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Summary

This thesis studies rings of invariants for linear actions of finite groups over Dedekind
domains. This means, for a Dedekind domain R and a finite group G C Gl,(R) we
consider the ring of invariants R[z1,...,2,]¢. We study different structural properties
of these rings and thereby generalize the corresponding well-known results for rings of
invariants over fields.

First we prove that under certain conditions the ring of invariants of a pseudoreflec-
tion group over R is regular, and, that under the same conditions it is isomorphic to
a polynomial ring over R if R is a principal ideal domain; this is a generalization of
classical results of Shephard, Todd, and Chevalley. Furthermore, in this context we char-
acterize all finitely generated regular graded R-algebras. Next we determine all finite
subgroups of Gi,,(R) for which the ring of invariants is factorial and those for which it is
a quasi-Gorenstein ring; this generalizes results of Nakajima and Broer over fields.

Finally we prove that for certain points x € R,, many structural properties of the
invariant ring of G are inherited by the invariant ring of the stabilizer subgroup G;.

Zusammenfassung

Diese Arbeit befasst sich mit den Invariantenringen fiir lineare Operationen endlicher
Gruppen iiber Dedekindringen. Das heifst, wir betrachten fiir einen Dedekindring R und
eine endliche Gruppe G C Gl,(R) den Invariantenring R[x1,...,2,]. Wir untersuchen
verschiedene Struktureigenschaften dieser Ringe und verallgemeinern damit die entspre-
chenden bekannten Resultate fiir Invariantenringe {iber Koérpern.

Zuerst zeigen wir, dass unter bestimmten Voraussetzungen der Invariantenring einer
Spiegelungsgruppe iiber R reguldr ist, und, dass er unter den gleichen Voraussetzungen
isomorph ist zu einem Polynomring iiber R, falls R ein Hauptidealring ist. Das ist eine
Verallgemeinerung klassischer Resultate von Shephard, Todd und Chevalley. Aufserdem
charakterisieren wir in diesem Zusammenhang alle endlich erzeugten reguldren gradu-
ierten R-Algebren. Danach bestimmen wir alle endlichen Untergruppen von Gi,,(R), fiir
die der Invariantenring faktoriell ist, sowie diejenigen, flir die der Invariantenring ein
Quasi-Gorensteinring ist. Das verallgemeinert Resultate von Nakajima und Broer iiber
Korpern.

Schlieflich zeigen wir fiir bestimmte Punkte x € R™, dass sich viele Struktureigen-
schaften des Invariantenringes von G auf den des Stabilisators G, iibertragen.






Contents

1 Introductionl

[2

Basics from invariant theory and commutative algebral

2.1 Rings of invariants| . . . . . . . . . . . L.
[2.2  Ramification and pseudoreflections| . . . . . . . . ... ... ...

2.5 Graded rings| . . . ... L

|3 Arithmetic invariants: first steps|
3.1 Basic properties|. . . . . . . . L
3.2 Examples . . . . . ..
B.3 Previousresults| . . . . . . . ..
|4 Regularity of arithmetic invariant rings|
4.1 Invariants ot pseudoreflection groups over discrete valuation rings| . . . . .
4.2 A characterization of regular graded algebras| . . . ... .. ... ... ..
4.3 Invariants of pseudorefliection groups over Dedekind domains|. . . . . . . .
|5 Reflexive modules, divisors, and Picard groups|
.1 Reflexive modules|. . . . . . . ... ..
b2  Divisorial ideals and divisors|. . . . . . . .. ..o o000
0.3  Divisor class groups| . . . . . ... ..
5.4 Picard groups| . . . . . . .
[6 Factoriality of rings of arithmetic invariants|
6.1  Group actions on algebras| . . . . . . . ... oL Lo
6.2 Group actions on polynomial rings| . . . .. ... ... ... ... L.
6.3 'T'he Picard group ot rings of invariants| . . . . . . .. .. ... ...
[7 The quasi-Gorenstein property for rings of arithmetic invariants|

[7.1 'The quasi-Gorenstein property for local rings| . . . . . ... ... ... ..

[7.5 Systems of parameters| . . . . . . . . . L.
[7.6  The canonical module ot a ring of invariants over a local ring| . . . . . ..

15
15
17
20

23

27
32

35
35
36
37
41

43
43
46
48



[8 Invariants of point stabilizers| 75

[8.1 Etale Morphisms| . . . . . . . . ... 75
8.2 Local properties|. . . . . . . . ... 76
8.3 Themain resultl. . . . . . . . . . e 78
9__Conclusionl 83
9.1 Summary of the main results] . . . . . .. ... ... ... ... ... 83

9.2 Outlookl . . . . . . .o 84



1 Introduction

Invariant theory is one of the classical applications of commutative algebra; in fact,
several of the early results in commutative algebra such as Hilbert’s basis theorem have
originally been developed in the context of invariant theory. While in its most general
setting, invariant theory studies the ring of invariants S¢ of any group G which acts by
automorphisms on a ring S, most of the classical theory is developed for the following
setting: let K be a field and let G be a group acting linearly on K™; this induces an action
on the polynomial ring S :== K[z1,...,2,]. Then one studies the subring K[zy,...,2,]¢
consisting of all polynomials which are invariant under this action of G. Among the many
references for this theory we especially mention the books by Benson [4] and Derksen
and Kemper [16].

If the group G is finite, then it was proved by Noether [47] that in the above setting
Klxy,... ,mn]G is a finitely generated K-algebra; however, in general not much can be
said about the structure of this ring, so it became an important part of invariant theory
to analyze for which groups G the ring of invariants K[z1,...,2,] has certain ring-
theoretic properties. The first main result in this direction is due to Shephard and Todd
[54] and states that in the case K = C the ring of invariants is isomorphic to a polynomial
ring if and only if G is generated by pseudoreflections; later this has been generalized to
arbitrary fields K in which |G| is invertible. Under the same assumption on |G| Hochster
and Eagon [29] proved that the ring of invariants is always a Cohen-Macaulay ring.

Also several other properties of rings of invariants have been studied; a summary of
those results which are important for us is given in Section [2.3] Furthermore, it has
been noticed that the ring of invariants of the stabilizer subgroup G, of a point x € K™
inherits many properties from the ring of invariants of G; for a systematic account on
results of this kind see Kemper [34].

Although Noether’s finiteness theorem holds for actions of finite groups on rings in
a much more general setting than just linear actions on polynomial rings over fields,
most of the work on the structure of the ring of invariants has been done only in this
special situation. The goal of this thesis is to generalize some of the classical structure
theorems for rings of invariants over fields to the case of an action of a finite group G on
Rlz1,...,xy,) induced by a linear action on R"™, where R is a sufficiently nice ring; these
are what I call arithmetic invariant rings. What “sufficiently nice” precisely means differs
between the sections of this thesis, but all main results are applicable if R is a Dedekind
domain.



1 Introduction

Previous work

To the best of my knowledge, no systematic account on invariant theory over rings is
yet available in the literature. Several results on invariant rings appear in the literature
which are formulated over arbitrary rings where this does not require much extra work; an
important example are Gébel’s results on invariant rings of permutation groups [22} 23].
Kemper [37] gave an algorithm for computing arithmetic invariant rings in the case where
Grobner basis computations are possible over the base ring R. For example, this is the
case if R is Euclidean. Furthermore, in [36] Kemper proved a result on the Cohen-
Macaulay defect of rings of invariants which does not need a base field. Notbohm [48]
studied the question of when the ring of invariants of an irreducible pseudoreflection
group over the p-adic integers for an odd prime p is isomorphic to a polynomial ring.

The Cohen-Macaulay property and some related properties of rings of invariants over
Z have been studied recently by Almuhaimeed [I]; a summary of her results along with
some other earlier results is given in Section The approach of Almuhaimeed is com-
plementary to the one used in this thesis in the following sense: most of Almuhaimeed’s
main results are useful mainly when one wants to know whether a ring of invariants for
which an explicit set of generators is already given has certain properties; on the other
hand, the main goal in this thesis is to prove these properties for the invariant rings of
certain classes of subgroups of Gl,,(R) so that one can decide whether a ring of invariants
has a certain property without computing a set of generators.

Qutline of the thesis

After recalling some basics from invariant theory and commutative algebra in Chapter
we begin our investigation of rings of arithmetic invariants in Chapter [3| by proving some
elementary general results on these rings and providing several examples emphasizing
different phenomena we will study in detail in later chapters. Chapter [3| ends with
a detailed summary of some previous results on the structure of rings of arithmetic
invariants.

Chapter H] studies a first important property of rings of arithmetic invariants: we
discuss the question of when a ring of arithmetic invariants is regular and closely related
the question of when it is isomorphic to a polynomial ring, so the goal of this chapter is
a generalization of the classical theorem of Shephard, Todd, and Chevalley to arithmetic
invariant rings. Along the way we prove a general result on the structure of finitely
generated regular graded algebras over Dedekind domains. The main results of Chapter
already appeared in [43].

The discussion of further properties of rings of arithmetic invariants requires some
special knowledge on several related topics in commutative algebra which we introduce
in Chapter 5} reflexive modules, divisorial ideals, divisor class groups, and Picard groups.

The theory of divisor class groups is used in Chapter [6]in order to answer the question
under which conditions a ring of arithmetic invariants is factorial; moreover, we compute
the Picard groups of rings of arithmetic invariants in this chapter. Chapter [7| contains
a discussion of the question under which conditions a ring of arithmetic invariants is a



quasi-Gorenstein ring. We begin this chapter with a summary of the basic properties of
canonical modules of local rings and a discussion of the quasi-Gorenstein property for
graded rings. In Section[7.5|we prove the existence of homogeneous systems of parameters
in rings of arithmetic invariants for certain classes of base rings; this is a result which
might be interesting in its own right. This is then used to compute the graded canonical
module of a ring of invariants over a local ring. Finally we prove our main result on the
quasi-Gorenstein property by putting the previous results together and hereby removing
the assumption that the base ring is local.

Finally in Chapter [§| we prove a result which shows that if the ring of arithmetic
invariants of some group has a certain property, then the rings of invariants of certain
stabilizer subgroups have the same property. This requires some basic results on étale
morphisms of schemes which are summarized at the beginning of that chapter.

Main results

The first main new result of this thesis (Theorem says that for the ring of invariants
R[x1,...,2,]¢ of a finite group G C G, (R) over a principal ideal domain R the following
two statements are equivalent:

(i) Rlz1,...,2,]¢ is isomorphic to a polynomial ring over R and G acts faithfully on
(R/p)" for every mazimal ideal p C R which contains |G)|.

(ii) The rings of invariants of G over Quot(R) and over all R/p where p C R is a
prime ideal are all isomorphic to polynomial rings and the homogeneous generators
of all these rings of invariants have the same degrees.

In particular, if the assumption on faithfullness in (7) is given, the theorem completely
characterizes those rings of invariants over principal ideal domains which are isomorphic
to polynomial rings. The theorem also contains a generalization of this result to the case
where R is only a Dedekind domain, although in this case the precise statement becomes
much more technical.

Our second main result is Theorem [6.5] which answers the question of when a ring of
invariants is factorial:

A ring of invariants Rlxy,...,x,|" with a finite group G C Gl,(R) and a Noetherian

normal domain R is factorial if and only if both R and Quot(R)[x1, ..., x,] are factorial.
More precisely, we will see that the divisor class group of R[z1,...,z,]¢ is the direct
product of the divisor class groups of R and Quot(R)[x1, ..., x,]"; the divisor class group

of Quot(R)[x1, . ..,2,]¢ is known by a classical result of Nakajima [45], see Theorem
Moreover, in this context we prove that under the same assumptions on R as above the
Picard groups of R and R[z1,...,2,]® are isomorphic, see Theorem note that the
Picard group of Quot(R)[x1,...,2,]¢ is always trivial by a result of Kang [31].

In Chapter [7] we prove a similar result for the quasi-Gorenstein property, see Defini-
tion The main result here is Theorem [L.56

A ring of invariants Rlxy,...,x,)¢ with a finite group G C Gl,(R) and a Dedekind
domain R is a quasi-Gorenstein ring if and only if Quot(R)[x1,...,x,|¢ is a quasi-
Gorenstein ring.
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In fact, the result holds for a more general class of base rings R which we call allowed
base rings, see Definition Again, the question of when Quot(R)[z1,...,2,]" is
quasi-Gorenstein is answered already; this is a result of Broer [§], see Theorem m
Moreover, we shall see that if |G| is invertible in R, then we can replace “quasi-Gorenstein”
by “Gorenstein” in the above statement. Along the way towards these results we also
prove that for a certain class of base rings R including all Noetherian local domains a
ring of invariants R[zq,. .. ,xn}G always contains a homogeneous system of parameters
(Corollary [7.38)).

In the last main result of this thesis (Theorem we consider an arbitrary Noethe-
rian domain R, a finite group G C Gl,(R), and a point x € R™ such that for every
maximal ideal m C R the stabilizer subgroups in G of x and of the ideal

{f € Rlz1,...,x,)|f(x) —xz € m} C R[z1,...,Ty)

coincide. Moreover let P be one of the following ring-theoretic properties: regularity, the
Gorenstein property, and the Cohen-Macaulay property. The theorem then states the
following:

If R[xy,...,2,]% satisfies P, then Rlxy,. .., 2,]% also satisfies P.

If R is an allowed base ring in the same sense as mentioned above, this also holds if P is
the quasi-Gorenstein property. Moreover, we prove that under the above assumptions we
have cmdef (R[z1, . .., 2,]%) < emdef(R[z1, ..., 2,]%), where cmdef denotes the Cohen-
Macaulay defect.

We finally mention that Section contains a summary on how the different ring-
theoretic properties of an arithmetic invariant ring considered in this thesis behave under
certain changes of the base ring and the group.

Conventions

In this thesis ‘ring” always means “commutative ring with one”. If R is a ring and

G C Gly(R) is a group and we consider an action of G on R[x1,...,x,] then this
always means the induced action on the symmetric algebra of the module (R™)* which
is isomorphic to R[z1,...,x,]. So for ¢ € G, f € R[z1,...,z,], * € R"™ we have

o(f)(x) = f(c~1(x)). By a graded ring we always mean a positively graded ring. If R is
a ring, then by a graded R-algebra S = Py, Sa we always mean a graded ring S with
So = R.
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2 Basics from invariant theory and
commutative algebra

This chapter is a summary of several basic results from invariant theory and commuta-
tive algebra which will be used throughout this thesis. In later chapters we also need
the theory of reflexive modules and divisor class groups; however, in order to avoid this
chapter to become overly long, the introduction of these concepts is postponed to Chap-

ter bl Furthermore, the theory of canonical modules is postponed to the beginning of
Chapter

2.1 Rings of invariants

This section contains some basic definitions and results from invariant theory. We begin
by recalling the definition of the ring of invariants.

Definition 2.1. Let S be a ring. For a subgroup G C Aut(S) we define the ring of
invariants as

SY .={feSNoeG:a(f)=f}

In this thesis we shall mostly consider the special case where S = R[xy, ..., z,] for some
ring R and G is a subgroup of Gi,(R); we then define the action of G on S as follows:
G acts on the dual M* of the free R-module M = R" via the dual representation,
ie. for o € G,f € M*,m € m we set (o(f))(m) = f(c~(m)). Now we can identify
S = R[x1,...,xy] with the symmetric algebra S(M*) and thus naturally extend the G-
action to S. So for o € G, f € S,m € R™ we have o(f)(m) = f(o~1(m)); if R is infinite,
we could also use this to define the action. In the following we only consider finite groups
G for which we have the following basic result due to Noether [47], see also Derksen and
Kemper [16, Proposition 3.0.1].

Theorem 2.2. (Noether’s finiteness theorem) Let R be a Noetherian ring, S a finitely
generated R-algebra and G C Autp(S) a finite subgroup. Then SC is again a finitely
generated R-algebra.

Proof. We can write S = Rlai,...,ay]). Then a; is a zero of the polynomial h; =
[I,eq(z —o(a;)) € SC[x]. Let A C S be the R-subalgebra generated by all coefficients
of the h;; by construction S is integral over A and hence a finitely generated A-module. As
it is a finitely generated R-algebra, A is Noetherian, so S¢ C S is also finitely generated
as an A-module. Since A is a finitely generated R-algebra, the claim follows. O

The above proof also shows the following:
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Proposition 2.3. Let R, S, and G be as in Theorem , Then S¢ C S is an integral
ring extension; in particular, dim(S%) = dim(S).

If S is an integral domain and G C Aut(S) a subgroup, then G also acts on Quot(S).
If G is finite, then for ¢ € Quot(S)“ we have

: b
% _ aHﬁEG;{lo(-igb(;( ) c Quot(SG)’
S

so Quot(S¥) = Quot(S)“. We also immediately obtain the following:

Lemma 2.4. Let S be an integral domain and let G C Aut(S) be a finite group. Then
SE = SN Quot(SF).

An important question in invariant theory is under which conditions a ring of invariants
SC inherits certain ring-theoretic properties from S. The following theorem is a first step
in this direction.

Theorem 2.5. (see Derksen and Kemper [16, Proposition 2.4.4]) Let S be a normal
domain and let G C Aut(S) be a finite group. Then S is again normal.

Proof. Let f € Quot(SY) C Quot(S) be integral over S¢. Since S is normal, we have
f€S. Sofe SNQuot(SY); by Lemma2.4|this implies f € S¢. Hence S¢ is normal. [

We end this section by introducing two important maps which can often be used to
construct elements in a ring of invariants.

Definition 2.6. Let S be a ring and let G C Aut(S) be a finite group.
a) The transfer Tr¢ is the map S — SC, f Y e o(f).
b) If |G| is invertible in S, then the Reynolds operator RS is the map S — SC,f —

ﬁTrG(f),

Both Tr“ and RS are homomorphisms of S¢-modules; the Reynolds operator has the
additional advantage that it is a projection map, i.e. for f € S¢ we have RE(f) = f.

2.2 Ramification and pseudoreflections

In this section we collect several basic facts concerning ramification of prime ideals which
will be needed several times in this thesis. As a general reference for this we mention
Broué [9, Chapter 3. For a ring A we define XM (A) :== {p € Spec(A)|ht(p) = 1}.

We fix a finite extension of normal domains A C B, where finite means that B is
finitely generated as an A-module. Let q € X()(B) and p == qN A. Then B, is a
discrete valuation ring and hence there is an e(q,p) € N such that pB; = qe(q’p)Bq.

Definition 2.7. Let A, B, q, and p be as above. The number e(q,p) is called the
ramification index of q over p. The ideal q is called unramified over A if e(q,p) = 1 and
the field extension Quot(B/q) D Quot(A/p) is separable; otherwise, it is called ramified.



2.2 Ramification and pseudoreflections

The following lemma is an immediate consequence of the definition of the ramification
index:

Lemma 2.8. Let A C B C C be finite extensions of Noetherian normal domains, p €
XY, ' =pNB, and p" :=pN A. Then we have e(p,p”) = e(p,p')e(p’, p").

Proof. We have

p"Cy = (p"By)Cp = (¢) ") By)Cy = ()P ¥,
— (p Cp) e(p’ p") _ = (p° e(p.p’ )Cp) e’ p") _ pe(p’p/)‘e(P':P”)Cp_

Now the lemma follows from the definition of the ramification index. O

From now on we set L := Quot(B) and K = Quot(A) and assume that the field
extension L/K is Galois with Galois group G. Since B is normal, G acts on B and since
A is also normal and B is integral over A we have A = BN K = B® by Lemma

Definition 2.9. The inertia group of a prime ideal ¢ € X (B) is the subgroup of G
consisting of all o € G for which 0(q) = q and o acts trivially on B/q; it is written as

G'(q).
The next lemma connects the inertia group and the notion of unramified primes.

Lemma 2.10. Let ¢ € X(W(B) and p == qN A. The ramification index e(q,p) divides
|G (q)|. In particular, if G*(q) = {id}, then e(q,p) = 1.

Proof. See [9, Proposition 3.4]. O
We give one further result on inertia groups here which we will need later:
Lemma 2.11. Let g € X(B) and ¢ == qnB%' @ ¢ XW(BF' @), Then G'(q') = {id}.

The following proof is an adaption of standrad arguments in algebraic number theory,
see Neukirch [46], Chapter I, §9].

Proof. Let o € G'(q') C Gal(LE" W /K); we need to show that o = id. There is a 71 €
Gal(L/K) such that 71|, gi(q, = 0; set q1 := 71(q), so we have qNBY @ = 7, (qnBE' @) =
m(q) = o(q') = ¢ = qN B (@, Then there is a 7 € Gal(L/L% @) C Gal(L/K) with
T2(q1) = q (see [9, Theorem 3.2]) and for 7 := m o7 € Gal(L/K) we have T’LGi(q) =0
and 7(q) = q. We now prove that 7 acts trivially on B/q; then we have 7 € G'(q) and
hence 0 = 7, gi(q) = id as desired.

We define F := Quot(B'®/q') and F := Quot(B/q). Since we know that o acts
trivially on BE"@ /¢’ it is sufficient to prove that the finite field extension F/F has no
nontrivial automorphisms. Let F® be the maximal separable extension of F' in F and
let 0 be a primitive element of the field extension F*/F. Since B¢ @) /¢’ C B/q is an
integral extension, there is an a € BE' (@ ) /¢ such that af € B/q. But a € F, so af
is again a primitive element of F /F and therefore we may assume that § € B / q. Let
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g € F[t] be the minimal polynomial of § over F; let § € B be a representative of . We
define f € BE@[t] to be the minimal polynomial of 8 over B (®); since B¢ (W) C B
is integral, f is monic and in particular the class f € F[t] of f is not zero. We have
F(0) =0, so g divides f. Now let § be an automorphism of F'/F. Then §(f) is a zero of
g and hence of f, so there is a zero §' € B of f such that @ = §(6) (f can be written as
a product of linear factors in B[t] because L/L% () is a normal field extension and B is
a normal domain). Since f is irreducible, there is a p € G*(q) = Gal(L/L% @) such that
p(0) = ¢'. By the definition of the inertia group, the induced automorphism 7 of F/F is
the identity, so 6(9) = 6’ = p(f) = p(f) = 6. Since O generates the field extension F*/F,
this implies 0| ps = id. But then § = id because F /F# is purely inseparable and therefore
does not have any non-trivial automorphisms. O

We now introduce pseudoreflections. These will play an essential role in several of the
theorems on ring-theoretic properties of rings of invariants in the next section. From now
on, we fix a field F'. We discuss generalizations of this concept to rings in Section

Definition 2.12.

a) A matriz o € Gl,,(F) is called a pseudoreflection if o # id, o is of finite order and o
fixes some (n — 1)-dimensional subspace of F™ elementwise.

b) A finite subgroup G C Gl,(F) is called a pseudoreflection group if G is generated by
pseudoreflections.

A pseudoreflection in Gi,,(R) is simply called a reflection and pseudoreflection groups
over R are usually called Coxeter groups. A diagonalizable matrix o is a pseudoreflection
if and only if all but one eigenvalue of ¢ is equal to 1 and the remaining eigenvalue is a
root of unity. Over fields of characteristic zero every pseudoreflection is diagonalizable;
in positive characteristic this is not true as here for example the matrix

o)

is a pseudoreflection which is not diagonalizable. Non-diagonalizable pseudoreflections
are called transvections. In the previous section we defined an action of Gi,(F') on
Flzy,...,zy]. Using this we can characterize pseudoreflections as follows:

Lemma 2.13. Let 0 € Gl (F). Then o is a pseudoreflection if and only if the height of
the ideal in F[z1,...,x,] generated by (o —id)(F[z1,...,xy,)) is one.

This motivates the following definition (see Nakajima [45]):

Definition 2.14. Let S be an F-algebra. An automorphism o € Autp(S) is called a
generalized reflection if the height of the ideal in S generated by (o —id)(S) is one.

For later use, we also note the following:

Lemma 2.15. Let 0,7 € Gl,,(K) and assume that o is a pseudoreflection. Then 7~ loT

is again a pseudoreflection. In particular, if G C Gl,(K) is a subgroup and N C G is
the subgroup of G generated by all pseudoreflections in G, then N is a normal subgroup
of G.



2.3 Properties of invariant rings over fields

The next proposition gives a connection between ramification and pseudoreflections:

Proposition 2.16. Let S := Flx1,...,x,] be the polynomial ring in n variables over F
and let G C Gl,,(F) be a finite group; again, we view the elements of G as automorphisms
of S. Let g € X(D(S) and o € G*(q)\{id} C G. Then o is a pseudoreflection.

Proof. See Broué [9, Proposition 3.7]. O

2.3 Properties of invariant rings over fields

Let F be a field and let G C Gl,,(F') be a finite group. In this section we collect some re-
sults answering the question under which conditions the ring of invariants F[z1,...,2,]¢
has certain nice properties; these questions form one of the main branches of invariant
theory of finite groups. The main goal of this thesis is to develop analogous results in
the case where the field F' is replaced by some ring R. Invariant theory over F' often
becomes much simpler when char(F') does not divide |G|; this is called the nonmodular
case. The more complicated case where char(F') divides |G| is called the modular case.

The simplest possible structure Flzq, ..., xn]G can have is that it is isomorphic to a
polynomial ring over F' or, equivalently, that it is generated by n algebraically indepen-
dent elements; note that dim(F[x1, . ..,2,]) = n by Proposition In the nonmodular
case we have the following theorem:

Theorem 2.17. Assume that char(F) { |G|. Then the following two statements are
equivalent:

(i) Flzy,...,2,]% is isomorphic to a polynomial ring.

(ii) G is a pseudoreflection group.
If char(F) divides |G|, then the implication (i) = (it) still holds.

This has first been proved by Shephard and Todd [54] in the case F' = C and then
by Chevalley [12] in the case F' = R; it was noted later that Chevalley’s proof works for
arbitrary fields with char(F) { |G|. Another proof of this result has been given by Smith
[55]. The implication (i) = (ii) for arbitrary fields is due to Serre [52]. A proof of the
whole theorem can also be found in Benson’s book [4, Theorem 7.2.1].

For the next result, we need the notion of a character:

Definition 2.18. Let G be a group and let R be a ring. An (R-valued) character of G
s a group homomorphism G — R*.

Now we can formulate the following theorem due to Nakajima [45] which fully answers
the question under which conditions F[zy,...,x,]¢ is factorial.

Theorem 2.19. Let N C G be the subgroup generated by all pseudoreflections in G.
The ring of invariants Flx1, ..., x,]% is factorial if and only if every F-valued character
of G is uniquely determined by its restriction to N or, equivalently, if and only if every
F-valued character which takes the value one on every pseudoreflection takes the value
one on all elements of G.
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In the nonmodular case, the question of when a ring of invariants is a Cohen-Macaulay
ring is answered by the following theorem by Hochster and Eagon [29]:

Theorem 2.20. Let F be a field and let G C Gl,,(F) be a finite group such that char(F) {
|G|. Then the ring of invariants Flxy,...,x,]% is a Cohen-Macaulay ring.

The question under which conditions F[zy,...,2,]¢ is a Gorenstein ring has been
studied by several people. The following theorem answeres this under the assumption
that G contains no pseudoreflections. It is due to Watanabe [59] 60] in the nonmodular
case and due to Braun [6] in the modular case.

Theorem 2.21. Assume that G does not contain a pseudoreflection. Then the following
two conditions are equivalent:

(i) Flxy,...,2,)¢ is a Gorenstein ring.

(i) Flx1,...,2,)% is a Cohen-Macaulay ring and G C Si,,(F).

This result has been generalized to the case where G may contain pseudoreflections
by Broer [§] and Fleischmann and Woodcock [I§]. Since their result requires some more
terminology, we postpone its statement to Chapter [7] see Theorem [7.30]

2.4 Dedekind domains

Dedekind domains will play a crucial role throughout this thesis, so it may be helpful to
briefly recall some important results about them here; as a standard reference for this
topic we use Neukirch [46]. We begin with the definition.

Definition 2.22. A Dedekind domain is o Noetherian normal integral domain of Krull
dimension at most one.

Example 2.23.

a) Every principal ideal domain is a Dedekind domain.

b) If K is an algebraic number field, then the ring of algebraic integers Ok is a Dedekind
domain.

c) More generally, if R is a Dedekind domain, K := Quot(R), and L/K is a finite field
extension, then the integral closure of R in L is again a Dedekind domain (see [46]
Chapter I, Proposition 12.8]).

d) Let K be an algebraically closed field and let C' be an irreducible smooth affine curve
over K. Then the coordinate ring K[C] is a Dedekind domain.

In a factorial domain, every ideal of height one is principal (see Bruns and Herzog [11]
Lemma 2.2.17]), so we obtain the following lemma:

Lemma 2.24. A Dedekind domain is factorial if and only if it is a principal ideal domain.

We will also frequently use the following local characterization of Dedekind domains.

10
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Proposition 2.25. ([46, Chapter I, Proposition 11.5]) A Noetherian integral domain R
is a Dedekind domain if and only if for every prime ideal p C R the localization Ry is
either a field or a discrete valuation ring. In particular, every local Dedekind domain is
either a field or a discrete valuation ring and hence a principal ideal domain.

An immediate consequence of this is the following:

Proposition 2.26. Every Dedekind domain is a reqular ring and hence also a Gorenstein
ring and a Cohen-Macaulay ring.

Next we introduce fractional ideals; for later use we define them for arbitrary Noethe-
rian domains, not just for Dedekind domains.

Definition 2.27. Let R be a Noetherian domain.
a) A fractional ideal of R is a nonzero finitely generated R-submodule of Quot(R).
b) For two fractional ideals I and J their product is defined as

IJ = {Zaibim eN,q; €1,b; € J}.

i=1

c) A fractional ideal is called principal if it is generated by one element as an R-module.
d) For a fractional ideal I, the inverse of I is defined as

I™' = {a € Quot(R)|al C R}
and I is called invertible if II™' = R.

One important property of a Dedekind domain R is that the set of all fractional
ideals of R forms an abelian group Jg with respect to the product defined above ([46]
Chapter I, Proposition 3.8]); in particular, in a Dedekind domain every fractional ideal
is invertible. The principal fractional ideals form a subgroup Pr C Jp and the factor
group CI(R) := Jgr/Pg is called the ideal class group of R. Now Lemma says that
R is factorial of and only if CI(R) = {1}. In Section we discuss a generalization of
the ideal class group to a larger class of domains.

Over a principal ideal domain every finitely generated torsion-free module is free. This
is not true anymore over a Dedekind domain; however, there is still a nice description of
such modules.

Theorem 2.28. Let R be a Dedekind domain and let M be a finitely generated torsion-

free R-module. Then the following holds:

a) M is projective.

b) If M # {0}, then there exist an n € Ny and a nonzero ideal I C R such that M =
R™ @ I. The number n is uniquely determined and the class of the ideal I in Cl(R)
1s uniquely determined by M. In particular, I is a principal ideal if and only of M is
free.

Proof. See for example Curtis and Reiner [14) Theorem 4.13]. O

11
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2.5 Graded rings

This section contains some basic results about graded rings which will be needed through-
out this thesis. As a general reference we mention Bruns and Herzog |11, Section 1.5].
For us a graded ring is always a positively graded ring, that is, a ring S which can be
written as S = @deNo Sq (direct sum of additive groups) such that Sy -S. C Sy for
all d,e € Ng. If R is any ring, then by a graded R-algebra we always mean a graded
ring S = @deNo Sg with Sp 2 R. An ideal [ in a graded ring S is called homogeneous
if for f =3 en, fa € I with fq € Sy for all d each f; is again in I. Moreover we define

St = Daso Sa-

Lemma 2.29. Let S be a graded ring. The homogeneous mazimal ideals in S are pre-
cisely the ideals of the form (n,Sy)s where n is a mazimal ideal in Sy. Moreover, every
homogeneous ideal in S is contained in a homogeneous maximal ideal.

Proof. Let n C Sy be a maximal ideal and set m := (n,S;)s. Then S/m = Sy/n, so
m is indeed a maximal ideal. Conversely, let m’ be a homogeneous maximal ideal in S.
Then m’ NSy is a proper ideal in Sy, so there exists a maximal ideal n C Sy such that
m’' NSy C n. Since m’ is a homogeneous ideal, we obtain m" C m := (n, S;)s and since
m’ is maximal, this implies m’ = m and hence m’ is of the desired form.

For the second statement, let I be any homogeneous ideal. Then there is a maximal
ideal n C Sy such that I NSy C n, so every homogeneous element of I is contained in
m = (n,5;)s and hence I C m because I is homogeneous. By the first statement m is a
homogeneous maximal ideal, so the second statement follows. O

The literature on graded rings often focuses on graded rings S for which Sy is a field.
When we want to do invariant theory over rings, then we obviously need more general
graded rings; it turns out that there is a particularly nice theory for so-called *local
graded rings.

Definition 2.30. A graded ring is called *local if it contains only one homogeneous
mazimal ideal.

By Lemma a graded ring §' = EBneNo Sy, is *local if and only if Sy is a local ring.
In this case, the unique homogeneous maximal ideal in S is (m, S} )s where m is the
unique maximal ideal in Sg.

For a graded ring S and an Sp-algebra A we can define a natural grading on S’ :=
S ®g, A by setting (5")4 := Sq ®g, A for each d. In particular, for a prime ideal p C S
S ®s, (So)p becomes a *local graded ring. This often allows us to reduce to the case of
*local graded rings and is the main reason why *local rings are important for us. We can
also describe this ring as a localization: S ®g, (So)p = (So\p)~*S.

Next we discuss homogeneous prime ideals.

Definition 2.31. Let S be a graded ring and let I C S be any ideal. Then we define I*
to be the homogeneous ideal in S generated by all homogeneous elements of I.

12
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Clearly if I is a homogeneous ideal, then I* = I. Now let p be a prime ideal in a
graded ring S. Then p* is again a prime ideal ([II, Lemma 1.5.6]); moreover, we have
the following:

Lemma 2.32. (Matijevic and Roberts [40, Lemma 1|, see also [IIl Theorem 1.5.8])
Let S be a graded ring and let p C S be a non-homogeneous prime ideal in S. Then

ht(p*) = ht(p) — 1.
This lemma has the following consequence, see also Eisenbud [17, Corollary 13.7].

Lemma 2.33. Let S be a graded ring with dim S < oo. Then there is a homogeneous
mazimal ideal m C S with ht(m) = dim(.5).

Proof. Let my be any maximal ideal in S with ht(mg) = dim(S). If mg is already
homogeneous, we are done. Otherwise, by Lemma mg is a homogeneous prime
ideal with ht(m{) = dim(S) — 1. Since m{j C mp, m{ is not a maximal ideal, so by

Lemma there is a homogeneous maximal ideal m C S such that m{j C m and hence
ht(m) > ht(mf) = dim(S) — 1, so ht(m) = dim(.5). O

We will often need to check whether a graded ring has certain ring-theoretic properties.
For many properties this can be checked at localizations at graded prime ideals. Here
we give a slight reformulation of these results which will turn out to be the most useful
version for our purposes.

Proposition 2.34. Let S be o Noetherian graded ring. Then the following statements
are equivalent.

(i) S is regular.

(1) For every homogeneous mazimal ideal m C S the localization Sy is reqular.

(iii) For every mazimal ideal p C Sy the ring S ®s, (S0)p = (So\p) 'R is regular.

Proof. Tt is well known that (i) implies (¢i7) (see [1I, Corollary 2.2.9]). Next we prove
that (#i7) implies (77): let m C R be a homogeneous maximal ideal, then m = (p, S )g for
some maximal ideal p C Sy by Lemma [2.29] Since So\p C S\m, Sy is a localization of
(So\p) 1S and hence regular by (iii). Finally, we prove that (ii) implies (7). In order to
prove that S is regular, it is sufficient to prove that Sy is regular for every homogeneous
prime ideal q C S (see [I1, Exercise 2.2.24]). By Lemma there is a homogeneous
maximal ideal m C S with ¢ C m. Then S, is regular by assumption. But since q C m,
Sq can be viewed as a localization of Sy, so Sy is also regular (see [11, Corollary 2.2.9]).
The claim follows. O

Similarly, we can prove the following two results; instead of [I1, Exercise 2.2.24] we
use [L1], Exercise 2.1.27] and |11}, Exercise 3.6.20].

Proposition 2.35. Let S be a Noetherian graded ring. Then the following statements
are equivalent.
(i) S is a Cohen-Macaulay ring.

13
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(i1) For every homogeneous mazimal ideal m C S the localization Sy is a Cohen-
Macaulay ring.

(iii) For every mazimal ideal p C So the ring S ®s, (So)p = (So\p)~1S is a Cohen-
Macaulay ring.

Proposition 2.36. Let S be a Noetherian graded ring. Then the following statements
are equivalent.
(1) S is a Gorenstein ring.
(11) For every homogeneous mazimal ideal m C S the localization Sy is a Gorenstein
Ting.
(ii1) For every mazimal ideal p C Sy the ring S @s, (So)p = (So\p)~1S is a Gorenstein
ring.

We end this section by giving some results on graded modules, see for example Brod-
mann and Sharp [7, Section 13.1]. Let S be a graded ring; a graded S-module is an
S-module M which, as an abelian group, can be written as M = @, M. such that for
all d € Ny, e € Z we have Sg- M C Mgy.. For a graded module M and m € Z let M(m)
be the graded module given by M(m)e := M, ye.

Definition 2.37. Let S be a graded ring and let M and N be graded S-modules. A
homomorphism ¢ : M — N is called homogeneous of degree d € 7 if for every e € Z

we have (M) C Ngie. The set of all such homomorphisms is written as Homg(M, N).
We define *Homg (M, N) := @ o, Homg(M, N).

Each Homy(M, N) is an abelian group and *Homg(M, N) is a graded S-module. A
homomorphism of graded modules is simply called homogeneous if it is homogeneous of
degree zero. We define the category *C(.S) whose objects are graded S-modules and whose
morphisms are homogeneous homomorphisms (of degree zero) of S-modules. Then *C(S5)
is an abelian category ([7, 13.1.7(i)]); for every graded S-module M there is a surjective
homogeneous homomorphism P — M for some graded free S-module P, so M has a
free resolution in *C(S); we call such a resolution a graded free resolution of M. We
can use this to define a graded version of the Ext-functor: for a fixed graded module N
the functor *Hom(-, N) : *C(S) — *C(5) is left exact (|7, Exercise 13.1.8(ii)]), so we can
make the following definition.

Definition 2.38. The functor *Exts(-, N) is the r-th right derived functor of *Hom(-, N).
More concretely, let Py be a graded free resolution of M. Then *Exts(M, N) is the r-th
cohomology module of the cochain complex *Hom(P,, M).

In many situations, the graded *Ext-module and the usual Ext-module are the same
object:

Lemma 2.39. ([7, Exercise 13.1.8(iv)]) Let S be a graded ring and let M and N be graded
S-modules. Assume that S is Noetherian and M is finitely generated. Then for every r >
0 we have *Extq(M, N) = Extq(M, N); in particular *Homg(M, N) = Homg(M, N).

14



3 Arithmetic invariants: first steps

In this chapter we begin the investigation of rings of arithmetic invariants, i.e. rings of
invariants of the form R[z1,...,7,]¢ where R need not be a field. The first section
contains some elementary properties of these rings. The second section gives several
examples of rings of invariants over the integers which show the different behaviour that
can occur for these rings. The third section is a collection of several results concerning
properties of rings of arithmetic invariants which can be found in the literature.

3.1 Basic properties

Let R be aring and let G C Gl,,(R) be a finite group. As usual, G acts on the polynomial
ring S := R[z1,..., 2, via the dual representation on (R")* C S((R")*) = R[z1,...,Zn).
The goal of this thesis is to study the properties of the ring of invariants S¢. In this
section we begin with some basic properties. First of all Theorem [2.2] and Proposition
yield the following:

Proposition 3.1. Let R be a Noetherian ring and let S and G be as above. Then the
following holds:

a) SC is finitely generated as an R-algebra.

b) The ring extension S C S is integral.

We now want to study what happens when we change the base ring R. Let R’ be any R-
algebra. Then we get a canonical homomorphism Gl,,(R) — Gl,(R’) and hence a natural
R'-representation of G C Gl,(R), although this representation need not be faithful. We
write Sgr = S ®r R’ = R/[r1,...,2,]. We have a canonical map S — Sg/ which is
compatible with the G-action, so we obtain a canonical homomorphism S¢ — Sg, the
image of which is S¢ ®z R’. In general, this map will not be surjective even if G acts
faithfully on (R')", as Example in the next section shows. The situation becomes
much better if we consider the special case that R is an integral domain and R’ is a
localization of R. In this case we have the following:

Proposition 3.2. Let R be an integral domain and let U C R\{0} be a multiplicative

subset. Then with S and G as above, the following statements hold:

a) UT1(SY) = (U19)Y. In particular, every set of generators of S as an R-algebra
also generates (U™1S)Y as an U~ R-algebra.

b) SC = (U18)NS.

Proof. Since G acts trivially on R and hence on U, we have U~!(S%) C (U71S)%. On
the other hand, if 5 € (U718)% where f € S and a € U, then a € R C S, so we must
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also have f € S¢. Hence g € U1(S9), so the proof of a) is complete. For part b) we
now have (U~18)9 NS = U~1(S%) NS = S, where the second equality again follows
from the fact that G acts trivially on U. O

The next proposition provides a relation between generators of the invariant ring over
R and generators of the invariant rings over Ry, for maximal ideals m C R.

Proposition 3.3. Let R be an integral domain. Assume thatl there are fi1,..., fm €
R[x1,...,2,)% such that Ry[z1,...,2,]% = Rulf1,. .., fm] for every mazimal ideal m C
R. Then Rlzy,...,2,)% = R[f1,..., fm].

Proof. We claim that for arbitrary gi,..., 9, € R[z1,...,x,] we have

Rlgi,-.s0l= (] Rulor,--- 9.

meSpec R)

max(

It is clear that the left hand side is contained in the right, so let f be an element of the
right hand side. We define I := {a € R|af € Rlg1,...,gr]}. Certainly I is an ideal in R
and we need to show that I = R. Assume the contrary: then there is a maximal ideal
m C R such that I C m. We have f € Rulg1,-..,9-] = (R\m)"'R|[g1,..., 9], so there
is a b € R\m such that bf € R|[g1,...,9,]. But then b € I, contradicting the assumption
that 7 C m.

As a special case we have R[z1,...,Zn] = Nnespec, . (r) im[21, - .., 2n] and hence also
Rlz1,...,2,)% = Nmespec, . (r) Bmlz1, .. ,2,]%. So by using the assumption and the
above equality we obtain:

Rlfi,....fml= () RBulft,...fml= [\  Bulzi,...,2.% =Rla1,... 2y
mespeCII]aX(R) mespecll]aX(R)
O

The first part of Proposition shows that if we know the ring of invariants over one
base ring R, then we also know it over every localization of R. On the contrary, if we pass
from R to a quotient ring R/I for some ideal I C R, then there is no easy connection
between the invariants over R and over R/I. In particular, the natural homomorphism
Rlzy1,...,2,)¢ — (R/I)[z1,...,2,]% need not be surjective, see Example [3.10, The
situation becomes much better if |G| is a unit in R:

Lemma 3.4. Let R be a ring and let I C R be a prime ideal. Let G C Gl (R) be a finite

group such that |G| is a unit in R. Then the canonical projection map p : R[x1,...,x,] —
(R/I)[x1,...,xn] restricts to a surjective homomorphism
Rlz1,...,xz,)% = (R/D)[z1,. .., 2,]C.

Proof. Let g € (R/I)[x1,...,2,]¢ and let fo € R[z1,...,z,] with p(fo) = g. Since |G|
is a unit in R, we have the Reynolds operator

Ra: Rlzy,... 0] = Rlzy, .20, f Y a(f).
ceG
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We define f = Rg(fo) € R[r1,...,2,)%. Then we have p(f) = ﬁzgeep(a(fo)) =
‘?1” Y ooeco((fo)) = ﬁZaeG o(g) = g where in the last step we used that g is an
invariant. Hence g is indeed in the image of p[g[, . .16 O

We will see in Lemma below that for certain groups G C Gl,(R) the projection
map p as in Lemma is always surjective even if |G| is not a unit in R.

In order to formulate arithmetic analogues for the theorems from Section in later
chapters, we will need the notion of a pseudoreflection over rings.

Definition 3.5. Let R be an integral domain and K := Quot(R). We call a matriz
A € Gl (R) a pseudoreflection if it is a pseudoreflection in Gl,(K).

Remark 3.6. The analogue of Lemma is false over rings. Consider the matrix o :=
—id € Gly(Z) for some n > 1. Then o is clearly not a pseudoreflection in GI,(Q), but
(0 —id)(S) C (2)s where S :=Z[x1,...,zy] and hence ht(((o —1d)(S5))s) = 1 by Krull’s
principal ideal theorem:.

We immediately get the following result:

Proposition 3.7. Let R be an integral domain and let G C Gl,(R) be a finite group
such that the ring of invariants R[xy, ..., x,|¢ is isomorphic to a polynomial ring. Then
G s a pseudoreflection group.

Proof. Let K = Quot(R). Then Klx1,...,2,]¢ is also isomorphic to a polynomial ring
by Proposition Now the claim follws from Theorem O

The type of examples of arithmetic invariant rings we are mainly interested in is the
following. Let G C Gli,,(C) be a finite group such that the entries of all matrices in G are
algebraic integers. Then there is some number field K with ring of integers R such that
G C Gl,(R). In this situation we want to study the ring of invariants R[x1,...,2,]¢ and
compare it to K[z1,...,2,]. This naturally determines the class of base rings we are
mainly interested in: the ring of integers in a number field is always a Dedekind domain,
so our main goal is to study rings of invariants R[xy,... ,xn}G where R is a Dedekind
domain. However, whenever this is possible without too much extra effort, we formulate
our results in greater generality.

3.2 Examples

In this section we present several examples of arithmetic invariants rings, some of which
we will use again as counterexamples in later chapters.

Ezample 3.8. Let R be any ring and let .S, be the symmetric group viewed as the group
of all permutation matrices in Gi,(R). Then the fundamental theorem on symmetric
polynomials (see for example Lang [39, Chapter IV, Theorem 6.1]) tells us that the ring
of invariants R[x1, ..., x,]°" is generated by the elementary symmetric polynomials

Sk 1= Z Hxij (k=1,...,n).

1<i1 <. <ip<nj=1
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So in this example, the generators of the invariant ring do not depend on R; in par-
ticular, for every R-algebra R’ we have R'[xy,...,2,]%" = R'[z1,...,2,]°" ®r S. This
holds in a more general situation:

Lemma 3.9. Let R be a ring and let G C Gl,(R) be a permutation group, i.e. every
element of G just permutes the standard basis of R™. Then for every R-algebra R’ we
have R'[x1,...,2,)¢ = R[x1,...,2,]° ®r R'.

Proof. Gobel [22] proved that the ring of invariants of a permutation group G over an

arbitrary ring A is generated by all orbit sums of monomials in Az, ..., z,], that is, all
sums of the form Zue{a(t)|aea} u where t € Axy,...,2z,] is a monomial. In particular,
this holds both for A = R and for A = R, so R[zy,...,x,]¢ generates R'[zy,...,x,]°
as an R'-algebra. From this, the lemma follows. O

The following example shows that there really are new phenomena in arithmetic in-
variant theory which do not occur over fields.

Ezample 3.10. We consider the local ring R := Z3) as a base ring and the group G' C
Gla(R) generated be the two matrices

01 1 -1
(o)-(o 2)

This is a finite group isomorphic to the symmetric group Ss, so |G| = 6. We first
consider the ring of invariants of this group over Q = Quot(R). It contains the two
polynomials fi := 2% — a2y + y2, fo := 223 — 322y — 32y® + 2y3. Since the Jacobian
determinant of f; and fo is 272xy(y — x) # 0 and |G| = deg(f1) - deg(f2) it follows
that Q[z,y]® = Q[f1, f2], see Kemper [32, Proposition 16]. We can also consider the
ring of invariants over the residue field F3 = R/(3); it contains the two polynomials
g1 := x4y, g2 = 2ry? + 23y + 2%y* with Jacobian determinant xy? + 22y3 — 23y — zy
and as above we obtain F3[z,y]% = F3[g1, g2]. So the rings of invariants over Q and F3
are both isomorphic to polynomial rings. However, we shall see now that R|z, y]G is not
isomorphic to a polynomial ring. Assume there exist invariants hi, he € Rz, y]® such
that R[x,y]% = R[h1,hs]. Since dim(R[z,y]%) = dim(R[z,y]) = 3 = dim(R) + 2, Iy
and hg are algebraically independent over R, so by Lemma below we may assume
that hy and ho are homogeneous. Then we also have Q[z,y]® = Q[h1, ho] and since by
the above Q[m,y]G contains elements of degrees 2 and 3, but no elements of degree 1,
this is only possible if the degrees of hy and hy are 2 and 3. Since Q[z,y]% = Q[f1, f2],
every invariant of degree 2 is a scalar multiple of fi. So h; = ¢ f1 for some ¢; € R and
since f1 € R[hi, he] and h; and hy must be algebraically independent we have ¢; € R*.
Similarly there is a ca € R* such that cafa = he, so R[hi, he] = R[f1, f2] and hence if
R[z,]¢ is isomorphic to a polynomial ring, then R[z,y]% = R[f1, fo]. But this is not the
case: k := 2—17(4]”% — f2)is in R[z,y]%, but since f; and f, are algebraically independent
and 5- ¢ R, we have k ¢ R[f1, f2]. This proves that R[z,y]“ is not isomorphic to a
polynomial ring. We will revisit this example in Chapter [4] and will there be able to give
a better explanation of what happens here.
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In the above example we used the following lemma:

Lemma 3.11. Let R be a principal ideal domain and let S be a graded R-algebra gener-
ated by elements f1,..., fn which are algebraically independent over R. Then there exist
homogeneous elements gi,...,g9n € S such that S = R[g1,...,gn]

Proof. By assumption, S is isomorphic to the polynomial ring in n variables over R, so
S is a regular ring, see Bruns and Herzog [11, Theorem 2.2.13]; hence the lemma is a
special case of Corollary in the next chapter. However, for this special case we can
also give a more elementary proof.

Since Sy = R we may assume that fi,...,f, € S.. Then fi,...,f, generate S,
as an ideal in S and their classes generate M = S/ Si as an R-module. Next we
show that M is a free R-module: since fi,..., f, are algebraically independent over R,
B = {f{"--- fi*le1,...,en € No} is a basis of S as an R-module. Then B\{1} is a basis
of Sy as an R-module and B\{1, fi,..., f,} is a basis of 52 as an R-module. This shows
that we have S; = 5% & (f1,..., fo)r and hence M = S, /S% = (f,..., fn)r is free of
rank n.

Furthermore, M is a graded S-module since Sy and Si are homogeneous ideals, so
we can write M = @), My. Each My is a direct summand of M as an R-module, M
is free, and R is a principal ideal domain, so each My is again free and hence M has
a basis {g1, ..., gn} consisting of homogeneous elements. We can choose representatives
Jis---,9n € Sy of these classes which are homogeneous in S. By the graded version of
Nakayama’s lemma (see Derksen and Kemper [16, Lemma 3.7.1]; they state the result
only for graded rings S in which Sy is a field, but this assumption is not needed in
their proof) we obtain that ¢,..., g, generate S; as an ideal in S. Then we also have
S = R|g1,.--,9n], see Bruns and Herzog [I1], Proposition 1.5.4]. O

The following example taken from Almuhaimeed [I, Example 6.2.23] shows that similar
phenomena as in the previous example for the question of being a polynomial ring can
also occur for the Cohen-Macaulay property.

Ezample 3.12. We consider the following matrix in Gl3(Z):

1 0 1
U=10 0 -1
01 0

Then the group G = (U) is of order 4. Almuhaimeed calculated the ring of invariants
Z[x1, x2, 23] explicitly and proved that it is not Cohen-Macaulay. However, Q[zy, x2, 23]¢
is Cohen-Macaulay by Theorem and by a result of Smith [56] also the ring of invari-
ants of G' over I, is Cohen-Macaulay for every prime p.

It is proven in [I] that up to conjugation the group G given in the previous example is
the only finite subgroup of Gl3(Z) with a non-Cohen-Macaulay invariant ring. Further-
more, in [Il Example 6.2.26] an example of a finite subgroup of Gl4(Z) which also has a
non-Cohen-Macaulay ring of invariants is given. In both examples, it follows from Theo-
rem that the ring of invariants over Q is not Gorenstein. Here is an example, where
the ring of invariants over Z is not Cohen-Macaulay, while the one over Q is Gorenstein.
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Ezample 3.13. Let G = {1,0} be the cyclic group of order 2. Then we define a Z-linear
action of G on M = Z? where ¢ acts by interchanging the two components of an element
of M. This induces an action of G on M™ 2 72" for all n € N. With S := Z[x1, ..., 29,]
we can now study the ring of invariants (S(™)% given by this action of G on M™. We
claim that for a suitable choice of n, (S™)¢ @z Q is Gorenstein while (S()¢ is not
Cohen-Macaulay.

For n > 1, 0 does not act as a pseudoreflection on M", so by Watanabe’s Theorem
, (S)E @7 Q is Gorenstein if and only if the determinant of ¢ as an element of

Glan(Z) is one. But o acts on M via the matrix (0 ), so this determinant is (—1)"

1
10
and hence (S™)% @7 Q is Gorenstein for all even n.

Now assume that (S(™)¢ is Cohen-Macaulay. Then (S()¢ @7 Fy = (S™)/(2) is
again Cohen-Macaulay (see Bruns and Herzog, [11, Theorem 2.1.3(a)]). Since G acts on
M™ as a permutation group, (S)%®zF, is isomorphic to (S ®zF)¢ by Lemma3.9] It
follows from Kemper [33, Corollary 2.4] that this ring of invariants is not Cohen-Macaulay
for sufficiently large n. Hence the same is true for (S()%; so if n is sufficiently large and
even, then indeed we have both desired properties. In fact, it follows from [33, Remark
2.5] that we can choose n = 4.

3.3 Previous results

In this section we collect some results on arithmetic invariant rings available in the
literature which address questions related to those we discuss in the subsequent chapters.
We begin with the following generalization of Theorem [2.20] Already in Hochster’s and
Eagon’s article [29] Proposition 13] it is proven that whenever a finite group G acts by
automorphisms on a Cohen-Macaulay ring S in which |G| is invertible, then the ring
of invariants S¢ is again a Cohen-Macaulay ring; see Kemper [36, Theorem 1.1] for a
generalization of this result. In our setting, it implies the following:

Theorem 3.14. Let R be a Cohen-Macaulay ring and let G C Gl,(R) be a finite group
such that |G| is a unit in R. Then R[x1,...,2,]% is again a Cohen-Macaulay ring.

Further results concerning the Cohen-Macaulay property for rings of invariants over Z
have been obtained by Almuhaimeed [I]. Although we will not use these theorems in this
thesis, they address questions similar to those discussed in this thesis, so it seems appro-
priate to mention these results here. Perhaps the most important result of Almuhaimeed
is the following:

Theorem 3.15. (Almuhaimeed [I, Corollary 6.2.12 and Theorem 6.2.15]) Let G C

Gln(Z) be a finite group.

a) Zlxy,...,1,)¢ is Cohen-Macaulay if and only if for every prime number p which
divides |G| the ring Z[x1, ..., 2,]/(p) is Cohen-Macaulay.

b) If for every Sylow subgroup P C G the ring of invariants Z[xy, ..., z,]
Macaulay, then Z[x, ..., x,]% is also Cohen-Macaulay.

P is Cohen-
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3.3 Previous results

Note that the ring Z[z1, ..., 2,]/(p) occurring in Theorem is in general not the
same as the invariant ring Fplzq, ... ,2,]%. Furthermore, Almuhaimeed proved a result
similar to Theorem [3.15p) for the Gorenstein property:

Theorem 3.16. (Almuhaimeed [I, Theorem 6.3.2]) Let G C Gl,(Z) be a finite group.
Then the following statements are equivalent.

(i) Zlxy, ..., 2,)¢ is Gorenstein.
(ii) For every prime number p, the ring Z[x1,...,x,)%/(p) is Gorenstein.
(i4i) For every prime number p which divides |G|, the rings Z[xy,...,x,)%/(p) and
Q[z1,...,2,]9 are Gorenstein.

Remark 3.17. In [I] in statement (iii) of the previous theorem instead of the condition
that Q[z1,...,2,]¢ is Gorenstein one finds the condition that the Hilbert series H of
Q[z1,...,x,]9 satisfies H(%) = (=1)"tPH(t) for some p € Z. By a result of Stanley [57,
Theorem 4.4| these two conditions are equivalent.

Moreover, Almuhaimeed proved the following result concerning the question of when

a ring of invariants over the integers is isomorphic to a polynomial ring.

Theorem 3.18. (Almuhaimeed [I, Theorem 6.4.2 (ii)]) Let G C Gl,(Z) be a finite

group and let f1,..., fn be a homogeneous system of parameters in Z[x,.. .,xn]G (see
Definition such that T[;_, deg(fi) = |G|. If G acts faithfully on Fy for every prime
number p or Z[xy, ..., 1, is Cohen-Macaulay, then Zlxy, ..., x,)% = Z[f1,..., fal.

Note that Example is not a contradiction to Theorem as in that example f;
and f» do not form a system of parameters in R[x,y]® because the invariant k occurring
in the example is not integral over R[f1, fa].
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4 Regularity of arithmetic invariant rings

By the Chevalley-Shephard-Todd theorem (Theorem the ring of invariants of a
finite group G over a field in the nonmodular case is isomorphic to a polynomial ring if
and only if G is a pseudoreflection group. Smith’s proof [55] of this result is based on the
fact that a finitely generated graded algebra over a field is isomorphic to a polynomial
ring if and only if it is regular, or equivalently, if and only if its global dimension is finite.

The goal of this chapter is to generalize these results to invariant rings over Dedekind
domains. In the first section we prove criteria which in many cases allow to decide whether
a ring of invariants over a discrete valuation ring is isomorphic to a polynomial ring (and
hence regular) once we know the rings of invariants over the quotient field and over the
residue field. In order to extend these results to general Dedekind domains, we need a
characterization of regular graded algebras over Dedekind domains. This is the content
of Section [£.2] Tt turns out that regular graded algebras over principal ideal domains
are always isomorphic to polynomial rings while over Dedekind domains the situation is
slightly more complicated. In the last section of this chapter the previous results are put
together in order to analyze the structure of invariant rings of pseudoreflection groups
over Dedekind domains.

The main results of this chapter have already appeared in [43].

4.1 Invariants of pseudoreflection groups over discrete
valuation rings

In this section we always assume that R is a discrete valuation ring with maximal ideal
(), quotient field K := Quot(R), and residue field F' := R/(mw). We define S :=
Rlzi,...,xy), Sk := S®r K = K[z1,...,2,], and Sp := S ®r F = Flx1,...,z,] and
consider a finite subgroup G C Gl,(R). The object we are interested in is the ring
of invariants S¢. Assume we have homogeneous invariants fi,..., fn € S¢ such that
SIG( = K|[f1,..., fn]; these are then necessarily algebraically independent over K because
dim(S¥) = dim(Sk) = n. The following lemma answers the question of whether we also
have S¢ = R[f1,..., fa)-

Lemma 4.1. With the notation as above we have S¢ = R[f1,..., fn] if and only if the
classes of f1,..., fn in Sp are algebraically independent over F.

Proof. Let f; be the class of f; in F[zy,...,x,]. First assume that S¢ = R[f1,-., fnl
and suppose that there is a polynomial p € F[y1,...,y,]\{0} such that p(f1,..., fn) = 0.
Choose a p € R[y1, ..., yn] such that p is the class of p in Flyy,...,yn].- Then 71 p, but

wlp(fi,.. ., fn), SO g = %p(fl,...,fn) € S but %p ¢ Rlyi,...,yn] and hence g ¢
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4 Regularity of arithmetic invariant rings

R[f1,..., fn] because fi,..., f, are algebraically independent over K. This contradicts
S = R[f1,..., fn], 50 fi,..., fn are algebraically independent over F.

Now we assume that fi,..., f, are algebraically independent and prove that we then
have S¢ = R[f1,..., fn]. Solet g € S&; then g € S¢ = K[f1,..., f.] and hence there is a
polynomial p € K[y1,...,yn] such that g = p(f1,..., fn). Assume that p & Rly1,...,yn]
and let [ € N be minimal such that 7'p € R[y1, ..., yxs]; by our assumption we have [ > 0.
Hence, the class of 7lg = 7lp(f1,..., fu) in Flz1,...,2,] is zero and since f1,..., f, are
algebraically independent over F, this proves that the class of 7'p in Fly, ... ,yn] is zero.
But then 7 divides 7'p in Ry, ...,yn] and we obtain a contradiction to the minimality
of [. So we must have [ = 0, so p € R[y1,...,¥,] and hence g € R[f1,..., fn]- O

Ezample 4.2. Let R = Z3); then we have K = Quot(R) = Q and F' = R/(2) = Fa. We
consider the symmetric group G = S, acting on R? by permuting the two components.
Then the ring of invariants over K is K|[z1, J:Q]G = K[z +29, 1122) = K[21+ 2, 23 +23].
While 21 4+ 22 and z129 are algebraically independent over F', x1 + x2 and x% + x% are
not as 7 + 23 = (1 + x2)?> € F[z1,72]. So by Lemma we have R[ry,29]¢ =
R[x1 + w2, 1172) # R[z1 + 72,23 + 23]. Indeed,

1
T1T9 = 5((@?1 +22)° — (2] + 23)) ¢ Rlw1 + 22,27 + 23]

because x1 + z2 and 23 + 23 are algebraically independent over R.

We now want to use Lemmato prove sufficient conditions for S¢ to be a polynomial
ring. For this we need the following lemma on invariant rings over fields.

Lemma 4.3. Let K be any field and let G C Gl,(K) be a finite group such that
f([xl, e ,:Un]G is a polynomial ring. Furthermore let f1,..., fn € f([xl, . ,xn}G be ho-
mogeneous polynomials which are algebraically independent over K. Then the following
statemfznts are eqm’valenf.’

(i) Klz1,...,2.]% = K[f1,..., fn].

(i) deg(f1)---deg(fn) = |GI.

(i) deg(f1)---deg(fn) < |G|

Proof. The equivalence of (i) and (i7) is a result of Kemper [32, Proposition 16] and it
is clear that (i) implies (4i7). It remains to prove that (iii) implies (i7). For this we
need to show that deg(f1)---deg(fn) < |G| is impossible. By assumption there exist
homogeneous invariants g1, . . ., g, such that K[zy,...,2,]% = Kl[g1, ..., gn]. We change
the order of the f; and g; in such a way that deg(f;) < deg(f;) and deg(g;) < deg(g;) for
all ¢ < j. Since we already know that (7) implies (i), we obtain that deg(g1) - - - deg(gn) =
|G|. Now assume deg(f1) ---deg(fn) < |G|; then there must be an index i such that d :=
deg(f;) < deg(gi). Let A be the K-subalgebra of K[z1, ..., 2,|" generated by all elements
of degree at most d; then A is contained in the f(—algebra generated by g1,...,g;—1; in
particular, the transcendence degree of A is at most i—1. But f1,...,f; € 4,80 f1,..., f;
cannot be algebraically independent, a contradiction to the assumption. O

Now we can prove the desired sufficient condition for S to be a polynomial ring:
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4.1 Invariants of pseudoreflection groups over discrete valuation rings

Proposition 4.4. Assume that both S[G( and Sg are isomorphic to polynomial rings
over K and F, respectively and that they are generated by homogeneous invariants of the
same degrees, i.e. we have SG = K[f1,..., fn] and SE = Flg1,...,gn] such that all f;
and g; are homogeneous and deg(f;) = deg(g;) for each i. Then SC is isomorphic to a
polynomial ring over R.

Proof. Let d € Ny. From the assumptions we immediately get that
dimg (S%)a = dimp(SF)4.

Here (S%)4 denotes the degree-d-part of the graded ring S% and similarly for (S%),.
Since R is a discrete valuation ring and hence a principal ideal domain, SdG is a finitely
generated free R-module; let B = {p1,...,pn} be a basis; then B is also a basis of the
K-vector space (SIG{)d. Let p; be the image of p; under the canonical map S¢ — Sg and
B :={p1,...,Pm}. We claim that B is F-linearly independent. For this we need to show
that if we have Aq,..., Ay, € R such that A\ip1 + ... + A\pypp, is divisible by 7, then each
A; is divisible by m. We have

D P €SF =(p1 o .pm)r
i=1

and hence indeed % € Rsincepy, ..., pm are K-linearly independent, so the claim follows.
The equality of dimensions above now shows that B is a basis of (S%),. Overall we have
now proved that the canonical map ¢ : S¢ — Sg is surjective. By assumption there
are homogeneous ¢i,...,gn € Sg such that Sg = Flg1,...,9n). Choose homogeneous
h; € S¢ such that ¢(h;) = g;. Furthermore by assumption there are homogeneous
fiyeoos fn € SG such that S¢ = K[f1,..., f,] and deg(h;) = deg(g:) = deg(f;) for each
i. So we have deg(hy)---deg(h,) = deg(f1)---deg(fn) = |G| by Lemma Using
Lemma again we obtain S¢ = K[hi,...,hy]. Since p(h1) = g1,...,¢(hn) = gn are
algebraically independent over F', Lemma shows that S¢ = R[hy, ..., hy). O

An important special case of Proposition is the following;:

Corollary 4.5. If G is generated by pseudoreflections and |G| is invertible in R, then
SY is a polynomial ring over R.

Proof. Since |G| is invertible in R, it is also invertible in K and in F, so both S& and
S}C;' are isomorphic to polynomial rings by Theorem Let g1, ..., 9n be homogeneous
generators of S%. By Lemmawe have deg(g1) - - - deg(gn) = |G| < |G|, where G is the
image of G in Gl,,(F). Let ¢ denote the projection map S — Sp and for i =1,...,n we
choose homogeneous f; € S& such that o(f;) = g; (such elements exist by Lemma .
Then the f; are algebraically independent over R and thus also over K. Furthermore
we have deg(f;) = deg(gi), so deg(f1)---deg(fn) < |G|. Lemma now implies that
S¢ = K[fi1,..., fa]. Using Proposition we obtain that S is indeed isomorphic to a
polynomial ring. O

25



4 Regularity of arithmetic invariant rings

For the proof of the next theorem we need that if a graded algebra over a field is
isomorphic to a polynomial ring, then the degrees of the homogeneous generators are
uniquely determined. Since this does not cause any extra difficulties, we prove this over
rings.

Lemma 4.6. Let B = @deNo Bg be a graded ring and A .= By. Let fi,..., fn, G155 Gn
be homogeneous elements of S such that the set of all f; and the set of all g; are both
algebraically independent over A. Assume that for i < j we have deg(f;) < deg(f;) and
deg(g;) < deg(gj). Then if Alf1,..., fn] = Alg1,...,9n] we have deg(f;) = deg(g;) for

each 1.

Proof. For d € N let Cy be the subalgebra of B generated by all elements of degree at
most d. Let mg be the largest m € N such that deg(f,,) < d and let m/, be the largest
deg(gm) < d. Then we have Cy = A[f1,..., fm,] = Alg1, ... ,gm&] because the f; and g;
are homogeneous. Because of the algebraic independence of the f; and the g; we then
obtain that both mg and m/, are equal to the transcendence degree of Cy over A; in
particular mgq = m/,. Since this is true for all d, the lemma follows. O

We can now prove a partial converse of Proposition Note that F™ becomes a
representation of G via the canonical map Gl,(R) — Gl (F).

Theorem 4.7. Assume that S[G( = K|fi,..., fn] for certain homogeneous elements
fi,-.., fn. Then the following two statements are equivalent.
(i) There are homogeneous elements gi,...,gn € S such that S& = F[g1, ..., gn) and

deg(g;) = deg(f;) for each 1.
(ii) SC is isomorphic to a polynomial ring and G acts faithfully on F™.

So if we assume that G acts faithfully on F™, then the converse of Proposition is
true.

Proof. We first prove that (i) implies (i7). So suppose that (i) holds; then the first part
of (i7) follows from Proposition Let a : G — Gln(F) be the canonical map. By
Lemma [4.3| we have |G| = deg(f1) - - - deg(f,) and |im(c)| = deg(g1) - - - deg(gn), so by (i)

we have |G| = |[im(a)|; hence « is injective and this just means that the action of G on
F™ is faithful.
Now we assume that (4i) holds. Then S¢ = Rl[hi,...,h,] for certain homogeneous

h; € SC. Since the h; then also generate Sg, by Lemma we can change the order of
the h; in such a way that deg(h;) = deg(f;) for each i. Let g; be the class of h; in SG.
Using Lemma [4.3| we get deg(g1) - - - deg(gn) = deg(hi) - - - deg(hy,) = |G|. By Lemma[4.1]
the g; are algebraically independent over F', so Sg = Flg1,...,9n) by Lemma ; note
that G acts faithfully on F™ by assumption. By construction we have deg(g;) = deg(h;) =
deg(fi), so (i) follows. O

Example 4.8. We can now also understand better what happens in Example|3.10] There
we have the base ring R = Z3) which is a discrete valuation ring with quotient field
K = Q and residue field F' = F3. As we have seen, although the rings of invariants over
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K and F' are both polynomial rings, their generators do not have the same degrees, so
statement (i) of Theorem is not satisfied, but the action of G on F? is faithful. So
Theorem shows that indeed the ring of invariants over R cannot be a polynomial
ring. By looking at the proof of Proposition we see that really the reason for this is
that the classes in Flx,y] of fi and fo as defined in Example are not algebraically
independent. Indeed, f; = ¢? and f = 2g3.

4.2 A characterization of regular graded algebras

As mentioned at the beginning of this chapter, every finitely generated regular graded
algebra over a field is isomorphic to a polynomial ring. This is not true anymore for
graded algebras over Dedekind domains; in order to give a counterexample, the following
definition is useful.

Definition 4.9. Let R be a ring and let I C R be a nonzero ideal. The blowup algebra
of I in R is the graded algebra
BiR:= P I

deNg

If [ is a principal ideal, then ByR = R[x|. Now let R be a Dedekind domain which is
not a principal ideal domain and let (0) # I C R be an ideal; Lemma[f.14k) below shows
that the blowup algebra By R is always regular; however, if I is not a principal ideal, then
Bj R is not isomorphic to a polynomial ring, so we have the desired counterexample. The
main goal of this section is to prove that this is essentially the only kind of counterexample
that can occur; more precisely, we prove the following:

Theorem 4.10. Let R be a Dedekind domain and let S be a finitely generated reqular
graded R-algebra. Then there exist nonzero ideals I, ..., I, C R such that

S=BL,R®r---®r B, R
where n = dim S — dim R.

In the case where R is a principal ideal domain this theorem immediately implies the
following:

Corollary 4.11. Let R be a principal ideal domain and let S be a finitely generated
reqular graded R-algebra. Then S is isomorphic to a polynomial ring over R.

In general, a necessary condition for a graded algebra S = Py, Sa to be isomorphic
to a polynomial ring is that Sy is a free R-module for each d. The next theorem shows
that this is also sufficient.

Theorem 4.12. Let R be a Dedekind domain and let S = @deNo Sq be a finitely gener-
ated reqular graded R-algebra. Then S is isomorphic to a polynomial ring over R if and
only if Sq is a free R-module for every d € Ny.
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4 Regularity of arithmetic invariant rings

The remainder of this section is devoted to the proof of Theorems and In
order to simplify the notation, we make the following definition:

Definition 4.13. Let R be a ring and let I, ..., I, be nonzero ideals in R. Then we
write
BIh---JnR = BIIR XRpr - QR B[nR.

Before we go on, we make some remarks on the algebras By, 1, R. If we choose an
embedding I; — R for each I;, these give an embedding of By, . 1, R to the n-fold tensor
product R[z| ®p ... g R[z] which is the same as the polynomial ring R[z1,...,%,]. So

if I; is generated by elements a;; € R,j € J; for some index sets Ji,...,J,, then we
can identify By, . 1, R with the subalgebra of R[z1,...,z,] generated by all the a;;x;.
Now we choose natural numbers di,...,d, and turn R[zy,...,z,] into a graded ring

by setting deg(z;) = d;. Then all the a;;x; are homogeneous, so By, 1, becomes a
graded subalgebra; this is the same as the tensor product of the algebras By, R viewed
as graded algebras with the grading given by det(a) = d; for all a € I;. The proof of
Theorem will show that in this way we can define a grading on By, . 1, R such that
the isomorphism in the theorem is homogeneous.

We first prove some basic properties of the algebras By, . 1, R:

Lemma 4.14. Let R be o ring and let I, ..., I, C R be nonzero ideals.

a) For a multiplicative subset U C R we have UY(By,, 1, R) = BU—lll,...,U—lan_lR-
b) If I,. .., I, are principal ideals, then By, 1, R= R[x1,...,2y).

¢) If R is a Dedekind domain, then By, 1, R is regular.

Proof. For i =1,...,n we have

U'BLR=U"'" P |=PUu'=FU 'L =By, 'R
deNg deNy deNp

From this we obtain

U '(Bn,..,,R) =U" (B,R®R ... ®r B, R)
= (U™'BLR)@y-1g ... @u-1g (U 'BL,R)
= (By-1,U'R) @y-1g - ®y-1g (By-1,U ' R)
— BU_lfl,...,U_lln U_IR.
This proves part a) and b) is clear. For part ¢), by Proposition we need to show that
for every maximal ideal p C R the ring (R\p) ' By, 1, R is regular. We set U := R\p.
Then U™'R = R, is a discrete valuation ring, so each U~'I; is a principal ideal. Hence

by a) and b) U*IBIL._,,[,IR = Rylx1,. .., 2y and this ring is regular because R is regular.
OJ

In Theorems and we did not assume that S is an integral domain. We
need this generality, although the invariant rings we are interested in are always integral
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domains, because our proof of the main theorems is by induction on dim S and it is not
obvious that the rings we consider remain integral domains after the induction step. On
the other hand, the algebras By, . 1, R are always integral domains, so the first main
step in our proof is the following lemma.

Lemma 4.15. Let R and S be as in Theorem[{.10, Then S is an integral domain.

Proof. We first show that S is torsion-free as an R-module. So let f € S\{0} and
It := {a € Rlaf = 0}; we want to show that I; = {0}. We may assume that f is
homogeneous. Iy is a proper ideal in R, so there is a maximal ideal ny C R with Iy C ny.
We define my := (ns, 54 )g; by Lemmathis is a maximal ideal in S. The localization
Swm, 1s a regular local ring and hence an integral domain; let ¢ denote the canonical map
S — Sw,. For a € Iy we have €(a) - £(f) = 0 and hence either e(a) = 0 or (f) = 0. So
there exists ¢ € R\my such that c-a =0 or ¢- f = 0; let ¢o denote the degree-0-part of c.
We have cg-a = 0 or ¢p- f = 0 because a and f are homogeneous. Since ¢ ¢ Sy C my, we
have ¢y # 0. But R is an integral domain, so c¢y-a = 0 implies a = 0 as desired. It remains
to show that the case cp - f = 0 cannot occur. Indeed this would imply ¢y € Iy C my
and since ¢ — cg € S C my we would obtain ¢ € my, a contradiction. So we have shown
that Iy = {0} for every f and hence S is a torsion-free R-module.

Now we prove that S is indeed an integral domain. So assume we have s,t € S\{0}
such that s-t = 0. S is a prime ideal in S and since S is regular, the localization
Ss. is a regular local ring and hence an integral domain; let 7 denote the canonical map
S — Ss., so we have n(s) - n(t) = 0 and hence either n(s) = 0 or n(t) = 0. Without loss
of generality, we assume 7)(s) = 0; then there is a u € S\Sy such that u-s = 0. We write
s = ZmENo Sm With s, € S, for every m. Let d € Ny be minimal such that s; # 0 and
let ug be the degree-0-part of u; since u ¢ Sy we have ug # 0. The degree-d-part of u - s
is ug - 54 and this is zero since u - s = 0. But we already proved that S is torsion-free as
an R = Sp-module and hence ug # 0 implies sq = 0, a contradiction. ]

Using this we can prove a simple special case of Theorem which will later serve
as the starting point for our proof by induction.

Lemma 4.16. Let R and S be as in Theorem and assume that dim(S) = dim(R).
Then S = Sy = R.

Proof. We have ht(S;) < dim(S) — dim(S/S+) = dim(S) — dim(R) = 0 and, since S is
an integral domain by Lemma this implies S = (0), so S = Sp as claimed. O

The next step is the computation of the Krull dimension of the algebras By, . 1, R:

Lemma 4.17. Let R be a Dedekind domain and let I,..., I, be nonzero ideals in R.
Then

dim(By, .1, R) =n+dimR.
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In the special case of a polynomial ring over R this is a well-known result. Our proof
here is a direct generalization of this standard proof; it uses the concept of a fiber ring.
Recall that for a ring homomorphism ¢ : S — T and a prime ideal p C S the fiber
ring of p is the ring x(p) ®s T where k(p) = Quot(S/p). If S and T are Noetherian
and p = ¢~ !(q) for some prime ideal q C T, then dim(x(p) ®s T) > ht(q) — ht(p) (see
Kemper [35, Theorem 7.12]).

Proof. Let P C R be a prime ideal with ht(P) = dim(R). Then using Lemma and
the fact that Rp is a principal ideal domain we obtain

dim(BIl [nR) = dim(RP[iﬁl,...,.’Iin]) =n-+dmR

----------

In order to prove the reverse inequality we use induction on n. The case n = 0 is clear,
so we assume n > 0 and define S := By, .1, R, T := By, . ,R,and ¢ : S =T =
S®g Br, R, f — f®1. By induction we have dim(S) < n — 1+ dim(R) and we want
to show dim(7T") < n + dim(R). Let ¢ C T be a prime ideal and p := p~1(q); the claim
follows if we prove that ht(q) < ht(p) + 1. We prove this inequality using the fiber ring
k(p) ®s T. We have

k(p) ®s T = k(p) ®s (S ®r Br, R)

=~ x(p) @k B, R = P (k(p) @r I}).
deNg

As an algebra over k(p), this is generated by x(p) ®pg I, which is isomorphic to a sub-
vectorspace of k(p) ®g R = k(p). Hence k(p) ®g T is generated by one element as an
k(p)-algebra, so its dimension is indeed at most one. The claim follows using the formula
for fiber dimension mentioned before this proof. O

The central part of the proof of Theorems and is now the following lemma,
which may seem rather technical at first glance.

Lemma 4.18. Let R be a Dedekind domain and let S be a finitely generated reqular
graded R-algebra such that Sy # S. Let d € Nsg be minimal such that Sq # {0}. Using
Theorem [2.28 we can write Sq = I ® M where I is isomorphic to some ideal (0) # I C R
and M is a free R-module; set J := (I)g. Then the following holds:

a) T :=S/J is again a reqular ring.

b) If S; is a free R-module for each i € Ny, then also T; is a free R-module for each i.
¢) If T =By  1,R, then S= By, 1, 1R.

Proof.

a) By Proposition it is sufficient to show that T} is regular for every homogeneous
maximal ideal n C T, so fix such an ideal n. By Lemma n = (p, T4 ) for some
maximal ideal p C R. Let m := (p,S;)g; then n = m/J (note that J C S, C m).
Hence we have T,, = Sy /Jm and Sy, is regular. We prove that Jy is a principal ideal
generated by some element g € I such that g ¢ (my)2. Then the regularity of T}
follows, see Bruns and Herzog [11], Proposition 2.2.4].

30



4.2 A characterization of regular graded algebras

Let Up := R\p. Then Uy 'S is a graded ring with (U;'S)o = Uy 'R = R,, which is
a discrete valuation ring. We have (U; ' S)q = I, @ M,, where I, is isomorphic to an
ideal in Ry, hence a principal ideal. Let g be a generator of this ideal; we may choose
g in such a way that g € I. Then U(;IJ = (g)Uo_ls and since we can view Sy as a

localization of Uy 'S, we find Jy = (9)s,-

It remains to prove that g ¢ (my)2. Assume the contrary; then there is an h € S\m
such that gh € m?. We write h = ZieNo h; with h; € S;; since S; C m we have hy ¢ p,
in particular hg # 0. Since ghg is the degree-d-part of gh and m? is a homogeneous
ideal, we have ghg € m?, so ghy = Zj v;0; for certain v;,d; € m. We may assume
that all v;,0; are homogeneous and deg(v;d;) = d for each j. By the choice of d we
may assume without loss of generality that deg(vy;) = 0 and deg(d;) = d for every j.
So 6; € Sg = 1® M and we can write §; = A\; + p; with A\; € I, u; € M. So we
have ghg = Zj ViAj + Ej il Since hg € R and g € I, we have ghg € I and hence
ghg = Zj vjAj. By our choice of g and the fact that A\; € I there are n; € R, such
that A\; = n;g9. We thus have ghy =g - (ZJ yjnj) and hence ho =}, ;n; since S is
an integral domain by Lemma . There are elements 6; € R,w € R\p such that
n; = % for each j. We obtain how = Zj 7,05, a contradiction: the left hand side is
not an element of p, but the right hand side is an element of R Nm = p since v; € p
for each j.

Since Sy is free, I = R by Theorem ), so J; 2 8;_gq foralli >d. If T; = {0},
then there is nothing to show, so assume T; # {0}; in particular ¢ > d. By part
a) and Lemma T is an integral domain and hence T; is torsion-free. So by
Theorem ) we have T; 2 R & I’ for some [ > 0 and some nonzero ideal I’ C R.
The canonical projection S — T restricts to a surjective homomorphism of R-modules
S; — T; with kernel J;. Since T; is a projective R-module by Theorem ) we obtain
S =2 Ti@J; = ReI'®S;_q. Since S; and S;_q are free by assumption, I’ is a principal
ideal by Theorem ) and hence T; = R' @ I' is a free R-module.

Let o : By,,..1,® — T be an isomorphism and let § : S — T be the canonical
projection map; then § is a homogeneous homomorphism of R-modules. By part a)
and Lemma T is an integral domain; hence each T; is a projective R-module
by Theorem ) Thus there is an injective homogeneous homomorphism of R-
modules 3 : T — S with S o 3 = id. We can view each By R as a subalgebra of
Br,,...1, R, so we can also view I; C By, R as an R-submodule of By, . 1, R. We define
Il .= B'(a(1;)) € S; since a and [ are injective, this is isomorphic to I; and hence we
can define a homomorphism of R-algebras v; : By, R — S such that for a € I; C B, R
we have 1;(a) = f'(a(a)) and hence 5(v);(a)) = a(a). Since I; generates By, R as an R-
algebra, we have fo1); = a|p, r. Since I is also an R-submodule of S we can similarly
define a ring homomorphismz UYn+1 @ BrR — S§. We obtain ring homomorphisms
Qo =1 @...Q Yy, By, ..1,R— S and ¢ 1= pg@Yp41: By, .1, 1R — 5. Since we
have fo); = O[’BIZ-R7 we obtain £ o ¢y = a.

It remains to prove that ¢ is an isomorphism. We first prove that it is surjective. So
let ¢ € S be homogeneous; we use induction on deg(t) to prove that ¢t € img. The case
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4 Regularity of arithmetic invariant rings

degt = 0 is clear, so we assume degt > 0 and define s := po(a~1(B(t))) € imgpy C
imgp. Since 5o pg = «, we have 5(s) = (t) and thus s — ¢t € ker § = J. Since J is
generated by I C Sy we find elements a; € S,r; € I such that s —t = >, a;r; and
dega; = degt — d for each j. Then for each j we have a; € im¢y by induction and
rj € imp4q1 C imp. So t = s+ Zj a;r; € imy and hence ¢ is indeed surjective.
Therefore ht(ker ¢) = 0 since dim S > dimT+1 = n+dim R+1 = dim(By, . 1, 1R) by
Lemma, . But By, ... 1,,1 R is an integral domain by Lemma) and Lemma

so ker ¢ = {0} and hence ¢ is injective.
I; \
I

B R
j »i
InR a = T
/ R %

©
Bn,...,. 1R S

Now we have everything that we need for the proof of the main theorems.

Proof of Theorem[{.10, We use induction on ¢ := dim(S) — dim(R); § > 0 since R =
S/S4. If 6 = 0, then the theorem follows from Lemma [.16] So assume that 6 > 0.
Then R C S; let d, I, and T be as in Lemma [{.18] Since S is an integral domain by
Lemma we have dim(7T") < dim(S) and T is regular by Lemma [£.18h), so we can
apply induction and obtain 7" = By, 1, R for nonzero ideals Iy,...,I, € R. Now the
theorem follows from Lemma ). O

Proof of Theorem[{.13. Tt is clear that S = R[xy,...,x,] implies that each S; is free. For
the converse we again use induction on § := dim(S) — dim(R). If 6 = 0 then the result
follows from Lemma[£.16] So assume that § > 0 and let d, I, and T be as in Lemma [£.18
Since Sy is free, I is principal by Theorem [2.28p). We have dim(7") < dim(S), T is
regular and each T; is free by Lemma )7 so we can apply induction and obtain
T = Rlzy,...,zn) = By,,..1,R with I = ... = I, = (1). Hence by Lemma [4.18F) and
Lemma ) we obtain S = By, 1. 1R = Rlx1,...,Zny1)- d

4.3 Invariants of pseudoreflection groups over Dedekind
domains

In this section we analyze rings of invariants of pseudoreflection groups over Dedekind
domains. The first step is the following proposition which shows that the question of
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4.3 Invariants of pseudoreflection groups over Dedekind domains

whether such a ring of invariants is regular can be reduced to the case of pseudoreflection
groups over discrete valuation rings which we discussed in Section

Proposition 4.19. Let R be a Dedekind domain and let G C Gl,(R) be a finite group.
Then the following statements are equivalent:

(i) Rlx1,..., 2, is regular.
(ii) For every mazimal ideal p C R the ring Ry[z1, ..., 2, is regular.
(i) For every mazimal ideal p C R the ring Ry[1,...,x,]¢ is isomorphic to a polyno-
mial ring.

Proof. The equivalence of (i) and (i) follows from Proposition Since polynomial
rings over regular rings are regular ([11, Theorem 2.2.13]), (é¢¢) implies (i¢). The impli-
cation (i4) == (i7i) follows from Corollary and the fact that each R is a discrete
valuation ring. O

The easiest case in which this result can be applied is if the group order is invertible
in the base ring.

Theorem 4.20. Let R be a Dedekind domain and let G C Gl,(R) be a finite pseudore-
flection group such that |G| € R*. Then Rlx1,...,1,] is regular.

Proof. Let p C R be a maximal ideal. Then |G| € R, and hence Rp[z1,...,3,]% is a
polynomial ring over Ry, by Corollary .5} Now the theorem follows from Proposition [4.19]
O

Using the theory developed in Section we can now prove results concerning the
question of whether a ring of arithmetic invariants is a polynomial ring. The following
result is basically a direct arithmetic analogue of the Chevalley-Shepard-Todd theorem.

Corollary 4.21. Let R be a principal ideal domain and let G C Gl,(R) be a finite
pseudoreflection group such that |G| € R*. Then Rlxy,...,2,)¢ is isomorphic to a
polynomial ring over R.

Proof. This follows immediately from Theorem and Corollary O

The most general result I managed to obtain for regularity of rings of arithmetic
invariants is the following.

Theorem 4.22. Let R be a Dedekind domain with K := Quot(R) and let G C Gl,(R)

be a finite pseudorefiection group such that there are homogeneous invariants f1,..., fn €
Klz1,...,2,]% with K[x1,...,2,]¢ = K[f1,..., fa]. Then the following statements are
equivalent:

(i) For every mazimal ideal p C R with |G| € p there are homogeneous gi,...,gn, €

(R/p)[21, -, 20] such that (R/p)[x1,-..,24])% = (R/p)[g1,---,9n] and deg(g:) =
deg(fi) for each i.
(i) R[zy,...,x,)% is reqular and G acts faithfully on (R/p)™ for every mazimal ideal

p C R with |G| € p.
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4 Regularity of arithmetic invariant rings

(i) There are nonzero ideals I, ..., I, C R such that R[xy,. .., x,]¢ = Br,,..1,R and
G acts faithfully on (R/p)™ for every mazimal ideal p C R with |G| € p.

If R is a principal ideal domain, then these statements are also equivalent to the following:

(iv) R[z1,...,2,]9 is isomorphic to a polynomial ring over R and G acts faithfully on

(R/p)" for every maximal ideal p C R with |G| € p.

Proof. We begin with the proof that (i) implies (7). By Proposition we only need
to show that Ry[x1,. .., 2,]¢ is isomorphic to a polynomial ring over R, for every max-
imal ideal p C R and that if |G| € p, then G acts faithfully on (R/p)". If |G| € p,
both properties follow from (i) and Theorem . If |G| ¢ p, then |G| € R, and hence
Ry[xq,. .. ,2,]¢ is isomorphic to a polynomial ring by Corollary The converse impli-
cation (i) == (7) follows directly from Theorem and Proposition [2.34]

The implication (ii) = (7i7) follows from Theorem and (i11) = (i7) follows
from Lemma [4.14).

Now we assume that R is a principal ideal domain. Then (iii) = (iv) follows from
Lemma [4.14p) and (iv) = (4i7) is clear. O

Since I do not know any example of a pseudoreflection group over a Dedekind domain
where the ring of invariants is an algebra of the form By, . j, R where not all the ideals
Iy, ..., I, are principal, I make the following conjecture.

Conjecture 4.23. Let R be a Dedekind domain and let G C Gl,(R) be a finite pseudore-
flection group such that R[xy,. .., x,]% is reqular. Then Rlxi,...,x,]¢ is isomorphic to
a polynomial ring over R.

We end this chapter with a result which relates invariants over a Dedekind domain R
to invariants over residue fields R/p in the case that |G| is invertible in R.

Proposition 4.24. Let R be a Dedekind domain and let G C Gl,(R) be a finite group.
If R[xy,. .., x,]% is reqular, then for every mazimal ideal p C R with |G| ¢ p the ring of
invariants (R/p)[x1,...,2,)¢ is isomorphic to a polynomial ring over R/p.

Proof. Since R/p = Ry/pp and Ry[w1,...,2,]¢ is again regular by Proposition we
may replace R by R, and hence assume that |G| € R*. Let K := Quot(R); then
K[z1,...,2,]% is also regular and hence a polynomial ring. So G is a pseudoreflection
group in Gl,(R) by Theorem Let 0 € G be a pseudoreflection; the image of ¢ in
Gl,(R/p) is either again a pseudoreflection or the identity, so G acts as a pseudoreflection
group on (R/p)". Since |G| ¢ p we get that |G| is invertible in R/p. But R/p is a field
and hence (R/p)[x1,...,2,]¢ is isomorphic to a polynomial ring by Theorem O

34



5 Reflexive modules, divisors, and Picard
groups

In this chapter we introduce several related concepts from commutative algebra which
we will need in the next two chapters. None of the material in this chapter is new; the
main references are the books by Fossum [20] and Benson [4, Chapter 3]. We begin in
Section with reflexive modules and the reflexive closure of modules. In Sections
and [5.3| we introduce divisorial ideals and the divisor class group of a Noetherian normal
domain which will be the main tool in Chapter [6] to determine when a ring of invariants
is factorial. Finally, in Section we define the Picard group of a Noetherian ring, a
concept closely related to the divisor class group.

5.1 Reflexive modules

In this section, we fix a Noetherian normal domain A and a finitely generated torsion-free
A-module M. For the definition of reflexive modules we need the dual module M* :=
Hom (M, A). For our purposes a slightly different description is more useful: we define
K := Quot(A) and V := M ®4 K; note that the canonical map M — V is injective since
we assumed M to be torsion-free. Then we have M* = {f € Homg (V, K)|f(M) C A}
where Homg (V, K) is of course just the dual vectorspace V*. For the definition of
reflexive modules we need the dual of the dual, the module M**. By the above, we view
this as a subset of V** and since M is finitely generated, we can identify V** with V.
Hence we can view M** as an A-submodule of V' which contains M. Now we can make
the following definition.

Definition 5.1. Let K := Quot(A4) and V=M ®4 K.
a) The module M := M**, viewed as a subset of V, is called the reflexive closure of M.
b) M is called reflexive if M = M.

So M is reflexive if and only if every homomorphism of A-modules M* — A is of the
form ¢ — (m) for some m € M. We have the following explicit characterization of the
reflexive closure, which shows the advantage of viewing M™* as a subset of V. Recall
from Chapter [2| that X1 (A) denotes the set of all prime ideals of height one in A.

Lemma 5.2. (Fossum [20, Proposition 5.2(c)|) We have

M= () McCV
peX (M) (A)
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5 Reflexive modules, divisors, and Picard groups

This lemma immediately implies the following:

Lemma 5.3. Let M, N be finitely generated torsion-free A-modules and let o : M — N
be a homomorphism of A-modules. Then o (M) C N, where px = p®id: M @4 K —
N ®4 K.

The next lemma provides some basic examples of reflexive modules:

Lemma 5.4.

a) Every finitely generated free module is reflexive.

b) For every finitely generated torsion-free module M and for every reflexive module
N, the module Homy (M, N) is again reflexive; in particular, the dual module M* is
reflexive.

Proof. Part a) is clear, for ) we refer to |20, Proposition 2.6]. O

Furthermore, we have the following criterion for reflexivity, see Bourbaki [5, Chapter
VII, §4.8, Proposition 19|.

Lemma 5.5. Let A C B be a finite extension of Noetherian normal domains, i.e. B
18 finitely generated as an A-module, and let M be o finitely generated torsion-free B-
module. Then the reflexive closure of M as an A-module equals the reflexive closure of M
as & B-module. In particular, M is reflexive as an A-module if and only if it is reflexive
as a B-module.

5.2 Divisorial ideals and divisors

In this section we collect some results on divisorial ideals. We mainly follow the book
by Fossum [20], see also Benson [4, Chapter 3]. In this section A always stands for a
Noetherian normal domain.

Definition 5.6. A fractional ideal a of A is called divisorial if it is reflexive as an A-
module. The set of all divisorial fractional ideals is written as D(A).

Remark 5.7. For a fractional ideal a we have a* = a~! and @ = (a~!)~!. In particular,
a~! is divisorial by Lemma [5.4p).

It can be proved (see |20, §3]) that D(A) becomes an abelian group with the multi-

plication defined by (a,b) — ab. Next we define a second abelian group associated to
A.

Definition 5.8. The group of divisors is the free abelian group generated by X (A); it
is written as Div(A).

Our next goal is to relate the two groups D(A) and Div(A). First we note that for
p € X(W(A) the localization A, is a discrete valuation ring because A is normal; let
vy : Quot(A) — Z denote the corresponding discrete valuation. For a fractional ideal a
of A, we define vp(a) := inf{vy(a)|a € a}. Then it can be proved that v,(a) € Z and that
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5.3 Divisor class groups

for a fixed fractional ideal a the value v,(a) is nonzero for only finitely many p € X1 (A)
(see 20, §5]). Thus we can define the divisor

div(a) = Z vp(a)p € Div(A).
peX (D (A)
Proposition 5.9. (|20, Proposition 5.9]) The map
div: D(A) — Div(A), a — div(a)
1s an isomorphism of abelian groups.

Proposition is equivalent to saying that every divisorial fractional ideal can be
written uniquely as p$* - - - p&” with p1,...,p. € X (A) and ey,. .., e, € Z. We end this
section with an important class of examples of divisorial ideals.

Definition 5.10. Let R be a Noetherian ring, let S be a finitely generated R-algebra
which is a normal domain, and let G C Autg(S) be a finite group. Furthermore, let x be
an R-valued character of G, that is, a group homomorphism G — R*. Then we define
the module of semi-invariants as

SY = {feSNoeG:a(f)=x(o)f}
This is an S€-module.

Lemma 5.11. (Nakajima [45, Lemma 2.1|) Let R, S, G, and x be as in the definition.
Then Sfj is isomorphic to a divisorial fractional ideal of SC.

Note that S© is again a finitely generated R-algebra and thus Noetherian by Theo-
rem [2.2] and that it is normal by Theorem [2.5] so it makes sense to talk about divisorial
ideals in SC.

5.3 Divisor class groups

Let A be a Noetherian normal domain. The group of divisors Div(A) can be used to
define the divisor class group of A, an important tool to check whether a ring is factorial.
The main reference for this section is again Fossum [20)].

Definition 5.12. A divisor in Div(A) is called principal if it is of the form div(a) for a
principal fractional ideal a € D(A). The principal divisors form a subgroup of Div(A),
written as Prin(A). Now we define the divisor class group of A as

Cl(A) := Div(A)/Prin(A).

Ezample 5.13. Let A be a Dedekind domain. Then every fractional ideal is divisorial ([20,
Theorem 13.1]), so the divisor class group of A is just its ideal class group. Therefore it
is justified that we use the same notation for the divisor class group and the ideal class

group.
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5 Reflexive modules, divisors, and Picard groups

The main reason why we are interested in divisor class groups is the following theorem:

Theorem 5.14. (|20, Proposition 6.1]) Let A be a Noetherian normal domain. Then A
is factorial if and only if C1(A) = {0}.

From now on let B be a second Noetherian normal domain. Unfortunately, it is not
possible to attach to an arbitrary ring homomorphism A — B a homomorphism of divisor
class groups Cl(A) — Cl(B). A quite general setting in which this is possible has been
described by Sather-Wagstaff and Spiroff [51], see also Remark [5.21] For us it is sufficient
to develop this theory for a certain class of injective ring homomorphisms for which it is
quite elementary. So in the following we shall always assume that A is a subring of B;
the inclusion i : A — B then induces a group homomorphism

Div(i) : Div(A) = Div(B),p— Y e(B,p)P.
ReX(B),
FNA=p

Note that in Definition 2.7) we defined the ramification index only for finite ring exten-
sions and in the situation here the extension A C B need not be finite; however, we can

use precisely the same definition to define e(3, p) for any extension of Noetherian normal
domains A C B with prime ideals p € XM (A) and P € XD (B) such that PN A = p.

Definition 5.15. We say that the inclusion i : A — B satisfies condition (PDEE if for
every P € X(D(B) we have ht(P N A) < 1.

Now the map Div(i) : Div(A) — Div(B) induces a homomorphism Cl(A) — Cl(B)
if and only if the inclusion A — B satisfies condition (PDE) (see |20, §6]). There are
several classes of inclusions of rings for which condition (PDE) is always satisfied. In the
next three propositions we study some of these situations; we begin with the case that
B is a localization of A.

Proposition 5.16. ([20, Corollary 7.2]) If B = U~YA for some multiplicatively closed
subset U C A\{0}, then the inclusion A — B satisfies (PDE), the induced homomor-

phism Cl(A) — ClU(B) is surjective, and its kernel is generated by the classes of all prime
ideals p € XMW (A) for which p N U # 0.

The second case we consider is that B is a polynomial ring over A:

Proposition 5.17. (|20, Proposition 8.8]) If B is the polynomial ring Alz1,. .., x,], then
the inclusion A — B satisfies (PDE) and the induced homomorphism Cl(A) — Cl(B) is
an tsomorphism.

Finally, we study the situation that A is the ring of invariants of a finite group of
automorphisms of B.

'This is the terminology used in Fossum’s book - (PDE) is an abbreviation for the french “pas
d’éclatement”; Samuel [50] calls this condition (NBU) for “no blowing up”.
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5.3 Divisor class groups

Proposition 5.18. (|20, Theorem 16.1]) Let S be any Noetherian normal domain and let
G C Aut(S) be a finite group such that S is again Noetherian. The inclusioni: S¢ — S
satisfies (PDE) and the kernel of the induced homomorphism ¢ : C1(S%) — C1(S) can be
embedded into the first cohomology group H'(G,S™).

Remark 5.19. In the situation of Proposition the assumption that S is Noetherian
in general does not imply that S¢ is also Noetherian, see Nagata [44]. However, if S is a
finitely generated algebra over a Noetherian ring R and the elements of G are R-algebra
automorphisms, then S is again a finitely generated R-algebra and hence Noetherian
by Theorem 2.2l The assumption that S¢ is Noetherian is needed in Proposition
because we defined the divisor class group only for Noetherian normal domains (S is
normal by Theorem . Alternatively it would also be possible to define the divisor
class group more generally for so-called Krull domains, see [20} §1]. A Noetherian domain
is a Krull domain if and only if it is normal, but there also exist non-Noetherian Krull
domains; in particular, for a Krull domain S and a finite group G C Aut(S) the ring of
invariants S¢ is again a Krull domain, see [20, Proposition 1.2].

Since we will need this later, we sketch the construction of the embedding ker ¢ —
H'Y(G, S*) in Proposition [5.18} for the details we refer to [20]. We define K := Quot(SY)
and L := Quot(S). The group G acts naturally on Div(S) and Prin(S) and hence also
on CI(S). We have a short exact sequence of G-modules

0—S* — L* — Prin(S) — 0.

By applying the long exact sequence for group cohomology to this we obtain the following
exact sequence (note that H'(G, LX) = 0 be Hilbert’s theorem 90, see Serre [53, Chapter
X, Proposition 2|):

0— (89 = KX — Prin(S)% — HY(G,8*) — 0.
We have Prin(SY) 2 K*/(S%)*, so we obtain an exact sequence
0 — Prin(S%) — Prin(S)¢ — HY(G,5*) = 0.
The map K* — Prin(S)“ in the previous sequence is given by a ~ div((a)), so the map
Prin(S%) — Prin(S)¢ in this sequence is the restriction of Div(i) to Prin(S). Since S

is integral over S, the map Div(i) is injective and its image is contained in Div(S)%, so
we obtain the following commutative diagram with exact rows and columns:
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5 Reflexive modules, divisors, and Picard groups

0 ker ¢
(8¢) —— CI(S%) —— 0

Div () »

0 — Prin(S%) —— Div

0 — Prin(S)¢ —— Div(S)¢ —— CI(5)“

HYG,S%)

0

By applying the snake lemma we now get an exact sequence
0 — kerp — HY(G, S¥)

which gives the desired injective map ker ¢ — H'(G, S>).
We end this section by giving one more result on the induced homomorphisms on
divisor class groups.

Lemma 5.20. Let A C B C C be Noetherian normal domains and let i : A — B,

ipc : B — C, and igac : A — C be the respective inclusions. Assume that all these

inclusions satisfy condition (PDE).

a) We have Div(iac) = Div(ipc) o Div(iapg).

b) Let pap : ClI(A) — CI(B), ¢pc : CI(B) — CI(C), and pac : CI(A) — CI(C) be the
mduced maps on divisor class groups. Then we have Y Ac = YBC © YAB-

Proof. Let p € XW(A) and P € XMV (C) such that PN A = p. Since B C C satisfies
(PDE) and (0) # p € BN B we have PN B € XO(B). Then we have e(P,p) =
e(P, PN B)-e(PN B,p): if all extensions are finite this is Lemma and the general
case can be proved precisely in the same way. Now part a) follows from the definition of
the maps Div(i) and part b) is then clear. O

Remark 5.21. Tt is natural to ask whether it is possible and perhaps even easier to define
the maps Div(i) directly on the group of divisorial ideals D(A) instead of the group
of divisors Div(A). This is indeed possible and one can even do this in a much more
general context, see Sather-Wagstaff and Spiroff [51]: if A and B are Noetherian normal
domains and ¢ : A — B is a ring homomorphism of finite flat dimension, i.e. B has a
finite flat resolution as an A-module, then the map D(A) — D(B),a — a ®4 B induces a
homomorphism on divisor class groups. However, due to the reflexive closure involved in
the definition, many arguments become much more complicated with this definition. For
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5.4 Picard groups

example, the proof of the generalization of Lemma to this situation in [5I, Theorem
1.14] is rather involved, while the proof given above is almost trivial.

5.4 Picard groups

An object closely related to the divisor class group of a Noetherian normal domain is
its Picard group. This group can be defined for arbitrary rings and even for schemes.
For Noetherian normal domains there is then an embedding of the Picard group into the
divisor class group. Here we summarize the basic facts on Picard groups which we need
in the next chapters. Our main reference for this is Fossum [20, Section 18]. We fix a
Noetherian ring A (for simplicity, we only consider Noetherian rings in this section).

Definition 5.22. An A-module L is called invertible if it is locally free of rank one, that
is, if for every prime ideal p C A we have Ly, = A,.

Lemma 5.23. Let L and L’ be invertible A-modules. Then L& L' and L* := Homy (L, A)
are again invertible A-modules.

The set of isomorphism classes of invertible A-modules is a group with respect to the
tensor product; the inverse of the isomorphism class of a module L is the isomorphism
class of L*.

Definition 5.24. The group of isomorphism classes of invertible A-modules with the
group structure indicated above is called the Picard group of A and written as Pic(A).

It is clear from the definition that the Picard group of a local ring is always trivial.
We will see below that the Picard group of a Dedekind domain is isomorphic to its ideal
class group.

Now let A be a Noetherian normal domain with quotient field K. Then an invertible
A-module L can be embedded into L ® 4 K = K and hence is isomorphic to an invertible
fractional ideal a of A, see [20, Proposition 18.2]. It is clear that invertible fractional
ideals are divisorial, so in this way we can associate a divisorial ideal to every invertible
A-module. Using this, one can prove the following result, see |20, Corollary 18.3].

Proposition 5.25. Let A be a Noetherian normal domain. Then Pic(A) is isomorphic
to a subgroup of C1(A).

The next proposition, see [20, Corollary 18.5], shows in which cases this embedding is
in fact an isomorphism.

Proposition 5.26. Let A be a Noetherian normal domain. The injective homomorphism
Pic(A) — CI(A) given by Proposition 18 an isomorphism if and only if A is locally
factorial.

In particular this implies the result announced above that the Picard group of a
Dedekind domain is isomorphic to the ideal class group: Dedekind domains are always
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5 Reflexive modules, divisors, and Picard groups

locally factorial by Proposition and the divisor class group of a Dedekind domain is
precisely the ideal class group by Example 5.13

Next we want to associate to a homomorphism ¢ : A — B of Noetherian rings a group
homomorphism Pic(A) — Pic(B). While for the divisor class group we only achieved
this for injective homomorphisms satisfying condition (PDE), for the Picard group we
can really do this for arbitrary ring homomorphisms: if L is an invertible A-module, then
L ®4 B is an invertible B-module: for q € Spec(B) and p := ¢~ 1(q) we have

(L®aB)q = (L&aB)®pBy = L&aBy = (L@aAp)®4, By = Ly®a,Bq = Ay®4,Bq = By.

Using this we can define the desired group homomorphism Pic(y) : Pic(A) — Pic(B) by
mapping the isomorphism class of L to the isomorphism class of L ® 4 B.

Lemma 5.27. With the above definition Pic becomes a functor from the category of
Noetherian commutative rings to the category of abelian groups.

We finally mention the following result which in many cases allows us to describe the
Picard group of a polynomial ring.

Proposition 5.28. (Gilmer and Heitmann [24, Theorem 1.6]) Let A be a Noetherian
normal domain. Then the map Pic(A) — Pic(A[x]) induced by the inclusion A — Alz]
18 an 1somorphism.

42



6 Factoriality of rings of arithmetic
invariants

The goal of this chapter is a generalization of Nakajima’s theorem on factorial rings of
invariants (Theorem to the arithmetic case. Our proof as well as the proof of Naka-
jima’s theorem uses the theory of divisor class groups summarized in Chapter [5] which
provides a useful characterization of factorial rings (Theorem [5.14). The first section of
this chapter contains a general result on divisor class groups of rings of invariants in gen-
eral algebras. In the second section we prove the main result of this chapter, which fully
answeres the question under which conditions a ring of invariants R[z1,...,2,]¢ is fac-
torial (Theorem for a Noetherian normal domain R and a finite group G C Gi,(R).
In the final section we compute the Picard group of such a ring of invariants.

6.1 Group actions on algebras

Let R and S be Noetherian normal domains with R C S. Furthermore, let G be a finite
subgroup of Autr(S). We define K := Quot(R) and Sk := S ®r K. We want to know
whether S¢ is factorial. The best result we could hope for would be the following:

SY is factorial if and only if both S and S% are factorial. (6.1)

This statement however is not true in general, as the following example shows.

Ezample 6.1. Let R = Z and S = Z[y/—5]. We recall some basic facts about S from
algebraic number theory. S is the ring of integers in the number field L = Q(v/=5); in
particular, S is normal. But S is not factorial since the class number of L is not 1 (see
Neukirch [46, Page 37]). Furthermore, let G := Gal(L/Q) be the Galois group. Then
SG = 7 is factorial, contradicting 6.3).

From now on we assume that S* = SN R* and S = Sk N K*; see Remark for
a discussion of these assumptions. Then the factoriality of Sg can be checked using a
generalized version of Nakajima’s Theorem see Nakajima [45] Theorem 2.11].

In the next section we shall see that is indeed true in the particularly interesting
case that S is a polynomial ring over R. In this section we prove the simpler result that
under the above assumptions on groups of units holds if S is factorial; in particular,
the “if”-part of holds under these assumptions. More precisely, we prove that if S
is factorial, the divisor class groups of S¢ and Sg coincide.

We begin with a lemma for which we do not need that S is factorial but only that Sk
is factorial. This lemma will be used again in the next section.
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6 Factoriality of rings of arithmetic invariants

Lemma 6.2. With the notation as above, the inclusion S¢ C (R\{0})~1S¢ = S¢
induces a homomorphism o : C1(SY) — CI(S) by Proposition . Furthermore, by
Proposition the inclusion S C S induces a homomorphism ¢ : C1(S¥) — C1(S).
If Sk is factorial and S;; = K™ and S™ = R*, then the restriction of a to ker(p) is
mnjective.

Proof. Since S = R* and G acts trivially on R, by Proposition [5.1§|there is an injective
homomorphism 6 : ker o — H(G, S*) = Hom(G, R*). Let ¢ : CI(S%) — CI(Sk) be
the map given by Proposition applied to the inclusion Slcé C Sk. Since we assumed
Sk to be factorial, C1(Sk) = {0} and hence ker px = CI(S%), so Proposition gives
an embedding Ok : C1(S¥) — HY(G, S5) = Hom(G, K*) since S = K* by assumption.
R is normal, so every root of unity in K is already in R, and hence Hom(G, R*) =
Hom(G, K*) because G is finite. So we have the following diagram:

ker(¢) —2— Hom(G, R*)

la‘ker(gp) l:

C1(S%) N Hom(G, K*)

Since 6 is injective, the claim follows if we prove that this diagram commutes.

The inclusion S C Sk satisfies condition (PDE) by Proposition and hence we
obtain a map CI(S) — Cl(Sk) which fits into the following commutative diagram with
exact rows.

0 —— Prin(S) —— Div(S) —— CI(S) —— 0

l l l

0 —— Prin(Sg) —— Div(Skx) —— CI(Sg) —— 0

The inclusion S¢ — SIG< gives a similar commutative diagram and as in the discussion
after Remark we obtain the following diagram with exact rows and columns:

ker(yp)
1
0 Prin(S%) Div(S%) C1(S%) — 0
— — e
0 — Prin(S%) Div(S%) C1(S%) J 0
©
0 (Prin(S))“ (Div(S))% (c1(9)¢
0~ (Prin(SK))G (Dw(SK))G _ (CI(SK))G = {0}
)
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6.1 Group actions on algebras

The front and back part of this diagram commute by the discussion after Remark
and the top and bottom parts commute by the above. Furthermore the mid part of
the diagram, that is, the part with the groups of divisors, commutes since both possible
paths are just the map on divisor class groups induced by the inclusion S C Sy (see
Lemma ; then it follows immediately that the left and right parts also commute.
Now by the construction of # and the naturality of the connecting homomorphism in the
snake lemma we obtain a commutative diagram

ker(¢p) 4 HY(G, R¥)

J{alker(cp) l

C1(SE) —2 HY(G, KX)

It remains to show that in the last diagram the map on the right is really the identity
on Hom(G, R*) = Hom(G, K*). Again the discussion after Remark shows that by
the naturality of the long exact sequence in group cohomology this map is the map on
H'(G,-) induced by the inclusion R* < K* which indeed is the identity Hom(G, R*) =
Hom(G, K*).

O

Now we prove the desired result on the factoriality of S¢ for factorial rings S.

Theorem 6.3. Let R and S be Noetherian normal domains with R C S. Define K =
Quot(R) and Sk := SQrK and assume that S* = R* and Sjc = K*. Let G C Autg(S)
be a finite subgroup. If S is factorial, then C1(S¥) = CI(S%). In particular, if both S
and Slcé are factorial, then SC is also factorial.

Proof. We continue with the notation from Lemma|[6.2] By Proposition [5.16] « is surjec-
tive and since S is factorial, C1(S) = {1} and hence ker ¢ = C1(S%). So by Lemma
« is also injective and hence an isomorphism. O

Remark 6.4. Here are some comments on the assumptions S* = R* and S = K*
in Theorem First of all, these assumptions are certainly satisfied if S is a graded
R-algebra, so in particular they always hold if S is a polynomial ring over R. On the
other hand, the second assumption is not satisfied in Example we have S = L and
hence S = L\{0} # K* there. So it may be questioned whether Example really
shows that the converse of the last statement in Theorem [6.3] does not hold or rather that
the assumptions on the groups of units are necessary. The main goal of this remark is
to demonstrate that the first answer fits better. Example also shows that S = K*
does not follow automatically if we have S* = R*: it is easy to see that in this example
we have S* ={1,—1} = R*.

First of all, it is easy to see that it is possible to replace the assumption S = K* in
Theorem by a weaker one: we used it only to prove that Hom(G, S*) = H'(G, S})
in the proof of Lemma [6.2] and a closer look to that proof shows that we really only
need the weaker statement that the homomorphism on group cohomology H'(G,S*) —
HY(G,S ) induced by the inclusion S* < Sf is injective. Using the long exact sequence
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6 Factoriality of rings of arithmetic invariants

for group cohomology, we see that this is the same as saying that the projection Sj —
S5/ 8> restricts to a surjective homomorphism (S5)% — (S5/S*)¢. So we can replace
the above assumption by this one. Even this weaker assumption is not satisfied in

Example : there the class of /=5 € S5 in (S;5/S*) consists of /=5 and —/—5, so
it is invariant under the action of G, because the nontrivial element of GG interchanges
/=5 and —v/=5. On the other hand, this also shows that neither /=5 nor —v/—5 are
G-invariant, so the class of /=5 is not in the image of the restricted map (S3)¢ —
(S7/8*)¢ which is therefore not surjective. However, this assumption is still more than
what we really need: the proof of Theorem shows that it is possible to write the
theorem in the following form:

Let R and S be Noetherian normal domains with R C S. Define K := Quot(R) and
Sk == S®r K. Let G C Autg(S) be a finite subgroup. If S is factorial and ofyer
is injective, where « and ¢ are defined as in Lemma then C1(SY) = CI(S%). In
particular, if both S and S[Cé are factorial, then SC is also factorial.

And it turns out that ok, is injective in the situation of Example since S¢ =7Z
is factorial, we have CI(S%) = {0} and thus also kerp = {0}, so a homomorphism
from ker ¢ to any group must always be injective. Nevertheless, the converse of the last
statement in the theorem does not hold in this example, so the converse is really not true
in this general version.

6.2 Group actions on polynomial rings

One situation in which Theorem can be applied is when R is a Noetherian normal
domain and S is a polynomial ring over R; in this case, statement (6.1)) from the previous
section is indeed true as the following theorem shows. This is the main result of this
chapter.

Theorem 6.5. Let R be a Noetherian normal domain, S := R[zy,...,z,], and G C
Autg(9) a finite subgroup. Further define K := Quot(R) and Sk := S ®@r K. Then

C1(S%) = CI(R) x CI((Sk)%).
In particular S€ is factorial if and only if both R and (Sk)C are factorial.

In the special case where G acts linearly on R"™ we obtain the following generalization
of Nakajima’s Theorem [2.19}

Corollary 6.6. Let R be a Noetherian normal domain and let G C Gl,(R) be a finite
subgroup. Then R[xy, ..., x,]% is factorial if and only if R is factorial and every R-valued
character of G is uniquely determined by its restriction to the subgroup of G generated by
all pseudoreflections. In particular, if G is a pseudoreflection group, then R[xy,. .. ,:J:n]G
1s factorial if and only if R is factorial.

Proof. Let K := Quot(R) and let y be a K-valued character of G. For every o € G,
x(0) is a root of unity in K since G is finite; therefore x(c) € R because R is normal.
This shows that the R-valued characters and the K-valued characters of G are the same,
so the result follows from Theorem [6.5 and Theorem O
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6.2 Group actions on polynomial rings

Now we aim to prove Theorem we need two lemmas. As in the theorem we take
a Noetherian normal domain R and set S = R[zj,...,z,]. We already know from
Propositions and that the inclusions S¢ C S and R C S satisfy condition
(PDE). The next lemma shows that the same holds for R C S¢.

Lemma 6.7. Under the assumptions of Theorem the inclusion R C SC satisfies
(PDE).

Proof. Let P € X1 (SY). The extension S C S is integral, so by lying-over there exists
a Q€ XN(S) with QN SY =B. Then we have PN R = (QNSE)NR=0QNR and
ht(Q N R) < 1 since the inclusion R C § satisfies (PDE) by Proposition O

In the situation of Theorem we now have several inclusions of rings which sat-
isfy condition (PDE). These induce the following canonical maps of divisor class groups:
¢ = CI(SY) — CI(S) exists by Proposition ¥ : CI(R) — CI(S) exists by Propo-
sition [p.17 9’ : Cl(R) — CL(S®) exists by Lemma a : CI(SE) — CI(S) exists
by Proposition [5.16] Lemma shows that ¢ = ¢ o1/, so we obtain the following
commutative diagram:

/T

CI(R) 2 C1(SC) —2 C1(S%)

The next lemma contains several properties of these maps:

Lemma 6.8. With the notation as above, the following holds.
a) imy’ = CI(R).

b) CI(SY) = kerp x imy)’.

¢) The restriction of « to ker ¢ is surjective.

Proof.

a) Since v is an isomorphism by Proposition and ¥ = p o1/, 1/ must be injective.
This implies imy’ = C1(R).

b) With the same argument as in the proof of a) we see that ¢ must be surjective, so we
have a short exact sequence

0 — ker p — C1(S%) 5 CI1(S) — 0

Since 1 is an isomorphism, 1) = ¢ o ¢ implies idcys) = @ o (¢’ o Y1), s0 ¢ ogp7t
a right inverse of ¢ with im(¢' o)1) = 1m¢’ Hence the above exact sequence splits
and we obtain C1(SY) = ker ¢ x im(¢)’ 0 9)™1) = ker p x imy)’.
¢) By part b) we have C1(S%) = im1)’ x ker ¢. We prove that @|imyr = 0; then the claim
follows since « is surjective by Proposition ﬂ So let p € X (R). By definition we
have
GdvE) = 3 e p)divep)

Pex D (59,
PNR=p
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6 Factoriality of rings of arithmetic invariants

where [div(p)] denotes the class of div(p) in CI(R) and similarly for [div(‘B)]. For
every prime ideal P € X1 (SY) with PN R = p # (0) we have o([div(P)]) = 0
by Proposition so we also have «a(¢/([div(p)])) = 0. This shows that indeed
Oé|imw/ =0.

O

Now we can easily proof our main theorem:

Proof of Theorem[6.5, By Lemmas a) « restricts to an isomorphism ker ¢ —
6.8p)

CI1(S%). By combining this with Lemma and b) we obtain
C1(S8Y) = ker ¢ x imy’ = C1(SE) x CI(R).
The second statement now follows from Theorem [5.141 O

We end this section by considering the question of whether factoriality of the ring of
invariants over some ring R implies factoriality of the ring of invariants over a factor ring
R/P for a prime ideal P C R. The following example shows that this need not be true,
even in the case where |G| ¢ P.

Ezample 6.9. Let R = Z. We consider the cyclic subgroup G of Gl3(Z) generated by the
following matrix:

0 01
1 00
010

Then |G| = 3 and since Z does not contain any nontrivial third root of unity, there are no
nontrivial Z-valued characters of G. Hence Z[z,y, 2] is factorial by Corollary Now
we study the invariants of G over F7 = Z/(7). Since F7 is cyclic of order 6, there are
nontrivial Fr-valued characters of G. But G viewed as a subgroup of Gl3(F7) does not
contain any pseudoreflections, and hence F7[z, y, z]G is not factorial by Theorem m

6.3 The Picard group of rings of invariants

After having computed the divisor class group of a ring of invariants one may ask whether
it is also possible to compute the Picard group. Over fields, this has been done by Kang
[31]; his result is the following:

Theorem 6.10. ([31) Theorem 5.3|) Let K be a field and let G C Gl (K) be a finite
subgroup. Then Pic(K[z1,...,2,]%) = {0}.

In this section we prove the following arithmetic generalization of Kang’s theorem:

Theorem 6.11. Let R be a Noetherian normal domain and let G C Gl (R) be a finite
subgroup. Then Pic(R[z1,...,7,]%) = Pic(R).
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The proof of this result turns out to be much simpler than the discussion of the divisor
class group of R[z1,...,2,]¢ in the previous section: a large part of the proof for the
divisor class group was related to the kernel of the canonical map Cl(R[x1,...,2,]%) —
Cl(R[z1,...,xy)). The following result of Kang [31] shows that this is not necessary for
the Picard group.

Proposition 6.12. (Kang [31], Corollary 2.2|) Let R be a normal domain, S .= R[z1,. .., %),
and G C Autg(9S) a subgroup such that o(S4+) = Sy for all 0 € G. Then the homomor-
phism Pic(S%) — Pic(S) induced by the embedding S — S is injective.

Using this we can now prove Theorem The basic idea of the proof is the same as
for Theorem [6.5

Proof of Theorem [6.11] We consider the embeddings
a:R— R[xl,...,xn]G,B : R[xl,...,xn]G — Rlz1,...,25),7: R R[z1,...,24)

and the induced maps on Picard groups; we need to show that Pic(«) is an isomorphism.
We have v = o a and thus Pic(y) = Pic(8) o Pic(a) since Pic is a functor. By
Proposition Pic(7) is an isomorphism, so Pic(a) must be injective. Let b € Pic(SY);
since Pic(y) is an isomorphism, there is an a € Pic(R) such that Pic(y)(a) = Pic(5)(b),
so with Pic(y) = Pic(B)oPic(a) we obtain Pic(5)(Pic(a)(a)) = Pic(8)(b). Since Pic(S) is
injective by Proposition[6.12] this shows b = Pic(a)(a) and hence Pic(e) is surjective. [

Theorem has the following remarkable consequence which in the case where R is
a field is essentially due to Kang [31, Corollary 5.4|.

Corollary 6.13. Let R be a Noetherian and factorial domain and let G C Gl (R) be a
finite subgroup. Then the following statements are equivalent.
(i) Rlzy,...,2,)¢ is factorial.

(ii) R[zy,... ,:vn]pG is factorial for every prime ideal p C R[xy,. .., x,]°.

Proof. Since localizations of factorial domains are again factorial, (i) implies (i¢). For the
converse we first note that since R is factorial, we have CI(R) = {0} by Theorem SO
Pic(R) = {0} by Proposition . By Theorem this implies Pic(R[x1,...,2,]%) =
{0}. Hence by (ii) and Proposition [5.26] we have Cl(R[z1,...,2,]%) = {0}, so we obtain
that R[x1,...,2,]" is factorial by Theorem O
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7 The quasi-Gorenstein property for
rings of arithmetic invariants

Broer [8] generalized the results of Watanabe and Braun (see Theorem on the
Gorenstein property for rings of invariants to groups which may contain pseudoreflections.
He gives a complete answer to the question of when the ring of invariants K[zy,...,2,]¢
of a finite group G C Gl,,(K) over an arbitrary field K is a quasi-Gorenstein ring. Quasi-
Gorenstein rings are a concept due to Aoyama and others generalizing the Gorenstein
property to rings which need not be Cohen-Macaulay: a Cohen-Macaulay ring is quasi-
Gorenstein if and only if it is Gorenstein, but there are quasi-Gorenstein rings which
are not Cohen-Macaulay. The goal of this chapter is to generalize Broer’s theorem to
the arithmetic case. We begin by recalling the definition of a quasi-Gorenstein ring and
then we study the quasi-Gorenstein property for graded rings in some more detail. After
that we introduce Dedekind differents and give the precise statement of Broer’s theorem
(Theorem [7.30)). As a further tool in Section [7.5] we introduce systems of parameters and
prove an existence theorem which might be interesting not only in the context of the
quasi-Gorenstein property. In the last two sections of this chapter we finally prove the
generalization of Broer’s theorem to the arithmetic case (Theorem [7.56)).

7.1 The quasi-Gorenstein property for local rings

In this section we briefly recall the definitions and some basic properties of the canonical
module of a local ring and local quasi-Gorenstein rings. All rings in this section are
assumed to be Noetherian. Before we define canonical modules we need the definition of
the injective hull of a module (see Lam [38, Definition 3.31]).

Definition 7.1. Let A be a ring and let M be an A-module.

a) A minimal injective extension of M is an injective A-module I together with an injec-
tive homomorphism of A-modules i : M — I such that for every other injective module
J with an njective homomorphism j : M — J there is an injective homomorphism
k1 — J such that j =k oi.

b) It can be proved that every module M has a minimal injective extension (see [38,
Lemma 3.29]) and that it is unique up to an isomorphism which restricts to the identity
on M (see [38, Corollary 3.32]). This unique minimal injective extension is called the
injective hull of M and is written as E4(M).

Furthermore, we briefly recall the definition of local cohomology (see Brodmann and
Sharp [7, Chapter 1]): Let I be an ideal in a ring A and let M be an A-module. We
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7 The quasi-Gorenstein property for rings of arithmetic invariants

define I'1(M) = U;en(0 :mr IY) = {m € M|3i € N : I' -m = 0}. The association
M — T'1(M) is a left-exact functor called the I-torsion functor. Then one defines the
n-th local cohomology functor with support in I as the n-th right derived functor of
I'7(-); it is written as H}'(-). We have an isomorphism

H} (M) = lim Ext’y (A/I', M).
1€N

Now we can give the definition of the canonical module of a local ring due to Herzog
and Kunz [28, Definition 5.6].

Definition 7.2. Let A be a local ring with mazimal ideal m and d := dimA. If A
is complete, then the canonical module of A is K4 = Hom(HS(A), E4(A/m)). If A
18 not necessarily complete, then an A-module K4 is called a canonical module of A if
Ky©op A= K ;, where A denotes the completion of A and K ; denotes the canonical

module of A.

Not every local ring has a canonical module, but if a canonical module exists, then it
is unique up to isomorphism (|28, Bemerkung 5.7]). The canonical module of a local ring
A (if it exists) is written as K 4.

Remark 7.3. Although we do not need this later, it seems appropriate to give some
motivation for the definition of the canonical module, see Brodmann and Sharp [7] for
more details. Let A be a complete Noetherian local ring of dimension d with maximal
ideal m. The local cohomology module HY(A) plays a particularly important role as it
is always nonzero while H(A) = 0 for all n > d (Grothendieck’s vanishing theorem,
see [7, Theorems 6.1.2 and 6.1.4]). However, it is rather hard to work with HZ(A)
directly as it is in general not a finitely generated A-module. But it turns out that
HZ(A) is always an Artinian A-module (see [7, Theorem 7.1.3]), so we can use a tool
called Matlis duality: for an A-module M we define the Matlis dual of M as the module
D(M) := Homy (M, E4(A/m)). As usual, we have a canonical map M — D(D(M)). If
now M is either Noetherian (that is, finitely generated) or Artinian, then this canonical
map is an isomorphism, so in these cases the module M can be reconstructed from its
Matlis dual. Moreover, the Matlis dual of an Artinian module is noetherian and vice
versa (see [7, Theorem 10.2.12]). Hence instead of the Artinian module H%(A) we can
also study its Matlis dual which is then finitely generated; this Matlis dual is precisely
the canonical module.

In many cases we have an explicit description of the canonical module. This is the
content of the following theorem (see [28], Satz 5.12]).

Theorem 7.4. Let A and B be Noetherian local rings and let ¢ : A — B be a local
homomorphism, i.e. for the mazimal ideals m C A and n C B we have p(m) C n,
such that B becomes a finitely generated A-module. Assume that A is Cohen-Macaulay
and has a canonical module K4. Then Ext’y(B, K4a) is a canonical module of B where

r:=dmA — dim B.
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7.2 The quasi-Gorenstein property for graded rings

In the context of the theorem Ext”) (B, K4) becomes a B-module as follows. For b € B
the multiplication map up : B — B,c — bc is a homomorphism of A-modules, so it
induces a homomorphism p; : Ext’y (B, Ka) — Exty (B, K 4) and we define the B-module
structure on Ext’y (B, K4) by setting b- s := pj(s) for b € B and s € Ext’y(B, K4).

A local ring A is a Gorenstein ring if and only if it is a Cohen-Macaulay ring which has
a canonical module K4 and K4 = A, see 28, Satz 5.9]. This motivates the definition of
a local quasi-Gorenstein ring due to Platte and Storch [49, §3] and Aoyama [2] Definition
2.1

Definition 7.5. A local ring A is called a quasi-Gorenstein ring if the canonical module
K4 of A exists and A= K4 as A-modules.

We end this section by giving some basic properties of local quasi-Gorenstein rings,
see Aoyama [2] Section 2|.

Lemma 7.6. Let A be a local ring.

a) A is quasi-Gorenstein if and only if its completion A is quasi- Gorenstein.

b) A is Gorenstein if and only if it is quasi-Gorenstein and Cohen-Macaulay.

c) Letyp C A be a prime ideal. If A is quasi-Gorenstein, then Ay is also quasi-Gorenstein.

7.2 The quasi-Gorenstein property for graded rings

In this section we study the quasi-Gorenstein property for graded rings; again we assume
that all rings are Noetherian. We begin with the general definition of a quasi-Gorenstein
ring due to Aoyama and Goto [3, Definition 0.4].

Definition 7.7. A ring A is called quasi-Gorenstein if Ay is a quasi-Gorenstein local
ring for every prime ideal p C A.

The following result follows immediately from Lemma [7.6p).

Lemma 7.8. Let A be a ring. Then A is Gorenstein if and only if A is quasi-Gorenstein
and Cohen-Macaulay.

In the rest of this section we study quasi-Gorenstein rings S which are *local graded
rings. In this case we can define graded canonical modules; this notion is due to Goto
and Watanabe [25] in the case that Sy is a field and due to Ikeda [30] in the general case.

We first need to study injective objects in the category *C(S) of graded S-modules,
see Brodmann and Sharp [7, Section 13.2]. A graded S-module M is called *injective if
it is an injective object in *C(S5).

Definition 7.9. Let S be a graded ring, L a graded S-module, and M C L a graded

submodule.

a) L is called an *essential extension of M if BN M # {0} for every graded submodule
{0} #B C L.

b) L is called an *injective hull of M if L is *injective and an *essential extension of M.
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7 The quasi-Gorenstein property for rings of arithmetic invariants

Similar as for minimal injective extensions in the ungraded case, we have the following
existence and uniqueness result for *injective hulls:

Theorem 7.10. Let S be a graded ring and let M be a graded S-module.
a) M has an *injective hull; in particular, the category *C(S) has enough injectives.
b) If L and L' are two *injective hulls of M, then there is a homogeneous isomorphism

[+ L — L' with fla =id.
Proof. See [T, Theorem 13.2.4]. O
We write *Eg(M) for an *injective hull of a graded S-module M.

Definition 7.11. a) Let S be a *local graded ring and let M be a graded S-module.
Let m be the unique homogeneous maximal ideal in S. We define the n-th graded
local cohomology of M as *Hy (M) = lim, N*Extg(S/mi,M), Note that *HJ (M) =
H7 (M) as S-modules for all n by Lemma |2.39,

b) If Sy is a complete local ring, then we define the graded canonical module of S as
*Kg = *Homg(*HL(S),*E5(S/m)).

c) If Sy is not necessarily complete, then a graded S-module *Kg is called a graded
canonical module of S if we have an isomorphism of graded S-modules *K g ®g S =
*K g where S:=9 ®s5, §0 and 30 15 the completion of the local ring Sp.

As in the local case, the graded canonical module is unique up to isomorphism if it
exists; moreover, it is always finitely generated (see Ikeda [30, Proposition 1.7]). Fur-
thermore, we have the following analogue of Theorem (see [30, Proposition 1.10]).

Theorem 7.12. Let S and T be *local graded rings with So = Ty and let ¢ : § —
T be a homogeneous homomorphism such that T is finitely generated as an S-module.

Assume that S is Cohen-Macaulay with graded canonical module *Kg. Then *Kp =
*Exts(T,*Kg) with r :=dim S — dim T is the graded canonical module of T'.

Corollary 7.13. Let S be a *local graded ring such that Sy is Gorenstein. Then S has
a graded canonical module.

Proof. Since S is Noetherian by our general assumption, it is finitely generated as an Sp-
algebra, see Bruns and Herzog [I1), Proposition 1.5.4]. So we can write S = Sy[f1, ..., fs]
with homogeneous elements fi,...,fs € S. Next we define T' := Sy[yi,...,ys] with
indeterminates yi,...,ys. We define a grading on T by setting deg(y;) := deg(f;) for
each i. Then we get a surjective homogeneous homomorphism 7" — S. Since Sy is
Gorenstein, T is also Gorenstein, so T'(m) is a graded canonical module of T' for some
m € Z, see [30, Proposition 1.9] and hence with r := dim(7") — dim(.S) Theorem
shows that *Ext7-(S,T(m)) is a graded canonical module of S. O

Theorem has the following proposition as a consequence, which is mentioned
without proof in [30]. For completeness and because we will need similar arguments
again later we give a proof of it here.
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Proposition 7.14. Let R be a Gorenstein local ring and let S be a finitely generated
graded R-algebra with graded canonical module *Kg. Then for every prime ideal p C S,
(*Kg)p is a canonical module of the local ring S.

Proof. Let fi,...,fm be homogeneous generators of S as an R-algebra. Set T :=
Rly1,...,ym) and define a homomorphism of R-algebras g : T — S via g(y;) = fi.
Since g is surjective, S becomes a finitely generated T-module. We define a grading on T’
by setting deg(y;) := deg(f;). T is Gorenstein, so T'(m) is the graded canonical module
of T for some m € Z by [30), Proposition 1.9]. Thus by Theorem and Lemma
we have *Kg = Ext7(S,T) as ungraded S-modules with r := dim(7") — dim(S). Now
let p C S be a prime ideal and q := g~ '(p). The S-module (*Kg), = Ext}.(S,T), and
the T-module Ext’:(S,T)4 coincide since g is surjective; the latter one is isomorphic to
Extr, (Sp, Ty), see Weibel [61], Proposition 3.3.10], so we need to show that Exty, (Sp, Ty)
is the canonical module of S,. Since the map T; — S, induced by g is surjective, by
Theorem [7.4] this follows if we prove that dim(7y) — dim(S,) = .

Let I :=ker(g). Then S = T/I and S, = T;/I;. Let m be the homogeneous maximal
ideal in the *local graded ring T. Then up to isomorphism m/I is the homogeneous
maximal ideal of S. By Lemma [2.33 we have dim(7T") = ht(m) = dim(7},) and dim(S) =
dim(7/I) = ht(m/I) = dim((T/I)n/;) = dim(Tw/In). Since R is Cohen-Macaulay,
T and Ty are also Cohen-Macaulay and hence dim(7Ty) — dim(Tw/Iwm) = ht(In), see
Bruns and Herzog [11, Corollary 2.1.4]. So we have r = dim(7") — dim(S) = dim(Tw) —
dim(Thn/Isn) = ht(In) = ht(I) where the last equality follows since I is a homogeneous
ideal in T" and thus I C m. By using the fact that Tj; is Cohen-Macaulay, we also obtain
dim(7Ty) — dim(S,) = dim(7;) — dim(75/1;) = ht(I;) using [I1, Corollary 2.1.4] again.
Since q = g~ (p) 2 g~ *({0}) = I we have ht(I,) = ht(I). Hence r = ht(I) = ht(I,) =
dim(7;) — dim(Sp). This finishes the proof. O

We can now prove the main result of this section which relates graded canonical mod-
ules and the quasi-Gorenstein property.

Proposition 7.15. Let S be a *local graded ring with homogeneous mazimal ideal m
and graded canonical module *Kg. Assume that Sy is Gorenstein. Then the following
statements are equivalent:

(1) S is quasi-Gorenstein.

(it) Sy is quasi-Gorenstein for every p € Spec(R).

(143) Swm is quasi-Gorenstein.

(iv) There is a homogeneous isomorphism *K g = S(m) for some m € Z.

(v) *Kg is a free S-module of rank one.

Proof. Statements (i) and (i7) are equivalent by definition and it is clear that (iz) implies
(797). Next we assume that (7¢7) holds. Then by Proposition we have (*K g)m = Sm.
In particular, (*K g)n is a free Spy-module and hence its projective dimension is zero. As
*K g is a finitely generated graded S-module, this implies that the projective dimension
of *Kg is zero (11 Proposition 1.5.15(e)]), so *Kg is projective and hence free (|11}
Proposition 1.5.15(d)]). Furthermore rank(*Kg) = rank(*Kg)m = 1, so *Kg is a graded
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7 The quasi-Gorenstein property for rings of arithmetic invariants

free module of rank one. That proves that (iéi) implies (iv). It is clear that (iv) implies
(v); finally (v) implies (i) by Proposition [7.14] O

7.3 The Dedekind different

The Dedekind different is a classical tool in algebraic number theory. In his article
[8] Broer defines a generalization of the Dedekind different which he calls the twisted
different. Broer introduces the twisted different only for extensions S O S where S is
the polynomial ring in n variables over a field K and G is a finite subgroup of GI,,(K). All
results on twisted differents given in [§] are direct generalizations of well-known results
for the Dedekind different and therefore Broer often does not give proofs. In this section
we define twisted differents in the generality needed for what follows and for convenience
we give full proofs. At the end of this section we recall a classical result on the Dedekind
different; there we only give a reference for the proof. As a general reference for the
classical theory of Dedekind differents we mention Benson [4, Section 3.10].
Throughout this section let B be a Noetherian normal domain and let G be a finite
group of automorphisms of B. We set L := Quot(B), A := B, and K := Quot(A4) = LY
and we assume that A is again Noetherian, see also Remark Moreover, we fix a
character v : G — A*; recall that we write BS or A, for the module of v-semiinvariants.

Definition 7.16. The twisted transfer is the map

T8¢ :L— LY a— Z v(e™ Yo (a).
oeG

The twisted transfer is a homomorphism of K-vector spaces which restricts to a ho-
momorphism of A-modules B — A,. Of course, in the case v = 1 the twisted transfer is
the same as the usual transfer Tr% : L — LE. The map L x L — K, (a,b) — TrS (ab) is
K-bilinear; by Lemma we have K, & K and we now prove that the above bilinear
form is non-degenerate. G is linearly independent as a subset of the L-vector space of all
maps L — L, see Lang [39, Chapter VI, Theorem 4.1]. So Tr¥ # 0 as it is a nontrivial
linear combination of the elements of G and therefore also for every a € L\{0} we have
Tr¥(aL) # 0. Hence indeed the above bilinear form is non-degenerate, so it induces an
isomorphism of K-vector spaces

L — Homg (L, K,),a — (b— TS (ab)).

If we make Homg (L, K,) into an L-vectorspace by setting (aa)(b) = «(ab) for a €
Hompg (L, K) and a,b € L then this also becomes an isomorphism of L-vector spaces.
Since (A\{0})™'B = L, every homomorphism of A-modules B — A, extends uniquely
to a K-linear homomorphism L — K, so we can view Homy(B, A,) as a B-submodule
of Homg (L, K,)). We define an action of the group G on Homyu (B, A,) as follows: for
o € G,a € Homa(B, A,),b € B we set (a)(b) = o(a(c™1(b))). Now we make the
following definition:
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7.3 The Dedekind different

Definition 7.17. We define the twisted inverse different as the module DE}}AV ={b e
Quot(B)|Tr (bB) C A,}.

In the case v = 1 the twisted inverse different is simply called the inverse different and
written as DE}}A'

Lemma 7.18. Let v: G — R* be a character. Then the map

oD

B/Ay Homu (B, A,),a — (b— TrS(ab))

s an isomorphism of B-modules compatible with the G-action.

Proof. The fact that ® is an isomorphism follows from the discussion preceding the

definition of the twisted inverse different. Now let 0 € G,a € Dg} 4,0 € B. Then we
have ’

®(0(a)(b) = T (o(a)b) = Y v(r~)r(a(as™ (b)) = Y v(o)v((ro)*)(ro)(ac (b))

TEG TG
= v(0)Try (a0~ (b)) = o(Try (a0~ (b)) = o(P(a)(0 (D)) = o(P(a))(b)

where for the fifth equality we use that Tr$(B) C A,. This implies ®(c(a)) = o(®(a)).
U

The twisted inverse different is a fractional ideal of B, so we can consider its inverse.

Definition 7.19. We define the twisted different as Dpya, = (Dé}A V)*l.

In the case v = 1 the twisted different is the usual Dedekind different and written as
Dpja- Since B C Dgl 4, the twisted different is an integral ideal. The following lemma
follows immediately from the definitions.

Lemma 7.20. Let U C A\{0} be a multiplicatively closed subset. Then D(}le/U,lA L=
U_lpg}AJ/ and IDU*:[B/U*IA,V = U_lIDB/A,V.

The next lemma gives a further important property of Dg} 4, and Dpja,.

Lemma 7.21. The twisted inverse different DE}A , and the twisted different Dy, are
divisorial fractional ideals of B.

Proof. The twisted inverse different is a reflexive A-module by Lemmas [7.18] [5.11], and
), so it is a reflexive B-module by Lemma The twisted different is divisorial by

Remark O
Since DE}A,I/ is divisorial, by Remark DE}A,V is really the inverse of Dp/4 .

Lemma 7.22. Let C be a Noetherian normal domain, G C Aut(C) a finite subgroup
and N C G a normal subgroup. Assume that A = S and B = SN are again
Noetherian. Then for every character v : G — A* which is trivial on N we have
Dcyaw = Dco/pDpjay- Here DoypDpja,, denotes the reflerive closure of Do/pDpja,.
as a C-module.
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7 The quasi-Gorenstein property for rings of arithmetic invariants

Proof. By Remark and Lemma this follows if we prove DE}A L= (DC/BDB/AW)_I.
For this, let a € Quot(C); then we have

a€ D}

Clay S TS (aC) C 4, & Tr$/N (TrV (a0)) C A,

& Trf/N(B . TrN(aC')) CA & TI“N(GC) < DE}AW

& TtV (aDpja,,C) € B < aDpa, C Dg}B

= CLDC/BDB/A,V CC&ac (DC/BDB/A,V)_I'
U

Remark 7.23. Let A, B, and C be as above and let p € X(V(C) and p =L N B. Then
Lemma and Proposition imply that

vp(Deyaw) = vp(Deoypy) +vp(PpraC) = vp(Deypy) + (B, p)vp(Pray)-

Here vy and v, as usual denote the discrete valuations corresponding to the valuation
rings Cyy and By.

We end this section by giving some important properties of the Dedekind different
which we will also need in the next section and which relate the Dedekind different to
the material on ramification from Section 221

Proposition 7.24. (see Benson, [4, Theorem 3.10.2]) Let ¢ € X(N(B) and p == qN A.
Then we have e(q,p) > 1 if and only if Dg/a C q; here e(q,p) is the ramification index
of q over p.

We can now prove a further proposition, which relates the Dedekind different to the
notion of pseudoreflections.

Proposition 7.25. Let F be a field, let S := F[z1,...,xy,] be the polynomial ring in n
variables over F, and let G C Gl,,(F) be a finite group; as usual we view the elements of
G as automorphisms of S. Let N C G be the subgroup generated by all pseudoreflections.
Then DSN/SG = (1).

Proof. Let S € XM (SN). Since SV C S is an integral extension, there is a Q € X(1)(S)
such that B = QN SY. By Proposition , G'(Q) C N and hence SV C SG' Q) By
Lemma Iﬁ and Lemma we have e(Q N SE W) PN SY) =1, 50 e(P, L NSY) =1
by Lemma?}‘ and hence Dgn/ga € P by Proposition S0 vm(DSN/SG) = 0; this
implies div(Dgn /ga) = 0. Since Dgngc is divisorial, we thus have Dgn gc = (1) by
Proposition 0

7.4 The differential character and Broer’s theorem

In this section we formulate Broer’s [8] generalization of Theorem to groups which
may contain pseudoreflections. The main goal of this chapter is then to generalize this
further to arithmetic invariants.

58



7.4 The differential character and Broer’s theorem

For the statement of Broer’s theorem we need the notion of the differential character,
see Broer [8, Section 2.1]. Let R be a Noetherian factorial domain, S = R[z1,...,Z,),
and G C Gl,(R) a finite group. We need the following lemma:

Lemma 7.26. With the notation as above, the Dedekind different Dg/sa is a principal
ideal in S.

Proof. By Lemma Dg/gc is a divisorial ideal in S. Since we assumed R to be
factorial, S is also factorial, so C1(S) = {0} by Theorem But this implies that
every divisorial ideal in S is principal, so the lemma follows. O

Let 6 € S be a generator of Dg,/gc. Since Dg/gc is invariant under the action of G, for
every o € G we obtain that o(¢) also generates Dg/gc and hence o(0) = x ()0 for some
x(0) € S* = R*. Themap x : G — R* is a group homomorphism which is independent
of the choice of 6.

Definition 7.27. The character x : G — R* defined above is called the differential
character of G.

The following result is implicitly used several times in Broer’s article [§].

Proposition 7.28. Let R, S, and G be as above and let x be the differential character
of G. If G is a pseudoreflection group, then x = det.

Since Broer does not give a proof for this proposition, for convenience we prove it here.
We need the following lemma for the field case which is proven in [8, Lemma 5]. Formally
this lemma is a consequence of Broer’s main theorem which we state below; however, as
it is used in the proof of that theorem in [8], it should really be stated separately.

Lemma 7.29. Let K be a field, S :== K[x1,...,x,], and G C Gl,,(R) a finite group. Let
F C S be a graded K -subalgebra which is Gorenstein such that SC is finitely generated as
an F-module. Then *Homz (S, F(m)) = S for some m € Z as a graded S-module and for
a generator a of *Homz(S, F(m)) we have o(a) = det(o)ta for all o € Gl,(K). Here
the G-action on *Homz(S, F(m)) is defined in the same way as before Definition [7.17

Note that in the situation of the lemma *Homx (.S, F(m)) is a graded canonical module
of S for some m € N, so the first part of the lemma follows from Proposition

Proof of Proposition[7.28, Let 0 be a generator of Dg/gc. With K = Quot(R) and
Sk = 5 ®r K we obtain from Lemma that 6 also generates DSK/S% S0 we may
assume that R is a field.

Let o € G be a pseudoreflection. If o is a transvection, then ord(c) = charR =: p
and hence we have x(o)? =1 € R. In a field of characteristic p, this is only possible if
Xx(0) =1 and by the same argument we get det(o) = 1.

59
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So from now on we assume that o is diagonalizable; hence there is a basis B of R"
with respect to which ¢ is given by a matrix of the form

A0 0
0 1

0
0 0 1

Let B* = {f1,..., fn} be the dual basis of (R™)* C S. Then with H := (o) C G we
obtain S¥ = R[f{H‘,fg, ..., fn]; since we assumed that R is a field, this follows from
Lemma Let 61 be a generator of Dg/gu, which is principal by Lemma Then %

generates Dg/ls » and S is isomorphic to a polynomial ring over R by the above, hence

Gorenstein. By Lemma [7.18 we have Dg/lsH =~ Homgu (S, SH); therefore by Lemmas

and we have o(f1) = det(c)6;. Since S is isomorphic to a polynomial ring,
it is factorial, so Dgn /gc is a principal ideal; let 62 be a generator. Since 0y € SH we
have o(f3) = 0. Now Lemma implies that 016 is a generator of Dg/gc. We have
0(01602) = o(61)o(02) = det(0)f102 and hence x(o) = det(o). As G is generated by
pseudoreflections, this finishes the proof. O

In Broer’s article [8] the definition of the differential character appears only in the case
that R is a field. For this case we can now state Broer’s theorem on the quasi-Gorenstein
property of rings of invariants.

Theorem 7.30. (Broer [8]) Let K be a field, S .= K[x1,...,xy], and let G C Gl,,(K)
be a finite group. Then the ring of invariants S is quasi-Gorenstein if and only if the
differential character x : G — K> is equal to the determinant.

Assume that G does not contain any pseudoreflections. Then by Proposition we
obtain Dg/ga = (1) and hence x = 1. In this case Broer’s theorem states that SE s
quasi-Gorenstein if and only if det|g = 1, so we get back Theorem as a special case.

7.5 Systems of parameters

An important object in Broer’s discussion of the quasi-Gorenstein property and also in
invariant theory in general is a homogeneous system of parameters. In this section we
prove a general existence theorem for such systems of parameters. This is basically a
reformulation of recent results in algebraic geometry.

Definition 7.31. Let R be a ring and let S be o finitely generated graded R-algebra. A ho-
mogeneous system of parameters in S is a sequence of homogeneous elements f1,..., fm €
S which are algebraically independent over R such that S is finitely generated as a module

over R[f1,..., fm]-
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The importance of systems of parameters for us comes from the following: let R
and S be as in the definition; the object we are interested in is the graded canonical
module of S. In order to apply Theorem we need a graded R-algebra F which is
Cohen-Macaulay and for which we know the graded canonical module together with a
finite homogeneous homomorphism F — S. If R is Gorenstein, we can try to take F
to be a polynomial ring over R; then F is again Gorenstein, so the graded canonical
module of F is just F(m) for some m € Z. This is always possible: since S is finitely
generated as an R-algebra, we can always find a surjective homogeneous homomorphism
F1 = R[z1,...,x5] — S for some s € N with suitable choices for the degrees of the x;.
However, the description of the canonical module of S given in Theorem becomes
particularly simple if dim F = dim S and we cannot expect this to happen with F = F.
On the other hand, if S contains a homogeneous system of parameters fi, ..., fi, and we
set Fo := R[f1,..., fm], then the inclusion F5 — S certainly has the desired properties
and we have dim F = dim S because S is then finitely generated as an Fa-module.

If R is a field then every finitely generated graded R-algebra has a system of parameters
by the Noether normalization lemma, see Derksen and Kemper [16, Corollary 2.5.8]. But
Noether normalization is not available over rings, so we cannot use this here. In the case
R = Z, recent work of Bruce and Erman [I0, Corollary 7.5] provides the following result:

Theorem 7.32. Let S be a graded ring which is finitely generated as an algebra over
So = Z. Assume that there exists a d € N such that dim(S ®z F,) = d for all primes
p € Z. Then there exist homogeneous elements f1,..., fqg € S such that Z[f1,..., fa] C S
s a finite extension.

We now want to prove a similar result for more general base rings. Theorem
appears in [10] as a corollary of a geometric result ([I0, Corollary 1.3]). This geometric
result has been proved over more general rings independently by Gabber et al. [2I] and
Chinburg et al. [I3]; in order to state their result, we need the following definition.

Definition 7.33. (Gabber et al. [2I] Definition 0.3|) A ring R is called a pictorsion ring
if for every R-algebra R’ which is finitely generated as an R-module the Picard group
Pic(R') is a torsion group.

We are mainly interested in the case where R is local and local rings are always
pictorsion; nevertheless, systems of parameters may also be interesting in their own
right, so we give some more examples of pictorsion rings.

Ezxample 7.34.

(a) Every semilocal ring is a pictorsion ring; this is mentioned in [2I] right after the
definition of a pictorsion ring.

(b) The ring of integers in a number field is always a pictorsion ring; this follows from
[21, Lemma 8.10(2)].

(¢) The next example shows that a Dedekind domain with finite ideal class group need
not be pictorsion; recall that the Picard group of a Dedekind domain is isomorphic
to its ideal class group. Let E/Q be an elliptic curve of rank greater than zero.
Then the affine coordinate ring R = Q[E] is finitely generated as a module over the
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7 The quasi-Gorenstein property for rings of arithmetic invariants

polyomial ring Q[z] and the Picard group of F is isomorphic to E with the usual
group structure of an elliptic curve; by assumption, this is not a torsion group. Hence
Q[z] is not pictorsion.

(d) On the other hand, for a prime number p let F, be an algebraic closure of the finite
field F,. Then F,[z] is pictorsion, see [21, Example 8.15].

Theorem 7.35. (Gabber et al. [2I) Theorem 8.1]) Let R be a pictorsion ring, let X be
a scheme, and let g : X — Spec(R) be a projective morphism of schemes. Assume that
there exists a d € N such that dim X5 = d for every s € Spec(R) where X4 denotes the
fiber of g at s. Then there is a finite surjective R-morphism r : X — IP"}%.

Remark 7.36. The proof of Theorem given in [2I] shows that in fact the following
more precise statement holds: let R, X, and g be as in the theorem. For simplicity, we
assume that R is Noetherian and g is of finite type. Since g is projective, we can view X
as a closed subscheme of P = P for some n € N. Then there are an integer m € N and
global sections fi,..., fg € T'(P,Op(m)) which induce a morphism 7 : P — IP’?DL_I such
that r := 7| x is a finite surjective morphism X — IP)?{l.

Now we can prove the desired generalization of Theorem [7.32] For simplicity, we only
consider the case where S is an integral domain.

Corollary 7.37. Let R be a Noetherian pictorsion ring and let S be a finitely generated
graded R-algebra which is an integral domain. Assume that there exists a number d € N
such that for all p € Spec(R) we have dim(S ®g Quot(R/p)) = d. Then S contains a

homogeneous system of parameters consisting of d elements.
The following proof is basically the same as the proof of Theorem given in [10].

Proof. Let fi1,..., fn € S be homogemeous elements which generate S as an R-algebra;
the case n = 0 is clear, so we may assume n > 0. We define e := lem(deg(f1), ..., deg(fn))

and f/ = f*U" Then deg(f!) = e for each i and S is integral over S’ := R[f],..., f’].
We can change the grading on S’ in such a way that each f is of degree one and therefore
we get a closed immersion ¢ : X := ProjS’ — P = IE"E,‘%_1 (see Hartshorne [27, Chapter II,
Exercise 3.12]). Moreover, there is a canonical projective morphism g : X — Spec(R) (see
[27, Chapter II, Example 4.8.1]); by assumption all fibers of g are of dimension d—1. Then
by Remark [7.36|there are m € N and hq, ..., hq € I'(P,Op(m)) which induce a morphism
r:P— P‘Ii{_ such that r := 7#|x is a finite surjective morphism X — P‘;%_l; hence with
]P)jl{l = Proj(R|z1,...,zq4]) we have h; = 7*(z;). We set h] == *(h;) = (Fo1)"(z) =
r*(z;); then r is induced by h},...,hl, € I'(X,*(Op(m))) = T'(X,O0x(m)) = S, (see
[27, Chapter II, Propositions 5.12 and 5.15]). Since S’ is an integral domain it is the
homogeneous coordinate ring of X, so r induces a ring homomorphism R[z1,...,z4] — S’
mapping z; to h; such that S’ is a finitely generated R[x1,...,z4]-module. Hence S” and
thus also S is a finitely generated R[h],...,h)]J-module. Then also S ®pr Quot(R) is
a finitely generated Quot(R)[h],...,h}]-module and hence dim(Quot(R)[h},...,R)]) =
dim(S®g Quot(R)) = d by assumption. This shows that A}, ..., k) indeed form a system
of parameters. O
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In the special case where S is a ring of invariants we obtain the following result:

Corollary 7.38. Let R be a Noetherian pictorsion ring which is an integral domain, S =
Rlx1,...,2,] and let G C Gl,(R) be a finite group. Then S€ contains a homogeneous
system of parameters consisting of n elements.

Proof. Since R is Noetherian, S¢ is a finitely generated R-algebra. By Corollary
the only thing we need to show is that for every p € Spec(R) we have dim(S¢ ®pg
Quot(R/p)) = n. We can view SY @ Quot(R/p) as a subring of (S ®g Quot(R/p))Y =
Quot(R/p)[x1,...,x,]%; the latter is of dimension n, so it is sufficient to prove that
S¢ @r Quot(R/p) C Quot(R/p)[x1,...,r,]" is an integral extension. For this let f €
Quot(R/p)[z1,...,2,]¢ and choose a € (R/p)\{0} such that af € (R/p)[z1,...,z,]°.
Then there is a g € S such that af is obtained from g be reducing all coefficients modulo
p. We define h :=[] ., o(g) € SC. Since f is already invariant, reducing the coefficients
of h modulo p just gives (af)ICl. So fI€l = ﬁ(af)'G‘ € SY ®r Quot(R/p) and hence f
is integral over S ®@p Quot(R/p). O

At this point, we can already give a first application in invariant theory:

Theorem 7.39. Let R be a Dedekind domain, m C R a mazimal ideal, and F == R/m.
Furthermore, let G C Gl,(R) be a finite group such that |G| ¢ m and R[x1,...,2,)¢ is
quasi-Gorenstein. Then Flxq, ... ,xn]G is a Gorenstein ring.

Proof. Since F' = Ry /my, we may restrict ourselves to the case where R is local with
maximal ideal m and hence a discrete valuation ring, so m =: (p) is a principal ideal; then
|G| is invertible in R and in F. We define S := R[z1,...,x,) and Sp = Flzy,...,Ty);
by Theorems and Sg and S¢ are Cohen-Macaulay. By Corollary there
is a homogeneous system of parameters fi,..., f, in SY; we define F = R[f1,..., fu].
Let ¢ € S® be a prime ideal and set p := qN F. Since F C S is a finite extensiomn,
we have dim(F,) = dim(SqG) and dim(Sg;/quG) = 0. Furthermore, F is regular and S¢
is Cohen-Macaulay, so Sg; is a flat Fy-module (see Matsumura [41, Theorem 23.1]) and
hence S is a flat F-module (see [41, Theorem 7.1]). Since S¢ is a finitely generated
module over the Noetherian ring F, it is therefore projective and hence free since it is
a graded F-module and F is *local (see Bruns and Herzog |11, Proposition 1.5.15(d)]).
Let g1,...,9m be a basis of S¢ as an F-module. For a polynomial f € S let f denote
the class of f in Sp; we write Fr == F[f1,..., fn] = F ®p F. Since the projection map
S¢ — Sg is surjective by Lemma , Sg is generated by g1, ..., Gm as an Fp-module;
in particular, fi,..., f, form a system of parameters in S}C,f.

Since we already know that S}C;' is Cohen-Macaulay, we need to show that it is quasi-
Gorenstein. By Theorem we obtain that Homz, (S%, Fr(m)) is a graded canonical
module of Sg for some m € Z, so by Proposition it is sufficient to prove that
Homgz, (5%, Fr) = S$ as a non-graded S%-module. We prove that Homg, (S%, Fr) =
Homz(SY, F) ®gc S%. Then the claim follows since Homz(S%, F(m')) is a graded
canonical module of S& for some m’ € Z and S¢ is quasi-Gorenstein by assumption.
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7 The quasi-Gorenstein property for rings of arithmetic invariants

We have a canonical homomorphism of S¢-modules

P Hom}-(SG,]:) Rga Sg — HOTH.FF(SngF)

given by (8 ®@3)(t) == B(st) for all B € Homz(SY, F) and s,t € SC. Every element of
Homz(S%, F) ®gc SY is of the form 8 ® 1 for some 3 € Homz(SY, F). If p(B®1) =0,
this means that 3(f) = 0 for all f € S¢, so every B(f) is divisible by p; hence 3 is
divisible by p in Hom#(S%, F), so 8 ® 1 = 0. This shows that 1) is injective. Now let
o € Homgz, (S%, Fr) and write a(g;) = h; for all i = 1,...,m with h; € F. Since SY is
a free F-module with basis g1, ..., gm, we can define a 3 € Homx(S%, F) via B(g;) = hi.
Then ¥ (B8 ® 1) = «, so 1 is also surjective. O

7.6 The canonical module of a ring of invariants over a local
ring

In this section let R always be a local domain which is Gorenstein and factorial and let
S := R[z1,...,z,]. As usual, we set K := Quot(R) and Sg = S ®r K. Moreover we
fix a finite subgroup G C Gl,(R). The goal of this section is to compute the graded
canonical module of S¢. This has been done by Broer [§] in the case where R is a field
and we mainly follow his approach here. We start with the following technical lemma:

Lemma 7.40. Let A C S€ be a normal graded R-subalgebra of SC such that S€ is a
finitely generated A-module and let p € X(D(A). Then (S9), is a direct summand of Sy
as an Ap-module.

Proof. S¢ and hence also S are finitely generated A-modules, so (SG)p and Sy are finitely
generated Ap-modules. Furthermore, they are clearly torsion-free as Ap-modules. Since
A is normal and ht(p) = 1, A, is a discrete valuation ring and in particular a principal
ideal domain. So S, and (S¢), are finitely generated free Ap,-modules and hence there

exist a basis by,...,b of Sy as an Ap-module and a,...,ap € Ay (k < 1) such that
a1bi, ..., apb, 1s a basis of (SG),J. For 1 < ¢ < k b; is G-invariant since «; and «;b;
are G-invariant, so b; € (Sp)¢ = (S9), (see Bourbaki [5, Chapter V, §1.9, Proposition
23]); hence we have b; € (a1b1,...,arbg)a,. Since b, ..., b are linearly independent
over Ay, this implies o; € Ay, Hence (S¢), = (b,...,bg), so we have S, = (5%), @
(s by [

Remark 7.41. In the special case where R is a field and A = S the above lemma is
contained in the proof of [8 Lemma 3(i)]. However, Broer’s proof of this seems to be
wrong: he considers the transfer Tr : S, — (S%),. Since (S¢), is a discrete valuation
ring, the image of this map is a principal ideal (a) in (S¢),. Now he claims that the map
%TrG is a projection map from S, to (S%),. But if |G| divides char(R), then Tr® maps
every element of (S%), to zero and hence the same is true for 1Tr®, which therefore

a
cannot be a projection. The proof given above avoids this problem.
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By Corollary there are homogeneous elements fi,...,f, € S¢ which form a
homogeneous system of parameters; we define F := R|[f1,..., fn]. Then by Theorem
*Homz(SY, F(m)) is the graded canonical module of the graded ring S¢ for some m € Z.
In the following we will ignore the grading on this module; we can do this as we are only
interested in the quasi-Gorenstein property of S¢ and therefore by Proposition we
only need to check when the graded canonical module is free of rank one and this does
not depend on the grading. So we want to find an easy description of the S¢-module
Hom#(S%, F(m)) = Homz(S%, F), see Lemma m Here we define the S%-module
structure on Homx(S¢, F) in the usual way: for a,b € S¢ and a € Homz(S%, F) we
set (a)(b) = afab). Now let ¢ : S¢ — S be the inclusion and let +* : Homz (S, F) —
Homz(S%, F) be its dual map. Then ¢* is a homomorphism of S%-modules.

Lemma 7.42. We have Homz(S%, F) = im(:*) where im(¢*) denotes the reflexive clo-
sure of im(c*) as an SE-module.

Proof. By Lemma [5.2] we have

m@) = () ()
(s

geX &)

For every q € X((SY) we have (im(t*)), = im(e5) where ¢7 denotes the localized
map Homz(S, F)q — Homz(S%, F)y. We claim that tg is surjective. Let p := FNq.
Then (SG);J is a direct summand of S, as an Fp-module by Lemma so the induced
map Homg, (Sp, Fp) — Hom;p(SpG,]:p) is surjective. This implies that the map ¢; :
Homz(S, F), — Homz(SY, F), is also surjective (see Eisenbud [I7, Proposition 2.10]).
This is in fact a homomorphism of (S%), = (F\p)~1S%modules, so localizing it at the

prime ideal (F\p)~'q gives the claimed surjectivity of ¢}. So we have proved:

im(*)= (] im()= ()] Homzg(S% F)q=Homz(S%,F),
geXx (M) (SCG) gex (M) (SG)
where the last step again follows from Lemma But Homz(SY, F) is reflexive as

an F-module by Lemma ) and hence also as an S%-module by Lemma so the
statement follows. O

Using the twisted transfer introduced in the previous section, we can formulate the
next lemma:

Lemma 7.43. Let «* : Homz(S,F) — Homz(SY F) be as above. Then im(/*) =
im(Tr§,) as S¢-modules.

For the proof of this we also need the usual transfer Tr® : § — S and its dual map
(Tr%)* : Homz(SY, F) — Homgz(S,F) for which we have the following result due to
Broer:

Lemma 7.44. (Broer) (Tr%)* : Hom#(S%, F) — Homz(S, F) is injective.
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7 The quasi-Gorenstein property for rings of arithmetic invariants

This result apparently appeared first in a preprint by Broer which does not seem to be
publicly available and the only other reference for it I am aware of is the first edition of
Derksen’s and Kemper’s book [15, Lemma 3.9.7]. So for convenience I include the proof
taken from that book here.

Proof of Lemma [7.44 We have Quot(SY) = Quot(S)%, so Quot(S)/Quot(S%) is a Ga-
lois extension with Galois group G. We can extend Tr® to the trace map Quot(S) —
Quot(S)¢ = Quot(SY). Since Quot(S)/Quot(SY) is separable, Tr® : Quot(S) —
Quot(S%) is surjective, see Lang [39, Chapter VI, Theorem 5.2], and hence there are
f,9 € S,g # 0 such that TrG(g) = 1. Since F C S is an integral extension, we have

Quot(S) = (F\{0})~'S, so we may assume that g € F. Then we have 1 = éTrG(f) since

g € F C S% and hence g = Tr(f). Now let ¢ € Hom#(S%, F) such that (Tr%)*(¢) = 0.
Then for every h € S we have

0 = (Tr%) (@) (Fh) = (T (fh)) = (KT (f)) = ¢(hg) = g (h).
Since g # 0, this implies ¢ = 0 and hence (Tr®)* is indeed injective. O
Proof of Lemma [7.43 Since (Tr®)* is injective by Lemmal7.44] we have im(¢*) = im((Tr%)*o
t*) and we now compute the image of (Tr®)* o /* : Homgz(S,F) — Homz(S,F).
Here Homx(S, F) is the graded canonical module of S except that we ignore the grad-
ing by Theorem and S = Rzi,...,x,] is Gorenstein since R is Gorenstein, so

Homz(S,F) = S by Proposition [7.15l Let ¢ € Homxz(S,F) be a generator. Then the
way we defined the S-module structure on Homgz(S, F) shows that every element of

Homg(S, F) is of the form g — ¢(fg) for some f € S. Following Broer, we write ¢ o f
for this map. Then we have for all f, f/ € S:

(e (H(po ) = ((¢o f) oo T (f) = (¢ o /) TC(f))
= (ST () = o(fO_of) =D ¢(f - of).

oceG ceG

Using the G-action on Homz(S, F) as defined before Definition and the fact that
F C SC we have

2o af) =3 (07) 0 af) =3 (T o) - ).

oeG oelG oelG

But we know what 0~ 1¢ is: we set Fr := F®p K; then ¢ also generates Homz (S, F) ®r
K = Hompg, (Sk,Fr) and thus 0~ '¢ = det(o) - ¢ by Lemma So with the above
calculations we obtain

(T (@0 ) =D_o(f-of) =D deto (o' f-f)

oeG ceG

(e )o) o (o)1

= (TG () - ) = (¢ o TS ().

66



7.6 The canonical module of a ring of invariants over a local ring

This proves that (Tr®)*(:*(¢ o f)) = ¢ o Tr{, (f) for every f € S and hence
im(e*) 2 im((Te)* 0 %) = {¢ o Trge (f)If € S}.

But Homz (S, F) is a free S-module generated by ¢, so this is isomorphic to {Tr$,, (f)|f €
S} = im(Tr§,). O

So it remains to compute the reflexive closure of the image of the twisted transfer TlrdGet :
S — SE. From now on let N be the subgroup of G generated by all pseudoreflections in
G. Instead of computing the image of Tl‘get directly, we first consider the image of Trglet.
This is the content of the next lemma. We use the Dedekind different Dg/gv which is a
principal ideal in S by Lemma [7.26]

Lemma 7.45. Let Oy be a generator of Dgjgn. Then we have im(Trl,) = SV - O.

Here im(TrY,) denotes the reflexive closure of im(Trd.,) as an SN -module.

Proof. The inclusion ¢y : SV — S induces a homomorphism of SN-modules Uy -
Homgn (S, V) — Homgn (SY,SY). By Lemma Sév is a direct summand of S,
for every p € XM (SN) and hence as in the proof of Lemma, we get that (tjy)p :
Homgn (S, S™), — Homgn (SY, SV), is surjective. Together with Lemma this im-
plies im(¢}) = Homgn (SV, SV).

We consider the natural isomorphism 7 : Y — Homgn (SY, SV),a +— f, with f,(b) =
ab for all a,b € SN. Homgn (S, SV) is generated by ¢ : S — SN,z s TrN(%) as an
S-module (see Lemma . Thus for every o € im(vy) € Homgn (SY, SV) there is an
a € S such that a(b) = ¢(ab) = bg(a) for all b € SV, so im(vy) = {fy@la € S} =

n(TrN(%S)). Since 7 is an isomorphism, we obtain

1
TN <05’> =0 (im(c})) = n~ ! (Homgn (SV, SV)) = SV.
N
Furthermore, Proposition implies that o(fx) = det(o) - 65 for every o € G. From
this it follows that 6 - TrN(ﬁS) = Tr}, (S) and hence

— 1
im(Tr),) = TeV (S) Oy =SV oy,
On
O
For the final step of the computation we need to study the image of the twisted
transfer Tro/™ + SN — SG for a character v : G/N — R*. This is the content of the

next proposition.

Proposition 7.46. Let v : G/N — R* be a character. Then we have an isomorphism

of S¢-modules Tr,?/N(SN) >~ SC. Here Trg/N(SN) is the reflexive closure of Trf/N(SN)
as an S%-module.
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7 The quasi-Gorenstein property for rings of arithmetic invariants

The proof needs some preparations:

Lemma 7.47. The Dedekind different Dgn jgc is a principal ideal in SN generated by
an element r of R.

Proof. By Corollary SN is factorial. By Lemma Dgn gc 1s a divisorial ideal
in SV so it is indeed a principal ideal, say Dgnge = (r): we need to show that r € R.
By Lemma we also have Dsﬁ/sg = (r), but DSI]\(T/S}G( = S¥. see Fleischmann and
Woodcock [I8, Lemma 5.3]. So r € (S¥)*n SN = K*n SN C R.

For convenience we also give a proof which is independent of [I8]; however, it should
be said that really the strategy of this proof is the same as in [18]. As above we see that
Dgn gc is a principle ideal (r) in SN. Let p € SN be a prime element which is not in
R; we need to show that p does not divide r or equivalently that v, (DSN/SG) = 0; here
again we use that SV is factorial by Corollary . Let ¢ € S be a prime divisor of p.
Then (q) N SY = (p), so by Remark we need to show v(,)(Dg/ga) = v(q)(Dg/sn)-
Let G'((q)) :== {0 € G|(o —id)(S) C (g)} be the inertia group of (¢). Since p is prime,
p ¢ R, and ¢|p, we have ¢ ¢ R. Hence ¢ is prime in Sg = Klz1,...,2,] and thus
G'((g)) € N by Proposition 2.16, We have G'((¢) N S @) = {id} by Lemma u, S0
e((q) NS¢ @ (g) N S¥) = 1 by Lemma [2.10[ and hence v(q)msci((q))(DS@((Q))/Sc) =0
by Proposition By applying Remark m to the extensions S¢ C ¢ () C § we
obtain v(g)(Dg/sc) = v(g) (DS/Sgi((q))). By replacing G by N and using that G%((¢q)) C N

we obtain in the same way that v(,)(Dg/gv) = v(y) (DS/SGi((q))). Putting both equalities
together finishes the proof. d

Using Lemma we can generalize it to the twisted different.

Lemma 7.48. Letv: G/N — R* be a character. Then Dgn /gc , is a principal ideal in
SN generated by an element of R.

Proof. SN is factorial by Corollary let 5 and Oy, be generators of the divisorial
and hence principal ideals Dgn /ge and Dgn /ga ,,, respectively. By Lemma @ we have
Oy € R. We will show that there is an 7 € K such that rfy = On,; then Oy, € R
follows since Dgn /gc , is an integral ideal. We can also view v as a character of G which
is trivial on N; then we have DSK/Sg = DSK/S%V (see Broer [8, Proposition 10]; this

needs the assumption that v is trivial on pseudoreflections). Let § and 6, be generators
of Dg/sc¢ and Dg/ga ,,, respectively. Then by Lemma we obtain rof = 6, for some
ro € K.

Now let p € SV be a prime element such that p ¢ R and let ¢ € S be a prime divisor
of p in S; since R C SV we also have ¢ ¢ R. Let again v(p) and v(,) be the discrete
valuations corresponding to the valuation rings S(]Z ) and S(g), respectively. Since we have
seen above that # and 6, ouly differ by factors in R we have v(g)(Dg/s¢) = v(¢)(Ds/sc,,)-
Using Remark we obtain v(,)(Dgn /sc) = v(y)(Dsn /gc ). This shows that also O
and 0y, only differ by factors in R, so the claim follows. O

68



7.6 The canonical module of a ring of invariants over a local ring

By combining this with Lemma we obtain:
Lemma 7.49. Let v : G/N — R* be a character and let r € R be a generator of

Dgn gc . For every f € SN, the map ay : SN — S¥, g Trf/N(%fg) = %Trg/N(fg)

is a well-defined homomorphism of S -modules and the map SN — Homge (S, Sf), f—
ay is an isomorphism of SN _modules.

Using this we can finally prove Proposition [7.46}

Proof of Proposition[7.46] Let r € R be as in Lemma [7.49] Then Lemma [7.49] shows
that
¢ : Homge (SN, 85) — TeS/N(SN), ac v - a(1)

is a well-defined and surjective homomorphism of S¥-modules. The embedding i : S¢ —
SN induces a homomorphism of S¢-modules

i* : Homge (SN, 89) — Homge (S, SS), a — algc.
For a € Homge (SN, SS) we have
Pla)=0 <= a(l)=0 < Vfe S a(f) =0 < *(a) =0,
so ker1p = ker 7*. Hence i* induces an injective homomorphism
¢ : Tr¢/N (V) = imy = Homge (SV, SS)/ ker ) = Homge (SV, SS) / ker i*
=~ imi* < Homge (S9, 55) = ST

Now let p € X(V(S%); as in Lemma we obtain that (S%), is a direct summand of
(™), and hence the localized map (i*), is surjective, so ¢y is also surjective. As ¢ is

O

injective, this implies that we obtain an isomorphism of reflexive closures Trl?/ N(SN )
S¢ by Lemma . By Lemma , S& is reflexive, so the proposition follows.

Now we are ready to state the main result of this section:

Theorem 7.50. Let f1,..., f, be a system of parameters in S¢ and F := R[f1,..., fn].
Let furthermore x be the differential character of G. Then we have Homz(SY, F) =

SG. I

For the proof of this we need some more notation: let v : G — R* be a character and
let vy :== v|ny. We want to define a twisted transfer s Sz]/\é — 8¢, If yy = 1, then
we can just view v as a character G/N — R* and use the usual twisted transfer. In

general let o1, ..., 0, be representatives of the cosets of N in G (N is a normal subgroup,

so we do not need to distinguish between left and right cosets). Then we define Trf/ N

as follows:

Trf/N : Sl],\é — Sf,f — Zy(afl)ai(f).
i=1

It follows directly from the definition of S% that this does not depend on the choice of
01,...,0p. It is clear that Trf = Tr,?/N o Tr,]/\g.
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7 The quasi-Gorenstein property for rings of arithmetic invariants

Proof of Theorem [7.50, By Lemmas and Homz (S, F) is isomorphic to the
reflexive closure of im(Trdet) as an S“-module; hence by Lemma it is isomorphic to

the reflexive closure of TrG/ N(Tré\gt(S )) where by Lemma [5.5[ we may also take the inner

reflexive closure as an S¥-module. By Lemma we then obtain Homz(SY, F) =

(?e/tN(SN On), where Oy is a generator of Dg/gn. As Dgn,gc is generated by an

r € R (see Lemma , Dg/sc is generated by rfn (see Lemma , so rfy is a
x-semiinvariant by the definition of the differenial character. Since r € R C S, Oy is
also a y-semiinvariant and hence with a set of representatives o1, ..., 0, of the cosets of
N in G we have for f € SV:

5N (fon) = Z det(o; Vo (fn) = Z det(o- Vo (f)os(On)
= Zdet(gfl)ai(f)X(Ui)QN = (Z(det /x)(ai—l)m(f)) O
i i=1
=Tr fe/t]\/lx(f) -On,

SO we obtaln TrG/ (SN . 0N) = (?/t])[ (SN)-0y. This is isomorphic to SdGet/X by Propo-

sition note that det /x is trivial on N by Proposition [7.28] O

7.7 The main result

In this section we use Theorem to derive a criterion for the quasi-Gorenstein property
of arithmetic invariant rings. We begin by defining the class of rings we want to allow as
base rings; this is an ad hoc definition.

Definition 7.51. We call a ring R an allowed base ring if it satisfies the following
conditions:
(1) R is Gorenstein,
(1) R is an integral domain,
(iii) for every prime ideal p C R, the localization R, is factorial,
() for every mazimal ideal m C R, we have ht(m) = dim(R).

The following properties of allowed base rings are immediate from the definition:

Lemma 7.52.

a) Every Dedekind domain is an allowed base ring.

b) Every allowed base ring is Noetherian, Cohen-Macaulay, and normal.

¢) If R is an allowed base ring and p C R is a prime ideal, then Ry is again an allowed
base ring; in particular, Ry is factorial and Gorenstein.

The following proposition gives a criterion for a graded algebra over an allowed base
ring to be a quasi-Gorenstein ring.
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Proposition 7.53. Let R be an allowed base ring and let S be a finitely generated graded
R-algebra which is an integral domain. Then the following statements are equivalent:
(i) S is quasi-Gorenstein.
(it) For every prime ideal p C R the ring S @r Ry is quasi-Gorenstein.
(113) For every homogeneous surjective homomorphism T = R[x1,...,xm] — S of R-
algebras Ext(S,T) is a projective S-module of rank 1 where r == dim(T") — dim(S5).

For the proof we need two lemmas:

Lemma 7.54. Let R and S be as in the proposition, let M be a finitely generated graded
S-module, and let p C R be a prime ideal such that there is a homogeneous isomorphism
M ®r Ry = S ®g Ry. Then there is an f € R\p such that M ®r Ry = S ®p Ry. Here
Ry means the localization U™ R with U = { f*|i € No}.

In the special case S = R this is a classical result in commutative algebra, see Bourbaki
[5, Chapter 11, §5.1, Prop. 2(ii)] and the proof given here reduces the general result to
this special case.

Proof. We write S, := S ®g Ry and M, := M ®pr R,. By assumption there is an a € M
which is homogeneous of degree zero such that M, = (a)s,. We consider the homogeneous
homomorphism ¢ : S — M, b+ ba. Then the induced homomorphism ¢, : S, — M, is
an isomorphism.

We choose a d € N such that M is generated as an S-module by elements of degree at
most d. Since S is a finitely generated graded R-algebra, the R-modules M = M<g and
S = S<q are finitely generated. Since ¢ is homogeneous, it restricts to a homomorphism
@ : S — M and ¢, restricts to an isomorphism S, — M, where S, = (S,)<q and
Mp = (Mp)<q4. Since S and M are finitely generated R-modules, we now get that there
is an f € R\p such that the restriction ¢y : S’f — Mf of the homomorphism Sy — Mjy
induced by ¢ is an isomorphism (see Bourbaki [5, Chapter II, §5.1, Prop. 2 (ii)]) where
Sy =8®gr Ry, My := M ®pr Ry, S'f = (Sf)gd, and Mf = (Mf)gd. We show that ¢y
is also an isomorphism.

First of all ¢y is certainly injective since we can view it as a restriction of ¢, which
is an isomorphism. By the choice of d there are elements my,...,m; € M such that
M = (mi,...,my)s. Since ¢y is surjective, my,...,m; are in im(¢y) C im(py) and
hence ¢y is surjective because my1, ..., m; generate M and therefore also M. O

The second lemma we need is a stronger version of Lemma [2.33

Lemma 7.55. Let R be an allowed base ring and let T be a finitely generated graded R-
algebra which is an integral domain. Then for every homogeneous mazimal ideal m C T
we have ht(m) = dim(7).

Proof. We define n := mN R. Then n is a maximal ideal in R, so ht(n) = dim(R) because
R is an allowed base ring. Also R is universally catenary, see Bruns and Herzog [I1]
Theorem 2.1.12], so T is catenary and hence there is a chain of prime ideals

(O):ngPlg...gPr_lgPr:m
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with = ht(m) and P; = Ty for some index 4; note that 7y C m by Lemma [2.29] We
have i = ht(7%) and r — i = ht(m/7T) = ht(n) = dim(R). This implies ht(m) = r =
ht(7T4) + dim(R), so all homogeneous maximal ideals have the same height. Now the
lemma follows from Lemma [2.33] O

Proof of Proposition[7.53 1t is clear that (i) implies (#4). Now we assume that (i) holds
and fix a T" as in (i7i). We write M = *Ext7(S,T'); this is isomorphic to Ext.(S,T) by
Lemma [2.39] Let p C R be a prime ideal. T ®g R, is Gorenstein, so M(m) ®g R, is
the graded canonical module of S ®r Ry for some m € Z; hence there is a homogeneous
isomorphism M (m) ®r Ry, = S ®pr R, by Proposition because S ®gr Ry is quasi-
Gorenstein. By Lemma there is an f € R\p such that M(m) ®r Ry = S ®r Ry.
Since this holds for every prime ideal p and R is Noetherian, there are fi,...,fs € R
such that (fi,...,fs)r = R and M ®gr Ry, =2 S ®r Ry, as ungraded S @ Ry-modules
for each i. This implies that M is a projective S-module, see Bourbaki [5, Chapter II,
§5.2, Theorem 1]. Finally M ®g R, = S @r R, implies that M ®g Ry is of rank one and
hence the same holds for M. So we proved that (i7) implies (ii7).

It remains to prove that (¢i7) implies (7). The argument for this is similar to the proof
of Proposition Fix a T as in (i4), let again M = *Ext}:(S,T) = Ext/.(S,T) and
let m C S be a maximal ideal. Then My, is a projective Sy-module of rank one and
hence My, = Sy since projective modules over local rings are free. So it is sufficient to
prove that My, is the canonical module of Sy,. Let g be the given map T' — S and let
n = g '(m). As in the proof of Proposition we have My = Extr, (Sm,Tn) and g
induces a surjective homomorphism T, — Sy. So by Theorem it suffices to show
that r = dim(7}) — dim(Sw). For this again we use the same argument as in the proof
of Proposition [7.14} we only need to replace Lemma by Lemma [7.55] O

By putting all the major results on the quasi-Gorenstein property we have obtained
so far together, we obtain the follwing theorem, which is the main result of this chapter:

Theorem 7.56. Let R be an allowed base ring, S = R[x1,...,xy], and let G C Gl,(R)
be a finite group. Then the following statements are equivalent:
(i) S is quasi-Gorenstein.
(i1) (S ®gr Rp)G 1s quasi-Gorenstein for every prime ideal p C R.
(iii) (S ®@r Quot(R))Y is quasi-Gorenstein.
() The differential character G — R* is equal to the determinant.
(v) For every prime ideal p C R we have *K (g5 ,r,)0 = (5 ®R Ry)C.

Proof. Using Propositionwe get (S ®RRp)G =~ GG ®p Ry for every prime ideal p C R.
Now the equivalence of (7) and (éi) is Proposition and (4i7) is the special case p = (0)
in (it). The equivalence of (iii) and (iv) is Broer’s Theorem and (iv) implies (v) by
Theorem and Theorem [7.12] Finally (v) implies (i¢) by Proposition O

In the case where |G| is invertible in R we can give a criterion for S to be a Gorenstein
ring.
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Corollary 7.57. Let R, S, and G be as in Theorem and assume that |G| is invertible
in R. Then S€ is Gorenstein if and only if (S ®r Quot(R))% is Gorenstein.

Proof. Since aring is Gorenstein if and only if it is quasi-Gorenstein and Cohen-Macaulay,
this follows from Theorem and Theorem [7.56] O

Example shows that the assumption that |G| is invertible cannot be omitted in
Corollary Since in that example (S @r Q)Y is Gorenstein, (S™)% is quasi-
Gorenstein by Theorem [7.56] so this also gives an example of a ring of invariants which
is quasi-Gorenstein but not Gorenstein.
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8 Invariants of point stabilizers

An important observation in invariant theory over a field K is that many properties of
a ring of invariants imply the same property for the ring of invariants of the stabilizer
subgroup of a point y € K™. Kemper [34] identifies a general class of properties, which
he calls “local properties”, for which this is always true. In this chapter, we prove similar
results over rings; however, in oder to carry over Kemper’s approach we need a more
restrictive definition of a local property and also our proofs only work under some condi-
tion on the point y. In Section we recall some results on étale morphisms of schemes
which we need for the proof of the main result. Then in Section [8.2] we introduce the no-
tion of a local property in the way we need it and give some examples of such properties.
Section contains the main results on invariant rings of stabilizer subgroups.

8.1 Etale Morphisms

In this section we briefly summarize the definition and some basic properties of étale
morphisms; for proofs and more details, we refer to the book by Milne [42]. For simplicity,
we assume in the following that all our schemes are Noetherian.

Definition 8.1. Let X and Y be schemes and let f : X — Y be a morphism which is

locally of finite type.

a) The morphism f is called unramified at a point x € X if with y := f(x) and my
the mazimal ideal of Oy, we have that Ox ,/myOx . is a finite and separable field
extension of k(y); in particular, it is part of the condition that Ox ,/myOx, is a
field. Here Oy, denotes the stalk of the structure sheaf Oy at y and k(y) = Oyy/my,
denotes the residue field of Y at y.

b) The morphism f is called unramified if it is unramified at every point x € X.

c) The morphism f is called flat if for every x € X the induced ring homomorphism
OYJ(x) — OX@- 18 ﬂat.

d) The morphism f is called étale if it is flat and unramified.

Remark 8.2. The notion of an unramified morphism can be viewed as a generalization
of the notion of an unramified ring extension introduced in Section let AC B be a
finite extension of Noetherian normal domains and q¢ € X" (B). Then the extension is
unramified at q if and only if the induced morphism f : Spec(B) — Spec(A) is unramified
at q.

The first result on étale morphisms we need is the following lemma which describes
the set of those points in X at which a morphism f: X — Y is unramified.
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8 Invariants of point stabilizers

Lemma 8.3. (|42 Remark 3.7|) Let f : X — Y be a morphism of schemes which is
locally of finite type. The set of all points in X at which f is unramified is open in X.

The next theorem will allow us to prove that certain unramified morphisms are étale.

Theorem 8.4. ([42, Theorem 3.20|) Let f : X — Y be a morphism of schemes. Assume
that f is unramified and Y is normal. Then f is étale if and only if for every x € X the
induced map Oy, y,) — Ox o is injective.

The notion of an unramified map has its origin in the theory of Riemann surfaces.
An unramified holomorphic map between Riemann surfaces is locally an isomorphism,
see Forster [19, Theorem 4.4]. This is not true for unramified morphisms of schemes;
for example, every closed immersion is unramified. This is the reason why the more
restrictive notion of étale maps is introduced. However, it is still not true that an étale
morphism is locally an isomorphism, but at least we have the following theorem. As
usual we write A for the completion of a local ring A.

Theorem 8.5. ([42, Remark 4.7]) Let f : X — Y be an étale morphism of schemes. Let
z € X, y:= f(x) and assume that k(x) = k(y). Then the induced map Oy, — Ox 5 is
an isomorphism.

8.2 Local properties

In this section we introduce the class of properties of Noetherian rings for which we
prove the main result in the next section. A similar definition has been given by Kemper
[34, Definition 1.4], and he calls these properties local. Although our definition is slightly
more complicated than Kemper’s as he only wants to consider graded algebras over fields,
we also use the term “local property”.

Definition 8.6. Let P be a property of Noetherian commutative rings. Then we call P
local if it satisfies the following conditions:
(1) If A is a Noetherian local ring with completion X, then P(A) holds if and only if
P(A) holds.
(i) If S is a Noetherian *local graded ring with homogeneous mazximal ideal m, then
P(S) holds if and only if P(Sw) holds.
(#3) If S is a Noetherian *local graded ring, n C Sy the maximal ideal in Sy, and m C S
a maximal ideal such that m N Sy = n, then P(S) implies P(Sm).
() If S is a Noetherian graded ring, then P(S) holds if and only if P(S ®s, (S0)n)
holds for every mazximal ideal n C Sp.
We call the property P R-local for a Noetherian ring R if (i) holds, (iv) holds for graded
rings S with So = R and (it) and (iii) hold for *local graded rings S with Sy = R, for
some prime tdeal p C R.

Proposition 8.7. The following properties of Noetherian commutative rings are local
properties: reqularity, the Gorenstein property, and the Cohen-Macaulay property. The
quasi-Gorenstein property is R-local for every allowed base ring R (in the sense of Defi-

nition .
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8.2 Local properties

Proof. For regularity, Gorenstein, and Cohen-Macaulay statements (i), (i), and (7i7)
are well-known results, see for example Bruns and Herzog [11]; for statement (iv) see
Propositions [2.34] [2.35] and 2.36] All the results on the quasi-Gorenstein property have
been proved in Chapter [7} (i) is Lemma [7.6p). For (iz) we note that S has a graded
canonical module by Corollary hence (ii) follows from Proposition Statement
(737) follows directly from the definition of quasi-Gorenstein rings, and (iv) is Proposi-

tion [[.53l O

Factoriality is not a local property: if R is a Dedekind domain which is not a principal
ideal domain, then R[z| is not factorial but R[x] ® g Ry is factorial for every maximal
ideal n C Ry, so statement (iv) does not hold.

We want to introduce a further family of local properties which is also discussed in
[34] for invariant rings over fields. For this, we first need the following definition (see for
example Kemper [36]:

Definition 8.8. Let A be a Noetherian ring. The Cohen-Macaulay defect of A is

cmdef(A) = sup (dim(A,) — depth(A4y)).
peSpec(A)

For local rings, we have the following result, see Grothendieck and Dieudonné [26]
Proposition 6.11.5]:

Lemma 8.9. Let A be a Noetherian local ring and let p € Spec(A) be a prime ideal.
Then dim(Ay) — depth(Ay) < dim(A) — depth(A). In particular, cmdef(A) = dim(A) —
depth(A).

The next proposition facilitates the computation of the Cohen-Macaulay defect of a
graded ring.

Proposition 8.10. Let A be a Noetherian graded ring. Then cmdef(S) is the supremum
over all cmdef(Sy) where n is a homogeneous mazimal ideal in S.

The proof of this proposition uses the following lemma:

Lemma 8.11. Let S be a Noetherian graded ring and let m be a non-homogeneous maz-
imal ideal in S. As in Definition we define m* to be the ideal generated by all
homogeneous elements in m. Then we have depth(Sy) = depth(Sm+) + 1.

Proof. This is a special case of Bruns and Herzog |11, Theorem 1.5.9]. O

Proof of Proposition[8.10. By Lemma [8.9]it is sufficient to show that for every maximal
ideal m C S there is a homogeneous maximal ideal n C S such that cmdef(S,) >
cmdef (Sy,). If m is homogeneous, we just take n = m. Otherwise let n be a homogeneous
maximal ideal such that m* C n; such an ideal exists by Lemma Using Lemma

Lemma and Lemma we obtain
cmdef (Sp+) = ht(m*) — depth(Sm+) = ht(m) — 1 — (depth(Sy) — 1) = cmdef (Sy)
and hence cmdef(Sy) > cmdef(Sp») = cmdef (Sy ). O
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8 Invariants of point stabilizers

Proposition 8.12. Let n € N. We say that a Noetherian ring R has the property P, if
cmdef(R) < n. Then P, is a local property.

Proof. For a Noetherian local ring R we have dim(R) = dim(R) and depth(R) =
depth(R), see Eisenbud [I7, Corollary 10.12 and the proof of Proposition 18.8]. Hence
we have cmdef(R) = cmdef(R) by Lemma and statement (i) from the definition of
a local property follows. Statement (i7) follows from Proposition and (4i7) is clear
from the definition of the Cohen-Macaulay defect. In order to prove (iv), let S be a
Noetherian graded ring. For every maximal ideal n C Sy Py, (S ®g, (So)n) implies Pp,(Sm)
where m := (n, S.) because S®sg, (So)n = (So\n)~1S. Now (iv) follows from Lemma[2.29)
and Proposition [3.10] O

8.3 The main result

Let R be a Noetherian normal domain, S = R[xi,...,2,], and G C Gl,(R) a finite
group. Furthermore, let y € R" be any point and G, = {0 € G|o(y) = y} its stabilizer
subgroup. If R is a field, then Kemper [34] proved for every local property P that P(S%)
implies P(S%). Our goal here is to generalize this to the case where R need not be a
field. T achieved this only for some points y: for an ideal a C S we define the stabilizer
subgroup G4 = {0 € G|o(a) C a}. Now let I C R be an ideal and y € R" a point; we
consider a := {f € S|f(y) € I}, which is an ideal in S. Then we have G, C G,. The
points we want to consider are those where these two groups coincide:

Definition 8.13. Let R be a ring, S == R[x1,...,x,], and G C Gl,(R) a finite group.
Let y € R™ and let I C R be an ideal; define a .= {f € S|f(y) € I}. We say that y has
I-stable stabilizer if the stabilizer subgroups G, and G, coincide.

Remark 8.14. In the context of the definition we can view G, as the stabilizer of the
residue class of y in (R/I)"; in particular, if G is a permutation group and all components
of y are either 0 or 1, then y has I-stable stabilizer for every proper ideal I C R.

Next we give an easy example of a point which is not I-stable.
Ezample 8.15. Let R = Zy), I = (2)r, n = 1, and G = {1,-1} C Gl1(Z(y)). Then
for y =1 € Z we have (z — 1)(y) = 0, but for c = —1 € G we obtain o(x — 1)(y) =
(—z —1)(y) = —2 # 0. This shows that o ¢ Gy. On the other hand, as 1 = —1 mod 2,
we have f(1) € (2) if and only if f(—1) € (2) for each f € R[z] and hence f € a if and
only if o(f) € a, 80 0 € Gj.

In order to analyze the invariant ring S we can use the ideas from Kemper’s article
[34]. The main technical step is the following theorem.

Theorem 8.16. Let R be a local Noetherian normal domain with maximal ideal m and
let G C Gl,(R) be a finite group. Let y € R™ be a point with m-stable stabilizer and let
S = Rlxy,...,x,), p:={f € S|f(y) € m}, p :=pNSE, and p" := pN S%. Then the
inclusion S¢ < S%v induces an isomorphism
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where as usual ~ denotes the completion of a local Ting with respect to its mazimal ideal.
The proof requires a lemma;

Lemma 8.17. In the situation of the theorem, we have the following:
@) P (S )pr = Py
b) The inclusion S¢ < S induces an isomorphism SC [p’ =2 S% /p".

Proof. We first prove part b). The kernel of the canonical map S¢ < S% — SGv /p" is
p” N SE =y, so we obtain an injective map S /p’ — S /p”. Since every f € S¢v can
be written as f = f(y) + (f — f(y)) with f(y) € R C S and f — f(y) € p”, this map is
also surjective.

For the proof of a) we use an idea of Kemper [34, Proposition 1.1]. Assume that
p C UaeG\Gy o(p). Then by the prime avoidance lemma we have p C o(p) for some
o € G\Gy. This would imply o(p) = p as o is an automorphism. But then o € G, = G,
since y has m-stable stabilizer; this contradicts o ¢ G,. So thereis an f € p such that f is
not an element of o(p) for any o € G\Gy. For g =[] ¢, 7(f) we have g € pNSGy = p”
and g ¢ o(p) for all 0 € G\G,.

Let J C p” be the subideal generated by all elements of p” which are not in UUeG\Gy a(p).
Then p” C JU Useara, (@) N SGv). Since p is a prime ideal in S, o(p) N S is a prime
ideal in S% and hence we can apply prime avoidance again: since g is in p” but not
in o(p) for any 0 € G\G,, we obtain p” C J and hence p” = J as J was defined to
be a subideal of p”. This shows that there are fi,..., f, € p”\ UUGG\Gy o(p) such that
p’ = (f1,--- 7fn)SGy'

Let 01,...,0, € G be a set of left coset representatives of G, in G with o1 € G,.
For i = 1,...,n we define g; == [[;_,0;(fi). By the choice of the f; we have g; €

SG\p” and hence gi,...,g, are units in SpG,,y. Then the ideal py, in SPG,,y is generated
by fi91,- .., fagn. As fi € S we obtain that f;g; = [[j=i05(fi) € SENyp” =y, so
p;’u - p;,(SGy)pu. The other inclusion is clear. O

Kemper [34, Lemma 1.2] states that every inclusion of Noetherian local rings satisfy-
ing the two properties proven in Lemma induces an isomorphism of completions.
However, the proof for this given in [34] is wrong; it uses a result from Eisenbud’s book
[I7, Theorem 7.2(a)| which only holds for inclusions of local rings R < S for which S is
finitely generated as an R-module. So we give an alternative proof of Theorem here
which does not need this argument. For this we use the material on étale morphisms
developed in the previous section. The special case where R is a field in the following
proof also shows that Theorem 1.1 of Kemper’s article [34] is nevertheless true.

Proof of Theorem[8.16, The inclusion S¢ < S% induces a morphism of affine schemes
h : Spec(S%) — Spec(S¥). Lemma implies that h is unramified at the point p” €
Spec(S%v). Then Lemma implies that there is an open subscheme U C Spec(S©v)
with p” € U such that h|y is unramified. Since Spec(S%) is normal by Theorem [2.5/ and
for every q € U the induced map (SG)h(q) — (S%), of local rings is a restriction of the
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inclusion Quot(S¢) — Quot(S%¥) and therefore injective, Theorem [8.4| implies that h|y
is étale. By Lemma [8.17b) and Theorem it follows that h induces an isomorphism

(S9)p = (S9v)pr. O

Corollary 8.18. In the situation of Theorem we additionally define po = {f €
S|f(0) € m} and plj := po N S¥. Then

—_—

(SG)y = (5%u)yy.

Proof. We show that (S%v),n = (SGy)pg; then the corollary follows from Theorem
The map ¢ : S — S which maps a polynomial f € S = R[zy,...,z,] to the polynomial
f((z1,...,2y) +y) is an automorphism of S which is compatible with the action of Gy,
so it restricts to an automorphism of S&v. Furthermore we have py = ¢(p) and hence
po = ¢(p”). Thus the claimed isomorphism follows. O

Theorem 8.19. Let R be a Noetherian ring and let G C Gl,(R) be a finite group and
y € R™ a point with m-stable stabilizer for every mazimal ideal m C R. Then for every
local property P we have

P(R[z1,...,1,)%) = P(R[z1,...,2,)°").

Proof. By part (iv) of the definition of a local property we may assume that R is local
and hence S = R[z1,...,2y] is *local. We use the notation from Theorem and
Corollary [8.18] P(SY) implies P((S%),) by statement (iii) from the definition of a local

— —

property. Hence by (i) we have P((S%),) and by Corollary [8.18| also P((S%),). Now

/O/
(i) implies P((SGy)pg) and since p{) is the homogeneous maximal ideal in the *local ring

SGv statement (ii) implies P(S%v). O

We are now ready to prove the main result of this chapter.

Theorem 8.20. Let R be a Noetherian ring and let G C Gl,(R) be a finite group and
y € R"™ a point with m-stable stabilizer for every maximal ideal m C R.

a) If R[xy,... ,xn]G is reqular, o Gorenstein ring, or a Cohen-Macaulay ring, then the
same holds for Rlzy,. .., x,]%.
b) If R is an allowed base ring and R[xy,...,r,]% is a quasi-Gorenstein ring, then

R[x1,...,2,)% is also a quasi-Gorenstein ring.

¢) We have cmdef(R[z1, ..., 2,]%) < emdef(R[z1, ..., 2,]%).

Proof. Parts (a) and (b) directly from Theorem and Proposition For part (c)
let n = cmdef(R[z1,...,2,]%); then R[x,...,x,]" satisfies the property P, defined in
Proposition [8.12] So by Theorem [8.19]and Proposition R[z1,...,2,)% also satisfies
Pr; the statement follows. O

The fact that Rz, ..., 2,]¢ is factorial does not imply that R[z1, . .., z,] is factorial,
not even if R is a field. This is shown by the following example.
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Ezample 8.21. Let R be a Noetherian normal domain with char(R) # 2 which contains
no nontrivial third root of unity; for example, this holds for R = Q or for every R with
char(R) = 3. Let S := R[z1,...,2z4] and G := Ay viewed as a group of permutation
matrices in Gl4(R). Furthermore we define 3 := (1,1,0,0) € R*; since G is a permutation
group, y has m-stable stabilizer for every maximal ideal m C R by Remark[8.14] We claim
that S¢ is factorial but S is not. First of all, G contains no pseudoreflections because
a permutation matrix is a pseudoreflection if and only if the corresponding permutation
is a transposition. Hence S¢ is factorial if and only if there is no nontrivial R-valued
character of G, similar for S%. G, is cyclic of order two, generated by o := (1 2)(3 4),
so there is a nontrivial character G, = R* sending o to —1. Hence SGv is not factorial.
On the other hand, let x be any character G — R*. Since R contains no nontrivial third
root of unity, x maps every 3-cycle to 1. But the alternating groups are generated by
3-cycles, so we obtain that y must be the trivial character. Hence S is factorial.
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9 Conclusion

9.1 Summary of the main results

We begin this summary with the three main results of this thesis concerning the question
of when a ring of arithmetic invariants has certain properties. Let always R be a ring
and G C Gl,(R) a finite group.

1.

Theorem Assume that R is a Dedekind domain. If Quot(R)[x1,...,z,]" and
all (R/p)[z1,...,7,)¢ where p C R is a maximal ideal with |G| € p are polynomial
rings generated by homogeneous elements of the same degrees, then R[z1,...,z,]¢
is regular. If G acts faithfully on (R/p)" for all p as above, then the converse also
holds. Moreover, under the same assumptions, if R is a principal ideal domain,
then R[zy,...,2,]¢ is isomorphic to a polynomial ring.

. Corollary Assume that R is a Noetherian normal domain. Then R[zy,...,2,]%

is factorial if and only if R is factorial and every character x : G — R* which takes
the value 1 on every pseudoreflection takes the value 1 on every element of G.

. Theorem Assume that R is an allowed base ring in the sense of Definition [7.51]

Then R[z1,...,2,)¢ is quasi-Gorenstein if and only if the differential character of
G is equal to the determinant.

Next we want to consider the question of whether some ring-theoretic property of the
invariant ring remains valid under certain changes of the base ring or the group. For
simplicity, we assume that R is a Dedekind domain. Let G C Gl,,(R) be a finite group

and K := Quot(R). Furthermore, let P be a ring theoretic property which R[z1, ...,z

]G

may or may not satisfy. We consider the following statements.

1.

2.

If K[zy,...,2,]¢ satisfies P, then R[z1,...,,]¢ satisfies P.

If K[x1,...,2,)" satisfies P and |G| is invertible in R, then R[zy,...,x,]¢ satisfies
P.
If Rlxy,...,r,]" satisfies P, then for every prime ideal p C R with |G| ¢ p,

(R/p)[x1,. .., 2, satisfies P.

If R[x1,...,2,]¢ satisfies P, then R[x1,...,x,]% satisfies P for every y € R"
which has m-stable stabilizer, see Definition [8.13] for every maximal ideal m C R.
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The following table collects all results on the question of whether these statements
are true for the following properties: regularity, Cohen-Macaulay, Gorenstein, quasi-
Gorenstein, factoriality. In the case of factoriality, we make the stronger assumption
that R is a principal ideal domain (PID). The table also contains the places where the

respective results can be found in this thesis.

’ P \ Statement 1 ‘ Statement 2 ‘ Statement 3 ‘ Statement 4 ‘
Regularit False, True, True, True,
& Y Example [3.10| | Theorem [.20] | Theorem [8.20] | Proposition[4.24]
Cohen-Macaula False, True, True, True,
Y Example|3.12| | Theorem |3.14] | Theorem [8.20| | see below
Gorenstein False, True, True, True,
Example[3.13| | Corollary[7.57| | Theorem [8.20| | Theorem [7.39
asi-Gorenstein True, True, True, True,
4 Theorem [7.56| | Theorem |7.56( | Theorem [8.20| | Theorem [7.39
Factoriality True, True, False, False,
(with R a PID) | Theorem Theorem Example 8.21] | Example

We did not consider Statement 4 for the Cohen-Macaulay property before, but this is
almost trivial: there is nothing to show in Statement 4 if p = 0, so as R is a Dedekind
domain, we may assume that p is maximal. Then R/p is a field and by assumption

charR/p does not divide |G|, so (R/p)[z1,...,x,]°

Theorem even if R[z1,...,2,] is not.

9.2 Qutlook

is always a Cohen-Macaulay ring by

Here are some open problems which arise in the context of the topics considered in this
thesis:

1.

2.
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Prove or disprove conjecture Conjecture [4.23

What can be said about the invariants of a pseudoreflection group G C G, (R)

over a discrete valuation ring R with maximal ideal m if G does not act faithfully
on (R/m)™. This is the case where Theorem [4.7|is not applicable.

Is it possible to generalize parts of the results of Chapter [d]to base rings which are

not necessarily Dedekind domains? In particular, it might be possible to generalize
the results of Section to invariants over regular local rings of dimension greater

than one.

Does Theorem hold also without the assumption that y has m-stable stabilizer

for all maximal ideals m C R? While at first it seems natural to assume that this



9.2 Outlook

should be true, a closer look shows that the equality of the stabilizers over R and
R/m is really essential for our proof, so I suppose that if this is true, then the proof
requires a different strategy than the one used in [34] and in this thesis.

5. Can one prove analogous results to Theorem [8.20k) for other parameters than
the Cohen-Macaulay defect, e.g. the polynomial defect, the complete intersection
defect, or the Gorenstein defect? This has been done by Kemper [34] over fields
and thus it seems natural to hope that similar results also hold over rings.

6. It might also be worthwhile to study algorithmic aspects of arithmetic invariant
theory. An algorithm which computes the ring of invariants R[zq,...,z,] using
Grobner bases over R has been given by Kemper [37], but it might be possible to
avoid Grobuner bases over R and instead first compute generators for the invariant
ring over K := Quot(R) and then add some additional generators to obtain a
generating set of the invariant ring over R.

7. Another important topic in invariant theory not covered in this thesis are de-
gree bounds: for this we consider a ring of invariants R[zq,...,x,]® where R is
Noetherian and G is finite. Then the ring of invariants is finitely generated as an
R-algebra, so there is a number 8 € N such that R[z1,...,2,]" can be generated
as an R-algebra by elements of degree at most 5. A classical result, see Derksen
and Kemper [16, Theorem 3.2.2|, says that if R is a field and |G| € R*, then we
can choose § = |G|. If R is an arbitrary field, then Symonds [58] proved that we
can choose f = (|G| —1)n and it might be interesting to also consider this question
in the case where R is not a field; some special cases of this have been handled by
Almuhaimeed [I, Section 4.2].

Some more open problems on arithmetic invariant rings, in particular concerning the
Cohen-Macaulay property, have been collected by Almuhaimeed [I, Chapter 8|.
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