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Abstract

Quantum many-body systems far out of equilibrium can lead to rich physics and are challenging
to understand due to the exponentially large Hilbert space. We employ large scale tensor network
techniques in numerical simulations and investigate the dynamics of different model systems,
where we focus on the dimensional crossover in two-dimensional systems and on many-body
localization. Moreover, we introduce a newmethod to efficiently simulate the dynamics of mixed
states using minimally entangled purified states. The developed codes are made available as an
open-source library.





v

Kurzfassung

Quantenvielteilchensysteme im Nichtgleichgewicht bieten reichhaltige Physik, der exponentiell
große Hilbertraum stellt jedoch eine Herausforderung für deren Verständnis dar. Wir verwenden
umfangreiche numerische Simulationen mit Tensor-Netzwerk-Methoden und erforschen die Dy-
namik in verschiedenen Modellsystemen, wobei wir uns auf auf den dimensionalen Übergang
in zwei-dimensionalen Systemen und auf Vielteilchenlokalisierung konzentrieren. Außerdem
präsentieren wir eine neue Methode, um effizient die Dynamik von gemischten Zuständen mit
minimal verschränkten reduzierten Zuständen zu simulieren. Die entwickelten Programme sind
als Open-Source-Code verfügbar.
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1 Introduction

Quantum many-body systems display a rich phenomenology. One of the most celebrated exam-
ples is high-temperature superconductivity [6], which created an interest in strongly correlated
systems lasting since the discovery to date. The Hubbard model is believed to describe the
physics of those compounds [7], but despite the simplicity of the Hamiltonian, the problem re-
mains unsolved due to the complexity in the interplay of charge and spins interactions. Anderson
proposed a description in terms of quantum spin liquids as disordered spin states [7,8]. Another
candidate material for the realization of quantum spin liquids is Herbertsmithite, theoretically
represented by a Heisenberg model on a two dimensional (2D) kagome lattice [9,10]. A quantum
spin liquid is an exotic state of matter without anymagnetic long-range order, but with long-range
entanglement and emergent fractionalized excitations at low temperatures [11, 12]. Hence, the
description of quantum spin liquids goes beyond Landau’s paradigm of characterizing phases
by symmetry breaking, but shows topological order. Other well-known examples of topological
phases of matter include the Haldane phase in quantum spin chains with integer spin [13, 14]
and the fractional quantum Hall effect [15, 16]. The Nobel prize in physics 2016 was awarded
to Thouless, Haldane, and Kosterlitz for their pioneering work on that topic and reflects the
unbroken interest of the community in strongly correlated systems.
Common to the above examples is that the studied systems are in or close to equilibrium. The

study of non-equilibrium systems is a much larger and mostly unexplored area with exciting
physics waiting to be discovered. The focus on equilibrium (categorizing everything else
as “non-equilibrium”!) is hardly surprising, given that our everyday experience teaches us
that many systems quickly thermalize, i.e., drive towards thermal equilibrium. The theory of
classical statistical mechanics explains thermalization with the increase of entropy manifested
in the second law of thermodynamics. Yet, the unitary time evolution in quantum mechanics
preserves the total entropy of an isolated system, making it less obvious how the time average of
a pure state evolution can match a thermal distribution. The eigenstate thermalization hypothesis
(ETH) resoves this apparent contradiction by proposing that the individual eigenstates have
the same expectation values for local operators with fluctuations becoming negligible for large
systems [17–20]. However, ETH fails if a systemhas an extensive number of conserved quantities.
This occurs not only in fine-tuned models [21], but also robustly if a sufficiently strong disorder
is introduced, giving rise to many body localization (MBL) [22–27]. Recent research on
MBL ranges from the exact characterization of the MBL phase [28–33], questions about the
existence of a mobility edge and the stability of MBL against thermal inclusions or in higher
dimensions [34–36], to the exact nature of the transition between the ergodic and localized
phase [37–42]. Moreover, experimental evidence for many-body localization was found [43–45].
Besides MBL, where the whole concept of equilibrium is questionable, there are two main

ways how a quantum many-body system can be out of equilibrium. On one hand, open systems
are coupled to an environment, often allowing for an exchange of particles. Mathematically,
they need to be described by a density matrix instead of a pure state. In the case of Markovian
dynamics, the dynamics follows a Lindblad master equation. Remarkably, open systems can
still have steady states, even if there is a non-zero current through the system induced by the
coupling to the environment. On the other hand, there can be an explicit time dependence
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in the Hamiltonian even for closed systems, usually induced by an external force. Obviously,
there is an endless number of possibilities in the exact form of the time dependence, and open
systems can have an explicit time dependence as well. To keep the problem tractable, some kind
of simplification is often considered. In Floquet systems, a (usually closed) system is driven
periodically. This allows to engineer effective Floquet Hamiltonians, which can host new phases
of matter [46–50] like discrete time crystals [46, 47, 51, 52].
However, in this thesis we will focus on so-called quantum quenches, see Ref. [53–55] for

some reviews. Here, the system is prepared in an eigenstate of an initial Hamiltonian Ĥi and
then some parameters of the Hamiltonian are tuned, such that a different, final Hamiltonian Ĥf

governs the evolution of the state. In general, the change of the parameters can follow a certain
ramping or sweeping protocol. In sudden quenches, however, the switch from Ĥi to Ĥf happens
instantaneously (or experimentally on a much faster time scale than existent in the system), hence
providing a very clean setup. In our theoretical work, we will usually specify the initial state
|ψ(t = 0)〉 directly and leave the definition of the initial Hamiltonian Ĥi at time t < 0 implicit.
Yet, in experiments, the quench protocol is often more relevant.
Ultracold quantum gases in optical lattices provide an excellent platform for the experimental

study of quantum many-body systems both in and out of equilibrium [53, 56]. Almost all
parameters in the (effective) Hamiltonian, including interaction and hopping strength, can be
tuned by changing the intensities and frequencies of the lasers. Different lattices can be realized
by an adjustment of the geometry of the laser setup, and choosing the hopping anisotropically
allows to study the crossover from a one dimensional (1D) to a 2D system. Moreover, single-site
resolution has been reached in the readout of the state [45, 57–59]. This flexibility makes a
theorist’s dreams come true and has lead to a very fruitful interplay between experiment and
theory. For example, shortly after a growing theoretical interest in the MBL phase, signatures
of it have been seen in experiments [43–45], which in turn motivated further theoretical studies
— including our work on the domain wall melting as a probe of MBL presented in Ch. 4.
In fact, ultracold atoms in optical lattices can be viewed as (analog) quantum simulators. The

idea to use quantum devices for computations goes back to Feynman [60, 61]. He proposed
universal quantum computers, arguing that any classical simulation of a generic quantum many-
body system is doomed due to the complexity caused by to the exponential growth of the Hilbert
space. Since then, first universal quantum computers have been build by various groups [62–64].
Yet, the coherence of the involved q-bits seems not yet good enough for an accurate simulation
of quantum many-body systems [65].
The exponential growth of the Hilbert space indeed poses a severe challenge to the numerical

simulations of quantum many-body systems on classical computers. An exact diagonalization
(ED) to obtain all eigenstates is limited to only about 20 spin-1

2 degrees of freedom, or up to
48 sites when focusing exclusively on the ground state with state-of-the-art high-performance
computations exploiting all symmetries of the system [66]. Yet, there has been made significant
process to overcome this limitation at least partially. Quantum Monte Carlo methods stochas-
tically sample only a fraction of terms contributing to expectation values. In cases where the
infamous sign problem can be cured, they arguably provide the best results in two or more
dimensions. However, they cannot be applied efficiently to a large class of quantum many-body
systems, most notably ones that involve fermionic degrees of freedom or geometric frustra-
tion [67]. Moreover, they are not suited for a real-time evolution, which is necessary for a study
of non-equilibrium phenomena.
Tensor networks can be used to variationally represent quantum states and provide an alterna-

tive approach and powerful tool for efficient simulations of quantum many-body systems. Their
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first application to condensed matter systems was the invention of the density matrix renormal-
ization group (DMRG) algorithm by S. White, with which he immediately solved the spin S = 1
Heisenberg chain, demonstrated that it has a finite gap in the thermodynamic limit, and studied
the effect of edge modes [68, 69]. Later on, DMRG has been reformulated in the language of
matrix product state (MPS) [70–73] and established itself to be the best method to numerically
obtain ground state properties of strongly correlated quantum many-body systems in 1D. The
reason for the success of DMRG was shown to be based on the fact that ground states of physical
systems have a low (area law) entanglement [74, 75], and that tensor product states represent
exactly this class. Ultimately, one can view the tensors of a tensor network as successive basis
transformations and truncations to a much smaller subspace relevant for the problem at hand.

In this thesis, we employ large-scale numerical simulations with tensor networks to investigate
quench dynamics of different model systems. We focus on the dimensional crossover in the
sudden expansion of interacting bosons in a 2D optical lattice, on domain-wall melting in systems
which display MBL, and on the entanglement of mixed states represented by purification states.

We begin with a review of simulations with tensor networks in Chapter 2. After we motivated
tensor networks as an Ansatz class with a short discussion of the area law in Sec. 2.1, we will
introduce the conceptually simple time evolving block decimation (TEBD) algorithm [76] in
Sec. 2.2.3 exemplary as a method to perform a real-time evolution of an MPS. While TEBD can
be used to obtain ground states by means of an imaginary time evolution, the DMRG algorithm
explained in Sec. 2.2.5 is much more efficient for this task. For both algorithms, we discuss
the necessary steps to use them on infinite systems in Sec. 2.3, allowing to directly work in
the thermodynamic limit. In Sec. 2.4, we will give a practical guide how to implement abelian
symmetries (e.g., a particle number conservation) to accelerate tensor operations. In the modern
formulation, DMRG requires to express the Hamiltonian in terms of a so-called matrix product
operator (MPO). We explain a technique to efficiently generate this MPO representation for
generic models in Sec. 2.5. For this, we have in mind that the use of MPS based methods
requires to map a 2D system to be considered onto a 1D chain, as discussed in Sec. 2.5.2.

The implementation of of codes based on tensor networks can be quite cumbersome compared
to for example an ED code. In fact, DMRG requires linear algebra subroutines like the singular
value decomposition (SVD) and the Lanczos algorithm (which does ED) to be available for use.
If symmetries are to be used, all of these functions need to be re-implemented or adjusted. Thus,
sharing code between researches can save human resources by reducing the time required to set
up a simulation (at least, if the code is well documented). Moreover, open source code enhances
the transparency and reproducibility of the results. For these reasons, a program library called
Tensor Network Python (TeNPy) was published as open source software [1,2]. This library was
developed mainly by the author during the preparation of this thesis, and has already found a
significant number of users. We present this library in more detail in Sec. 2.6 to wrap up the
review of tensor network based algorithms.

In Chapter 3, we use simulations with MPS to study the 1D-to-2D crossover in the sudden
expansion of a cloud of strongly interacting bosons. This particular problem is of physical interest
due to predictions for the emergence of non-equilibrium condensates at finite quasimomenta
[77–79]. In the sudden expansion of hard-core bosons in a purely 1D chain, there appear quasi-
condensates at finite momenta on an intermediate, yet long time scale before the quasimomentum
distribution function ultimately approaches the one of the underlying free fermions [80–89].
After a formal definition of some quantities, we study the expansion in a fully 2D system in
Sec. 3.4. The fast buildup of entanglement limits our simulations of this system to comparably
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short times. Hence, we move on to analyze the 1D-to-2D crossover in Sec. 3.5 in quite some
detail on cylinder and ladder geometries, where longer times can be reached.
In Chapter 4, we consider the effects of disorder on the expansion from a domain-wall like

initial state. In a 1D chain, even a tiny amount of uncorrelated disorder leads to a full localization
of thewave function of a single electron, a phenomenon known asAnderson localization [90–92].
We first study how this localization is manifested in the domain-wall melting of non-interacting
electrons in Sec. 4.2, and show that the localization length can be read out from the density profile
at long times. Interactions induce a delocalization at small disorder strength, such that there
appears a transition from a delocalized phase into the MBL phase when the disorder strength
is increased [22–24]. In Sec. 4.3, we show that this transition can be located by analyzing the
domain-wall melting. As a first step into the direction of 2D, we consider a ladder in Sec. 4.4.
Our work justifies the setup of an experiment with ultra-cold atoms [45].
In Chapter 5, we consider the entanglement dynamics of mixed states after local quenches.

Purifications provide a way to represent density matrices, for example thermal ensembles, with
MPS [93, 94], which we recapitulate in Sec. 5.1 to fix the notation. In Sec. 5.2, we then present
a general method to use a freedom in the choice of the purification to obtain states with minimal
entanglement entropy. The entanglement entropy at this minimum is called the entanglement
of purification and of interest from a quantum information point of view, because it is linked to
how efficent a purification state can be represented [95]. We benchmark our method in Sec. 5.3
both during imaginary and real-time evolution.
Finally, we summarize our work in Chapter 6 and give a short outlook.
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2 Tensor networks

Most of the content of this chapter can also be found in a previous publication of the author [1].
Text and figures have been adjusted to fit into the context of the thesis.

The most prominent algorithm based on tensor networks is the DMRGmethod [68] which was
originally conceived as an algorithm to study ground state properties of 1D systems. Since the in-
vention in 1992, the DMRG algorithm has been successively improved and made more efficient.
For example, the inclusion of abelian and non-abelian symmetries, [96–100], the introduction
of single-site optimization with density matrix perturbation [101, 102], hybrid real-momentum
space representation [103, 104], and the development of real-space parallelization [105] have
increased the convergence speed and decreased the requirements of computational resources.
An infinite version of the algorithm [106] has facilitated the investigation of translation invariant
systems. The success of DMRG was extended to also simulate real-time evolution allowing to
study transport and non-equilibrium phenomena [76, 107–111]. However, the bipartite entan-
glement of pure states after a global quench generically grows linearly with time [112], leading
to a rapid exponential growth of the computational cost. This limits time evolution to rather
short times. Projected entangled pair states (PEPS), or equivalently tensor product states (TPS),
are a generalization of MPS to higher dimensions [113, 114]. This class of states is believed to
efficiently describe a wide range of ground states of two-dimensional local Hamiltonians. PEPS
serve as variational wave functions that can approximate ground states of model Hamiltonians.
A number of algorithms have been proposed for PEPS, including the Corner Transfer Matrix
Renormalization Group Method [115], Tensor Renormalization Group (TRG) [116], Tensor
Network Renormalization (TNR) [117], and loop optimizations [118].
A number of very useful review articles on different tensor network related topics appeared

over the past couple of years. Here we mention a few: Ref. [73] provides an extensive, ped-
agogical introduction to MPS and DMRG algorithms with detailed discussions regarding their
implementation. In Ref. [119], a practical introduction to tensor networks including MPS and
PEPS is given. Applications of DMRG in quantum chemistry are discussed in Ref. [120]. The
early developments of the DMRG algorithm are summarized in Ref. [121]. A comparison of
time-evolution methods based on MPS was recently made in Ref. [122].
In this chapter, we combine a pedagogical review of basicMPS based algorithms for both finite

and infinite systems with the presentation of a versatile tensor library for Python called TeNPy.
First, we motivate the ansatz of tensor product states with the area law of entanglement entropy in
the following section 2.1. In Sec. 2.2 we introduce the MPS ansatz for finite systems and explain
the TEBD [76] and the DMRGmethod [68] as prominent examples for algorithms working with
MPS. In Sec. 2.3 we explain the generalization of these algorithms to the thermodynamic limit.
Further, we provide a practical guide on how to implement abelian symmetries (e.g., a particle
number conservation) to accelerate tensor operations in Sec. 2.4. Morover, we explain a generic
way to construct the MPO representation of the Hamiltonian required for MPS based algorithms
in Sec. 2.5. Finally, we present the TeNPy library and give short example codes demonstrating
how to call each of the presented algorithms.
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Figure 2.1 (a) Bipartition of a 1D system into two half chains. (b) Significant quantum fluctuations in
gapped ground states occur only on short length scales. (c) 1D area law states make up a very small
fraction of the many-body Hilbert space but contain all gapped ground states. (d) Comparison of the
largest Schmidt values of the ground state of the transverse field Ising model (g = 1.5) and a random state
for a system consisting of N = 16 spins. The index α labels different Schmidt values.

2.1 Entanglement in quantum many-body systems

Entanglement is one of the fundamental phenomena in quantum mechanics and implies that
different degrees of freedom of a quantum system cannot be described independently. Over the
past decades it was realized that the entanglement in quantummany-body systems can give access
to a lot of useful information about quantum states. First, entanglement related quantities provide
powerful tools to extract universal properties of quantum states. For example, scaling properties
of the entanglement entropy help to characterize critical systems [123–126], and entanglement
is the basis for the classification of topological orders [127, 128]. Second, the understanding of
entanglement helped to develop new numerical methods to efficiently simulate quantum many-
body systems [73, 129]. In the following, we give a short introduction to entanglement in 1D
systems and then focus on the MPS representation.
Let us consider the bipartition of the Hilbert spaceH = HL ⊗HR of a 1D system as illustrated

in Fig. 2.1(a), whereHL (HR) describes all the states defined on the left (right) of a given bond.
In the so called Schmidt decomposition, a (pure) state |Ψ〉 ∈ H is decomposed as

|Ψ〉 =
∑
α

Λα |α〉L ⊗ |α〉R , |α〉L(R) ∈ HL(R), (2.1)

where the states {|α〉L(R)} form an orthonormal basis of (the relevant subspace of)HL (HR) and
Λα ≥ 0. The Schmidt decomposition is unique up to degeneracies and for a normalized state
|Ψ〉 we find that

∑
α Λ

2
α = 1.

An important aspect of the Schmidt decomposition is that it gives direct insight into the
bipartite entanglement (i.e., the entanglement between degrees of freedom in HL and HR)
of a state, as we explain in the following. The amount of entanglement is measured by the
entanglement entropy, which is defined as the von-Neumann entropy S = −Tr

(
%R log(%R)

)
of
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the reduced density matrix %R. The reduced density matrix of an entangled (pure) quantum state
|ψ〉 is the density matrix of a mixed state defined on the subsystem,

%R ≡ TrL (|ψ〉 〈ψ |) . (2.2)

A short calculation shows that it has the Schmidt states |α〉R as eigenstates and the Schmidt
coefficients are the square roots of the corresponding eigenvalues, i.e., %R =

∑
α Λ

2
α |α〉R 〈α |R

(equivalently for %L). Hence, the entanglement entropy can be expressed in terms of the Schmidt
values Λα,

S ≡ −Tr
(
%R log(%R)

)
= −

∑
α

Λ
2
α logΛ2

α. (2.3)

If there is no entanglement between the two subsystems, S = 0, the Schmidt decompositions
consists only of a single term with Λ1 = 1. The entanglement spectrum {εα} [130] is defined in
terms of the spectrum {Λ2

α} of the reduced density matrix by Λ2
α = exp(−εα) for each α.

2.1.1 Area law

A “typical” state in the Hilbert space shows a volume law, i.e., the entanglement entropy grows
proportionally with the volume of the partitions. In particular, it has been shown in Ref. [131]
that in a system of N sites with on-site Hilbert space dimension d, a randomly drawn state
|ψrandom〉 has an entanglement entropy of S ≈ N/2 log d − 1/2 for a bipartition into two parts of
N/2 sites.
In contrast, ground states |ψ0〉 of gapped and local Hamiltonians follow an area law, i.e., the

entanglement entropy grows proportionally with the area of the cut [132]. For a cut of an N-site
chain as shown in Fig. 2.1(a) this implies that S(N) is constant for N & ξ (with ξ being the
correlation length). This can be intuitively understood from the fact that a gapped ground state
contains only fluctuations within the correlation length ξ and thus only degrees of freedom near
the cut are entangled, as schematically indicated in Fig. 2.1(b). A rigorous proof of the area law
in 1D is given in Ref. [75]. In this respect, ground states are very special states and can be found
within a very small corner of the Hilbert space, as illustrated in Fig. 2.1(c).
In slightly entangled states, only a relatively small number of Schmidt states contribute

significantly. This is demonstrated in Fig. 2.1(d) by comparing the largest 20 Schmidt values of
an area law and a volume law state for a bipartition of an N = 16 chain into two half chains.
As an example of an area law state, we considered here the ground state of the transverse field

Ising model
Ĥ = −

∑
n

σ̂z
nσ̂

z
n+1 + gσ̂

x
n , (2.4)

with σ̂x
n and σ̂z

n being the Pauli operators and g > 0. This Z2 symmetric model with a
quantum phase transition at gc = 1 has two very simple limits. For g = 0, the ground state
is twofold degenerate and given by the ferromagnetic product state (symmetry broken), and at
g →∞ the ground state is a product state in which all spins are polarized by the transverse field
in x-direction (symmetric). For intermediate values of g, the ground states are area law type
entangled states (except at the critical point). As shown in Fig. 2.1(d) for a representative example
of g = 1.5, the ground state has essentially the entire weight contained in a few Schmidt states.
Generic states fulfilling the area law show a similar behavior and thus the above observation
provides an extremely useful approach to compress quantum states by truncating the Schmidt
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Figure 2.2 (a) Diagrammatic representations for a vector v, a matrix M , and the coefficients of
a general wave function |ψ〉 =

∑
j1, j2... jN ψj1 j2... jN | j1, j2, . . . , jN 〉. (b) The connection of two legs

symbolizes a tensor contraction, here (Mv)a =
∑

b Mabvb . (c) Diagram for the overlap 〈φ|ψ〉 =∑
j1, j2... jN φ j1 j2... jNψj1 j2... jN of two wave functions.

decomposition. In particular, for all ε > 0 we can truncate the Schmidt decomposition at some
finite χ (independent of the system size) such that |ψ〉 − χ∑

α=1
Λα |α〉L ⊗ |α〉R︸                   ︷︷                   ︸
|ψtrunc 〉

 < ε (2.5)

This particular property of area law states is intimately related to the MPS representation of 1D
quantum states, as we will discuss in the next chapter.
The situation is very different for a highly entangled (volume law) random state: All the

Schmidt values are roughly constant for all 2N/2 states and thus only little weight is contained in
the 20 dominant states (assuming an equal weight, we find Λ2

α ≈ 1/2N/2 per Schmidt state).

2.2 Finite systems in one dimension

In this chapter, we consider a chain with N sites. We label the local basis on site n by
| jn〉 with jn = 1, . . . , d, e.g., for the transverse field Ising model we have spin-1/2 sites with
the (d = 2) local states |↑〉 , |↓〉. A generic (pure) quantum state can then be expanded as
|ψ〉 =

∑
j1, j2,... jN ψj1 j2 · · · jN | j1, j2, . . . , jN 〉.

Before we proceed with the definition of MPS, we introduce a diagrammatic notation, which
is very useful for representing tensor networks and related algorithms and has been established
in the community. In this notation, a tensor with n indices is represented by a symbol with n
legs. Connecting two legs among tensors symbolizes a tensor contraction, i.e., summing over
the relevant indices. This is illustrated in Fig. 2.2.

2.2.1 Matrix Product States (MPS)

The class of MPS is an ansatz class where the coefficients ψj1,..., jN of a pure quantum state are
decomposed into products of matrices [70, 71, 133]:

|ψ〉 =
∑

j1,..., jN

∑
α2,...αN

M [1]j1α1α2 M [2]j2α2α3 . . . M [N ]jNαNαN+1 | j1, j2, . . . , jN 〉 (2.6)

≡
∑

j1,..., jN

M [1]j1 M [2]j2 . . . M [N ]jN | j1, j2, . . . , jN 〉 . (2.7)

Here, each M [n]jn is a χn × χn+1 dimensional matrix, i.e., we have a set of d matrices for each
site, which we usually group into a tensor of order 3 as shown in Fig. 2.3(a). The superscript
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[n] denotes the fact that for a generic state we have a different set of matrices on each site. The
indices αn of the matrices are called “bond”, “virtual”, or “auxiliary” indices, to distinguish them
from the “physical” indices jn. The matrices at the boundary are vectors, that is χ1 = χN+1 = 1,
such that the matrix product in Eq. (2.7) produces a 1 × 1 matrix, i.e., a single number ψj1,..., jn .
In that sense, the indices α1 and αN+1 are trivial and always 1; yet, introducing them leads to a
uniform layout of the MPS such that we do not need to take special care about the boundaries in
the algorithms. To become more familiar with the MPS notation, let us consider a few examples.
A product state |ψ〉 = |φ[1]〉⊗ |φ[2]〉⊗ · · ·⊗ |φ[n]〉 can easily be written in the form of Eq. (2.7):

Since it has no entanglement, the bond dimension is simply χn = 1 on each bond and the 1 × 1
“matrices” are given by (see Fig. 2.3(b))

M [n]jn =
(
φ
[n]
jn

)
. (2.8)

Concretely, the ground state of the transverse field Ising model given in Eq. (2.4) at large field
g � 1 is close to a product state |← · · · ←〉 ≡

(
1√
2
|↑〉 − 1√

2
|↓〉

)
⊗ · · · ⊗

(
1√
2
|↑〉 − 1√

2
|↓〉

)
, which

we write as an MPS using the same set of matrices on each site n,

M [n]↑ =
(

1√
2

)
and M [n]↓ =

(
−1√

2

)
. (2.9)

For the Neel state |↑↓↑↓ . . .〉, we need different sets of matrices on odd and even sites,

M [2n−1]↑ = M [2n]↓ =
(
1
)
and M [2n−1]↓ = M [2n]↑ =

(
0
)

(2.10)

for n = 1, . . . , N/2.
As a first example of a state with entanglement, we consider a dimerized product of singlets(
1√
2
|↑↓〉 − 1√

2
|↓↑〉

)
⊗ · · · ⊗

(
1√
2
|↑↓〉 − 1√

2
|↓↑〉

)
on neighboring sites. This state can be written

with 1 × 2 matrices on odd sites and 2 × 1 matrices on even sites given by

M [2n−1]↑ =
(

1√
2

0
)
, M [2n−1]↓ =

(
0 −1√

2

)
, M [2n]↑ =

(
0
1

)
, M [2n]↓ =

(
1
0

)
. (2.11)

Spin-1 AKLT state. Affleck, Kennedy, Lieb, and Tasaki (AKLT) constructed an exactly
solvable Hamiltonian which reads

Ĥ =
∑
n

®̂Sn ®̂Sn+1 +
1
3
( ®̂Sn ®̂Sn+1)

2 = 2
∑
j

(
P̂S=2
n,n+1 −

1
3

)
(2.12)

where ®̂S are spin S = 1 operators and P̂S=2
n,n+1 is a projector onto the S = 2 sector of the spins

on sites j and j + 1 [134]. This model is in a topologically nontrivial phase with remarkable
properties of the ground state. To construct the ground state, we note that the projector P̂S=2

n,n+1
does not give a contribution if we decompose the S = 1 spins on each site into two S = 1

2
spins and form singlets between spins on neighboring sites, as illustrated in Fig. 2.3(d). While
the ground state is unique on a ring with periodic boundary conditions, in a chain with open
boundary conditions the S = 1

2 spins on the edges do not contribute to the energy and thus lead to
a 4-fold degeneracy of the ground state. Given the structure of the ground state, we can construct
the corresponding MPS as shown in Fig. 2.3(e): We start by writing the product of singlets with
the matrices of eq. 2.11 and add arbitrary spin-1

2 states φL and φR on the left and right. We apply



12 2. Tensor networks

 

Figure 2.3 (a) In an MPS, the amplitude of the wave function is decomposed into a product of matrices
M [n]jn . The indices α1 and αN+1 are trivial, which we indicate by dashed lines. (b) A product state
can be written as a trivial MPS with bond dimensions χ = 1. (c) The MPS for a product of singlets on
neighboring sites, with M [1], M [2] given in Eq. (2.11). (d) Diagrammatic representation of the AKLT state.
The S = 1 sites (gray circles) are decomposed into two S = 1

2 that form singlets between neighboring
sites. With open boundary conditions, the S = 1

2 spins on the left and right are free edge modes leading
to a four-fold degeneracy of the ground state. (e) The AKLT state can be represented by an MPS with
bond dimension χ = 2.

the projectors P̂S=1 to map the two spin- 1
2 onto the physical spin-1 site, and contract the three

tensors on each site to obtain the MPS structure. For sites 1 < n < N in the bulk, we obtain

M [n]+1 =

√
4
3

(
0 0
1√
2

0

)
M [n]0 =

√
4
3

(
1
2 0
0 − 1

2

)
M [n]−1 =

√
4
3

(
0 − 1√

2
0 0

)
. (2.13)

Here, we included the factor
√

4
3 to normalize the MPS.

In general, any state in a finite system can be decomposed exactly into the MPS form of
Eq. (2.7). The caveat is that for a generic state (with a volume law entanglement) the required
bond dimension χmax B maxn χn increases exponentially with the number of sites N . However,
by linking the MPS representation with the Schmidt decomposition (2.1), we will see that we
can approximate area law states very well (in the sense of Eq. (2.5)) by MPS with a finite bond
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Figure 2.4 (a) The representation of an MPS is not unique. (b) This freedom is used to define the
canonical form, where the Λ[n] are diagonal matrices containing the Schmidt values. (c) The canonical
form allows to easily read off the Schmidt decomposition Eq. (2.1) on each bond, here exemplary on bond
n = 3. (d) Orthonormality conditions for the Schmidt states.

dimension χmax [135,136]. This link is given by the so-called canonical form of an MPS, which
we introduce now.

2.2.2 Canonical form

The MPS representation in Eq. (2.7) is not unique. Consider the bond between sites n and n+ 1,
which defines a bipartition into L = {1, . . . , n} and R = {n + 1, . . . , N}. Given an invertible
χn+1 × χn+1 matrix X , we can replace

M [n]jn → M̃ [n]jn B M [n]jn X−1, M [n+1]jn+1 → M̃ [n+1]jn+1 B X M [n+1]jn+1 (2.14)

and still represent the same state |ψ〉, see Fig. 2.4(a). This freedom can be used to define a
convenient “canonical form” of the MPS, following Ref. [137, 138]. Without loss of generality,
we can decompose the matrices M̃ [n]jn = Γ̃[n]jn Λ̃[n+1], where Λ̃[n+1] is a square, diagonal
matrix with positive entries Λ̃[n+1]

αn+1αn+1 on the diagonal. Performing partial contractions gives a
representation looking very similar to the Schmidt decomposition (2.1):

|ψ〉 =
∑

j1,..., jN

M [1]j1 . . . M [n−1]jn−1 Γ̃
[n]jn Λ̃

[n+1]M̃ [n+1]jn+1 M [n+2]jn+2 . . . M [N ]jN | j1, . . . , jN 〉

=
∑̃
αn+1

Λ̃
[n+1]
α̃n+1,α̃n+1

|α̃n+1〉L ⊗ |α̃n+1〉R , where (2.15)

|α̃n+1〉L =
∑

j1,..., jn

(
M [1]j1 . . . M [n−1]jn−1 Γ̃

[n]jn
)

1,α̃n+1
| j1, . . . , jn〉 , (2.16)

|α̃n+1〉R =
∑

jn+1,..., jN

(
M̃ [n+1]jn+1 M [n+2]jn+2 . . . M [N ]jN

)
α̃n+1,1

| jn+1, . . . , jN 〉 . (2.17)



14 2. Tensor networks

Figure 2.5 Due to the orthogonality conditions depicted in Fig. 2.4(d), evaluating the expectation value
〈ψ |O[n] |ψ〉 of a local operator O[n] requires only a contraction of local tensors.

However, for general M and Γ̃[n], the states |α̃n+1〉L/R will not be orthonormal. Note that we
can interpret the X in Eq. (2.14) as a basis transformation of the states |α̃n+1〉R in Eq. (2.17).
The idea of the canonical form is to choose the X in Eq. (2.14) such that it maps |α̃n+1〉R to the
Schmidt states |αn+1〉R. Using the Schmidt valuesΛ[n+1]

αn+1αn+1 on the diagonal of Λ̃
[n+1] → Λ[n+1],

we find that Eq. (2.15) indeed gives the Schmidt decomposition. Repeating this on each bond
yields the canonical form depicted in Fig. 2.4(b),

|Ψ〉 =
∑

j1,..., jN

Λ
[1]
Γ
[1]j1Λ[2]Γ[2]j2Λ[3] · · ·Λ[N ]Γ[N ]jNΛ[N+1] | j1, . . . , jN 〉 . (2.18)

Here, we have introduced trivial 1×1 matricesΛ[1] ≡ Λ[N+1] ≡
(
1
)
multiplied to the trivial legs

of the first and last tensor, again with the goal to achieve a uniform bulk. While the canonical
form is useful as it allows to quickly read off the Schmidt decomposition on any bond, in practice
we usually group each Γ with one of the Λ matrices and define

A[n]jn ≡ Λ[n]Γ[n]jn, B[n]jn ≡ Γ[n]jnΛ[n+1]. (2.19)

If we write an MPS entirely with A tensors (B tensors), it is said to be in left (right) canonical
form. In fact, all the examples given in Eq. (2.8)-(2.13) are in right-canonical form. If we
consider the bond between sites n and n + 1, we can write the MPS in a “mixed” canonical form
with A tensors up to site n and B tensors starting from site n + 1, as depicted in Fig. 2.4(c) for
n = 2. The A and B tensors transform the Schmidt basis from one bond to the next:

|αn+1〉L =
∑
αn, jn

A[n]jnαnαn+1 |αn〉L ⊗ | jn〉 , |αn〉R =
∑

jn,αn+1

B[n]jnαnαn+1 | jn〉 ⊗ |αn+1〉R . (2.20)

Therefore, the orthonormality conditions 〈αn |L |ᾱn〉L = δαnᾱn = 〈αn |R |ᾱn〉R translate into the
very useful relations shown in Fig. 2.4(d).
One great advantage of the canonical form is that these relations allow to evaluate expectation

values of local operators very easily. As shown in Fig. 2.5, this requires only the contraction of
a few local tensors. If needed, we can easily convert the left and right canonical forms into each
other, e.g., A[n] = Λ[n]B[n]

(
Λ[n+1])−1; since the Λ[n] are diagonal matrices, their inverses are

simply given by diagonal matrices with the inverse Schmidt values1.
As mentioned above, we can represent any state in a finite system if we allow an arbitrary bond

dimension χmax; but to avoid a blowup of the computational cost (exponentially in N), we need to
truncate the matrices to a moderate bond dimension χmax. Consider the bond between sites n and
n+1. It turns out that the simple truncation of the Schmidt decomposition is optimal in the sense
of minimizing the error ε in Eq. (2.5). In the (mixed) canonical form, we can therefore simply

1 If Λ[n+1]
αn+1αn+1 = 0 for some αn+1, we can remove the corresponding columns of B[n] and rows of B[n+1] before

taking the inverse, as they do not contribute to the wave function.
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discard2 some rows of A[n]jn , diagonal entries of Λ[n+1] and columns of B[n+1]jn+1 (namely the
ones corresponding to the smallest Schmidt values). To preserve the norm of the wave function,

we renormalize the Schmidt values on the diagonal of Λ[n+1] such that
∑
αn+1

(
Λ
[n+1]
αn+1αn+1

)2
= 1.

2.2.3 Time Evolving Block Decimation (TEBD)

In the TEBD algorithm [76], we are interested in evaluating the time evolution of a quantum
state:

|ψ(t)〉 = Û(t) |ψ(0)〉 . (2.21)

The time evolution operator Û can either be Û(t) = exp(−itĤ) yielding a real time evolution,
or an imaginary time evolution Û(τ) = exp(−τĤ). The latter can be used to evaluate (finite
temperature) Green’s functions or as a first, conceptually simple way to find the ground state3 of
the Hamiltonian Ĥ through the relation

|ψGS〉 = lim
τ→∞

e−τĤ |ψ0〉e−τĤ |ψ0〉
 . (2.22)

The TEBD algorithmmakes use of the Suzuki-Trotter decomposition [139], which approximates
the exponent of a sum of operators with a product of exponents of the same operators. For
example, the first and second order expansions read

e(X+Y)δ = eXδeYδ + O(δ2), (2.23)

e(X+Y)δ = eXδ/2eYδeXδ/2 + O(δ3). (2.24)

Here X and Y are operators, and δ is a small parameter. To make use of these expressions, we
assume that the Hamiltonian is a sum of two-site operators of the form Ĥ =

∑
n ĥ[n,n+1], where

ĥ[n,n+1] acts only on sites n and n + 1, and decompose it as a sum4

Ĥ =
∑
n odd

ĥ[n,n+1]

︸         ︷︷         ︸
Ĥodd

+
∑
n even

ĥ[n,n+1]︸          ︷︷          ︸
Ĥeven

. (2.25)

Each term Ĥodd and Ĥeven consists of a sum of commuting operators, therefore eĤoddδ =∏
n odd eĥ

[n,n+1]δ and similar for Ĥeven.
We now divide the time into small time slices δt � 1 (the relevant time scale is in fact the

inverse gap) and consider a time evolution operator Û(δt). Using, as an example, the first order
decomposition in Eq. (2.23), the operator Û(δt) can be expanded into products of two-site unitary
operators

Û(δt) ≈

[ ∏
n odd

Û[n,n+1](δt)

] [ ∏
n even

Û[n,n+1](δt)

]
, (2.26)

2 Strictly speaking, this changes the Schmidt values and vectors on other bonds and thus destroys the canonical

form! However, if the discarded weight
∑
α>χ

(
Λ
[n]
αα

)2
is small, this error might be ignored.

3As explained later on, the DMRG algorithm is a better alternative for this task.
4 One can extend TEBD for Hamiltonians with (limited) long-range couplings (e.g., next-to-nearest-neighbor
couplings) by introducing so-called swap gates [140].
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Figure 2.6 (a) In TEBD each time step δt of a time evolution is approximated using a Suzuki-Trotter
decomposition, i.e., the time evolution operator is expressed as a product of two-site operators. (b) Update
to apply a two-site unitary Û and recover the MPS form, see main text for details.

where Û[n,n+1](δt) = e−i δt ĥ[n,n+1] . This decomposition of the time evolution operator is shown
pictorially in Fig. 2.6(a). The successive application of these two-site unitary operators to an
MPS is the main part of the algorithm and explained in the following.

Local unitary updates of an MPS. One of the advantages of the MPS representation is that
local transformations can be performed efficiently. Moreover, the canonical form discussed
above is preserved if the transformations are unitary [137].
A one-site unitary Û simply transforms the tensors Γ of the MPS

Γ̃
[n]jn
αnαn+1 =

∑
j′n

Û jn
j′n
Γ
[n]j′n
αnαn+1 . (2.27)

In such a case the entanglement of the wave-function is not affected and thus the values of Λ do
not change.
The update procedure for a two-site unitary transformation acting on two neighboring sites n

and n+ 1 is shown in Fig. 2.6(b). We first find the wave function in the basis spanned by the left
Schmidt states |αn〉L , the local basis | jn〉 and | jn+1〉 on sites n and n + 1, and the right Schmidt
states |αn+2〉R, which together form an orthonormal basis {|αn〉L ⊗ | jn〉 ⊗ | jn+1〉 ⊗ |αn+2〉R}.
Calling the wave function coefficients Θ, the state is expressed as

|ψ〉 =
∑

αn, jn, jn+1,αn+2

Θ
jn jn+1
αnαn+2 |αn〉L | jn〉 | jn+1〉 |αn+2〉R . (2.28)

Using the definitions of |α〉L/R shown in Fig. 2.4(c), Θ is given by

Θ
jn jn+1
αnαn+2 =

∑
αn+1

Λ
[n]
αnαn

B[n], jnαnαn+1 B[n+1], jn+1
αn+1αn+2 . (2.29)
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Writing the wave function in this basis is useful because it is easy to apply the two-site unitary
in step (ii) of the algorithm:

Θ̃
jn jn+1
αnαn+2 =

∑
j′n j
′
n+1

Û jn jn+1
j′n j
′
n+1
Θ

j′n j
′
n+1

αnαn+2 . (2.30)

Next we have to extract the new tensors B̃[n], B̃[n+1] and Λ̃[n+1] from the transformed tensor Θ̃ in a
manner that preserves the canonical form. We first “reshape” the tensor Θ̃ by combining indices
to obtain a dχn × dχn+2 dimensional matrix Θ̃jnαn ;jn+1αn+2 . Because the basis {|αn〉L ⊗ | jn〉} is
orthonormal, as for the right, it is natural to decompose the matrix using the SVD in step (iii)
into

Θ̃jnαn ;jn+1αn+2 =
∑
αn+1

Ã[n]jnαn ;αn+1
Λ̃
[n+1]
αn+1αn+1 B̃[n+1]

αn+1;jn+1αn+2
, (2.31)

where Ã[n], B̃[n+1] are isometries and Λ̃[n+1] is a diagonal matrix. Indeed, the suggestive notation
that the new tensors are in mixed canonical form is justified, since the SVD yields a Schmidt
decomposition of the wave function for a bipartition at the bond between sites n and n + 1.
The isometry Ã[n] relates the new Schmidt states |αn+1〉L to the combined bases |αn〉L ⊗ | jn〉.
Analogously, the Schmidt states for the right site are obtained from the matrix B[n+1]. Thus the
diagonal matrix Λ̃[n+1] contains precisely the Schmidt values of the transformed state. In a last
step (iv), we reshape the obtained matrices Ã[n], B̃[n+1] back to tensors with 3 indices and recover
the right canonical form by

B̃[n]jnαnαn+1 = (Λ
[n])−1

αnαn
Ã[n]jnαn ;αn+1

Λ̃
[n+1]
αn+1αn+1 and B̃[n+1]jn+1

αn+1αn+2 = B̃[n+1]
αn+1;jn+1αn+2

. (2.32)

After the update, the new MPS is still in the canonical form. The entanglement at the bond
n, n + 1 has changed and the bond dimension increased to dχ. Thus the amount of information
in the wave function grows exponentially if we successively apply unitaries to the state. To
overcome this problem, we perform an approximation by fixing the maximal number of Schmidt
terms to χmax. In each update, only the χmax most important states are kept in step (iii), i.e.,
if we order the Schmidt states according to their size we simply truncate the range of the index
αn+1 in Eq. (2.31) to be 1 . . . χmax. This approximation limits the dimension of the MPS and the
tensors B have at most a dimension of χmax × d × χmax. Given that the truncated weight is small,
the normalization conditions for the canonical form will be fulfilled to a good approximation. In
order to keep the wave function normalized, one should divide by the norm after the truncation,

i.e., divide by N =
√∑

jn, jn+1,αn,αn+2

��Θjn jn+1
αnαn+2

��2.
Generically, the entanglement entropy increases with time and hence would require expo-

nentially growing bond dimensions for an accurate description. With a finite χmax limited by
computational resources, the truncation errors become more severe at intermediate to large
times, and the approximations made in TEBD are no longer controlled: the simulation “breaks
down”. For example, TEBD does not even preserve the energy when the truncation is large. An
improved algorithm based on the time dependent variational principle (TDVP) was introduced
in Refs. [110, 111] which performs a unitary evolution in the space of MPS with given bond
dimension χmax.

If we perform an imaginary time evolution of the state, the operator Û is not unitary and thus
TEBD does not conserve the canonical form. It turns out, however, that the successive Schmidt
decompositions assure a good approximation as long as the time steps are chosen small enough.
Oneway to obtain very accurate results is to decrease the size of the time steps successively [138].
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Figure 2.7 (a) An operator O acting on the entire chain expressed as an MPO. (b) An MPO acting on an
MPS in right canonical form, O |ψ〉 . (c) The expectation value 〈ψ |O |ψ〉.

The simulation cost of the TEBD algorithm scales as O(d3χ3
max) and the most time consuming

part of the algorithm is the SVD in step (iii). Numerically, the algorithm can become unstable
when the values of Λ become very small since the matrix has to be inverted in order to extract
the new tensors in step (iv) of the algorithm. This problem can be avoided by applying a slightly
modified version of this algorithm as introduced by Hastings in Ref. [141].

2.2.4 Matrix Product Operators (MPO)

The DMRG algorithms explained in the next section relies on expressing the Hamiltonian in the
form of a MPO. An MPO is a natural generalization of an MPS to the space of operators, given
by

Ô =
∑

j1,..., jN
j′1,..., j

′
N

vLW [1]j1 j
′
1W [2]j2 j

′
2 · · ·W [N ]jN j′N vR | j1, . . . , jN 〉 〈 j ′1, . . . , j ′N | , (2.33)

where W [n]jn j
′
n are D × D matrices, and | jn〉, | j ′n〉 represent the local basis states at site n, as

before. At the boundaries we initiate and terminate the MPO by the left and right vectors vL , vR.
A diagrammatic representation of an MPO is given in Fig. 2.7(a). The advantage of the MPO is
that it can be applied efficiently to a matrix product state as shown in Fig. 2.7(b).
All local Hamiltonians with only short range interactions can be represented exactly using

an MPO of a small dimension D. Let us consider, for example, the MPO of the anisotropic
Heisenberg (XXZ) model in the presence of a field hn which can vary from site to site. The
Hamiltonian is

ĤXXZ = J
∑
n

(
Ŝx
n Ŝx

n+1 + Ŝy
n Ŝy

n+1 + ∆Ŝz
nŜz

n+1

)
−

∑
n

hnŜz
n, (2.34)
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where Ŝγn , with γ = x, y, z, is the γ-component of the spin-S operator at site n, ∆ is the XXZ
anisotropic interaction parameter. Expressed as a tensor product, the Hamiltonian takes the
following form:

ĤXXZ = J
(

Ŝx ⊗ Ŝx ⊗ 1̂ ⊗ · · · ⊗ 1̂ + 1̂ ⊗ Ŝx ⊗ Ŝx ⊗ · · · ⊗ 1̂ + . . .

+ Ŝy ⊗ Ŝy ⊗ 1̂ ⊗ · · · ⊗ 1̂ + 1̂ ⊗ Ŝy ⊗ Ŝy ⊗ · · · ⊗ 1̂ + . . .

+∆Ŝz ⊗ Ŝz ⊗ 1̂ ⊗ · · · ⊗ 1̂ + . . .
)

− h1Ŝz ⊗ 1̂ ⊗ 1̂ ⊗ · · · ⊗ 1̂ − 1̂ ⊗ h2Ŝz ⊗ 1̂ ⊗ · · · ⊗ 1̂ − . . .

(2.35)

The corresponding MPO has a dimension D = 5 and can be given by

W [n] =

©«

1̂ Ŝx Ŝy Ŝz −hnŜz

0 0 0 0 JŜx

0 0 0 0 JŜy

0 0 0 0 J∆Ŝz

0 0 0 0 1̂

ª®®®®®®¬
, (2.36)

where the entries of this matrix are operators acting on site n, corresponding to the indices jn, j ′n,
and

vL =
(
1, 0, 0, 0, 0

)
, vR =

(
0, 0, 0, 0, 1

)T
. (2.37)

One can easily check that the product of the given matrices does indeed yield the Hamiltonian
of Eq. (2.35). When we want to run simulations, we have typically the inverse problem: how do
we have to chose W [n] to obtain a given Hamiltonian? We will discuss this in Sec. 2.5.1. Further
details on the MPO form of operators can be found in Refs. [73, 142].

2.2.5 Density Matrix Renormalization Group (DMRG)

We now discuss the Density Matrix Renormalization Group (DMRG) algorithm [68]. Unlike
TEBD, the DMRG is a variational approach to optimize the MPS, but the algorithms have many
steps in common. One advantage of the DMRG is that it does not rely on a Suzuki-Trotter
decomposition of the Hamiltonian and thus applies to systems with longer range interactions.
We assume only that the Hamiltonian has been written as an MPO. Secondly, the convergence
of the DMRG method to the ground state is in practice much faster. This is particularly the case
if the gap above the ground state is small and the correlation length is long.
The schematic idea for the DMRG algorithm is as follows (see Fig. 2.8). Like in TEBD,

the state at each step is represented by an MPS. We variationally optimize the tensors of two
neighboring sites (say n and n+ 1) to minimize the ground state energy 〈ψ |Ĥ |ψ〉, while keeping
the rest of the chain fixed. To do so, at each step we represent the initial wave function |ψ〉
using the two site tensor Θjn jn+1

αnαn+2 (as previously defined in Eq. (2.29) the TEBD section), project
the Hamiltonian into the space spanned by the basis set {|αn〉L ⊗ | jn〉 ⊗ | jn+1〉 ⊗ |αn+2〉R}, and
use an iterative algorithm (e.g., Lanczos) to lower the energy. Repeating this two-site update
for each pair of neighboring sites, the wave function converges to the ground state. While the
Trotter decomposition requires to update first all even bonds and then odd bonds, see Eq. (2.26),
in the DMRG we perform the two-site updates in a sequential order5, starting from the left
5 The two-site update is non-unitary and hence destroys the canonical form on other bonds. However,
the sequential order (together with the properties of the SVD used in the update) ensures that the basis
{|αn〉L ⊗ | jn〉 ⊗ | jn+1〉 ⊗ |αn+2〉R} is still orthonormal.
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and proceeding to the right, n = 1, 2, 3, . . . , L − 2, L − 1, and then back from right to left,
n = L − 1, L − 2, . . . , 3, 2, 1. This sequence is called a “sweep” from left to right and back.

Two-site update. We start by describing the update of the tensors on two neighboring sites
n and n + 1. Let us assume that we have the MPS in mixed canonical form as depicted in
Fig. 2.8(a). We now want to find new A[n],Λ[n], B[n+1] → Ã[n], Λ̃[n], B̃[n+1] while keeping all
other tensors fixed. Step (i) of the update is identical to the first step in the TEBD method: We
contract the tensors for two neighboring sites to obtain the initial two-site wave functionΘjn jn+1

αnαn+2 .
The orthonormal basis {|αn〉L ⊗ | jn〉 ⊗ | jn+1〉 ⊗ |αn+2〉R} spans the variational space |ψ̃〉 =∑
αn, jn, jn+1,αn+2 Θ̃

jn jn+1
αnαn+2 |αn jn jn+1αn+2〉 of the update, in which we must minimize the energy

E = 〈ψ̃ |Ĥeff |ψ̃〉 in order to determine the new optimal Θ̃. Here, Ĥeff is the Hamiltonian projected
onto the variational space. Recall fromFig. 2.4(c) that the product A[1]A[2] · · · A[n−1] gives exactly
the projection from |i1i2 . . . in−1〉 to |αn〉L , and similarly B[n+2] · · · B[L] maps |in+2 . . . iN 〉 to
|αn+1〉R. Hence, Ĥeff is given by the network shown in Fig. 2.8(b). For convenience, we have
contracted the tensors strictly left of site n to form L[n], and the ones to the right of site n + 1
into R[n+1], respectively. We call these partial contractions L[n] and R[n+1] the left and right
“environments”. Each environment has three open legs, e.g., L[n] has an MPO bond index γn
and the two bond indices αn, αn of the ket and bra MPS. For now let us assume that we already
performed these contractions; we will later come back to the initialization of them.
Grouping the indices on the top and bottom, we can view Ĥeff as a matrix with dimensions up

to χ2
maxd2 × χ2

maxd2. Minimizing the energy E = 〈ψ̃ |Ĥeff |ψ̃〉 thus means to find the the χ2
maxd2

dimensional ground-state vector Θ̃ of the effective Hamiltonian. Since this is the computationally
most expensive part of the DMRG algorithm, it is advisable to use an iterative procedure like the
Lanczos algorithm instead of a full diagonalization of Ĥeff . If the previous two-site wave function
Θ obtained in step (i) is already a good approximation of the ground state, the Lanczos algorithm
typically converges after a few steps and thus requires only a few “matrix-vector” multiplications,
i.e., contractions of Ĥeff with Θ. Note that the scaling of such a matrix-vector multiplication is
better (namely O(χ3

maxDd2+ χ2
maxD2d3)) if we contract the tensors L[j],W [n],W [n+1], R[n+2] one

after another to Θ, instead of contracting them into a single tensor and applying it to Θ at once
(which would scale as O(χ4

maxd4)).
This update step can be compared to the TEBD update where we obtain a new wave-function
Θ̃ after applying an time-evolution operator. As with TEBD, we split the new Θ̃ using an SVD
in step (iii), and must truncate the new index αn+1 to avoid a growth χ → dχ of the bond
dimension. It is important that the left and right Schmidt basis |αn〉L , |αn+2〉R are orthonormal,
on one hand to ensure that the eigenstate of Ĥeff (seen as a matrix) with the lowest eigenvalue
indeed minimizes E = 〈ψ̃ |Ĥeff |ψ̃〉 and on the other hand to ensure an optimal truncation at the
given bond. Assuming that this is the case, the isometry properties of the SVD matrices imply
that the orthonormality conditions also hold for the updated Schmidt states |αn〉L/R defined
about the central bond.
At this point, we have improved guesses for the tensors Ã[n], Λ̃[n+1], B̃[n] (after a reshaping

into the desired form) and can move on to the next bond. Note that we moved the center of the
mixed canonical form to the central bond n : n + 1. If we move to the right, the next two-site
wave function Θ for step (i) is thus again given by Λ̃[n+1]B̃[n+1]B[n+2], while if we move to the
left, we need to use A[n−1] Ã[n]Λ̃[n+1]. Moreover, we need to find the next environments.
The starting environments on the very left and right are simply given by (see Fig. 2.8(a))

L[1]
α1α1γ1

= δα1α1v
L
γ1, R[N ]

αN+1αN+1γN+1
= δαN+1αN+1v

R
γN+1 . (2.38)
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Figure 2.8 (a) The energy E = 〈ψ |Ĥ |ψ〉 with the MPS |ψ〉 in mixed canonical form and Ĥ given by an
MPO. We contract the parts to the left of site n (right of site n + 1) into the left (right) environment L[n]

(R[n+1]). (b) The effective Hamiltonian Ĥeff to update sites n, n + 1 is the MPO projected onto the basis
{|αn〉L ⊗ | jn〉 ⊗ | jn+1〉 ⊗ |αn+2〉R}. (c) Update steps for the sites n, n + 1, see main text. (d) The update
rules for the environment follow from the definition in (a).



22 2. Tensor networks

Here, the δα1α1 and δαN+1αN+1 are trivial since α1 and αN+1 are dummy indices which take only
a single value. The other environments can be obtained from a simple recursion rule shown as
step (iv) of Fig. 2.8(d). Using this recursion rule, R[2] required for the first update of the sweep
can be obtained by an iteration starting from the right-most R[N ]. Note that the update on sites
n, n + 1 does not change the right environments Rk for k > n + 1. Thus it is advisable to keep
the environments in memory, such that we only need to recalculate the left environments when
sweeping from left to right, and vice versa in the other direction.
The procedure described above optimizes always two sites at once. Ref. [101] introduced

a way to perturb the density matrices during the algorithm. This allows to perform DMRG
while optimizing only a single site at once, called “single-site DMRG“ or “1DMRG“ in the
literature, and helps to avoid getting stuck in local minima. A detailed discussion of two-site
vs. single-site DMRG and a improved version of the density matrix perturbation can be found in
Ref. [102]. Especially for models with long-range interactions (which appear for example when
mapping a quasi-2D cylinder to a 1D chain) or models with topological phases, this density
matrix perturbation can be necessary to converge towards the correct ground state.

2.3 Infinite systems in one dimension

For translation invariant systems, we can take the thermodynamic limit in which the number of
sites N →∞, generalizing (2.7) to

|ψ〉 =
∑

... jn−1, jn, jn+1,...

· · ·M [n−1]jn−1 M [n]jn M [n+1]jn+1 · · · |. . . , jn−1, jn, jn+1, . . .〉 . (2.39)

We can ensure the translation invariance of this infinite matrix product state (iMPS) by con-
struction if we simply take all the tensors M [n] → M in Eq. (2.39) to be the same [also called
uniform MPS (uMPS) in the literature]. The paramagnetic product state |· · · ←← · · ·〉 with the
tensors of Eq. (2.9) is a trivial example for such a translation invariant state; another example is
the AKLT state given in Eq. (2.13). In general, we might only have a translation invariance by
shifts of (multiples of) L sites. In this case we introduce a repeating unit cell of L sites with L
different tensors, M [n] = M [n+L] in Eq. (2.39). For example, the Néel state |· · · ↑↓↑↓ · · ·〉 is only
invariant under a translation by (multiples of) L = 2 sites, with the tensors on even and odd sites
as given in Eq. (2.10) for the finite case, illustrated in Fig. 2.9(a). The length L of the unit cell
should be chosen compatible with the translation symmetry of the state to be represented, e.g.,
for the Néel state L should be a multiple of 2. Choosing L larger than strictly necessary allows
to check the translation invariance explicitly.
At first sight, it might seem that we need to contract an infinite number of tensors to evaluate

expectation values of local operators, as the corresponding network consists of an infinite number
of tensors. However, as shown in Fig. 2.9(b) for a unit cell of L = 2 sites, the network has a
repeating structure consisting of the so-called transfer matrix T defined as

Tαα,γγ =
∑

j1, j2,β,β

M [1]j1αβ M [1]j1
αβ

M [2]j2βγ M [2]j2
βγ

. (2.40)

A state is called pure if the largest (in terms of absolute value) eigenvalue of T is unique and
mixed if it is degenerate. In the following, we will always assume that the state is pure (in fact
every mixed state can be uniquely decomposed into a sum of pure ones). We renormalize the
iMPS such that the largest eigenvalue ofT is 1. The eigenvector depends on the gauge freedom of
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Figure 2.9 (a) An infinite MPS with a unit cell of L = 2 sites. (b) The expectation value 〈ψ |On |ψ〉
contains the transfer matrix T as a repetitive structure. (c) The canonical form is defined as in the finite
case. (d) The orthonormality conditions of the Schmidt states yield eigenvector equations for the transfer
matrix.

Eq. (2.14), which we can use to bring the iMPS into the convenient canonical form defined by the
Schmidt decomposition on each bond, see Fig. 2.9(c). An algorithm to achieve this is described
in Ref. [143]. For an iMPS in right-canonical form, i.e., M [n]jn → B[n]jn ≡ Γ[n]jnΛ[n+1], the
orthonormality condition of the Schmidt vectors depicted in Fig. 2.4(d) applied to the whole
unit cell implies that δγγ is a right eigenvector of T with eigenvalue 1, as depicted in Fig. 2.9(d).
Note that T is not symmetric and hence left and right eigenvectors differ; the left eigenvector
to the eigenvalue 1 is (Λ[1]α )2δαα. All other eigenvalues of the transfer matrix have magnitude
smaller than 1. Therefore, the repeated application of the transfer matrix in the network of
the expectation value projects onto these dominant left and right eigenvectors, and the infinite
network of the expectation value 〈ψ |On |ψ〉 simplifies to a local network as in the finite case, see
Fig. 2.5.
A similar reasoning can be used for the correlation function 〈ψ |OnOm |ψ〉. Projecting onto

the dominant eigenvectors left of On and right Om, we arrive at the network of Fig. 2.10(a). In
between the operators On and Om, the transfer matrix T appears N = b |m−n |L c − 1 times, where
b·c denotes rounding down to the next integer. Formally diagonalizing the transfer matrix to take
the N th power shows that the correlation function is a sum of exponentials,

〈ψ |OnOm |ψ〉 = 〈ψ |On |ψ〉 〈ψ |Om |ψ〉 + (η2)
NC2 + (η3)

NC3 + · · · . (2.41)

Here, ηi labels the i-largest eigenvalue corresponding to the left and right eigenvectors η[L/R]i ,
Ci = (O

[L]
n η

[R]
i )(η

[L]
i O[R]n ) denotes the remaining parts of the network shown in Fig. 2.10, and

we identified the C1 = 〈ψ |On |ψ〉 〈ψ |Om |ψ〉 in the term of the dominant eigenvalue η1 = 1 . The
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Figure 2.10 (a) Correlation function 〈ψ |OnOm |ψ〉. (b) Expansion ofTN in terms of dominant eigenvectors
and eigenvalues of T for large N . The second largest eigenvalue η2 of T determines the correlation length
via eq. 2.42.

decay of the correlations is thus determined by the second largest eigenvalue η2, which yields
the correlation length

ξ = −
L

log |η2 |
. (2.42)

Numerically, it is readily obtained from a sparse algorithm finding extremal eigenvalues of T .

2.3.1 Infinite Time Evolving Block Decimation (iTEBD)

Generalizing TEBD to infinite time evolving block decimation (iTEBD) is very simple and
requires only minor modifications in the code [138]. Without loss of generality we assume that
the Hamiltonian is translation invariant by L sites as the iMPS; otherwise we enlarge the unit
cells. As in the finite case, we use a Suzuki-Trotter decomposition to obtain the expression of
the time evolution operator Û(t) given in Eq. (2.26), but now the index n runs over all integer
numbers, n ∈ Z. If we apply the two-site unitary Û[n,n+1] = eiĥ

[n,n+1]δt on the iMPS to update
the matrices B[n] and B[n+1] as illustrated in Fig. 2.6(b), this corresponds due to translation
invariance to the action of Û[n,n+1] on the sites (n + mL, n + 1 + mL) for any m ∈ Z. Therefore,
we can use the same two-site update as in the finite case; the only difference is that the matrices
of the iMPS represent only the unit cell with nontrivial left and right bonds, and compared to a
finite system with L sites we have an additional term ĥ[L,L+1] ≡ ĥ[L,1] across the boundary of
the unit cell.
Note that the iTEBD algorithm is different from a time evolution in a finite system of N = L

sites with periodic boundary conditions. For analytical calculations with MPS in systems with
periodic boundary conditions, it can be useful to change the definition of an MPS from Eq. (2.7)
to

|ψ〉 =
∑

j1,..., jN

Tr
(
M [1]j1 M [2]j2 . . . M [N ]jN

)
| j1, j2, . . . , jN 〉 , (2.43)

which has at first sight the same tensor network structure as an iMPS. However, cutting a single
bond of such a finite MPS with periodic boundary conditions does not split it into two parts.
Therefore, the canonical form (which relies on the Schmidt decomposition) is not well defined
for an MPS with periodic boundary conditions (or in general for any tensor network state in
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Figure 2.11 (a) For iDMRG (here with a unit cell of L = 2 sites), we initialize the environments and
perform updates like in DMRG of a finite system with L sites. (b) Between the sweeps, we increase
the system size by inserting a unit-cell of L sites into each of the environments (assuming translation
invariance of the iMPS).

which the bonds form loops)6. Since the two-site update scheme of iTEBD implicitly uses the
canonical form, it implements the time evolution in the infinite system with open boundary
conditions. This also becomes evident by the fact that the bond dimension χmax – in other words
the number of Schmidt states taken into account – can get larger than the Hilbert space dimension
dL inside one unit cell.

2.3.2 Infinite Density Matrix Renormalization Group (iDMRG)

While iTEBD works directly in the thermodynamic limit N → ∞ by employing translation
invariance, for the infinite density matrix renormalization group (iDMRG) one should think of
a finite system with a growing number of sites - the “renormalization group” in the name refers
to this. Let us assume that the Hamiltonian is given as an MPO with a translation invariant
unit cell consisting of W [n], n = 1, · · · , L, which we can terminate with the boundary vectors
vL, vR to obtain the Hamiltonian of a finite system with a multiple of L sites. We initialize
the environments and perform two-site updates during a sweep exactly like in finite DMRG.
The crucial difference is that we increase the system size between the sweeps as illustrated in
Fig. 2.11(b): assuming translation invariance, we redefine the left and right environments L̃ → L
and R̃→ R to include additional unit cells. Moreover, we need to extend the sweep to include an
update on the sites (L, L + 1) ≡ (L, 1). With each unit cell inserted, the described finite system
grows by L sites, where we focus only only on the central L sites. Full translation invariance is
only recovered when the iDMRG iteration of sweeps and growing environments converges to a
fix point, at which the environments describe infinite half-chains.
One subtlety of the above prescription lies in the interpretation of the energy E obtained

during the diagonalization step. Is it the (infinite) energy of the infinite system? Keeping track
of the number of sites `R/L included into each of the environments, we see that the energy E
corresponds to a system of size N = `L + L + `R. By monitoring the change in E with increased
N , we can extract the energy per site. This is convenient for problems in which there is no
few-site Hamiltonian with which to evaluate the energy.
6A generalization of the canonical form to networks with closed loops was recently given in Ref. [144].
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When symmetry breaking is expected, it is helpful to initialize the environments by repeatedly
performing the iDMRG update without performing the Lanczos optimization, which builds up
environments using an initial symmetry broken MPS.
To close this section, we mention the variational uniform Matrix Product State algorithm

(VUMPS) as a new alternative to iDMRG, see Ref. [145] and references therein. In short,
the method can preserve a strict uniform structure of the infinite MPS in a very clever way by
summing up geometric series appearing in the effective Hamiltonian.

2.4 Charge conservation

If there is a unitary Û which commutes with the Hamiltonian, Û and Ĥ can be diagonalized
simultaneously, in other words the Hamiltonian has a block-diagonal structure when written in
the eigenbasis of Û. This can be exploited to speed up simulations: for example, diagonalizing
a full N × N matrix requires O

(
N3) FLOPs, whereas the diagonalization of m blocks of size

N
m requires O

(
m

(
N
m

)3
)
FLOPs. A similar reasoning holds for the SVD and matrix or tensor

products. While exploiting the block structure does not change the scaling of the considered
algorithm with the total dimension of the tensors, the gained speedup is often significant and
allows more precise simulations with larger bond dimensions at the same computational cost.

For tensor networks, the basic idea is that we can ensure a block structure of each tensor
individually. One can argue based on representation theory of groups that the tensors can be
decomposed in such a block structure [97,98]. However, here we present a bottom-up approach
which is closer to the implementation. Motivated by an example, we will state a simple “charge
rule” which fixes the block structure of a tensor by selecting entries which have to vanish. We
explain how to define and read off the required charge values. Then we argue that tensor network
algorithms (like TEBD or DMRG) require only a few basic operations on tensors, and that these
operations can be implemented to preserve the charge rule (and to exploit the block structure for
the speedup).
Here, we focus exclusively on global, abelian symmetries which act locally in the computa-

tional basis, and refer to Refs. [96, 97, 99, 100, 146] for the non-abelian case, which requires a
change of the computational basis and is much more difficult to implement.

2.4.1 Definition of charges

For concreteness, let us now consider two spin-1
2 sites coupled by

Ĥ = ®S1 · ®S2 =
∑
ab

Hab |a〉 〈b| with Hab =
1
4

©«
1
−1 1
1 −1

1

ª®®®®¬
, (2.44)

where we have represented Ĥ in the basis {|a〉} ≡ {|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉} and omitted zeros.
Indeed, we clearly see a block-diagonal structure in this example, which stems from the con-
servation of the magnetization7 Ŝz = Ŝz

1 + Ŝz
2 . We can identify the blocks if we note that the

7 We call this a U(1) symmetry since Ĥ commutes with Û = exp(iφ
∑

n Ŝzn) =
∏

n eiφŜz
n which has a U(1)

group structure. If one thinks of particles (e.g., fermions after using a Jordan-Wigner transformation), this
symmetry corresponds to the particle number conservation. In general, one could also exploit the non-abelian
SU(2) � SO(3) symmetry of spin rotations, but we focus on the simpler case of abelian symmetries.
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Figure 2.12 (a) Diagrammatic representation of the tensors in Tab. 2.1. We indicate the signs ζ by small
arrows on the legs. (b) Sign convention for the MPS.

considered basis states are eigenstates of Sz and inspect their eigenvalues: |↑↑〉 corresponds to
the eigenvalue ~, the two states |↑↓〉 , |↓↑〉 form a block to the eigenvalue 0, and |↓↓〉 corresponds
to−~. To avoid floating point errors, we rescale the “charges” to take only integer values. Clearly,
whenever Sz is conserved, so is q B 2Sz/~, but the latter takes the simple values 2, 0 and −2
for the four basis states |a〉 considered above. We have thus associated one charge value to each
index a, which we can summarize in a vector q[a] B (2, 0, 0,−2). Using this definition, we can
formulate the conservation of Sz as a condition on the matrix elements:

Hab = 0 if q[a]a , q[a]
b
. (2.45)

How does this generalize to tensors with a larger number of indices? To stay with the example,
we can also write Ĥ =

∑
s1s2t1t2 Hs1s2t1t2 |s1〉 |s2〉 〈t1 | 〈t2 | as a tensor with 4 indices s1, s2, t1, t2

corresponding to the single-site basis {|s〉} ≡ {|↑〉 , |↓〉}. The charge values q[s] = (1,−1) for
this basis are obvious from the definition q = 2Sz/~ (and the reason why we included the factor
2 in the rescaling). Since Sz is additive, its conservation now implies that

Hs1s2t1t2 = 0 if q[s]s1 + q[s]s2 , q[s]t1 + q[s]t2 . (2.46)

Note that the indices corresponding to a ket appear on the left hand side of the inequality, while
the ones corresponding to a bra appear on the right. For an arbitrary tensor, we therefore define
one sign ζ = ±1 for each leg, where we choose the convention ζ = +1 (ζ = −1) for a ket (bra);
for the above example ζ [1] = ζ [2] = +1 for the first two indices s1, s2 and ζ [3] = ζ [4] = −1 for the
legs of t1, t2. In diagrams, we can illustrate this sign by an arrow pointing into (for ζ = +1) or
out of (for ζ = −1) the tensor, see Fig. 2.12.

Finally, we also introduce an offset Q, which we call the “total charge” of a tensor. The general
charge rule for an arbitrary n-leg tensor M then reads

∀a1, a2 · · · an : ζ [1]q[1]a1 + ζ
[2]q[2]a2 + ζ

[3]q[3]a3 + · · · + ζ
[n]q[n]an

, Q ⇒ Ma1a2 · · ·an = 0 (2.47)

Note that the signs ζ [i] and the total charge Q introduce some ambiguity: the charge rule
(2.47) is still satisfied if we send ζ [j] → −ζ [j] and q[j] → −q[j] for some leg j, or if we send
ζ [j]q[j] → ζ [j]q[j] + δQ and Q → Q + δQ. However, introducing the signs and the total charge
allows us to share the same q vector between legs representing the same basis, e.g., all four legs
of Hs1s2t1t2 shared the same q[s]. We can therefore fix the charge vectors q of physical legs in
the very beginning of the algorithm. Since also the signs ζ are fixed by conventions, for tensors
with only physical legs one can solve the charge rule (2.47) for Q (by inspecting which entries
of a tensor are non-zero). Examples of this kind are given in Tab. 2.1.
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Example ζ [1] q[1] ζ [2] q[2] ζ [3] q[3] ζ [4] q[4] Q
Ĥ =

∑
Hs1s2t1t2 |s1〉 |s2〉 〈t1 | 〈t2 | +1 q[s] +1 q[s] -1 q[s] -1 q[s] 0

Ĥ =
∑

Hab |a〉 〈b| +1 q[a] -1 q[a] 0
Sz +1 q[s] -1 q[s] 0
S+ +1 q[s] -1 q[s] 2
S− +1 q[s] -1 q[s] -2

|↑↑〉 =
∑
va |a〉 +1 q[a] 2

〈↑↑| =
∑
v∗a 〈a| -1 q[a] -2

|↑↑〉 =
∑
vs1s2 |s1〉 |s2〉 +1 q[s] +1 q[s] 2

Table 2.1 Examples for charge definitions such that the tensors fulfill the charge rule (2.47). We
consider spin- 1

2 with q = 2Sz/~, i.e., q[s] B (1,−1) for the single-site basis {|s〉} ≡ {|↑〉 , |↓〉} and
q[a] B (2, 0, 0,−2) for the two-site basis {|a〉} ≡ {|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉}. The signs ζ are +1 (−1) for legs
representing kets (bras). The total charge Q can then be determined from the charge rule (2.47).

On the other hand, if the total charge Q and the charges q[i] of all but one leg j of a tensor are
fixed, one can also solve the charge rule (2.47) for the missing q[j]:

∀a1, a2 · · · an : Ma1a2 · · ·an , 0 ⇒ ζ [j]q[j]a j
= Q −

∑
i,j

ζ [i]q[i]ai (2.48)

This allows to determine the charges on the virtual legs of an MPS. As an example, let us write
the singlet |ψ〉 = 1√

2
(|↑↓〉 − |↓↑〉) as an MPS. The MPS in canonical form is given by

|ψ〉 =
∑
s1s2,c

Γ
[1]s1
lc
Λ
[1]
c Γ
[2]s2
cr |s1〉 |s2〉 with Λ[1] =

1
√

2

(
1
1

)
,

Γ
[1]↑ =

(
1 0

)
, Γ

[1]↓ =
(
0 1

)
, Γ

[2]↑ =

(
0
−1

)
, Γ

[2]↓ =

(
1
0

)
. (2.49)

Here, l and r are trivial indices l ≡ r ≡ 1, and only introduced to turn the Γ[i] into matrices
instead of vectors. For trivial legs, we can (usually) choose trivial charges q[triv] B (0) which
do not contribute to the charge rule. Moreover, we choose the convention that ζ = +1 for left
virtual legs, ζ = −1 for right virtual legs and Q = 0, see Fig. 2.12(d). Then we can use the
charge rule (2.48) of Γ[1] solved for q[c] and obtain:

Γ
[1]↑
11 , 0

(2.47)
⇒ q[c]1 = 1, Γ

[1]↓
12 , 0

(2.47)
⇒ q[c]2 = −1. (2.50)

We use the same q[c] = (1,−1) for the left virtual leg of Γ[2]; one can easily check that it also
fulfills the charge rule (2.47) for Q = 0.
Strictly speaking, an operator with a non-zero total charge Q does not preserve the charge of

the state it acts on. However, it still preserves the block structure, because it changes the charge
by exactly Q, e.g., Ŝ+ increases it by 2. In contrast, Ŝx (and similarly Ŝy) can both increases
or decreases the charge, thus it can not be written as tensors satisfying Eq. (2.47); only the
combination Ŝx

1 Ŝx
2 + Ŝy

1 Ŝy
2 =

1
2 (Ŝ
+
1 Ŝ−2 + Ŝ−1 Ŝ+2 ) preserves the charge. When writing Ĥ as a charge

conserving MPO, one can only use single-site operators with a well-defined Q.
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Figure 2.13 Basic operations required for tensor networks: (a) transposition, (b) conjugation, (c) com-
bining two or more legs, (d) splitting previously combined legs (e) contraction of two legs, (f) matrix
decompositions, and (g) operations on a single leg.

2.4.2 Basic operations on tensors

Above, we motivated the form of the charge rule (2.47) and explained how to define the charges
for various tensors. Thus, we can write both the initial state and the Hamiltonian in terms
of tensors satisfying Eq. (2.47). Now, we argue that tensor network algorithms require just a
few basic operations on the tensors, namely (a) transposition, (b) conjugation, (c) combining
two or more legs, (d) splitting previously combined legs (e) contraction of two legs, (f) matrix
decompositions, and (g) operations on a single leg. These operations are depicted in Fig. 2.13.
As we will show in the following, all of them can be implemented to preserve the charge rule
(2.47) and thus the block structure of the tensors. Thus, any algorithm using (only) these basic
operations preserves the charges.

Transposition is by definition just a reordering of the legs. Clearly, (2.47) is then still valid if
we reorder the charge vectors q and signs ζ in the same way. Examples for the conjugation are
already given in Tab. 2.1; beside the complex conjugation of the entries this includes exchanging
bra and ket, i.e., a sign flip of all ζ . The charge rule is then preserved if we also flip the sign of
the total charge Q. For hermitian operators like Ĥ the combination of complex conjugation and
appropriate transposition changes neither the entries nor the charges of a tensor.
Another operation often needed is to combine two (or more) legs, e.g., before we can do an

SVD, we need to view the tensor as a matrix with just two indices. In other words, we group some
legs into a “pipe”. The pipe looks like an ordinary leg, i.e., we define a sign ζ and charge vector q
for it. However, it has the internal structure that it consists of multiple smaller legs. Thus, we can
later split it, e.g., after we did an SVD. For concreteness, let us again consider the above example
Hs1s2t1t2 → Hab, i.e., we want to combine the indices s1, s2 into a pipe a (and t1, t2 into a pipe b).
In this case, we map the indices as a(s1, s2) B 2s1 + s2 and b(t1, t2) B 2t1 + t2. The charge rule is
then preserved if we define the charge vectors q of the pipes as ζ [a]q[a]

a(s1,s2)
B ζ [1]q[s]s1 + ζ

[2]q[s]s2

and ζ [b]q[b]
b(t1,t2)

B ζ [3]q[s]t1 + ζ
[4]q[s]t2 , where ζ [1] = ζ [2] = 1, ζ [3] = ζ [4] = +1 are the signs of the

indices s1, s2, t1, t2, and ζ [a] = 1, ζ [b] = −1 are the desired signs of the pipes. One can easily
check that these definitions coincide with the previous ones, q[a] = (2, 0, 0,−2) = q[b]. Since
the mapping of indices is one to one, one can also split a pipe into the smaller legs it consists
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of. However, note that this requires the q vectors and signs ζ of these legs; the pipe should thus
store a copy of them internally.
One of the most important (and expensive) operations on tensors is the contraction of legs.

Let us consider two tensors Aa1a2 and Bb1b2 with charges QA, q[ai ], ζ A[i] and QB, q[bi ], ζB[i],
i = 1, 2. A contraction means to identify two indices and sum over it. Two indices can be
identified if they represent the same basis, thus we require them to have the same charge vector q
and opposite signs ζ . For example for the usual matrix productCa1b2 B

∑
c Aa1cBcb2 we require

q[a2] = q[b1] and ζ A[2] = −ζB[1]. The charge rule (2.47) for C then follows from the charge rules
of A and B, if we define QC B QA + QB and just copy the signs ζ and charge vectors q for the
free, remaining indices. Moreover, the cost of the contraction is reduced if we exploit the block
structure of A and B, which becomes most evident if we have a block diagonal structure as in
Hab, Eq. (2.44). On the other hand, we can also contract two legs of the same tensor, i.e., take a
(partial) trace. The contributions of these two indices to the charge rule (2.47) then simply drop
out and the rule again stays the same for the remaining indices of the tensor.
We collect linear algebra methods that take a matrix as input and decompose it into a product

of two or three matrices under the name matrix decomposition. Examples include the diago-
nalization of a matrix H = U†EU, QR-decomposition M = QR and SVD M = USV†. Here,
we focus exemplary on the SVD, other decompositions can be implemented analogously. Let
us first recap the properties of the SVD: it decomposes an arbitrary m × n matrix into a product
Mlc =

∑
c UlcSc(V†)cr , where Sc are the k = min(m, n) positive singular values, and U and V

are isometries, i.e., U†U = 1 = V†V . The charge rule (2.47) for the matrix elements Mlc implies
a block structure: assuming that the basis states of the index l are sorted by charge (which we
discuss in the next paragraph), we can group indices with the same charge values together to
form a block. Moreover, for each block of l with a charge value q[l]

l
, there is at most one block

of the index r with compatible charges, i.e., we have some kind of pseudo block-diagonal form
(even if the blocks are not strictly on the diagonal). Therefore, we can apply the SVD to each
of the (non-zero) blocks separately and simply stack the results, which again yields a (pseudo)
block-diagonal form for U and V† with the required properties. To define the charges of the
new matrices we can ignore S, since it is only a trivial rescaling of one leg. Similar as for the
contraction, we keep the charge vectors q and signs ζ for the indices l and r . Further, we choose
the total charges as QU B 0 and QV B QM , as well as the sign ζ [c] of the new index c negative
for U and positive for V . The charge vector q[c] can then easily be read off using Eq. (2.48),
which yields q[c] B ζ [l]q[l] (for both U and V†).

Finally, the remaining operations needed for tensor networks are operations on a single leg
of a tensor. One example is a permutation of the indices of the leg, for example required to
sort a leg by q as mentioned above. Clearly, this preserves the charge rule if we apply the same
permutation to the corresponding charge vector q. Similarly, if we discard some of the indices
of the leg, i.e., if we truncate the leg, we just apply the same truncation to the charge vector q.
Lastly, we might also want to slice a tensor by plugging in a certain index of a leg, e.g., taking
a column vector of a matrix. This requires to update the total charge Q to preserve the charge
rule, as one can show by viewing it as a contraction with a unit vector.

Above we explained how to define the charges for the U(1) symmetry of charge conservation.
In general, one can have multiple different symmetries, e.g., for spin-full fermions we might
have a conservation of both the particle numbers and the magnetization. The generalization is
straight-forward: just define one q for each of the symmetries. Another simple generalization is
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Figure 2.14 (a) Benchmark of a matrix multiplication without charge conservation (“NumPy, no charge”)
or with a U(1) charge (“TeNPy”) with each leg having 5 or 20 charge sectors. (b) A similar benchmark
for a few DMRG sweeps of an infinite spin-S = 2 chain. The number of tensordot operations per sweep
was fixed. For both benchmarks, a single CPU core was used.

due to another type of symmetry, namelyZn, where all the (in)-equalities of the charge rules are
taken modulo n. An example for such a case is the parity conservation of a superconductor.
The ability of the TeNPy library to exploit charge conservation for faster calculations is

demonstrated in Fig. 2.14. The benchmark of matrix multiplications in Fig. 2.14(a) shows that
using the Array class of TeNPy in the case of no charges introduces only a small overhead
compared to NumPy [147]. Compared to pure NumPy arrays, the Array class of TeNPy offers
many convenient advantages, for example the possiblity to label the array indices, methods
to combine and split legs, and consistency checks whether contracting two legs is reasonable.
Moreover, it makes the generalization of the code to charge conservation almost trivial. Both
NumPy and TeNPy arrays have an constant overhead on the order of 10−4 seconds per matrix
multiplication for small matrices of size n . 100. This overhead can be attributed to the
interpreted nature of the Python programming language, as opposed to languages like C++ or
Fortran, where the program code is compiled to machine code before execution. However,
there is a quick crossover to a regime at larger sizes n with a scaling of (roughly) O(n3), where
the computation time is dominated by the matrix multiplication of blocks berformed by the
underlying BLAS/LAPACK libraries. In this regime, using a C++ or Fortran based library
does not lead to a (significant) speed up of the simulations. In Fig. 2.14(b), we benchmark the
advantage in computer time of using the U(1) symmetry corresponding to the conservation of
Ŝz in a DMRG simulation of the S = 2 Heisenberg chain. This shows that exploiting the charge
conservation can give a significant speedup already at moderate bond dimensions.

2.5 Efficient representations of general models

2.5.1 From Hamiltonians to MPOs using finite state machines

Let us now come back to the problem of how to obtain the MPO tensor W [n] for a given
Hamiltonian, which we postponed in Sec. 2.2.4. To this end, we view the MPO as a finite
state machine, which can also be drawn as a graph [103, 148, 149]. This is especially useful for
translation invariant Hamiltonians where we have only a single W [n] tensor for the MPO such as
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Figure 2.15 (a) Finite state machine generating the W [n] for the translation invariant Hamiltonian (2.34).
(b) Labelling the indices on adjacent bonds as αn and αn+1 allows to read off the entriesW [n]αn,αn+1 from the
edges. (c) Repeating the structure allows to identify the paths in the MPO graph corresponding to terms
of the Hamiltonian, and to generalize to non-translation invariant settings, here for H =

∑
n J∆Ŝz

n Ŝz
n −∑

n hn Ŝz
n. The R and F states are special states where the MPO is terminated on the left and right

and correspond to having only identities on the left or right of the bond. Here, the green, dotted path
corresponds to 1̂ ⊗ 1̂ ⊗ (−h3Ŝz) ⊗ 1̂ ⊗ 1̂, while the blue path corresponds to 1̂ ⊗ Ŝz ⊗ (J∆Sz) ⊗ 1̂ ⊗ 1̂. (d)
Adding a next-to-nearest neighbor coupling J ′

∑
n Sz

nSz
n+2 requires a path with two intermediate states.

The first, intermediate state can be shared with the nearest neighbor coupling. (e) Exponentially decaying
interactions

∑
n

∑
m>0 Anλ

m−1Bn+m can be achieved by a loop in the intermediate states.
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in Eq. (2.36). A sequence of actions of the finite state machine can be thought of to generate a
term in the Hamiltonian, such that the total Hamiltonian is generated by all possible actions of
the finite state machine. To explain the mapping between the MPO and the finite state machine
in more detail, let us discuss all the elements individually. We identify the set of indices αn
on the virtual bonds of an MPO as possible states of a finite state machine and draw them as
nodes of a graph as shown in Fig. 2.15. For a translation invariant Hamiltonian, the indices αn
on the bond to the left of site n are equivalent to the ones on the right, αn+1, so the number
of states of the finite state machine is just the MPO bond dimension. The (directed) edges of
the drawn graph are transitions between different states, or equivalently actions or inputs of the
finite state machine. They correspond to entries of the matrix W [n]αn,αn+1 as written in Eq. (2.36).
These entries are onsite operators acting on the local Hilbert space of site n (corresponding to
the indices jn, j ′n in Eq. (2.33)). To read off the entries of the W [n] tensor from a given finite
state machine or graph as in Fig. 2.15(a), we can enumerate and distinguish the left and right
indices αn, αn+1 as shown in Fig. 2.15(b), such that the entries W [n]αn,αn+1 of Eq. (2.36) become
apparent. We can also distinguish between different sites n to generalize the finite state machine
to Hamiltonians which are not translation invariant, as illustrated in Fig. 2.15(c) for a system
with N = 5 sites. While we have just adjusted the prefactors hn to be site-dependent in this
example, the necessary intermediate states αn may in general also depend on n.

To find the transitions and states of the finite state machine for a given Hamiltonian, we need
to read each term of the Hamiltonian as a product of onsite operators from left to right to ensure
that the required actions are included in the finite state machine. As a first example, let us
consider the onsite field terms

− h
∑
n

Ŝz
n =

∑
n

1̂ ⊗ · · · ⊗ 1̂ ⊗ (−hŜz) ⊗ 1̂ ⊗ · · · ⊗ 1̂. (2.51)

The finite state machine starts in the special state R (for “ready”) on the very left of the product,
which correspond to the index where the left boundary vector vL of the MPO definition in
Eq. (2.7) is non-zero. We illustrate this with an incoming arrow from the left in Fig. 2.15(c).
Each onsite operator in the tensor product of Eq. (2.51) needs to be in one W matrix and is
hence a transition between states of the finite state machine, until we terminate in another special
state F (for “finish”), where vR is non-zero, indicated by the outgoing arrow to the right in
Fig. 2.15(c). By adding an 1̂ edge from R to itself and from F to itself, we can identify the R
and F states on bonds in the bulk as the states where we have only identities on the left or right
of the bond, respectively. In the translation invariant case of Fig. 2.15(a), a single edge from R
to F with the operator −hŜz then yields the full translation invariant sum −h

∑
n Ŝz

n, since the
transition from R to F can happen on any site n. This becomes evident in Fig. 2.15(c), where
the green path indicates the case where the transition happens on site n = 3 as an example.

General two-site couplings of the form J
∑

n Ân B̂n+m with a range m > 0 require m extra
intermediate states, since m + 1 onsite operators (counting 1̂ as well) appear between the trivial
products of 1̂ on the left and right represented by the R and F state. For example, for the
nearest-neighbor coupling J∆

∑
n Ŝz

nŜz
n+1 we need to add a transition with Ŝz from R to a new

state and from there to F with the operator J∆Ŝz . We label the new state by Ŝz
−1 to indicate that

Ŝz acted on the next site on the left of the bond. The blue path in Fig. 2.15(c) illustrates the
case where the finite state machines produces the term J∆Ŝz

2 Ŝz
3 . Including similar transitions

and extra states for the Ŝx and Ŝy coupling completes the finite state machine for the Heisenberg
model (2.34), which is shown in Fig. 2.15(a,b).
For a next-to-nearest neighbor coupling with terms of the form J ′Ŝz

nŜz
n+2 = J ′1̂ ⊗ · · · ⊗ 1̂ ⊗

Ŝz ⊗ 1̂ ⊗ Ŝz ⊗ 1̂ ⊗ · · · ⊗ 1̂, we need a transition from R to the state Ŝz
−1, from there to a new state
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Figure 2.16 (a) PEPS are generalizations of MPS to higher dimensions, here for a square lattice. The
open, diagonal legs correspond to the physical degrees of freedom. (b) Alternatively, one can map the 2D
system to a 1D chain and use an MPS, which winds through the 2D plane. (c) The MPS “snake” can wind
in different ways, which also affects the efficiency of the representation depending on the entanglement
structure of the state to be represented, in particular if Lx � Ly or if the coupling is strongly anisotropic.

(labeled Sz
−2) with an 1̂, and a final transition with J ′Ŝz to the F state. However, as suggested

by the identical labels and shown in Fig. 2.15(d), we can reuse the state Sz
−1 from the nearest-

neighbor coupling in the longer-range coupling. Effectively, this groups J∆Ŝz
nŜz

n+1+ J ′Ŝz
nŜz

n+2 =

Ŝz
n(J∆Ŝz

n+1 + J ′Ŝz
n+2). Since this reduces the number of states in the finite state machine, it

reduces the bond dimension of the MPO and ultimately leads to a higher efficiency.
An extreme case of such a grouping of terms is achieved when we add a transition from a state

to itself as shown in Fig. 2.15(d). Such a finite state machine naturally encodes exponentially
decaying interactions of the form∑

n

∑
m>0

Ânλ
m−1B̂n+m =

∑
n<m

Âne−|m−n |/ξ B̂m with λ = e−1/ξ, (2.52)

similar as exponentially decaying correlations are naturally encoded in an MPS. In fact, if
any other long-range interaction, for example with a power-law decay, should be included into
the model, it is often more effective to approximate it by as sum of exponentials up to a
desired precision, rather than to represent it exactly with a much higher bond dimension of the
MPO [150,151].

2.5.2 Towards two-dimensional systems: cylinders and ladders

There are two fundamentally different approaches for the simulation of 2D systems with tensor
networks. One approach is to generalize the concept of MPS to the higher-dimensional analog
of PEPS, as illustrated in Fig. 2.16 for the example of a square lattice [113, 114, 152]. In this
case, each tensor has four virtual bonds in addition to the physical leg. Like MPS, a PEPS
can serve as variational wave function to approximate ground states. There have already been
impressive and promising applications of PEPS, e.g., for the t-J model [153]. The big advantage
of the PEPS class is that it can represent states with an entanglement entropy satisfying an
area law — which we expect for the ground states of gapped, local Hamiltonians, see Sec. 2.1.
This can be seen from the fact that a bipartition into a left and right part requires to cut Ly

virtual bonds of the PEPS, as illustrated by the red dashed line in Fig. 2.16. However, using
PEPS in practice also comes with a big challenge: even the evaluation of expectation values
〈ψ | Â|ψ〉 requires a full contraction of the tensor network, which is in the #P complexity class
and thus very hard [154]. In contrast to MPS, cutting a single virtual bond does not divide
the PEPS into two halves, such that we can not directly associate the indices of a virtual bond
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to Schmidt states, as we did for the definition of the canonical form of an MPS in Eq. (2.15).
A generalization of the canonical form to PEPS was introduced in Ref. [144], but in this case
it does not simplify the evaluation of expectation values. Over the years, several algorithms
have been proposed to find PEPS representations of ground states and approximate, efficient
schemes for the evaluation of expectation values have been presented. The most common used
algorithms include the Corner Transfer Matrix Renormalization Group Method [115], Tensor
Renormalization Group (TRG) [116], Tensor Network Renormalization (TNR) [117], and loop
optimizations [118]. More recently, Ref. [155] suggested to restrict to a subset of the PEPS class
defined by certain isometry conditions; this provides a promising, new alternative to the more
established contraction schemes.
However, in this work we will focus on the second way to simulate a 2D system with tensor

networks: we simply map it to a 1D chain and use the well established techniques we have at
hand for 1D systems [156, 157]. In particular, we can cover the 2D system with a 1D MPS,
as illustrated in Fig. 2.16(b). The biggest challenge of this approach is that we are limited to
systems with a small width Ly in y-direction (although the length Lx in x-direction can be made
very large or even infinite). All the entanglement between the left and right part indicated by the
red dashed line in Fig. 2.16(b) needs to go through the virtual bond between sites 8 and 9. From
the area law, we expect an entanglement entropy S ∝ Ly , so we need to increase the MPS bond
dimension χmax ≥ eS exponentially with Ly to keep the error at a given precision. Depending
on the entanglement structure, choosing a different way how the MPS winds through the 2D
system can have a severe impact on the precision and computational cost. For example, if the
system is much more strongly coupled in x direction than in y direction, the winding shown in
Fig. 2.16(c) might be preferable [158]. Note that the MPO representing the Hamiltonian needs
to wind through the system in the same way as the MPS. Even just nearest neighbor couplings
then become long-range in the 1D chain of the MPS, consider for example the coupling from
site 1 to site 4 = 1 + Ly in Fig. 2.16(b), or even from 1 to 8 = 1 + (2Lx − 1) in Fig. 2.16(c). In
the former case, we can hence scale up the lenght Lx in x-direction for fixed, small Ly and even
take the thermodynamic limit Lx → ∞, whereas the increasing MPO bond dimensions due to
the additional long range couplings hinders us to do so in the latter case.
In many cases, periodic boundaries in y-direction reduce the finite size effects of the small

Ly , as we will for example see in Sec. 3.5. In this work, we refer to this case as “cylinders”,
while “ladders” refer to the case of open boundaries with Lx � Ly . Another advantage of
cylinder boundary conditions is that one can observe the response of the ground state when an
external flux is inserted to the cylinder, which can reveal the fractionalized nature of excitations,
see e.g., [159–161]. An important aspect to keep in mind both for ladders and cylinders with
Lx � Ly is the fact that the orientation of the lattice (i.e., in which direction the lattice is infinite)
can have a severe impact on the physics. This becomes most obvious if we consider the Brillouin
zone of infinite cylinders. Depending on the orientation of the lattice relative to the cylinder axis,
we get different lines of compatible momenta through the Brillouin zone. If we have gapless
points in the Brillouin zone, depending on whether those are covered by the lines of compatible
momenta, the effective 1D model can be critical or not, as for example seen in Ref. [162].

Finally, let us note that it is straightforward to implement fermionic models for MPS: we
simply use a Jordan-Wigner transformation, which maps the fermionic operators to spins [163],

n̂j ↔ (σ̂
z
j + 1)/2, ĉj ↔ (−1)

∑
l< j n̂l σ̂−j , ĉ†j ↔ (−1)

∑
l< j n̂l σ̂+j . (2.53)

The Jordan-Wigner strings are easiest chosen along the MPS, however it winds through a 2D
system, if desired. If we want to consider spin-full fermions, we can simply split the local Hilbert
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space into a product of spin-less fermionic degrees of freedom, one for each spin state of the
fermion, and perform the Jordan-Wigner transformation with Eq. (2.53) as before.

2.6 The Tensor Network Python (TeNPy) library

We now present the TeNPy program library [2]. The library aims for a good balance between its
two main design goals: On one hand, TeNPy should be accessible and easy to use for students
and researchers who have not yet performed simulations with tensor networks. On the other
hand, the provided algorithms should be highly efficient to allow an economic use of available
computational resources. Moreover, the library should be versatile and flexible enough such that
experts in the field of tensor network algorithms can quickly implement new variants of existing
algorithms, test out ideas for new algorithms, and share them with other researchers.
To support those goals, the library is mostly implemented in the Python programming lan-

guage, which is easy to learn for novices, and yet a very powerful high-level language with many
available tools to simplify and speed up the development [147]. The library is published as open
source code under the GNUGeneral Public License (version 3) to encourage the sharing of algo-
rithms between researchers8. For the goal of accessibility, we distribute small “toy codes” along
with the source code. Those toy codes are not meant to be used for the day-to-day research, but
to illustrate the very basic and necessary steps of the algorithms in just9 around 200 lines of code
per file. They accompany an extensive documentation, both directly inside the code on the level
of documentation strings for (almost) each function and class, as well as in the form of examples
and user guides explaining the interface of the various algorithms. While the documentation is
contained inside the source code, it is also made available online10. Moreover, we have set up a
question-and-answer forum11, which has already been accepted well by the community. One can
never guarantee that a software works as intended for all cases. Nevertheless, we can get some
confidence in that direction by employing automated tests with typical test cases comparing to
known results. In the case of TeNPy, those tests can be run with the pytest tool12. Any serious
bugs get reported as GitHub issues13, which are also used to streamline the further development.
Git is used as version control system14.
There are several layers of abstraction implemented in the TeNPy library, illustrated in

Fig. 2.17. While there is a certain hierarchy of how the concepts build up on each other,
the user can decide to utilize only some of them. A maximal flexibility is provided by an object
oriented style based on classes, which can be inherited and adjusted to individual demands.
The most basic layer is given by in the linalgmodule, which provides basic features of linear

algebra. In particular, the np_conserved submodule implements an Array class which is used
to represent the tensors. The basic interface of np_conserved is very similar to that of the
NumPy and SciPy libraries [147]. However, the Array class implements charge conservation
as outlined in Sec. 2.4. If no charges are to be used, one can use “trivial” arrays, as shown in the
following example code.

import tenpy.linalg.np_conserved as npc

8https://github.com/tenpy/tenpy
9This should be compared to the core files of TeNPy, which have more than 25000 lines (version 0.4.1).
10https://tenpy.github.io
11https://tenpy.johannes-hauschild.de
12https://pytest.org
13https://github.com/tenpy/tenpy/issues
14https://git-scm.org

https://github.com/tenpy/tenpy
https://tenpy.github.io
https://tenpy.johannes-hauschild.de
https://pytest.org
https://github.com/tenpy/tenpy/issues
https://git-scm.org
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Figure 2.17 Overview of the most important modules, classes and functions in TeNPy. Gray back-
grounds indicate (sub)modules, yellow backgrounds indicate classes. Red arrows indicate inheritance
relations, dashed black arrows indicate a direct use. (The individual models might be derived from the
NearestNeighborModel depending on the geometry of the lattice.) There is a clear hierarchy from
high-level algorithms in the algorithms module down to basic operations from linear algebra in the
linalg module.
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M = npc.Array.from_ndarray_trivial([[0., 1.],
[1., 0.]])

5 v = npc.Array.from_ndarray_trivial([2., 4. + 1.j])
v[0] = 3. # set indiviual entries like in numpy
print("|v> =", v.to_ndarray())
# |v> = [ 3.+0.j 4.+1.j]

10 M_v = npc.tensordot(M, v, axes=[1, 0])
print("M|v> =", M_v.to_ndarray())
# M|v> = [ 4.+1.j 3.+0.j]
print("<v|M|v> =", npc.inner(v.conj(), M_v))
# <v|M|v> = (24+0j)

Algorithm 2.1 Basic use of the Array class.

The number and types of symmetries are specified in a ChargeInfo class. An Array

instance represents a tensor satisfying the charge rule of Eq. (2.47) and internally stores only the
non-zero blocks of the tensor, along with one LegCharge instance for each leg, which contains
the charge values q and sign ζ (called qconj) for the leg. If we combine multiple legs into
a single larger “pipe” as explained in Sec. 2.4, the resulting leg will have be LegPipe, which
is derived from the LegCharge and stores all the information necessary to later split the pipe.
The following code explicitly defines the spin-1/2 Ŝ+, Ŝ− and Ŝz operators and uses them to
generate and diagonalize the two-site Hamiltonian of Eq. (2.44); it prints the charge vector q[a]

(by default sorted ascending) and the eigenvalues of H.

import tenpy.linalg.np_conserved as npc

# consider spin-1/2 with Sz-conservation
chinfo = npc.ChargeInfo([1]) # just a U(1) charge

5 # charges for up, down state
p_leg = npc.LegCharge.from_qflat(chinfo, [[1], [-1]])
Sz = npc.Array.from_ndarray([[0.5, 0.], [0., -0.5]],

[p_leg, p_leg.conj()])
Sp = npc.Array.from_ndarray([[0., 1.], [0., 0.]],

10 [p_leg, p_leg.conj()])
Sm = npc.Array.from_ndarray([[0., 0.], [1., 0.]],

[p_leg, p_leg.conj()])

Hxy = 0.5*(npc.outer(Sp, Sm) + npc.outer(Sm, Sp))
15 Hz = npc.outer(Sz, Sz)

H = Hxy + Hz
# here, H has 4 legs
H.iset_leg_labels(["s1", "t1", "s2", "t2"])
H = H.combine_legs([["s1", "s2"], ["t1", "t2"]], qconj=[+1, -1])

20 # here, H has 2 legs
print(H.legs[0].to_qflat().flatten())
# prints [-2 0 0 2]
E, U = npc.eigh(H) # diagonalize blocks individually
print(E)

25 # [ 0.25 -0.75 0.25 0.25]

Algorithm 2.2 Explicit definition of charges and spin-1/2 operators
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The next basic concept is that of a local Hilbert space, which is represented by a Site in
TeNPy. This class does not only label the local states and define the charge values q, but also
provides onsite operators. For example, the SpinHalfSite provides the Ŝ+, Ŝ−, Ŝz operators
under the names ’Sp’, ’Sm’, ’Sz’, defined as Array instances similarly as in Alg. 2.2.
Since the most common sites like for example the SpinSite (for general spin s), BosonSite
and FermionSite are predefined, a user of TeNPy usually does not need to define the local
charges and operators explicitly. The total Hilbert space, i.e, the tensor product of the local
Hilbert spaces, is then just given by a list of Site instances. If desired, different kinds of Site
can be combined in that list. This list is then given to classes representing tensor networks like
the MPS and MPO. The tensor network classes also use Array instances for the tensors of the
represented network. The following example illustrates the initialization of a spin-1/2 site, and
MPS representing the Neél state Eq. (2.10), and an MPO representing the Heisenberg model of
Eq. (2.34) by explicitly defining the W [n] tensor of Eq. (2.36).

from tenpy.networks.site import SpinHalfSite
from tenpy.networks.mps import MPS
from tenpy.networks.mpo import MPO

5 spin = SpinHalfSite(conserve="Sz")
print(spin.Sz.to_ndarray())
# [[ 0.5 0. ]
# [ 0. -0.5]]

10 N = 6 # number of sites
sites = [spin] * N # repeat entry of list N times
pstate = ["up", "down"] * (N // 2) # Neel state
psi = MPS.from_product_state(sites, pstate, bc="finite")
print("<Sz> =", psi.expectation_value("Sz"))

15 # <Sz> = [ 0.5 -0.5 0.5 -0.5]
print("<Sp_i Sm_j> =", psi.correlation_function("Sp", "Sm"),

sep="\n")
# <Sp_i Sm_j> =
# [[1. 0. 0. 0. 0. 0.]

20 # [0. 0. 0. 0. 0. 0.]
# [0. 0. 1. 0. 0. 0.]
# [0. 0. 0. 0. 0. 0.]
# [0. 0. 0. 0. 1. 0.]
# [0. 0. 0. 0. 0. 0.]]

25

# define an MPO
Id, Sp, Sm, Sz = spin.Id, spin.Sp, spin.Sm, spin.Sz
J, Delta, hz = 1., 1., 0.2

30 W_bulk = [[Id, Sp, Sm, Sz, -hz*Sz ],
[None, None, None, None, 0.5*J*Sm ],
[None, None, None, None, 0.5*J*Sp ],
[None, None, None, None, J*Delta*Sz],
[None, None, None, None, Id ]]

35 W_first = [W_bulk[0]] # first row
W_last = [[row[-1]] for row in W_bulk] # last column
Ws = [W_first] + [W_bulk] * (N-2) + [W_last]
H = MPO.from_grids([spin] * N, Ws, bc=’finite’, IdL=0, IdR=-1)
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print("<psi|H|psi> =", H.expectation_value(psi))
40 # <psi|H|psi> = -1.25

Algorithm 2.3 Initialization of sites, MPS, and MPO.

Technically, the explicit definition of an MPO is already enough to call an algorithm like
DMRG. However, writing down theW [n] tensors is cumbersome especially for more complicated
models. Hence, TeNPy provides another layer of abstraction for the definition of models,
which we discuss first. Different kinds of algorithms require different representations of the
Hamiltonian. Therefore, the library offers to specify the model abstractly by the individual
onsite terms and coupling terms of the Hamiltonian. The following example illustrates this.

from tenpy.networks.site import SpinSite
from tenpy.models.lattice import Chain
from tenpy.models.model import CouplingModel,

NearestNeighborModel, MPOModel
5

class XXZChain(CouplingModel, NearestNeighborModel, MPOModel):
def __init__(self, L=2, S=0.5, J=1., Delta=1., hz=0.):

spin = SpinSite(S=S, conserve="Sz")
# the lattice defines the geometry

10 lattice = Chain(L, spin, bc="open", bc_MPS="finite")
CouplingModel.__init__(self, lattice)
# add terms of the Hamiltonian
self.add_coupling(J*0.5, 0, "Sp", 0, "Sm", 1) # Sp_i Sm_{i+1}
self.add_coupling(J*0.5, 0, "Sp", 0, "Sm", -1) # Sp_i Sm_{i-1}

15 self.add_coupling(J*Delta, 0, "Sz", 0, "Sz", 1)
# (for site dependent prefactors, the strength can be an array)
self.add_onsite(-hz, 0, "Sz")

# finish initialization
20 # generate MPO for DMRG

MPOModel.__init__(self, lat, self.calc_H_MPO())
# generate H_bond for TEBD
NearestNeighborModel.__init__(self, lat, self.calc_H_bond())

Algorithm 2.4 Definition of a model: the XXZ chain of Eq. (2.34).

While this generates the same MPO as in Alg. 2.3, this example can easily adjusted and
generalized. Internally, the MPO is generated using the finite state machine picture discussed
in Sec. 2.5.1. This allows not only to translate more complicated Hamiltonians into their
corresponding MPOs, but also to automate the mapping from a higher dimensional lattice
to the 1D chain along which the MPS winds, as explained in Sec. 2.5.2. Recall that this
mapping introduces longer-range couplings, so the model can no longer be defined to be a
NearestNeighborModel suited for TEBD if another lattice than the Chain is to be used. Of
course, many commonly studied models are also predefined. For example, the following code
initializes the Heisenberg model on a kagome lattice; the spin liquid nature of the ground state
of this model is highly debated in the current literature [66, 162, 164–166].

from tenpy.models.spins import SpinModel

model_params = {
"S": 0.5, # Spin 1/2

5 "lattice": "Kagome",
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"bc_MPS": "infinite",
"bc_y": "cylinder",
"Ly": 2, # defines cylinder circumference
"conserve": "Sz", # use Sz conservation

10 "Jx": 1., "Jy": 1., "Jz": 1. # Heisenberg coupling
}
model = SpinModel(model_params)

Algorithm 2.5 Initialization of the Heisenberg model on a kagome lattice.

The highest level in TeNPy is given by algorithms like DMRG and TEBD. Using the previous
concepts, setting up a simulation running those algorithms is a matter of just a few lines of code.
The following example runs a DMRG simulation as explained in Sec. 2.2.5, exemplary for the
transverse field Ising model at the critical point. The "mixer" parameter enables the density
matrix perturbation of Ref. [101]; for a further description of (optional) parameters we refer to
the documentation [2].

from tenpy.networks.mps import MPS
from tenpy.models.tf_ising import TFIChain
from tenpy.algorithms import dmrg

5 N = 16 # number of sites
model = TFIChain({"L": N, "J": 1., "g": 1., "bc_MPS": "finite"})
sites = model.lat.mps_sites()
psi = MPS.from_product_state(sites, [’up’] * N, "finite")
dmrg_params = {"trunc_params": {"chi_max": 100, "svd_min": 1.e-10},

10 "mixer": True}
info = dmrg.run(psi, model, dmrg_params)
print("E =", info[’E’])
# E = -20.01638790048513
print("max. bond dimension =", max(psi.chi))

15 # max. bond dimension = 27

Algorithm 2.6 Call of DMRG.

The switch from DMRG to iDMRG in TeNPy is simply accomplished by a change of the
parameter "bc_MPS" from "finite" to "infinite", both for the model and the state. The
returned E is then the energy density per site. Due to the translation invariance, one can also
evaluate the correlation length as definined in Eq. (2.42), here slightly away from the critical
point.

from tenpy.networks.mps import MPS
from tenpy.models.tf_ising import TFIChain
from tenpy.algorithms import dmrg

5 N = 2 # number of sites in unit cell
model = TFIChain({"L": N, "J": 1., "g": 1.1, "bc_MPS": "infinite"})
sites = model.lat.mps_sites()
psi = MPS.from_product_state(sites, [’up’] * N, "infinite")
dmrg_params = {"trunc_params": {"chi_max": 100, "svd_min": 1.e-10},

10 "mixer": True}
info = dmrg.run(psi, model, dmrg_params)
print("E =", info[’E’])
# E = -1.342864022725017
print("max. bond dimension =", max(psi.chi))
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15 # max. bond dimension = 56
print("corr. length =", psi.correlation_length())
# corr. length = 4.915809146764157

Algorithm 2.7 Call of iDMRG.

Running TEBD requires an additional loop, during which the desired observables have to be
measured. The following code shows this directly for the infinite version of TEBD.
from tenpy.networks.mps import MPS
from tenpy.models.tf_ising import TFIChain

3 from tenpy.algorithms import tebd

model = TFIChain({"L": 2, "J": 1., "g": 1.0, "bc_MPS": "infinite"})
sites = model.lat.mps_sites() # list of sites => Hilbert space
psi = MPS.from_product_state(sites, ["up"] * 2, bc="infinite")

8 tebd_params = {"order": 4, # fourth order in dt
"dt": 0.05, # time step
"N_steps": 10, # repeat 10 steps by dt in each ‘run()‘
"trunc_params": {"chi_max": 100, "svd_min": 1.e-10}}

eng = tebd.Engine(psi, model, tebd_params)
13 for i in range(6):

t = eng.evolved_time
xi = psi.correlation_length()
print("t = {0:.2f}, corr. length = {1:.2f}".format(t, xi))
eng.run()

18 # t = 0.00, corr. length = 0.00
# t = 0.50, corr. length = 0.20
# t = 1.00, corr. length = 0.29
# t = 1.50, corr. length = 0.38
# t = 2.00, corr. length = 0.47

23 # t = 2.50, corr. length = 0.56

Algorithm 2.8 Call of TEBD.

2.7 Conclusion

In this chapter we combined a pedagogical review of MPS based algorithms for both finite and
infinite systems with the presentation of the open-source library TeNPy. While there exists
by now a huge arsenal of tensor-product state based algorithms, we focused here on the time
evolving block decimation (TEBD) [76] and the density-matrix renormalization group (DMRG)
method [68]. For both algorithms, we provided a basic introduction and showed how to call them
using the TeNPy package. While we did not cover PEPS-based methods for the simulation of 2D
systems, we discussed how the latter can be mapped to 1D systems in Sec. 2.5, such that MPS
based algorithms can be used. Moreover, we note that the tensor class implemented in TeNPy
allows for a fairly simple implementation of general tensor networks in higher dimensions as
well. In particular, the method of conserving abelian symmetries discussed in Sec. 2.4 directly
carries over to genuine 2D PEPS.
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3 Sudden expansion and domain-wall melting
of strongly interacting bosons in
two-dimensional optical lattices and on
multileg ladders

Most of the content of this chapter can also be found in a previous publication of the author [3].
Text and figures have been adjusted to fit into the context of the thesis.

Ultracold quantum gases are famous for the possibility of realizing many-body Hamiltonians
such as theHubbardmodel, the tunability of interaction strength, and, effectively, also dimension-
ality [56]. This provides access to genuine 1D and 2D physics as well as to the crossover physics
between these limiting cases. Moreover, time-dependent changes of various model parameters
can be used to explore the nonequilibriumdynamics ofmany-body systems (see [53–55] for recent
reviews). Timely topics that are investigated in experiments include the relaxation and thermal-
ization dynamics in quantum quenches [167–176], the realization of metastable states [87,177],
and nonequilibrium mass transport [178–180] and spin transport [181]. Due to the availability
of powerful analytical and numerical methods such as bosonization [182], exact solutions for
integrable systems [183], or the density matrix renormalization group method [68, 73, 121], a
direct comparison between theoretical and experimental results is often possible in the case of
1D systems [170,172,175,180].
Strongly interacting many-body systems in two spatial dimensions, however, pose many of the

open problems in condensed matter theory and many-body physics, concerning both equilibrium
and nonequilibrium properties. The reason is related to the lack of reliable numerical approaches.
Exact diagonalization, while supremelyflexible, is inherently restricted to small system sizes [19].
Nevertheless, smart constructions of truncated basis sets by selecting only states from subspaces
that are relevant for a given time-evolution problem have given access to a number of 2D
nonequilibrium problems (see, e.g., Ref. [184, 185]). The truncation of equation of motions for
operators provides an alternative approach [186], which has also been applied to quantum quench
problems in the 2D Fermi-Hubbard model [187]. QuantumMonte Carlo methods can be applied
to systems in arbitrary dimensions including nonequilibrium problems (see, e.g., [188–190]), but
suffer, for certain systems and parameter ranges, from the sign problem [191]. Dynamical mean-
field methods become accurate in higher dimensions, yet do not necessarily yield quantitatively
correct results in 2D [192].
Regarding analytical approaches, we mention just a few examples, including solutions of

the Boltzmann equation [178], flow equations [193], expansions in terms of the inverse co-
ordination number [194], semiclassical approaches [195, 196], or time-dependent mean-field
approaches [197–199] such as the time-dependent Gutzwiller ansatz (see, e.g., Ref. [78, 79]).
All these methods have provided valuable insights into aspects of the nonequilibrium dynamics
in two (or three) dimensions, yet often involve approximations. Recently, the application of a
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two-dimensional optical lattices and on multileg ladders

nonequilibrium Green’s function approach to the dynamics in the sudden expansion in the 2D
Fermi-Hubbard model has been explored [200].
As we discussed in Sec. 2.5.2, MPS-based methods face, in general, a disadvantageous scaling

with system size in 2D, yet there have been very impressive recent applications [157, 164, 165]
of the DMRG method to 2D systems. A relatively little-explored area of research is the time
evolution of 2D many-body systems in quantum quench problems using MPS-based algorithms
[109,110,201–203].
In this chapter, we present the application of a recently introduced algorithm [109] for the time

evolution of MPS, that is specifically tailored to deal with long-range interactions. As discussed
in Sec. 2.5.2, such long-range interactions arise by mapping even a short-range Hamiltonian on
a 2D lattice to a 1D chain.
Recent experiments have started to study the nonequilibrium dynamics of interacting quantum

gases in 2D lattices or in the 1D-to-2D crossover [178, 180, 204]. Motivated by Refs. [87, 180],
we study the sudden expansion of hard-core bosons which is the release of a trapped gas
into a homogeneous optical lattice after quenching the trapping potential to zero. The results of
Ref. [180] show that strongly interacting bosons in 2D exhibit a much slower expansion than their
1D counterpart. In the latter case, the integrability of hard core bosons leads to a strictly ballistic
and (for the specific initial conditions of Ref. [180]) fast expansion that is indistinguishable
from the one of noninteracting fermions and bosons. In the 2D case, it is believed that diffusive
dynamics sets in and virtually inhibits the expansion in the high-density region, leading to a stable
high-density core surrounded by ballistically expanding wings [180], similar to the behavior of
interacting fermions in 2D [178]. The characteristic feature of these diffusive-like expansions
in contrast to the ballistic case is the emergence of a spherically symmetric high-density core,
while the ballistic expansion unveils the topology of the underlying reciprocal lattice.
In our work, we investigate this problem for both 2D clusters that can expand symmetrically

in the x and y directions [see Fig. 3.1(a)] and wide cylinders and ladders [see Fig. 3.1(b)]. We
use the ratio of hopping matrix elements Jx and Jy along the x and y directions as a parameter
to study the 1D-to-2D crossover. For the 2D expansion in the isotropic case Jx = Jy , we clearly
observe the emergence of a spherically symmetric core, while for small values of Jy < Jx and
on the accessible time scales, the expansion is essentially 1D-like. We further compute the
expansion velocities derived from the time dependence of the radius as a function of Jy/Jx .
Since we are, in general, able to reach both longer times and larger particle numbers in the

case of ladders than in 2D, we present an extensive analysis of multi-leg ladders and cylinders
[i.e., ladders with periodic boundary conditions in the (narrow) y direction] with Ly = 2, 3, 4
legs [see the sketch in Fig. 3.1(b)]. From the analysis of the expansion in 1D systems [87],
we expect that the short-time dynamics is identical to the melting of so-called domain-wall
states [82, 205, 206], in which half of the system is empty while the other half contains one
particle per site in the initial state [see the sketch in Fig. 3.1(c)]. The domain-wall melting has
been attracting considerable attention as a nonequilibrium problem in 1D spin-1

2 systems (see,
e.g., [82, 205–211]). Our results show that this similarity between the expansion of clusters
and the domain-wall melting carries over to the transient dynamics on Ly-leg ladder systems,
irrespective of boundary conditions.
A considerable portion of the discussion in both theoretical and experimental papers has

focused on the question of whether there are signatures of diffusive dynamics in the sudden
expansion in 2D, in the dimensional crossover [178, 180], or on coupled chains [86]. The
analysis of the expansion of fermions in the 2D square lattice starting from an initial state
with two particles per site (i.e., a fermionic band insulator) suggests that diffusive dynamics
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Figure 3.1 Illustration of initial states and geometries: (a) central block for the 2D expansion; (b) central
block of size B × Ly; and (c) domain wall on a cylinder with Ly = 4 legs.

is responsible for the slow expansion in the high-density regions [178]. This is expected to
carry over to the bosonic case, yet there only two-leg ladders have been thoroughly studied. In
linear response, hard-core bosons on a two-leg ladder realize a textbook diffusive conductor at
high temperatures [212, 213], thus suggesting that diffusion may also play a role in the sudden
expansion [86]. Curiously, the expansion velocities measured numerically for hard-core bosons
on a two-leg ladder exhibit a dependence on Jy/Jx that resembles the experimental observations
for the true 2D case [86, 180]. Here we are able to provide a more refined picture. Our
analysis unveils that the sudden expansion becomes faster by going from two-leg to three- or
four-leg ladders. We trace this back to the existence of heavy excitations on the two-leg ladder
that are defined on a rung of the ladder and are inherited from the Jx � Jy limit, which
cannot propagate in first-order tunneling processes in Jx/Jy . Conversely, the three- and four-leg
ladders possess single-particle-like excitations, which we dub propagating modes, that have a
sufficiently low mass to become propagating. This picture provides an intuitive understanding
of the emergence of slow mass transport in the sudden expansion in the initial stages of the
time evolution, complementary to the discussion of diffusive versus ballistic dynamics. The
reasoning is similar to the role that doublons play for slowing down mass transport in the 1D
Bose-Hubbard model [86, 180, 214–216], which has also been emphasized in the case of the
Fermi-Hubbard model [217, 218]. Our results raise the question as to whether the expansion in
both directions in 2D and the one-directional expansion on wide ladders and cylinders will result
in the same dependence of expansion velocities on Jy/Jx for large Ly . It appears that the ladders
and cylinders, at least for small Ly , preserve some degree of one-dimensionality. A possible
scenario is that the expansion velocities in the x direction will depend non-monotonically on Ly

for a fixed value of Jy/Jx if ever they become identical to the behavior on the 2D systems. As a
caution, we stress that long expansion times may be necessary to fully probe the effect of a 2D
expansion at small Jy � Jx since the bare time scale for charge dynamics in the y direction is
set by 1/Jy , as pointed out in [219].

Apart from the nonequilibrium mass transport of strongly interacting bosons, there are also
predictions for the emergence of nonequilibrium condensates at finite quasimomenta in the
sudden expansion in a 2D square lattice. These predictions are based on exact diagonalization
for narrow stripes [77], as well as on the time-dependent Gutzwiller method [78, 79]. The
dynamical condensation phenomenon has first been discussed for 1D systems (where it actually
is a quasicondensation [80]), where it was firmly established from exact numerical results [80,81]
and analytical solutions [82] (see also [83–86]) and has recently been observed in an experiment
[87]. In the sudden expansion of hard-core bosons in 1D, the dynamical quasicondensation is
a transient, yet long-lived phenomenon [80, 86] as ultimately the quasimomentum distribution
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function of the physical particles approaches the one of the underlying noninteracting fermions
via the dynamical fermionization mechanism [88,89].
It is therefore an exciting question whether a true nonequilibrium condensate can be generated

in 2D. Our results cannot fully clarify this point, yet we do observe a bunching of particles
at certain nonzero momenta in the quasimomentum distribution after releasing the particles
whenever propagating modes as discussed above are present. For the melting of domain walls,
the occupation of most of these modes, at which a nonequilibrium condensation is allowed by
energy conservation and at which a bunching occurs, saturates at long expansion times. The
notable exception are certain modes on the Ly = 4 cylinder. This behavior, i.e., the saturation
is markedly different from the 1D case of hard-core bosons in the domain-wall melting, where
the occupation continuously increases. The reason for this increase is that the semi-infinite,
initially filled half of the system will indefinitely feed the quasicondensates [82, 87]. As such
an increase is a necessary condition for condensation, we interpret the saturation of occupations
as an indication that either breaking the integrability of strictly 1D hard-core bosons or the
larger phase space for scattering in 2D inhibits the dynamical condensation of expanding clouds.
However, even in those cases on the ladder, in which we do not see a saturation, the increase is
slower than the true 1D case, suggesting that coupling chains, in general, disfavors condensation.
Yet a decisive analysis of this problem will require access to larger particle numbers and times in
numerical simulations or future experiments. Note that multi-leg ladder systems can be readily
realized with optical lattices, using either superlattices [220] or the more recent approach of
using a synthetic lattice dimension [221–223]. Using a synthetic lattice dimension [221], it is
in principle possible to obtain cylinders, i.e., periodic boundary conditions along the (narrow)
y-direction.
The plan of this chapter is the following. In Sec. 3.1, we introduce the model and definitions.

Section 3.2 provides a discussion and definitions for various measures of expansion velocities
employed throughout our work, while Sec. 3.3 provides details on our numerical method. We
present our results for the 2D case in Sec. 3.4, while the results for multi-leg ladders and cylinders
are contained in Sec. 3.5. We conclude with a summary presented in Sec. 3.6

3.1 Model and initial conditions

We consider hard-core bosons on a square lattice and on multi-leg ladders. The Hamiltonian
reads

H = −
∑
rx,ry

[Jx(â†rx,ry ârx+a,ry + h.c.) + Jy(â†rx,ry ârx,ry+a + h.c.)] . (3.1)

Here â†rx,ry denotes the creation operator on site ®r = (rx, ry) = (x a, y a), and Jx(Jy) are the
hopping matrix elements in the x(y) direction. We choose the hopping matrix element Jx in the
x direction and the lattice constant a as units and set ~ to unity; the ratio Jy/Jx is dimensionless.
Note that the Hamiltonian is equivalent to the spin- 1

2 X X model. In 1D (Jy = 0), the Jordan-
Wigner transformation maps the bosons to free fermions [224]. Lx and Ly denote the number of
sites in the x and y direction, respectively.
We consider different geometries, namely (i) a small square-shaped cluster of Lx = Ly = 12

sites with open boundary conditions (OBC) in both directions, (ii) ladders with Lx = 60,
Ly ∈ {2, 3, 4} with OBC in both the x- and y-direction, and (iii) cylinders with Lx = 60,
Ly ∈ {2, 3, 4} with periodic boundary conditions (PBC) in the y direction and OBC in the x
direction. For two-leg ladders, the only difference between the Hamiltonian with OBC and PBC
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along the y direction is thus a factor of two in the tunneling matrix element Jy . In pratice, we
obtain the behavior with PBC by just taking the OBC data with Jy → Jy/2.

For all simulations, we start the expansion from a product state,

|ψ0〉 =
∏
®r ∈B

â†rx,ry |vac〉 , (3.2)

in real space. To model the fully 2D expansion, we choose B to be a square-shaped block of
B × B sites centered in the cluster; see Fig. 3.1(a). On cylinders and ladders, we study two
different types of B: (i) a block of B × Ly bosons, centered in the x direction and filling all the
sites in the y direction as shown in Fig. 3.1(b), and (ii) a domain wall, where the left half of the
lattice is occupied by a block of Lx/2 × Ly bosons while the right half is empty; see Fig. 3.1(c).

3.2 Definitions of expansion velocities

There are several possible ways of defining the spatial extension of an expanding cloud and thus
also several different velocities.

3.2.1 Position of the fastest wave front

One can define the cloud size from its maximum extension, i.e., from the position of the (fastest)
wave front. The velocity derived from this approach will typically simply be the fastest possible
group velocity (provided the corresponding quasimomentum is occupied in the initial state).
Thus, this velocity will not contain information about the slower-moving particles and any
emergent slow and possibly diffusive dynamics in the core region. We do not study the wave
front in this work.

3.2.2 Radial velocity

Theoretically, it is natural to define the radius R as the square root of the second moment of
the particle distribution nrx,ry (t) = 〈n̂rx,ry (t)〉. Suppose we are interested in the expansion in x
direction: We average the density profile over the y direction to calculate the radius

R2
x(t) =

1
N

∑
rx,ry

nrx,ry (t)(rx − r0
x)

2, (3.3)

where r0
x is the center of mass in the x direction and N is the total number of bosons. An

analogous expression is used to define R2
y(t). To get rid of an initial constant part, we use

R̃2
µ(t) = R2

µ(t) − R2
µ(t = 0) to define the radial velocity

vR,µ =
∂ R̃µ(t)
∂t

(3.4)

with µ = x, y. The corresponding velocity has contributions from all occupied quasimomenta. It
will ultimately be dominated by the fastest expanding particles, and for the sudden expansion, Rµ
will be linear in time in the limit inwhich the gas has become dilute and effectively noninteracting.
The radial expansion velocity of 1D systems was studied for the Fermi-Hubbard model [225],

the Bose-Hubbard model [86,180], and the Lieb-Liniger model [226]. For Bethe-integrable 1D
systems, it can be related to distributions of rapidities [227]. For a recent study of the radial
velocity in the 2D Fermi-Hubbard model, see [200].
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3.2.3 Core expansion velocity

In the related experiments with ultracold atoms [178, 180], the focus was on the core expansion
velocity that is derived from the time evolution of the half width at half maximum Rc(t). The
reason is that in these experiments, an average over many 1D or 2D systems is measured.
Moreover, the core expansion velocity is primarily sensitive to the dynamics in the high-density
core (but insensitive to the ballistic tails) and thus yields slightly different information. In case
of multiple local maxima, the two outermost points are taken. Since in our simulations we
have smaller particle numbers compared to the experiments [178, 180], we use linear splines to
interpolate the density profile between the lattice sites in order to get values for Rc(t) to a better
accuracy than just a single lattice constant. The core expansion velocity is defined as the time
derivative

vc =
∂Rc(t)
∂t

. (3.5)

The full time dependence of Rc and the extraction of vc will be discussed in Sec. 3.5.4.

3.3 Numerical method

Although the Hamiltonian Eq. (3.1) itself is short ranged, long-range interactions arise by
mapping the 2D lattice to a 1D chain along which the MPS can wind, see Sec. 2.5.2. The
presence of such long-range interactions renders most of the existing MPS-based algorithms for
the time evolution like TEBD [73,76,107,108] inefficient because a direct Trotter decomposition
of the exponential is not possible. In our work, we use a recently developed extension [109],
which provides a direct way to exponentiate an MPO. The actual time evolution can then be
performed using standard algorithms that apply an MPO to a given MPS [73]. An advantage of
the method is that it can be easily implemented into an existing MPS based DMRG code and has
a constant error per site.
For our simulations, we choose the MPS to wind first along the y direction in order to

keep the range of the interactions as small as possible (namely Ly). Sources of errors are
the discretization in time and the discarded weight per truncation of the MPSs after each time
step. The time steps are chosen small enough to make the error resulting from the second-order
expansion negligible. We furthermore choose the truncation error at each step to be smaller
than 10−10, which is sufficient to obtain all measured observables accurately. The growth of
the entanglement entropy following the quench requires increasing the bond dimension χ with
time. Conversely, since we restrict the number of states to χ . 2000, we are naturally limited
to a finite maximum time tm at which the truncation error becomes significant. Note that the
bond dimension χ required for the simulations grows exponentially with time. Increasing the
particle numbers and Ly leads to a faster growth of the entanglement entropy and thus to a shorter
maximal time tm. However, we stress that we clearly reach longer times and larger systems than
is accessible with exact diagonalization (i.e., pure state propagation using, e.g., Krylov subspace
methods).

3.4 Two-dimensional expansion

3.4.1 Density profiles

We first characterize the expansion by analyzing the time- and position-resolved density profile
nrx,ry (t) = 〈n̂rx,ry (t)〉, where n̂rx,ry = â†rx,ry ârx,ry is the number operator. We present exemplary
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Figure 3.2 Density profiles for the 2D expansion from a 4×4 cluster with (a)–(c) Jy/Jx = 0.2 and (d)–(f)
Jy/Jx = 1.0 at times t Jx = 0.0, 1.0, 1.5.

density profiles for three different times and two anisotropies Jy/Jx ∈ {0.2, 1} in Fig. 3.2. For
small Jy/Jx = 0.2 [Figs. 3.2(a)–(c)], there is a fast expansion in the x direction and nearly no
expansion in the y direction. This is expected since the bare timescale for the expansion in the y
direction set by 1/Jy is here much larger than the one in the x direction [219]. On the other hand,
for Jy = Jx , we find four “beams” of faster expanding particles going out along the diagonals.
These beams are even more pronounced for initial states with smaller clusters of 2 × 2 and 3 × 3
bosons (not shown here).
The most important qualitative difference between the density profiles at Jy/Jx = 0.2 and

Jy/Jx = 1 is the shape. In the former case, the profiles retain a rectangular form, reflecting
the underlying reciprocal lattice and the different bare tunneling times in the x versus the y

direction. For the isotropic case, the initial square shape of the cluster changes into a spherically
symmetrical form in the high-density region. This observation is consistentwith the experimental
results of [180].

3.4.2 Radial velocity

In order to compare the expansion for different values of Jy/Jx more quantitatively, we extract
certain integrated quantities from the profiles, which contain relevant information. One such
quantity is the radial velocity vr,x/y derived from the reduced radius R̃x/y , see Eq. (3.3). We
extract the velocity with a linear fit R̃(t) = vR · t + const in the regime 1.0 J−1

x ≤ t ≤ 1.5 J−1
x .

The full time dependence of R̃ (and hence vR) will be discussed in Sec. 3.5.4 for the example of
the cylinders and ladders.
The radial velocities vR,x and vR,y for the 2D expansion are shown in Fig. 3.3. Unfortunately,

our simulations for the 2D lattice are restricted to both very short times and small numbers
of bosons with block sizes B ∈ {2, 3, 4}. For instance, for 4 × 4 bosons we reach only times
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Figure 3.3 Radial velocity in the x direction vR,x/y (top three solid lines) and the y direction vR,y
(dashed lines) for the 2D expansion from B × B clusters. The small green triangles show the result of an
extrapolation to B = ∞ using Eq. (3.6).

tm ≈ 1.5 J−1
x . The short times prevent us from a reliable extraction of the core expansion velocity,

which would allow for a direct comparison to the experiment [178, 180]. The experimental
results [180] suggest that, for increasing Jy , the core expansion velocity in the x direction
decreases dramatically (see Fig. 3.9), which has been attributed to the breaking of integrability
of 1D hard-core bosons [86, 180].

Our results for the radial velocity show that for the smallest block size B = 2, tuning Jy/Jx
from 0 to 1 changes the velocity vR,x only gradually while the velocity in the y direction scales
almost linearly with Jy . A previous study of the expansion of two-leg ladders also indicated
that the core expansion velocity exhibits a much stronger dependence on Jy/Jx than the radial
expansion velocity [86]. We suspect that this weak dependence may additionally result from
the small number of bosons considered in our simulations: Increasing Jy allows a hopping in
the y direction, which reduces the density and thus the effective interaction. In other words,
tuning Jy/Jx from 0 to 1 increases the effective surface of the initial block to include the upper
and lower boundaries. From the surface, there is always a fraction of the bosons that escape
and which effectively do not experience the hard-core interaction. This effect becomes more
relevant for smaller boson numbers, where the bosons are almost immediately dilute, feel no
effective interaction, and, thus, expand (nearly) ballistically in both directions. For larger block
sizes B = 3, 4, the ratio of surface to bulk is smaller and, therefore, interaction effects become
more relevant. Indeed, we find for B = 3, 4 that tuning Jy/Jx from 0 to 1 leads to a significant
reduction of vr,x , most pronounced for B = 4.

Even though we have access to only three values of B, it is noteworthy that for all values of
Jy/Jx , vR,µ decreases monotonically with B and thus with total particle number. This tendency
is compatible with the behavior of the experiments [180] performed with much larger boson
numbers, which motivates us to perform an extrapolation to B = ∞ despite the small number
of bosons. We assume that the finite-size dependence is dominated by the surface effects of the
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Figure 3.4 Momentum distribution function nkx,ky (dimensionless) for the 2D expanding cloud of 4 × 4
bosons at time t = 1.5 J−1

x . The solid white lines show the solutions to Eq. (3.8).

initial boundary, which scales with B. Therefore, we extract the velocity for B = ∞ from a fit to
the form

vr,x/y(B) = vr,x/y(B = ∞) +
const

B
(3.6)

at fixed Jy/Jx . The resulting values, which are indicated by the small green symbols in Fig. 3.3,
should only be considered as rough estimates.

3.4.3 Momentum distribution function

Figure 3.4 shows the momentum distribution function

nkx,ky =
1

LxLy

∑
rx,ry,r

′
x,r
′
y

e−i(kx (rx−r′x )+ky (ry−r′y )) 〈â†rx,ry â
r′x,r

′
y
〉 (3.7)

for the 2D expansion. For a purely 1D expansion (Jy = 0), dynamical quasicondensation
occurs at kx = ± π

2a [80, 81, 87]. As discussed in Refs. [77, 78], energy conservation restricts
the (quasi)condensation to momenta at which the single-particle dispersion relation ε(kx, ky)
vanishes since the initial state has zero energy, resulting in the emission of bosons with, on
average, zero energy per particle. For a 2D system, this leads to

ε(kx, ky) = −2Jx cos(kxa) − 2Jy cos(kya) = 0. (3.8)

The solutions of this equation are indicated by the solid green lines in Fig. 3.4. We indeed observe
an accumulation of particles atmomenta compatiblewith Eq. (3.8). For Jy/Jx = 0.2 [Fig. 3.4(a)],
there is almost the same weight at any momentum ky compatible with Eq. (3.8). We suspect that
this is a relict of the short time t = 1.5 J−1

x = 0.3 J−1
y reached in the simulations: Up to this time

there was almost no expansion in the y direction; thus, we have roughly 〈â†rx,ry âjx, jy
〉 ≈ δry, jy

such that nkx,ky is initially independent of ky . Nevertheless, closer inspection shows slightly
more weight at compatible momenta with ky = ± π

2a than at those with ky = 0 even for small Jy
[see Fig. 3.4(a)]. This becomes much more pronounced for Jy = Jx [see Fig. 3.4(c)]. In this
case, the strongest peaks are at (kx, ky) = (± π

2a,±
π

2a ), (±
π

2a,∓
π

2a ). These four points correspond
to the maximum group velocities v(kx, ky) = (2Jxa sin(kxa), 2Jya sin(kya)) and, in real space,
manifest themselves via the four “beams” in the density profile shown in Fig. 3.2(f).
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Figure 3.5 Integrated density profiles 1
Ly

∑
ry nrx,ry (t) (dimensionless) for the expansion from a 6 × 3

cluster on a cylinder with Ly = 3. The white dashed lines show the location of the half maximum on the
left and right.

Our results do not serve to clarify whether there actually is a dynamical condensation at finite
momenta in 2D or not since our initial clusters have too few particles in the bulk compared to their
surface. The fast ballistic propagation of the particles melting away from the surface will only
be suppressed once the majority of particles is in the bulk initially. If we attribute the outermost
particles to the surface, this would require us to be able to simulate at least 7 × 7 clusters. We
believe that the accumulation at finite momenta seen in the quasimomentum distribution function
is due to these fast particles melting away from the boundary during the first tunneling time.
Moreover, we would need to be able to study the particle-number dependence of the height of the
maxima in the quasimomentum distribution function or the decay of single-particle correlations
over sufficiently long distances [80].

3.5 Cylinders and ladders

In contrast to the 2D lattice, the ratio of surface to bulk is much lower for cylinders and ladders,
as we initialize the system uniformly in the y direction. Moreover, if we tune Jy from 0 to 1,
the additional hopping in the y direction does not lower the density (and with it the effective
interaction), as it is the case for the fully 2D expansion. We thus expect a weaker dependence of
the results on the number of bosons. Additionally, we can reach larger times than for the fully 2D
expansion since the range of hopping terms after mapping to the MPS chain is smaller. While
we can reach times up to tm ≈ 6 J−1

x for Ly = 2, we are restricted to times up to tm ≈ 4 J−1
x for

Ly = 3 and tm ≈ 3 J−1
x for Ly = 4.
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Figure 3.6 Illustration of the time regimes for the expansion of blocks (see the text in Sec. 3.5.1 for
details).

3.5.1 Density profile

Figure 3.5 shows some typical results for the column density for the expansion of a block on
a cylinder with Ly = 3. We identify three different time regimes for the expansion of blocks,
schematically depicted in Fig. 3.6. First, the evolution during the first tunneling time t1 ∝ 1/Jx
is independent of Jy: Since we initialize our system uniformly in y direction, in the initial
longitudinal hopping, there cannot be any dependence on Jy and a finite amount of time is
required before correlations in the y direction can build up.

Then, in a transient regime 0 < t2 (where t2 > t1), the melting of the block from either side
is equivalent to the domain-wall melting [87, 206] (compare the sketch in Fig. 3.1). From the
two boundaries, two “light cones” emerge, consisting of particles outside and holes inside the
block. Both particles and holes have a maximum speed of vm = 2 Jxa. Consequently, the time
t2 B B/4Jx is the earliest possible time at which the melting arrives at the center, such that the
density drops below one on all sites. Thus, t2 marks the point in time at which density profiles
obtained from blocks start to differ quantitatively from those of domain walls, defining the third
time regime. In the case of a ballistic expansion realized for Jy � Jx , the density in the center
drops strongly at t2 and we can clearly identify two outgoing “jets” as two separating maxima in
the density profiles; see Fig. 3.5(a). To be clear, the expectation for the nature of mass transport
in a nonintegrable model such as coupled systems of 1D hard-core bosons is diffusion, sustained
by numerical studies [212]. However, in the sudden expansion, the whole cloud expands and it is
conceivable that the expansion appears to be ballistic because the cloud becomes dilute too fast,
resulting in mean-free paths being on the order of or larger than the cloud size at any time [86].
On the other hand, for larger Jy the block in the center does not split at t2, but a region with a

high density (“core”) remains in the center. The high-density core is clearly established already
at intermediate Jy/Jx = 0.5, where it still expands slowly. For larger Jy , the spreading of this
core is continuously suppressed.

3.5.2 Integrated current

In order to investigate the different time regimes further, we consider the number of bosons
∆N(t) that at a time t have left the block B where they were initialized. This is equivalent to the
particle current J x

rx
= iJx

∑
ry 〈â

†
rx+a,ry

ârx,ry − â†rx,ry ârx+a,ry 〉 integrated over time and along
the boundary ∂B of the block,

∆N(t) =
∑
i<B

nrx,ry (t) =
∫ t

0
ds

[
J x
br
(s) − J x

bl
(s)

]
. (3.9)

Here br and bl denote the right and left indices rx of the boundary of the initially centered block
B. We compare ∆N for the expansion on a two-leg ladder starting from either central blocks or
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Figure 3.7 Comparison of ∆N/|∂B| (a) on a two-leg ladder for the expansion from central blocks
(dashed/dotted lines, B × 2 bosons) versus the melting of a domain wall (solid lines). The lower panels
compare domain walls on ladders (dashed lines) to domain walls on cylinders (solid lines) for (b) Ly = 3
and (c) Ly = 4. The curves for the Ly = 4 cylinder in (c) with Jy/Jx = 1, 2 are nearly on top of each other
for t & 1.5 J−1

x .

domain walls in Fig. 3.7(a). To this end we normalize ∆N by the boundary length |∂B|, which
is simply 2Ly a for the central blocks and Ly a for the domain walls.
For short times t . 0.5 J−1

x (i.e., t . t1, see the above), all curves in Fig. 3.7 are independent
of Jy . For the quantity ∆N , the first deviations between domain walls and cylinders do not occur
at t2 but at 2t2 = B/2Jx , which is exactly the time the fastest holes need to travel once completely
through the block: By definition, ∆N is not sensitive to the density inside the initial block. For
the expansion of central blocks, particle conservation gives a strict bound ∆N/|∂B| ≤ B/2a, in
which case all the bosons have left the initial block. These bounds (equal to 1.5 a−1 and 3 a−1 for
B = 3 and B = 6, respectively) are approached in the long-time limit of the ballistic expansion
for small Jy/Jx = 0.2, which for B = 6, however, happens beyond the times reached in our
simulations. For the domain walls, ∆N is not bounded (as long as the melting does not reach
the boundary of the system) and grows for small Jy/Jx as ∆N ∝ t linearly in time, which, via
Eq. (3.9), corresponds to a nondecaying current jx . On the other hand, ∆N gets almost constant
for large Jy/Jx for both the domain walls and the blocks. This indicates that the expansion
is strongly suppressed on the two-leg ladder, with a high-density core remaining in the center.
We speculate that the regime in which ∆N increases only very slowly is indicative of diffusive
dynamics, by similarity with [178].

3.5.3 Propagating modes: Limit of large Jy � Jx

In order to qualitatively understand the suppression of the expansion for certain geometries and
specific values of Ly , it is very instructive to consider the limit of large Jy � Jx . TheHamiltonian
in Eq. (3.1) can be split up into two parts according to H = Hy + Hx =

∑
rx (H

y
rx + Hx

rx,rx+a
),

where

Hy
rx = −Jy

∑
ry

(â†rx,ry ârx,ry+a + h.c.) (3.10)
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collects the hopping terms within the rung rx (we denote sites with the same index rx as a “rung”
for both ladders and cylinders), and Hx

rx,rx+a
is proportional to Jx and collects the hopping terms

in the x direction between neighboring rungs.
The following analysis is based on a diagonalization of Hy =

∑
rx Hy

rx , which is a block-
diagonal product of terms operating on single rungs. We view the eigenstates of single rungs as
“modes,” which can be delocalized by Hx . Since a coherent movement of multiple bosons is a
higher-order process of Hx and thus generally suppressed for large Jy/Jx , we focus on modes
with a single particle on a rung. We then look for modes which are candidates for a propagation
at finite kx . Importantly, the kinetic energy Ex ∝ Jx cannot compensate for a finite Ey ∝ Jy for
Jy � Jx . Since we initialize the system in states with zero total energy, energy conservation
allows only modes with Ey = 0 to contribute to the expansion in first-order processes in Jx/Jy
in time. In general, one could also imagine to create pairs of two separate bosons with exactly
opposite Ey , summing up to 0. Yet, as we will see, Hx cannot create such pairs.

For smaller Jy , the scaling argument of the energy conservation does not hold and additional
modes (beginning with those of small energy Ey) can be used for the propagation in the x
direction; ultimately, for Jy � Jx any mode contributes to the expansion already at short times.
We note that modes with strictly Ey = 0 are either present or absent at any value of Jy/Jx .
Whether propagating modes with Ey = 0 exist or not depends not only on Ly but also on the
boundary conditions in the y direction. This can serve as a test for our reasoning.

Two-leg ladder

In the following we give an explicit expression for Hx
rx,rx+a

on a two-leg ladder in terms of the
eigenstates of Hy

rx and Hy
rx+a

. We denote the four eigenstates of Hy
rx on rung rx as

|0〉 = |vac〉 , |1+〉 =
â†
rx,1 + â†

rx,2
√

2
|vac〉 ,

|2〉 = â†
rx,2â†

rx,1 |vac〉 , |1−〉 =
â†
rx,1 − â†

rx,2
√

2
|vac〉 , (3.11)

where |vac〉 denotes the vacuum on rung rx . The corresponding eigenenergies Ey of Hy
rx are

listed in Tab. 3.1. We then express ârx,ry and â†rx,ry in terms of these eigenstates, plug them into
Hx
rx,rx+a

and obtain:

−Hx
rx,rx+a

/Jx =
(
|0; 1+〉 〈1+; 0| + |0; 1−〉 〈1−; 0| + h.c.

)
+

(
|2; 1+〉 〈1+; 2| + |2; 1−〉 〈1−; 2| + h.c.

)
+

(
|1+; 1+〉 〈0; 2| − |1−; 1−〉 〈0; 2| + h.c.

)
+

(
|1+; 1+〉 〈2; 0| − |1−; 1−〉 〈2; 0| + h.c.

)
.

(3.12)

Here, |α; β〉 ≡ |α〉 ⊗ |β〉 with α, β ∈ {0, 1+, 1−, 2} denotes the tensorproduct of the eigenstates on
rungs rx and rx + a. The terms in the first two lines of Eq. (3.12) correspond to just an exchange
of the eigenstates α ↔ β between the neighboring sites. Thus we can identify the terms of the
first line to drive the propagation of single bosons on top of the vacuum. The second line can
be seen as the propagation of a particle on top of a one-particle background, or alternatively, a
single hole in the background of filled rungs.
In contrast to the terms of the first two lines, the terms in the third and fourth row of Eq. (3.12)

mix different eigenstates. If we imagine to start from a domain wall |. . . ; 2; 2; 0; 0; . . .〉, those
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Ly = 2 ladder
N ky [ πa ] Ey [Jy] state
0 0 0 |0〉
1 0 -1 |1+〉

1 1 |1−〉
2 0 0 |2〉

Ly = 4 cylinder
N ky [ πa ] Ey [Jy]

0; 4 0 0
1; 3 0 -2

0.5 0
-0.5 0
1 2

2 0 -2.828
0.5 0
-0.5 0
1 0
1 0
0 2.828

Ly = 4 ladder
N Ey [Jy]

0; 4 0
1; 3 -1.618

-0.618
0.618
1.618

2 -2.236
-1
0
0
1

2.236

Table 3.1 Eigenenergies of a single rung. For a given particle number, degenerate levels are listed by
their multiplicity.

are the terms which “create” the single particle modes |1±〉 at the border of the domain wall.
Subsequently, we would imagine these modes to propagate away to the left as single-hole modes
and to the right as single-boson modes. Yet, for the two-leg ladder all these mixing terms change
the total energy Ey from 0 to either +2Jy or −2Jy . Thus, the creation is only possible via higher-
order processes, which are suppressed with increasing Jy/Jx . A term such as |1+; 1−〉 〈2; 0|
would not change the total energy Ey , but such a term is not present in Eq. (3.12) due to the
conservation of total momentum ky: it would change from ky = 0 + 0 to ky = 0 + π

a .
To summarize, we argue that the Ly = 2 ladder is special as it possesses the two extremal

modes ky = 0 and π with large energies Ey = ±Jy for one particle on a rung. Precisely this lack
of modes with Ey = 0 leads to the suppression of the expansion with increasing Jy/Jx due to
energy conservation. It is manifest in Fig. 3.7(a) by the fact that ∆N gets almost constant. Note
that energy conservation for large Jy � Jx does not suppress the propagation of the modes |1±〉
in the vacuum, but the creation of these modes at the edges of the initial blocks or a domain
wall. We can view the expansion to be inhibited by the existence of heavy objects (particles
of a large effective mass) that can propagate only via higher-order processes. This is similar to
the reduction of expansion velocities due to doublons in the strongly interacting regime of the
1D Bose-Hubbard model [86, 177, 180, 215, 216]. Another effect with very similar physics is
self-trapping (see, e.g., [79, 228, 229]).

Larger cylinders and ladders

We turn now to the cylinder and the ladder with Ly = 4. The eigenenergies of Hy
rx on a single

rung are listed in Tab. 3.1. Giving an explicit expression for Hx
rx,rx+a

on an Ly = 4 cylinder
or ladder is not possible here, since it contains too many terms. Nevertheless, we examine its
structure. Similar to that for the two-leg ladder, we can distinguish between terms which just
exchange the eigenstates of neighboring rungs and terms which mix them. As on the two-leg
ladder, we associate the exchange terms with the propagation of modes. Since Hx contains only
single-particle hopping, the exchange terms appear only between eigenstates with N and N + 1
bosons on neighboring rungs. Thus, to first order in Jx/Jy , a mode of N bosons can propagate
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“freely” only in a background of N ± 1 bosons per rung. By definition, all these exchange terms
do not change the total energy Ey .

For the mixing terms, there is no restriction on the initial particle numbers on the neighboring
rungs. However, Hx

rx,rx+a
obviously preserves the total number of particles, thus there are only

mixing terms for |. . . N, N ′ . . .〉 ↔ |. . . N ± 1; N ′ ∓ 1 . . .〉. The initial melting of the edge thus
happens via a cascade of subsequent mixing processes. For example, consider

|. . . 4; 4; 0; 0 . . .〉 → |. . . 4; 3; 1; 0 . . .〉 → |. . . 4; 2; 2; 0 . . .〉
→ |. . . 3; 3; 2; 0 . . .〉 → |. . . 3; 3; 1; 1 . . .〉 . (3.13)

On the cylinder there are states with Ey = 0 for any number of bosons per rung (see Tab. 3.1).
This makes it plausible that cascades like (3.13) are possible without changing Ey on the single
rungs. Indeed, we find the corresponding terms in the expression for Hx

rx,rx+a
(not given here).

The initial edge of a block or domain wall can thus gradually melt into states with one particle
per rung while preserving the energy Ey . This will be confirmed later by a strong peak in the
momentum distribution function depicted in Fig. 3.10(f). These additional ky = ± π

2a modes
with Ey = 0, which are not present in the two-leg ladder, explain thus the trend of a faster
expansion.
On the other hand, on the four-leg ladder, there are no states with Ey = 0 for one or three

bosons on a rung. It is thus immediately clear that there can be no mixing terms which preserve
Ey on every rung separately. Moreover, we find that there are also no mixing terms which create
modes with opposite energy starting from Ey = 0 on both rungs. As a consequence, the domain
wall melting on the four-leg ladder requires higher-order processes, similar to the two-leg ladder.
However, the necessary intermediate energies Ey = ±0.613×2Jy are smaller than for the two-leg
ladder, such that these higher-order processes are more likely.
We compare ∆N for the cylinder and ladder geometry directly in Fig. 3.7(b,c). For small

Jy/Jx = 0.2, the additional coupling of the cylinders compared to the ladders has (at least on
the time scales accessible to us) nearly no influence. Yet, for large Jy/Jx , we find not only a
quantitative but even a qualitative difference: For the Ly = 4 cylinders, ∆N increases linearly in
time, irrespective of how large Jy/Jx is. Moreover, the slope is (at t & 1.5 J−1

x ) roughly the same
for all Jy/Jx & 0.5 and does almost not decrease with time. Using Eq. (3.9), we can relate this
to the presence of a non-decaying current, which we explain in terms of an enhanced occupation
at momenta compatible with Ey = 0. In contrast, on the four-leg ladder there are no propagating
modes with Ey = 0; thus, we expect no linear increase of ∆N . Indeed, we find that the currents
– i.e., the slopes of ∆N in Fig. 3.7(c) – on the four-leg ladder decay in time. Yet, the decay is
not as extreme as for the two-leg ladder, which we explain by the existence of modes with lower
energies Ey > 0 than on the two-leg ladder. For Ly = 3, it is exactly the other way around:
There are modes with Ey = 0 on the ladder but not on the cylinder. In agreement with this,
Fig. 3.7(b) shows that the expansion on a three-leg ladder is faster than on an Ly = 3 cylinder
for large Jy/Jx = 2.

3.5.4 Radii and expansion velocities

Both velocities vR =
∂R̃(t)
∂t and vc =

∂Rc (t)
∂t are time derivatives of quantities which are not

strictly linear in time. Thus, both vR and vc themselves are time dependent. Figure 3.8(a-c)
shows the time dependence of the reduced radius R̃(t), Fig. 3.8(d-f) the one of the core radius
Rc(t). In the ideal case we would expect the velocities to get constant in the long-time limit.
However, our calculations are limited to finite times tm = 6 J−1

x for the two-leg ladder, tm ≈ 4 J−1
x
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Figure 3.8 Reduced radius R̃(t) (a-c) and core radius Rc(t) (d-f) for cylinders with (a,d) Ly = 2, (b,e)
Ly = 3, and (c,f) Ly = 4, starting from a 6× Ly cluster. The thick dashed lines show the linear fits used to
extract the radial velocities vR, shown in Fig. 3.9(b), and the core velocities vc (d-f), shown in Fig. 3.9(a).

for Ly = 3 cylinders/ladders, tm ≈ 3 J−1
x for Ly = 4 cylinders/ladders, and just tm ≈ 1.5 J−1

x for
the 2D lattice.

The reduced radii all start as R̃(t) =
√

2t Jxa on very short time scales t . 0.5 J−1
x . This is

clear as we are initially confined to the hopping in the x direction, independently of Jy . For
very small Jy � Jx , the reduced radius remains linear in time with the velocity vR =

√
2Jxa at

all times, as expected for a ballistic expansion from an initial state with a flat quasimomentum
distribution function [180, 225]. A Jy dependence may show up on a timescale t ∝ J−1

y . For
larger Jy the slope vR reduces at intermediate times (in the time range where we can observe
it) but increases again for large t Jx . The latter can be understood as follows: The outermost
parts have the strongest contribution to the sum in Eq. (3.3), and naturally these outer parts have
the highest velocity 2 Jxa (and also reached a low density such that they are dilute and thus
do not see each other any more). Assuming a fraction p of the particles to expand with v and
the rest (1 − p) to form an inert time-independent block in the center (see also the argument
given in [216]), a straightforward calculation shows that R̃(t) ≈

√
p v t at large times. This is

also the reason why R̃(t) does not settle to a constant value on the two-leg ladder even for large
Jy , although the core in the center barely melts and ∆N becomes only weakly time dependent:
There is always a nonzero fraction of particles which go out from the center.

We extract the time-independent expansion velocities vR shown in Figs. 3.3 and 3.9 by a linear
fit R̃(t) = vR · t + const in the time interval 2.0 J−1

x ≤ t ≤ tm, where tm is the maximum time
reached in the simulations; see the above. For the 2D lattice, we reach only tm = 1.5 J−1

x ; thus,
we fit only in the interval in this case. In Fig. 3.9 we show error bars resulting from similar fits
but using only the first or the second half of the time interval.



3.5. Cylinders and ladders 59

0.0

0.5

1.0

1.5

2.0

v c
,x

[J
x
a
]

(a)

cylinder

(c)

ladder

experiment 2D

Ly = 2

Ly = 3

Ly = 4

0.00 0.25 0.50 0.75 1.00

Jy/Jx

0.0

0.5

1.0

1.5

v R
,x

[J
x
a
]

(b)

0.00 0.25 0.50 0.75 1.00

Jy/Jx

(d)

Figure 3.9 (a),(c) Core expansion velocities vc,x and (b),(d) radial velocities vR,x versus Jy for the
expansion of a 6 × Ly block. The left panels (a) and (b) are obtained on Ly = 2, 3, 4 cylinders; the right
panels (c),(d) are obtained on Ly = 2, 3, 4 ladders. The green triangles taken from Ref. [180] show the
results of the experiments for the fully 2D expansion corresponding to the setup of Sec. 3.4.

In the time regime 0 < t < t2, the core radius Rc is constant, although the cloud already
expands: From both edges, the block melts, but the location of the half-maximum density does
not move due to particle-hole symmetry. Just when the first holes arrive in the center of the block,
the global maximum decreases and Rc, the half width at half maximum, begins to increase. It
then exhibits strong initial oscillations. The latter stem, on the one hand, from the discreteness
of the particles’ coordinates on the lattice, which is only partly cured by the linear splines used to
extract Rc. On the other hand, the melting of domain walls in 1D happens in quantized “charges,”
which lead to well-defined structures in the density profile [206, 230, 231]. Those oscillations
prevent us from extracting the core velocity for the 2D lattice, where they are too strong at the
times reached in the simulations. Yet it seems reasonable to extract vc for the cylinders and
ladders by linear fits Rc(t) = vc · t + const in the same way as for vR. While it works quite well
for the ballistic expansion at Jy � Jx and quite large Jy & Jx , Rc(t) still exhibits a stronger time
dependence for intermediate Jy , e.g., Jy ≈ 0.3Jx on the Ly = 2 cylinder. In the latter case, some
of the bosons expand initially during the domain-wall melting and thus the block and Rc grow,
yet then the expansion is slowed down and the extension of the high-density block measured by
Rc becomes weakly time dependent.

Figure 3.9 shows the radial and core velocities for the expansion of blocks on cylinders
and ladders. We note that, while vc and vR are nearly independent of Jy/Jx in the range
Jy/Jx = 0.6, . . . , 1 for the Ly = 4 cylinder [Figs. 3.9(a) and 3.9(b)], the values Rc(t) and R̃(t)
themselves actually do decrease when Jy/Jx is tuned from 0.6 to 1 (see Fig. 3.8), due to different
short-time dynamics. Further, for the accessible times (tm = 3 J−1

x for Ly = 4), the density
profile outside the original block is still completely equivalent to the domain-wall melting.
Nevertheless, Rc(t), by definition, is also sensitive to the maximum value in the center of the
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block, and R̃(t) is sensitive to the densities at all positions. Thus, the velocities shown in Fig. 3.9
contain valuable and complementary information.

The two-leg ladder (for which the expansion velocity has been studied in Ref. [86]) shows a
behavior similar to the experimental data for 2D expansions [180], namely that the core velocity
vc drops down to zero with increasing Jy/Jx . However, by comparing different Ly , we find a
trend towards a faster expansion when Ly is increased at fixed Jy/Jx . This trend is in contrast
to the naive expectation that wider cylinders should mimic the 1D-to-2D crossover better. In
other words, it demonstrates that the two-leg ladder does not capture all the relevant physics of
the expansion in all directions in the 1D-to-2D crossover, although it shows the same qualitative
dependence of velocities on Jy/Jx as the 2D system studied experimentally [180]. However,
we understand this from our considerations of the limit Jy � Jx in Sec. 3.5.3: On the Ly = 4
cylinder and the Ly = 3 ladder, there exist Ey = 0 modes, and thus a preferred occupation of
these propagating modes with nonzero ky is possible. Moreover, in those other cases in which
there are no modes with strictly Ey = 0, there are at least modes with lower |Ey | < Jy .

3.5.5 Momentum distribution function

The momentum distribution nkx,ky on cylinders starting from 6 × Ly blocks and at fixed time
t = 2.0 J−1

x is shown in Fig. 3.10. At small Jy/Jx = 0.2, we observe a bunching of particles at
the kx = ± π

2a modes independent of ky , similar to the fully 2D expansion at the same value of
Jy/Jx shown in Fig. 3.4.
For Jy = Jx and on the Ly = 3 cylinder, the energy Ey(ky = ±2π

3a ) = Jy can be compensated
by kinetic energy Ex = −2Jx cos(kxa) in the x direction; compare Eq. (3.8). Indeed, we
find a bunching of particles at those momenta in Fig. 3.10(e). The Ey(ky = 0) = −2Jy and
Ey(ky = π

a ) = 2Jy mode would yield kx = π
a and ky = 0, yet we find a slightly higher weight at

smaller kx in Fig. 3.10(e). However, we note that all these peaks for Jy = Jx in Figs. 3.10(d) and
3.10(e) are not as high as their counterparts for Jy/Jx = 0.2. As we have discussed in Sec. 3.5.3,
there are no modes with Ey = 0 for Ly = 2, 3 on cylinders; hence, the maxima in nkx,ky are
generally suppressed as we go from small to large Jy/Jx for Ly = 2, 3.
On the Ly = 4 cylinder, we find a bunching of particles at (kx, ky) = ( π2a,

π
2a ) with roughly

the same weight for all Jy; compare Figs. 3.10(c) and 3.10(f). This is in agreement with our
considerations of Sec. 3.5.3, since the modes with ky = π

2a have Ey = 0. The ky = 0, πa modes
are suppressed, similar to the case of Ly = 2, 3.
The question of whether the bunching of particles at certain quasimomenta (that requires the

existence of propagating modes with energies compatible with those quasimomenta) will lead to
a true dynamical quasicondensation at finite momenta can best be addressed using the domain
walls as initial stats. Here, we are guided by the behavior of 1D hard-core bosons: In the
sudden expansion [80, 86], the dynamical quasicondensation is a transient phenomenon, hence
the occupation at k = ± π

2a first increases and then slowly decreases as dynamical fermionization
sets in [86, 88, 89]. The crossover between these two regimes—the formation and the decay of
quasicondensates—is given by t2 ∝ B (see also the discussion in [87]). For the domain-wall
melting, the quasicondensates are continuously fed with particles with identical properties due
to the presence of an infinite reservoir and thus the quasicondensation peaks in nk never decay
but keep increasing.
Figure 3.11 shows the time dependence of the occupation at the maximum of nkx,ky for the

domain-wall melting on Ly = 2, 3, 4 cylinders for (a)–(c) Jy/Jx = 0.2 and (d)–(f) Jy/Jx = 1. For
Jy/Jx = 0.2 and the accessible time windows of the Ly = 3, 4 cylinders, the occupation indeed
increases monotonically in time. On the Ly = 2 cylinder in Fig. 3.11(a), the maximum initially
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Figure 3.10 Momentum distribution function nkx,ky (dimensionless) for cylinders with (a),(d) Ly = 2,
(b),(e) Ly = 3 and (c),(f) Ly = 4, starting from a 6 × Ly cluster. Data are shown for time t = 2.0 J−1

x and
(a)–(c) Jy/Jx = 0.2 and (d)–(f) Jy/Jx = 1.0 (Note that we have a symmetry n−kx,ky = nkx,ky = nkx,−ky ).
The black dashed lines indicate the flat initial distribution at t = 0.
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Figure 3.11 Time evolution of the peak heights in the momentum distribution function for cylinders with
(a),(d) Ly = 2, (b),(e) Ly = 3, and (c),(f) Ly = 4, starting from a domain wall. Data are shown for (a)–(c)
Jy/Jx = 0.2 and (d)–(f) Jy/Jx = 1.0.
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Figure 3.12 Time evolution of the occupation of the largest eigenvalue λ0 (dimensionless) of the one
particle density matrix for cylinders with (a) Jy/Jx = 0.2 and (b) Jy/Jx = 1.0, starting from a domain
wall. The dotted green lines show the results of an 1D chain (Jy = 0) for comparison.

increases similar as for Ly = 3, 4, yet for times t & 3J−1
x it saturates and even decreases, which

suggests that no condensation sets in. Note that the time scale at which the saturation happens
is quite large, as it is set by J−1

y . This suggests that there is no condensation even for very small
Jy > 0 on the Ly = 2 cylinder.
The behavior for Jy/Jx = 1 is quite different. In almost all cases, the occupation at the

maximum quickly saturates, which suggests that no condensation sets in. This observation is
consistent with the absence of fast propagatingmodes on the Ly = 2, 3 cylinders. Among the data
sets shown in Fig. 3.11(d)–3.11(f), there is one exception, namely the peak at (kx, ky) = ( π2a,±

π
2a )

on the four-leg cylinder, which monotonically increases without a trend towards saturation. This
case is thus the most promising candidate for a condensation at Jy = Jx .

3.5.6 Occupation of lowest natural orbital

To investigate the question of condensation in more detail, we look at the maximum occupation
λ0 of the natural orbitals [232]. The natural orbitals are effective single particle states defined as
the eigenstates of the one particle density matrix 〈â†

®r
â
®r′
〉. The corresponding eigenvalues sum

up to the number of particles and can be interpreted as the occupations of the natural orbitals. A
true condensate requires that λ0 becomes macroscopically large.

The largest occupation λ0 for the domain-wall melting of cylinders is shown in Fig. 3.12.
In the 1D case, indicated by the green dotted line, the occupation grows, for large times, as
λ0 ≈ 1.38

√
t [80]. For Ly = 2 we find two degenerate natural orbitals with occupation λ0.

For Jy/Jx = 0.2, we find an initial growth for all Ly = 2, 3, 4, but for Ly = 2, the occupation
saturates and even decreases for large times t & 3J−1

x , similar as for the peaks in the momentum
distribution function. In fact, the peaks in the momentum distribution are directly related to the
natural orbitals with the largest occupation: For Ly = 2 there are two degenerate natural orbitals
with maximal occupation with ky = 0 and ky = π

a , and their Fourier transformation is peaked
slightly above (below) kx = π

2a for ky = 0 (ky = π
a ). Similarly, for Ly = 3 (Ly = 4) there are

two natural orbitals with maximal occupation with ky = ± 2π
3a (ky = ± π

2a ) and one (two) with
slightly lower occupation with ky = 0 (ky = 0, πa ), leading to the peak structure of Figs. 3.10(b)
and 3.10(c) (with peaks only at kx > 0 for domain-wall initial states).
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For Jy = Jx , shown in Fig. 3.12(b), λ0 saturates and even decreases for the cylinders of width
Ly = 2, 3, but keeps growing monotonically for Ly = 4 (at least on the time scale accessible to
us), in accordance with Figs. 3.10(f) and 3.11(f). For Ly = 4, we find only two (degenerate)
natural orbitals with ky = ± π

2a with peaks at kx = π
2a . Yet the maximal occupation λ0 is

significantly smaller than in the 1D case and seems to saturate at larger times.
It is instructive to compare λ0 to the number of particles in the expanding cloud ∆N shown in

Fig. 3.7, defining a condensate fraction λ0/∆N . ∆N increases linearly in time in 1D; hence, the
condensate fraction goes to zero with 1/

√
t, consistent with the absence of true long-range order.

In the case of cylinders, we never observe a saturation of λ0/∆N to a constant nonzero value,
but it keeps decreasing as a function of time. Therefore, a true condensation is not supported
by the existing data on any cylinder. Yet the survival of a quasicondensation on the cylinders is
consistent with our data.

3.6 Conclusion

Motivated by recent experimentswith ultracold bosons in an optical lattice [87,180], we simulated
the sudden expansion of up to 4 × 4 hard-core bosons in a 2D lattice. In the limit Jx � Jy ,
we find a fast expansion (at least on the time scale accessible to us), similar to the 1D case.
When Jy is tuned to the isotropic limit Jx = Jy , some fraction of the particles remains as
a high-density core in the center and a spherically symmetric shape emerges. This trend is
compatible with the observations made in the experiment of Ref. [180]. Unfortunately, our
results for the 2D expansion are dominated by surface effects due to the small boson numbers
– in fact, we have more particles at the boundary of the initial block than in the bulk in our
simulations. This prevents us from analyzing the core expansion velocity [180], yet the radial
velocities vr,x decrease monotonically with the block size B at any fixed Jy/Jx . We observe
a bunching in the momentum distribution function at quasimomenta compatible with energy
conservation. This bunching could signal a dynamical condensation at finite quasimomenta as
in the 1D case, where this dynamical quasicondensation [80] has recently been observed in an
experiment [87]. Although we cannot ultimately clarify the question of dynamical condensation
in 2D with our small clusters, we believe that the bunching of particles at certain finite momenta
in the 2D expansion Jy ≈ Jx stems from surface effects.

In order to investigate the dimensional crossover further, we studied the expansion on long
cylinders and ladders with up to Ly = 4 legs. Correlations between the particles in different legs,
which lead to a Jy dependence, built up on a very short timescale of about one tunneling time
in the longitudinal x direction. Up to a time t2 that is proportional to the linear dimension of
the initial block, the expansion of blocks, restricted to either the left or right half of the system,
is identical to the domain-wall melting. On two-leg ladders, the density in the central region
becomes very weakly time dependent and almost stationary for Jy/Jx & 1, even for the domain
walls. This is reflected by a vanishing or even slightly negative core velocity, similar to the
observations made in experiments [178, 180]. By considering the limit Jy � Jx , we argue that
this suppressed expansion on the two-leg ladder for large Jy/Jx stems from the fact that there
are no modes with Ey = 0 on single rungs. For cylinders and ladders with larger Ly ∈ {3, 4}, we
generically find a faster expansion with higher velocities than in the Ly = 2 case. Additionally,
there is a dependence of expansion velocities on the boundary conditions in the y direction. For
instance, the expansion on Ly = 4 cylinder is faster than on a four-leg ladder. In agreement
with our considerations of the limit Jy � Jx , this is accompanied by a bunching at preferred
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two-dimensional optical lattices and on multileg ladders

momenta ky = ± π
2a and kx = ± π

2a and an increasing occupation of natural orbitals. Yet our data
does not support a true condensation on any cylinder.
Finally, we state the interesting question whether the expansion velocities on cylinders or

ladders will ever show the same dependence on Jy/Jx as the width Ly increases compared to
the expansion of a 2D block. The obvious difference is that we fill the cylinders and ladders
completely in the y direction. Due to symmetry, the expansion on cylinders is restricted to be
along the x direction and, as such, closer to the 1D case, at least for small Ly . There can thus
be two scenarios: Either, even for Ly → ∞, the velocities of the cylinders might well be above
the experimental results or, as Ly increases beyond Ly = 4, the velocities at a fixed Jy/Jx will
depend nonmonotonically on Ly .
Further insight into these questions, i.e., the dependence on Ly or the question of dynamical

condensation at finite momenta in dimensions higher than one, could be gained from future
experiments with access to measuring the radius. This could be accomplished using single-site
resolution techniques; see [58, 59, 233] for work in this direction.
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4 Domain-wall melting as a probe of
many-body localization

Most of the content of this chapter can also be found in a previous publication of the author [4].
Text and figures have been adjusted to fit into the context of the thesis.

In pioneering works based on perturbation theory [22,23], it was shown that Anderson local-
ization, i.e., perfectly insulating behavior even at finite temperatures, can persist in the presence
of interactions. Subsequent theoretical studies on mostly 1D model systems have unveiled many
fascinating properties of such a MBL phase; we will summarize the most important results in
Sec. 4.1. The phenomenology of theMBL phase has mostly been established for closed quantum
systems. A sufficiently strong coupling of a disordered, interacting system to a bath is expected to
lead to thermalization (see, e.g., [234,235]). Thus, the most promising candidate systems for the
experimental investigation of MBL physics are quantum simulators such as ultracold quantum
gases in optical lattices or ion traps. So far, the cleanest evidence for MBL in an experiment has
been reported for an interacting Fermi gas in an optical lattice with quasiperiodicity, realizing
the Aubry-André model [43, 44]. Other quantum gas experiments used the same quasi-periodic
lattices or laser speckles to investigate Anderson localization [236,237] and the effect of interac-
tions [238], however, at low energy densities. Experiments with ion traps provide an alternative
route, yet there, at most a dozen of ions can currently be studied [239].
By using a novel experimental approach, a first demonstration and characterization of MBL

in a 2D optical-lattice system of interacting bosons with disorder has been presented by Choi
et al. [45]. They start from a state that contains particles in only one half of the system while
the rest is empty. Once tunneling is allowed, the particles from the initially occupied region
can spread out into the empty region (see Fig. 4.1). The evolution of the particle density is
tracked using single-site resolution techniques [57, 240] and digital mirror devices allow one to
tune the disorder. The relaxation dynamics provides evidence for the existence of an ergodic
and an MBL regime as disorder strength is varied, characterized via several observables such as
density profiles, particle-number imbalances and measures of the localization length [45]. This
experiment serves as the main motivation for our theoretical work.

Figure 4.1 Sketch of the initial state (left) and density profile after a sufficiently long time (right) in the
localized regime. The profile develops an exponential decay with distance nrx ∝ exp(− 2rx

ξdw
) in its tails

away from the initial edge rx = 0 of the domain wall.
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The term domain-wall melting is inherited from the equivalent problem in quantummagnetism
(see, e.g., [82, 206, 231, 241–243]), corresponding to coupling two ferromagnetic domains with
opposite spin orientation. Furthermore, as discussed in Ch. 3, the domain-wall melting describes
the transient dynamics [86, 87] of sudden-expansion experiments of interacting quantum gases
in optical lattices (i.e., the release of initially trapped particles into an empty homogeneous
lattice) [87, 177, 178, 180]. Theoretically, the sudden expansion of interacting bosons in the
presence of disorder was studied in, e.g., [244,245] for the expansion from the correlated ground
state in the trap, while for MBL, higher energy densities are relevant.
In this chapter, we use ED and time-evolution methods with MPS [76,109] to clarify some key

questions of the domain-wall experiments. After a brief introduction to the phenomenons ofMBL
in Sec. 4.1, we first consider noninteracting fermions in a 1D tight-binding model with diagonal
disorder in Sec. 4.2. We demonstrate that it is possible to extract the single-particle localization
length ξ(1)loc as a function of disorder strength from such an experiment since the density profiles
develop exponential tails with a length scale ξdw (see Fig. 4.1). This domain-wall decay length
ξdw also captures the disorder driven metal-insulator transition in the Aubry-André model when
approached from the localized regime, exhibiting a divergence. Second, we study the case of
spinless fermions with nearest-neighbor repulsive interactions on chains and two-leg ladders, for
which numerical estimates of the critical disorder strength Wc of the metal-insulator transition
are available [24, 33, 246–250]. For both models, essential features of the noninteracting case
carry over, namely, the steady-state profiles decay exponentially with distance in the localized
regime W > Wc (i.e., the expansion stops), while particles continue to spread in the ergodic
regime W < Wc. Moreover, we discuss experimentally accessible measures to investigate the
dynamics close to the transition for all models.

4.1 Phenomenology of Many Body Localization (MBL)

Text-books on quantum mechanics teach us that eigenstates of a Hamiltonian extend over the
whole system [251]. The wave function of a particle can even leak into a region with a high
potential energy, where the particle cannot be found in classical mechanics, causing the famous
tunnel effect. However, even if the energy is much higher than the background potential, the
single particle wave functions can be exponentially localized due to disorder in the potential,
an effect known as Anderson localization [90–92]. As schematically illustrated in Fig. 4.2(a),
spatially separated states can be very close in energy. Thus, one could think that any weak
interaction immediately hybridizes the single particle states. However, seminal works showed
that a localization in Fock space can persist, giving rise to MBL [22,23, 252].

The MBL phase is a dynamical phase of matter in the sense that it is characterized by the
properties of highly excited many-body eigenstates, which govern the dynamics of generic initial
states (with little overlap to the ground state). Note that this is very different from the notion of a
quantum phase transitions [253]. In an ergodic system, the ETH is expected to hold and dictates
many of the properties of the (highly excited) eigenstates [17–20]. On the other side,MBL implies
a failure of ETH [24] and therefore, memory of initial conditions [25, 26]. The phenomenology
of MBL systems is connected to the existence of a complete set of commuting (quasi) local
integrals of motion, so-called “l-bits”, that are believed to exist in systems in which all many-
body eigenstates are localized [30, 254–256]. These l-bits can be thought of as quasiparticles
with an infinite lifetime, in close analogy to a zero-temperature Fermi liquid [22, 248]. Let us
oppose the properties in the ergodic and the MBL phase, see Fig. 4.2(b).
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Figure 4.2 (a) In a non-interacting system with disorder, the single-particle wave functions are Anderson
localized. Interactions can hybridize the different levels and induce delocalization, but seminal, pertur-
bative works showed that localization can persist, forming the MBL phase [22, 23]. (b) Schematic phase
diagram of a 1D system with disorder strength W and energy E . Numerical studies with ED indicate the
presence of a mobility edge (blue, solid line) [32,33], yet there are analytical arguments against it (orange,
dashed line) [34].

Random matrix theory predicts for an ergodic system a certain statistical distribution for
example from a Gaussian orthogonal ensemble (GOE)1 with energy level repulsion. Since
levels of spatially separated, localized states are independent, see Fig. 4.2(a), the level spacing
in the MBL phase is Poisson distributed [246]. The ETH implies that the eigenstates in an
ergodic phase obey a volume law. In contrast, the eigenstates in the localized phase are only
little entangled: they obey an area law [31–33] — similar as the area law for the ground state
discussed in Sec. 2.1, but here also for high excited states in the center of the spectrum. Hence,
those eigenstates can also be represented by MPS; in fact, there have been given generalizations
of DMRG targeting highly excited states deep in the MBL phase [46,257,258]. One might hope
that this carries over to the dynamics. Indeed, compared to a linear growth S(t) ∝ t in an ergodic
system [112], the (half-chain) entanglement entropy after a quench starting from an initial state
grows in the MBL phase significantly slower, namely logarithmically, S(t) ∝ log(t) [28, 29].
This characteristic feature of MBL distinguishes it from a simple Anderson insulator, where the
entanglement is bounded by an area law at long times, and has been linked to dephasing [28,30].
Note that disorder is not a crucial ingredient for MBL, it can also be induced effectively by

other degrees of freedom [259].
Important open questions are the nature of the MBL transition and the existence of MBL in

higher dimensions. The early, perturbative work [22] and numerical results with ED [32, 33]
suggest the existence of a mobility edge, i.e., a separation of localized and delocalized states at
different energy densities for a given disorder strength W . Wc, see the blue line in Fig. 4.2(b),
known for example from Anderson localization in three dimensions [91]. However, De Roeck
et al. argued that this is inconsistent, since rare regions with lower-than-average disorder, so
called “hot bubbles”, would thermalize their surroundings, making them larger and thus more
powerful in delocalizing the whole system in an avalanche-like scheme [34]. This picuture
and the transition in general were studied by several groups with renormalization-group (RG)
schemes [36, 40, 260–262], some finding a very slow finite size scaling of a Kosterlizt-Thouless
transition [41, 263]. Others identified the MBL transition with a percolation in Fock space
[42, 264]. Whatever the exact nature of the phase transition is, the dynamics can be very slow

1The ensemble to be used depends on the symmetries present in the Hamiltonian.
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Figure 4.3 ED results (L = 2000) for 1D noninteracting fermions with uncorrelated diagonal disorder
Eq. (4.1). (a) Exemplary distribution of nrx on a logarithmic scale for the free fermions at site rx = 200,
t J = 400 and W = 0.5J. (b) Representative typical density profile for W = 0.5J at times t J =
100, 200, 400, 1000, 10 000 (bottom to top). Error bars are smaller than the linewidth.

even on the ergodic side [38,265,266], questioning the common definition of MBL purely based
on the properties of the eigenstates [35, 267].

4.2 Noninteracting cases

4.2.1 Anderson insulator

We will first consider noninteracting fermions in a 1D tight-binding chain with uncorrelated
diagonal disorder. The Hamiltonian reads:

Ĥ0 = −
J
2

∑
rx

(
ĉ†rx ĉrx+a + h.c.

)
−

∑
rx

εrx n̂rx , (4.1)

where ĉ†rx denotes the fermionic creation operator on site rx , n̂rx = ĉ†rx ĉrx is the number operator,
nrx = 〈n̂rx 〉 is density, and εrx ∈ [−W,W] is a random onsite potential (L is the number of sites).
We choose the lattice spacing a as unit and set ~ = 1. All single-particle eigenstates are localized
for any nonzero W and thus the system is an Anderson insulator at all energy densities [91, 92].

An exemplary distribution of nrx for the free fermion case is shown in Fig. 4.3(a). In a rough
approximation, the probability for a particle to hop the rx sites out of the domain wall can be
seen as a product of the hopping probabilities to neighboring sites, which depend on the specific
disorder realization. The geometric mean n̄rx (i.e., the arithmetic mean of log nrx ) is thus a
natural choice for the average over different disorder realizations. As evident from Fig. 4.3 (a), it
coincides with the median and represents the typical value. In contrast, the arithmetic mean is an
order of magnitude larger as it puts a large weight in the upper tail of the distribution. Although
the geometric mean is a good choice for nrx , we note that it is reasonable to use the arithmetic
mean for other quantities such as VARn and ∆N , which we discuss later: these quantities are
integrated over rx for a given disorder realization. We checked that the arithmetic mean is close
to typical values for these quantities.
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Figure 4.4 ED results (L = 2000) for 1D noninteracting fermions with uncorrelated diagonal
disorder Eq. (4.1). (a) Domain-wall decay length ξdw (extracted from VARn) for times t J =
100, 200, 400, 1000, 10 000 (bottom to top), as a function of the disorder strength W . The dashed line
shows a fit to the expected scaling ξdw ∝ W−2 [91]. (b) Variance VARn of the distribution of expanded
particles for W/J = 0.25, 0.5, 1.0, 2.5 (top to bottom). (c) Number of emitted particles ∆N(t). Error bars
are smaller than the line width.

Typical density profiles for the dynamics starting from a domain-wall initial state are shown
for different times in Fig. 4.3(b). Here, “typical” refers to the geometric mean n̄rx over disorder
realizations.
The domain wall first melts slightly yet ultimately stops expanding. The profiles clearly

develop an exponential tail n̄rx ∝ exp(−2rx/ξdw) for rx � 0. The crucial question is now
whether the length scale ξdw is directly related to the single-particle localization length or not.

We compare two ways of extracting ξdw: First, a fit to the numerical data for n̄rx in the tails
rx � 0 and second, via computing the variance of the particles emitted into the originally empty
region. For the latter, we view the density nrx in the initially empty region rx > 0 as a spatial
distribution 〈·〉n ≡

(∑
rx>0 nrx ·

)
/∆N where ∆N =

∑
rx>0 nrx is the number of emitted particles.

The variance VARn = 〈r2
x〉n − 〈rx〉

2
n of this particle distribution is shown in Fig. 4.4(b) and

approaches a stationary regime on a timescale depending on W . For the time window plotted,
only the curves with W ≥ J saturate, yet we checked that also the curves for W < J saturate at
sufficiently long times. At short times, VARn ∝ t2 signals a ballistic expansion of the particles
as long as VARn(t) � ξ

(1)
loc .

Assuming a strictly exponential distribution nrx ∝ exp
(
−

2rx
ξdw

)
for all rx > 0 yieldsVARn ≈

ξ2
dw
4

for VARn � 1. We use that relation to extract ξdw in the general case as well and in addition,
we introduce an explicit time dependence of ξdw to illustrate the approach to the stationary state.
In general, this gives only a lower bound to Wc since VARn can be finite for diverging ξdw if the
distribution is not exponential. Yet we find that both methods give similar results for the final
profile and show only ξdw extracted from VARn in Fig. 4.4(a).

The known result for the localization length in the 1D Anderson model is ξ(1)loc =
8(J2−E2)

W 2 [91]
for E = 0 (our initial state leads to that average energy for sufficiently large systems). Our
data for ξdw shown in Fig. 4.4(a) clearly exhibit the expected scaling ξdw ∝ W−2 over a wide
range of W as suggested by a fit of ξdw = a/W−2 to the data [dashed line in Fig. 4.4(a); the
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Figure 4.5 ED results (L = 2000) for the Aubry-André model with a localization transition at Wc = J
(indicated by the vertical dashed line in (a) and the thicker lines in panels (b,c)). (a) Domain-wall decay
length ξdw (extracted from VARn) for times t J = 100, 200, 400, 1000, 10 000 (bottom to top), as a function
of the disorder strength W . The red, dashed line shows the analytical result ξ(1)loc = 1/log

(
W
J

)
[268].

(b) Variance VARn for W/J = 0.75, 0.8, 0.85, . . . , 1.25 (top to bottom). (c) Number of emitted particles
∆N(t). Error bars are smaller than the line width.

prefactor is larger by about a factor of 1.5 than the typical localization length ξ(1)loc]. Deviations
from the W−2 dependence at small W , where ξ(1)loc ∼ O(L), are due to the finite system size. At
large W , the discreteness of the lattice makes it impossible to resolve ξdw that are much smaller
than the lattice spacing. We stress that fairly long times need to be reached to observe a good
quantitative agreement with theW−2 dependence. For instance, for the parameters of Fig. 4.4(a),
t J ∼ 1000 is necessary to reach the asymptotic form. Nevertheless, even at shorter times, the
density profiles are already approximately exponential. To summarize, our results demonstrate
that the characteristic length scale ξdw is a measure of the single-particle localization length,
most importantly exhibiting the same qualitative behavior.
In Fig. 4.4(c), we introduce an alternative indicator of localization, namely, the number of

emitted particles ∆N(t) that have propagated across the edge rx = 0 of the initial domain wall
at a time t. Due to particle conservation, ∆N is directly related to the imbalance I = N−2∆N

N

analyzed in the experiment [45]. We observe that ∆N shares qualitatively the same behavior
with VARn [note the linear y scale in Fig. 4.4(c)], which will also apply to the models discussed
in the following.

4.2.2 Aubry-André model

As a further test, we now focus on the dynamics in theAubry-Andrémodel, where a quasiperiodic
modulation is introduced in Eq. (4.1) via εrx = W cos(2πϕrx + φ0) instead of the uncorrelated
disorder. This model was studied in the MBL experiments of Ref. [43, 44]). We set the
irrational ratio ϕ to ϕ = (

√
5 − 1)/2 = 0.61803 . . . and perform the equivalent to disorder

averages by sampling over the value of the phase φ0 ∈ [0, 2π). This noninteracting model has a
delocalization-localization transition at Wc/J = 1, where the single-particle localization length
diverges as ξ(1)loc = log

(
W
J

)
[268]. Similar to the previously considered Anderson model, the

density profiles become stationary with an exponential tail in the localized phase for W > Wc.
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Figure 4.6 tDMRG results (L = 60) for a chain of interacting spinless fermions with V = J. Typical
density profiles for (a) W/J = 0.5 at t J = 10, 20, 30 (bottom to top), (b) W/J = 3 and additional data for
t J = 60, 200, and (c) W/J = 6, additional data for t J = 1000 (on top of the data for shorter times).

As W is varied, a clear transition is visible in the time dependence of both VARn and ∆N shown
in Figs. 4.5(b) and 4.5(c), respectively, which become stationary for W > Wc, while growing
with a power law for W < Wc. The corresponding domain-wall decay length ξdw shown in
Fig. 4.5(a) diverges as Wc is approached from above, in excellent agreement with the single-
particle localization length of that model [268]. The maximum value of ξdw in the extended
phase reached at long times diverges with L. This demonstrates that the domain-wall melting
can resolve the delocalization-localization transition at W = J.

4.3 Interacting fermions on a chain

Given the encouraging results discussed above, we move on to studying the dynamics in a system
with an MBL phase, namely to the model of spinless fermions with repulsive nearest-neighbor
interactions Ĥint = Ĥ0 + V

∑
rx n̂rx n̂rx+a, equivalent to the spin-1/2 X X Z chain. We focus on

SU(2) symmetric exchange, i.e., V = J, for which numerical studies predict a delocalization-
localization transition from an ergodic to the MBL phase atWc/J = (3.5±1) [24,33,247,248] at
energy densities in the middle of the many-body spectrum (corresponding to infinite temperature
when approaching the transition from the ergodic side). Note, though, that even for this much
studied model, some aspects of the phase diagram are still debated in the recent literature (see,
e.g., [34, 35]).
Typical time evolutions of density profiles in the ergodic and MBL phase are shown in

Fig. 4.6(a-c), obtained from tDMRGsimulations [76,107,108]. Weuse a time step of dt = 0.04/J
and a bond dimension of up to χ = 1000 and keep the discarded weight in each time step under
10−10. The disorder average is performed over about 500 realizations. These profiles show
a crucial difference between the dynamics in the localized and the delocalized regime. Deep
in the localized regime, Fig. 4.6(c), similar to the noninteracting models discussed before, the
density profiles quickly become stationary with an exponential decay even close to rx = 0. In
the ergodic phase, however, the density profiles never become stationary on the simulated time
scales and for the values of interactions considered here. For W = 0.5J shown in Fig. 4.6(a),
the particles spread over the whole considered system. Remarkably, we find a regime of slow
dynamics [37, 38, 247, 266, 269] at intermediate disorder W < Wc in Fig. 4.6(b), where there
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Figure 4.7 tDMRG results (L = 60) for a chain of interacting spinless fermions with V = J. (a) Variance
VARn of the distribution of expanded particles for W/J = 0.1, 1, 2, 3, 4, 5, 6 (solid lines top to bottom).
The dotted lines show equivalent data for the noninteracting case V = 0. (b) Number of emitted particles
∆N(t). (c) C(W) from fit of ∆N(t) to Eq. (4.2) for t J > 10. Error bars are mostly smaller than the
linewidth.

seems to persist an exponential decay of nrx at finite times, butwith a continuously growing ξdw(t).
We note that ξdw(t) at the shortest time scales is on the order of the single-particle localization
length. An explanation can thus be obtained in this picture: On short time scales, single particles
can quickly expand into the right, empty side within the single-particle localization length, thus
leading to the exponential form of nrx . The interaction comes into play by scattering events at
larger times, ultimately allowing the expansion over the whole system for infinite times.
The slow regime is also reflected in the quantities VARn and∆N in Fig. 4.7(a,b), which behave

qualitatively in the same way. While both quantities saturate for W > Wc and the results hardly
differ from the noninteracting case shown by the dotted lines, the slow growth becomes evident
for W . Wc at the intermediate time scales accessible to us. The slow growth of both VARn and
∆N is, for W . Wc, the best described by (yet hard to distinguish from a power-law)

∆N(t),VARn(t) = C(W) log(t J) + const . (4.2)

This growth is qualitatively different from the non-interacting case, where a saturation sets in
after a faster initial increase. Figure 4.7(c) shows the prefactor C(W) extracted from a fit to
the data of ∆N(t) for t J > 10. This allows us to extract Wc since C(W > Wc) = 0 for the
stationary profiles in the localized phase. Our result for Wc is compatible with the literature
value Wc/J = 3.5 ± 1 [24, 33, 247, 248] (dashed line in Fig. 4.7(c)).

4.4 Interacting fermions on a ladder

As a first step towards 2D systems, we present results for the dynamics of interacting spinless
fermions on a two-leg ladder in the presence of diagonal disorder. The simulations are done with
a variant of tDMRG suitable for long-range interactions [109], with a time step dt = 0.01/J.
Figures 4.8(a) and 4.8(b) show the variance VARn and ∆N for V = J, respectively. As for the
chain, we observe that both the variance and ∆N have a tendency to saturate for large disorder
strength, while they keep growing for small disorder. The data are best described by Eq. (4.2)
and we extract C(W) from fits of the data for t J > 10 to Eq. (4.2). The results of these fits shown
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Figure 4.8 tDMRG results for a two-leg ladder (L = 60) of interacting spinless fermions with V = J. (a)
Variance VARn at W/J = 4, 6, 8, 10 (top to bottom). (b) Number of emitted particles ∆N(t). (c) C(W)
from fit to Eq. (4.2) for t J > 10.

in Fig. 4.8(c) suggest a critical disorder strength 8 . Wc/J . 10, in good agreement with the
value of Wc/J = 8.5± 0.5 found in an ED study of the isotropic Heisenberg model on a two-leg
ladder2 [250].

4.5 Conclusion

We analyzed the domain-wall melting of fermions in the presence of diagonal disorder, motivated
by a recent experiment [45] that was first in using this setup for interacting bosons in 2D. Our
main result is that several quantities accessible in experiments (such as the number of propagating
particles and the variance of their particle density) are sensitive to localization and can be used
to locate the disorder-driven metal-insulator transition, based on our analysis of several models
of noninteracting and interacting fermions for which the phase diagrams are known. Notably,
this encompasses a two-leg ladder as a first step towards numerically simulating the dynamics
of interacting systems with disorder in the 1D-2D crossover. Our work further indicates that
care must be taken in extracting quantitative results from finite systems or finite times since the
approach to the stationary regime can be slow. Interestingly, we observe a slow dynamics in the
ergodic phase of interacting models as the transition to the MBL phase is approached, which
deserves further investigation.
The domain-wall melting thus is a viable approach for theoretically and experimentally study-

ing disordered interacting systems, and we hope that our work will influence future experiments
on quasi-1D systems where a direct comparison with theory is feasible. Concerning 2D sys-
tems, where numerical simulations of real-time dynamics face severe limitations, our results for
two-leg ladders provide confidence that the domain-wall melting is still a reliable detector of
localization as well, as evidenced in the experiment of [45]. Even for clean systems, experimental
studies of domain-wall melting in the presence of interactions could provide valuable insights
into the nonequilibrium transport properties of interacting quantum gases [86,178,180,206,241].
For instance, even for the isotropic spin-1/2 chain (V = 1 in our case), the qualitative nature of

2 The two models differ by correlated hopping terms which are not believed to be important for the locus of the
transition.
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transport is still an open issue [270–277]. Moreover, the measurement of diffusion constants
would be desirable [278].
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5 Finding purifications with minimal
entanglement

Most of the content of this chapter can also be found in a previous publication of the author [5].
Text and figures have been adjusted to fit into the context of the thesis.

Simulating quantum many-body systems faces a fundamental difficulty due to the complexity
required to represent highly entangled states. Significant progress has been made through the
observation that quantum ground states of interest often have only limited (area-law) entangle-
ment, and thus can be represented efficiently using MPS [70, 73–75] in 1D and PEPS [114] in
higher dimensions. Such approaches have been particularly successful in the study of ground-
state properties of 1D systems, where the DMRG method [68] revolutionized the efficiency of
numerical methods.
To extend the success ofDMRG to transport and non-equilibrium phenomena, it is necessary to

simulate real-time evolution [76,107,108]. The bipartite entanglement of pure states generically
grows linearly with time, which leads to a rapid exponential blow up in computational cost,
limiting pure-state time evolution to rather short times. But, while the entanglement growth
limits the ability to compute the real time evolution of pure quantum states, it need not impose
the same restriction on the imaginary time evolution of mixed states [279,280]. It is then natural
to ask if the time evolution of mixed states can be represented efficiently using MPS and what
sets the difficulty of such computations.
There are different techniques for simulating mixed states using MPS methods, including a

direct representation of the density matrix as an MPO [281], using minimally entangled typical
thermal states (METTS) [140, 282–284], and purification [93, 94]; in this work we focus on the
latter. In purification, a density matrix %̂ acting on a physical Hilbert space H P is represented
as a pure state |ψ〉 in an enlarged spaceH P ⊗ H A:

%̂ = TrA |ψ〉 〈ψ | . (5.1)

It is always sufficient to choose H A to be identical to H P, “doubling” each degree of freedom
(DoF) as illustrated in Fig. 5.1(a). We note that the purification description can be a limitation
for infinite systems [285, 286]. Yet on finite systems, a purification can be found formally
by diagonalizing the density matrix. In equilibrium this gives the thermofield double (TFD)
purification, |ψβ〉 = 1√

Z

∑
m e−βEm/2 |m〉P |m〉A, where |m〉 are the eigenvectors and Em the

eigenvalues of the Hamiltonian. It was recently argued that the TFD state can be efficiently
represented with an MPS of bond dimension that grows at most polynomially with the inverse
temperature [279]. The TFD is only one possible choice of purification, since Eq. (5.1) is left
invariant under an arbitrary unitary transformation Ûanc which acts only on the ancilla space
H A.
This gauge freedom may be used to reduce the entanglement in |ψ〉, rendering the MPS

representation more efficient [287,288]. Here, we propose a way to find the minimally entangled
purification. This minimum defines the entanglement of purification Ep [95] [defined below in
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Figure 5.1 (a) Purification: any density matrix % in a physical Hilbert space H P can be represented by
a pure state |ψ〉 in an enlarged Hilbert space H P ⊗ H A. (b) Schematic representation of purified states
using MPS. (c) A purified state is evolved in real or imaginary time by acting on the physical degrees of
freedom (e.g., using a Trotter decomposition of the time-evolution operator). The auxiliary degrees of
freedom are only defined up to a global unitary Ûanc which can be chosen to minimize the entanglement on
the bonds. (d) The global Ûanc is decomposed into a network of two-site gates to produce a disentangler
Ûdisent.
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Eq. (5.10)], which thus plays a role similar to the entanglement entropy in the pure case: it bounds
the bond dimension χ ≥ eEp [136]. However, this lower bound is irrelevant unless there is an
efficient algorithm to find the minimally entangled purification at a cost comparable to DMRG
[e.g., O(χ3)], which, since it constitutes a global optimization problem over the many-body
Hilbert space, is not a priori obvious.

Belowwe introduce a method to find an approximately optimal purification by sequentially ap-
plying local disentangling operations to the ancilla DoF. The cost of the disentangling procedure
is comparable to DMRG, and the resulting entanglement Ẽp reproduces the known properties of
Ep in certain limits. We use the method to optimize both the equilibrium purification and that
of a time-dependent state. We find that the method can significantly slow the entropy growth
during real-time evolution down, as we demonstrate for both the transverse field Ising model
and a disordered Heisenberg chain. For the latter, we find a slow spreading of Ẽp already for
intermediate disorder strengths. In equilibrium, Ẽp approaches half of the entropy in the TFD
state at low temperature.
Before proceeding, we comment on the difference between the method presented here and

two other proposals to compute long-time dynamics efficiently using MPS. First, it was argued
that the dynamics of local quantities in thermalizing systems can be captured accurately using
the time-dependent variational principle (TDVP) [289], allowing to extract transport coefficients
and even characteristics of chaos. Moreover, a new truncation method to approximate the time
evolution of a density matrix, represented as an MPO, was proposed by Ref. [290], also allowing
to reach long times. Both of these methods rely on the assumption that the increase of the
non-local information encoded by the ever-growing entanglement entropy is irrelevant to the
evolution of observable properties in thermalizing systems. These methods attempt to simulate
the correct macro-state rather than the nearly exact microstate. Thus, the “truncation error” as
usually defined in DMRG studies can be large as it is measured with respect to the exact state.
In contrast, the approach presented here attempts, by optimizing the purification, to minimize
the truncation error in order to compute the exact micro-state.

5.1 Purifications within the MPS formalism

Before we explain how we can use purifications within the MPS formalism, let us first recall a
proof for the existence of the pure state |ψ〉 ∈ H P ⊗H A. Since any density matrix % is hermitian
and positive, we can find an orthonormal eigenbasis |m〉P ∈ H P of %̂ with eigenvalues pm ≥ 0.
We then take a copyHQ ∼ H P of the Hilbert space and construct the purified state as

|ψ〉 =
∑
m

√
pm |m〉P |m〉A ∈ H P ⊗ H A. (5.2)

Then we can easily check that Eq. (5.1) is fulfilled:

TrA (|ψ〉 〈ψ |) =
∑
m,m′

√
pm
√

pm′ TrA (|m〉P |m〉A 〈m′ |P 〈m′ |A)︸                                ︷︷                                ︸
=δm,m′ |m〉P 〈m

′ |P

=
∑
m

pm |m〉P 〈m|P = %̂.

Hence, any density matrix %̂ can be represented by an MPS (which is a pure state) in the doubled
Hilbert spaceH P ⊗ H A. �
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To double the DoFs on each site n, we simply add an ancilla index jAn to each B[n], as indicated
by the red legs in Fig. 5.1(b). There is a striking similarity of Fig. 5.1(b) and Fig. 2.7(a). In fact,
we can also view the purification state |ψ〉 as an MPO, and re-interpret Eq. (5.2) as

|ψ〉 =
∑
m

√
pm |m〉P |m〉A �

∑
m

√
pm |m〉P 〈m|P =

√
%̂. (5.3)

Whether |ψ〉 is viewed as a state or operator is indicated in Fig. 5.1(a) by bending the ancilla
leg from top to bottom. Strictly speaking, we should draw the ancilla legs in Fig. 5.1(b) on the
bottom as well, but we keep drawing it on the other side than the physical legs for a better visual
distinction of the physical and ancilla legs. In fact, in the case that we want to preserve some
charges following the ideas outlined in Sec. 2.4, viewing the purification as operator as outlined
in Eq. (5.3) gives us a hint how we can choose the charge values of the new leg: the charge
values for jAn should simply have be the negative charges of the jPn leg.
In the spirit of Eq. (5.3), purification consists just of two main steps: split the density matrix

as
%̂ =

√
%̂
†√
%̂ (5.4)

and view the (matrix) square root
√
%̂ as a state |ψ〉. The square structure in Eq. (5.4) makes it

evident that %̂ is positive semi-definite by construction, independent of howmuch we truncate the
MPS. This is an advantage of purification as opposed to naively representing %̂ as anMPO [291].
Further, the gauge freedom with Ûanc becomes obvious from Eq. (5.4), as the square root is not
unique,

√
%̂
†√
%̂ =

√
%̂
†
Û†ancÛanc

√
%̂. In general, Ûanc could also be an isometry to an ancilla

Hilbert space H A of a smaller size than H P; but clearly this can only work if %̂ does not have
full rank. In the extreme case that only a single pure state contributes to the density matrix, e.g.,
at zero temperature T → 0, we would be back to the usual MPS description. If %̂ has only a
few eigenstates with significant contributions, it can be more effective to explicitly evaluate the
sum over them — this is the basic idea behind METTS [282], where the sum is sampled with a
Monte-Carlo scheme. However, in this work we focus on thermal density matrices %̂ = 1

Z e−βĤ

with full rank at finite temperatures.
While the proof for the existence of purifications is enlightening regarding the structure of |ψ〉,

Eq. (5.2) is of little use for MPS simulations: diagonalizing %̂ requires to obtain the eigenstates
of the Hamiltonian, which is prohibitively expensive. There is, however, one exception, which
we can exploit: at infinite temperature (β = 0), %̂ = 1

Z 1̂ is diagonal in any basis, and we can
define the infinite temperature TFD purification as1

|ψ0〉 =
∏
n

(
1
√

d

∑
jn

| jn〉P | jn〉A

)
, (5.5)

where jn runs over the local Hilbert space, resulting in a χmax = 1 MPS. In the standard purifica-
tion approach, the finite-temperature TFD is obtained by cooling down |ψ0〉 using imaginary-time
evolution,

|ψβ〉 ∝ e−
β
2 Ĥ |ψ0〉 , (5.6)

which can be performed with any of the standard methods for MPS [76, 107–110], for example
TEBD as outlined in Sec. 2.2.3. Here, Ĥ acts only on H P. Care needs to be taken due to the
1 In the literature, a singlet state between jAn and jPn (equivalent to our choice by a local unitary transformation)
is sometimes chosen to simplify the implementation of charges [73, 273]. With our choice to use the negative
charge values for the ancilla leg, this is not necessary.
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fact that the two-site gates are no longer unitary during the imaginary time evolution, which can
destroy the canonical form if the usual even–odd brick-wall scheme as illustrated in Fig. 5.1(c) is
used. As an alternative, one can perform left-right-left sweeps similar as in DMRG. From |ψβ〉,
thermal expectation values can get evaluated with

〈X̂〉β ≡
1

Z(β)
TrP

(
e−βĤ X̂

)
= 〈ψβ | X̂ |ψβ〉 , (5.7)

as shown in Fig. 5.1(a). Here, we have used that the normalization of |ψβ〉, which is convenient to
have for an MPS, corresponds to the required 〈1̂〉β = 1. If one accumulates the renormalization
factors during the imaginary time evolution, one can obtain the partition function Z(β) = Tr e−βĤ

[73].
Similarly, we can compute dynamical properties with an additional real time evolution of the

purification MPS after the application of an operator B̂,

C(t, β) := 〈B̂† X̂(t)B̂〉β = 〈B(t, β)| X̂ |B(t, β)〉 , where |B(t, β)〉 = e−it Ĥ B̂ |ψβ〉 . (5.8)

By taking B̂ = eiεŶ , this form is sufficient to find quantities of interest such as the spectral
function

− i∂εC(t, β) = AXY (t, β) = 〈[X̂(t), Ŷ (0)]〉β . (5.9)
The computational complexity of such simulations is generically linked to the bipartite von-

Neumann entanglement entropy SLL′ = −Tr( %̂LL′ log( %̂LL′)), where %̂LL′ = TrRR′(|ψ〉 〈ψ |) is
the reduced density matrix defined by a bipartitionH P = L ⊗ R andH A = L ′ ⊗ R′ at any of the
bonds of the MPS; the bond dimension χ is bounded by χ ≥ eSLL′ . Since other purifications
can be obtained by acting with Ûanc on the ancilla space, see Fig. 5.1(b), it is desirable to exploit
this choice to reduce SLL′. Karrasch et al. [287] noticed that a natural choice is the “backward
time evolution,” Ûanc = eit Ĥ , because if B is local, this choice leaves |B(t, β)〉 invariant outside
the growing “light cone” of the perturbation. Barthel [288] improved this approach by evolving
both X and Y in the spectral function AXY (t, β) = 〈[X̂(t), Ŷ (0)]〉β = 〈[X̂(t/2), Ŷ (−t/2)]〉β as
Heisenberg operators, which allows reaching times twice as long with comparable numerical
effort [273,288]. However, these prescriptions need not be optimal; ideally, we would minimize
SLL′ over all possible purifications, which would result in the entanglement of purification
Ep [95]:

Ep[ %̂LR] ≡ min
|ψ〉

SLL′ [|ψ〉] = min
Ûanc

SLL′
[
Ûanc |ψ〉

]
. (5.10)

Equivalently, given an ansatz purification |ψ〉, we search for Ûanc such that Ûanc |ψ〉 has minimal
entanglement; from this perspective, Ûanc is a “disentangling” operation.

5.2 Disentangling algorithm

We propose an algorithm to approximately identify the optimal Ûanc via a sequence of local
disentangling operations, producing a circuit Ûanc = Ûdisent of the form shown in Fig. 5.1(d):
The time evolution is applied to the purified state using the TEBDalgorithm [76]. As illustrated in
Fig. 5.1(c) and explained in Sec. 2.2.3, the TEBD algorithm is based on a Trotter decomposition
of e−it Ĥ into two-site unitaries e−iδtHn,n+1 . These unitaries are applied to the physical indices of
the effective two-site wave function [c.f. Eq. (2.29)]

|Θ〉 =
∑

jPn , j
A
n , j

P
n+1, j

A
n+1

αn,αn+2

Θ
jPn jAn , j

P
n+1 j

A
n+1

αn,αn+2 |αn〉 | jPn jAn 〉 | j
P
n+1 jAn+1〉 |αn+2〉 ,
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Figure 5.2 (a) Effective two-site wave function to be disentangled by Û. (b) Tensor network for the
reduced density matrix %̂LL′ = TrRR′

(
Û |Θ〉 〈Θ| Û†

)
. (c) Tensor network for Z2(Û,Θ) = Tr( %̂2

LL′). (d)

Effective environment E2(Û,Θ) such that Z2(Û,Θ) = Tr
(
Û E2(Û,Θ)

)
.

where |αn〉 (and |αn+2〉) labels a basis consisting of Schmidt states to the left of site n (and
right of site n + 1, respectively). During a real-time evolution, we disentangle the two-site
wave function right after each Trotter step using a unitary acting on the auxiliary space. These
two-site disentanglers can be found using an iterative scheme based on minimizing the second
Rényi entropy as a cost function as explained below, similar to the optimization of a multi-
scale entanglement renormalization ansatz (MERA) [292]. As the time evolution proceeds, the
disentangling unitary circuit Ûdisent is then gradually built up by two-site unitaries, as depicted in
Fig. 5.1(d). During an imaginary-time evolution we use a different scheme outlined in Sec. 5.2.3.
While the algorithm can suffer from numerical instabilities, we find empirically that it con-

verges to a purification with significantly less entanglement compared to both backward time
evolution and no disentangling at all, as shown in the Sec. 5.3. The method described above
is particularly suitable for correlation functions which involve only a single purification, e.g.,
C(t, β), as there is no need to keep track of Ûdisent. When two distinct purifications |B(t)〉 and
|A(t)〉 are required, one would have to compress Û†distent,AÛdistent,B as a separate MPO.

5.2.1 Two-site disentangler minimizing the entropy

We explain now how to find a two-site unitary Û = Û
j′An , j

′A
n+1

jAn , j
A
n+1

(i.e., acting inH A) whichminimizes

the entanglement of an effective two-site wave function Û |Θ〉, similar as during the optimization
of MERA [292]. We chose to minimize the second Rényi entropy S2(Û |Θ〉) = − log Tr

(
%̂2
LL′

)
,

where %̂LL′ is the reduced densitymatrix %̂LL′ = Tr jP
n+1, j

A
n+1,αn+2

(
Û |Θ〉 〈Θ| Û†

)
[293]. In contrast

to the von-Neumann entropy, the second Rényi entropy is readily expressed as S2(Û |Θ〉) =
− log(Z2) with the tensor network Z2 depicted in Fig. 5.2(c); Z2 is to be maximized. We solve
this non-linear optimization problem iteratively: in the m-th iteration, we consider one Ûm+1
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formally as independent of the other Ûm and write Z2(Ûm+1, Ûm,Θ) = Tr
(
Ûm+1 E2(Ûm,Θ)

)
,

where the network for the “environment” E2(Ûm,Θ) is shown in Fig. 5.2(d). It is easy to
see that the unitary Ûm+1 maximizing this expression is given by a polar decomposition of
E2(Ûm,Θ), in other words we set Ûm+1 B Y X† where X and Y are obtained from an SVD of
E2(Ûm,Θ) = XΛY†. The unitary minimizing Z2(Û,Θ) is then a fixed point Û∗ of this iteration
procedure. As a starting point of the iteration, one can choose the identity Û1 B 1̂. At later
times, one can also use the result of Ûm from previous iterations (for the same time step and at
the same bond) as initial guess for the next disentangler, which reduces the number of necessary
iterations in many cases.
Since this iteration is based on a descent, it tends to go into localminimawithin the optimization

space. To find the global optimum, we can perform multiple iterations in parallel: one starting
from the identity, and others starting from initially random unitaries (chosen according to the
Haar measure, i.e., from the so-called circular unitary ensemble). From the unitaries obtained
by the parallel iterations, we choose the one with the smallest final entropy.
The disentangler Ûm obtained by the above procedure preserves the quantum numbers of

symmetries in the Hamiltonian, at least if the initial guess Û0 preserves them. In the presence
of such a symmetry one should choose Û0 accordingly from the Haar measure on unitaries
preserving the symmetry to avoid an artificial build-up of entanglement. In our case, we
exploited the Sz conservation in the Heisenberg chain (5.12) to reduce the computational cost in
the tensor contractions and SVDs with the method explained in Sec. 2.4.

5.2.2 Two-site norm disentangler

In this subsection, we discuss an alternative way to obtain a two-site disentangler, which directly
focuses on the required bond dimension. The procedure described below is equivalent to finding
the “entanglement branching operator” introduced by Ref. [294]. In order to reduce the bond
dimension, we look for a two-site unitary Û (acting on the ancilla DoFs) for which the truncation
of the effective two-site wave function Û |Θ〉 has the smallest truncation error. To find this Û,
we use a similar, iterative scheme as above: given Ûm, we calculate the truncated

(
Ûm |Θ〉

)
trunc

and find the Ûm+1 maximizing the overlap
���〈Θ| Û†m+1(Ûm |Θ〉)trunc

���. Again, the new Ûm+1 can
be found by a polar decomposition of the “environment” consisting of the corresponding tensor
network for

���〈Θ| Û†m+1(Ûm |Θ〉)trunc

���, but excluding the Ûm+1. Since the optimal Û depends on
the final bond dimension χ after truncation, we need to gradually increase χ and repeat the
iteration procedure until the truncation error for the given bond dimension is below a desired
accuracy threshold. While we found that this gradual increase of χ also helps to find the optimal
disentangler, it substantially increases the computational cost.

5.2.3 Global disentangling for imaginary-time evolution

In contrast to the real-time evolution, the Trotter gate e−δβHn,n+1 in imaginary-time evolution is
non-unitary. Thus, it can change the Schmidt values and thus generate entanglement on sites
it does not even act on, which creates the necessity for a more global scheme of disentangling
than the one presented above for the real-time evolution. Instead, we perform the imaginary
time evolution as usual (with Ûanc = 1̂) and disentangle only after each l th time step in a more
global fashion: in this case, we find that generating the network of Ûdisent by optimizing bonds
with right and left sweeps similar as in DMRG is more effective than the Trotter-type scheme
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of even and odd bonds depicted in Fig. 5.1(d). Moreover, it is straight-forward to generalize
the two-site disentangling described above to multiple sites by grouping multiple sites. For
example, we can disentangle the wave function of four sites n, n + 1, n + 2, n + 3 by grouping
each two sites as (n, n + 1) and (n + 2, n + 3) and then using the above-described method. As the
resulting disentangler can perform arbitrary “on-site” rotations within each group, it is necessary
to disentangle the obtainedwave function (recursively) within each group. While such a grouping
provides additional freedom in the unitary to be found and is thus a systematic improvement for
finding the optimal global disentangler, it comes at the cost of a scaling of required computational
resources which is exponential in the number of included sites. In practice, we limited ourselves
to optimizing at most four sites at once.

As an alternative for the global disentangling, we tried a method along the lines of Ref. [295].
Here, the idea is to identify pairs of sites with maximal mutual information as candidates
for disentangling. Using swap gates (commonly used for TEBD with longer-range interactions
[140]), we bring the two sites next to each other and disentangle themwith a two-site disentangler
as described above for the real-time evolution. Yet, we find that this approach is very limited by
the fact that the purification can not be disentangled completely (except for β → ∞), such that
we fail at some point to identify the next candidate pair to be disentangled.

5.3 Benchmarks

5.3.1 Finite temperatures

To benchmark our algorithm, we study a concrete example, the generalized transverse field Ising
model

Ĥ = −Jx
∑
n

σ̂x
n σ̂

x
n+1 − Jz

∑
n

σ̂z
nσ̂

z
n+1 − hz

∑
n

σ̂z
n . (5.11)

For Jz = 0, the model maps onto free fermions and exhibits a quantum phase transition at
hz
c = Jx . The term proportional to Jz introduces interactions and breaks integrability.
Figure 5.3 compares the entanglement of the optimized purification with the entanglement of

the TFD state obtained by imaginary time evolution without disentangling, i.e., Ûanc = 1̂. The
infinite temperature state |ψ0〉 has maximal entanglement between the physical and auxiliary
DoF on each site, but no correlations between different sites, hence SLL′ = 0. For small β, the
imaginary time evolution starts to build up correlations between neighboring sites, but it is not
immediately possible to disentangle the state with a rotation in H A. For example, a non-trivial
unitary acting on jAn and jA

n+1 would lead to a strong correlation between jPn and jA
n+1, and thus

larger entanglement for a cut between sites n and n + 1. However, due to the monogamy of
entanglement, the build-up of quantum correlations between different sites ensures the reduction
of the entanglement between the physical and auxiliary spaces. Consequently, the disentangler
can reduce the entanglement at larger β. This is most evident in the limit of large β in which
e−

β
2 Ĥ becomes a projector |gs〉 〈gs| onto the ground state |gs〉. In this limit, the TFD purification

ends up with two copies |gs〉P ⊗ |gs〉A of the ground state inH P andH A. In contrast, a perfect
disentangling algorithm should be able to rotate |gs〉A into an unentangled product state |1〉A,
ending up with the state |gs〉P ⊗ |1〉A which has only half as much entanglement as the TFD.
The fact that we find a purification with an entanglement close to that of the ground state shows
that our algorithm can indeed find the minimum, i.e., it finds Ep.

Notably, we also find a maximum at intermediate β (although our algorithm suffers from
numerical instabilities in this region). This can be understood from the fact that the entanglement
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Figure 5.3 Half-chain entanglement entropy of the finite-temperature purification |ψβ〉 ∝ e−
β
2 Ĥ |ψ0〉 in

the generalized Ising model (5.11) with N = 50 sites, for the TFD state (Ûanc = 1̂, upper line) and when
disentangling up to four sites at once (lower line). The parameters Jx = hz = 1 and Jz = 0.1 are chosen to
be in the vicinity of the quantum phase transition. The diamonds on the right axis indicate the half-chain
entanglement Sgs (blue) and 2Sgs (red) of the ground state |gs〉 obtained from DMRG.
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Figure 5.5 (a) Comparison of the entanglement in the purification state |S+
N/2(t, β = 0)〉 = e−it ĤS+

N/2 |ψ0〉

for the Ising chain (5.11) with N = 40 sites, Jx = hz = 1, Jz = 0.1. (b) MPS bond dimension when the
truncation error is kept below 10−6 in each step. (c) Decay of the Schmidt values si on the central bond at
time t Jx = 2. In all panels, different colors compare different disentanglers Ûanc, and solid lines (dashed
lines) show the maximum (mean) over different bonds.

of purification has contributions from both quantum fluctuations and thermal fluctuations, and
the latter vanish for β→∞. A similar maximum is also present in the holographic prescription
for the entanglement of purification [296, 297]. Figure 5.4 shows that the maximum moves to
larger β when tuning hz towards the phase transition. We attribute this increase of βmax to
the closing energy gap which induces thermal fluctuations at smaller temperatures (and thus
additional entanglement entropy in the purified state on top of the ground-state entropy reached
in the limit β → ∞). In the symmetry-broken phase for hz . 0.75, the ground state is (for the
finite system almost) two-fold degenerate, and SLL′(β→∞) is increased by log(2) on top of the
ground-state entanglement entropy. We still observe a maximum of SLL′ at finite β in this phase,
yet less pronounced than in the paramagnetic phase.

5.3.2 Real time evolution at infinite temperature

Next, we consider the time evolution of a local operator applied to the infinite-temperature
purification |S+

N/2(t, β = 0)〉 = e−it Ĥ Ŝ+
N/2 |ψ0〉, where Ŝ+n = Ŝx

n + iŜy
n . Figure 5.5(a) compares the

resulting entanglement for no disentangling (Ûanc = 1̂), backward time evolution (Ûanc = eit Ĥ ),
and the optimized disentangler (Ûanc = Ûdisent) using the two-site disentanglers described in
Sec. 5.2.1 and Sec. 5.2.2. Note that for β = 0 backward time evolution is equivalent to
the Heisenberg evolution of S+

N/2. The maximum of the entropy over different bonds (solid
lines) grows roughly linear in all three cases, yet with very different prefactors. While the
growth is spatially almost uniform in the case Ûanc = 1̂, both the backward time evolution and
our optimized algorithm develop entropy only within a causal “light-cone,” which leads to a
significant reduction when the mean over different bonds is taken (dashed lines). Figure 5.5(b)
compares the growth of the requiredMPS bond dimensionwhen the truncation error is kept fixed.
Both backward time evolution and the optimized disentangler minimizing the entropy require
a slightly higher maximal bond dimension close to where Ŝ+

N/2 was applied. This apparent
contradiction of a larger bond dimension despite a lower entropy can be understood from the fact
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Figure 5.6 Comparison of the entanglement in the purification state |S+
N/2(t, β = 0)〉 = e−it ĤS+

N/2 |ψ0〉
for the Heisenberg chain (5.12) with N = 80 sites without disorder (W = 0) (a) and for a single disorder
realization with W = 5J (b). In both panels, different colors compare different disentanglers Ûanc, and
solid lines (dashed lines) show the maximum (mean) over different bonds,

that the entropy has large weight on the largest Schmidt values, but the required bond dimension
is determined by the decay of Schmidt values in the tail. Indeed, we show in Fig. 5.5(c) that the
optimization of the entropy leads to a reduction in the first few Schmidt values accompanied by a
slightly longer tail of small Schmidt values compared to Ûanc = 1̂. Nevertheless, the tail decays
faster than with backward time evolution. In contrast, when the two-site disentangler described
in Sec. 5.2.2 is used, we can indeed slightly reduce the required maximal bond dimension as a
proof of principle, even though in practice performing the optimization itself is computationally
more expensive than the speed-up gained by the reduced bond dimension. In this case, the
disentangler acts almost trivially in the region where S+

N/2 was applied, such that a larger tail of
the singular values is avoided. While this optimization reduced the bond dimension during the
real-time evolution, in the case of imaginary-time evolution we were not able to reduce the bond
dimension with the same method.
As a second example, we consider the S = 1/2 Heisenberg chain with disordered z-directed

field,

Ĥ = J
∑
n

®̂Sn · ®̂Sn+1 −
∑
n

hz
nŜz

n, (5.12)

where hz
n is chosen uniformly in the interval [−W,W]. This model has been established as a

standard model in the study of MBL [22, 23, 27] in one dimension. Numerically, a localization
transition was found to occur at Wc ≈ 3.5J [24, 33]. Figure 5.6(a) again compares the entan-
glement growth of |S+

N/2(t, β = 0)〉 for the three choices of Ûanc in the clean Heisenberg chain,
W = 0. While the entropy grows linearly when no disentangler is used, the integrability of the
Heisenberg chain and the presence of Sz conservation restricts the entanglement of time-evolved
local operators in the Heisenberg picture (here the “backward” evolution) to S(t) ∝ log(t) [298].
Our results are compatible with the same S(t) ∝ log(t) scaling when optimized, again with a
smaller prefactor. In the MBL phase [Fig. 5.6(b)], even Ûanc = 1̂ displays only a logarithmic
entanglement growth, which is a characteristic feature of the MBL phase [28–30,299].
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N/2 |ψ0〉 for the Heisenberg model

(5.12) with disorder strength (a) W = 0, (b) W = J, (c) W = 3J, and (d) W = 5J, each averaged over
30 disorder realizations. The white and gray solid lines show the contour for the onset of finite values at
a threshold of 0.01 and log(2). The dashed lines shows contours for the same threshold when backward
time evolution is used.



5.4. Conclusion 87

Next, we focus on the spatial spread of the entanglement in Ŝ+
N/2 |ψ0〉when using the optimized

disentangler, tracking SLL′ as a function of time t, and bipartition bond x, shown in Fig. 5.7. In the
thermalizing regime, at small W [Figs. 5.7(a) and (b)], we observe the expected linear light-cone
spreading [300]. Deep in the MBL phase [Fig. 5.7(d)] we find a qualitatively different spreading
which is compatible with a logarithmic light cone. This is as expected from a generalized Lieb-
Robinson bound E‖[Ârx (t), B̂r′x ]‖ ≤ c te

|rx−r
′
x |

2ξ , where ξ is the localization length and c > 0
some constant [301,302]. At intermediate disorder, near the MBL transition, we observe a sub-
linear spreading of the entanglement. Although there are extended eigenstates in this region, the
system is expected to be subdiffusive and exhibits only slow transport on very long time scales
(inaccessible to our numerical simulations) [35,38,247,266,303,304]. Since the backward time
evolution already reduces SLL′ to a zero (up to exponentially small corrections) outside of the
light cone, it is not surprising that the contours of the onset are nearly unchanged compared to
our optimized case.

5.4 Conclusion

In this chapter, we introduced an MPS-based method to find a unitary Ûanc acting on the
ancilla DoFs of a purification state, which reduces the entanglement both in equilibrium and
during real-time evolution, at a similar cost to the TEBD algorithm. At low temperatures, the
optimized entanglement entropy Ẽp is half as large as in the TFD state, providing evidence
that the algorithm actually finds the entanglement of purification Ep. We find a maximum of
Ẽp at intermediate β, the location of which diverges to βmax → ∞ as the gap closes. During
real-time evolution, the entanglement is significantly reduced both compared to Ûanc = 1̂ and
backward time evolution. In the clean Heisenberg chain, Ẽp shows a linear light-cone structure,
which turns to a logarithmic spreading in the MBL phase (at large disorder). The minimization
of the entanglement is, however, not directly accompanied by a reduction of the required bond
dimensions, as it leads to a larger tail of small Schmidt values. This limitationmight be overcome
by another choice of local disentanglers.
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6 Conclusion

The non-equilibrium physics of quantum many-body systems is an exciting research area with
many interesting aspects. For example, the MBL phase challenges the whole framework of
thermal equilibrium in closed quantum systems. Analytical calculations are often intractable
due to the necessity to consider a time evolution in a large Hilbert space. Large-scale numerical
simulations with tensor network techniques can aid us to explore new phenomena and gain a
better understanding of quantum many-body systems far out of equilibrium.
In this thesis, we focused on quenches, which are of relevance in experiments with ultra-cold

atoms in optical lattices. Motivated by recent experiments, we studied the 1D-to-2D crossover in
the sudden expansion of a cloud of strongly interacting bosons. We then analyzed the domain-
wall melting of fermions in the presence of disorder inducing a transition to an MBL phase.
Finally, we developed of a new method to find purifications with minimal entanglement.
Before we focused on physical systems, we gave a pedagogical introduction to efficient

simulations with tensor networks, in particular MPS. We explained the TEBD and DMRG
algorithms in finite and infinite systems, provided a practical guide how abelian symmetries
can be used to make the simulations more efficient, and discussed how one can find MPO
representations for generalmodels, in particular alsowhenmapping a 2D system to 1D.Moreover,
we presented a flexible program library called TeNPy.
We then turned to the sudden expansion of a cloud of strongly interacting bosons. We simulated

the expansion of up to 4 × 4 hard-core bosons on a square lattice. We found a bunching in the
momentum distribution function at quasimomenta compatible with energy conservation. This
could signal a dynamical condensation at finite quasimomenta. However, we cannot ultimately
clarify this, since it could also stem from surface effects and our simulations in the fully 2D
lattice are limited to short times due to the fast buildup of entanglement. We studied the 1D-
to-2D crossover further by considering long cylinders and ladders. We identified different time
regimes: the expansion of a block is equivalent to a domain-wall melting, until the first holes in
reach the center of the block at a time t2 proportional to the block width. Moreover, there is an
initial regime where the expansion in x-direction is independent of the hopping strength Jy in y-
direction. On the two-leg ladder, the melting of domain-walls becomes weakly time-dependent
and almost stationary, reflected in vanishing core velocities similar as in the experiments in
2D [178, 180]. Yet, we found significantly faster expansions for cylinders and ladders with
Ly = 3, 4. We explained this observation by an analysis of possible propagation modes in terms
of the eigenstates on a single ring of a cylinder or rung of a ladder. In agreement with this, we
found bunching at preferred momenta ky = ± π

2a and ky = ± π
2a .

Motivated by another experiment with ultracold atoms [45], we studied the effects of dis-
order on the expansion of fermions from a domain-wall initial state. We first summarized
the phenomenology of MBL. Then, we analyzed noninteracting fermions and showed that the
single-particle localization length can be extracted from the density profile at long times, and
that the localization-delocalization transition in the Aubry-André model can be identified from
the time-dependence of several quantities accessible to the experiment, such as the number of
propagating particles. In the interacting case, the transition between the ergodic and the MBL
phase can be located in a similar way. Hence, our work justifies the setup of the experiment
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in Ref. [45]. The density profile still shows exponential tails, which allows to give a straight-
forward definition of a localization length in the MBL phase. However, care must be taken since
the dynamics on the ergodic side of the transition becomes very slow.
Finally, we presented the development of a new, numerical method, which allows to find

purifications with minimal entanglement. The main idea is to find a disentangling unitary acting
on the ancilla DoFs of the purification state. At intermediate temperatures, we find a maximum
in the optimized entanglement entropy Ẽp, which diverges to βmax → ∞ as the gap closes. In
the presence of a gap, Ẽp is half as large as the entanglement entropy of the TFD state at low
temperatures, as expected for the entanglement of purification Ep. During a real-time evolution,
we were able to significantly reduce the entanglement both compared to Ûanc = 1̂ and backward
time evolution. In the clean Heisenberg chain, Ẽp shows the expected linear light-cone structure
after a local quench, which turns to a logarithmic spreading in the MBL phase at large disorder
strength. The ability to obtain a well-defined entanglement entropy of an infinite temperature
ensemble provides a new perspective on the MBL phase from a quantum information theory
viewpoint.
Altogether, the results of this thesis demonstrate once more that numerical simulations based

on tensor networks are a powerful and essential tool for the study of quantummany-body systems.
Despite the challenge in the dynamical growth of entanglement, one can extract many quantities
of physical interest from such simulations. The direct solution of the Schrödinger equation
allows to perform clean “numerical experiments” on a computer, which often allow for a direct
comparison with “analog quantum simulations” of ultracold atoms in optical lattices. The
presented TeNPy program library simplifies the setup of simulations based on tensor networks,
and we hope that it will find use in many future studies.
Simulations of 2D non-equilibrium quantum dynamics have the potential to uncover new,

exciting physics. For the sudden expansion of hard-core bosons, we had to leave the question of
a dynamical condensation at finite momenta open. The MBL phase challenges the established
framework of statistical mechanics and calls for a deeper understanding of thermalization in
closed quantum systems. In particular the existence of MBL in higher dimensions and the nature
of the phase transition are still under debate. Our method for finding purifications with minimal
entanglement did not lead to a reduction in the required MPS bond dimensions, hence we were
not able to simulate significantly longer times with our method. However, this could potentially
be overcome by another choice of local disentanglers.
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