger standard deviations.

Other than the kinematic velocity, Figure 8.16 also shows the kinematic angle of attack
error bar. Here, it can be seen that the robust results are less aggressive, i.e., do not change
the magnitude as fast and also do not reach as high angles of attack as the reference (e.g.,
end of third phase as well as final gate). This improves the robustness as well, because
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Figure 8.14: Mean position states for robust and reference trajectories with distributed
robust cost function.
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Figure 8.15: Standard deviation position states for robust and reference trajectories with
distributed robust cost function.
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Figure 8.16: Error bars of kinematic angle of attack and velocity for robust and reference
trajectories with distributed robust cost function.

the probability of exceeding the allowed angle of attack (both aerodynamic as well as
kinematic) becomes less likely. Thus, the robustification in the load factor inherently has
a positive effect on another critical quantity for a safe flight, which could be expected as
load factor and angle of attack (i.e., the lift) are closely related. It should be noted that
it is not necessarily the case that a robustification has a positive effect on other critical
system quantities. Also negative effects can be encountered and thus, it is required to
critically evaluate the made robustness modifications.

As already mentioned and seen in Figure 8.10 and Figure 8.11 of Section 8.3, the load
factor constraint is critical to fulfill with the wind uncertainty. Here, Figure 8.11 showed
that the load factor constraints are difficult to fulfill in especially the first and the second
phase. Thus, the robustness modification in (8.22) was introduced in the DOC framework
to reduce the standard deviation of the load factor and improve the robustness of the so-
lution. The effect of the robustness modification is illustrated in Figure 8.17, which shows
the mean and standard deviation of the load factor. It can be observed in the figure that
the mean load factor is less aggressive especially in the first and final phase. Together with
the reduction of the standard deviation (there is an increased reduction when increasing
the Pareto weight), this results in a more robust trajectory.Additionally, this makes it
possible to fly fairly similar trajectories, which was also already observed in Figure 8.15 by
looking at the positional standard deviations. Take into account that the less aggressive
robust trajectories also make the aircraft easier to maneuver for the pilot.
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Figure 8.17: Load factor statistics for robust and reference trajectories with distributed
robust cost function (horizontal, dashed magenta lines: lower and upper bound).

To conclude the robust DOC example, Figure 8.18 shows the load factor fulfillment
probability, i.e., the probability with whom the deterministic lower and upper bound
of the load factor are fulfilled. The probability is calculated by sampling the optimal
trajectory, specifically the gPC expansion, with ns = 5000 random samples in a post-
processing step and checking for failures. It can be seen that the non-robust, reference
trajectory may fail the load factor bounds by around 5 % in the first phase. The Pareto
weights w = 0.05 already significantly reduce the failure probability, with around 2 %
of the failures occurring in the beginning of the second phase. This is natural as here
a large load factor is required to turn (Figure 8.17) and a significant load factor standard
deviation is still present. Additionally, the velocity and its standard deviation is still
large (Figure 8.16). Finally, the larger Pareto weights, e.g., w = 0.1, then even further
improve the fulfillment probability and no more failures in the load factor bounds are
detected. This is mainly a consequence of the further reduction in both the mean as
well as the standard deviation of load factor (Figure 8.17). It should be noted that this
result does not suggest that there are absolutely no failure scenarios remaining, but merely
that the failure probability is relatively small. A more detailed analysis of small failure
probabilities requires the subset simulation (SubSim), which is used for chance-constrained
open-loop direct optimal control (CC-OC) in the following example.
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Figure 8.18: Load factor chance constraint fulfillment for robust and reference trajectories
with distributed robust cost function (horizontal, dashed magneta lines: lower and upper
bound).

Concluding, the DOC framework (Contribution 3) has proven to be viable in appli-
cation, especially for large-scale OCPs like the air race. The method has shown that it
can be applied to calculate robust, optimal trajectories. The next chapter continues with
a further example of the robust open-loop direct optimal control (ROC) frameworks of
this thesis, this time mainly in the SubSim-based CC-OC context for obstacle avoidance.
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Chapter 9

Quadcopter Obstacle Avoidance
Maneuver using Chance Constraints

This chapter introduces the robust open-loop direct optimal control (ROC) of a quadcopter
using the chance-constrained open-loop direct optimal control (CC-OC) framework intro-
duced in Chapter 6. Both the Monte Carlo analysis (MCA) based procedure for “frequent”
events (Section 6.1) as well as the subset simulation (SubSim) based approach for rare-
events (Section 6.2) are looked at. Thus, results for Contribution 4 and Contribution 5 of
this thesis are examined. Here, the quadcopter is optimized to achieve a time-optimal tra-
jectory around obstacles. Both quadcopter as well as obstacle parameters are considered
uncertain and chance constraints (CCs) are applied to minimize the probability of hitting
any obstacle.

At first, Section 9.1 introduces the dynamic model of quadcopter as well as the model
of the obstacles. Then, the CC-OC of the quadcopter is dealt with: Here, Section 9.2
determines the required generalized polynomial chaos (gPC) expansion order for the CC-
OC by a comparison with Latin hypercube sampling (LHS). Afterward, Section 9.3 shows
the results for the CC-OC using the MCA-based (“frequent” event) sampling approach
from Section 6.1, while Section 9.4 extends the previous results to the SubSim-based
CC-OC from Section 6.2.

9.1 Definition of Dynamic Model

The dynamic model of the quadcopter is based on a rigid-body moving on a fixed-flat
earth (FFE) (i.e., the earth is non-rotating and a plane). These assumptions are standard
in aviation, especially when mainly being interested in the dynamic as well as performance
behavior [122, p. 41f.] and were also already used for the air race application (Section 8.1).
For the quadcopter model, the states are defined as given in Table 9.1, while the controls
are as given in Table 9.2. These tables also directly include the bounds, the scalings, and
the offsets used in the open-loop direct optimal control problem (OCP) formulation.
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Table 9.1: State definition of the rigid-body quadcopter model with bounds, scalings, and
offsets for the optimization.

Description Symbol Unit Lower Bound Upper Bound Scaling Offset

x position of quadcopter xN [m] 0 40 10−1 0
y position of quadcopter yN [m] −10 10 100 0
z position of quadcopter zN [m] −130 0 100 0
x body velocity of quadcopter uK [m

s ] 0 10 100 5
y body velocity of quadcopter vK [m

s ] −2 2 100 0
z body velocity of quadcopter wK [m

s ] −5 5 100 0
Roll angle of quadcopter Φ [rad] −π

4
π
4 100 0

Pitch angle of quadcopter Θ [rad] −π
4

π
4 100 0

Yaw angle of quadcopter Ψ [rad] −∞ ∞ 100 0
Roll rate of quadcopter pK [ rad

s ] −π
8

π
8 100 0

Pitch rate of quadcopter qK [ rad
s ] −π

8
π
8 100 0

Yaw rate of quadcopter rK [ rad
s ] −π

4
π
4 100 0

Table 9.2: Control definition of the rigid-body quadcopter model with bounds, scalings,
and offsets for the optimization.

Description Symbol Unit Lower Bound Upper Bound Scaling Offset
Speed of rotor 1 ω1 [ rad

s ] 0 785.4 10−2 350
Speed of rotor 2 ω2 [ rad

s ] 0 785.4 10−2 350
Speed of rotor 3 ω3 [ rad

s ] 0 785.4 10−2 350
Speed of rotor 4 ω4 [ rad

s ] 0 785.4 10−2 350

A schematic of the quadcopter, with its body-fixed frame B and the rotation direction
of the rotors, ω1,...,4, is given Figure 9.1. It should be noted that the thrust of each rotor
points in negative body-fixed z-axis direction. Additionally, the reference point for each
equation of motion (EoM) R coincides with the center of gravity.

Figure 9.1: Quadcopter schematic with body-fixed frame (orange; z-axis points downwards)
and rotation directions of rotors (purple) used as controls (after [100, p. 32]).
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Take into account that a local navigation frame N for the propagation of the position
is used. This frame is fixed at the initial position of the quadcopter and oriented in
the direction of the initial orientation with the z axis pointing downwards. In the considered
application this is the north direction and thus, the N frame coincides with the O frame
(Section A.5). Additionally, the body-fixed frame B is used to denote the translational
and rotational properties of the quadcopter. A more detailed introduction on the used
frames and transformation matrices can again be found in Appendix A. Furthermore,
Table 9.3 introduces the constants used within the quadcopter model. It should be noted
that the introduced model is based on a model developed by the author in [100], which is
therefore a well tested and researched model.

The forces and moments in the B frame, created by the rotors, can be defined using
the following relation [100, p. 38]:


L

M

N

T

 =


l · kT −l · kT −l · kT l · kT
−l · kT l · kT −l · kT l · kT
kM kM −kM −kM
kT kT kT kT

 ·


(θω1 · ω1)2

(θω2 · ω2)2

(θω3 · ω3)2

(θω4 · ω4)2

 (9.1)

Here, L, M , and N are the roll, pitch, and yaw moment respectively, while T is the thrust
force. The arm length is given by l > 0, while kT < 0 and kM > 0 are the thrust and
moment factor respectively (see Table 9.3). The rotor efficiency factors θω1,...,4 > 0 are mul-
tiplicative factors for the rotor speed command that can be used to simulate e.g., (partial)
rotor failures. These are assigned a probability density function (PDF) for the chance-
constrained open-loop direct optimal control problem (CC-OCP) in the following.

Additionally, the model uses a constant gravitational model as the quadcopter is not
flying a large altitude envelope, but mainly remains at the same altitude. The resulting
force in the B frame is given by:

(
~FG

)
B

= MBN ·
[
0 0 mB · g

]T
(9.2)

Here, g is the gravitational constant and mB is the (constant) mass of the quadcopter.
These constants are defined in Table 9.3.

Finally, the inertia matrix IBB is required for the propagation of the rotational dynamics.
It is defined, using the constants in Table 9.3, as follows:

IBB =


Ixx 0 Ixz

0 Iyy 0
Izx 0 Izz

 (9.3)

Then, the EoMs can be evaluated: To begin with, the EoMs for the position propagation,
which is defined on the FFE using the transformation matrix in (A.1) and the velocity
states in Table 9.1 [122, p. 41ff.], is looked at:
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Table 9.3: Constants used in the rigid-body quadcopter model for the optimization.

Description Symbol Unit Value
Reference length l [m] 0.1945
Thrust factor kT [kg ·m] −1.4019 · 10−5

Moment factor kM [kg ·m2] 1.9023 · 10−7

Gravitational constant g [ m
s2 ] 9.80665

Mass mB [kg] 1.488
Moment of inertia around x axis Ixx [kg ·m2] 0.0184
Moment of inertia around y axis Iyy [kg ·m2] 0.019
Moment of inertia around z axis Izz [kg ·m2] 0.0342
Coupling moment of inertia around xz axis Ixz = Izx [kg ·m2] −1.03 · 10−7

[ .
xN

.
yN

.
zN
]T

= MNB ·
[
uK vK wK

]T
B

(9.4)

The EoMs for the orientation angles require the rate states (Table 9.1) and are given as
follows [122, p. 19f.]:


.
Φ
.

Θ
.

Ψ

 =


1 sin (Φ) · tan (Θ) cos (Φ) · tan (Θ)
0 cos (Φ) − sin (Φ)
0 sin(Φ)

cos(Θ)
cos(Φ)
cos(Θ)

 ·

pK

qK

rK

 (9.5)

Take into account that Euler angles are used for the attitude propagation in this context
instead of the kinematic angles as for the air race in (8.8a)–(8.8c). This is due to the fact
that the quadcopter has e.g., no aerodynamic forces and moments acting on it for the low
flight speeds looked at in this thesis. Thus, the definition of the attitude with respect to
the body attitude is more meaningful and easier to calculate as no intermediate kinematic
or aerodynamic angles are required.

Then, the velocity (translational) EoMs are given using the thrust (see (9.1)) and
gravitational force (see (9.2)) as follows [122, p. 39ff.]:


.
uK
.
vK
.
wK

 = 1
mB

·




0
0
−T

+
(
~FG

)
B

−

pK

qK

rK

×

uK

vK

wK

 (9.6)

It should be noted that for the quadcopter, the body-fixed velocity is used instead of
the absolute velocity and the kinematic angles like for the air race (see (8.6a)–(8.6c)).
This is due to the fact that a hover flight condition (i.e., VK = 0m

s ) should also be covered.
Finally, the last set of EoMs consist of the rate (rotational) dynamics, which are

dependent on the moments (see (9.1)) and the inertia matrix (see (9.3)) [122, p. 35ff.]:


.
pK
.
qK
.
rK

 = I−1
BB ·



L

M

N

−

pK

qK

rK

×
IBB ·


pK

qK

rK



 (9.7)

200



Chapter 9: Quadcopter Obstacle Avoidance Maneuver using Chance Constraints

Table 9.4: Initial and final boundary condition (“steady-state hover”) for the quadcopter
robust optimal control problem.

State Unit IBC FBC State Unit IBC FBC
xN [m] 0 40 Φ [rad] 0 0
yN [m] 0 0 Θ [rad] 0 0
zN [m] −10 −10 Ψ [rad] 0 0
uK [m

s ] 0 0 pK [ rad
s ] 0 0

vK [m
s ] 0 0 qK [ rad

s ] 0 0
wK [m

s ] 0 0 rK [ rad
s ] 0 0

Thus, (9.1)–(9.7), together with (A.1), provide the rigid-body representation of the quad-
copter on a FFE. These equations are used within the ROC formulation.

In addition, to the standard EoMs, the model uses circular obstacles. These obstacles
can be regarded as “no-fly zones” and thus, should have a very low probability of getting
entered even with uncertainty influences. Generally, the obstacles are given by right
circular cylinders with infinite height and are defined by an xN,obs and yN,obs position
as well as a radius robs, and a desired minimal obstacle distance threshold dobs,lb,∗ (the
maximal separation is not constrained). Then, the distance to an obstacle i is defined by
the following relations:

dobs,i =
√(

xN − x̃N,obs,i
)2

+
(
yN − ỹN,obs,i

)2
− r̃obs,i − dobs,lb,∗

with x̃N,obs,i = xN,obs,i + θxN,obs,i

ỹN,obs,i = yN,obs,i + θyN,obs,i

r̃obs,i = robs,i + θrobs,i

(9.8)

Thus, a constraint can be enforced such that no trajectory intersects an obstacle, i.e., dobs,i >
0. Depending on the optimization case, this constraint is enforced using a deterministic
path constraint or a CC. To introduce a non-deterministic behavior, the obstacles can
be defined uncertain by the additive uncertainties θxN,obs,i and θyN,obs,i for the xN and yN
position respectively and by θrobs,i for the radius.

Furthermore, the initial boundary condition (IBC) and final boundary condition (FBC)
are defined in Table 9.4 for the optimization: Here, the quadcopter is in a hover condition
at the IBC and FBC as well as oriented in north direction. Overall, the OCP has one
phase (see Subsection 2.1.2.2) and the IBC as well as FBC are equality constraints.

To solve the robust open-loop direct optimal control problem (ROCP), the following
general definitions as well as settings for the OCP and the nonlinear program (NLP) solver
Interior Point Optimizer (Ipopt) are applied:

• Cost function: J = tf

• Number of discretization steps: nτ = 75
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9.1 Definition of Dynamic Model

• Minimal safety distance to obstacle (approximately quadcopter arm length plus half
blade): dobs,lb,∗ = dobs,1/2,lb = 0.25 m

• Position and dimension of obstacle 1: xN,obs,1 = 10 m, yN,obs,1 = 1 m, robs,1 = 3 m

• Position and dimension of obstacle 2: xN,obs,2 = 25 m, yN,obs,2 = −3 m, robs,2 = 5 m

• Feasibility tolerance of Ipopt: εfeas = 10−5

• Optimality tolerance of Ipopt: εopt = 10−5

• Linear solver of Ipopt: ma97

Once more, it is reminded that the minimal time cost function generally yields a large
control effort (especially including steps). Thus, adding a control cost or actuators in
the model might be required for real applications. As noted before, this is omitted in this
thesis to make the result analysis straightforward, especially considering the developed
robustness modifications.

In the following examples, two uncertainties are used as follows:

θrobs,2 ∼ U (a = −0.1 · robs,2, b = 0.1 · robs,2)
θω2 ∼ N (µ = 0.9, σ = 0.03)

(9.9)

Thus, a dynamic model uncertainty (efficiency factor of rotor two: θω2) is combined with
an external uncertainty (radius of obstacle two: θrobs,2) to show the general applicability
of the developed CC-OC framework with different types of uncertainties. These are also
the most common types of uncertainties in those kinds of applications, as there are first
of all normally only incomplete information on the obstacles available a priori (i.e., when
planning the trajectory offline). Additionally, the dynamic model is never modeled exactly,
i.e., it has unmodeled and simplified dynamics. It should be noted that the combination of
uncertainties, and specifically the combination of model as well as external uncertainties,
makes it inevitable to use the CC-OC approach as a simple approach, i.e., looking at
extremal points, is no longer straightforward. This is due to the nonlinear model as well
as the nonlinear interaction between the uncertainties.

Further take into account that the CC-OCP is discretized using the method introduced
in Section 5.1 (with both Jacobian and Hessian). Here, both the state as well as the controls
are expanded as introduced. This is meaningful as the calculated control expansion can
e.g., be used in an online application to update the currently used control strategy. As
this can be done by the gPC expansion, i.e., a matrix-vector operation, this procedure is
very efficient. This is a further benefit of the CC-OC. It should be noted that this requires
the online estimation of the assumed uncertainties, i.e., obstacle parameters and rotor
efficiency. This is generally possible in these kinds of application as the exact obstacle
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position must be known for safety reason (e.g., vision-based systems can be used), while
the model errors are often estimated to check for failures and make updates in the controller
(e.g., the gains [43]).

In the following, the CC-OC for the quadcopter OCP (Section 9.1) is looked at: Here,
initially the required accuracy of the gPC expansion is derived by mean of influence
quantification of the uncertainties in the dynamic model and LHS in Section 9.2. Afterward,
the “frequent” event CC-OC (Section 6.1), and specifically the homotopy procedure for
the sigmoid CC approximation, is described in Section 9.3. Concluding, Section 9.4
introduces the rare-event CC-OC (Section 6.2) to ensure non-hitting the obstacles with
a high probability.

9.2 Polynomial Chaos Expansion Order Determina-
tion for Quadcopter Obstacle Avoidance by Com-
parison to Latin Hypercube Sampling

Once more, the analysis starts with the derivation of the required gPC order to accurately
model the uncertainties within the ROCP: A first observation from the OCP definition in
Section 9.1 is that the external uncertainty influence (radius of obstacle two) influences
the obstacle distance constraint in (9.8) linearly. Secondly, the rotor efficiency is influencing
the forces and moments of the hexacopter quadratically (see (9.1)). Due to the fact that
the forces and moments are then influencing the translational and rotational EoMs linearly,
it can be deduced that the gPC expansion should be at least quadratically.

The validity of the quadratic gPC expansion is verified in the following by compari-
son to LHS (again, it is reminded that the LHS results will not fully resemble the real
statistical moments due to infeasible optimal solutions (Figure 2.4); thus, the results
must be discussed with care). Once more, the LHS results are obtained by calculating
the exact optimal trajectories at random samples. Here, the calculation of LHS result
took around 1, 600 s on a personal computer1, while the optimization time for the gPC
expansion (sequential evaluation) ranged from 34.5 s (di = 2) to 212 s (di = 5). Thus,
the required computational time is reduced by at least 87 %. Once more, this shows the ne-
cessity to apply the gPC method to calculate the ROC results. Furthermore, the number of
required evaluation points (i.e., the LHS samples and stochastic collocation (SC) nodes) is
significantly reduced by the gPC expansion which initially enables the used of the proposed
transcription method (Chapter 5).

1Architecture: x64 Intel R© CoreTM i7-6700K CPU @4.00GHz, 16.0GB RAM
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Figure 9.2: Comparison of mean trajectories by Latin-hypercube sampling and generalized
polynomial chaos around obstacles.

At first, the mean trajectory around the obstacles is shown in Figure 9.2 (the obstacle
uncertainties is plotted for its mean value). Here, the LHS results is depicted in solid blue
and is calculated from ns = 500 successful optimizations. The gPC expansion is shown
for orders of di = 2, . . . , 5 (with colors from red to green). It can be seen that the mean
results are on top of each other and therefore, well-matching as expected.

To get a better overview on the accuracy of the statistical moment approximation for
the gPC schemes, Figure 9.3 shows the positional standard deviation from LHS, including
confidence intervals (CIs) (lower bound: solid blue; upper bound: solid cyan), compared to
the different gPC expansion results. Overall, the gPC expansions of all orders yield good
results for the yN and zN position. There are differences in the xN position, which mainly
occur in between the obstacles. As described in the MCA introduction (Subsection 2.2.1),
these are partially related to the infeasible results encountered during the LHS solution
process. Additionally, the CIs are calculated based on the assumption that the considered
quantity is Gaussian-distributed (Subsection 2.2.3), which is normally not the exactly
the case. Thus, the matching is still acceptable especially considering that the trend is
very similar and the overall magnitude of the values is small.

After having looked at the positional accuracy, Figure 9.4 introduces the error bars of
the kinematic states (i.e., roll, pitch, and yaw). Here, the mean values are depicted by
the solid lines and the standard deviation around it is shown by the bars in both axes
directions. Thus, both the standard deviation in the state as well as the time direction
is visualized. Once more, it can be seen that the mean value matching is very good.
Additionally, the error bars are also matching fairly well over time. It is further interesting
to see that the standard deviation of the yaw angle (Ψ) is comparably large in the time
horizon 2 s–5 s (which is the time between the obstacles). This is natural as, depending on
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Figure 9.3: Comparison of position standard deviation between Latin-hypercube sampling
(95 %-confidence interval) and different polynomial chaos expansion orders.

the current size of the second obstacle, the steepness of the turn must be adapted. Other
than that, it can be seen that the quadcopter initially pitches (Θ) forward to accelerate
and at the end pitches backward to decelerate and achieve the hover position at the FBC.

Additionally, the pitching motion controls the velocity of the quadcopter, which is
shown by the error bars in Figure 9.5: Here, the behavior of the sideward velocity vK
resembles the behavior of the yaw, i.e., a significant standard deviation. Furthermore, it
can be seen that the quadcopter accelerates to the maximal allowed forward velocity uK ,
while the downward velocity wK shows the influence of both pitch as well as roll angle
(Figure 9.4). Generally, all gPC orders, once more, recover the reference statistics from
LHS very good.

After this general look into the accuracy of the states, the next paragraphs deal with
the accuracy of the obstacle distance, which is very important in the CC-OC framework
as hitting any of the obstacles should be avoided with a high probability. Here, Figure 9.6
shows the development of the mean and standard deviation of the distance to the first
obstacle, while Figure 9.7 does the same for the second obstacle. The figures show the lower
(solid blue) and upper bounds (solid cyan) of the 95 %-CI obtained from the LHS with ns =
500 successful optimization samples. Additionally, the gPC expansion orders of di =
2, . . . , 5 are once more shown to compare the accuracy. The minimal required obstacle
separation is depicted by the dashed, horizontal magenta line. As already mentioned
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Figure 9.4: Error bars of kinematic states for Latin-hypercube sampling and different
generalized polynomial chaos orders.
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Figure 9.5: Error bars of velocity states for Latin-hypercube sampling and different gen-
eralized polynomial chaos orders.
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before, the results of the LHS have to be considered regarding the fact that some of
the optimization yielded infeasible results and thus, the uncertain parameter PDF is not
accurately covered by the LHS (see Figure 2.4). Additionally, the CIs are calculated
based on the assumption that the considered quantity is Gaussian-distributed, which is
generally not the case for the obstacle distances.

Still, Figure 9.6 and Figure 9.7 show a good approximation quality of the mean obstacle
distance by all gPC expansion orders compared to the 95 %-LHS CI. It should be noted that
the magenta, dashed horizontal line visualizes the desired minimal distance to the obstacle,
which is naturally fulfilled for all plotted cases. The area close to the minimal separation
is also shown by the zoomed-in axes within Figures 9.6 and 9.7. It is clearly seen that
all trajectories reach the minimal distance to the obstacle, which is still feasible. This is
natural as it results in a faster trajectory due to the smaller evasive maneuver.

Furthermore, it can be seen in Figure 9.6 that the standard deviation approximation for
the first obstacle by the gPC expansion is generally too small. As the standard deviation
to the obstacle is overall of a small magnitude (because the obstacle itself is not uncertain),
the introduced errors can also be considered small. The best approximation is given by
the third order, i.e., quadratic, gPC expansion, which was already deduced in the first
paragraph of this section.

A better approximation of the standard deviation by the gPC expansion is given for
the second obstacle (Figure 9.7). Here, only the second order, i.e., linear, approximation
is outside the CI for a longer period, while especially the third order approximation is very
good. Additionally, a larger magnitude of the standard deviation can be seen because
the obstacle radius itself is also uncertain. Thus, approximating this distance accurately
is of paramount importance. It is important to note that the standard deviation of
the distance to the second obstacle is non-zero even at the IBC and FBC: This is due to
the fact that obstacle two is uncertain and thus, the distance is varying even at the fixed
hover condition. The seen standard deviation is then exactly the standard deviation of
the Uniform PDF defined for obstacle two in (9.9).

Concluding the accuracy estimation section, Figure 9.8 show the failure probability
of hitting the obstacles. This probability estimation is calculated as proposed in the CC-
OC Chapter 6 by (6.2): Here, the expansion coefficients, obtained from the generalized
polynomial chaos-stochastic collocation framework (gPC-SC) solution for the different
gPC expansion orders, are sampled with random samples (ns = 5000) of the uncertainties.
It is imminent from Figure 9.8 that close to the two obstacles almost all samples fail
the minimum safety distance requirement. Take into account that this is due to the fact
that the gPC-SC OCP only enforces the distance constraint at the SC nodes (i.e., on four
to twenty-five trajectories depending on the gPC expansion order) with only the minimal
required separation distance. Thus, even small parameter deviations, made in an MCA,
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Figure 9.8: Probability of fulfilling safety distance to obstacles based on random sampling
of generalized polynomial chaos expansion.

normally yield to a violation of the safety distance. Additionally, the NLP solver is allowed
to fail the distance constraint by its tolerances. Consequently, the probability of fulfilling
the safety distance at the obstacles is close to zero.

Summarizing, a robustification of the OCP by CCs is required in this example to get
a safe and robust trajectory around the obstacles. The required gPC expansion order for
the resulting CC-OCP can be determined as di = 3, because Figure 9.8 once more shows
that the third order expansion gives similar results like the higher order expansion, while
not being as conservative as the second order expansion. Thus, considering the results
shown in this section as a whole, the third order expansion is sufficiently accurate for
the CC-OCP with obstacle avoidance.

9.3 Polynomial Chaos Sampling-based Obstacle Avoid-
ance for Frequent Event by Monte Carlo Chance
Constraint

This subsection introduces initial results for the CC-OCP of the quadcopter with obstacle
avoidance. Here, the obstacle avoidance is modeled by CCs. For this purpose, the gPC
collocation transcription (including the analytic Hessian provided by FSD optimal control
tool for MATLAB R© (FALCON.m)) with CCs in (6.1) is used. Thus, the implemented
procedure is based on the framework presented in Section 6.1 and related to Contribu-
tion 4 of this thesis. The section should mainly serve as an overview on the capabilities of
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the proposed CC-OC approach and introduces the developed CC approximation includ-
ing the homotopy procedure. This is extended in Section 9.4 to the rare-event failure
probability application.

The ROCP formulation is then given as follows (for the simplicity of writing only
the i-th discretized time step is written):

min
ẑ

J = t̂f
(0)

s.t. ẑlb ≤ ẑ ≤ ẑub,

c(ẑ;θ,q) =



dobs,lb,∗ − dobs(j),1,i
dobs,lb,∗ − dobs(j),2,i

xi,lb − x(j)
i = xi,lb −

M−1∑
m=0

x̂(m)
i Φ(m)

(
θ(j)

)
x(j)
i − xi,ub =

M−1∑
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x̂(m)
i Φ(m)

(
θ(j)

)
− xi,ub

ui,lb − u(j)
i = ui,lb −

M−1∑
m=0

û(m)
i Φ(m)

(
θ(j)

)
u(j)
i − ui,ub =

M−1∑
m=0

û(m)
i Φ(m)

(
θ(j)

)
− ui,ub



≤ 0,

ψ(ẑ;θ,q) =


x̂(m)
i+1 − x̂(m)

i − hτ
2

(
Q∑
j=1

tf
(j) .x(j)

i+1Φ(m)
(
θ(j)

)
α(j)
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Q∑
j=1

tf
(j) .x(j)

i Φ(m)
(
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)
α(j)

)
 = 0,


P
[(
dobs,1,i (ẑ;θ) =

M−1∑
m=0

dobs
(m)
,1,i (ẑ) Φ(m) (θ)

)
≥ dobs,lb,∗

]

P
[(
dobs,2,i (ẑ;θ) =

M−1∑
m=0

dobs
(m)
,2,i (ẑ) Φ(m) (θ)

)
≥ dobs,lb,∗

]
 ≥ ξ,

i = 1, . . ., nτ

(9.10)

Thus, the ROCP is designed to optimize the mean final time and enforces deterministic
constraints (Chapter 5) on e.g., the physical states as well as controls. In addition,
the expansion states are propagated using the trapezoidal collocation defect (see (5.3)).
Furthermore, CCs enforce that the robust trajectory must satisfy the minimum distance
to the obstacle with a probability level of ξ. In this example, the fulfillment probability
is chosen to be ξ = ξi = ξ = 0.99 (= 99%), i.e., the same probability level is enforced at
each discretized time step. Thus, only at maximum 1 % of the trajectories are allowed to
fail, i.e., hit, either of the obstacles at any point of the trajectory. Here, the number of
samples to evaluate the CC within the CC-OCP is chosen to be ns = 5000 (as this has
shown to be sufficient). Additionally, the boundary level value of the sigmoid is chosen
to be BLs = 1− 1−ξ

1000 , i.e., three magnitudes smaller than the desired probability, which is
sufficient for the sigmoid to approximate the real sharp (logical) CC.

210



Chapter 9: Quadcopter Obstacle Avoidance Maneuver using Chance Constraints

In the following, the results for the ROCP in (9.10) are discussed. Therefore, Table 9.5
introduces the three MCA-based CC-OC cases studied in this section and the reference
gPC results. The three exemplary MCA-based cases specifically look at different values
for the sigmoid scaling value, i.e., the homotopy procedure in Algorithm 6.1. It should
be noted that these values have been chosen according to the results in Subsection 9.2,
by looking for a sufficiently large scaling factor that can accurately reproduce the CC
probability in Figure 9.8 for the reference gPC results. Here, orders of O(107) have proven
to be viable. As stated in Subsection 9.2 a third order gPC expansion is sufficient for
the approximation and thus, used for the optimization.

Furthermore, Table 9.5 shows the resulting sigmoid offsets, which are in the or-
der O(10−7) and thus, reasonably small especially considering the chosen feasibility toler-
ance of εfeas = 10−5 and optimality tolerance of εopt = 10−5.

Finally, Table 9.5 also introduces the optimal results for the mean final time as well
as the reduction in the optimality compared to the reference case. First of all, it is clear
that the three CC-OC cases give the same optimal mean final time and thus, the approxi-
mation quality of the three cases is similar. Compared, to the mean time of the reference
gPC case, a reduction in the optimal final time of around 1 % is necessary to achieve
a robustness improvement and especially fulfill the CC in (9.10). This is the well-known
and already mentioned trade-off between optimality and robustness. On the other hand,
the robustness improvement, which is here illustrated by the minimal mean separation to
any obstacle along the trajectory, is approximately 55 % for the robust results. Compared
to the optimality reduction, which is still comparably small, the robustness improvement
is thus significant and will be discussed in the following results in more detail.

Regarding the trade-off between optimality and robustness, Table 9.5 also illustrates
very well that the used CC-OC algorithm does reduce the required conservatism that is
normally present in robust design/optimization: For instance, robust design method could
suggest to at least avoid 99 % of the Uniform obstacle uncertainty PDF. This would
suggest to have a minimum separation of at least dobs,min,req = 0.25 m + 0.49 m = 0.74 m
(the value can be calculated from the inverse of the Uniform PDF). It is clear that this
value is almost twice as large as the value in Table 9.5, which suggests a more optimal
trajectory by the CC-OC. This improved optimality is first of all based on the fact
that the CC-OC considers the interactions between the uncertainties (e.g., there are not
only extremely large obstacles but also smaller ones), which might be helpful in fulfilling
the CC. Additionally, the CC-OC expands the control history, which allows an adaptation
of the control command with respect to the uncertainty. This allows to be more optimal
rather than being very conservative.

Before looking at the results, Table 9.6 gives an overview on the tensor grid SC nodes
used for the calculation of the gPC expansion coefficient. It is seen that there are nine
nodes, which combine the three unique nodes from each of the uncertainties. As a third
order expansion is used, the PDF mean value is always a part of the gPC expansion
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Table 9.5: Overview of Monte Carlo-based chance-constrained optimal control results with
comparison to reference polynomial chaos results.

Case Sigmoid Offset Mean Optimal Relative Optimality Minimal Mean Relative Robustness
Time Reduction Separation Improvement

as = 5 · 107 (= 5e + 7) bs ≈ 2.3026 · 10−7 E [tf ] ≈ 6.8865 s ≈ 0.9114 % dobs,min ≈ 0.3875 m ≈ 55 %
as = 7 · 107 (= 7e + 7) bs ≈ 1.6447 · 10−7 E [tf ] ≈ 6.8865 s ≈ 0.9114 % dobs,min ≈ 0.3875 m ≈ 55 %
as = 9 · 107 (= 9e + 7) bs ≈ 1.2792 · 10−7 E [tf ] ≈ 6.8865 s ≈ 0.9114 % dobs,min ≈ 0.3875 m ≈ 55 %
Reference: di = 3 − E [tf ] ≈ 6.8243 s = 0 % dobs,min ≈ 0.2500 m = 0 %

Table 9.6: Definition of random parameters for the stochastic collocation trajectories used
in Monte Carlo-based chance-constrained optimal control.

SC Node Obstacle Uncertainty Rotor Uncertainty
j = 1 θ(1)

robs,2
≈ −0.3873 θ(1)

ω2 ≈ 0.8480
j = 2 θ(2)

robs,2
≈ −0.3873 θ(2)

ω2 = 0.9
j = 3 θ(3)

robs,2
≈ −0.3873 θ(3)

ω2 ≈ 0.9520
j = 4 θ(4)

robs,2
= 0 θ(4)

ω2 ≈ 0.8480
j = 5 θ(5)

robs,2
= 0 θ(5)

ω2 = 0.9
j = 6 θ(6)

robs,2
= 0 θ(6)

ω2 ≈ 0.9520
j = 7 θ(7)

robs,2
≈ 0.3873 θ(7)

ω2 ≈ 0.8480
j = 8 θ(8)

robs,2
≈ 0.3873 θ(8)

ω2 = 0.9
j = 9 θ(9)

robs,2
≈ 0.3873 θ(9)

ω2 ≈ 0.9520

calculation. Due to the fact that the rotor uncertainty is defined to be a Gaussian PDF,
it is also seen that the SC nodes are spread wider compared to the obstacle uncertainty,
which is distributed as a Uniform PDF.

The trajectories at these SC nodes (see Table 9.6), are also depicted in Figure 9.9 for
the exemplary homotopy scaling factor as = 9 · 107 (i.e., the largest scaling): Here, it is
clear that the trajectories are very similar until passing the first obstacle. After the first
obstacle, the trajectories spread due to the fact that the second obstacle has different
radii depending on the uncertainty (this is visualized by the three circles), which either
allows faster or enforces slower trajectories. The introduced spread by the second obstacle
continues to tighten until the final point of the trajectory as here the same FBC must be
fulfilled by all SC trajectories. It can additionally be observed in Figure 9.9 that there
is a safety distance to the obstacles, which is seemingly larger than for the non-robust,
optimal result (e.g., Figure 9.2) and was also already seen in Table 9.5.

This increased distance is also visible looking at the mean optimal trajectories in
Figure 9.10. The figure shows the optimal trajectories for the three homotopy steps of
the CC-OCP (colors from green to blue) as well as the reference case (solid black). Here,
it can be seen that the non-robust trajectory gets closer to the obstacle, which makes
the trajectory faster (as the covered distance is smaller), but also decreases the robustness.
It should be noted that these small distances also illustrate once more that only a small
optimality reduction (Table 9.5) is required to increase the robustness.
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Figure 9.9: Comparison of Monte Carlo-based chance-constrained, robust, stochastic
collocation node quadcopter trajectories for exemplary sigmoid scaling factors.
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Figure 9.11: Mean distance and standard deviation of quadcopter distance to obstacle
one for Monte Carlo-based chance-constrained, robust optimal control.

To illustrate the changes in the obstacle separation better, Figure 9.11 and Figure 9.12
show the mean and standard deviation of the distance to obstacle one and obstacle two
respectively (once more, the minimum separation limit is depicted by dashed, horizontal
magenta line). As already noted the mean values are fairly similar, but the zoomed-
in portion of the mean value plots shows that the reference gPC-SC trajectory reaches
the minimum separation limit (dashed, horizontal, magenta line), while the CC-OCP
results all keep an additional safety distance. Additionally, the minimal separation is
reached at a later time instant, which corresponds to the increased optimal time. Further-
more, Figure 9.11 and Figure 9.12 show that the standard deviation to the obstacles is
increased as well. This is first of all based on the fact that evading the obstacles requires
larger distances to the obstacle, which are generally nonlinear due to the uncertainty in
the rotor speed. Thus, the trajectories and distances spread up. Additionally, a reason for
the increased spread comes with the fact that the mean final time should still be minimized.
This results in the trajectories to spread even further, because some obstacle/uncertainty
combinations are more beneficial to this goal than others.

Concluding the results of the MCA-based CC-OC, Figure 9.13 depicts the probability
of violating the obstacle distance constraint for the three homotopy factors. Once more,
this probability is calculated in a post-processing step using ns = 5000 random samples
(different for each homotopy factor) and the exact, sharp CC (i.e., a logical decision). It is
clear that the minimum probability level (dashed, horizontal, magenta line in Figure 9.13)
is fulfilled for all homotopy factors. There would even be some margin to reduce robustness
and improve optimality. It should be noted that this trade-off is, in this context, also
strongly depending on the tolerances of the NLP solver. Thus, this trade-off can partly
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Figure 9.12: Mean distance and standard deviation of quadcopter distance to obstacle
two for Monte Carlo-based chance-constrained, robust optimal control.

be made by adapting their tolerances. Still, it is seen that the CC-OC does not remove
the failure probability completely, as it would also be expected to remain as optimal as
possible. It should be further noted that a complete reduction of the failure probability
would also not possible as the rotor efficiency uncertainty is distributed by a Gaussian
PDF and thus, also infinite values are possible, which will generally lead to failure and
infeasibilities inherently. Further take into account that, once more, the homotopy factors
also produce similar results. Thus, all values appropriately approximate the CC and can
be used with the rare-event CC-OCP discussed in the next section.
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Monte Carlo-based chance-constrained, robust optimal control.

9.4 Subset Simulation based Rare-Event Obstacle Avoid-
ance for Quadcopter

This section introduces the CC-OCP with SubSim of the quadcopter to avoid violating
the minimal safety distance to the obstacles with a high probability. Thus, results for Con-
tribution 5 of this thesis are shown. Specifically, this framework is a major development to
the state of the art provided by this thesis as it connects open-loop direct optimal control
(OC) with rare-event CC evaluation by SubSim in a generic approach, which enhances
available ROC methods. Once more, it is reminded here that the efficient evaluation in
the SubSim during the NLP is possible due to the efficient sampling provided by the gPC
expansion.

Therefore, the ROCP in (9.10) is extended by assigning a large fulfillment probability
for ξ, i.e., only a small amount of failures is allowed. In this section, this fulfillment prob-
ability is based on the proposed European Aviation Safety Agency (EASA) specifications
for vertical take-off and landing (VTOL) vehicles [40], for which the quadcopter in this
application is one example for. Here, the EASA is defining maximal failure probabilities
based on the number of passengers and the failure condition [40, p. 26]. As the used
quadcopter in this example carries no passengers, the least restrictive failure probabilities
apply. These are defined per flight hour and reach from 10−3 for minor failures until 10−6

for catastrophic failures. Take into account that the CC-OCP does not optimize the failure
probability per flight hour but per trajectory time instant. Still, reaching a high safety level
is beneficial both per flight hour as well as per trajectory. Thus, the proposed approach
enables the possibility to specify (certification) requirements within the ROC, which is
a development compared to the state of the art.
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Then, the MCA-based CC-OCP in (9.10) can be extended to the form used for
the SubSim-based CC-OC as follows:

min
ẑ

J = t̂f
(0)

s.t. ẑlb ≤ ẑ ≤ ẑub,

c(ẑ;θ,q) =


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dobs,lb,∗ − dobs(j),2,i
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i − hτ
2

(
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Q∑
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θ(j)
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 = 0,

E [P [dobs,1,i (ẑ;θ) ≥ dobs,lb,∗]] + w · σ [P [dobs,1,i (ẑ;θ) ≥ dobs,lb,∗]]
E [P [dobs,2,i (ẑ;θ) ≥ dobs,lb,∗]] + w · σ [P [dobs,2,i (ẑ;θ) ≥ dobs,lb,∗]]

 ≥ ξ,
i = 1, . . ., nτ

(9.11)

Here, the basic structure is not changed while the definition of the CC is adapted: First
of all, the CC is now evaluated using the SubSim-based CC-OC framework (Section 6.2).
Additionally, the possibility of SubSim to provide both the mean as well as the standard
deviation of the failure/fulfillment probability is used and therefore, the CC itself can be
robustified as well. This robustification is adapted by the weighting factor w and can be
generally viewed as a Pareto problem (Subsection 2.4.1). In the context of the SubSim,
this formulation also describes a control of coefficient of variation (CoV) (see (2.45)) and
thus, the certainty in the CC-OC results.

It should be noted that the largest sigmoid scaling from Section 9.3, i.e., as = 9 ·107, is
used in the following for the SubSim CC evaluation. Furthermore, the SubSim conditional
probability level is defined to be p0 = 0.1 and there are a total of ns = 5000 samples used.
These values have proven to give reasonable results and convergence of the SubSim. It
should be further noted that the proposal PDF (Step 0 in Algorithm 2.2) for the Gaussian
uncertainty, i.e., the second rotor efficiency, is defined to be a Gaussian PDF given
by: ρ∗Θrobs,2

(
θ̃robs,2|θrobs,2

)
= N

(
µ = θrobs,2 , σ = 1

)
. On the other hand, the proposal PDF

for the Uniform uncertainty, i.e., the second obstacle, is a Uniform PDF defined as
follows: ρ∗Θω2

(
θ̃ω2|θω2

)
= U (a = θω2 − 1, b = θω2 + 1). Take into account that the created

samples from the Uniform proposal PDF are enforced to be in the interval [−1; 1] to
ensure that the gPC evaluation is always in the standardized domain (see Table 2.2). Once
more, these choices have proven to be viable in application.
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With the inputs to Algorithm 6.2 defined, the CC-OC results can be calculated and
Table 9.7 summarizes the results obtained for the SubSim-based CC-OC with different
fulfillment probability levels: ξ = 99.9 % (with four weight cases for the standard devi-
ation: w = 0, 0.25, 0.5, 0.75), ξ = 99.99 % (without the standard deviation influence in
the constraint function), and ξ = 99.999 % (without the standard deviation influence in
the constraint function). Here, also the reference, i.e., non-robust, gPC result as well as
the MCA-based CC-OC from Section 9.3 is shown. Overall, the table at first shows the dif-
ferent sigmoid offsets for the different SubSim fulfillment levels obtained with the sigmoid
scaling as = 9 · 107 for the MCA-based results. These results suggest that the scaling is
chosen sufficiently large for all probability levels as the offset is in the order of O(10−7).

Furthermore, Table 9.7 shows the mean final time, which is the cost function, as well
as the minimal mean separation to any of the obstacles along the trajectory. For these
values, there is also a column showing the relative difference to the reference gPC-SC
case. Here, it can e.g., be seen that for a fulfillment probability level of ξ = 99.9 %
a reduction of the optimality ranging from 1.25%–3.9 % is seen depending on the weight
(i.e., the optimal flight takes longer). On the other hand, this reduced optimality results
in an improved robustness, where the minimal mean separation is used as an indicator
for, ranging from 82%–268 %. Thus, the well-known trade-off in ROC between optimality
and robustness becomes clear once more.

A similar behavior can also be seen for the larger fulfillment probabilities of ξ = 99.99 %
and ξ = 99.999 %. Here, the optimality is reduced by up to 6.8 %, while the robustness,
i.e., the minimal separation, is improved by more than 450 %. It should be noted that
for these fulfillment probabilities no further CCs weighted with the standard deviation
are analyzed as the results behave similar as in the case with ξ = 99.9 %. Additionally,
the standard deviation for small failure probabilities generally gets fairly large and thus,
weighting the CC with the standard deviation is generally equivalent to just increasing
the fulfillment probability by one magnitude directly.

Finally, the last column of Table 9.7 shows the minimal fulfillment probability encoun-
tered along the optimal trajectory as calculated in the post-processing: These probabilities
are connected to the assigned minimal failure probability and fulfilled considering the NLP
tolerances. It can especially be seen that the minimal fulfillment probability is increased
by at least 94 % while the optimality is only reduced by approximately 7 % considering
the non-robust, gPC-SC result. This shows the significant capabilities of the CC-OC
approach when trading of optimality and robustness.

The following detailed discussion of the results starts with the with the probability
level of 99.9 % including the different weights in Subsection 9.4.1 and concludes with
the different probability levels in Subsection 9.4.2
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Table 9.7: Overview of Subset Simulation-based chance-constrained optimal control results
with comparison to reference polynomial chaos and Monte Carlo-based chance-constrained
results.

Case Sigmoid Offset Mean Optimal Relative Optimality Minimal Mean Relative Robustness Minimal Fulfillment
bs Time E [tf ] Reduction Separation dobs,min Improvement Probability of CC

along Trajectory
ξ = 99.9 % (w = 0.0) ≈ 1.5351 · 10−7 ≈ 6.9099 s ≈ 1.2543 % ≈ 0.4562 m ≈ 82 % ≈ 99.89952 %
ξ = 99.9 % (w = 0.25) ≈ 1.5351 · 10−7 ≈ 6.9647 s ≈ 2.0574 % ≈ 0.6342m ≈ 154 % ≈ 99.95978 %
ξ = 99.9 % (w = 0.5) ≈ 1.5351 · 10−7 ≈ 7.0184 s ≈ 2.8442 % ≈ 0.7656 m ≈ 206 % ≈ 99.91961 %
ξ = 99.9 % (w = 0.75) ≈ 1.5351 · 10−7 ≈ 7.0925 s ≈ 3.9301 % ≈ 0.9203 m ≈ 268 % ≈ 99.94673 %
ξ = 99.99 % (w = 0.0) ≈ 1.7909 · 10−7 ≈ 7.1038 s ≈ 4.0957 % ≈ 0.9813 m ≈ 292.5 % ≈ 99.99798 %
ξ = 99.999 % (w = 0.0) ≈ 2.0467 · 10−7 ≈ 7.2928 s ≈ 6.8652 % ≈ 1.3768 m ≈ 450 % ≈ 99.99924 %
gPC-SC: di = 3 − ≈ 6.8243 s = 0 % dobs,min ≈ 0.2500 m = 0 % ≈ 5.88 %
MCA-CC: as = 9 · 107 ≈ 1.2792 · 10−7 ≈ 6.8865 s ≈ 0.9114 % ≈ 0.3875 m ≈ 55 % ≈ 99.88005 %

9.4.1 Fulfillment Probability Level 99.9% with Different Stan-
dard Deviation Weights

At first, the fulfillment probability of ξ = 0.999 (= 99.9%) is looked at (this is related to
a failure probability of 10−3, i.e., a minor failure, in the EASA specifications [40, p. 26]):
Although this is not yet considered to “really” be a rare-event, it is used in this thesis to
show the capabilities of the SubSim-based CC-OC and specifically the different optimal
trajectories obtained by the weighting factor in (9.11). To start with the description
of the robust, optimal results, Figure 9.14 shows the mean trajectories of the SubSim-
based CC-OC results for the different weighting factors w = 0 (solid green), w = 0.25
(dashed dark red), w = 0.5 (dash-dotted dark green), and w = 0.75 (dotted light green).
Additionally, the MCA-based result from Section 9.3 with the same homotopy factor as used
in SubSim-based CC-OCP is shown as a reference (solid black line). A first observation
from Figure 9.14 is that the trajectories get pushed further away from the obstacles
compared to the MCA-based result to fulfill the increased probability level. A significant
difference is also seen with different weighting factors, which shows that the confidence,
i.e., the safety, in the results is improved by introducing the weighting.

To get a more detailed overview on the obstacle separation constraint Figure 9.15 shows
the mean and standard deviation for the distance to obstacle one, while Figure 9.16 shows
the same for obstacle two (once more, minimal separation limit by dashed, horizontal
magenta line). Once more, the mean plots (upper ones in the figures) have a zoomed-in
part that shows the time horizon in the area around the minimal separation. The dashed
magenta line in this zoomed-in plots denotes the minimal separation limit. Specifically,
the zoomed-in part shows that the non-weighted, i.e., w = 0, SubSim-based result and
the MCA-based reference result show similar characteristics. Still, the non-weighted case
maintains a slightly larger separation and reaches its minimal separation later. This similar
result could be expected as the MCA-based case already fulfilled a higher probability level
as required, which was close to the 99.9 % of this case (see Figure 9.13). More significant
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Figure 9.14: Comparison of mean trajectories around obstacles of subset simulation
(fulfillment probability level: 99.9 %) and Monte Carlo-based chance-constraint optimal
control with different standard deviation weight factors.

differences can be seen in the weighted case, where the distance to the minimal separation
is larger. This comes at the cost of being less optimal, i.e., slower, which is as seen in
Table 9.7.

Furthermore for the larger weights, looking at Figure 9.15 and Figure 9.16 it is seen that
the standard deviation of the distance to the first obstacle shows no clear dependence or
development with the assigned probability level and/or weighting. On the other hand, for
the second obstacle there is a clearer structure: Before the obstacle is reached, the standard
deviation is generally larger than for the reference MCA-based result, while it is smaller
after the obstacle. It also is flatter close to the obstacle (around 4 s), which suggests
a smoother trajectory around the obstacle and a smaller spread of the trajectories after
the obstacle is passed.

To show the robustness improvement, Figure 9.17 depicts the CC fulfillment proba-
bility for the different SubSim-based CC-OC results. Take into account that this result
was calculated in a post-processing step and thus, is calculated with the exact indica-
tor function rather than the sigmoid approximation and independent parameter samples.
Here, the horizontal magenta line denotes the desired CC fulfillment level. It is clear that
all SubSim results fulfill the probability level. As it could be expected from the previ-
ous results, the non-weighted case (i.e., where the standard deviation of the fulfillment
probability is not considered in the CC) is least robust, i.e., it reaches the minimal CC
fulfillment bound. On the other hand, the weighted SubSim results have a safety distance
to the bound, which is based on the incorporation of the failure probability standard
deviation. Furthermore, it can be seen that the occurrence time of the failures is varying,
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Figure 9.15: Mean and standard deviation of obstacle one by subset simulation (fulfillment
probability level: 99.9 %) and Monte Carlo-based chance-constraint optimal control with
different standard deviation weight factors.
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Figure 9.16: Mean and standard deviation of obstacle two by subset simulation (fulfillment
probability level: 99.9 %) and Monte Carlo-based chance-constraint optimal control with
different standard deviation weight factors.
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Figure 9.17: Fulfillment probability (“expected value”) of obstacle distance separation
chance constraint by subset simulation-based (fulfillment probability level: 99.9 %) chance-
constraint optimal control with different standard deviation weight factors.

which suggests that there are some local minima encountered. For instance, the errors
for the weight w = 0.75 occur mainly when entering the proximity of the first obstacle
(starting from 2 s; see Figure 9.15), while e.g., in the case of w = 0, the errors are more
likely to occur when exiting the obstacle proximity (see Figure 9.15 and Figure 9.16). This
suggests different locally optimal points that can be explored on in further studies by e.g.,
globalization strategies.

It should be noted that there is no clear connection between the magnitude of the weight
and the safety distance to the obstacle in Figure 9.17. This is mainly based on the con-
nection of the failure probability standard deviation and its mean value, which is depicted
by the CoV in Figure 9.18: As introduced in (2.45), the CoV is the relative magnitude
of the failure probability standard deviation with respect to its mean value. Thus gen-
erally small values are desired to have a high confidence in the results. It can be seen
in Figure 9.18 that the CoV in the failure areas is approximately 10 %, which suggests
a high confidence. Here, both the weighted results with w = 0.5 and w = 0.75 suggest,
in connection with Figure 9.17, that the tolerance of the minimum failure probability is
reached and thus, the “most optimal” result is found by the optimizer. On the other hand,
the case w = 0.25 seems to be too conservative, because of the small failure probability
(see Figure 9.17 at around 4 s).

It is important to note that the large CoVs outside the failure areas in Figure 9.18 do
not suggest a small confidence in the results, but rather that no failures where detected
in this area by the SubSim. This is a feature of the Beta PDF that is used to calculate
the mean and standard deviation of the SubSim failure probability (Subsection 2.2.4.4): As
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Figure 9.18: Failure coefficient of variation of obstacle distance separation chance con-
straint by subset simulation-based (fulfillment probability level: 99.9 %) chance-constraint
optimal control with different standard deviation weight factors.

seen in (2.46) and (2.47), the mean and standard deviation will not reach exactly zero even
with no detected failures. They will rather converges to very small values that are of similar
magnitude, which results in large CoVs. This generally suggests that the SubSim result
is inconclusive, i.e., no failures were detected, and should be reiterated with a different
parameter set (e.g., different subset probability p0 and/or different number of samples ns).
In this application, this is not necessary as there are actually points (like the IBC and
FBC) that will never experience failures. Thus, large CoVs are natural when not being in
the area of the obstacles.

9.4.2 Comparison of Different Fulfillment Probabilities

Concluding the SubSim-based CC-OC, the different fulfillment probabilities are compared.
Therefore, Table 9.8 summarizes and compares the different fulfillment probabilities with
the reference gPC and MCA-based CC-OC results. Once more, it can be seen that the op-
timality is reduced with increasing fulfillment probability up to 6.9 %, while the robustness
is significantly increased by up to 450 %. This increase in robustness shows that significant
safety distances to the obstacles must be fulfilled to assure that failures become rare-events.
This behavior is mainly due to the Gaussian-distributed rotor uncertainty. In addition
to this optimality and robustness statistics, Table 9.8 also shows the minimal fulfillment
probabilities (i.e., the smallest value along the trajectory). It should be noted that these
probabilities were calculated in a post-processing step. Here, it can be seen that especially
the fulfillment probability case ξ = 0.9999 = 99.99 % is too conservative, while the other
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Table 9.8: Comparison of subset simulation-based chance-constrained results with different
probability levels and Monte Carlo-based chance-constrained results.

Case (w = 0.0) Mean Optimal Relative Optimality Minimal Mean Relative Robustness Minimal Probability
Time Reduction Separation Improvement on Trajectory (Post)

ξ = 99.9 % E [tf ] ≈ 6.9099 s ≈ 1.2543 % dobs,min ≈ 0.4562 m ≈ 82 % ≈ 99.89952 %
ξ = 99.99 % E [tf ] ≈ 7.1038 s ≈ 4.0957 % dobs,min ≈ 0.9813 m ≈ 292.5 % ≈ 99.99798 %
ξ = 99.999 % E [tf ] ≈ 7.2928 s ≈ 6.8652 % dobs,min ≈ 1.3768 m ≈ 450 % ≈ 99.99924 %
Ref.: di = 3 E [tf ] ≈ 6.8243 s = 0 % dobs,min ≈ 0.2500 m = 0 % ≈ 5.88 %
ξ = 99 % (MCA-CC) E [tf ] ≈ 6.8865 sunit ≈ 0.9114 % dobs,min ≈ 0.3875 m ≈ 55 % ≈ 99.88005 %
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Figure 9.19: Comparison of mean trajectories around obstacles of subset simulation and
Monte Carlo-based chance-constraint optimal control with different probability levels.

two SubSim-based CC-OC are very close to the minimal CC level, especially considering
that failures, e.g., for ξ = 0.999 = 99.9 %, are allowed in the magnitude of the NLP
tolerances.

As a first result, Figure 9.19, once more, compares the mean trajectories. Here,
the three SubSim results as well as the MCA result is shown. While the trajectory
with ξ = 0.999 = 99.9 % is still close to the reference MCA-based results, a significantly
increased deviation can be seen for the higher fulfillment probabilities. This is natural as
the extremely rare values of the Gaussian PDF (e.g., more than four standard deviations
from the mean value), which was chosen as the rotor uncertainty, become of major influence
and thus, the CC needs to consider these especially.

The obstacle related statistical moments are next covered by Figure 9.20 for the first
obstacle and Figure 9.21 for the second obstacle (minimal separation limit: dashed, hori-
zontal magenta line). Once more, the zoomed-in part shows that the minimal separation
is significantly increased with increasing fulfillment level, while this minimum is reached
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Figure 9.20: Mean and standard deviation of obstacle one by subset simulation and Monte
Carlo-based chance-constraint optimal control with different probability levels.

later and the curve is generally smoother. Otherwise, a similar, but more robust, behavior
like in Figures 9.15 and 9.16 can be seen. Specifically, the standard deviation once more
shows to be larger ahead and smaller after the obstacle compared to the reference case.

Furthermore, Figure 9.22 shows, this time, the failure probability with the correspond-
ing CoV for the failures depicted in Figure 9.23. It can be seen in Figure 9.22 that the case
with ξ = 0.999 = 99.9 % reaches the maximum allowable failure probability, i.e., 0.1 %
at both obstacles. Generally, these maximal allowed failure probabilities are depicted by
the horizontal dashed magenta lines. The CoV here is comparably small (see Figure 9.23),
which suggests a high confidence. Still, as the failure probability is already at its boundary
value, it cannot be ruled out completely that calculated trajectory might fail the CC level
in real application. This behavior could e.g., be further evaluated using different SubSim
parameters and additional confidence could be gained.

For the results with probability ξ = 0.9999 = 99.99 % in Figure 9.22, the already
mentioned conservatism can be seen as failures, first of all, only occur at the first obstacle
(after 2 s) and, second of all, the failure probability is significantly smaller than what
would be allowed. Once more, this behavior is related to the NLP solution process and
here specifically the scalings and tolerances. Thus, less conservative results could also
be achieved by adapting parameter settings suitably. It should be noted that the CoV
for this failure is still comparably small, as seen in Figure 9.23, and thus, the confidence
in the results and the fulfillment of the desired probability threshold is very high. This
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Figure 9.21: Mean and standard deviation of obstacle two by subset simulation and Monte
Carlo-based chance-constraint optimal control with different probability levels.

is specifically true in this case as the failure probability in Figure 9.22 has a significant
distance to its bound value. Thus, the conservatism is of benefit in this case as it improves
the confidence in the results.

Finally, the probability level ξ = 0.99999 = 99.999 % is on a similar magnitude like
its maximal allowed failure probability. This was also already seen in Table 9.8 and
suggests that the result is as optimal as possible and no further conservatism is introduced.
Still, as for the case with ξ = 0.999 = 99.9 % failure probability, this optimality with
no conservatism suggests the possibility of failures occurring in real applications when
looking e.g., at the magnitude of the CoV in Figure 9.23.

Concluding, it can be stated that both the MCA as well as SubSim-based CC-OC
algorithm have proven viable in application. Specifically, the desired and novel fulfillment
of rare-event CC could be shown.
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Figure 9.22: Failure probability (“expected value”) of obstacle distance separation chance
constraint by subset simulation-based chance-constraint optimal control with different prob-
ability levels.
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Figure 9.23: Comparison of failure coefficient of variation of obstacle distance separation
chance constraint by subset simulation-based chance-constraint optimal control for different
probability levels.
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9.5 Outlook: Application of Chance-constrained Op-
timal Control to Landing in Urban Area

The previous examples showed the applicability and viability of the developed ROC meth-
ods for general trajectory optimization problems. Still, the applicability of the developed
methods to current engineering problems might not yet be fully visible and clear. Thus,
this section gives a brief outlook on the applicability of the developed CC-OC, without
too much detail on the implementation and solution process, in the context of calculating
robust landing trajectories in urban areas. These are specifically important for the growing
air taxi industry.

The general problem setup is depicted in Figure 9.24: Here, the quadcopter, used before,
is hovering at its initial position (southward orientation) and waiting to land in front of
the Munich central station. The landing position is denoted by the blue cylinder and should
be reached with a probability of at least 99 %. Additionally, the central station building
(red wall) should be avoided with the same probability. The uncertainty is a Uniform
wind field from east (left in the picture) towards the building, i.e., it pushes the quad-
copter towards the building. The uncertainty is given by vW ∼ U

(
a = −1.5m

s , b = 0m
s

)
,

i.e., wind in west direction. It should be noted that this uncertainty is around 15 % of
the quadcopter’s maximal flight velocity and thus, already significant. The cost function
is chosen to be a trade-off between minimal time and minimal control effort (i.e., energy),
with the latter being more important. Thus, smoother, less aggressive trajectories should
ensue.

In Figure 9.24, the reference optimal solution (no wind) is furthermore given by
the yellow line, while the mean gPC-SC solution is given in magenta, and the mean CC-
OC solution is in cyan. It can be mainly seen that the reference optimal solution without
wind takes a more direct way to the landing area, while both the mean gPC-SC as well as
the mean CC-OC trajectory are significantly influenced by the wind and pushed towards
the building. Still, a reasonable safety distance is present. Take into account that a direct
comparison between these trajectories is difficult as the wind uncertainty is not symmetric
around zero wind (i.e., the value with whom the reference optimal results is calculated).
Thus, the mean results for gPC-SC and CC-OC actually show results with non-zero wind
influence. Therefore, the comparison should be mainly made with respect to the defined
probabilistic criterions. In general, it can be stated that the reference optimal solution
is one (extremal) realization of the non-robust gPC-SC solution and can therefore be
analyzed as part of it.

The basic analysis of the touchdown points is given in Figure 9.25: Here, green circles
denote touchdown points that are within the touchdown area while red crosses denote
failures (i.e., a touchdown outside the desired magenta circle). The dashed blue lines are
depicting the mean solution. The left plot shows the results when simulating the gPC-
SC solution at 5000 random samples and updating the control command according to
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Figure 9.24: Visualization of landing setup including constraints (blue touchdown cylin-
der; red area for building), optimal results with no wind (yellow), mean generalized poly-
nomial chaos stochastic collocation solution (magenta), and chance-constrained optimal
control solution (cyan).

the current sample and the gPC expansion result. It should be noted that this procedure
would require a wind measurement/estimation in the real application. The right plot
shows the results when making a simulation at the same random samples with the CC-OC
control expansion results. It can be seen that the CC-OC result significantly increases
the number of points within the touchdown area (from approximately 50 % to 98.8 %).
Additionally, the touchdown points are generally closer to the center of the touchdown area,
which also increase the robustness to further uncertainties (e.g., model errors). It should be
noted that the minor difference between the calculated CC-OC probability and the desired
probability is based on the usage of different samples (and thus, generally the CIs of
the solution) as well as the sigmoids and the NLP tolerances, as already discussed before.

To conclude, Figure 9.26 shows a subset of the sampling results (10 of 5000 random
samples) using the CC-OC results: Here, red lines denote trajectories that either have
a touchdown point outside the landing area or get to close to the building, while green
lines fulfill the constraints. It can be seen that the trajectories exhibit a quite large
spread due to the wind. Here, the statement from before that the reference optimal
solution with no wind is an extremal solution of the robust problem becomes visible once
more. Furthermore, it is clear that a significant number of trajectories fulfills the desired
constraints and thus, applying the CC-OC approach yields safer results, because only
around 1.2 % trajectories from the random sampling fail (see Figure 9.25). Additionally,
it is clear that the trajectories mainly fail the landing area constraint while the building
is hit by neither, which is a preferable behavior.
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Thus, this brief outlook showed that the ROC frameworks developed in this thesis
can be used in real engineering applications and problems to calculate safe and robust
trajectories.
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Figure 9.25: Comparison of touchdown points for generalized polynomial chaos stochastic
collocation (left plot; blue trajectory: mean) and chance-constrained optimal control (right
plot; blue trajectory: mean) solution with probability of landing (5000 samples) in desired
touchdown area (green circles: in touchdown area; red crosses; outside touchdown area).

Figure 9.26: Visualization of multiple landing trajectories for quadcopter under wind
uncertainties (green lines: constraints fulfilled; red lines: constraints failed).

230



Chapter 10

Conclusion and Perspective

This chapter wraps up the thesis starting with a review of the contributions from Section 1.4
in Section 10.1. Afterward, conclusive remarks and takeaways from the developed methods
in this thesis are given in Section 10.2. An overview of possible future developments and
perspectives for the introduced methods wraps up the thesis in Section 10.3.

10.1 Summary and Review of Contributions

The basic contribution of this thesis was to provide different methodologies to connect
uncertainty quantification, by means of generalized polynomial chaos (gPC), with open-
loop direct optimal control (OC) to create formulations for a robust open-loop direct
optimal control (ROC) analysis of dynamic systems (e.g., by chance constraints (CCs) or
distributed open-loop direct optimal control (DOC)).

In the following, the contribution list of Section 1.4 is reviewed in detail to specifically
show the developments to the state of the art made in this thesis. Therefore, a short
review of the current state is given and the developments made in this thesis are presented
and described based on this:

Contribution 1: Direct Trapezoidal Collocation Transcription with Analytic Ja-
cobian and Hessian using Generalized Polynomial Chaos within FSD optimal
control tool for MATLABR© (FALCON.m) This OC transcription method is the ba-
sis for the further on developed ROC frameworks, especially for the chance-constrained
open-loop direct optimal control (CC-OC) framework (Contribution 4 and Contribution 5).
Basically, it transforms the stochastic open-loop direct optimal control problem (OCP)
into a (large) deterministic OCP. Initial ideas on such a direct transcription have already
been considered in [80, 86, 94]: Here, the authors always use the gPC expansion within
Gauss pseudo-spectral OC transcription.

Within this thesis, these formulations and methods have been further developed and
extended to collocation-based methods, specifically the trapezoidal collocation that is
implemented in FALCON.m. Therefore, the methods are implemented as a special class

231

https://www.fsd.lrg.tum.de/software/falcon-m/
https://www.fsd.lrg.tum.de/software/falcon-m/


10.1 Summary and Review of Contributions

within the FALCON.m framework for general use within ROC. The benefit and motivation
to use collocation instead of pseudo-spectral OC is the fact that collocation methods only
approximate the problem locally and therefore create a very sparse gradient (“Jacobian”)
and Hessian, which are used in the Newton-type nonlinear program (NLP) iteration
procedure. These sparse matrices are normally more efficient in the solution process of
the NLP iteration, especially when large OCPs are considered. This is due to the fact that
an efficient elimination procedure for the linear system solution of the Newton method
can be conducted (“multi-frontal method”; [35]). Additionally, in collocation there is
no necessity for the OC results (specifically the controls) to be smooth like there is in
pseudo-spectral methods [15, p. 147ff.].

Furthermore, the trapezoidal collocation is rewritten in this contribution in a way that
it is possible to directly propagate the expansion coefficients, i.e., solve the collocation
defect (CD) equation in the gPC domain. For this, a time derivative based on the stochastic
collocation (SC) method is derived and applied. Using this transcription, it is directly
possible to control the accuracy of the statistical moments within the NLP iteration
because of the equality constraint on the CD.

Finally, another development of this thesis for the direct transcription, using trape-
zoidal collocation of an OCP by gPC, is the derivation of an analytic Jacobian as well as
analytic Hessian for the gPC discretization method. Especially, the availability of the an-
alytic Hessian with gPC is novel and provides the possibility to e.g., conduct an efficient
(post-optimal) sensitivity analysis, i.e., parameter influence analysis, on the optimization
parameters. These are the expansion coefficients in this context and thus, the statistical
moment changes of the calculated OCP result when varying parameters can be analyzed.
Overall, the availability of post-optimal sensitivities then also allows for an online update
of the robust trajectory.

Contribution 2: Optimal Gain Calculation for Control Loops using Generalized
Polynomial Chaos and Sensitivity Analysis The calculation of (robust) optimal
feedback control or adaptation gains has already been subject to research in e.g., [1, 3, 70,
93]. The studies [1, 70] use genetic algorithms to calculate the optimal adaptation gains.
Although being easy to implement, genetic algorithms are normally slow in convergence and
thus, reaching the optimum. Therefore, studies [3, 93] introduced Newton-type update
rules, which are normally faster converging. Still, neither of the mentioned studies considers
parametric uncertainties nor did it consider that a fast update of system parameters can
be achieved by applying sensitivities.

Therefore within this contribution, a bi-level framework was developed that evaluates
the closed control loop (either for an adaptive or a standard controller) by calculating a gPC
representation of the system for the defined uncertainties in the lower levels. Subsequently,
an upper level calculates the new set of controller gains. This framework is iterated until
an optimal solution is found. As this procedure is generally time consuming, especially
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using the often applied genetic algorithms in the upper level, an important feature of
the proposed method in this thesis is the usage of sensitivities: These can either be
calculated using post-optimal sensitivities or by propagating an additional differential
equation for the sensitivities together with the dynamic system. Additionally, uncertainties
(e.g., in the state matrix) are also considered within the closed-loop system using a gPC
expansion. Thus, it must be considered that both the normal states as well as their
sensitivities are expanded according to the gPC method. By this, the statistical moments
of both the system as well as its sensitivities are available. These are then used in
a parameter optimization to update the controller gains.

Ultimately, a hybrid method between the genetic algorithm and the sensitivity method
is also implemented: This method initially searches for the global optimal region using
the genetic algorithm and then switches to the sensitivity evaluation to find the opti-
mal point faster and more reliable. Overall, this contribution thus provides a further
development of controller design methods using ROC techniques.

It should be noted here that, although developed for gain design in this thesis, the pro-
posed approach can easily be applied to other parameter design tasks within dynamic
systems and general design tasks under uncertainties (e.g., shapes).

Contribution 3: Distributed Optimal Control of Generalized Polynomial Chaos
Expansion DOC is a frequently used methodology in model predictive control (MPC)-
based control loops [32, 37, 67, 88] and is the basis for a major ROC framework developed
in this thesis. The general idea of many DOC methods is splitting the single, large
OCP into multiple smaller OCPs that are easier to solve, but interconnected using a,
generally, small set of connection variables. These connection variables are updated
within a connection/coordination problem until the desired original solution for the large-
scale OCP is reached. A review of current methods has recently been provided in [88].
DOC is also known as primal decomposition and is similar to the bi-level structure used
in Contribution 2. Take into account that the goal of DOC here is to recover the original
solution of the connected, large-scale OCP without simplifications.

Over the last couple of years, the consideration of uncertainties also became more
prominent in DOC: A first study [32] considers an incorporation of gPC within a linear
distributed open-loop direct optimal control problem (DOCP). Here, the gPC expansion
is directly inserted within the dynamic equations and constraints and thus the specific
system is transformed to the stochastic domain provided by gPC. In study [67], the sigma
point approach, i.e., an unscented transformation based on a finite set of statistics, is
applied to get to a stochastic OCP that is later on distributed to be solvable. Finally,
study [37] once more uses the gPC method and directly inserts the gPC expansion into
the DOC formulation for optimization. The authors apply their method to optimal power
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flow problems, i.e., they try to minimize the operation cost while conserving the required
power balance. They show that their box constraints and dynamic equations are fulfilled
with high accuracy using the gPC expansion.

Within this thesis, the gPC expansion is also applied to create a DOCP, but rather
than inserting the gPC expansion within the dynamic model equations, the SC method is
used to rewrite the calculation of the statistical moments such that standard deterministic
OCPs at the SC evaluation points (“nodes”) can be solved. This has the benefit that
it is possible to use the already tested deterministic model and that it is not required
to reformulate the baseline OCP formulation. Consequently, this makes the method
easier applicable to a broader range of standard OCP formulations (e.g., deterministic
nonlinear models with nonlinear constraints). The usage of the SC method, together with
a reformulation of the statistical moments, also enables to formulate a connection problem
for e.g., a distributed cost functional that does not require sensitivities for the update of
the connection variables. This is especially beneficial for models where e.g., the Hessian
is costly to evaluate or where the Karush-Kuhn-Tucker (KKT) matrix of the NLP solver
cannot be accessed to calculate the sensitivities. Thus, a development to the state of
the art is made by this thesis.

Furthermore, it is also shown within this thesis that the DOCP with distributed cost
function converges to the solution of the connected OCP by an analytic assessment of
the optimality conditions (KKT conditions). Additionally, the distribution of constraints
(e.g., CCs) is looked at, which requires the knowledge of sensitivities, but can be other-
wise equally distributed using the proposed method. Here, both deterministic as well as
probabilistic constraints can be applied.

Overall, this contribution proposed a general methodology for a distributed version of
a robust open-loop direct optimal control problem (ROCP), which can even be applied to
online OCP solution in future applications as the problem size is very good to control.

Contribution 4: Chance-constrained Optimal Control based on Monte Carlo
Analysis and Generalized Polynomial Chaos CC-OC is the major topic of this
thesis: The basic idea here is to introduce constraints on system variables within the OCP
that are not deterministic but rather apply a probability of fulfilling/failing it. Such
an OCP is clearly difficult to solve as it largely depends on the nonlinearity of the model
in connection with the properties of the uncertainties, i.e., how the probability density
function (PDF) of the system variables, which should fulfill the CC, look like. Therefore,
many studies in the field rely on e.g.: ellipsoid relaxation, i.e., approximating a multivariate
Gaussian distribution in the OCP by a cone constraint [130, 23ff.]; sampling, i.e.,
the efficient choice of evaluation points for the CC [147]; or density estimation techniques,
i.e., estimating the PDF of the CC from a set of samples [25]. All of these techniques
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try to handle the CC such that a good approximation for its value is calculated. For
Newton-type OCPs another part, which plays a major role, is the fact that the resulting
CC formulation must be smooth.

Within this thesis, a general framework that can deal with nonlinear models as well
as general CC formulations is developed: Therefore, the already mentioned direct OC
transcription using the gPC method can be used (Contribution 1; or by the similar
idea in Contribution 3). Applying this method gives the capability to evaluate the gPC
expansion very efficiently within each iteration of the NLP solution process at random
samples. Thus, it is possible to conduct a Monte Carlo analysis (MCA) within each NLP
step in a very efficient way as the gPC expansion reduces the MCA to a matrix-vector
multiplication. The probability can then be calculated by counting the elements that
are within the desired domain (i.e., as a logical decision). In order to create a smooth
representation of this logic decision, a logistic function, the sigmoid (this is similar to
the approach in study [147] with another function that is better suited to derive the analytic
Jacobian and Hessian is used), is used as an approximation. Here, a homotopy strategy
that iteratively sharpens the sigmoid is implemented as well such that finally a very good
approximation of the original logic decision is achieved. Additionally, this homotopy
strategy supplements convergence of the NLP solution process as loose approximations
can be used in the beginning to get an initial, feasible result. In the process of sharpening
the sigmoid using the homotopy, this initial result is then merely pushed towards the desired
domain to reach the original tight bounds of the logical decision.

In summary, this contribution provides an initial framework to incorporate very general
CCs within the ROCP, which is a development to the state of the art because very general
CCs with a minimal amount of approximations can be treated. As the sampling can be
done very efficient and with high accuracy, and also safety margins can be included using
confidence intervals (CIs), it provides a viable option in reliability engineering and similar
applications.

Contribution 5: Rare Event Chance-constrained Optimal Control based on
Subset Simulation and Generalized Polynomial Chaos This contribution is a de-
velopment of the previously introduced baseline CC-OC framework using MCA (Contri-
bution 4). Within the contribution, the subset simulation (SubSim) method [9, 81] is
incorporated as a way to calculate rare-event failure probabilities in the context of CC-OC.
These small failure probabilities are e.g., necessary in safety critical applications and cannot
be calculated reliably from MCA, as this would require way too many samples to capture
the failure even only once. In turn, this then does not even return a viable probability
estimation, because the number of samples is not “sufficiently” larger than the failure
probability [9, p. 33]. Therefore, the central limit theorem (CLT), which is the basis of
the MCA, does no longer provide a good approximation [9, p. 33]. Thus, the original
CC-OC framework (Contribution 4) is augmented by the SubSim to achieve the desired
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properties and be able to calculate rare-event failure probabilities. Current research in
optimization with SubSim mainly relied on global optimization methods [76, 123] with
only few constraints [77]. Thus, the work in this thesis provides significant developments.

Within this thesis, SubSim is incorporated within the chance-constrained open-loop
direct optimal control problem (CC-OCP) and thus, the Newton-type direct OC scheme:
One way of doing this is by adding a homotopy step that iteratively updates the samples
created from SubSim until the SubSim as well as the OCP fulfill the desired maximal failure
probability. It should be noted that this homotopy step can be connected with the ho-
motopy step to update the sigmoid shape and rate parameters (Contribution 4). Thus,
the computational burden is not increased compared to the anyway required adaptation
of the sigmoid CC approximator function.

The created samples are then assigned as constants to the CC that uses them to
calculate the probability of the constraint fulfillment within the NLP solution. Here,
the probability can be either based on the Markov chain created from SubSim or a PDF
estimation of the marginal failure distribution [148]. The update of the samples is done
outside the NLP iteration until the SubSim as well as the CC-OCP fulfill the desired CC
bound. The fact that the update is made outside the NLP also removes the stochasticity
of the sample update from the NLP. Thus, deterministic NLP solvers can be used. Here,
this sample update can also be made independent of the NLP process, which is based
on the gPC expansion as an approximation for the analytic response, by simulating
the dynamic system using the current robust control history within the sample creation
algorithm (e.g., Metropolis-Hastings algorithm (MHA) or modified Metropolis-Hastings
algorithm (MMHA)). Once more, this shows the benefit of the gPC expansion for ROCPs
as it provides an analytic response surface that can be used for the fast solutions of
the SubSim within the NLP.

Thus, it is clear from the contributions and how they were realized in this thesis that
a development to the state of the art in ROC has been made. Still, their remain some open
questions and further perspectives for future developments of the work at hand, which are
discussed in the following.

10.2 Conclusive Remarks

In summary, the work at hand presented extensions and developments of frameworks in
the context of ROC. Initially, an efficient method for uncertainty quantification relying on
gPC was introduced that can be easily applied in OC applications. The benefit of the gPC
method, compared to e.g., MCA, which is always used for verification of the developed
methods, is the fast, efficient, and accurate calculation of the stochastic response surface.
This makes it suitable for the application in OCPs, where the computational burden of
solving a single OCP is normally high and thus, only the necessary, preferably small,
number of OCPs should be solved.
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Then, the combination of gPC and OC, which is established in research, led to the de-
velopment of different ROC frameworks tailored to different application cases: A first
framework (Contribution 2) introduced a bi-level methodology that can be used to design
robust gains in control loops. It should be noted that the general bi-level methodology is
a state-of-the-art method that gets extended in the thesis to the specific needs of the gPC
methodology especially considering the gPC expansion of sensitivities. These are used
within an optimization algorithm that calculates e.g., robust gains. Here, a major point
of development was also the introduction of probabilistic constraints, which can e.g., be
related to certification criteria of the controller architecture.

As the basic bi-level framework introduces artificial parameters, which might constrain
the robust, optimal solution in an undesired way, an enhanced framework based on DOC
was developed next in Contribution 3. This framework relied on a distribution of uncon-
nected OC sub-problems that can be evaluated in a parallelized manner and a subsequent
connection based on a small set of connection variables. These connection variables are
chosen such that they ensure a solution of the original ROCP without simplifications
and artificial constraints. For this, they are mathematically derived based on the used
statistical moments and expansion coefficients in the problem formulation. Thus, they give
a straightforward choice compared to the artificial parameters. Additionally, probabilistic
constraints could be implemented directly.

A drawback of the developed DOC method was the fact that the OCPs had to be
solved multiple times at the varying parameter set except for only very simple cases. This
introduced a significant computational overhead. Additionally, it is not easily possible
to calculate e.g., only a single, robust control history, because each DOCP calculates
a specific optimal control history for the specific OCP. As these differ, the optimal con-
trol history is consequently also distributed, i.e., it carries statistical moments such as
the standard deviation, instead of being only a single, mean robust history. To cope
with this issue, a gPC collocation method was developed that introduced the gPC expan-
sion coefficients as the decision variables of the NLP algorithm (Contribution 1). This
gPC collocation framework gives the possibility to calculate robust trajectories within
a single NLP optimization as the expansion coefficients are directly available and do not
need to be calculated from the SC. A drawback of the method, compared to the DOC
framework, is the fact that the NLP size grows very fast with the number of uncertainties
and the expansion order yielding an NLP that might be difficult to solve. Thus, both
the DOC as well as the gPC collocation framework supplement each other, i.e., the gPC
collocation framework should be used for calculating an integrated solution result, while
the DOC framework can be applied, if the gPC collocation cannot be applied due to e.g.,
size restrictions. Here, it should also be considered that further development can be made
to connect both frameworks.
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Overall, the major development of this thesis was the introduction of probabilistic
constraints, i.e., CCs, for the ROC methods within Contribution 2–Contribution 5. These
CCs relied on the efficient sampling that is possible by using the gPC expansion, which is
always available in the developed frameworks. Thus, it is directly possible to do a MCA
within the NLP iteration very efficiently as it is only necessary to solve a matrix-vector
operation for this (Contribution 4). Additionally, a specifically tailored approximation
algorithm based on sigmoids was developed that provided a smooth probabilistic constraint
approximation for the NLP solver. In order to recover the originally desired solution, this
sigmoid is iteratively adapted such that a very good approximation of the original CC
was reached. Additionally, the CC could be adapted to consider errors, which might have
been introduced by only using the approximate solution given by the gPC expansion and
by the approximation using the sigmoids, by applying a CI optimization. Here, depending
on the type of the constraint, the lower/upper bound of the CI could be used in the CC
function by calculating the mean value and the standard deviation of the failure probability.
Using this approach, a higher confidence in the CC fulfillment can be achieved, while still
calculating an optimal trajectory.

As an extension of the standard MCA procedure, the SubSim method is also introduced
in the context of the CC-OC framework (Contribution 5). This extension is particularly
useful when studying rare-event failure probabilities as e.g., prominent in safety critical
applications. Again, the efficient sampling of the gPC expansion could be applied in order
to get fast updates of the probabilistic constraint in the NLP iteration. In general, it
can be stated that especially the incorporation of SubSim in ROC provided a significant
improvement on the current state of the art by this thesis.

10.3 Future Developments

Although the developed frameworks in this thesis extended available tools for modeling
uncertainties within OCPs and extended the way of calculating robust trajectories, there
are still areas of open question and for further research: As also stated in Contribution 1,
the developed algorithms were mainly introduced for FALCON.m and thus, the trapezoidal
collocation scheme used in it. Nonetheless, the proposed algorithm can be extended to
general collocation methods [16, p. 132ff.], which can give improved convergence for some
application cases.

Furthermore, a research direction can be the efficient choice of the SC nodes at which
the deterministic OCPs are solved. Currently, these are chosen with respect to the Gaus-
sian quadrature rules, which is a standard and well-established way. Still, the choice
of nodes and weights might not be optimal for various problems and different nodes and
weights might be better suited to approximate the response surface more accurate and effi-
cient. Here, methods to calculate and update the nodes based on the closed-loop response
can be applied [99]. It should be noted that this generally comes at the cost of having
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a less generic framework. In this context, further developments of the current algorithms
can also be made with respect to arbitrary polynomial chaos techniques [98, 136]. These
are, although not explicitly covered and required in this thesis, also an important subject
of research and can be used within the proposed frameworks directly.

Additionally, in the context of OC applications, (post-optimal) sensitivities can be
used to improve the approximation quality of the response surface as not only the response
but also the response derivative at the SC node can be calculated. This can e.g., be used
to apply spline fits on the response surface, which improves the approximation order of
the polynomial response surface without requiring an increase in the number of SC nodes.

Another research topic, which can be further exploited, is the incorporation of sparse
grid techniques for the gPC expansion evaluation within the ROC frameworks. Although,
initial work was already conducted during this thesis, there are still multiple opportunities
to include better suited sparse grid, especially in the context of having a good representation
of the real system response [18]. This generally yields to the incorporation of adaptive
sparse grids that change based on the required accuracy for the gPC expansion [18].
These methods could significantly improve the convergence speed as well as accuracy of
the methods and thus, open broader field of applications.

In addition, the sparsity pattern of the created NLP by e.g., the gPC collocation
(Contribution 1) can be subject to further research especially in the context of exploita-
tion for an efficient solution of the NLP [16, p. 134ff.]. Here, especially the structure
of the gPC expansion can be exploited to be able to calculate an efficient solution of
the linear system in the NLP [35]. An initial exploitation of this gPC expansion struc-
ture and the parallelization capabilities it provides, were already used within the DOC
framework (Contribution 3). Additionally, a specifically tailored linear NLP solver could
be implemented for this purpose.

With regard to the developed DOC framework (Contribution 3), there are also further
developments possible: If interior point (IP) methods are used to solve the DOCPs, it
is generally possible to adaptively update the barrier parameter. This means that in
the beginning a “large” barrier parameter can be used such that the DOCPs are solved
to a lower accuracy, when the connection variables are still far away from their optimal
value (i.e., the connection error is still large). This could improve the convergence speed
significantly as the DOCPs are easier so solve. With the connection variables approaching
the optimal value, the barrier parameter of the DOCPs needs to be decreased as well to
reach an accurate solution of the DOCP. By this procedure, it is also easier to ensure
feasible DOCP solutions. It should be noted that this procedure can also be applied in
the bi-level OC context of Contribution 2.

A further topic of research could be the incorporation of stochastic Newton-type
updates of e.g., the gradients required in the NLP [4, 24]. Currently, all updates are made
deterministically as the SC method provides deterministic expansion nodes that can be
optimized deterministically. Nonetheless, the gPC method could also be used to calculate
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the gradient in a stochastic manner, which would be e.g., of special interest in machine
learning applications, but might also be applied in the context of CCs to give a better
estimation on the exact convergence interval and the accuracy to which the CC has been
solved, which could be extracted from the convergence area of the stochastic Newton
method.

Regarding the CC-OC framework, one topic that may require further discussion is
the connection of the desired fulfillment probability level with respect to the feasibility
and optimality tolerance of the OCP. Especially with the rare-event CC-OC, a feasi-
bility tolerance that is significantly smaller than the desired fulfillment probability is
required. Otherwise, the NLP solver is allowed to fail the probability significantly because
the tolerances are too large. Here, further research can thus develop appropriate scaling
methodologies or rewriting the CC such that the effects of a too large feasibility toler-
ance are minimized. In order to reduce the computational effort to conduct the CC-OC
it is also possible to improve the homotopy strategies: It is e.g., first of all possible to
reformulate the homotopy on the sigmoid shape parameter by a maximization problem,
i.e., finding the maximal possible sigmoid parameter that optimizes the cost functional as
well as fulfills the CC. Here, the sigmoid shape should not be allowed to be smaller than
a minimum threshold and it can be checked afterward if the calculated shape parameter
creates a sharp-enough sigmoid. For the second homotopy, required in the SubSim, it can
be viable to use (post-optimal) sensitivities on the initial SubSim to update the parameter
set directly within the NLP. This assumes that the initial solution is already close to
the desired rare-event and thus, only small changes in the initial parameter set are required.
Additionally, sensitivities that update parameters based on changes in the trajectory are
required, which requires further research.

Finally, the proposed CC-OC methods (Contribution 4 and Contribution 5) could
e.g., be applied in the context of aircraft flight control law clearance [34]. Especially,
the capability to efficiently calculate CCs can be used within the flight control law clearance,
as the controller normally must fulfill probabilistic bounds on its constraints. These
probabilistic constraints are generally also given in the context of rare-events and thus,
the developed CC-OC framework with SubSim can play a role in e.g., the clearance
procedure of control laws within future aircraft certification.
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Appendix A

Coordinate Frames and
Transformations

The coordinate frames used in this thesis are based on [92] as well as [61, 62, 65] and are
adapted to the specific needs and nomenclature of the thesis. The transformation matrices
are based on [61, 62, 65] as well. The used frames and transformations are introduced
in the following sections, while Figure A.1 gives an initial, general overview of the used
coordinate frames and the transformations, i.e., dependencies, in between them.

E O

K K̄

B

A

ϕE,λE

χK ,γK

µK
-βK ,αK

χA,γA,µA
-βA,αA

Ψ,Θ,Φ

Figure A.1: Coordinate systems, connections, and transformations in between them with
respective transformation angles and order (after [61], [17, p. 14]).
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A.1 Earth-Centered, Earth-Fixed / WGS84 Frame

A.1 Earth-Centered, Earth-Fixed / WGS84 Frame

The earth-centered, earth-fixed (ECEF) frame is used to depict positional data on the earth.
It has the index E and is located in the earth’s center E. The xE-axis points towards
the Greenwich meridian, while the zE-axis is the earth’s rotation axis. The yE-axis
forms a right-handed coordinate frame.

Because the definition of a position by the xE, yE, and zE coordinate on the earth is
uncommon in aviation, the World Geodetic System 1984 (WGS84) frame is commonly
used as an alternative description. This frame denotes the position by geodetic latitude ϕE,
geodetic longitude λE, and geodetic height h.

The mentioned definitions are illustrated in Figure A.2.

Figure A.2: Earth-Centered, Earth-Fixed frame with WGS84 geodetic position defini-
tion [62].

A.2 Body-fixed Frame

The body-fixed frame is a frame of reference for the aircraft that translates and rotates
with the aircraft. It is generally used to note body related quantities such as forces,
moments, and inertia. It is fixed in the aircraft reference point, R, and has the index B.
The xB-axis points towards the nose of the aircraft, the yB-axis points towards the right
wing, and the zB-axis points downwards in the symmetric plane of the aircraft. These
definitions are illustrated in Figure A.3.
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Figure A.3: Body-Fixed Frame [62].

A.3 Aerodynamic Frame

The aerodynamic frame, depicted in Figure A.4, is a frame of reference used to denote
aerodynamic quantities such as the aerodynamic velocity or aerodynamic angle of attack.
It is fixed in the aircraft’s reference point R and has the index A. It translates with
the aircraft and rotates with respect to the airflow around the aircraft. The xA-axis points
in the direction of the aerodynamic velocity, the zA-axis points downwards in the symmetric
plane of the aircraft, and the yA-axis points to the right, setting up the right-handed
coordinate frame.

Figure A.4: Aerodynamic Frame [62].

A.4 Kinematic Frame

The kinematic frame, also called trajectory frame, is a frame of reference for the trajectory
of the aircraft. It is visualized in Figure A.5: Again, the frame is fixed in the aircraft
reference point R, while it holds the index K. It translates with the aircraft, while
it rotates with respect to the kinematic velocity. The xK-axis points in the direction of
the kinematic velocity, the zK-axis points downwards in the symmetric plane of the aircraft,
and the yK-axis points to the right, setting up the right-handed coordinate frame.
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A.5 North-East-Down Frame

Figure A.5: Kinematic Frame [62].

A.5 North-East-Down Frame

The North-East-Down (NED) frame is a frame of reference used to denote the orientation
of the aircraft. It is fixed in the aircraft’s reference point R, translates with the aircraft,
and is holding the index O. The xO-axis points towards geographic north, the yO-axis
points towards geographic east, and the zO-axis points downwards and is orthogonal with
respect to the local geoid surface. This orthogonality relation is secured by a rotation of
the NED frame by the transportation rate. The frame is visualized in Figure A.6.

Figure A.6: North-East-Down Frame [62].

A.6 Geodetic/Navigation Frame

The geodetic frame, also called navigation frame, is a frame of reference used in the simpli-
fied view of a fixed-flat earth (FFE). Essentially, it is a (rotated) NED frame (Section A.5)
that is fixed somewhere on the earth’s surface. Thus, it only rotates with the earth’s rate,
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but it does not translate. It is fixed in the point O, and has the index N . The xN -axis
points to geographic north (or a rotated direction), the zN -axis points downwards and is
orthogonal with respect to the local geoid surface, and the yN -axis points to geographic
east (or the rotated direction). This frame of reference is depicted in Figure A.7.

Figure A.7: Geodetic/Navigation Frame [62].

A.7 Transformation Matrices

As already introduced in Figure A.1 the coordinates frames introduced in the previous
sections can be transformed in between using transformation angles. These transformations
are introduced in the following. It should be noted that the transformation matrices in this
thesis are orthonormal matrices, which makes it easy to calculate the inverse by simply
transposing it [122, p. 10], i.e., MXY = M−1

Y X = MT
Y X . In this context, it should be noted

that the first index denotes the output frame while the second one is the input frame.
The following formulas show the calculation of the transformation matrices [61, 62, 65]:

O frame to B frame:

MBO =


cos (Θ) cos (Ψ) cos (Θ) sin (Ψ) − sin (Θ)

sin (Φ) sin (Θ) cos (Ψ)− cos (Φ) sin (Ψ) sin (Φ) sin (Θ) sin (Ψ) + cos (Φ) cos (Ψ) sin (Φ) cos (Θ)
cos (Φ) sin (Θ) cos (Ψ) + sin (Φ) sin (Ψ) cos (Φ) sin (Θ) sin (Ψ)− sin (Φ) cos (Ψ) cos (Φ) cos (Θ)

 (A.1)

O frame to K frame:

MKO =


cos(χK) · cos(γK) sin(χK) · cos(γK) − sin(γK)
− sin(χK) cos(χK) 0

cos(χK) · sin(γK) sin(χK) · sin(γK) cos(γK)

 (A.2)

O frame to A frame:
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MAO =


cos (γA) cos (χA) cos (γA) sin (χA) − sin (γA)

sin (µA) sin (γA) cos (χA)− cos (µA) sin (χA) sin (µA) sin (γA) sin (χA) + cos (µA) cos (χA) sin (µA) cos (γA)
cos (µA) sin (γA) cos (χA) + sin (µA) sin (χA) cos (µA) sin (γA) sin (χA)− sin (µA) cos (χA) cos (µA) cos (γA)

 (A.3)

A frame to B frame:

MBA =


cos(βA) · cos(αA) − sin(βA) · cos(αA) − sin(αA)

sin(βA) cos(βA) 0
cos(βA) · sin(αA) − sin(βA) · sin(αA) cos(αA)

 (A.4)

K̄ frame to B frame:

MBK̄ =


cos(βK) · cos(αK) − sin(βK) · cos(αK) − sin(αK)

sin(βK) cos(βA) 0
cos(βK) · sin(αK) − sin(βK) · sin(αK) cos(αK)

 (A.5)

K frame to K̄ frame:

MK̄K =


1 0 0
0 cos(µK) sin(µK)
0 − sin(µK) cos(µK)

 (A.6)

A frame to K frame:
MKA = MT

K̄K ·M
T
BK̄ ·MBA (A.7)

B frame to K frame:

MKB = MKA ·MAB (A.8)
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Appendix B

Continuous Probability Theory

This appendix deals with a basic introduction to continuous probability theory, as required
for this thesis. More comprehensive reviews and detailed introductions are given in [141,
ch. 2], [115], [12]. These are also the basis for the following review.

B.1 Random Variables

Generally speaking, random variables (RVs) are used to assign a numeric value to each
random outcome of an event. More precisely, the RV is a real-valued function that assigns
a numeric value to each random output of the event ω that lies within the abstract random
space Ω. It should be noted that an abstract random space does not necessarily need to
be numeric, but can also be defined by e.g., words or colors.

Then, all relevant subsets of the random space Ω are collected in a random class F
that is called σ-algebra. This yields the following definition for F [141, p. 10]:

Definition B.1 (Random Class). A σ-field F on Ω is a collection of subsets of Ω satisfying
the following three necessary conditions:

• F is not empty, i.e., ∅ ∈ F and Ω ∈ F

• F is closed under complementation, i.e., if A ∈ F , then Ac ∈ F

• F is closed under countable unions, i.e.,
∞⋃
i=1

Ai ∈ F

With the De-Morgan theorem [5, p. 41] it follows that the last condition is also valid
for intersections, i.e.,

∞⋂
i=1

Ai ∈ F .
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B.2 Probability

Generally speaking, probability is a concept used to quantify the likelihood of occurrence
for particular events. It is defined by a probability space as follows [141, p. 11]:

Definition B.2 (Probability Space). A probability space is a triplet (Ω,F ,P), where Ω
is the countable event space (also: random space), F ⊂ 2Ω (“power set”) is a σ-field of Ω,
and P is a probability measure such that:

1. 0 ≤ P [A] ≤ 1, ∀A ∈ F

2. P [Ω] = 1

3. For A1, A2, . . . ∈ F and Ai ∩ Aj = ∅,∀i 6= j

P
[ ∞⋃
i=1

Ai

]
=
∞∑
i=1

P [Ai]

We can use the probability space in Definition B.2, to define the collection of all probabil-
ities as the distribution function [141, p. 11]:

Definition B.3 (Distribution Function). The collection of probabilities

FΘ (θ) = P [Θ ≤ θ] = P [ω : Θ (ω) ≤ θ] , θ ∈ R

is the distribution function FΘ of Θ.

Now, the term distribution can be defined [141, p. 11]:

Definition B.4 (Distribution). The collection of the probabilities

PΘ (B) = P [Θ ∈ B] = P [{ω : Θ (ω) ∈ B}]

for suitable subsets B ⊂ R (called Borel sets [5, p. 1297]) is the distribution of Θ.

B.2.1 Continuous Distributions

In general, the most important property of a continuous RV is the fact that it is not
exhibiting jumps. As a consequence, the probability of a particular value of the RV is
always zero [141, p. 12]:
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P [Θ = θ] ≡ 0, ∀θ ∈ R (B.1)

If possible, the RV of a continuous distribution is defined by its PDF ρΘ (θ) as follows [141,
p. 12]:

FΘ(θ) =
∫ x

−∞
ρΘ (θ) dθ, θ ∈ R (B.2)

This is also known as the cumulative distribution function.
The PDF then has the helpful property that the integral with respect to the real

numbers is one [141, p. 12]:

∫ ∞
−∞

ρΘ (θ) dθ ≡ 1, ρΘ (θ) ≥ 0, ∀θ ∈ R (B.3)

B.2.2 Statistical Moments

Most of the important characteristics of a RV can be described in terms of statistical
moments. Generally, the m-th statistical moment of a continuous RV, Θ, is defined as
follows [141, p. 13f.]:

E [Θm] =
∫ ∞
−∞

θmρΘ (θ) dθ, m ∈ N = {1, 2, . . . ,∞} (B.4)

The first moment is called the mean value and defined by:

µΘ = µ [Θ] = E [Θ] =
∫ ∞
−∞

θρΘ (θ) dθ (B.5)

The second moment is generally normalized (also called: centered) with respect to the mean
value and called variance:

σ2
Θ = σ2 [Θ] = var [Θ] =

∫ ∞
−∞

(θ − µΘ)2 ρΘ (θ) dθ (B.6)

The square root of the variance is called standard deviation σΘ = σ [Θ] and is normally used
to describe a RV instead of the variance. The standard deviation describes the spreading
of the data around the center given by the mean value.

The skewness describes the third centered moment and is a measure of the symmetry
of the PDF. It is defined as follows [2, p. 928]:

skew [Θ] = E

(Θ− µΘ

σΘ

)3
 = E [Θ3]− 3µΘσ

2
Θ − µ3

Θ
σ3

Θ
(B.7)

Here, (B.4) can be used to calculate the third moment of the RV.
Finally, another commonly used statistical moment is the kurtosis that is defined to

be the fourth centered moment and is a measure of the tailedness of the PDF [2, p. 928]:
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kurt [Θ] = E

(Θ− µΘ

σΘ

)4
 = E [Θ4]− 4µΘE [Θ3] + 6µ2

Θσ
2
Θ + 3µ4

Θ
σ4

Θ
(B.8)

Once more, (B.4) can be used to calculate the fourth moment of the RV.
In addition to the moments related to a single continuous RV, one can also define

the covariance of two RVs, Θ1 and Θ2, as follows [5, p. 1318]:

cov [Θ1,Θ2] = E [(Θ1 − E [Θ1]) · (Θ2 − E [Θ2])]
= E [Θ1 ·Θ2]− E [Θ1]E [Θ2]

(B.9)

Generally, the covariance can be regarded as a measure of how Θ1 behaves/changes
when Θ2 changes and vice versa. This can also be viewed as a measure of correlation.

B.3 Random Vectors

A nθ-dimensional vector Θ =
[
Θ1 . . . Θnθ

]T
is called random vector (i.e., a vector of one-

dimensional random variables) (RVec), if the components Θ1, . . . ,Θnθ are one-dimensional
and real-valued RVs. Therefore, a RVec is merely a collection of RVs and the concepts
such as distribution functions (Definition B.3) can be transformed from the scalar RV as
follows [141, p. 17]:

Definition B.5 (Multi-variate Distribution Function). The collection of the probabilities

FΘ (θ) = P [Θ1 ≤ θ1, . . . ,Θnθ ≤ θnθ ] , θ =
[
θ1 . . . θnθ

]T
∈ Rnθ ,

is the distribution function FΘ of Θ.

With Definition B.5, the distribution function can also be represented by means of PDFs:

FΘ (θ) =
∫ θ1

−∞
. . .
∫ θnθ

−∞
ρΘ (θ1, . . . , θnθ) dθ1 . . . dθnθ , ρΘ (θ) ≥ 0, ∀θ ∈ Rnθ (B.10)

B.4 Stochastic Process

Stochastic processes are used to describe the development of a RV, and therefore the ran-
domness of the system, as a function of space and/or time. A stochastic process is defined
by [141, p. 20f.]:
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Definition B.6 (Stochastic Process). A stochastic process is a collection of RVs

(Θ, t ∈ T ) = (Θt (ω) , t ∈ T, ω ∈ Ω)

defined in a random space, Ω, with t the time/spatial index of the RV. The time interval, T ,
is some continuous interval, defined by [a, b] with a < b.

B.5 Dependence and Conditional Expectation

Generally speaking, independent random events are present, if the outcome of one event
does not influence the outcome of the other one. RVs are independent, if the following
definition holds [141, p. 18]:

Definition B.7 (Independent Random Variables). Two RVs Θ1 and Θ2 are independent
if

P [Θ1 ∈ B1,Θ2 ∈ B2] = P [Θ1 ∈ B1]P [Θ2 ∈ B2]

for all suitable subsets B1 and B2 in R. This means that the events {Θ1 ∈ B1}
and {Θ2 ∈ B2} are independent.

A more useful definition for this work is given by using the PDFs [141, p. 18f.]:

Definition B.8 (Independent Random Variables via Probability Density Function). The
RVs Θ1, . . . ,Θn are independent if, and only if, their densities can be written as:

ρΘ (θ) = ρΘ1,...,Θnθ (θ1, . . . , θnθ) = ρΘ1 (θ1) · . . . · ρΘnθ (θnθ)

Definition B.8 directly yields that the expectations are independent as well, which in turn
yields the fact that the covariance of two RVs is zero (see (B.9)). The consequence of this
is that two independent RVs are also uncorrelated. Take into account that the opposite
statement is, in general, not true.

B.6 Modes of Convergence

Modes of convergence are an important property of a statistical method, as they define
how fast the method approaches the desired statistical distribution. Therefore, at first
the convergence in distribution and probability is defined [141, p. 22]:
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Definition B.9 (Convergence in Distribution). The sequence {Θn} converges in distri-
bution (or converges weakly) to the RV Θ, written as Θn

d−→ Θ, if for all bounded and
continuous functions f ,

E [f (Θn)]→ E [f (Θ)] , n→∞

Furthermore, convergence in probability is defined as follows:

Definition B.10 (Convergence in Probability). The sequence {Θn} converges in proba-
bility to the RV Θ, written as Θn

P−→ Θ, if for all positive ε,

P [|Θn −Θ| > ε]→ 0, n→∞

It should be noted that convergence in probability implies convergence in distribution [141,
p. 22].

Then, the concept of almost sure convergence can be defined [141, p. 22]:

Definition B.11 (Almost Sure Convergence). The sequence {Θn} converges almost surely
(a.s.), or with probability 1, to the RV Θ, written as Θn

a.s.−−→ Θ, if the set of ω with

Θn (ω)→ Θ (ω) , n→∞

has probability 1.

It should be noted that almost sure convergence implies convergence in probability and
convergence in distribution [141, p. 22].

Finally, Lp convergence, which is the type of convergence the gPC method adheres, is
defined as follows [141, p. 23]:

Definition B.12 (Lp Convergence). Let p > 0. Then, the sequence {Θn} converges in Lp,
or in the p-th mean, to Θ, written as Θn

Lp−→ Θ if

E [|Θn|p + |Θ|p] <∞, n→∞

and
E [|Θn −Θ|p]→ 0, n→∞
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Take into account that LP convergence is considered a form of strong convergence [141,
p. 23].

B.7 Central Limit Theorem

The CLT is one of the most important theorems in probability analysis. Here, the definition
after [141, p. 23] is used:

Theorem B.13 (Central Limit Theorem). Let Θ1, . . . ,Θnθ be independent and identically
distributed RVs with E [Θi] = µΘ and var [Θi] = σ2

Θ <∞. Let

Θ = 1
nθ

nθ∑
i=1

Θi

and
Un =

√
n

(
Θ− µΘ

σΘ

)
Then, the PDF of Un converges to a N (0, 1), i.e., the standard Gaussian PDF, as n→
∞.

It should be noted that Theorem B.13 immediately implies that any set of independent
and identically distributed RVs converges to a Gaussian PDF defined by N (µΘ, σ

2
ΘµΘ).

Here, µΘ and σ2
Θ are then representing the mean and variance of the independent and

identically distributed RVs.

B.8 Probability Inequalities

The Chebyshev’s inequality is a very general and powerful tool in statistical analysis
hinting at the number of samples that are in a certain distance to the mean value. The only
knowledge that must be applied is the mean value and the standard deviation. Take into
account that this generally requires no additional statement of the shape of the PDF. Thus,
these bounds cannot be improved on for arbitrary PDFs. Thus, it returns a conservative
bound and is therefore very useful to calculate ROC solutions, as unmodeled uncertainties
are also partially covered. The inequality is defined as follows [5, p. 1312]:

Theorem B.14 (Chebyshev’s Inequality). Let Θ be an integrable RV with finite mean
value and non-zero standard deviation. Then for any real number k > 1 it holds that:

P [|Θ− µΘ| ≥ kσΘ] ≤ 1
k2
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Thus, Theorem B.14 states that a worst-case probability of exceeding the interval kσΘ

around the mean value can be defined, without requiring any knowledge on how the PDF
looks like. This is specifically powerful in combination with the gPC formulation, as it
provides a very good approximation of mean and standard deviation rather cheap, but
the description of the PDF that results is rather difficult to obtain. It should be noted
that Theorem B.14 also holds for values of 0 < k ≤ 1, but the results become trivial for
this case as the probability is then P ≥ 1.

Take into account that the approach in Theorem B.14 is always conservative and
therefore, also beneficial for ROC. This can be shown by looking at the following example:
It is known that approximately 99.7% of the samples of a standard Gaussian PDF are
within a 3σ interval around the mean value. Evaluating Theorem B.14 with k = 3 gives
a value of ≈ 89%. This shows that Theorem B.14 is indeed fairly conservative, which is
beneficial in order to calculate robust trajectories as there are unmodeled dynamics and
additional uncertainties in reality that need to be overcome.
As a refinement of the Chebyshev’s inequality in Theorem B.14, the Vysochan-
skij–Petunin inequality is available: Here, an additional assumption is required, which
is that the PDF must be unimodal, i.e., it changes at only exactly one point in the random
parameter space from convex to concave or vice versa. The inequality is given as follows [2,
p. 931]:

Theorem B.15 (Vysochanskij–Petunin inequality). Let Θ be an integrable RV with finite
mean value and non-zero standard deviation. Furthermore, let the RV be distributed
unimodal. Then for any real number k >

√
8
3 it holds that:

P [|Θ− µΘ| ≥ kσΘ] ≤ 4
9k2

Theorem B.15 gives a tighter bound on the probability, but it also adds a further as-
sumption (unimodality) that might not always be fulfilled. For instance, using k = 3
in Theorem B.15 with the standard Gaussian definition for mean and standard devia-
tion gives a probability of ≈ 95.1% to be in the interval. This is in the middle between
the Chebyshev’s inequality approximation and the exact Gaussian PDF. Take
into account that the constraint k >

√
8
3 is required as some non-symmetric PDFs can

be shown to exceed the probability given by Theorem B.15 for smaller values. As this
bound corresponds to a probability of around 94% this is normally not problematic for
the implementation of e.g., CCs as a higher probability should be achieved anyways.
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Orthogonal Polynomials

This appendix gives an overview on important properties of orthogonal polynomials that
are required within the gPC expansion. More comprehensive reviews are also given in [141,
ch. 3], [2, ch. 22], or [27].

At first, the term orthogonal polynomial is defined [2, p. 773f.]:

Theorem C.1 (Favard’s Theorem). Let A(m), B(m), and C(m) be arbitrary sequences of
real numbers and let the set

{
φ(m) (θ)

}
be defined by the recurrence relation

φ(m+1) (θ) =
[
A(m)θ +B(m)

]
φ(m) (θ)− C(m)φ(m−1) (θ) , m ≥ 0

together with φ(0) (θ) = 1 and φ(−1) (θ) = 0.
Then, the polynomials

{
φ(m) (θ)

}
, defined by the recurrence algorithm, are a system of

orthogonal polynomials if, and only if, A(m) 6= 0, C(m) 6= 0, and C(m)A(m)A(m−1) > 0 for
all m.

Now, some examples of orthogonal polynomials, which are outstanding for this thesis are
looked at. Therefore, at first the Legendre polynomials are defined [5, p.1182]:

Definition C.2 (Legendre Polynomials). Legendre polynomials satisfy the recurrence
sequence

φ(m+1) (θ) = 2m+ 1
m+ 1 θφ

(m) (θ)− m

n+ 1φ
(m−1) (θ) , m ≥ 0

and the orthogonality relation∫ 1

−1
φ(n) (θ)φ(m) (θ) 1 dθ = 2

2m+ 1δmn .

Thus, they are orthogonal with respect to the PDF ρΘ (θ) = 1 and have the normalizing
constant

[
h(m)

]2
= 2

2m+1 .

XV



Appendix C: Orthogonal Polynomials

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

θ

φ
(m

) (θ
)

Orthogonal Legendre Polynomials of Different Order

m=0
m=1
m=2
m=3
m=4
m=5

Figure C.1: First six non-normalized orthogonal Legendre polynomials as defined in
the thesis.

Definition C.2 shows that Legendre polynomials are orthogonal with respect to the PDF
of the uniform distribution.

The first four non-normalized Legendre polynomials are:

φ(0) (θ) = 1, φ(1) (θ) = θ, φ(2) (θ) = 3
2θ

2 − 1
2 , φ(3) (θ) = 5

2θ
3 − 3

2θ (C.1)

A visualization of the first six non-normalized Legendre polynomials is also given in
Figure C.1.

Then, Hermite polynomials that are orthogonal with respect to the PDF of the Gaus-
sian distribution are defined [5, p.1186]:

Definition C.3 (Hermite Polynomials). Hermite polynomials satisfy the recurrence se-
quence

φ(m+1) (θ) = θφ(m) (θ)−mφ(m−1) (θ) , m ≥ 0

and the orthogonality relation
∫ ∞
−∞

φ(n) (θ)φ(m) (θ) 1√
2π

exp
(
−θ

2

2

)
dθ = m!δmn .

Thus, they are orthogonal with respect to the PDF ρΘ (θ) = 1√
2π exp

(
− θ2

2

)
and have

the normalizing constant
[
h(m)

]2
= m!.
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Figure C.2: First six non-normalized orthogonal Hermite polynomials as defined in
the thesis.

The first four non-normalized Hermite polynomials in their functional form are:

φ(0) (θ) = 1, φ(1) (θ) = θ, φ(2) (θ) = θ2 − 1, φ(3) (θ) = θ3 − 3θ (C.2)

A visualization of the first six non-normalized Hermite polynomials is given in Figure C.2.
Another important group of orthogonal polynomials for the gPC expansion are the La-

guerre polynomials [5, p. 1186]:

Definition C.4 (Laguerre Polynomials). Laguerre polynomials satisfy the recurrence
sequence

(m+ 1)φ(m+1) (θ, α) = (−θ + 2m+ α + 1)φ(m) (θ, α)
− (m+ α)φ(m−1) (θ, α) , m ≥ 0 and α > −1

and the orthogonality relation∫ ∞
0

φ(n) (θ, α)φ(m) (θ, α) exp (−θ) θα dθ = Γ (m+ α + 1)
m! δmn , α > −1.

Thus, they are orthogonal with respect to the PDF ρΘ (θ) = exp (−θ) θα and have the nor-
malizing constant

[
h(m)

]2
= Γ(m+α+1)

m! .

It is imminent that Definition C.4 suggests that the Laguerre polynomials are orthogonal
with respect to the PDF of the Gamma distribution.
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The final orthogonal polynomial example, to be looked at in this work, are the Jacobi
polynomials. These are orthogonal with respect to the PDF of the Beta distribution [2,
p. 774]:

Definition C.5 (Jacobi Polynomials). Jacobi polynomials satisfy the recurrence sequence

θφ(m) (θ, α, β) =
2 (m+ 1) (m+ α + β + 1)

(2m+ α + β + 1) (2m+ α + β + 2)φ
(m+1) (θ, α, β)

β2 − α2

(2m+ α + β) (2m+ α + β + 2)φ
(m) (θ, α, β)

2 (m+ α) (m+ β)
(2m+ α + β) (2m+ α + β + 1)φ

(m−1) (θ, α, β) ,

m ≥ 0 and α, β > −1

and the orthogonality relation

∫ 1

−1
φ(n) (θ, α, β)φ(m) (θ, α, β) Γ (α + β + 2)

2α+β+1Γ (α + 1) Γ (β + 1) (1− θ)α (1 + θ)β dθ

= (α + 1)m (β + 1)m
m! (2m+ α + β + 1) (α + β + 2)m−1

δmn, α, β > −1.

Thus, they are orthogonal with respect to the PDF ρΘ (θ) =
Γ(α+β+2)

2α+β+1Γ(α+1)Γ(β+1) (1− θ)α (1 + θ)β and have the normalizing con-

stant
[
h(m)

]2
= (α+1)m(β+1)m

m!(2m+α+β+1)(α+β+2)m−1
.

In general, polynomials (or in this work: orthogonal polynomials) are able to uniformly
approximate any continuous function on a bounded interval. This result is summarized
within the following theorem [5, p. 1071]:

Theorem C.6 (Weierstrass Approximation Theorem). Let f be a continuous real-valued
function defined on the real interval [a, b]. Now, for every ε > 0, there exist a polynomial
φ such that for all θ in [a, b], it is

|f (θ)− φ (θ) | < ε
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Derivation of Statistical Moments for
Generalized Polynomial Chaos
Expansion

This appendix summarizes the derivation of statistical information for the gPC expansion
(Subsection 2.3.4). It is assumed that the expansion coefficients are known, i.e., the discrete
expansion of gPC is used (Subsection 2.3.3).

The mean value is calculated as follows:

E [y (z;θ)] ≈ E
[
y(D)
N (z;θ)

]
=
∫

Ω

(
M−1∑
m=0

ŷ(m) (z) Φ(m) (θ)
)
ρΘ (θ) dθ =

=
M−1∑
m=0

ŷ(m) (z)
∫

Ω
Φ(m) (θ) Φ(0) (θ)︸ ︷︷ ︸

≡1

ρΘ (θ) dθ =

= ŷ(0) (z)
∫

Ω
Φ(0) (θ) Φ(0) (θ) ρΘ (θ) dθ =

= ŷ(0) (z)

(D.1)
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The variance is calculated in a similar manner:

var [y (z;θ)] = E
[
(y (z;θ)− E [y (z;θ)])2

]
=

= E
[
(y (z;θ))2

]
− E [y (z;θ)]2 ≈

≈
∫

Ω

(
M−1∑
m=0

ŷ(m) (z) Φ(m) (θ)
)2

ρ (θ) dθ −
[
ŷ(0) (z)

]2
=

=
∫

Ω

M−1∑
m=0

[
ŷ(m) (z)

]2 [
Φ(m) (θ)

]2
ρΘ (θ) dθ+

+
∑
m 6=n

[
ŷ(m) (z)

]2 ∫
Ω

Φ(m) (θ) Φ(n) (θ) ρΘ (θ) dθ
︸ ︷︷ ︸

0,m 6=n

−
[
ŷ(0) (z)

]2
=

=
M−1∑
m=0

[
ŷ(m) (z)

]2 ∫
Ω

[
Φ(m) (θ)

]2
ρΘ (θ) dθ︸ ︷︷ ︸

orthonormal, i.e., =1

−
[
ŷ(0) (z)

]2
=

=
M−1∑
m=1

[
ŷ(m) (z)

]2
+
[
ŷ(0) (z)

]2
−
[
ŷ(0) (z)

]2
=

=
M−1∑
m=1

[
ŷ(m) (z)

]2

(D.2)

The derivation of the formulas for covariance, skewness, and kurtosis is equally possible
with the properties of the orthogonal polynomials and the mathematical expansion formulas
for the corresponding definitions for the quadrature of summation formulas.

At first, the calculation of the covariance of two measurements, i.e., a measure for their
correlation, is given as follows [141, p. 254]:

cov [y1, y2] = E [(y1 (z;θ)− E [y1 (z;θ)]) (y2 (z;θ)− E [y2 (z;θ)])] =
= E [y1 (z;θ) y2 (z;θ)]− E [y1 (z;θ)]E [y2 (z;θ)] =

≈
M−1∑
m=1

ŷ(m)
1 (z) ŷ(m)

2 (z)

(D.3)

Furthermore, the skewness and kurtosis of the results can be calculated. For this, we need
the third and fourth moment of the gPC expansion given by (2.61) are required. The third
order can be derived as follows:
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E
[
(y (z;θ))3

]
≈ E

(M−1∑
m=0

ŷ(m) (z) Φ(m) (θ)
)3 =

=
M−1∑
m=0

[
ŷ(m) (z)

]3 ∫
Ω

[
Φ(m) (θ)

]3
ρΘ (θ) dθ =

+ 2
∑
m 6=n

[
ŷ(m) (z)

]2
ŷ(n) (z)

∫
Ω

[
Φ(m) (θ)

]2
Φ(n) (θ) ρΘ (θ) dθ =

+
∑
m6=n
m 6=k

ŷ(m) (z) ŷ(n) (z) ŷ(k) (z)
∫

Ω
Φ(m) (θ) Φ(n) (θ) Φ(k) (θ) ρΘ (θ) dθ

(D.4)

Similarly, the fourth order statistical moment is given by:

E
[
(y (z;θ))4

]
≈ E

(M−1∑
m=0

ŷ(m) (z) Φ(m) (θ)
)4 =

=
M−1∑
m=0

[
ŷ(m) (z)

]4 ∫
Ω

[
Φ(m) (θ)

]4
ρΘ (θ) dθ+

+ 3
∑
m6=n

[
ŷ(m) (z)

]3
ŷ(n) (z)

∫
Ω

[
Φ(m) (θ)

]3
Φ(m) (θ) ρΘ (θ) dθ+

+ 3
∑
m6=n
m 6=k

[
ŷ(m) (z)

]2
ŷ(n) (z) ŷ(k) (z) ·

·
∫

Ω

[
Φ(m) (θ)

]2
Φ(n) (θ) Φ(k) (θ) ρΘ (θ) dθ+

+
∑
m 6=n
m6=k
m 6=l

ŷ(m) (z) ŷ(n) (z) ŷ(k) (z) ŷ(l) (z) ·

·
∫

Ω
Φ(m) (θ) Φ(n) (θ) Φ(k) (θ) Φ(l) (θ) ρΘ (θ) dθ

(D.5)

With (D.4) and (D.5), the skewness and kurtosis cab then be calculated by their well-known
formulas as follows (Subsection B.2.2):

skew [y (z;θ)] ≈ E


y(D)

N (z;θ)− µΘ

σΘ

3
 =

E
[(

y(D)
N (z;θ)

)3
]
− 3µΘσ

3
Θ − µ3

Θ

σ3
Θ

(D.6)

kurt [y (z;θ)] ≈ E


y(D)

N (z;θ)− µΘ

σΘ

4
 = (D.7)

=
E
[(

y(D)
N (z;θ)

)4
]
− 4µΘE

[(
y(D)
N (z;θ)

)3
]

+ 6µ2
Θσ

2
Θ + 3µ4

Θ

σ4
Θ
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Appendix E

Statistical Moments of PT1 Step
Response

This appendix summarizes the calculation of the semi-analytic solution of the variance for
the step response of a first order lag (PT1 element) with an uncertain time constant T
(Subsection 2.3.6).

For this, the general definition of the exponential integral allowing also complex values
is required [2, p. 228]:

E1 (t) =
∫ ∞
τ=t

exp (−τ)
τ

dτ, |arg(t)| < π (E.1)

The standard exponential integral is defined as given in (2.76).
As a reminder the mean value is calculated as follows:

E [y] =
∫

Ω

[
1− exp

(
t

T

)]
· ρΘ (θ)︸ ︷︷ ︸

1

dθ (E.2)

Evaluating the integral results in (2.75):

E [y] =
[
Ei (−2t)− Ei

(
−2t

3

)]
t+ exp (−2t)

2 −
[
1.5 · exp

(
−2t

3

)]
+ 1 (E.3)

Then, a similar evaluation can be done for the variance using the following formula:

var [y] =
∫

Ω

[
1− exp

(
t

T

)]2
· ρΘ (θ)︸ ︷︷ ︸

1

dθ − E [y]2 (E.4)

This results in the following semi-analytic solution, using the two introduced definitions
of the exponential integral as follows:
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var [y] =
{
−
[
Ei (−2t)− Ei

(
−2t

3

)]2}
t2

+
{

2E1 (4t)− 2E1 (2t) + 2E1

(2t
3

)
− 2E1

(4t
3

)

−2
[
Ei (−2t)− Ei

(
−2t

3

)] exp (−2t)
2 −

3 exp
(
−2t

3

)
2 + 1

 t
+ exp (−2t)− exp (−4t)

2 − 3 exp
(
−2t

3

)

+
3 exp

(
−4t

3

)
2 −

exp (−2t)
2 −

3 exp
(
−2t

3

)
2 + 1

2

+ 1

(E.5)

The standard deviation can then be calculated by taking the square root of (E.5).
Thus, (E.2) and (E.5) provide the desired semi-analytic solution of the PT1 step

response that are used for the accuracy and convergence estimation of the gPC expansion.
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