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Summary

This thesis studies rings of invariants for linear actions of �nite groups over Dedekind
domains. This means, for a Dedekind domain R and a �nite group G ⊆ Gln(R) we
consider the ring of invariants R[x1, . . . , xn]G. We study di�erent structural properties
of these rings and thereby generalize the corresponding well-known results for rings of
invariants over �elds.
First we prove that under certain conditions the ring of invariants of a pseudore�ec-

tion group over R is regular, and, that under the same conditions it is isomorphic to
a polynomial ring over R if R is a principal ideal domain; this is a generalization of
classical results of Shephard, Todd, and Chevalley. Furthermore, in this context we char-
acterize all �nitely generated regular graded R-algebras. Next we determine all �nite
subgroups of Gln(R) for which the ring of invariants is factorial and those for which it is
a quasi-Gorenstein ring; this generalizes results of Nakajima and Broer over �elds.
Finally we prove that for certain points x ∈ Rn, many structural properties of the

invariant ring of G are inherited by the invariant ring of the stabilizer subgroup Gx.

Zusammenfassung

Diese Arbeit befasst sich mit den Invariantenringen für lineare Operationen endlicher
Gruppen über Dedekindringen. Das heiÿt, wir betrachten für einen Dedekindring R und
eine endliche Gruppe G ⊆ Gln(R) den Invariantenring R[x1, . . . , xn]G. Wir untersuchen
verschiedene Struktureigenschaften dieser Ringe und verallgemeinern damit die entspre-
chenden bekannten Resultate für Invariantenringe über Körpern.
Zuerst zeigen wir, dass unter bestimmten Voraussetzungen der Invariantenring einer

Spiegelungsgruppe über R regulär ist, und, dass er unter den gleichen Voraussetzungen
isomorph ist zu einem Polynomring über R, falls R ein Hauptidealring ist. Das ist eine
Verallgemeinerung klassischer Resultate von Shephard, Todd und Chevalley. Auÿerdem
charakterisieren wir in diesem Zusammenhang alle endlich erzeugten regulären gradu-
ierten R-Algebren. Danach bestimmen wir alle endlichen Untergruppen von Gln(R), für
die der Invariantenring faktoriell ist, sowie diejenigen, für die der Invariantenring ein
Quasi-Gorensteinring ist. Das verallgemeinert Resultate von Nakajima und Broer über
Körpern.
Schlieÿlich zeigen wir für bestimmte Punkte x ∈ Rn, dass sich viele Struktureigen-

schaften des Invariantenringes von G auf den des Stabilisators Gx übertragen.
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1 Introduction

Invariant theory is one of the classical applications of commutative algebra; in fact,
several of the early results in commutative algebra such as Hilbert's basis theorem have
originally been developed in the context of invariant theory. While in its most general
setting, invariant theory studies the ring of invariants SG of any group G which acts by
automorphisms on a ring S, most of the classical theory is developed for the following
setting: letK be a �eld and let G be a group acting linearly onKn; this induces an action
on the polynomial ring S := K[x1, . . . , xn]. Then one studies the subring K[x1, . . . , xn]G

consisting of all polynomials which are invariant under this action of G. Among the many
references for this theory we especially mention the books by Benson [4] and Derksen
and Kemper [16].

If the group G is �nite, then it was proved by Noether [47] that in the above setting
K[x1, . . . , xn]G is a �nitely generated K-algebra; however, in general not much can be
said about the structure of this ring, so it became an important part of invariant theory
to analyze for which groups G the ring of invariants K[x1, . . . , xn]G has certain ring-
theoretic properties. The �rst main result in this direction is due to Shephard and Todd
[54] and states that in the case K = C the ring of invariants is isomorphic to a polynomial
ring if and only if G is generated by pseudore�ections; later this has been generalized to
arbitrary �elds K in which |G| is invertible. Under the same assumption on |G| Hochster
and Eagon [29] proved that the ring of invariants is always a Cohen-Macaulay ring.

Also several other properties of rings of invariants have been studied; a summary of
those results which are important for us is given in Section 2.3. Furthermore, it has
been noticed that the ring of invariants of the stabilizer subgroup Gx of a point x ∈ Kn

inherits many properties from the ring of invariants of G; for a systematic account on
results of this kind see Kemper [34].

Although Noether's �niteness theorem holds for actions of �nite groups on rings in
a much more general setting than just linear actions on polynomial rings over �elds,
most of the work on the structure of the ring of invariants has been done only in this
special situation. The goal of this thesis is to generalize some of the classical structure
theorems for rings of invariants over �elds to the case of an action of a �nite group G on
R[x1, . . . , xn] induced by a linear action on Rn, where R is a su�ciently nice ring; these
are what I call arithmetic invariant rings. What �su�ciently nice� precisely means di�ers
between the sections of this thesis, but all main results are applicable if R is a Dedekind
domain.
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1 Introduction

Previous work

To the best of my knowledge, no systematic account on invariant theory over rings is
yet available in the literature. Several results on invariant rings appear in the literature
which are formulated over arbitrary rings where this does not require much extra work; an
important example are Göbel's results on invariant rings of permutation groups [22, 23].
Kemper [37] gave an algorithm for computing arithmetic invariant rings in the case where
Gröbner basis computations are possible over the base ring R. For example, this is the
case if R is Euclidean. Furthermore, in [36] Kemper proved a result on the Cohen-
Macaulay defect of rings of invariants which does not need a base �eld. Notbohm [48]
studied the question of when the ring of invariants of an irreducible pseudore�ection
group over the p-adic integers for an odd prime p is isomorphic to a polynomial ring.
The Cohen-Macaulay property and some related properties of rings of invariants over

Z have been studied recently by Almuhaimeed [1]; a summary of her results along with
some other earlier results is given in Section 3.3. The approach of Almuhaimeed is com-
plementary to the one used in this thesis in the following sense: most of Almuhaimeed's
main results are useful mainly when one wants to know whether a ring of invariants for
which an explicit set of generators is already given has certain properties; on the other
hand, the main goal in this thesis is to prove these properties for the invariant rings of
certain classes of subgroups of Gln(R) so that one can decide whether a ring of invariants
has a certain property without computing a set of generators.

Outline of the thesis

After recalling some basics from invariant theory and commutative algebra in Chapter 2
we begin our investigation of rings of arithmetic invariants in Chapter 3 by proving some
elementary general results on these rings and providing several examples emphasizing
di�erent phenomena we will study in detail in later chapters. Chapter 3 ends with
a detailed summary of some previous results on the structure of rings of arithmetic
invariants.
Chapter 4 studies a �rst important property of rings of arithmetic invariants: we

discuss the question of when a ring of arithmetic invariants is regular and closely related
the question of when it is isomorphic to a polynomial ring, so the goal of this chapter is
a generalization of the classical theorem of Shephard, Todd, and Chevalley to arithmetic
invariant rings. Along the way we prove a general result on the structure of �nitely
generated regular graded algebras over Dedekind domains. The main results of Chapter 4
already appeared in [43].
The discussion of further properties of rings of arithmetic invariants requires some

special knowledge on several related topics in commutative algebra which we introduce
in Chapter 5: re�exive modules, divisorial ideals, divisor class groups, and Picard groups.
The theory of divisor class groups is used in Chapter 6 in order to answer the question

under which conditions a ring of arithmetic invariants is factorial; moreover, we compute
the Picard groups of rings of arithmetic invariants in this chapter. Chapter 7 contains
a discussion of the question under which conditions a ring of arithmetic invariants is a
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quasi-Gorenstein ring. We begin this chapter with a summary of the basic properties of
canonical modules of local rings and a discussion of the quasi-Gorenstein property for
graded rings. In Section 7.5 we prove the existence of homogeneous systems of parameters
in rings of arithmetic invariants for certain classes of base rings; this is a result which
might be interesting in its own right. This is then used to compute the graded canonical
module of a ring of invariants over a local ring. Finally we prove our main result on the
quasi-Gorenstein property by putting the previous results together and hereby removing
the assumption that the base ring is local.
Finally in Chapter 8 we prove a result which shows that if the ring of arithmetic

invariants of some group has a certain property, then the rings of invariants of certain
stabilizer subgroups have the same property. This requires some basic results on étale
morphisms of schemes which are summarized at the beginning of that chapter.

Main results

The �rst main new result of this thesis (Theorem 4.22) says that for the ring of invariants
R[x1, . . . , xn]G of a �nite group G ⊆ Gln(R) over a principal ideal domain R the following
two statements are equivalent:
(i) R[x1, . . . , xn]G is isomorphic to a polynomial ring over R and G acts faithfully on

(R/p)n for every maximal ideal p ⊂ R which contains |G|.
(ii) The rings of invariants of G over Quot(R) and over all R/p where p ⊂ R is a

prime ideal are all isomorphic to polynomial rings and the homogeneous generators
of all these rings of invariants have the same degrees.

In particular, if the assumption on faithfullness in (i) is given, the theorem completely
characterizes those rings of invariants over principal ideal domains which are isomorphic
to polynomial rings. The theorem also contains a generalization of this result to the case
where R is only a Dedekind domain, although in this case the precise statement becomes
much more technical.
Our second main result is Theorem 6.5, which answers the question of when a ring of

invariants is factorial:
A ring of invariants R[x1, . . . , xn]G with a �nite group G ⊆ Gln(R) and a Noetherian

normal domain R is factorial if and only if both R and Quot(R)[x1, . . . , xn]G are factorial.
More precisely, we will see that the divisor class group of R[x1, . . . , xn]G is the direct

product of the divisor class groups of R and Quot(R)[x1, . . . , xn]G; the divisor class group
of Quot(R)[x1, . . . , xn]G is known by a classical result of Nakajima [45], see Theorem 2.19.
Moreover, in this context we prove that under the same assumptions on R as above the
Picard groups of R and R[x1, . . . , xn]G are isomorphic, see Theorem 6.11; note that the
Picard group of Quot(R)[x1, . . . , xn]G is always trivial by a result of Kang [31].
In Chapter 7 we prove a similar result for the quasi-Gorenstein property, see De�ni-

tion 7.7. The main result here is Theorem 7.56:
A ring of invariants R[x1, . . . , xn]G with a �nite group G ⊆ Gln(R) and a Dedekind

domain R is a quasi-Gorenstein ring if and only if Quot(R)[x1, . . . , xn]G is a quasi-
Gorenstein ring.
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1 Introduction

In fact, the result holds for a more general class of base rings R which we call allowed
base rings, see De�nition 7.51. Again, the question of when Quot(R)[x1, . . . , xn]G is
quasi-Gorenstein is answered already; this is a result of Broer [8], see Theorem 7.30.
Moreover, we shall see that if |G| is invertible in R, then we can replace �quasi-Gorenstein�
by �Gorenstein� in the above statement. Along the way towards these results we also
prove that for a certain class of base rings R including all Noetherian local domains a
ring of invariants R[x1, . . . , xn]G always contains a homogeneous system of parameters
(Corollary 7.38).
In the last main result of this thesis (Theorem 8.20) we consider an arbitrary Noethe-

rian domain R, a �nite group G ⊆ Gln(R), and a point x ∈ Rn such that for every
maximal ideal m ⊂ R the stabilizer subgroups in G of x and of the ideal

{f ∈ R[x1, . . . , xn]|f(x)− x ∈ m} ⊆ R[x1, . . . , xn]

coincide. Moreover let P be one of the following ring-theoretic properties: regularity, the
Gorenstein property, and the Cohen-Macaulay property. The theorem then states the
following:
If R[x1, . . . , xn]G satis�es P, then R[x1, . . . , xn]Gx also satis�es P.
If R is an allowed base ring in the same sense as mentioned above, this also holds if P is

the quasi-Gorenstein property. Moreover, we prove that under the above assumptions we
have cmdef(R[x1, . . . , xn]Gx) ≤ cmdef(R[x1, . . . , xn]G), where cmdef denotes the Cohen-
Macaulay defect.
We �nally mention that Section 9.1 contains a summary on how the di�erent ring-

theoretic properties of an arithmetic invariant ring considered in this thesis behave under
certain changes of the base ring and the group.

Conventions

In this thesis �ring� always means �commutative ring with one�. If R is a ring and
G ⊆ Gln(R) is a group and we consider an action of G on R[x1, . . . , xn] then this
always means the induced action on the symmetric algebra of the module (Rn)∗ which
is isomorphic to R[x1, . . . , xn]. So for σ ∈ G, f ∈ R[x1, . . . , xn], x ∈ Rn we have
σ(f)(x) = f(σ−1(x)). By a graded ring we always mean a positively graded ring. If R is
a ring, then by a graded R-algebra S =

⊕
d∈N0

Sd we always mean a graded ring S with
S0 ∼= R.

Acknowledgements
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2 Basics from invariant theory and

commutative algebra

This chapter is a summary of several basic results from invariant theory and commuta-
tive algebra which will be used throughout this thesis. In later chapters we also need
the theory of re�exive modules and divisor class groups; however, in order to avoid this
chapter to become overly long, the introduction of these concepts is postponed to Chap-
ter 5. Furthermore, the theory of canonical modules is postponed to the beginning of
Chapter 7.

2.1 Rings of invariants

This section contains some basic de�nitions and results from invariant theory. We begin
by recalling the de�nition of the ring of invariants.

De�nition 2.1. Let S be a ring. For a subgroup G ⊆ Aut(S) we de�ne the ring of
invariants as

SG := {f ∈ S|∀σ ∈ G : σ(f) = f}.

In this thesis we shall mostly consider the special case where S = R[x1, . . . , xn] for some
ring R and G is a subgroup of Gln(R); we then de�ne the action of G on S as follows:
G acts on the dual M∗ of the free R-module M := Rn via the dual representation,
i.e. for σ ∈ G, f ∈ M∗,m ∈ m we set (σ(f))(m) := f(σ−1(m)). Now we can identify
S = R[x1, . . . , xn] with the symmetric algebra S(M∗) and thus naturally extend the G-
action to S. So for σ ∈ G, f ∈ S,m ∈ Rn we have σ(f)(m) = f(σ−1(m)); if R is in�nite,
we could also use this to de�ne the action. In the following we only consider �nite groups
G for which we have the following basic result due to Noether [47], see also Derksen and
Kemper [16, Proposition 3.0.1].

Theorem 2.2. (Noether's �niteness theorem) Let R be a Noetherian ring, S a �nitely
generated R-algebra and G ⊆ AutR(S) a �nite subgroup. Then SG is again a �nitely
generated R-algebra.

Proof. We can write S = R[a1, . . . , an]. Then ai is a zero of the polynomial hi :=∏
σ∈G(x− σ(ai)) ∈ SG[x]. Let A ⊆ SG be the R-subalgebra generated by all coe�cients

of the hi; by construction S is integral over A and hence a �nitely generated A-module. As
it is a �nitely generated R-algebra, A is Noetherian, so SG ⊆ S is also �nitely generated
as an A-module. Since A is a �nitely generated R-algebra, the claim follows.

The above proof also shows the following:

5



2 Basics from invariant theory and commutative algebra

Proposition 2.3. Let R, S, and G be as in Theorem 2.2. Then SG ⊆ S is an integral
ring extension; in particular, dim(SG) = dim(S).

If S is an integral domain and G ⊆ Aut(S) a subgroup, then G also acts on Quot(S).
If G is �nite, then for a

b ∈ Quot(S)G we have

a

b
=
a
∏
σ∈G\{id} σ(b)∏
σ∈G σ(b)

∈ Quot(SG),

so Quot(SG) = Quot(S)G. We also immediately obtain the following:

Lemma 2.4. Let S be an integral domain and let G ⊆ Aut(S) be a �nite group. Then
SG = S ∩Quot(SG).

An important question in invariant theory is under which conditions a ring of invariants
SG inherits certain ring-theoretic properties from S. The following theorem is a �rst step
in this direction.

Theorem 2.5. (see Derksen and Kemper [16, Proposition 2.4.4]) Let S be a normal
domain and let G ⊆ Aut(S) be a �nite group. Then SG is again normal.

Proof. Let f ∈ Quot(SG) ⊆ Quot(S) be integral over SG. Since S is normal, we have
f ∈ S. So f ∈ S∩Quot(SG); by Lemma 2.4 this implies f ∈ SG. Hence SG is normal.

We end this section by introducing two important maps which can often be used to
construct elements in a ring of invariants.

De�nition 2.6. Let S be a ring and let G ⊆ Aut(S) be a �nite group.
a) The transfer TrG is the map S → SG, f 7→

∑
σ∈G σ(f).

b) If |G| is invertible in S, then the Reynolds operator RG is the map S → SG, f 7→
1
|G|TrG(f).

Both TrG and RG are homomorphisms of SG-modules; the Reynolds operator has the
additional advantage that it is a projection map, i.e. for f ∈ SG we have RG(f) = f .

2.2 Rami�cation and pseudore�ections

In this section we collect several basic facts concerning rami�cation of prime ideals which
will be needed several times in this thesis. As a general reference for this we mention
Broué [9, Chapter 3]. For a ring A we de�ne X(1)(A) := {p ∈ Spec(A)|ht(p) = 1}.
We �x a �nite extension of normal domains A ⊆ B, where �nite means that B is

�nitely generated as an A-module. Let q ∈ X(1)(B) and p := q ∩ A. Then Bq is a
discrete valuation ring and hence there is an e(q, p) ∈ N such that pBq = qe(q,p)Bq.

De�nition 2.7. Let A, B, q, and p be as above. The number e(q, p) is called the
rami�cation index of q over p. The ideal q is called unrami�ed over A if e(q, p) = 1 and
the �eld extension Quot(B/q) ⊇ Quot(A/p) is separable; otherwise, it is called rami�ed.

6



2.2 Rami�cation and pseudore�ections

The following lemma is an immediate consequence of the de�nition of the rami�cation
index:

Lemma 2.8. Let A ⊆ B ⊆ C be �nite extensions of Noetherian normal domains, p ∈
X(1)(C), p′ := p ∩B, and p′′ := p ∩A. Then we have e(p, p′′) = e(p, p′)e(p′, p′′).

Proof. We have

p′′Cp = (p′′Bp′)Cp = ((p′)e(p
′,p′′)Bp′)Cp = (p′)e(p

′,p′′)Cp

= (p′Cp)
e(p′,p′′) = (pe(p,p

′)Cp)
e(p′,p′′) = pe(p,p

′)·e(p′,p′′)Cp.

Now the lemma follows from the de�nition of the rami�cation index.

From now on we set L := Quot(B) and K := Quot(A) and assume that the �eld
extension L/K is Galois with Galois group G. Since B is normal, G acts on B and since
A is also normal and B is integral over A we have A = B ∩K = BG by Lemma 2.4.

De�nition 2.9. The inertia group of a prime ideal q ∈ X(1)(B) is the subgroup of G
consisting of all σ ∈ G for which σ(q) = q and σ acts trivially on B/q; it is written as
Gi(q).

The next lemma connects the inertia group and the notion of unrami�ed primes.

Lemma 2.10. Let q ∈ X(1)(B) and p := q ∩ A. The rami�cation index e(q, p) divides
|Gi(q)|. In particular, if Gi(q) = {id}, then e(q, p) = 1.

Proof. See [9, Proposition 3.4].

We give one further result on inertia groups here which we will need later:

Lemma 2.11. Let q ∈ X(1)(B) and q′ := q∩BGi(q) ∈ X(1)(BGi(q)). Then Gi(q′) = {id}.

The following proof is an adaption of standrad arguments in algebraic number theory,
see Neukirch [46, Chapter I, �9].

Proof. Let σ ∈ Gi(q′) ⊆ Gal(LG
i(q)/K); we need to show that σ = id. There is a τ1 ∈

Gal(L/K) such that τ1|LGi(q) = σ; set q1 := τ1(q), so we have q1∩BGi(q) = τ1(q∩BGi(q)) =

τ1(q
′) = σ(q′) = q′ = q ∩ BGi(q). Then there is a τ2 ∈ Gal(L/LG

i(q)) ⊆ Gal(L/K) with
τ2(q1) = q (see [9, Theorem 3.2]) and for τ := τ2 ◦ τ1 ∈ Gal(L/K) we have τ |

LGi (q)
= σ

and τ(q) = q. We now prove that τ acts trivially on B/q; then we have τ ∈ Gi(q) and
hence σ = τ |

LGi(q) = id as desired.

We de�ne F := Quot(BGi(q)/q′) and F̂ := Quot(B/q). Since we know that σ acts
trivially on BGi(q)/q′, it is su�cient to prove that the �nite �eld extension F̂ /F has no
nontrivial automorphisms. Let F s be the maximal separable extension of F in F̂ and
let θ be a primitive element of the �eld extension F s/F . Since BGi(q)/q′ ⊆ B/q is an
integral extension, there is an a ∈ BGi(q)/q′ such that aθ ∈ B/q. But a ∈ F , so aθ
is again a primitive element of F̂ /F and therefore we may assume that θ ∈ B/q. Let
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2 Basics from invariant theory and commutative algebra

g ∈ F [t] be the minimal polynomial of θ over F ; let θ ∈ B be a representative of θ. We
de�ne f ∈ BGi(q)[t] to be the minimal polynomial of θ over BGi(q); since BGi(q) ⊆ B
is integral, f is monic and in particular the class f ∈ F [t] of f is not zero. We have
f(θ) = 0, so g divides f . Now let δ be an automorphism of F̂ /F . Then δ(θ) is a zero of
g and hence of f , so there is a zero θ′ ∈ B of f such that θ′ = δ(θ) (f can be written as
a product of linear factors in B[t] because L/LG

i(q) is a normal �eld extension and B is
a normal domain). Since f is irreducible, there is a ρ ∈ Gi(q) = Gal(L/LG

i(q)) such that
ρ(θ) = θ′. By the de�nition of the inertia group, the induced automorphism ρ of F̂ /F is
the identity, so δ(θ) = θ′ = ρ(θ) = ρ(θ) = θ. Since θ generates the �eld extension F s/F ,
this implies δ|F s = id. But then δ = id because F̂ /F s is purely inseparable and therefore
does not have any non-trivial automorphisms.

We now introduce pseudore�ections. These will play an essential role in several of the
theorems on ring-theoretic properties of rings of invariants in the next section. From now
on, we �x a �eld F . We discuss generalizations of this concept to rings in Section 3.1.

De�nition 2.12.

a) A matrix σ ∈ Gln(F ) is called a pseudore�ection if σ 6= id, σ is of �nite order and σ
�xes some (n− 1)-dimensional subspace of Fn elementwise.

b) A �nite subgroup G ⊆ Gln(F ) is called a pseudore�ection group if G is generated by
pseudore�ections.

A pseudore�ection in Gln(R) is simply called a re�ection and pseudore�ection groups
over R are usually called Coxeter groups. A diagonalizable matrix σ is a pseudore�ection
if and only if all but one eigenvalue of σ is equal to 1 and the remaining eigenvalue is a
root of unity. Over �elds of characteristic zero every pseudore�ection is diagonalizable;
in positive characteristic this is not true as here for example the matrix(

1 1
0 1

)
is a pseudore�ection which is not diagonalizable. Non-diagonalizable pseudore�ections
are called transvections. In the previous section we de�ned an action of Gln(F ) on
F [x1, . . . , xn]. Using this we can characterize pseudore�ections as follows:

Lemma 2.13. Let σ ∈ Gln(F ). Then σ is a pseudore�ection if and only if the height of
the ideal in F [x1, . . . , xn] generated by (σ − id)(F [x1, . . . , xn]) is one.

This motivates the following de�nition (see Nakajima [45]):

De�nition 2.14. Let S be an F -algebra. An automorphism σ ∈ AutF (S) is called a
generalized re�ection if the height of the ideal in S generated by (σ − id)(S) is one.

For later use, we also note the following:

Lemma 2.15. Let σ, τ ∈ Gln(K) and assume that σ is a pseudore�ection. Then τ−1στ
is again a pseudore�ection. In particular, if G ⊆ Gln(K) is a subgroup and N ⊆ G is
the subgroup of G generated by all pseudore�ections in G, then N is a normal subgroup
of G.
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The next proposition gives a connection between rami�cation and pseudore�ections:

Proposition 2.16. Let S := F [x1, . . . , xn] be the polynomial ring in n variables over F
and let G ⊆ Gln(F ) be a �nite group; again, we view the elements of G as automorphisms
of S. Let q ∈ X(1)(S) and σ ∈ Gi(q)\{id} ⊆ G. Then σ is a pseudore�ection.

Proof. See Broué [9, Proposition 3.7].

2.3 Properties of invariant rings over �elds

Let F be a �eld and let G ⊆ Gln(F ) be a �nite group. In this section we collect some re-
sults answering the question under which conditions the ring of invariants F [x1, . . . , xn]G

has certain nice properties; these questions form one of the main branches of invariant
theory of �nite groups. The main goal of this thesis is to develop analogous results in
the case where the �eld F is replaced by some ring R. Invariant theory over F often
becomes much simpler when char(F ) does not divide |G|; this is called the nonmodular
case. The more complicated case where char(F ) divides |G| is called the modular case.
The simplest possible structure F [x1, . . . , xn]G can have is that it is isomorphic to a

polynomial ring over F or, equivalently, that it is generated by n algebraically indepen-
dent elements; note that dim(F [x1, . . . , xn]G) = n by Proposition 2.3. In the nonmodular
case we have the following theorem:

Theorem 2.17. Assume that char(F ) - |G|. Then the following two statements are
equivalent:
(i) F [x1, . . . , xn]G is isomorphic to a polynomial ring.
(ii) G is a pseudore�ection group.
If char(F ) divides |G|, then the implication (i) =⇒ (ii) still holds.

This has �rst been proved by Shephard and Todd [54] in the case F = C and then
by Chevalley [12] in the case F = R; it was noted later that Chevalley's proof works for
arbitrary �elds with char(F ) - |G|. Another proof of this result has been given by Smith
[55]. The implication (i) =⇒ (ii) for arbitrary �elds is due to Serre [52]. A proof of the
whole theorem can also be found in Benson's book [4, Theorem 7.2.1].
For the next result, we need the notion of a character:

De�nition 2.18. Let G be a group and let R be a ring. An (R-valued) character of G
is a group homomorphism G→ R×.

Now we can formulate the following theorem due to Nakajima [45] which fully answers
the question under which conditions F [x1, . . . , xn]G is factorial.

Theorem 2.19. Let N ⊆ G be the subgroup generated by all pseudore�ections in G.
The ring of invariants F [x1, . . . , xn]G is factorial if and only if every F -valued character
of G is uniquely determined by its restriction to N or, equivalently, if and only if every
F -valued character which takes the value one on every pseudore�ection takes the value
one on all elements of G.
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In the nonmodular case, the question of when a ring of invariants is a Cohen-Macaulay
ring is answered by the following theorem by Hochster and Eagon [29]:

Theorem 2.20. Let F be a �eld and let G ⊆ Gln(F ) be a �nite group such that char(F ) -
|G|. Then the ring of invariants F [x1, . . . , xn]G is a Cohen-Macaulay ring.

The question under which conditions F [x1, . . . , xn]G is a Gorenstein ring has been
studied by several people. The following theorem answeres this under the assumption
that G contains no pseudore�ections. It is due to Watanabe [59, 60] in the nonmodular
case and due to Braun [6] in the modular case.

Theorem 2.21. Assume that G does not contain a pseudore�ection. Then the following
two conditions are equivalent:
(i) F [x1, . . . , xn]G is a Gorenstein ring.
(ii) F [x1, . . . , xn]G is a Cohen-Macaulay ring and G ⊆ Sln(F ).

This result has been generalized to the case where G may contain pseudore�ections
by Broer [8] and Fleischmann and Woodcock [18]. Since their result requires some more
terminology, we postpone its statement to Chapter 7, see Theorem 7.30.

2.4 Dedekind domains

Dedekind domains will play a crucial role throughout this thesis, so it may be helpful to
brie�y recall some important results about them here; as a standard reference for this
topic we use Neukirch [46]. We begin with the de�nition.

De�nition 2.22. A Dedekind domain is a Noetherian normal integral domain of Krull
dimension at most one.

Example 2.23.
a) Every principal ideal domain is a Dedekind domain.
b) If K is an algebraic number �eld, then the ring of algebraic integers OK is a Dedekind

domain.
c) More generally, if R is a Dedekind domain, K := Quot(R), and L/K is a �nite �eld

extension, then the integral closure of R in L is again a Dedekind domain (see [46,
Chapter I, Proposition 12.8]).

d) Let K be an algebraically closed �eld and let C be an irreducible smooth a�ne curve
over K. Then the coordinate ring K[C] is a Dedekind domain.

In a factorial domain, every ideal of height one is principal (see Bruns and Herzog [11,
Lemma 2.2.17]), so we obtain the following lemma:

Lemma 2.24. A Dedekind domain is factorial if and only if it is a principal ideal domain.

We will also frequently use the following local characterization of Dedekind domains.
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Proposition 2.25. ([46, Chapter I, Proposition 11.5]) A Noetherian integral domain R
is a Dedekind domain if and only if for every prime ideal p ⊂ R the localization Rp is
either a �eld or a discrete valuation ring. In particular, every local Dedekind domain is
either a �eld or a discrete valuation ring and hence a principal ideal domain.

An immediate consequence of this is the following:

Proposition 2.26. Every Dedekind domain is a regular ring and hence also a Gorenstein
ring and a Cohen-Macaulay ring.

Next we introduce fractional ideals; for later use we de�ne them for arbitrary Noethe-
rian domains, not just for Dedekind domains.

De�nition 2.27. Let R be a Noetherian domain.
a) A fractional ideal of R is a nonzero �nitely generated R-submodule of Quot(R).
b) For two fractional ideals I and J their product is de�ned as

IJ =

{
n∑
i=1

aibi|n ∈ N, ai ∈ I, bi ∈ J

}
.

c) A fractional ideal is called principal if it is generated by one element as an R-module.
d) For a fractional ideal I, the inverse of I is de�ned as

I−1 = {a ∈ Quot(R)|aI ⊆ R}

and I is called invertible if II−1 = R.

One important property of a Dedekind domain R is that the set of all fractional
ideals of R forms an abelian group JR with respect to the product de�ned above ([46,
Chapter I, Proposition 3.8]); in particular, in a Dedekind domain every fractional ideal
is invertible. The principal fractional ideals form a subgroup PR ⊆ JR and the factor
group Cl(R) := JR/PR is called the ideal class group of R. Now Lemma 2.24 says that
R is factorial of and only if Cl(R) = {1}. In Section 5.3 we discuss a generalization of
the ideal class group to a larger class of domains.
Over a principal ideal domain every �nitely generated torsion-free module is free. This

is not true anymore over a Dedekind domain; however, there is still a nice description of
such modules.

Theorem 2.28. Let R be a Dedekind domain and let M be a �nitely generated torsion-
free R-module. Then the following holds:
a) M is projective.
b) If M 6= {0}, then there exist an n ∈ N0 and a nonzero ideal I ⊆ R such that M ∼=

Rn ⊕ I. The number n is uniquely determined and the class of the ideal I in Cl(R)
is uniquely determined by M . In particular, I is a principal ideal if and only if M is
free.

Proof. See for example Curtis and Reiner [14, Theorem 4.13].
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2.5 Graded rings

This section contains some basic results about graded rings which will be needed through-
out this thesis. As a general reference we mention Bruns and Herzog [11, Section 1.5].
For us a graded ring is always a positively graded ring, that is, a ring S which can be
written as S =

⊕
d∈N0

Sd (direct sum of additive groups) such that Sd · Se ⊆ Sd+e for
all d, e ∈ N0. If R is any ring, then by a graded R-algebra we always mean a graded
ring S =

⊕
d∈N0

Sd with S0 ∼= R. An ideal I in a graded ring S is called homogeneous
if for f =

∑
d∈N0

fd ∈ I with fd ∈ Sd for all d each fd is again in I. Moreover we de�ne
S+ :=

⊕
d>0 Sd.

Lemma 2.29. Let S be a graded ring. The homogeneous maximal ideals in S are pre-
cisely the ideals of the form (n, S+)S where n is a maximal ideal in S0. Moreover, every
homogeneous ideal in S is contained in a homogeneous maximal ideal.

Proof. Let n ⊂ S0 be a maximal ideal and set m := (n, S+)S . Then S/m ∼= S0/n, so
m is indeed a maximal ideal. Conversely, let m′ be a homogeneous maximal ideal in S.
Then m′ ∩ S0 is a proper ideal in S0, so there exists a maximal ideal n ⊂ S0 such that
m′ ∩ S0 ⊆ n. Since m′ is a homogeneous ideal, we obtain m′ ⊆ m := (n, S+)S and since
m′ is maximal, this implies m′ = m and hence m′ is of the desired form.
For the second statement, let I be any homogeneous ideal. Then there is a maximal

ideal n ⊂ S0 such that I ∩ S0 ⊆ n, so every homogeneous element of I is contained in
m := (n, S+)S and hence I ⊆ m because I is homogeneous. By the �rst statement m is a
homogeneous maximal ideal, so the second statement follows.

The literature on graded rings often focuses on graded rings S for which S0 is a �eld.
When we want to do invariant theory over rings, then we obviously need more general
graded rings; it turns out that there is a particularly nice theory for so-called ∗local
graded rings.

De�nition 2.30. A graded ring is called ∗local if it contains only one homogeneous
maximal ideal.

By Lemma 2.29 a graded ring S =
⊕

n∈N0
Sn is ∗local if and only if S0 is a local ring.

In this case, the unique homogeneous maximal ideal in S is (m, S+)S where m is the
unique maximal ideal in S0.
For a graded ring S and an S0-algebra A we can de�ne a natural grading on S′ :=

S ⊗S0 A by setting (S′)d := Sd ⊗S0 A for each d. In particular, for a prime ideal p ⊂ S0
S ⊗S0 (S0)p becomes a ∗local graded ring. This often allows us to reduce to the case of
∗local graded rings and is the main reason why ∗local rings are important for us. We can
also describe this ring as a localization: S ⊗S0 (S0)p ∼= (S0\p)−1S.
Next we discuss homogeneous prime ideals.

De�nition 2.31. Let S be a graded ring and let I ⊂ S be any ideal. Then we de�ne I∗

to be the homogeneous ideal in S generated by all homogeneous elements of I.
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Clearly if I is a homogeneous ideal, then I∗ = I. Now let p be a prime ideal in a
graded ring S. Then p∗ is again a prime ideal ([11, Lemma 1.5.6]); moreover, we have
the following:

Lemma 2.32. (Matijevic and Roberts [40, Lemma 1], see also [11, Theorem 1.5.8])
Let S be a graded ring and let p ⊂ S be a non-homogeneous prime ideal in S. Then
ht(p∗) = ht(p)− 1.

This lemma has the following consequence, see also Eisenbud [17, Corollary 13.7].

Lemma 2.33. Let S be a graded ring with dimS < ∞. Then there is a homogeneous
maximal ideal m ⊂ S with ht(m) = dim(S).

Proof. Let m0 be any maximal ideal in S with ht(m0) = dim(S). If m0 is already
homogeneous, we are done. Otherwise, by Lemma 2.32 m∗0 is a homogeneous prime
ideal with ht(m∗0) = dim(S) − 1. Since m∗0 ( m0, m∗0 is not a maximal ideal, so by
Lemma 2.29 there is a homogeneous maximal ideal m ⊂ S such that m∗0 ( m and hence
ht(m) > ht(m∗0) = dim(S)− 1, so ht(m) = dim(S).

We will often need to check whether a graded ring has certain ring-theoretic properties.
For many properties this can be checked at localizations at graded prime ideals. Here
we give a slight reformulation of these results which will turn out to be the most useful
version for our purposes.

Proposition 2.34. Let S be a Noetherian graded ring. Then the following statements
are equivalent.
(i) S is regular.
(ii) For every homogeneous maximal ideal m ⊂ S the localization Sm is regular.
(iii) For every maximal ideal p ⊂ S0 the ring S ⊗S0 (S0)p ∼= (S0\p)−1R is regular.

Proof. It is well known that (i) implies (iii) (see [11, Corollary 2.2.9]). Next we prove
that (iii) implies (ii): let m ⊂ R be a homogeneous maximal ideal, then m = (p, S+)S for
some maximal ideal p ⊂ S0 by Lemma 2.29. Since S0\p ⊆ S\m, Sm is a localization of
(S0\p)−1S and hence regular by (iii). Finally, we prove that (ii) implies (i). In order to
prove that S is regular, it is su�cient to prove that Sq is regular for every homogeneous
prime ideal q ⊂ S (see [11, Exercise 2.2.24]). By Lemma 2.29 there is a homogeneous
maximal ideal m ⊂ S with q ⊆ m. Then Sm is regular by assumption. But since q ⊂ m,
Sq can be viewed as a localization of Sm, so Sq is also regular (see [11, Corollary 2.2.9]).
The claim follows.

Similarly, we can prove the following two results; instead of [11, Exercise 2.2.24] we
use [11, Exercise 2.1.27] and [11, Exercise 3.6.20].

Proposition 2.35. Let S be a Noetherian graded ring. Then the following statements
are equivalent.
(i) S is a Cohen-Macaulay ring.
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(ii) For every homogeneous maximal ideal m ⊂ S the localization Sm is a Cohen-
Macaulay ring.

(iii) For every maximal ideal p ⊂ S0 the ring S ⊗S0 (S0)p ∼= (S0\p)−1S is a Cohen-
Macaulay ring.

Proposition 2.36. Let S be a Noetherian graded ring. Then the following statements
are equivalent.
(i) S is a Gorenstein ring.
(ii) For every homogeneous maximal ideal m ⊂ S the localization Sm is a Gorenstein

ring.
(iii) For every maximal ideal p ⊂ S0 the ring S ⊗S0 (S0)p ∼= (S0\p)−1S is a Gorenstein

ring.

We end this section by giving some results on graded modules, see for example Brod-
mann and Sharp [7, Section 13.1]. Let S be a graded ring; a graded S-module is an
S-module M which, as an abelian group, can be written as M =

⊕
e∈ZMe such that for

all d ∈ N0, e ∈ Z we have Sd ·Me ⊆Md+e. For a graded module M and m ∈ Z let M(m)
be the graded module given by M(m)e := Mm+e.

De�nition 2.37. Let S be a graded ring and let M and N be graded S-modules. A
homomorphism ϕ : M → N is called homogeneous of degree d ∈ Z if for every e ∈ Z
we have ϕ(Me) ⊆ Nd+e. The set of all such homomorphisms is written as Homd(M,N).
We de�ne ∗HomS(M,N) :=

⊕
d∈Z Homd(M,N).

Each Homd(M,N) is an abelian group and ∗HomS(M,N) is a graded S-module. A
homomorphism of graded modules is simply called homogeneous if it is homogeneous of
degree zero. We de�ne the category ∗C(S) whose objects are graded S-modules and whose
morphisms are homogeneous homomorphisms (of degree zero) of S-modules. Then ∗C(S)
is an abelian category ([7, 13.1.7(i)]); for every graded S-module M there is a surjective
homogeneous homomorphism P → M for some graded free S-module P , so M has a
free resolution in ∗C(S); we call such a resolution a graded free resolution of M . We
can use this to de�ne a graded version of the Ext-functor: for a �xed graded module N
the functor ∗Hom(·, N) : ∗C(S)→ ∗C(S) is left exact ([7, Exercise 13.1.8(ii)]), so we can
make the following de�nition.

De�nition 2.38. The functor ∗ExtrS(·, N) is the r-th right derived functor of ∗Hom(·, N).
More concretely, let P• be a graded free resolution of M . Then ∗ExtrS(M,N) is the r-th
cohomology module of the cochain complex ∗Hom(P•,M).

In many situations, the graded ∗Ext-module and the usual Ext-module are the same
object:

Lemma 2.39. ([7, Exercise 13.1.8(iv)]) Let S be a graded ring and letM and N be graded
S-modules. Assume that S is Noetherian and M is �nitely generated. Then for every r ≥
0 we have ∗ExtrS(M,N) ∼= ExtrS(M,N); in particular ∗HomS(M,N) ∼= HomS(M,N).
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3 Arithmetic invariants: �rst steps

In this chapter we begin the investigation of rings of arithmetic invariants, i.e. rings of
invariants of the form R[x1, . . . , xn]G where R need not be a �eld. The �rst section
contains some elementary properties of these rings. The second section gives several
examples of rings of invariants over the integers which show the di�erent behaviour that
can occur for these rings. The third section is a collection of several results concerning
properties of rings of arithmetic invariants which can be found in the literature.

3.1 Basic properties

Let R be a ring and let G ⊆ Gln(R) be a �nite group. As usual, G acts on the polynomial
ring S := R[x1, . . . , xn] via the dual representation on (Rn)∗ ⊆ S((Rn)∗) ∼= R[x1, . . . , xn].
The goal of this thesis is to study the properties of the ring of invariants SG. In this
section we begin with some basic properties. First of all Theorem 2.2 and Proposition 2.3
yield the following:

Proposition 3.1. Let R be a Noetherian ring and let S and G be as above. Then the
following holds:
a) SG is �nitely generated as an R-algebra.
b) The ring extension SG ⊆ S is integral.

We now want to study what happens when we change the base ring R. Let R′ be any R-
algebra. Then we get a canonical homomorphism Gln(R)→ Gln(R′) and hence a natural
R′-representation of G ⊆ Gln(R), although this representation need not be faithful. We
write SR′ := S ⊗R R′ = R′[x1, . . . , xn]. We have a canonical map S → SR′ which is
compatible with the G-action, so we obtain a canonical homomorphism SG → SGR′ the
image of which is SG ⊗R R′. In general, this map will not be surjective even if G acts
faithfully on (R′)n, as Example 3.10 in the next section shows. The situation becomes
much better if we consider the special case that R is an integral domain and R′ is a
localization of R. In this case we have the following:

Proposition 3.2. Let R be an integral domain and let U ⊆ R\{0} be a multiplicative
subset. Then with S and G as above, the following statements hold:
a) U−1(SG) = (U−1S)G. In particular, every set of generators of SG as an R-algebra

also generates (U−1S)G as an U−1R-algebra.
b) SG = (U−1S)G ∩ S.

Proof. Since G acts trivially on R and hence on U , we have U−1(SG) ⊆ (U−1S)G. On
the other hand, if fa ∈ (U−1S)G where f ∈ S and a ∈ U , then a ∈ R ⊆ SG, so we must
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also have f ∈ SG. Hence f
a ∈ U

−1(SG), so the proof of a) is complete. For part b) we
now have (U−1S)G ∩ S = U−1(SG) ∩ S = SG, where the second equality again follows
from the fact that G acts trivially on U .

The next proposition provides a relation between generators of the invariant ring over
R and generators of the invariant rings over Rm for maximal ideals m ⊂ R.

Proposition 3.3. Let R be an integral domain. Assume that there are f1, . . . , fm ∈
R[x1, . . . , xn]G such that Rm[x1, . . . , xn]G = Rm[f1, . . . , fm] for every maximal ideal m ⊂
R. Then R[x1, . . . , xn]G = R[f1, . . . , fm].

Proof. We claim that for arbitrary g1, . . . , gr ∈ R[x1, . . . , xr] we have

R[g1, . . . , gr] =
⋂

m∈Specmax(R)

Rm[g1, . . . , gr].

It is clear that the left hand side is contained in the right, so let f be an element of the
right hand side. We de�ne I := {a ∈ R|af ∈ R[g1, . . . , gr]}. Certainly I is an ideal in R
and we need to show that I = R. Assume the contrary: then there is a maximal ideal
m ⊂ R such that I ⊆ m. We have f ∈ Rm[g1, . . . , gr] = (R\m)−1R[g1, . . . , gr], so there
is a b ∈ R\m such that bf ∈ R[g1, . . . , gr]. But then b ∈ I, contradicting the assumption
that I ⊆ m.
As a special case we have R[x1, . . . , xn] =

⋂
m∈Specmax(R)Rm[x1, . . . , xn] and hence also

R[x1, . . . , xn]G =
⋂

m∈Specmax(R)Rm[x1, . . . , xn]G. So by using the assumption and the
above equality we obtain:

R[f1, . . . , fm] =
⋂

m∈Specmax(R)

Rm[f1, . . . , fm] =
⋂

m∈Specmax(R)

Rm[x1, . . . , xn]G = R[x1, . . . , xn]G.

The �rst part of Proposition 3.2 shows that if we know the ring of invariants over one
base ring R, then we also know it over every localization of R. On the contrary, if we pass
from R to a quotient ring R/I for some ideal I ⊂ R, then there is no easy connection
between the invariants over R and over R/I. In particular, the natural homomorphism
R[x1, . . . , xn]G → (R/I)[x1, . . . , xn]G need not be surjective, see Example 3.10. The
situation becomes much better if |G| is a unit in R:

Lemma 3.4. Let R be a ring and let I ⊂ R be a prime ideal. Let G ⊆ Gln(R) be a �nite
group such that |G| is a unit in R. Then the canonical projection map p : R[x1, . . . , xn]→
(R/I)[x1, . . . , xn] restricts to a surjective homomorphism

R[x1, . . . , xn]G → (R/I)[x1, . . . , xn]G.

Proof. Let g ∈ (R/I)[x1, . . . , xn]G and let f0 ∈ R[x1, . . . , xn] with p(f0) = g. Since |G|
is a unit in R, we have the Reynolds operator

RG : R[x1, . . . , xn]→ R[x1, . . . , xn]G, f 7→
∑
σ∈G

σ(f).
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3.2 Examples

We de�ne f := RG(f0) ∈ R[x1, . . . , xn]G. Then we have p(f) = 1
|G|
∑

σ∈G p(σ(f0)) =
1
|G|
∑

σ∈G σ(p(f0)) = 1
|G|
∑

σ∈G σ(g) = g where in the last step we used that g is an
invariant. Hence g is indeed in the image of p|R[x1,...,xn]G .

We will see in Lemma 3.9 below that for certain groups G ⊆ Gln(R) the projection
map p as in Lemma 3.4 is always surjective even if |G| is not a unit in R.
In order to formulate arithmetic analogues for the theorems from Section 2.3 in later

chapters, we will need the notion of a pseudore�ection over rings.

De�nition 3.5. Let R be an integral domain and K := Quot(R). We call a matrix
A ∈ Gln(R) a pseudore�ection if it is a pseudore�ection in Gln(K).

Remark 3.6. The analogue of Lemma 2.13 is false over rings. Consider the matrix σ :=
−id ∈ Gln(Z) for some n > 1. Then σ is clearly not a pseudore�ection in Gln(Q), but
(σ− id)(S) ⊆ (2)S where S := Z[x1, . . . , xn] and hence ht(((σ− id)(S))S) = 1 by Krull's
principal ideal theorem.

We immediately get the following result:

Proposition 3.7. Let R be an integral domain and let G ⊆ Gln(R) be a �nite group
such that the ring of invariants R[x1, . . . , xn]G is isomorphic to a polynomial ring. Then
G is a pseudore�ection group.

Proof. Let K := Quot(R). Then K[x1, . . . , xn]G is also isomorphic to a polynomial ring
by Proposition 3.2. Now the claim follws from Theorem 2.17.

The type of examples of arithmetic invariant rings we are mainly interested in is the
following. Let G ⊆ Gln(C) be a �nite group such that the entries of all matrices in G are
algebraic integers. Then there is some number �eld K with ring of integers R such that
G ⊆ Gln(R). In this situation we want to study the ring of invariants R[x1, . . . , xn]G and
compare it to K[x1, . . . , xn]G. This naturally determines the class of base rings we are
mainly interested in: the ring of integers in a number �eld is always a Dedekind domain,
so our main goal is to study rings of invariants R[x1, . . . , xn]G where R is a Dedekind
domain. However, whenever this is possible without too much extra e�ort, we formulate
our results in greater generality.

3.2 Examples

In this section we present several examples of arithmetic invariants rings, some of which
we will use again as counterexamples in later chapters.

Example 3.8. Let R be any ring and let Sn be the symmetric group viewed as the group
of all permutation matrices in Gln(R). Then the fundamental theorem on symmetric
polynomials (see for example Lang [39, Chapter IV, Theorem 6.1]) tells us that the ring
of invariants R[x1, . . . , xn]Sn is generated by the elementary symmetric polynomials

sk :=
∑

1≤i1<...<ik≤n

n∏
j=1

xij (k = 1, . . . , n).
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3 Arithmetic invariants: �rst steps

So in this example, the generators of the invariant ring do not depend on R; in par-
ticular, for every R-algebra R′ we have R′[x1, . . . , xn]Sn ∼= R′[x1, . . . , xn]Sn ⊗R S. This
holds in a more general situation:

Lemma 3.9. Let R be a ring and let G ⊆ Gln(R) be a permutation group, i.e. every
element of G just permutes the standard basis of Rn. Then for every R-algebra R′ we
have R′[x1, . . . , xn]G ∼= R[x1, . . . , xn]G ⊗R R′.

Proof. Göbel [22] proved that the ring of invariants of a permutation group G over an
arbitrary ring A is generated by all orbit sums of monomials in A[x1, . . . , xn], that is, all
sums of the form

∑
u∈{σ(t)|σ∈G} u where t ∈ A[x1, . . . , xn] is a monomial. In particular,

this holds both for A = R and for A = R′, so R[x1, . . . , xn]G generates R′[x1, . . . , xn]G

as an R′-algebra. From this, the lemma follows.

The following example shows that there really are new phenomena in arithmetic in-
variant theory which do not occur over �elds.

Example 3.10. We consider the local ring R := Z(3) as a base ring and the group G ⊆
Gl2(R) generated be the two matrices(

0 1
1 0

)
,

(
1 −1
0 −1

)
.

This is a �nite group isomorphic to the symmetric group S3, so |G| = 6. We �rst
consider the ring of invariants of this group over Q = Quot(R). It contains the two
polynomials f1 := x2 − xy + y2, f2 := 2x3 − 3x2y − 3xy2 + 2y3. Since the Jacobian
determinant of f1 and f2 is 27xy(y − x) 6= 0 and |G| = deg(f1) · deg(f2) it follows
that Q[x, y]G = Q[f1, f2], see Kemper [32, Proposition 16]. We can also consider the
ring of invariants over the residue �eld F3 = R/(3); it contains the two polynomials
g1 := x+ y, g2 := x4y2 +x3y3 +x2y4 with Jacobian determinant xy4 +x2y3−x3y2−x4y
and as above we obtain F3[x, y]G = F3[g1, g2]. So the rings of invariants over Q and F3

are both isomorphic to polynomial rings. However, we shall see now that R[x, y]G is not
isomorphic to a polynomial ring. Assume there exist invariants h1, h2 ∈ R[x, y]G such
that R[x, y]G = R[h1, h2]. Since dim(R[x, y]G) = dim(R[x, y]) = 3 = dim(R) + 2, h1
and h2 are algebraically independent over R, so by Lemma 3.11 below we may assume
that h1 and h2 are homogeneous. Then we also have Q[x, y]G = Q[h1, h2] and since by
the above Q[x, y]G contains elements of degrees 2 and 3, but no elements of degree 1,
this is only possible if the degrees of h1 and h2 are 2 and 3. Since Q[x, y]G = Q[f1, f2],
every invariant of degree 2 is a scalar multiple of f1. So h1 = c1f1 for some c1 ∈ R and
since f1 ∈ R[h1, h2] and h1 and h2 must be algebraically independent we have c1 ∈ R×.
Similarly there is a c2 ∈ R× such that c2f2 = h2, so R[h1, h2] = R[f1, f2] and hence if
R[x, y]G is isomorphic to a polynomial ring, then R[x, y]G = R[f1, f2]. But this is not the
case: k := 1

27(4f31 − f22 ) is in R[x, y]G, but since f1 and f2 are algebraically independent
and 1

27 /∈ R, we have k /∈ R[f1, f2]. This proves that R[x, y]G is not isomorphic to a
polynomial ring. We will revisit this example in Chapter 4 and will there be able to give
a better explanation of what happens here.
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In the above example we used the following lemma:

Lemma 3.11. Let R be a principal ideal domain and let S be a graded R-algebra gener-
ated by elements f1, . . . , fn which are algebraically independent over R. Then there exist
homogeneous elements g1, . . . , gn ∈ S such that S = R[g1, . . . , gn].

Proof. By assumption, S is isomorphic to the polynomial ring in n variables over R, so
S is a regular ring, see Bruns and Herzog [11, Theorem 2.2.13]; hence the lemma is a
special case of Corollary 4.11 in the next chapter. However, for this special case we can
also give a more elementary proof.
Since S0 = R we may assume that f1, . . . , fn ∈ S+. Then f1, . . . , fn generate S+

as an ideal in S and their classes generate M := S+/S
2
+ as an R-module. Next we

show that M is a free R-module: since f1, . . . , fn are algebraically independent over R,
B := {fe11 · · · fenn |e1, . . . , en ∈ N0} is a basis of S as an R-module. Then B\{1} is a basis
of S+ as an R-module and B\{1, f1, . . . , fn} is a basis of S2

+ as an R-module. This shows
that we have S+ = S2

+ ⊕ (f1, . . . , fn)R and hence M = S+/S
2
+
∼= (f1, . . . , fn)R is free of

rank n.
Furthermore, M is a graded S-module since S+ and S2

+ are homogeneous ideals, so
we can write M =

⊕r
d=1Md. Each Md is a direct summand of M as an R-module, M

is free, and R is a principal ideal domain, so each Md is again free and hence M has
a basis {g1, . . . , gn} consisting of homogeneous elements. We can choose representatives
g1, . . . , gn ∈ S+ of these classes which are homogeneous in S. By the graded version of
Nakayama's lemma (see Derksen and Kemper [16, Lemma 3.7.1]; they state the result
only for graded rings S in which S0 is a �eld, but this assumption is not needed in
their proof) we obtain that g1, . . . , gn generate S+ as an ideal in S. Then we also have
S = R[g1, . . . , gn], see Bruns and Herzog [11, Proposition 1.5.4].

The following example taken from Almuhaimeed [1, Example 6.2.23] shows that similar
phenomena as in the previous example for the question of being a polynomial ring can
also occur for the Cohen-Macaulay property.

Example 3.12. We consider the following matrix in Gl3(Z):

U :=

1 0 1
0 0 −1
0 1 0

 .

Then the group G := 〈U〉 is of order 4. Almuhaimeed calculated the ring of invariants
Z[x1, x2, x3]

G explicitly and proved that it is not Cohen-Macaulay. However, Q[x1, x2, x3]
G

is Cohen-Macaulay by Theorem 2.20 and by a result of Smith [56] also the ring of invari-
ants of G over Fp is Cohen-Macaulay for every prime p.

It is proven in [1] that up to conjugation the group G given in the previous example is
the only �nite subgroup of Gl3(Z) with a non-Cohen-Macaulay invariant ring. Further-
more, in [1, Example 6.2.26] an example of a �nite subgroup of Gl4(Z) which also has a
non-Cohen-Macaulay ring of invariants is given. In both examples, it follows from Theo-
rem 2.21 that the ring of invariants over Q is not Gorenstein. Here is an example, where
the ring of invariants over Z is not Cohen-Macaulay, while the one over Q is Gorenstein.
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3 Arithmetic invariants: �rst steps

Example 3.13. Let G = {ι, σ} be the cyclic group of order 2. Then we de�ne a Z-linear
action of G onM := Z2 where σ acts by interchanging the two components of an element
ofM . This induces an action ofG onMn ∼= Z2n for all n ∈ N. With S(n) := Z[x1, . . . , x2n]
we can now study the ring of invariants (S(n))G given by this action of G on Mn. We
claim that for a suitable choice of n, (S(n))G ⊗Z Q is Gorenstein while (S(n))G is not
Cohen-Macaulay.
For n > 1, σ does not act as a pseudore�ection on Mn, so by Watanabe's Theorem

2.21, (S(n))G ⊗Z Q is Gorenstein if and only if the determinant of σ as an element of

Gl2n(Z) is one. But σ acts on M via the matrix

(
0 1
1 0

)
, so this determinant is (−1)n

and hence (S(n))G ⊗Z Q is Gorenstein for all even n.
Now assume that (S(n))G is Cohen-Macaulay. Then (S(n))G ⊗Z F2

∼= (S(n))G/(2) is
again Cohen-Macaulay (see Bruns and Herzog, [11, Theorem 2.1.3(a)]). Since G acts on
Mn as a permutation group, (S(n))G⊗ZF2 is isomorphic to (S(n)⊗ZF2)

G by Lemma 3.9. It
follows from Kemper [33, Corollary 2.4] that this ring of invariants is not Cohen-Macaulay
for su�ciently large n. Hence the same is true for (S(n))G; so if n is su�ciently large and
even, then indeed we have both desired properties. In fact, it follows from [33, Remark
2.5] that we can choose n = 4.

3.3 Previous results

In this section we collect some results on arithmetic invariant rings available in the
literature which address questions related to those we discuss in the subsequent chapters.
We begin with the following generalization of Theorem 2.20. Already in Hochster's and
Eagon's article [29, Proposition 13] it is proven that whenever a �nite group G acts by
automorphisms on a Cohen-Macaulay ring S in which |G| is invertible, then the ring
of invariants SG is again a Cohen-Macaulay ring; see Kemper [36, Theorem 1.1] for a
generalization of this result. In our setting, it implies the following:

Theorem 3.14. Let R be a Cohen-Macaulay ring and let G ⊆ Gln(R) be a �nite group
such that |G| is a unit in R. Then R[x1, . . . , xn]G is again a Cohen-Macaulay ring.

Further results concerning the Cohen-Macaulay property for rings of invariants over Z
have been obtained by Almuhaimeed [1]. Although we will not use these theorems in this
thesis, they address questions similar to those discussed in this thesis, so it seems appro-
priate to mention these results here. Perhaps the most important result of Almuhaimeed
is the following:

Theorem 3.15. (Almuhaimeed [1, Corollary 6.2.12 and Theorem 6.2.15]) Let G ⊆
Gln(Z) be a �nite group.
a) Z[x1, . . . , xn]G is Cohen-Macaulay if and only if for every prime number p which

divides |G| the ring Z[x1, . . . , xn]G/(p) is Cohen-Macaulay.
b) If for every Sylow subgroup P ⊆ G the ring of invariants Z[x1, . . . , xn]P is Cohen-

Macaulay, then Z[x1, . . . , xn]G is also Cohen-Macaulay.
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Note that the ring Z[x1, . . . , xn]G/(p) occurring in Theorem 3.15 is in general not the
same as the invariant ring Fp[x1, . . . , xn]G. Furthermore, Almuhaimeed proved a result
similar to Theorem 3.15a) for the Gorenstein property:

Theorem 3.16. (Almuhaimeed [1, Theorem 6.3.2]) Let G ⊆ Gln(Z) be a �nite group.
Then the following statements are equivalent.
(i) Z[x1, . . . , xn]G is Gorenstein.
(ii) For every prime number p, the ring Z[x1, . . . , xn]G/(p) is Gorenstein.
(iii) For every prime number p which divides |G|, the rings Z[x1, . . . , xn]G/(p) and

Q[x1, . . . , xn]G are Gorenstein.

Remark 3.17. In [1] in statement (iii) of the previous theorem instead of the condition
that Q[x1, . . . , xn]G is Gorenstein one �nds the condition that the Hilbert series H of
Q[x1, . . . , xn]G satis�es H(1t ) = (−1)ntρH(t) for some ρ ∈ Z. By a result of Stanley [57,
Theorem 4.4] these two conditions are equivalent.

Moreover, Almuhaimeed proved the following result concerning the question of when
a ring of invariants over the integers is isomorphic to a polynomial ring.

Theorem 3.18. (Almuhaimeed [1, Theorem 6.4.2 (ii)]) Let G ⊆ Gln(Z) be a �nite
group and let f1, . . . , fn be a homogeneous system of parameters in Z[x1, . . . , xn]G (see
De�nition 7.31) such that

∏n
i=1 deg(fi) = |G|. If G acts faithfully on Fnp for every prime

number p or Z[x1, . . . , xn]G is Cohen-Macaulay, then Z[x1, . . . , xn]G = Z[f1, . . . , fn].

Note that Example 3.10 is not a contradiction to Theorem 3.18 as in that example f1
and f2 do not form a system of parameters in R[x, y]G because the invariant k occurring
in the example is not integral over R[f1, f2].
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4 Regularity of arithmetic invariant rings

By the Chevalley-Shephard-Todd theorem (Theorem 2.17) the ring of invariants of a
�nite group G over a �eld in the nonmodular case is isomorphic to a polynomial ring if
and only if G is a pseudore�ection group. Smith's proof [55] of this result is based on the
fact that a �nitely generated graded algebra over a �eld is isomorphic to a polynomial
ring if and only if it is regular, or equivalently, if and only if its global dimension is �nite.
The goal of this chapter is to generalize these results to invariant rings over Dedekind

domains. In the �rst section we prove criteria which in many cases allow to decide whether
a ring of invariants over a discrete valuation ring is isomorphic to a polynomial ring (and
hence regular) once we know the rings of invariants over the quotient �eld and over the
residue �eld. In order to extend these results to general Dedekind domains, we need a
characterization of regular graded algebras over Dedekind domains. This is the content
of Section 4.2. It turns out that regular graded algebras over principal ideal domains
are always isomorphic to polynomial rings while over Dedekind domains the situation is
slightly more complicated. In the last section of this chapter the previous results are put
together in order to analyze the structure of invariant rings of pseudore�ection groups
over Dedekind domains.
The main results of this chapter have already appeared in [43].

4.1 Invariants of pseudore�ection groups over discrete
valuation rings

In this section we always assume that R is a discrete valuation ring with maximal ideal
(π), quotient �eld K := Quot(R), and residue �eld F := R/(π). We de�ne S :=
R[x1, . . . , xn], SK := S ⊗R K ∼= K[x1, . . . , xn], and SF := S ⊗R F ∼= F [x1, . . . , xn] and
consider a �nite subgroup G ⊆ Gln(R). The object we are interested in is the ring
of invariants SG. Assume we have homogeneous invariants f1, . . . , fn ∈ SG such that
SGK = K[f1, . . . , fn]; these are then necessarily algebraically independent over K because
dim(SGK) = dim(SK) = n. The following lemma answers the question of whether we also
have SG = R[f1, . . . , fn].

Lemma 4.1. With the notation as above we have SG = R[f1, . . . , fn] if and only if the
classes of f1, . . . , fn in SF are algebraically independent over F .

Proof. Let fi be the class of fi in F [x1, . . . , xn]. First assume that SG = R[f1, . . . , fn]
and suppose that there is a polynomial p ∈ F [y1, . . . , yn]\{0} such that p(f1, . . . , fn) = 0.
Choose a p ∈ R[y1, . . . , yn] such that p is the class of p in F [y1, . . . , yn]. Then π - p, but
π|p(f1, . . . , fn), so g := 1

πp(f1, . . . , fn) ∈ SG, but 1
πp /∈ R[y1, . . . , yn] and hence g /∈
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R[f1, . . . , fn] because f1, . . . , fn are algebraically independent over K. This contradicts
SG = R[f1, . . . , fn], so f1, . . . , fn are algebraically independent over F .
Now we assume that f1, . . . , fn are algebraically independent and prove that we then

have SG = R[f1, . . . , fn]. So let g ∈ SG; then g ∈ SGK = K[f1, . . . , fn] and hence there is a
polynomial p ∈ K[y1, . . . , yn] such that g = p(f1, . . . , fn). Assume that p /∈ R[y1, . . . , yn]
and let l ∈ N be minimal such that πlp ∈ R[y1, . . . , yn]; by our assumption we have l > 0.
Hence, the class of πlg = πlp(f1, . . . , fn) in F [x1, . . . , xn] is zero and since f1, . . . , fn are
algebraically independent over F , this proves that the class of πlp in F [y1, . . . , yn] is zero.
But then π divides πlp in R[y1, . . . , yn] and we obtain a contradiction to the minimality
of l. So we must have l = 0, so p ∈ R[y1, . . . , yn] and hence g ∈ R[f1, . . . , fn].

Example 4.2. Let R = Z(2); then we have K = Quot(R) = Q and F = R/(2) = F2. We
consider the symmetric group G = S2 acting on R2 by permuting the two components.
Then the ring of invariants over K is K[x1, x2]

G = K[x1+x2, x1x2] = K[x1+x2, x
2
1+x22].

While x1 + x2 and x1x2 are algebraically independent over F , x1 + x2 and x21 + x22 are
not as x21 + x22 = (x1 + x2)

2 ∈ F [x1, x2]. So by Lemma 4.1 we have R[x1, x2]
G =

R[x1 + x2, x1x2] 6= R[x1 + x2, x
2
1 + x22]. Indeed,

x1x2 =
1

2
((x1 + x2)

2 − (x21 + x22)) /∈ R[x1 + x2, x
2
1 + x22]

because x1 + x2 and x21 + x22 are algebraically independent over R.

We now want to use Lemma 4.1 to prove su�cient conditions for SG to be a polynomial
ring. For this we need the following lemma on invariant rings over �elds.

Lemma 4.3. Let K̃ be any �eld and let G ⊆ Gln(K̃) be a �nite group such that
K̃[x1, . . . , xn]G is a polynomial ring. Furthermore let f1, . . . , fn ∈ K̃[x1, . . . , xn]G be ho-
mogeneous polynomials which are algebraically independent over K̃. Then the following
statements are equivalent:
(i) K̃[x1, . . . , xn]G = K̃[f1, . . . , fn].
(ii) deg(f1) · · · deg(fn) = |G|.
(iii) deg(f1) · · · deg(fn) ≤ |G|.

Proof. The equivalence of (i) and (ii) is a result of Kemper [32, Proposition 16] and it
is clear that (ii) implies (iii). It remains to prove that (iii) implies (ii). For this we
need to show that deg(f1) · · · deg(fn) < |G| is impossible. By assumption there exist
homogeneous invariants g1, . . . , gn such that K̃[x1, . . . , xn]G = K̃[g1, . . . , gn]. We change
the order of the fi and gi in such a way that deg(fi) ≤ deg(fj) and deg(gi) ≤ deg(gj) for
all i < j. Since we already know that (i) implies (ii), we obtain that deg(g1) · · · deg(gn) =
|G|. Now assume deg(f1) · · · deg(fn) < |G|; then there must be an index i such that d :=
deg(fi) < deg(gi). LetA be the K̃-subalgebra of K̃[x1, . . . , xn]G generated by all elements
of degree at most d; then A is contained in the K̃-algebra generated by g1, . . . , gi−1; in
particular, the transcendence degree of A is at most i−1. But f1, . . . , fi ∈ A, so f1, . . . , fi
cannot be algebraically independent, a contradiction to the assumption.

Now we can prove the desired su�cient condition for SG to be a polynomial ring:
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Proposition 4.4. Assume that both SGK and SGF are isomorphic to polynomial rings
over K and F , respectively and that they are generated by homogeneous invariants of the
same degrees, i.e. we have SGK = K[f1, . . . , fn] and SGF = F [g1, . . . , gn] such that all fi
and gi are homogeneous and deg(fi) = deg(gi) for each i. Then SG is isomorphic to a
polynomial ring over R.

Proof. Let d ∈ N0. From the assumptions we immediately get that

dimK(SGK)d = dimF (SGF )d.

Here (SGK)d denotes the degree-d-part of the graded ring SGK and similarly for (SGF )d.
Since R is a discrete valuation ring and hence a principal ideal domain, SGd is a �nitely
generated free R-module; let B = {p1, . . . , pm} be a basis; then B is also a basis of the
K-vector space (SGK)d. Let pi be the image of pi under the canonical map SG → SGF and
B := {p1, . . . , pm}. We claim that B is F -linearly independent. For this we need to show
that if we have λ1, . . . , λm ∈ R such that λ1p1 + . . .+ λmpm is divisible by π, then each
λi is divisible by π. We have

m∑
i=1

λi
π
pi ∈ SGd = 〈p1, . . . , pm〉R

and hence indeed λi
π ∈ R since p1, . . . , pm areK-linearly independent, so the claim follows.

The equality of dimensions above now shows that B is a basis of (SGF )d. Overall we have
now proved that the canonical map ϕ : SG → SGF is surjective. By assumption there
are homogeneous g1, . . . , gn ∈ SGF such that SGF = F [g1, . . . , gn]. Choose homogeneous
hi ∈ SG such that ϕ(hi) = gi. Furthermore by assumption there are homogeneous
f1, . . . , fn ∈ SGK such that SGK = K[f1, . . . , fn] and deg(hi) = deg(gi) = deg(fi) for each
i. So we have deg(h1) · · · deg(hn) = deg(f1) · · · deg(fn) = |G| by Lemma 4.3. Using
Lemma 4.3 again we obtain SGK = K[h1, . . . , hn]. Since ϕ(h1) = g1, . . . , ϕ(hn) = gn are
algebraically independent over F , Lemma 4.1 shows that SG = R[h1, . . . , hn].

An important special case of Proposition 4.4 is the following:

Corollary 4.5. If G is generated by pseudore�ections and |G| is invertible in R, then
SG is a polynomial ring over R.

Proof. Since |G| is invertible in R, it is also invertible in K and in F , so both SGK and
SGF are isomorphic to polynomial rings by Theorem 2.17. Let g1, . . . , gn be homogeneous
generators of SGF . By Lemma 4.3 we have deg(g1) · · · deg(gn) = |G̃| ≤ |G|, where G̃ is the
image of G in Gln(F ). Let ϕ denote the projection map S → SF and for i = 1, . . . , n we
choose homogeneous fi ∈ SG such that ϕ(fi) = gi (such elements exist by Lemma 3.4).
Then the fi are algebraically independent over R and thus also over K. Furthermore
we have deg(fi) = deg(gi), so deg(f1) · · · deg(fn) ≤ |G|. Lemma 4.3 now implies that
SGK = K[f1, . . . , fn]. Using Proposition 4.4 we obtain that SG is indeed isomorphic to a
polynomial ring.
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For the proof of the next theorem we need that if a graded algebra over a �eld is
isomorphic to a polynomial ring, then the degrees of the homogeneous generators are
uniquely determined. Since this does not cause any extra di�culties, we prove this over
rings.

Lemma 4.6. Let B =
⊕

d∈N0
Bd be a graded ring and A := B0. Let f1, . . . , fn, g1, . . . , gn

be homogeneous elements of S such that the set of all fi and the set of all gi are both
algebraically independent over A. Assume that for i ≤ j we have deg(fi) ≤ deg(fj) and
deg(gi) ≤ deg(gj). Then if A[f1, . . . , fn] = A[g1, . . . , gn] we have deg(fi) = deg(gi) for
each i.

Proof. For d ∈ N let Cd be the subalgebra of B generated by all elements of degree at
most d. Let md be the largest m ∈ N such that deg(fm) ≤ d and let m′d be the largest
deg(gm) ≤ d. Then we have Cd = A[f1, . . . , fmd

] = A[g1, . . . , gm′d ] because the fi and gi
are homogeneous. Because of the algebraic independence of the fi and the gi we then
obtain that both md and m′d are equal to the transcendence degree of Cd over A; in
particular md = m′d. Since this is true for all d, the lemma follows.

We can now prove a partial converse of Proposition 4.4. Note that Fn becomes a
representation of G via the canonical map Gln(R)→ Gln(F ).

Theorem 4.7. Assume that SGK = K[f1, . . . , fn] for certain homogeneous elements
f1, . . . , fn. Then the following two statements are equivalent.
(i) There are homogeneous elements g1, . . . , gn ∈ SGF such that SGF = F [g1, . . . , gn] and

deg(gi) = deg(fi) for each i.
(ii) SG is isomorphic to a polynomial ring and G acts faithfully on Fn.

So if we assume that G acts faithfully on Fn, then the converse of Proposition 4.4 is
true.

Proof. We �rst prove that (i) implies (ii). So suppose that (i) holds; then the �rst part
of (ii) follows from Proposition 4.4. Let α : G → Gln(F ) be the canonical map. By
Lemma 4.3 we have |G| = deg(f1) · · · deg(fn) and |im(α)| = deg(g1) · · · deg(gn), so by (i)
we have |G| = |im(α)|; hence α is injective and this just means that the action of G on
Fn is faithful.
Now we assume that (ii) holds. Then SG = R[h1, . . . , hn] for certain homogeneous

hi ∈ SG. Since the hi then also generate SGK , by Lemma 4.6 we can change the order of
the hi in such a way that deg(hi) = deg(fi) for each i. Let gi be the class of hi in SGF .
Using Lemma 4.3 we get deg(g1) · · · deg(gn) = deg(h1) · · · deg(hn) = |G|. By Lemma 4.1
the gi are algebraically independent over F , so SGF = F [g1, . . . , gn] by Lemma 4.3; note
thatG acts faithfully on Fn by assumption. By construction we have deg(gi) = deg(hi) =
deg(fi), so (i) follows.

Example 4.8. We can now also understand better what happens in Example 3.10. There
we have the base ring R = Z(3) which is a discrete valuation ring with quotient �eld
K = Q and residue �eld F = F3. As we have seen, although the rings of invariants over
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4.2 A characterization of regular graded algebras

K and F are both polynomial rings, their generators do not have the same degrees, so
statement (i) of Theorem 4.7 is not satis�ed, but the action of G on F 2 is faithful. So
Theorem 4.7 shows that indeed the ring of invariants over R cannot be a polynomial
ring. By looking at the proof of Proposition 4.4 we see that really the reason for this is
that the classes in F [x, y] of f1 and f2 as de�ned in Example 3.10 are not algebraically
independent. Indeed, f1 = g21 and f2 = 2g31.

4.2 A characterization of regular graded algebras

As mentioned at the beginning of this chapter, every �nitely generated regular graded
algebra over a �eld is isomorphic to a polynomial ring. This is not true anymore for
graded algebras over Dedekind domains; in order to give a counterexample, the following
de�nition is useful.

De�nition 4.9. Let R be a ring and let I ⊆ R be a nonzero ideal. The blowup algebra
of I in R is the graded algebra

BIR :=
⊕
d∈N0

Id.

If I is a principal ideal, then BIR ∼= R[x]. Now let R be a Dedekind domain which is
not a principal ideal domain and let (0) 6= I ⊆ R be an ideal; Lemma 4.14c) below shows
that the blowup algebra BIR is always regular; however, if I is not a principal ideal, then
BIR is not isomorphic to a polynomial ring, so we have the desired counterexample. The
main goal of this section is to prove that this is essentially the only kind of counterexample
that can occur; more precisely, we prove the following:

Theorem 4.10. Let R be a Dedekind domain and let S be a �nitely generated regular
graded R-algebra. Then there exist nonzero ideals I1, . . . , In ⊆ R such that

S ∼= BI1R⊗R · · · ⊗R BInR

where n = dimS − dimR.

In the case where R is a principal ideal domain this theorem immediately implies the
following:

Corollary 4.11. Let R be a principal ideal domain and let S be a �nitely generated
regular graded R-algebra. Then S is isomorphic to a polynomial ring over R.

In general, a necessary condition for a graded algebra S =
⊕

d∈N0
Sd to be isomorphic

to a polynomial ring is that Sd is a free R-module for each d. The next theorem shows
that this is also su�cient.

Theorem 4.12. Let R be a Dedekind domain and let S =
⊕

d∈N0
Sd be a �nitely gener-

ated regular graded R-algebra. Then S is isomorphic to a polynomial ring over R if and
only if Sd is a free R-module for every d ∈ N0.
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4 Regularity of arithmetic invariant rings

The remainder of this section is devoted to the proof of Theorems 4.10 and 4.12. In
order to simplify the notation, we make the following de�nition:

De�nition 4.13. Let R be a ring and let I1, . . . , In be nonzero ideals in R. Then we
write

BI1,...,InR := BI1R⊗R · · · ⊗R BInR.

Before we go on, we make some remarks on the algebras BI1,...,InR. If we choose an
embedding Ii → R for each Ii, these give an embedding of BI1,...,InR to the n-fold tensor
product R[x]⊗R . . .⊗R R[x] which is the same as the polynomial ring R[x1, . . . , xn]. So
if Ii is generated by elements aij ∈ R, j ∈ Ji for some index sets J1, . . . , Jn, then we
can identify BI1,...,InR with the subalgebra of R[x1, . . . , xn] generated by all the aijxi.
Now we choose natural numbers d1, . . . , dn and turn R[x1, . . . , xn] into a graded ring
by setting deg(xi) = di. Then all the aijxi are homogeneous, so BI1,...,In becomes a
graded subalgebra; this is the same as the tensor product of the algebras BIiR viewed
as graded algebras with the grading given by det(a) = di for all a ∈ Ii. The proof of
Theorem 4.10 will show that in this way we can de�ne a grading on BI1,...,InR such that
the isomorphism in the theorem is homogeneous.
We �rst prove some basic properties of the algebras BI1,...,InR:

Lemma 4.14. Let R be a ring and let I1, . . . , In ⊆ R be nonzero ideals.
a) For a multiplicative subset U ⊂ R we have U−1(BI1,...,InR) ∼= BU−1I1,...,U−1InU

−1R.
b) If I1, . . . , In are principal ideals, then BI1,...,InR ∼= R[x1, . . . , xn].
c) If R is a Dedekind domain, then BI1,...,InR is regular.

Proof. For i = 1, . . . , n we have

U−1BIiR = U−1

⊕
d∈N0

Idi

 ∼= ⊕
d∈N0

U−1Idi =
⊕
d∈N0

(U−1Ii)
d = BU−1IiU

−1R.

From this we obtain

U−1(BI1,...,InR) = U−1 (BI1R⊗R . . .⊗R BInR)

∼= (U−1BI1R)⊗U−1R . . .⊗U−1R (U−1BInR)

∼= (BU−1I1U
−1R)⊗U−1R . . .⊗U−1R (BU−1InU

−1R)

= BU−1I1,...,U−1InU
−1R.

This proves part a) and b) is clear. For part c), by Proposition 2.34 we need to show that
for every maximal ideal p ⊂ R the ring (R\p)−1BI1,...,InR is regular. We set U := R\p.
Then U−1R = Rp is a discrete valuation ring, so each U−1Ii is a principal ideal. Hence
by a) and b) U−1BI1,...,InR ∼= Rp[x1, . . . , xn] and this ring is regular because R is regular.

In Theorems 4.10 and 4.12 we did not assume that S is an integral domain. We
need this generality, although the invariant rings we are interested in are always integral

28



4.2 A characterization of regular graded algebras

domains, because our proof of the main theorems is by induction on dimS and it is not
obvious that the rings we consider remain integral domains after the induction step. On
the other hand, the algebras BI1,...,InR are always integral domains, so the �rst main
step in our proof is the following lemma.

Lemma 4.15. Let R and S be as in Theorem 4.10. Then S is an integral domain.

Proof. We �rst show that S is torsion-free as an R-module. So let f ∈ S\{0} and
If := {a ∈ R|af = 0}; we want to show that If = {0}. We may assume that f is
homogeneous. If is a proper ideal in R, so there is a maximal ideal nf ⊂ R with If ⊆ nf .
We de�ne mf := (nf , S+)S ; by Lemma 2.29 this is a maximal ideal in S. The localization
Smf

is a regular local ring and hence an integral domain; let ε denote the canonical map
S → Smf

. For a ∈ If we have ε(a) · ε(f) = 0 and hence either ε(a) = 0 or ε(f) = 0. So
there exists c ∈ R\mf such that c ·a = 0 or c · f = 0; let c0 denote the degree-0-part of c.
We have c0 ·a = 0 or c0 ·f = 0 because a and f are homogeneous. Since c /∈ S+ ⊆ mf , we
have c0 6= 0. But R is an integral domain, so c0 ·a = 0 implies a = 0 as desired. It remains
to show that the case c0 · f = 0 cannot occur. Indeed this would imply c0 ∈ If ⊆ mf

and since c− c0 ∈ S+ ⊆ mf we would obtain c ∈ mf , a contradiction. So we have shown
that If = {0} for every f and hence S is a torsion-free R-module.
Now we prove that S is indeed an integral domain. So assume we have s, t ∈ S\{0}

such that s · t = 0. S+ is a prime ideal in S and since S is regular, the localization
SS+ is a regular local ring and hence an integral domain; let η denote the canonical map
S → SS+ , so we have η(s) · η(t) = 0 and hence either η(s) = 0 or η(t) = 0. Without loss
of generality, we assume η(s) = 0; then there is a u ∈ S\S+ such that u · s = 0. We write
s =

∑
m∈N0

sm with sm ∈ Sm for every m. Let d ∈ N0 be minimal such that sd 6= 0 and
let u0 be the degree-0-part of u; since u /∈ S+ we have u0 6= 0. The degree-d-part of u · s
is u0 · sd and this is zero since u · s = 0. But we already proved that S is torsion-free as
an R = S0-module and hence u0 6= 0 implies sd = 0, a contradiction.

Using this we can prove a simple special case of Theorem 4.10 which will later serve
as the starting point for our proof by induction.

Lemma 4.16. Let R and S be as in Theorem 4.10 and assume that dim(S) = dim(R).
Then S = S0 = R.

Proof. We have ht(S+) ≤ dim(S)− dim(S/S+) = dim(S)− dim(R) = 0 and, since S is
an integral domain by Lemma 4.15, this implies S+ = (0), so S = S0 as claimed.

The next step is the computation of the Krull dimension of the algebras BI1,...,InR:

Lemma 4.17. Let R be a Dedekind domain and let I1, . . . , In be nonzero ideals in R.
Then

dim(BI1,...,InR) = n+ dimR.
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4 Regularity of arithmetic invariant rings

In the special case of a polynomial ring over R this is a well-known result. Our proof
here is a direct generalization of this standard proof; it uses the concept of a �ber ring.
Recall that for a ring homomorphism ϕ : S → T and a prime ideal p ⊂ S the �ber
ring of p is the ring κ(p) ⊗S T where κ(p) := Quot(S/p). If S and T are Noetherian
and p = ϕ−1(q) for some prime ideal q ⊂ T , then dim(κ(p) ⊗S T ) ≥ ht(q) − ht(p) (see
Kemper [35, Theorem 7.12]).

Proof. Let P ⊂ R be a prime ideal with ht(P ) = dim(R). Then using Lemma 4.14 and
the fact that RP is a principal ideal domain we obtain

dim(BI1,...,InR) ≥ dim((R\P )−1BI1,...,InR) = dim(RP [x1, . . . , xn]) = n+ dimR

In order to prove the reverse inequality we use induction on n. The case n = 0 is clear,
so we assume n > 0 and de�ne S := BI1,...,In−1R, T := BI1,...,InR, and ϕ : S → T =
S ⊗R BInR, f 7→ f ⊗ 1. By induction we have dim(S) ≤ n − 1 + dim(R) and we want
to show dim(T ) ≤ n + dim(R). Let q ⊂ T be a prime ideal and p := ϕ−1(q); the claim
follows if we prove that ht(q) ≤ ht(p) + 1. We prove this inequality using the �ber ring
κ(p)⊗S T . We have

κ(p)⊗S T = κ(p)⊗S (S ⊗R BInR)

∼= κ(p)⊗R BInR ∼=
⊕
d∈N0

(κ(p)⊗R Idn).

As an algebra over κ(p), this is generated by κ(p) ⊗R In which is isomorphic to a sub-
vectorspace of κ(p) ⊗R R ∼= κ(p). Hence κ(p) ⊗S T is generated by one element as an
κ(p)-algebra, so its dimension is indeed at most one. The claim follows using the formula
for �ber dimension mentioned before this proof.

The central part of the proof of Theorems 4.10 and 4.12 is now the following lemma,
which may seem rather technical at �rst glance.

Lemma 4.18. Let R be a Dedekind domain and let S be a �nitely generated regular
graded R-algebra such that S0 6= S. Let d ∈ N>0 be minimal such that Sd 6= {0}. Using
Theorem 2.28 we can write Sd = I⊕M where I is isomorphic to some ideal (0) 6= I ⊆ R
and M is a free R-module; set J := (I)S. Then the following holds:
a) T := S/J is again a regular ring.
b) If Si is a free R-module for each i ∈ N0, then also Ti is a free R-module for each i.
c) If T ∼= BI1,...,InR, then S ∼= BI1,...,In,IR.

Proof.
a) By Proposition 2.34 it is su�cient to show that Tn is regular for every homogeneous

maximal ideal n ⊂ T , so �x such an ideal n. By Lemma 2.29 n = (p, T+)T for some
maximal ideal p ⊂ R. Let m := (p, S+)S ; then n = m/J (note that J ⊆ S+ ⊆ m).
Hence we have Tn ∼= Sm/Jm and Sm is regular. We prove that Jm is a principal ideal
generated by some element g ∈ I such that g /∈ (mm)2. Then the regularity of Tn
follows, see Bruns and Herzog [11, Proposition 2.2.4].
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4.2 A characterization of regular graded algebras

Let U0 := R\p. Then U−10 S is a graded ring with (U−10 S)0 ∼= U−10 R = Rp, which is
a discrete valuation ring. We have (U−10 S)d = Ip ⊕Mp, where Ip is isomorphic to an
ideal in Rp, hence a principal ideal. Let g be a generator of this ideal; we may choose
g in such a way that g ∈ I. Then U−10 J = (g)U−1

0 S and since we can view Sm as a

localization of U−10 S, we �nd Jm = (g)Sm .
It remains to prove that g /∈ (mm)2. Assume the contrary; then there is an h ∈ S\m
such that gh ∈ m2. We write h =

∑
i∈N0

hi with hi ∈ Si; since S+ ⊆ m we have h0 /∈ p,
in particular h0 6= 0. Since gh0 is the degree-d-part of gh and m2 is a homogeneous
ideal, we have gh0 ∈ m2, so gh0 =

∑
j γjδj for certain γj , δj ∈ m. We may assume

that all γj , δj are homogeneous and deg(γjδj) = d for each j. By the choice of d we
may assume without loss of generality that deg(γj) = 0 and deg(δj) = d for every j.
So δj ∈ Sd = I ⊕M and we can write δj = λj + µj with λj ∈ I, µj ∈ M . So we
have gh0 =

∑
j γjλj +

∑
j γjµj . Since h0 ∈ R and g ∈ I, we have gh0 ∈ I and hence

gh0 =
∑

j γjλj . By our choice of g and the fact that λj ∈ I there are ηj ∈ Rp such

that λj = ηjg. We thus have gh0 = g ·
(∑

j γjηj

)
and hence h0 =

∑
j γjηj since S is

an integral domain by Lemma 4.15. There are elements θj ∈ R,ω ∈ R\p such that

ηj =
θj
ω for each j. We obtain h0ω =

∑
j γjθj , a contradiction: the left hand side is

not an element of p, but the right hand side is an element of R ∩m = p since γj ∈ p
for each j.

b) Since Sd is free, I ∼= R by Theorem 2.28b), so Ji ∼= Si−d for all i ≥ d. If Ti = {0},
then there is nothing to show, so assume Ti 6= {0}; in particular i ≥ d. By part
a) and Lemma 4.15 T is an integral domain and hence Ti is torsion-free. So by
Theorem 2.28b) we have Ti ∼= Rl ⊕ I ′ for some l ≥ 0 and some nonzero ideal I ′ ⊆ R.
The canonical projection S → T restricts to a surjective homomorphism of R-modules
Si → Ti with kernel Ji. Since Ti is a projective R-module by Theorem 2.28a) we obtain
Si ∼= Ti⊕Ji ∼= Rl⊕I ′⊕Si−d. Since Si and Si−d are free by assumption, I ′ is a principal
ideal by Theorem 2.28b) and hence Ti ∼= Rl ⊕ I ′ is a free R-module.

c) Let α : BI1,...,InR → T be an isomorphism and let β : S → T be the canonical
projection map; then β is a homogeneous homomorphism of R-modules. By part a)
and Lemma 4.15 T is an integral domain; hence each Ti is a projective R-module
by Theorem 2.28a). Thus there is an injective homogeneous homomorphism of R-
modules β′ : T → S with β ◦ β′ = id. We can view each BIiR as a subalgebra of
BI1,...,InR, so we can also view Ii ⊂ BIiR as an R-submodule of BI1,...,InR. We de�ne
I ′i := β′(α(Ii)) ⊆ S; since α and β′ are injective, this is isomorphic to Ii and hence we
can de�ne a homomorphism of R-algebras ψi : BIiR→ S such that for a ∈ Ii ⊆ BIiR
we have ψi(a) = β′(α(a)) and hence β(ψi(a)) = α(a). Since Ii generates BIiR as an R-
algebra, we have β◦ψi = α|BIi

R. Since I is also an R-submodule of S we can similarly
de�ne a ring homomorphism ψn+1 : BIR → S. We obtain ring homomorphisms
ϕ0 := ψ1⊗ . . .⊗ψn : BI1,...,InR→ S and ϕ := ϕ0⊗ψn+1 : BI1,...,In,IR→ S. Since we
have β ◦ ψi = α|BIi

R, we obtain β ◦ ϕ0 = α.
It remains to prove that ϕ is an isomorphism. We �rst prove that it is surjective. So
let t ∈ S be homogeneous; we use induction on deg(t) to prove that t ∈ imϕ. The case
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deg t = 0 is clear, so we assume deg t > 0 and de�ne s := ϕ0(α
−1(β(t))) ∈ imϕ0 ⊆

imϕ. Since β ◦ ϕ0 = α, we have β(s) = β(t) and thus s − t ∈ kerβ = J . Since J is
generated by I ⊆ Sd we �nd elements aj ∈ S, rj ∈ I such that s − t =

∑
j ajrj and

deg aj = deg t − d for each j. Then for each j we have aj ∈ imϕ by induction and
rj ∈ imψn+1 ⊆ imϕ. So t = s +

∑
j ajrj ∈ imϕ and hence ϕ is indeed surjective.

Therefore ht(kerϕ) = 0 since dimS ≥ dimT+1 = n+dimR+1 = dim(BI1,...,In,IR) by
Lemma 4.17. But BI1,...,In,IR is an integral domain by Lemma 4.14c) and Lemma 4.15,
so kerϕ = {0} and hence ϕ is injective.

Ii

BIiR I ′i

BI1,...,InR T

BI1,...,In,IR S

∼=

ψi

ϕ0

α ∼=

ϕ
β

Now we have everything that we need for the proof of the main theorems.

Proof of Theorem 4.10. We use induction on δ := dim(S) − dim(R); δ ≥ 0 since R ∼=
S/S+. If δ = 0, then the theorem follows from Lemma 4.16. So assume that δ > 0.
Then R ( S; let d, I, and T be as in Lemma 4.18. Since S is an integral domain by
Lemma 4.15, we have dim(T ) < dim(S) and T is regular by Lemma 4.18a), so we can
apply induction and obtain T ∼= BI1,...,InR for nonzero ideals I1, . . . , In ⊆ R. Now the
theorem follows from Lemma 4.18c).

Proof of Theorem 4.12. It is clear that S ∼= R[x1, . . . , xn] implies that each Si is free. For
the converse we again use induction on δ := dim(S) − dim(R). If δ = 0 then the result
follows from Lemma 4.16. So assume that δ > 0 and let d, I, and T be as in Lemma 4.18.
Since Sd is free, I is principal by Theorem 2.28b). We have dim(T ) < dim(S), T is
regular and each Ti is free by Lemma 4.18b), so we can apply induction and obtain
T ∼= R[x1, . . . , xn] ∼= BI1,...,InR with I1 = . . . = In = (1). Hence by Lemma 4.18c) and
Lemma 4.14b) we obtain S ∼= BI1,...,In,IR

∼= R[x1, . . . , xn+1].

4.3 Invariants of pseudore�ection groups over Dedekind
domains

In this section we analyze rings of invariants of pseudore�ection groups over Dedekind
domains. The �rst step is the following proposition which shows that the question of
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whether such a ring of invariants is regular can be reduced to the case of pseudore�ection
groups over discrete valuation rings which we discussed in Section 4.1.

Proposition 4.19. Let R be a Dedekind domain and let G ⊆ Gln(R) be a �nite group.
Then the following statements are equivalent:
(i) R[x1, . . . , xn]G is regular.
(ii) For every maximal ideal p ⊂ R the ring Rp[x1, . . . , xn]G is regular.
(iii) For every maximal ideal p ⊂ R the ring Rp[x1, . . . , xn]G is isomorphic to a polyno-

mial ring.

Proof. The equivalence of (i) and (ii) follows from Proposition 2.34. Since polynomial
rings over regular rings are regular ([11, Theorem 2.2.13]), (iii) implies (ii). The impli-
cation (ii) =⇒ (iii) follows from Corollary 4.11 and the fact that each Rp is a discrete
valuation ring.

The easiest case in which this result can be applied is if the group order is invertible
in the base ring.

Theorem 4.20. Let R be a Dedekind domain and let G ⊆ Gln(R) be a �nite pseudore-
�ection group such that |G| ∈ R×. Then R[x1, . . . , xn]G is regular.

Proof. Let p ⊂ R be a maximal ideal. Then |G| ∈ R×p and hence Rp[x1, . . . , xn]G is a
polynomial ring over Rp by Corollary 4.5. Now the theorem follows from Proposition 4.19.

Using the theory developed in Section 4.2, we can now prove results concerning the
question of whether a ring of arithmetic invariants is a polynomial ring. The following
result is basically a direct arithmetic analogue of the Chevalley-Shepard-Todd theorem.

Corollary 4.21. Let R be a principal ideal domain and let G ⊆ Gln(R) be a �nite
pseudore�ection group such that |G| ∈ R×. Then R[x1, . . . , xn]G is isomorphic to a
polynomial ring over R.

Proof. This follows immediately from Theorem 4.20 and Corollary 4.11.

The most general result I managed to obtain for regularity of rings of arithmetic
invariants is the following.

Theorem 4.22. Let R be a Dedekind domain with K := Quot(R) and let G ⊆ Gln(R)
be a �nite pseudore�ection group such that there are homogeneous invariants f1, . . . , fn ∈
K[x1, . . . , xn]G with K[x1, . . . , xn]G = K[f1, . . . , fn]. Then the following statements are
equivalent:
(i) For every maximal ideal p ⊂ R with |G| ∈ p there are homogeneous g1, . . . , gn ∈

(R/p)[x1, . . . , xn]G such that (R/p)[x1, . . . , xn]G = (R/p)[g1, . . . , gn] and deg(gi) =
deg(fi) for each i.

(ii) R[x1, . . . , xn]G is regular and G acts faithfully on (R/p)n for every maximal ideal
p ⊂ R with |G| ∈ p.

33



4 Regularity of arithmetic invariant rings

(iii) There are nonzero ideals I1, . . . , In ⊆ R such that R[x1, . . . , xn]G ∼= BI1,...,InR and
G acts faithfully on (R/p)n for every maximal ideal p ⊂ R with |G| ∈ p.

If R is a principal ideal domain, then these statements are also equivalent to the following:
(iv) R[x1, . . . , xn]G is isomorphic to a polynomial ring over R and G acts faithfully on

(R/p)n for every maximal ideal p ⊂ R with |G| ∈ p.

Proof. We begin with the proof that (i) implies (ii). By Proposition 4.19 we only need
to show that Rp[x1, . . . , xn]G is isomorphic to a polynomial ring over Rp for every max-
imal ideal p ⊂ R and that if |G| ∈ p, then G acts faithfully on (R/p)n. If |G| ∈ p,
both properties follow from (i) and Theorem 4.7. If |G| /∈ p, then |G| ∈ R×p and hence
Rp[x1, . . . , xn]G is isomorphic to a polynomial ring by Corollary 4.5. The converse impli-
cation (ii) =⇒ (i) follows directly from Theorem 4.7 and Proposition 2.34.
The implication (ii) =⇒ (iii) follows from Theorem 4.10 and (iii) =⇒ (ii) follows

from Lemma 4.14c).
Now we assume that R is a principal ideal domain. Then (iii) =⇒ (iv) follows from

Lemma 4.14b) and (iv) =⇒ (iii) is clear.

Since I do not know any example of a pseudore�ection group over a Dedekind domain
where the ring of invariants is an algebra of the form BI1,...,InR where not all the ideals
I1, . . . , In are principal, I make the following conjecture.

Conjecture 4.23. Let R be a Dedekind domain and let G ⊆ Gln(R) be a �nite pseudore-
�ection group such that R[x1, . . . , xn]G is regular. Then R[x1, . . . , xn]G is isomorphic to
a polynomial ring over R.

We end this chapter with a result which relates invariants over a Dedekind domain R
to invariants over residue �elds R/p in the case that |G| is invertible in R.

Proposition 4.24. Let R be a Dedekind domain and let G ⊆ Gln(R) be a �nite group.
If R[x1, . . . , xn]G is regular, then for every maximal ideal p ⊂ R with |G| /∈ p the ring of
invariants (R/p)[x1, . . . , xn]G is isomorphic to a polynomial ring over R/p.

Proof. Since R/p ∼= Rp/pp and Rp[x1, . . . , xn]G is again regular by Proposition 4.19 we
may replace R by Rp and hence assume that |G| ∈ R×. Let K := Quot(R); then
K[x1, . . . , xn]G is also regular and hence a polynomial ring. So G is a pseudore�ection
group in Gln(R) by Theorem 2.17. Let σ ∈ G be a pseudore�ection; the image of σ in
Gln(R/p) is either again a pseudore�ection or the identity, so G acts as a pseudore�ection
group on (R/p)n. Since |G| /∈ p we get that |G| is invertible in R/p. But R/p is a �eld
and hence (R/p)[x1, . . . , xn]G is isomorphic to a polynomial ring by Theorem 2.17.

34



5 Re�exive modules, divisors, and Picard

groups

In this chapter we introduce several related concepts from commutative algebra which
we will need in the next two chapters. None of the material in this chapter is new; the
main references are the books by Fossum [20] and Benson [4, Chapter 3]. We begin in
Section 5.1 with re�exive modules and the re�exive closure of modules. In Sections 5.2
and 5.3 we introduce divisorial ideals and the divisor class group of a Noetherian normal
domain which will be the main tool in Chapter 6 to determine when a ring of invariants
is factorial. Finally, in Section 5.4 we de�ne the Picard group of a Noetherian ring, a
concept closely related to the divisor class group.

5.1 Re�exive modules

In this section, we �x a Noetherian normal domain A and a �nitely generated torsion-free
A-module M . For the de�nition of re�exive modules we need the dual module M∗ :=
HomA(M,A). For our purposes a slightly di�erent description is more useful: we de�ne
K := Quot(A) and V := M ⊗AK; note that the canonical mapM → V is injective since
we assumed M to be torsion-free. Then we have M∗ ∼= {f ∈ HomK(V,K)|f(M) ⊆ A}
where HomK(V,K) is of course just the dual vectorspace V ∗. For the de�nition of
re�exive modules we need the dual of the dual, the module M∗∗. By the above, we view
this as a subset of V ∗∗ and since M is �nitely generated, we can identify V ∗∗ with V .
Hence we can view M∗∗ as an A-submodule of V which contains M . Now we can make
the following de�nition.

De�nition 5.1. Let K := Quot(A) and V := M ⊗A K.
a) The module M := M∗∗, viewed as a subset of V , is called the re�exive closure of M .
b) M is called re�exive if M = M .

So M is re�exive if and only if every homomorphism of A-modules M∗ → A is of the
form ϕ 7→ ϕ(m) for some m ∈M . We have the following explicit characterization of the
re�exive closure, which shows the advantage of viewing M∗∗ as a subset of V . Recall
from Chapter 2 that X(1)(A) denotes the set of all prime ideals of height one in A.

Lemma 5.2. (Fossum [20, Proposition 5.2(c)]) We have

M =
⋂

p∈X(1)(A)

Mp ⊆ V.
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5 Re�exive modules, divisors, and Picard groups

This lemma immediately implies the following:

Lemma 5.3. Let M,N be �nitely generated torsion-free A-modules and let ϕ : M → N
be a homomorphism of A-modules. Then ϕK(M) ⊆ N , where ϕK := ϕ⊗ id : M ⊗AK →
N ⊗A K.

The next lemma provides some basic examples of re�exive modules:

Lemma 5.4.

a) Every �nitely generated free module is re�exive.
b) For every �nitely generated torsion-free module M and for every re�exive module

N , the module HomA(M,N) is again re�exive; in particular, the dual module M∗ is
re�exive.

Proof. Part a) is clear, for b) we refer to [20, Proposition 2.6].

Furthermore, we have the following criterion for re�exivity, see Bourbaki [5, Chapter
VII, �4.8, Proposition 19].

Lemma 5.5. Let A ⊆ B be a �nite extension of Noetherian normal domains, i.e. B
is �nitely generated as an A-module, and let M be a �nitely generated torsion-free B-
module. Then the re�exive closure of M as an A-module equals the re�exive closure of M
as a B-module. In particular, M is re�exive as an A-module if and only if it is re�exive
as a B-module.

5.2 Divisorial ideals and divisors

In this section we collect some results on divisorial ideals. We mainly follow the book
by Fossum [20], see also Benson [4, Chapter 3]. In this section A always stands for a
Noetherian normal domain.

De�nition 5.6. A fractional ideal a of A is called divisorial if it is re�exive as an A-
module. The set of all divisorial fractional ideals is written as D(A).

Remark 5.7. For a fractional ideal a we have a∗ ∼= a−1 and a = (a−1)−1. In particular,
a−1 is divisorial by Lemma 5.4b).

It can be proved (see [20, �3]) that D(A) becomes an abelian group with the multi-
plication de�ned by (a, b) 7→ ab. Next we de�ne a second abelian group associated to
A.

De�nition 5.8. The group of divisors is the free abelian group generated by X(1)(A); it
is written as Div(A).

Our next goal is to relate the two groups D(A) and Div(A). First we note that for
p ∈ X(1)(A) the localization Ap is a discrete valuation ring because A is normal; let
vp : Quot(A) → Z denote the corresponding discrete valuation. For a fractional ideal a
of A, we de�ne vp(a) := inf{vp(a)|a ∈ a}. Then it can be proved that vp(a) ∈ Z and that
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5.3 Divisor class groups

for a �xed fractional ideal a the value vp(a) is nonzero for only �nitely many p ∈ X(1)(A)
(see [20, �5]). Thus we can de�ne the divisor

div(a) :=
∑

p∈X(1)(A)

vp(a)p ∈ Div(A).

Proposition 5.9. ([20, Proposition 5.9]) The map

div : D(A)→ Div(A), a 7→ div(a)

is an isomorphism of abelian groups.

Proposition 5.9 is equivalent to saying that every divisorial fractional ideal can be
written uniquely as pe11 · · · p

er
r with p1, . . . , pr ∈ X(1)(A) and e1, . . . , er ∈ Z. We end this

section with an important class of examples of divisorial ideals.

De�nition 5.10. Let R be a Noetherian ring, let S be a �nitely generated R-algebra
which is a normal domain, and let G ⊆ AutR(S) be a �nite group. Furthermore, let χ be
an R-valued character of G, that is, a group homomorphism G → R×. Then we de�ne
the module of semi-invariants as

SGχ := {f ∈ S|∀σ ∈ G : σ(f) = χ(σ)f}.

This is an SG-module.

Lemma 5.11. (Nakajima [45, Lemma 2.1]) Let R, S, G, and χ be as in the de�nition.
Then SGχ is isomorphic to a divisorial fractional ideal of SG.

Note that SG is again a �nitely generated R-algebra and thus Noetherian by Theo-
rem 2.2 and that it is normal by Theorem 2.5, so it makes sense to talk about divisorial
ideals in SG.

5.3 Divisor class groups

Let A be a Noetherian normal domain. The group of divisors Div(A) can be used to
de�ne the divisor class group of A, an important tool to check whether a ring is factorial.
The main reference for this section is again Fossum [20].

De�nition 5.12. A divisor in Div(A) is called principal if it is of the form div(a) for a
principal fractional ideal a ∈ D(A). The principal divisors form a subgroup of Div(A),
written as Prin(A). Now we de�ne the divisor class group of A as

Cl(A) := Div(A)/Prin(A).

Example 5.13. Let A be a Dedekind domain. Then every fractional ideal is divisorial ([20,
Theorem 13.1]), so the divisor class group of A is just its ideal class group. Therefore it
is justi�ed that we use the same notation for the divisor class group and the ideal class
group.
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5 Re�exive modules, divisors, and Picard groups

The main reason why we are interested in divisor class groups is the following theorem:

Theorem 5.14. ([20, Proposition 6.1]) Let A be a Noetherian normal domain. Then A
is factorial if and only if Cl(A) = {0}.

From now on let B be a second Noetherian normal domain. Unfortunately, it is not
possible to attach to an arbitrary ring homomorphism A→ B a homomorphism of divisor
class groups Cl(A) → Cl(B). A quite general setting in which this is possible has been
described by Sather-Wagsta� and Spiro� [51], see also Remark 5.21. For us it is su�cient
to develop this theory for a certain class of injective ring homomorphisms for which it is
quite elementary. So in the following we shall always assume that A is a subring of B;
the inclusion i : A→ B then induces a group homomorphism

Div(i) : Div(A)→ Div(B), p 7→
∑

P∈X(1)(B),
P∩A=p

e(P, p)P.

Note that in De�nition 2.7 we de�ned the rami�cation index only for �nite ring exten-
sions and in the situation here the extension A ⊆ B need not be �nite; however, we can
use precisely the same de�nition to de�ne e(P, p) for any extension of Noetherian normal
domains A ⊆ B with prime ideals p ∈ X(1)(A) and P ∈ X(1)(B) such that P ∩A = p.

De�nition 5.15. We say that the inclusion i : A→ B satis�es condition (PDE)1 if for
every P ∈ X(1)(B) we have ht(P ∩A) ≤ 1.

Now the map Div(i) : Div(A) → Div(B) induces a homomorphism Cl(A) → Cl(B)
if and only if the inclusion A → B satis�es condition (PDE) (see [20, �6]). There are
several classes of inclusions of rings for which condition (PDE) is always satis�ed. In the
next three propositions we study some of these situations; we begin with the case that
B is a localization of A.

Proposition 5.16. ([20, Corollary 7.2]) If B = U−1A for some multiplicatively closed
subset U ⊆ A\{0}, then the inclusion A ↪→ B satis�es (PDE), the induced homomor-
phism Cl(A)→ Cl(B) is surjective, and its kernel is generated by the classes of all prime
ideals p ∈ X(1)(A) for which p ∩ U 6= ∅.

The second case we consider is that B is a polynomial ring over A:

Proposition 5.17. ([20, Proposition 8.8]) If B is the polynomial ring A[x1, . . . , xn], then
the inclusion A ↪→ B satis�es (PDE) and the induced homomorphism Cl(A)→ Cl(B) is
an isomorphism.

Finally, we study the situation that A is the ring of invariants of a �nite group of
automorphisms of B.

1This is the terminology used in Fossum's book - (PDE) is an abbreviation for the french �pas
d'éclatement�; Samuel [50] calls this condition (NBU) for �no blowing up�.
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5.3 Divisor class groups

Proposition 5.18. ([20, Theorem 16.1]) Let S be any Noetherian normal domain and let
G ⊆ Aut(S) be a �nite group such that SG is again Noetherian. The inclusion i : SG → S
satis�es (PDE) and the kernel of the induced homomorphism ϕ : Cl(SG)→ Cl(S) can be
embedded into the �rst cohomology group H1(G,S×).

Remark 5.19. In the situation of Proposition 5.18 the assumption that S is Noetherian
in general does not imply that SG is also Noetherian, see Nagata [44]. However, if S is a
�nitely generated algebra over a Noetherian ring R and the elements of G are R-algebra
automorphisms, then SG is again a �nitely generated R-algebra and hence Noetherian
by Theorem 2.2. The assumption that SG is Noetherian is needed in Proposition 5.18
because we de�ned the divisor class group only for Noetherian normal domains (SG is
normal by Theorem 2.5). Alternatively it would also be possible to de�ne the divisor
class group more generally for so-called Krull domains, see [20, �1]. A Noetherian domain
is a Krull domain if and only if it is normal, but there also exist non-Noetherian Krull
domains; in particular, for a Krull domain S and a �nite group G ⊆ Aut(S) the ring of
invariants SG is again a Krull domain, see [20, Proposition 1.2].

Since we will need this later, we sketch the construction of the embedding kerϕ ↪→
H1(G,S×) in Proposition 5.18; for the details we refer to [20]. We de�ne K := Quot(SG)
and L := Quot(S). The group G acts naturally on Div(S) and Prin(S) and hence also
on Cl(S). We have a short exact sequence of G-modules

0→ S× → L× → Prin(S)→ 0.

By applying the long exact sequence for group cohomology to this we obtain the following
exact sequence (note that H1(G,L×) = 0 be Hilbert's theorem 90, see Serre [53, Chapter
X, Proposition 2]):

0→ (SG)× → K× → Prin(S)G → H1(G,S×)→ 0.

We have Prin(SG) ∼= K×/(SG)×, so we obtain an exact sequence

0→ Prin(SG)→ Prin(S)G → H1(G,S×)→ 0.

The map K× → Prin(S)G in the previous sequence is given by a 7→ div((a)), so the map
Prin(SG) → Prin(S)G in this sequence is the restriction of Div(i) to Prin(SG). Since S
is integral over SG, the map Div(i) is injective and its image is contained in Div(S)G, so
we obtain the following commutative diagram with exact rows and columns:
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5 Re�exive modules, divisors, and Picard groups

0

0 0 kerϕ

0 Prin(SG) Div(SG) Cl(SG) 0

0 Prin(S)G Div(S)G Cl(S)G

H1(G,S×)

0

Div(i) ϕ

By applying the snake lemma we now get an exact sequence

0→ kerϕ→ H1(G,S×)

which gives the desired injective map kerϕ→ H1(G,S×).
We end this section by giving one more result on the induced homomorphisms on

divisor class groups.

Lemma 5.20. Let A ⊆ B ⊆ C be Noetherian normal domains and let iAB : A → B,
iBC : B → C, and iAC : A → C be the respective inclusions. Assume that all these
inclusions satisfy condition (PDE).
a) We have Div(iAC) = Div(iBC) ◦Div(iAB).
b) Let ϕAB : Cl(A) → Cl(B), ϕBC : Cl(B) → Cl(C), and ϕAC : Cl(A) → Cl(C) be the

induced maps on divisor class groups. Then we have ϕAC = ϕBC ◦ ϕAB.

Proof. Let p ∈ X(1)(A) and P ∈ X(1)(C) such that P ∩ A = p. Since B ⊆ C satis�es
(PDE) and (0) 6= p ⊆ P ∩ B we have P ∩ B ∈ X(1)(B). Then we have e(P, p) =
e(P,P ∩ B) · e(P ∩ B, p): if all extensions are �nite this is Lemma 2.8 and the general
case can be proved precisely in the same way. Now part a) follows from the de�nition of
the maps Div(i) and part b) is then clear.

Remark 5.21. It is natural to ask whether it is possible and perhaps even easier to de�ne
the maps Div(i) directly on the group of divisorial ideals D(A) instead of the group
of divisors Div(A). This is indeed possible and one can even do this in a much more
general context, see Sather-Wagsta� and Spiro� [51]: if A and B are Noetherian normal
domains and ϕ : A → B is a ring homomorphism of �nite �at dimension, i.e. B has a
�nite �at resolution as an A-module, then the map D(A)→ D(B), a 7→ a⊗A B induces a
homomorphism on divisor class groups. However, due to the re�exive closure involved in
the de�nition, many arguments become much more complicated with this de�nition. For
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example, the proof of the generalization of Lemma 5.20 to this situation in [51, Theorem
1.14] is rather involved, while the proof given above is almost trivial.

5.4 Picard groups

An object closely related to the divisor class group of a Noetherian normal domain is
its Picard group. This group can be de�ned for arbitrary rings and even for schemes.
For Noetherian normal domains there is then an embedding of the Picard group into the
divisor class group. Here we summarize the basic facts on Picard groups which we need
in the next chapters. Our main reference for this is Fossum [20, Section 18]. We �x a
Noetherian ring A (for simplicity, we only consider Noetherian rings in this section).

De�nition 5.22. An A-module L is called invertible if it is locally free of rank one, that
is, if for every prime ideal p ⊂ A we have Lp

∼= Ap.

Lemma 5.23. Let L and L′ be invertible A-modules. Then L⊗AL′ and L∗ := HomA(L,A)
are again invertible A-modules.

The set of isomorphism classes of invertible A-modules is a group with respect to the
tensor product; the inverse of the isomorphism class of a module L is the isomorphism
class of L∗.

De�nition 5.24. The group of isomorphism classes of invertible A-modules with the
group structure indicated above is called the Picard group of A and written as Pic(A).

It is clear from the de�nition that the Picard group of a local ring is always trivial.
We will see below that the Picard group of a Dedekind domain is isomorphic to its ideal
class group.
Now let A be a Noetherian normal domain with quotient �eld K. Then an invertible

A-module L can be embedded into L⊗AK ∼= K and hence is isomorphic to an invertible
fractional ideal a of A, see [20, Proposition 18.2]. It is clear that invertible fractional
ideals are divisorial, so in this way we can associate a divisorial ideal to every invertible
A-module. Using this, one can prove the following result, see [20, Corollary 18.3].

Proposition 5.25. Let A be a Noetherian normal domain. Then Pic(A) is isomorphic
to a subgroup of Cl(A).

The next proposition, see [20, Corollary 18.5], shows in which cases this embedding is
in fact an isomorphism.

Proposition 5.26. Let A be a Noetherian normal domain. The injective homomorphism
Pic(A) → Cl(A) given by Proposition 5.25 is an isomorphism if and only if A is locally
factorial.

In particular this implies the result announced above that the Picard group of a
Dedekind domain is isomorphic to the ideal class group: Dedekind domains are always
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5 Re�exive modules, divisors, and Picard groups

locally factorial by Proposition 2.25 and the divisor class group of a Dedekind domain is
precisely the ideal class group by Example 5.13.
Next we want to associate to a homomorphism ϕ : A→ B of Noetherian rings a group

homomorphism Pic(A) → Pic(B). While for the divisor class group we only achieved
this for injective homomorphisms satisfying condition (PDE), for the Picard group we
can really do this for arbitrary ring homomorphisms: if L is an invertible A-module, then
L⊗A B is an invertible B-module: for q ∈ Spec(B) and p := ϕ−1(q) we have

(L⊗AB)q ∼= (L⊗AB)⊗BBq
∼= L⊗ABq

∼= (L⊗AAp)⊗ApBq
∼= Lp⊗ApBq

∼= Ap⊗ApBq
∼= Bq.

Using this we can de�ne the desired group homomorphism Pic(ϕ) : Pic(A)→ Pic(B) by
mapping the isomorphism class of L to the isomorphism class of L⊗A B.

Lemma 5.27. With the above de�nition Pic becomes a functor from the category of
Noetherian commutative rings to the category of abelian groups.

We �nally mention the following result which in many cases allows us to describe the
Picard group of a polynomial ring.

Proposition 5.28. (Gilmer and Heitmann [24, Theorem 1.6]) Let A be a Noetherian
normal domain. Then the map Pic(A) → Pic(A[x]) induced by the inclusion A ↪→ A[x]
is an isomorphism.
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6 Factoriality of rings of arithmetic

invariants

The goal of this chapter is a generalization of Nakajima's theorem on factorial rings of
invariants (Theorem 2.19) to the arithmetic case. Our proof as well as the proof of Naka-
jima's theorem uses the theory of divisor class groups summarized in Chapter 5 which
provides a useful characterization of factorial rings (Theorem 5.14). The �rst section of
this chapter contains a general result on divisor class groups of rings of invariants in gen-
eral algebras. In the second section we prove the main result of this chapter, which fully
answeres the question under which conditions a ring of invariants R[x1, . . . , xn]G is fac-
torial (Theorem 6.5) for a Noetherian normal domain R and a �nite group G ⊆ Gln(R).
In the �nal section we compute the Picard group of such a ring of invariants.

6.1 Group actions on algebras

Let R and S be Noetherian normal domains with R ⊆ S. Furthermore, let G be a �nite
subgroup of AutR(S). We de�ne K := Quot(R) and SK := S ⊗R K. We want to know
whether SG is factorial. The best result we could hope for would be the following:

SG is factorial if and only if both S and SGK are factorial. (6.1)

This statement however is not true in general, as the following example shows.

Example 6.1. Let R = Z and S = Z[
√
−5]. We recall some basic facts about S from

algebraic number theory. S is the ring of integers in the number �eld L = Q(
√
−5); in

particular, S is normal. But S is not factorial since the class number of L is not 1 (see
Neukirch [46, Page 37]). Furthermore, let G := Gal(L/Q) be the Galois group. Then
SG = Z is factorial, contradicting (6.1).

From now on we assume that S× = S ∩ R× and S×K = SK ∩K×; see Remark 6.4 for
a discussion of these assumptions. Then the factoriality of SGK can be checked using a
generalized version of Nakajima's Theorem 2.19, see Nakajima [45, Theorem 2.11].
In the next section we shall see that (6.1) is indeed true in the particularly interesting

case that S is a polynomial ring over R. In this section we prove the simpler result that
under the above assumptions on groups of units (6.1) holds if S is factorial; in particular,
the �if�-part of (6.1) holds under these assumptions. More precisely, we prove that if S
is factorial, the divisor class groups of SG and SGK coincide.
We begin with a lemma for which we do not need that S is factorial but only that SK

is factorial. This lemma will be used again in the next section.
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6 Factoriality of rings of arithmetic invariants

Lemma 6.2. With the notation as above, the inclusion SG ⊆ (R\{0})−1SG = SGK
induces a homomorphism α : Cl(SG) → Cl(SGK) by Proposition 5.16. Furthermore, by
Proposition 5.18, the inclusion SG ⊆ S induces a homomorphism ϕ : Cl(SG) → Cl(S).
If SK is factorial and S×K = K× and S× = R×, then the restriction of α to ker(ϕ) is
injective.

Proof. Since S× = R× and G acts trivially on R, by Proposition 5.18 there is an injective
homomorphism θ : kerϕ → H1(G,S×) = Hom(G,R×). Let ϕK : Cl(SGK) → Cl(SK) be
the map given by Proposition 5.18 applied to the inclusion SGK ⊆ SK . Since we assumed
SK to be factorial, Cl(SK) = {0} and hence kerϕK = Cl(SGK), so Proposition 5.18 gives
an embedding θK : Cl(SGK)→ H1(G,S×K) = Hom(G,K×) since S×K = K× by assumption.
R is normal, so every root of unity in K is already in R, and hence Hom(G,R×) =
Hom(G,K×) because G is �nite. So we have the following diagram:

ker(ϕ) Hom(G,R×)

Cl(SGK) Hom(G,K×)

α|ker(ϕ)

θ

=

θK

Since θ is injective, the claim follows if we prove that this diagram commutes.
The inclusion S ⊆ SK satis�es condition (PDE) by Proposition 5.16 and hence we

obtain a map Cl(S) → Cl(SK) which �ts into the following commutative diagram with
exact rows.

0 Prin(S) Div(S) Cl(S) 0

0 Prin(SK) Div(SK) Cl(SK) 0

The inclusion SG ↪→ SGK gives a similar commutative diagram and as in the discussion
after Remark 5.19 we obtain the following diagram with exact rows and columns:

ker(ϕ)

0 Prin(SG) Div(SG) Cl(SG) 0

0 Prin(SGK) Div(SGK) Cl(SGK) 0

0 (Prin(S))G (Div(S))G (Cl(S))G

0 (Prin(SK))G (Div(SK))G (Cl(SK))G {0}

H1(G,S×K) H1(G,S×)

ϕ

α
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The front and back part of this diagram commute by the discussion after Remark 5.19
and the top and bottom parts commute by the above. Furthermore the mid part of
the diagram, that is, the part with the groups of divisors, commutes since both possible
paths are just the map on divisor class groups induced by the inclusion SG ⊆ SK (see
Lemma 5.20); then it follows immediately that the left and right parts also commute.
Now by the construction of θ and the naturality of the connecting homomorphism in the
snake lemma we obtain a commutative diagram

ker(ϕ) H1(G,R×)

Cl(SGK) H1(G,K×)

α|ker(ϕ)

θ

θK

It remains to show that in the last diagram the map on the right is really the identity
on Hom(G,R×) = Hom(G,K×). Again the discussion after Remark 5.19 shows that by
the naturality of the long exact sequence in group cohomology this map is the map on
H1(G, ·) induced by the inclusion R× ↪→ K× which indeed is the identity Hom(G,R×) =
Hom(G,K×).

Now we prove the desired result on the factoriality of SG for factorial rings S.

Theorem 6.3. Let R and S be Noetherian normal domains with R ⊆ S. De�ne K :=
Quot(R) and SK := S⊗RK and assume that S× = R× and S×K = K×. Let G ⊆ AutR(S)
be a �nite subgroup. If S is factorial, then Cl(SG) ∼= Cl(SGK). In particular, if both S
and SGK are factorial, then SG is also factorial.

Proof. We continue with the notation from Lemma 6.2. By Proposition 5.16, α is surjec-
tive and since S is factorial, Cl(S) = {1} and hence kerϕ = Cl(SG). So by Lemma 6.2,
α is also injective and hence an isomorphism.

Remark 6.4. Here are some comments on the assumptions S× = R× and S×K = K×

in Theorem 6.3. First of all, these assumptions are certainly satis�ed if S is a graded
R-algebra, so in particular they always hold if S is a polynomial ring over R. On the
other hand, the second assumption is not satis�ed in Example 6.1; we have SK = L and
hence S×K = L\{0} 6= K× there. So it may be questioned whether Example 6.1 really
shows that the converse of the last statement in Theorem 6.3 does not hold or rather that
the assumptions on the groups of units are necessary. The main goal of this remark is
to demonstrate that the �rst answer �ts better. Example 6.1 also shows that S×K = K×

does not follow automatically if we have S× = R×: it is easy to see that in this example
we have S× = {1,−1} = R×.
First of all, it is easy to see that it is possible to replace the assumption S×K = K× in

Theorem 6.3 by a weaker one: we used it only to prove that Hom(G,S×) = H1(G,S×K)
in the proof of Lemma 6.2 and a closer look to that proof shows that we really only
need the weaker statement that the homomorphism on group cohomology H1(G,S×)→
H1(G,S×K) induced by the inclusion S× ↪→ S×K is injective. Using the long exact sequence
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6 Factoriality of rings of arithmetic invariants

for group cohomology, we see that this is the same as saying that the projection S×K →
S×K/S

× restricts to a surjective homomorphism (S×K)G → (S×K/S
×)G. So we can replace

the above assumption by this one. Even this weaker assumption is not satis�ed in
Example 6.1: there the class of

√
−5 ∈ S×K in (S×K/S

×) consists of
√
−5 and −

√
−5, so

it is invariant under the action of G, because the nontrivial element of G interchanges√
−5 and −

√
−5. On the other hand, this also shows that neither

√
−5 nor −

√
−5 are

G-invariant, so the class of
√
−5 is not in the image of the restricted map (S×K)G →

(S×K/S
×)G which is therefore not surjective. However, this assumption is still more than

what we really need: the proof of Theorem 6.3 shows that it is possible to write the
theorem in the following form:
Let R and S be Noetherian normal domains with R ⊆ S. De�ne K := Quot(R) and

SK := S ⊗R K. Let G ⊆ AutR(S) be a �nite subgroup. If S is factorial and α|kerϕ
is injective, where α and ϕ are de�ned as in Lemma 6.2, then Cl(SG) ∼= Cl(SGK). In
particular, if both S and SGK are factorial, then SG is also factorial.
And it turns out that α|kerϕ is injective in the situation of Example 6.1: since SG = Z

is factorial, we have Cl(SG) = {0} and thus also kerϕ = {0}, so a homomorphism
from kerϕ to any group must always be injective. Nevertheless, the converse of the last
statement in the theorem does not hold in this example, so the converse is really not true
in this general version.

6.2 Group actions on polynomial rings

One situation in which Theorem 6.3 can be applied is when R is a Noetherian normal
domain and S is a polynomial ring over R; in this case, statement (6.1) from the previous
section is indeed true as the following theorem shows. This is the main result of this
chapter.

Theorem 6.5. Let R be a Noetherian normal domain, S := R[x1, . . . , xn], and G ⊆
AutR(S) a �nite subgroup. Further de�ne K := Quot(R) and SK := S ⊗R K. Then

Cl(SG) ∼= Cl(R)× Cl((SK)G).

In particular SG is factorial if and only if both R and (SK)G are factorial.

In the special case where G acts linearly on Rn we obtain the following generalization
of Nakajima's Theorem 2.19:

Corollary 6.6. Let R be a Noetherian normal domain and let G ⊆ Gln(R) be a �nite
subgroup. Then R[x1, . . . , xn]G is factorial if and only if R is factorial and every R-valued
character of G is uniquely determined by its restriction to the subgroup of G generated by
all pseudore�ections. In particular, if G is a pseudore�ection group, then R[x1, . . . , xn]G

is factorial if and only if R is factorial.

Proof. Let K := Quot(R) and let χ be a K-valued character of G. For every σ ∈ G,
χ(σ) is a root of unity in K since G is �nite; therefore χ(σ) ∈ R because R is normal.
This shows that the R-valued characters and the K-valued characters of G are the same,
so the result follows from Theorem 6.5 and Theorem 2.19.
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6.2 Group actions on polynomial rings

Now we aim to prove Theorem 6.5; we need two lemmas. As in the theorem we take
a Noetherian normal domain R and set S := R[x1, . . . , xn]. We already know from
Propositions 5.18 and 5.17 that the inclusions SG ⊆ S and R ⊆ S satisfy condition
(PDE). The next lemma shows that the same holds for R ⊆ SG.

Lemma 6.7. Under the assumptions of Theorem 6.5 the inclusion R ⊆ SG satis�es
(PDE).

Proof. Let P ∈ X(1)(SG). The extension SG ⊆ S is integral, so by lying-over there exists
a Q ∈ X(1)(S) with Q ∩ SG = P. Then we have P ∩ R = (Q ∩ SG) ∩ R = Q ∩ R and
ht(Q ∩R) ≤ 1 since the inclusion R ⊆ S satis�es (PDE) by Proposition 5.17.

In the situation of Theorem 6.5 we now have several inclusions of rings which sat-
isfy condition (PDE). These induce the following canonical maps of divisor class groups:
ϕ : Cl(SG) → Cl(S) exists by Proposition 5.18; ψ : Cl(R) → Cl(S) exists by Propo-
sition 5.17; ψ′ : Cl(R) → Cl(SG) exists by Lemma 6.7; α : Cl(SG) → Cl(SGK) exists
by Proposition 5.16. Lemma 5.20 shows that ψ = ϕ ◦ ψ′, so we obtain the following
commutative diagram:

Cl(S)

Cl(R) Cl(SG) Cl(SGK)

ψ

ψ′

ϕ

α

The next lemma contains several properties of these maps:

Lemma 6.8. With the notation as above, the following holds.
a) imψ′ ∼= Cl(R).
b) Cl(SG) = kerϕ× imψ′.
c) The restriction of α to kerϕ is surjective.

Proof.
a) Since ψ is an isomorphism by Proposition 5.17 and ψ = ϕ ◦ ψ′, ψ′ must be injective.

This implies imψ′ ∼= Cl(R).
b) With the same argument as in the proof of a) we see that ϕ must be surjective, so we

have a short exact sequence

0→ kerϕ→ Cl(SG)
ϕ→ Cl(S)→ 0.

Since ψ is an isomorphism, ψ = ϕ ◦ ψ′ implies idCl(S) = ϕ ◦ (ψ′ ◦ ψ−1), so ψ′ ◦ ψ−1 is
a right inverse of ϕ with im(ψ′ ◦ψ−1) = imψ′. Hence the above exact sequence splits
and we obtain Cl(SG) = kerϕ× im(ψ′ ◦ ψ−1) = kerϕ× imψ′.

c) By part b) we have Cl(SG) = imψ′× kerϕ. We prove that α|imψ′ = 0; then the claim
follows since α is surjective by Proposition 5.16. So let p ∈ X(1)(R). By de�nition we
have

ψ′([div(p)]) =
∑

P∈X(1)(SG),
P∩R=p

e(P, p)[div(P)]
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6 Factoriality of rings of arithmetic invariants

where [div(p)] denotes the class of div(p) in Cl(R) and similarly for [div(P)]. For
every prime ideal P ∈ X(1)(SG) with P ∩ R = p 6= (0) we have α([div(P)]) = 0
by Proposition 5.16, so we also have α(ψ′([div(p)])) = 0. This shows that indeed
α|imψ′ = 0.

Now we can easily proof our main theorem:

Proof of Theorem 6.5. By Lemmas 6.2 and 6.8c) α restricts to an isomorphism kerϕ→
Cl(SGK). By combining this with Lemma 6.8a) and b) we obtain

Cl(SG) = kerϕ× imψ′ ∼= Cl(SGK)× Cl(R).

The second statement now follows from Theorem 5.14.

We end this section by considering the question of whether factoriality of the ring of
invariants over some ring R implies factoriality of the ring of invariants over a factor ring
R/P for a prime ideal P ⊂ R. The following example shows that this need not be true,
even in the case where |G| /∈ P .

Example 6.9. Let R = Z. We consider the cyclic subgroup G of Gl3(Z) generated by the
following matrix: 0 0 1

1 0 0
0 1 0


Then |G| = 3 and since Z does not contain any nontrivial third root of unity, there are no
nontrivial Z-valued characters of G. Hence Z[x, y, z]G is factorial by Corollary 6.6. Now
we study the invariants of G over F7 = Z/(7). Since F×7 is cyclic of order 6, there are
nontrivial F7-valued characters of G. But G viewed as a subgroup of Gl3(F7) does not
contain any pseudore�ections, and hence F7[x, y, z]

G is not factorial by Theorem 2.19.

6.3 The Picard group of rings of invariants

After having computed the divisor class group of a ring of invariants one may ask whether
it is also possible to compute the Picard group. Over �elds, this has been done by Kang
[31]; his result is the following:

Theorem 6.10. ([31, Theorem 5.3]) Let K be a �eld and let G ⊆ Gln(K) be a �nite
subgroup. Then Pic(K[x1, . . . , xn]G) = {0}.

In this section we prove the following arithmetic generalization of Kang's theorem:

Theorem 6.11. Let R be a Noetherian normal domain and let G ⊆ Gln(R) be a �nite
subgroup. Then Pic(R[x1, . . . , xn]G) ∼= Pic(R).
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The proof of this result turns out to be much simpler than the discussion of the divisor
class group of R[x1, . . . , xn]G in the previous section: a large part of the proof for the
divisor class group was related to the kernel of the canonical map Cl(R[x1, . . . , xn]G)→
Cl(R[x1, . . . , xn]). The following result of Kang [31] shows that this is not necessary for
the Picard group.

Proposition 6.12. (Kang [31, Corollary 2.2]) Let R be a normal domain, S := R[x1, . . . , xn],
and G ⊆ AutR(S) a subgroup such that σ(S+) = S+ for all σ ∈ G. Then the homomor-
phism Pic(SG)→ Pic(S) induced by the embedding SG ↪→ S is injective.

Using this we can now prove Theorem 6.11. The basic idea of the proof is the same as
for Theorem 6.5.

Proof of Theorem 6.11. We consider the embeddings

α : R ↪→ R[x1, . . . , xn]G, β : R[x1, . . . , xn]G ↪→ R[x1, . . . , xn], γ : R ↪→ R[x1, . . . , xn]

and the induced maps on Picard groups; we need to show that Pic(α) is an isomorphism.
We have γ = β ◦ α and thus Pic(γ) = Pic(β) ◦ Pic(α) since Pic is a functor. By
Proposition 5.28 Pic(γ) is an isomorphism, so Pic(α) must be injective. Let b ∈ Pic(SG);
since Pic(γ) is an isomorphism, there is an a ∈ Pic(R) such that Pic(γ)(a) = Pic(β)(b),
so with Pic(γ) = Pic(β)◦Pic(α) we obtain Pic(β)(Pic(α)(a)) = Pic(β)(b). Since Pic(β) is
injective by Proposition 6.12, this shows b = Pic(α)(a) and hence Pic(α) is surjective.

Theorem 6.11 has the following remarkable consequence which in the case where R is
a �eld is essentially due to Kang [31, Corollary 5.4].

Corollary 6.13. Let R be a Noetherian and factorial domain and let G ⊆ Gln(R) be a
�nite subgroup. Then the following statements are equivalent.
(i) R[x1, . . . , xn]G is factorial.
(ii) R[x1, . . . , xn]Gp is factorial for every prime ideal p ⊂ R[x1, . . . , xn]G.

Proof. Since localizations of factorial domains are again factorial, (i) implies (ii). For the
converse we �rst note that since R is factorial, we have Cl(R) = {0} by Theorem 5.14, so
Pic(R) = {0} by Proposition 5.25. By Theorem 6.11 this implies Pic(R[x1, . . . , xn]G) =
{0}. Hence by (ii) and Proposition 5.26 we have Cl(R[x1, . . . , xn]G) = {0}, so we obtain
that R[x1, . . . , xn]G is factorial by Theorem 5.14.
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7 The quasi-Gorenstein property for

rings of arithmetic invariants

Broer [8] generalized the results of Watanabe and Braun (see Theorem 2.21) on the
Gorenstein property for rings of invariants to groups which may contain pseudore�ections.
He gives a complete answer to the question of when the ring of invariants K[x1, . . . , xn]G

of a �nite group G ⊆ Gln(K) over an arbitrary �eld K is a quasi-Gorenstein ring. Quasi-
Gorenstein rings are a concept due to Aoyama and others generalizing the Gorenstein
property to rings which need not be Cohen-Macaulay: a Cohen-Macaulay ring is quasi-
Gorenstein if and only if it is Gorenstein, but there are quasi-Gorenstein rings which
are not Cohen-Macaulay. The goal of this chapter is to generalize Broer's theorem to
the arithmetic case. We begin by recalling the de�nition of a quasi-Gorenstein ring and
then we study the quasi-Gorenstein property for graded rings in some more detail. After
that we introduce Dedekind di�erents and give the precise statement of Broer's theorem
(Theorem 7.30). As a further tool in Section 7.5 we introduce systems of parameters and
prove an existence theorem which might be interesting not only in the context of the
quasi-Gorenstein property. In the last two sections of this chapter we �nally prove the
generalization of Broer's theorem to the arithmetic case (Theorem 7.56).

7.1 The quasi-Gorenstein property for local rings

In this section we brie�y recall the de�nitions and some basic properties of the canonical
module of a local ring and local quasi-Gorenstein rings. All rings in this section are
assumed to be Noetherian. Before we de�ne canonical modules we need the de�nition of
the injective hull of a module (see Lam [38, De�nition 3.31]).

De�nition 7.1. Let A be a ring and let M be an A-module.
a) A minimal injective extension of M is an injective A-module I together with an injec-

tive homomorphism of A-modules i : M → I such that for every other injective module
J with an injective homomorphism j : M → J there is an injective homomorphism
k : I → J such that j = k ◦ i.

b) It can be proved that every module M has a minimal injective extension (see [38,
Lemma 3.29]) and that it is unique up to an isomorphism which restricts to the identity
on M (see [38, Corollary 3.32]). This unique minimal injective extension is called the
injective hull of M and is written as EA(M).

Furthermore, we brie�y recall the de�nition of local cohomology (see Brodmann and
Sharp [7, Chapter 1]): Let I be an ideal in a ring A and let M be an A-module. We
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7 The quasi-Gorenstein property for rings of arithmetic invariants

de�ne ΓI(M) :=
⋃
i∈N(0 :M Ii) = {m ∈ M |∃i ∈ N : Ii · m = 0}. The association

M 7→ ΓI(M) is a left-exact functor called the I-torsion functor. Then one de�nes the
n-th local cohomology functor with support in I as the n-th right derived functor of
ΓI(·); it is written as Hn

I (·). We have an isomorphism

Hn
I (M) ∼= lim−→

i∈N
ExtnA(A/Ii,M).

Now we can give the de�nition of the canonical module of a local ring due to Herzog
and Kunz [28, De�nition 5.6].

De�nition 7.2. Let A be a local ring with maximal ideal m and d := dimA. If A
is complete, then the canonical module of A is KA := Hom(Hd

m(A), EA(A/m)). If A
is not necessarily complete, then an A-module KA is called a canonical module of A if
KA ⊗A Â ∼= KÂ, where Â denotes the completion of A and KÂ denotes the canonical
module of Â.

Not every local ring has a canonical module, but if a canonical module exists, then it
is unique up to isomorphism ([28, Bemerkung 5.7]). The canonical module of a local ring
A (if it exists) is written as KA.

Remark 7.3. Although we do not need this later, it seems appropriate to give some
motivation for the de�nition of the canonical module, see Brodmann and Sharp [7] for
more details. Let A be a complete Noetherian local ring of dimension d with maximal
ideal m. The local cohomology module Hd

m(A) plays a particularly important role as it
is always nonzero while Hn

m(A) = 0 for all n > d (Grothendieck's vanishing theorem,
see [7, Theorems 6.1.2 and 6.1.4]). However, it is rather hard to work with Hd

m(A)
directly as it is in general not a �nitely generated A-module. But it turns out that
Hd

m(A) is always an Artinian A-module (see [7, Theorem 7.1.3]), so we can use a tool
called Matlis duality: for an A-module M we de�ne the Matlis dual of M as the module
D(M) := HomA(M,EA(A/m)). As usual, we have a canonical map M → D(D(M)). If
now M is either Noetherian (that is, �nitely generated) or Artinian, then this canonical
map is an isomorphism, so in these cases the module M can be reconstructed from its
Matlis dual. Moreover, the Matlis dual of an Artinian module is noetherian and vice
versa (see [7, Theorem 10.2.12]). Hence instead of the Artinian module Hd

m(A) we can
also study its Matlis dual which is then �nitely generated; this Matlis dual is precisely
the canonical module.

In many cases we have an explicit description of the canonical module. This is the
content of the following theorem (see [28, Satz 5.12]).

Theorem 7.4. Let A and B be Noetherian local rings and let ϕ : A → B be a local
homomorphism, i.e. for the maximal ideals m ⊂ A and n ⊂ B we have ϕ(m) ⊆ n,
such that B becomes a �nitely generated A-module. Assume that A is Cohen-Macaulay
and has a canonical module KA. Then ExtrA(B,KA) is a canonical module of B where
r := dimA− dimB.
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In the context of the theorem ExtrA(B,KA) becomes a B-module as follows. For b ∈ B
the multiplication map µb : B → B, c 7→ bc is a homomorphism of A-modules, so it
induces a homomorphism µ∗b : ExtrA(B,KA)→ ExtrA(B,KA) and we de�ne the B-module
structure on ExtrA(B,KA) by setting b · s := µ∗b(s) for b ∈ B and s ∈ ExtrA(B,KA).
A local ring A is a Gorenstein ring if and only if it is a Cohen-Macaulay ring which has

a canonical module KA and KA
∼= A, see [28, Satz 5.9]. This motivates the de�nition of

a local quasi-Gorenstein ring due to Platte and Storch [49, �3] and Aoyama [2, De�nition
2.1]:

De�nition 7.5. A local ring A is called a quasi-Gorenstein ring if the canonical module
KA of A exists and A ∼= KA as A-modules.

We end this section by giving some basic properties of local quasi-Gorenstein rings,
see Aoyama [2, Section 2].

Lemma 7.6. Let A be a local ring.
a) A is quasi-Gorenstein if and only if its completion Â is quasi-Gorenstein.
b) A is Gorenstein if and only if it is quasi-Gorenstein and Cohen-Macaulay.
c) Let p ⊂ A be a prime ideal. If A is quasi-Gorenstein, then Ap is also quasi-Gorenstein.

7.2 The quasi-Gorenstein property for graded rings

In this section we study the quasi-Gorenstein property for graded rings; again we assume
that all rings are Noetherian. We begin with the general de�nition of a quasi-Gorenstein
ring due to Aoyama and Goto [3, De�nition 0.4].

De�nition 7.7. A ring A is called quasi-Gorenstein if Ap is a quasi-Gorenstein local
ring for every prime ideal p ⊂ A.

The following result follows immediately from Lemma 7.6b).

Lemma 7.8. Let A be a ring. Then A is Gorenstein if and only if A is quasi-Gorenstein
and Cohen-Macaulay.

In the rest of this section we study quasi-Gorenstein rings S which are ∗local graded
rings. In this case we can de�ne graded canonical modules; this notion is due to Goto
and Watanabe [25] in the case that S0 is a �eld and due to Ikeda [30] in the general case.
We �rst need to study injective objects in the category ∗C(S) of graded S-modules,

see Brodmann and Sharp [7, Section 13.2]. A graded S-module M is called ∗injective if
it is an injective object in ∗C(S).

De�nition 7.9. Let S be a graded ring, L a graded S-module, and M ⊆ L a graded
submodule.
a) L is called an ∗essential extension of M if B ∩M 6= {0} for every graded submodule
{0} 6= B ⊆ L.

b) L is called an ∗injective hull of M if L is ∗injective and an ∗essential extension of M .
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7 The quasi-Gorenstein property for rings of arithmetic invariants

Similar as for minimal injective extensions in the ungraded case, we have the following
existence and uniqueness result for ∗injective hulls:

Theorem 7.10. Let S be a graded ring and let M be a graded S-module.
a) M has an ∗injective hull; in particular, the category ∗C(S) has enough injectives.
b) If L and L′ are two ∗injective hulls of M , then there is a homogeneous isomorphism

f : L→ L′ with f |M = id.

Proof. See [7, Theorem 13.2.4].

We write ∗ES(M) for an ∗injective hull of a graded S-module M .

De�nition 7.11. a) Let S be a ∗local graded ring and let M be a graded S-module.
Let m be the unique homogeneous maximal ideal in S. We de�ne the n-th graded
local cohomology of M as ∗Hn

m(M) := lim−→i∈N
∗ExtnS(S/mi,M). Note that ∗Hn

m(M) ∼=
Hn

m(M) as S-modules for all n by Lemma 2.39.
b) If S0 is a complete local ring, then we de�ne the graded canonical module of S as
∗KS := ∗HomS(∗Hd

m(S), ∗ES(S/m)).
c) If S0 is not necessarily complete, then a graded S-module ∗KS is called a graded

canonical module of S if we have an isomorphism of graded Ŝ-modules ∗KS ⊗S Ŝ ∼=
∗K Ŝ where Ŝ := S ⊗S0 Ŝ0 and Ŝ0 is the completion of the local ring S0.

As in the local case, the graded canonical module is unique up to isomorphism if it
exists; moreover, it is always �nitely generated (see Ikeda [30, Proposition 1.7]). Fur-
thermore, we have the following analogue of Theorem 7.4 (see [30, Proposition 1.10]).

Theorem 7.12. Let S and T be ∗local graded rings with S0 = T0 and let ϕ : S →
T be a homogeneous homomorphism such that T is �nitely generated as an S-module.
Assume that S is Cohen-Macaulay with graded canonical module ∗KS. Then ∗KT :=
∗ExtrS(T, ∗KS) with r := dimS − dimT is the graded canonical module of T .

Corollary 7.13. Let S be a ∗local graded ring such that S0 is Gorenstein. Then S has
a graded canonical module.

Proof. Since S is Noetherian by our general assumption, it is �nitely generated as an S0-
algebra, see Bruns and Herzog [11, Proposition 1.5.4]. So we can write S = S0[f1, . . . , fs]
with homogeneous elements f1, . . . , fs ∈ S. Next we de�ne T := S0[y1, . . . , ys] with
indeterminates y1, . . . , ys. We de�ne a grading on T by setting deg(yi) := deg(fi) for
each i. Then we get a surjective homogeneous homomorphism T → S. Since S0 is
Gorenstein, T is also Gorenstein, so T (m) is a graded canonical module of T for some
m ∈ Z, see [30, Proposition 1.9] and hence with r := dim(T ) − dim(S) Theorem 7.12
shows that ∗ExtrT (S, T (m)) is a graded canonical module of S.

Theorem 7.12 has the following proposition as a consequence, which is mentioned
without proof in [30]. For completeness and because we will need similar arguments
again later we give a proof of it here.
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Proposition 7.14. Let R be a Gorenstein local ring and let S be a �nitely generated
graded R-algebra with graded canonical module ∗KS. Then for every prime ideal p ⊂ S,
(∗KS)p is a canonical module of the local ring Sp.

Proof. Let f1, . . . , fm be homogeneous generators of S as an R-algebra. Set T :=
R[y1, . . . , ym] and de�ne a homomorphism of R-algebras g : T → S via g(yi) := fi.
Since g is surjective, S becomes a �nitely generated T -module. We de�ne a grading on T
by setting deg(yi) := deg(fi). T is Gorenstein, so T (m) is the graded canonical module
of T for some m ∈ Z by [30, Proposition 1.9]. Thus by Theorem 7.12 and Lemma 2.39
we have ∗KS

∼= ExtrT (S, T ) as ungraded S-modules with r := dim(T ) − dim(S). Now
let p ⊂ S be a prime ideal and q := g−1(p). The S-module (∗KS)p ∼= ExtrT (S, T )p and
the T -module ExtrT (S, T )q coincide since g is surjective; the latter one is isomorphic to
ExtrTq(Sp, Tq), see Weibel [61, Proposition 3.3.10], so we need to show that ExtrTq(Sp, Tq)
is the canonical module of Sp. Since the map Tq → Sp induced by g is surjective, by
Theorem 7.4 this follows if we prove that dim(Tq)− dim(Sp) = r.
Let I := ker(g). Then S ∼= T/I and Sp ∼= Tq/Iq. Let m be the homogeneous maximal

ideal in the ∗local graded ring T . Then up to isomorphism m/I is the homogeneous
maximal ideal of S. By Lemma 2.33 we have dim(T ) = ht(m) = dim(Tm) and dim(S) =
dim(T/I) = ht(m/I) = dim((T/I)m/I) = dim(Tm/Im). Since R is Cohen-Macaulay,
T and Tm are also Cohen-Macaulay and hence dim(Tm) − dim(Tm/Im) = ht(Im), see
Bruns and Herzog [11, Corollary 2.1.4]. So we have r = dim(T )− dim(S) = dim(Tm)−
dim(Tm/Im) = ht(Im) = ht(I) where the last equality follows since I is a homogeneous
ideal in T and thus I ⊆ m. By using the fact that Tq is Cohen-Macaulay, we also obtain
dim(Tq) − dim(Sp) = dim(Tq) − dim(Tq/Iq) = ht(Iq) using [11, Corollary 2.1.4] again.
Since q = g−1(p) ⊇ g−1({0}) = I we have ht(Iq) = ht(I). Hence r = ht(I) = ht(Iq) =
dim(Tq)− dim(Sp). This �nishes the proof.

We can now prove the main result of this section which relates graded canonical mod-
ules and the quasi-Gorenstein property.

Proposition 7.15. Let S be a ∗local graded ring with homogeneous maximal ideal m
and graded canonical module ∗KS. Assume that S0 is Gorenstein. Then the following
statements are equivalent:
(i) S is quasi-Gorenstein.
(ii) Sp is quasi-Gorenstein for every p ∈ Spec(R).
(iii) Sm is quasi-Gorenstein.
(iv) There is a homogeneous isomorphism ∗KS

∼= S(m) for some m ∈ Z.
(v) ∗KS is a free S-module of rank one.

Proof. Statements (i) and (ii) are equivalent by de�nition and it is clear that (ii) implies
(iii). Next we assume that (iii) holds. Then by Proposition 7.14 we have (∗KS)m ∼= Sm.
In particular, (∗KS)m is a free Sm-module and hence its projective dimension is zero. As
∗KS is a �nitely generated graded S-module, this implies that the projective dimension
of ∗KS is zero ([11, Proposition 1.5.15(e)]), so ∗KS is projective and hence free ([11,
Proposition 1.5.15(d)]). Furthermore rank(∗KS) = rank(∗KS)m = 1, so ∗KS is a graded

55



7 The quasi-Gorenstein property for rings of arithmetic invariants

free module of rank one. That proves that (iii) implies (iv). It is clear that (iv) implies
(v); �nally (v) implies (ii) by Proposition 7.14.

7.3 The Dedekind di�erent

The Dedekind di�erent is a classical tool in algebraic number theory. In his article
[8] Broer de�nes a generalization of the Dedekind di�erent which he calls the twisted
di�erent. Broer introduces the twisted di�erent only for extensions S ⊇ SG where S is
the polynomial ring in n variables over a �eldK and G is a �nite subgroup of Gln(K). All
results on twisted di�erents given in [8] are direct generalizations of well-known results
for the Dedekind di�erent and therefore Broer often does not give proofs. In this section
we de�ne twisted di�erents in the generality needed for what follows and for convenience
we give full proofs. At the end of this section we recall a classical result on the Dedekind
di�erent; there we only give a reference for the proof. As a general reference for the
classical theory of Dedekind di�erents we mention Benson [4, Section 3.10].
Throughout this section let B be a Noetherian normal domain and let G be a �nite

group of automorphisms of B. We set L := Quot(B), A := BG, and K := Quot(A) = LG

and we assume that A is again Noetherian, see also Remark 5.19. Moreover, we �x a
character ν : G→ A×; recall that we write BG

ν or Aν for the module of ν-semiinvariants.

De�nition 7.16. The twisted transfer is the map

TrGν : L→ LGν , a 7→
∑
σ∈G

ν(σ−1)σ(a).

The twisted transfer is a homomorphism of K-vector spaces which restricts to a ho-
momorphism of A-modules B → Aν . Of course, in the case ν = 1 the twisted transfer is
the same as the usual transfer TrG : L→ LG. The map L×L→ Kν , (a, b) 7→ TrGν (ab) is
K-bilinear; by Lemma 5.11 we have Kν

∼= K and we now prove that the above bilinear
form is non-degenerate. G is linearly independent as a subset of the L-vector space of all
maps L → L, see Lang [39, Chapter VI, Theorem 4.1]. So TrGν 6= 0 as it is a nontrivial
linear combination of the elements of G and therefore also for every a ∈ L\{0} we have
TrGν (aL) 6= 0. Hence indeed the above bilinear form is non-degenerate, so it induces an
isomorphism of K-vector spaces

L→ HomK(L,Kν), a 7→ (b 7→ TrGν (ab)).

If we make HomK(L,Kν) into an L-vectorspace by setting (aα)(b) = α(ab) for α ∈
HomK(L,K) and a, b ∈ L then this also becomes an isomorphism of L-vector spaces.
Since (A\{0})−1B = L, every homomorphism of A-modules B → Aν extends uniquely
to a K-linear homomorphism L→ Kν , so we can view HomA(B,Aν) as a B-submodule
of HomK(L,Kν). We de�ne an action of the group G on HomA(B,Aν) as follows: for
σ ∈ G,α ∈ HomA(B,Aν), b ∈ B we set σ(α)(b) := σ(α(σ−1(b))). Now we make the
following de�nition:
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De�nition 7.17. We de�ne the twisted inverse di�erent as the module D−1B/A,ν := {b ∈
Quot(B)|TrGν (bB) ⊆ Aν}.

In the case ν = 1 the twisted inverse di�erent is simply called the inverse di�erent and
written as D−1B/A.

Lemma 7.18. Let ν : G→ R× be a character. Then the map

Φ : D−1B/A,ν → HomA(B,Aν), a 7→ (b 7→ TrGν (ab))

is an isomorphism of B-modules compatible with the G-action.

Proof. The fact that Φ is an isomorphism follows from the discussion preceding the
de�nition of the twisted inverse di�erent. Now let σ ∈ G, a ∈ D−1B/A,ν , b ∈ B. Then we
have

Φ(σ(a))(b) = TrGν (σ(a)b) =
∑
τ∈G

ν(τ−1)τ(σ(aσ−1(b))) =
∑
τ∈G

ν(σ)ν((τσ)−1)(τσ)(aσ−1(b))

= ν(σ)TrGν (aσ−1(b)) = σ(TrGν (aσ−1(b))) = σ(Φ(a)(σ−1(b))) = σ(Φ(a))(b)

where for the �fth equality we use that TrGν (B) ⊆ Aν . This implies Φ(σ(a)) = σ(Φ(a)).

The twisted inverse di�erent is a fractional ideal of B, so we can consider its inverse.

De�nition 7.19. We de�ne the twisted di�erent as DB/A,ν := (D−1B/A,ν)−1.

In the case ν = 1 the twisted di�erent is the usual Dedekind di�erent and written as
DB/A. Since B ⊆ D−1B/A,ν , the twisted di�erent is an integral ideal. The following lemma
follows immediately from the de�nitions.

Lemma 7.20. Let U ⊆ A\{0} be a multiplicatively closed subset. Then D−1
U−1B/U−1A,ν

=

U−1D−1B/A,ν and DU−1B/U−1A,ν = U−1DB/A,ν .

The next lemma gives a further important property of D−1B/A,ν and DB/A,ν .

Lemma 7.21. The twisted inverse di�erent D−1B/A,ν and the twisted di�erent DB/A,ν are
divisorial fractional ideals of B.

Proof. The twisted inverse di�erent is a re�exive A-module by Lemmas 7.18, 5.11, and
5.4b), so it is a re�exive B-module by Lemma 5.5. The twisted di�erent is divisorial by
Remark 5.7.

Since D−1B/A,ν is divisorial, by Remark 5.7 D−1B/A,ν is really the inverse of DB/A,ν .

Lemma 7.22. Let C be a Noetherian normal domain, G ⊆ Aut(C) a �nite subgroup
and N ⊆ G a normal subgroup. Assume that A := SG and B := SN are again
Noetherian. Then for every character ν : G → A× which is trivial on N we have
DC/A,ν = DC/BDB/A,ν . Here DC/BDB/A,ν denotes the re�exive closure of DC/BDB/A,ν
as a C-module.
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Proof. By Remark 5.7 and Lemma 7.21 this follows if we proveD−1C/A,ν = (DC/BDB/A,ν)−1.
For this, let a ∈ Quot(C); then we have

a ∈ D−1C/A,ν ⇔ TrGν (aC) ⊆ Aν ⇔ TrG/Nν (TrN (aC)) ⊆ Aν

⇔ TrG/Nν (B · TrN (aC)) ⊆ Aν ⇔ TrN (aC) ⊆ D−1B/A,ν
⇔ TrN (aDB/A,νC) ⊆ B ⇔ aDB/A,ν ⊆ D−1C/B
⇔ aDC/BDB/A,ν ⊆ C ⇔ a ∈ (DC/BDB/A,ν)−1.

Remark 7.23. Let A, B, and C be as above and let P ∈ X(1)(C) and p := P ∩B. Then
Lemma 7.22 and Proposition 5.9 imply that

vP(DC/A,ν) = vP(DC/B,ν) + vP(DB/A,νC) = vP(DC/B,ν) + e(P, p)vp(DB/A,ν).

Here vP and vp as usual denote the discrete valuations corresponding to the valuation
rings CP and Bp.

We end this section by giving some important properties of the Dedekind di�erent
which we will also need in the next section and which relate the Dedekind di�erent to
the material on rami�cation from Section 2.2.

Proposition 7.24. (see Benson, [4, Theorem 3.10.2]) Let q ∈ X(1)(B) and p := q ∩ A.
Then we have e(q, p) > 1 if and only if DB/A ⊆ q; here e(q, p) is the rami�cation index
of q over p.

We can now prove a further proposition, which relates the Dedekind di�erent to the
notion of pseudore�ections.

Proposition 7.25. Let F be a �eld, let S := F [x1, . . . , xn] be the polynomial ring in n
variables over F , and let G ⊆ Gln(F ) be a �nite group; as usual we view the elements of
G as automorphisms of S. Let N ⊆ G be the subgroup generated by all pseudore�ections.
Then DSN/SG = (1).

Proof. Let P ∈ X(1)(SN ). Since SN ⊆ S is an integral extension, there is a Q ∈ X(1)(S)
such that P = Q ∩ SN . By Proposition 2.16, Gi(Q) ⊆ N and hence SN ⊆ SG

i(Q). By
Lemma 2.11 and Lemma 2.10 we have e(Q ∩ SGi(Q),P ∩ SG) = 1, so e(P,P ∩ SG) = 1
by Lemma 2.8 and hence DSN/SG 6⊆ P by Proposition 7.24, so vP(DSN/SG) = 0; this
implies div(DSN/SG) = 0. Since DSN/SG is divisorial, we thus have DSN/SG = (1) by
Proposition 5.9.

7.4 The di�erential character and Broer's theorem

In this section we formulate Broer's [8] generalization of Theorem 2.21 to groups which
may contain pseudore�ections. The main goal of this chapter is then to generalize this
further to arithmetic invariants.
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For the statement of Broer's theorem we need the notion of the di�erential character,
see Broer [8, Section 2.1]. Let R be a Noetherian factorial domain, S := R[x1, . . . , xn],
and G ⊆ Gln(R) a �nite group. We need the following lemma:

Lemma 7.26. With the notation as above, the Dedekind di�erent DS/SG is a principal
ideal in S.

Proof. By Lemma 7.21 DS/SG is a divisorial ideal in S. Since we assumed R to be
factorial, S is also factorial, so Cl(S) = {0} by Theorem 5.14. But this implies that
every divisorial ideal in S is principal, so the lemma follows.

Let θ ∈ S be a generator of DS/SG . Since DS/SG is invariant under the action of G, for
every σ ∈ G we obtain that σ(θ) also generates DS/SG and hence σ(θ) = χ(σ)θ for some
χ(σ) ∈ S× = R×. The map χ : G→ R× is a group homomorphism which is independent
of the choice of θ.

De�nition 7.27. The character χ : G → R× de�ned above is called the di�erential
character of G.

The following result is implicitly used several times in Broer's article [8].

Proposition 7.28. Let R, S, and G be as above and let χ be the di�erential character
of G. If G is a pseudore�ection group, then χ = det.

Since Broer does not give a proof for this proposition, for convenience we prove it here.
We need the following lemma for the �eld case which is proven in [8, Lemma 5]. Formally
this lemma is a consequence of Broer's main theorem which we state below; however, as
it is used in the proof of that theorem in [8], it should really be stated separately.

Lemma 7.29. Let K be a �eld, S := K[x1, . . . , xn], and G ⊆ Gln(R) a �nite group. Let
F ⊆ SG be a graded K-subalgebra which is Gorenstein such that SG is �nitely generated as
an F-module. Then ∗HomF (S,F(m)) ∼= S for some m ∈ Z as a graded S-module and for
a generator α of ∗HomF (S,F(m)) we have σ(α) = det(σ)−1α for all σ ∈ Gln(K). Here
the G-action on ∗HomF (S,F(m)) is de�ned in the same way as before De�nition 7.17.

Note that in the situation of the lemma ∗HomF (S,F(m)) is a graded canonical module
of S for some m ∈ N, so the �rst part of the lemma follows from Proposition 7.15.

Proof of Proposition 7.28. Let θ be a generator of DS/SG . With K := Quot(R) and
SK := S ⊗R K we obtain from Lemma 7.20 that θ also generates DSK/S

G
K
, so we may

assume that R is a �eld.
Let σ ∈ G be a pseudore�ection. If σ is a transvection, then ord(σ) = charR =: p

and hence we have χ(σ)p = 1 ∈ R. In a �eld of characteristic p, this is only possible if
χ(σ) = 1 and by the same argument we get det(σ) = 1.
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So from now on we assume that σ is diagonalizable; hence there is a basis B of Rn

with respect to which σ is given by a matrix of the form
λ 0 . . . 0

0 1
. . .

...
...

. . . . . . 0
0 . . . 0 1

 .

Let B∗ = {f1, . . . , fn} be the dual basis of (Rn)∗ ⊆ S. Then with H := 〈σ〉 ⊆ G we

obtain SH = R[f
|H|
1 , f2, . . . , fn]; since we assumed that R is a �eld, this follows from

Lemma 4.3. Let θ1 be a generator of DS/SH , which is principal by Lemma 7.26. Then 1
θ1

generates D−1
S/SH and SH is isomorphic to a polynomial ring over R by the above, hence

Gorenstein. By Lemma 7.18 we have D−1
S/SH

∼= HomSH (S, SH); therefore by Lemmas

7.29 and 2.39 we have σ(θ1) = det(σ)θ1. Since SH is isomorphic to a polynomial ring,
it is factorial, so DSH/SG is a principal ideal; let θ2 be a generator. Since θ2 ∈ SH we
have σ(θ2) = θ2. Now Lemma 7.22 implies that θ1θ2 is a generator of DS/SG . We have
σ(θ1θ2) = σ(θ1)σ(θ2) = det(σ)θ1θ2 and hence χ(σ) = det(σ). As G is generated by
pseudore�ections, this �nishes the proof.

In Broer's article [8] the de�nition of the di�erential character appears only in the case
that R is a �eld. For this case we can now state Broer's theorem on the quasi-Gorenstein
property of rings of invariants.

Theorem 7.30. (Broer [8]) Let K be a �eld, S := K[x1, . . . , xn], and let G ⊆ Gln(K)
be a �nite group. Then the ring of invariants SG is quasi-Gorenstein if and only if the
di�erential character χ : G→ K× is equal to the determinant.

Assume that G does not contain any pseudore�ections. Then by Proposition 7.25 we
obtain DS/SG = (1) and hence χ = 1. In this case Broer's theorem states that SG is
quasi-Gorenstein if and only if det|G = 1, so we get back Theorem 2.21 as a special case.

7.5 Systems of parameters

An important object in Broer's discussion of the quasi-Gorenstein property and also in
invariant theory in general is a homogeneous system of parameters. In this section we
prove a general existence theorem for such systems of parameters. This is basically a
reformulation of recent results in algebraic geometry.

De�nition 7.31. Let R be a ring and let S be a �nitely generated graded R-algebra. A ho-
mogeneous system of parameters in S is a sequence of homogeneous elements f1, . . . , fm ∈
S which are algebraically independent over R such that S is �nitely generated as a module
over R[f1, . . . , fm].

60



7.5 Systems of parameters

The importance of systems of parameters for us comes from the following: let R
and S be as in the de�nition; the object we are interested in is the graded canonical
module of S. In order to apply Theorem 7.12 we need a graded R-algebra F which is
Cohen-Macaulay and for which we know the graded canonical module together with a
�nite homogeneous homomorphism F → S. If R is Gorenstein, we can try to take F
to be a polynomial ring over R; then F is again Gorenstein, so the graded canonical
module of F is just F(m) for some m ∈ Z. This is always possible: since S is �nitely
generated as an R-algebra, we can always �nd a surjective homogeneous homomorphism
F1 := R[x1, . . . , xs] → S for some s ∈ N with suitable choices for the degrees of the xi.
However, the description of the canonical module of S given in Theorem 7.12 becomes
particularly simple if dimF = dimS and we cannot expect this to happen with F = F1.
On the other hand, if S contains a homogeneous system of parameters f1, . . . , fm and we
set F2 := R[f1, . . . , fm], then the inclusion F2 → S certainly has the desired properties
and we have dimF2 = dimS because S is then �nitely generated as an F2-module.
If R is a �eld then every �nitely generated graded R-algebra has a system of parameters

by the Noether normalization lemma, see Derksen and Kemper [16, Corollary 2.5.8]. But
Noether normalization is not available over rings, so we cannot use this here. In the case
R = Z, recent work of Bruce and Erman [10, Corollary 7.5] provides the following result:

Theorem 7.32. Let S be a graded ring which is �nitely generated as an algebra over
S0 = Z. Assume that there exists a d ∈ N such that dim(S ⊗Z Fp) = d for all primes
p ∈ Z. Then there exist homogeneous elements f1, . . . , fd ∈ S such that Z[f1, . . . , fd] ⊆ S
is a �nite extension.

We now want to prove a similar result for more general base rings. Theorem 7.32
appears in [10] as a corollary of a geometric result ([10, Corollary 1.3]). This geometric
result has been proved over more general rings independently by Gabber et al. [21] and
Chinburg et al. [13]; in order to state their result, we need the following de�nition.

De�nition 7.33. (Gabber et al. [21, De�nition 0.3]) A ring R is called a pictorsion ring
if for every R-algebra R′ which is �nitely generated as an R-module the Picard group
Pic(R′) is a torsion group.

We are mainly interested in the case where R is local and local rings are always
pictorsion; nevertheless, systems of parameters may also be interesting in their own
right, so we give some more examples of pictorsion rings.

Example 7.34.
(a) Every semilocal ring is a pictorsion ring; this is mentioned in [21] right after the

de�nition of a pictorsion ring.
(b) The ring of integers in a number �eld is always a pictorsion ring; this follows from

[21, Lemma 8.10(2)].
(c) The next example shows that a Dedekind domain with �nite ideal class group need

not be pictorsion; recall that the Picard group of a Dedekind domain is isomorphic
to its ideal class group. Let E/Q be an elliptic curve of rank greater than zero.
Then the a�ne coordinate ring R = Q[E] is �nitely generated as a module over the
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polyomial ring Q[x] and the Picard group of E is isomorphic to E with the usual
group structure of an elliptic curve; by assumption, this is not a torsion group. Hence
Q[x] is not pictorsion.

(d) On the other hand, for a prime number p let Fp be an algebraic closure of the �nite
�eld Fp. Then Fp[x] is pictorsion, see [21, Example 8.15].

Theorem 7.35. (Gabber et al. [21, Theorem 8.1]) Let R be a pictorsion ring, let X be
a scheme, and let g : X → Spec(R) be a projective morphism of schemes. Assume that
there exists a d ∈ N such that dimXs = d for every s ∈ Spec(R) where Xs denotes the
�ber of g at s. Then there is a �nite surjective R-morphism r : X → PdR.

Remark 7.36. The proof of Theorem 7.35 given in [21] shows that in fact the following
more precise statement holds: let R, X, and g be as in the theorem. For simplicity, we
assume that R is Noetherian and g is of �nite type. Since g is projective, we can view X
as a closed subscheme of P := PnR for some n ∈ N. Then there are an integer m ∈ N and
global sections f1, . . . , fd ∈ Γ(P,OP (m)) which induce a morphism r̂ : P → Pd−1R such
that r := r̂|X is a �nite surjective morphism X → Pd−1R .

Now we can prove the desired generalization of Theorem 7.32. For simplicity, we only
consider the case where S is an integral domain.

Corollary 7.37. Let R be a Noetherian pictorsion ring and let S be a �nitely generated
graded R-algebra which is an integral domain. Assume that there exists a number d ∈ N
such that for all p ∈ Spec(R) we have dim(S ⊗R Quot(R/p)) = d. Then S contains a
homogeneous system of parameters consisting of d elements.

The following proof is basically the same as the proof of Theorem 7.32 given in [10].

Proof. Let f1, . . . , fn ∈ S be homogemeous elements which generate S as an R-algebra;
the case n = 0 is clear, so we may assume n > 0. We de�ne e := lcm(deg(f1), . . . ,deg(fn))

and f ′i := f
e

deg(fi)

i . Then deg(f ′i) = e for each i and S is integral over S′ := R[f ′1, . . . , f
′
n].

We can change the grading on S′ in such a way that each f ′i is of degree one and therefore
we get a closed immersion ι : X := ProjS′ → P := Pn−1R (see Hartshorne [27, Chapter II,
Exercise 3.12]). Moreover, there is a canonical projective morphism g : X → Spec(R) (see
[27, Chapter II, Example 4.8.1]); by assumption all �bers of g are of dimension d−1. Then
by Remark 7.36 there arem ∈ N and h1, . . . , hd ∈ Γ(P,OP (m)) which induce a morphism
r̂ : P → Pd−1R such that r := r̂|X is a �nite surjective morphism X → Pd−1R ; hence with
Pd−1R = Proj(R[z1, . . . , zd]) we have hi = r̂∗(zi). We set h′i := ι∗(hi) = (r̂ ◦ ι)∗(zi) =
r∗(zi); then r is induced by h′1, . . . , h

′
d ∈ Γ(X, ι∗(OP (m))) = Γ(X,OX(m)) ∼= S′m (see

[27, Chapter II, Propositions 5.12 and 5.15]). Since S′ is an integral domain it is the
homogeneous coordinate ring ofX, so r induces a ring homomorphism R[x1, . . . , xd]→ S′

mapping xi to h′i such that S′ is a �nitely generated R[x1, . . . , xd]-module. Hence S′ and
thus also S is a �nitely generated R[h′1, . . . , h

′
d]-module. Then also S ⊗R Quot(R) is

a �nitely generated Quot(R)[h′1, . . . , h
′
d]-module and hence dim(Quot(R)[h′1, . . . , h

′
d]) =

dim(S⊗RQuot(R)) = d by assumption. This shows that h′1, . . . , h
′
d indeed form a system

of parameters.
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In the special case where S is a ring of invariants we obtain the following result:

Corollary 7.38. Let R be a Noetherian pictorsion ring which is an integral domain, S :=
R[x1, . . . , xn] and let G ⊆ Gln(R) be a �nite group. Then SG contains a homogeneous
system of parameters consisting of n elements.

Proof. Since R is Noetherian, SG is a �nitely generated R-algebra. By Corollary 7.37
the only thing we need to show is that for every p ∈ Spec(R) we have dim(SG ⊗R
Quot(R/p)) = n. We can view SG ⊗R Quot(R/p) as a subring of (S ⊗R Quot(R/p))G =
Quot(R/p)[x1, . . . , xn]G; the latter is of dimension n, so it is su�cient to prove that
SG ⊗R Quot(R/p) ⊆ Quot(R/p)[x1, . . . , xn]G is an integral extension. For this let f ∈
Quot(R/p)[x1, . . . , xn]G and choose a ∈ (R/p)\{0} such that af ∈ (R/p)[x1, . . . , xn]G.
Then there is a g ∈ S such that af is obtained from g be reducing all coe�cients modulo
p. We de�ne h :=

∏
σ∈G σ(g) ∈ SG. Since f is already invariant, reducing the coe�cients

of h modulo p just gives (af)|G|. So f |G| = 1
a|G|

(af)|G| ∈ SG ⊗R Quot(R/p) and hence f

is integral over SG ⊗R Quot(R/p).

At this point, we can already give a �rst application in invariant theory:

Theorem 7.39. Let R be a Dedekind domain, m ⊂ R a maximal ideal, and F := R/m.
Furthermore, let G ⊆ Gln(R) be a �nite group such that |G| /∈ m and R[x1, . . . , xn]G is
quasi-Gorenstein. Then F [x1, . . . , xn]G is a Gorenstein ring.

Proof. Since F ∼= Rm/mm, we may restrict ourselves to the case where R is local with
maximal ideal m and hence a discrete valuation ring, so m =: (p) is a principal ideal; then
|G| is invertible in R and in F . We de�ne S := R[x1, . . . , xn] and SF := F [x1, . . . , xn];
by Theorems 2.20 and 3.14, SGF and SG are Cohen-Macaulay. By Corollary 7.38, there
is a homogeneous system of parameters f1, . . . , fn in SG; we de�ne F := R[f1, . . . , fn].
Let q ⊂ SG be a prime ideal and set p := q ∩ F . Since F ⊆ SG is a �nite extension,
we have dim(Fp) = dim(SGq ) and dim(SGq /pS

G
q ) = 0. Furthermore, F is regular and SG

is Cohen-Macaulay, so SGq is a �at Fp-module (see Matsumura [41, Theorem 23.1]) and
hence SG is a �at F-module (see [41, Theorem 7.1]). Since SG is a �nitely generated
module over the Noetherian ring F , it is therefore projective and hence free since it is
a graded F-module and F is ∗local (see Bruns and Herzog [11, Proposition 1.5.15(d)]).
Let g1, . . . , gm be a basis of SG as an F-module. For a polynomial f ∈ S let f denote
the class of f in SF ; we write FF := F [f1, . . . , fn] ∼= F ⊗R F . Since the projection map
SG → SGF is surjective by Lemma 3.4, SGF is generated by g1, . . . , gm as an FF -module;
in particular, f1, . . . , fn form a system of parameters in SGF .
Since we already know that SGF is Cohen-Macaulay, we need to show that it is quasi-

Gorenstein. By Theorem 7.12 we obtain that HomFF
(SGF ,FF (m)) is a graded canonical

module of SGF for some m ∈ Z, so by Proposition 7.15 it is su�cient to prove that
HomFF

(SGF ,FF ) ∼= SGF as a non-graded SGF -module. We prove that HomFF
(SGF ,FF ) ∼=

HomF (SG,F) ⊗SG SGF . Then the claim follows since HomF (SG,F(m′)) is a graded
canonical module of SG for some m′ ∈ Z and SG is quasi-Gorenstein by assumption.
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We have a canonical homomorphism of SG-modules

ψ : HomF (SG,F)⊗SG SGF → HomFF
(SGF ,FF )

given by ψ(β ⊗ s)(t) := β(st) for all β ∈ HomF (SG,F) and s, t ∈ SG. Every element of
HomF (SG,F)⊗SG SGF is of the form β ⊗ 1 for some β ∈ HomF (SG,F). If ψ(β ⊗ 1) = 0,
this means that β(f) = 0 for all f ∈ SG, so every β(f) is divisible by p; hence β is
divisible by p in HomF (SG,F), so β ⊗ 1 = 0. This shows that ψ is injective. Now let
α ∈ HomFF

(SGF ,FF ) and write α(gi) = hi for all i = 1, . . . ,m with hi ∈ F . Since SG is
a free F-module with basis g1, . . . , gm, we can de�ne a β ∈ HomF (SG,F) via β(gi) = hi.
Then ψ(β ⊗ 1) = α, so ψ is also surjective.

7.6 The canonical module of a ring of invariants over a local
ring

In this section let R always be a local domain which is Gorenstein and factorial and let
S := R[x1, . . . , xn]. As usual, we set K := Quot(R) and SK := S ⊗R K. Moreover we
�x a �nite subgroup G ⊆ Gln(R). The goal of this section is to compute the graded
canonical module of SG. This has been done by Broer [8] in the case where R is a �eld
and we mainly follow his approach here. We start with the following technical lemma:

Lemma 7.40. Let A ⊆ SG be a normal graded R-subalgebra of SG such that SG is a
�nitely generated A-module and let p ∈ X(1)(A). Then (SG)p is a direct summand of Sp
as an Ap-module.

Proof. SG and hence also S are �nitely generated A-modules, so (SG)p and Sp are �nitely
generated Ap-modules. Furthermore, they are clearly torsion-free as Ap-modules. Since
A is normal and ht(p) = 1, Ap is a discrete valuation ring and in particular a principal
ideal domain. So Sp and (SG)p are �nitely generated free Ap-modules and hence there
exist a basis b1, . . . , bl of Sp as an Ap-module and α1, . . . , αk ∈ Ap (k ≤ l) such that
α1b1, . . . , αkbk is a basis of (SG)p. For 1 ≤ i ≤ k bi is G-invariant since αi and αibi
are G-invariant, so bi ∈ (Sp)

G = (SG)p (see Bourbaki [5, Chapter V, �1.9, Proposition
23]); hence we have bi ∈ 〈α1b1, . . . , αkbk〉Ap . Since b1, . . . , bk are linearly independent
over Ap, this implies αi ∈ A×p . Hence (SG)p = 〈b1, . . . , bk〉, so we have Sp = (SG)p ⊕
〈bk+1, . . . , bl〉.

Remark 7.41. In the special case where R is a �eld and A = SG the above lemma is
contained in the proof of [8, Lemma 3(i)]. However, Broer's proof of this seems to be
wrong: he considers the transfer TrG : Sp → (SG)p. Since (SG)p is a discrete valuation
ring, the image of this map is a principal ideal (a) in (SG)p. Now he claims that the map
1
aTrG is a projection map from Sp to (SG)p. But if |G| divides char(R), then TrG maps
every element of (SG)p to zero and hence the same is true for 1

aTrG, which therefore
cannot be a projection. The proof given above avoids this problem.
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By Corollary 7.38 there are homogeneous elements f1, . . . , fn ∈ SG which form a
homogeneous system of parameters; we de�ne F := R[f1, . . . , fn]. Then by Theorem 7.12
∗HomF (SG,F(m)) is the graded canonical module of the graded ring SG for somem ∈ Z.
In the following we will ignore the grading on this module; we can do this as we are only
interested in the quasi-Gorenstein property of SG and therefore by Proposition 7.15 we
only need to check when the graded canonical module is free of rank one and this does
not depend on the grading. So we want to �nd an easy description of the SG-module
HomF (SG,F(m)) ∼= HomF (SG,F), see Lemma 2.39. Here we de�ne the SG-module
structure on HomF (SG,F) in the usual way: for a, b ∈ SG and α ∈ HomF (SG,F) we
set (aα)(b) := α(ab). Now let ι : SG → S be the inclusion and let ι∗ : HomF (S,F) →
HomF (SG,F) be its dual map. Then ι∗ is a homomorphism of SG-modules.

Lemma 7.42. We have HomF (SG,F) = im(ι∗) where im(ι∗) denotes the re�exive clo-
sure of im(ι∗) as an SG-module.

Proof. By Lemma 5.2 we have

im(ι∗) =
⋂

q∈X(1)(SG)

(im(ι∗))q.

For every q ∈ X(1)(SG) we have (im(ι∗))q = im(ι∗q) where ι∗q denotes the localized
map HomF (S,F)q → HomF (SG,F)q. We claim that ι∗q is surjective. Let p := F ∩ q.
Then (SG)p is a direct summand of Sp as an Fp-module by Lemma 7.40, so the induced
map HomFp(Sp,Fp) → HomFp(SGp ,Fp) is surjective. This implies that the map ι∗p :

HomF (S,F)p → HomF (SG,F)p is also surjective (see Eisenbud [17, Proposition 2.10]).
This is in fact a homomorphism of (SG)p = (F\p)−1SG-modules, so localizing it at the
prime ideal (F\p)−1q gives the claimed surjectivity of ι∗q. So we have proved:

im(ι∗) =
⋂

q∈X(1)(SG)

im(ι∗q) =
⋂

q∈X(1)(SG)

HomF (SG,F)q = HomF (SG,F),

where the last step again follows from Lemma 5.2. But HomF (SG,F) is re�exive as
an F-module by Lemma 5.4b) and hence also as an SG-module by Lemma 5.5, so the
statement follows.

Using the twisted transfer introduced in the previous section, we can formulate the
next lemma:

Lemma 7.43. Let ι∗ : HomF (S,F) → HomF (SG,F) be as above. Then im(ι∗) ∼=
im(TrGdet) as SG-modules.

For the proof of this we also need the usual transfer TrG : S → SG and its dual map
(TrG)∗ : HomF (SG,F) → HomF (S,F) for which we have the following result due to
Broer:

Lemma 7.44. (Broer) (TrG)∗ : HomF (SG,F)→ HomF (S,F) is injective.
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This result apparently appeared �rst in a preprint by Broer which does not seem to be
publicly available and the only other reference for it I am aware of is the �rst edition of
Derksen's and Kemper's book [15, Lemma 3.9.7]. So for convenience I include the proof
taken from that book here.

Proof of Lemma 7.44. We have Quot(SG) = Quot(S)G, so Quot(S)/Quot(SG) is a Ga-
lois extension with Galois group G. We can extend TrG to the trace map Quot(S) →
Quot(S)G = Quot(SG). Since Quot(S)/Quot(SG) is separable, TrG : Quot(S) →
Quot(SG) is surjective, see Lang [39, Chapter VI, Theorem 5.2], and hence there are
f, g ∈ S, g 6= 0 such that TrG(fg ) = 1. Since F ⊆ S is an integral extension, we have

Quot(S) = (F\{0})−1S, so we may assume that g ∈ F . Then we have 1 = 1
gTrG(f) since

g ∈ F ⊆ SG and hence g = TrG(f). Now let ϕ ∈ HomF (SG,F) such that (TrG)∗(ϕ) = 0.
Then for every h ∈ SG we have

0 = (TrG)∗(ϕ)(fh) = ϕ(TrG(fh)) = ϕ(hTrG(f)) = ϕ(hg) = gϕ(h).

Since g 6= 0, this implies ϕ = 0 and hence (TrG)∗ is indeed injective.

Proof of Lemma 7.43. Since (TrG)∗ is injective by Lemma 7.44, we have im(ι∗) ∼= im((TrG)∗◦
ι∗) and we now compute the image of (TrG)∗ ◦ ι∗ : HomF (S,F) → HomF (S,F).
Here HomF (S,F) is the graded canonical module of S except that we ignore the grad-
ing by Theorem 7.12 and S = R[x1, . . . , xn] is Gorenstein since R is Gorenstein, so
HomF (S,F) ∼= S by Proposition 7.15. Let φ ∈ HomF (S,F) be a generator. Then the
way we de�ned the S-module structure on HomF (S,F) shows that every element of
HomF (S,F) is of the form g 7→ φ(fg) for some f ∈ S. Following Broer, we write φ ◦ f
for this map. Then we have for all f, f ′ ∈ S:

(TrG)∗(ι∗(φ ◦ f))(f ′) = ((φ ◦ f) ◦ ι ◦ TrG)(f ′) = (φ ◦ f)(TrG(f ′))

= φ(fTrG(f ′)) = φ(f(
∑
σ∈G

σf ′)) =
∑
σ∈G

φ(f · σf ′).

Using the G-action on HomF (S,F) as de�ned before De�nition 7.17 and the fact that
F ⊆ SG we have∑

σ∈G
φ(f · σf ′) =

∑
σ∈G

(σ−1φ)(σ−1(f · σf ′)) =
∑
σ∈G

(σ−1φ)(σ−1f · f ′).

But we know what σ−1φ is: we set FK := F⊗RK; then φ also generates HomF (S,F)⊗R
K ∼= HomFK

(SK ,FK) and thus σ−1φ = det(σ) · φ by Lemma 7.29. So with the above
calculations we obtain

(TrG)∗(ι∗(φ ◦ f))(f ′) =
∑
σ∈G

φ(f · σf ′) =
∑
σ∈G

detσ · φ(σ−1f · f ′)

= φ

((∑
σ∈G

detσ · σ−1f

)
· f ′
)

= φ

((∑
σ∈G

detσ−1 · σf

)
· f ′
)

= φ(TrGdet(f) · f ′) = (φ ◦ TrGdet(f))(f ′).
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This proves that (TrG)∗(ι∗(φ ◦ f)) = φ ◦ TrGdet(f) for every f ∈ S and hence

im(ι∗) ∼= im((TrG)∗ ◦ ι∗) = {φ ◦ TrGdet(f)|f ∈ S}.

But HomF (S,F) is a free S-module generated by φ, so this is isomorphic to {TrGdet(f)|f ∈
S} = im(TrGdet).

So it remains to compute the re�exive closure of the image of the twisted transfer TrGdet :
S → SG. From now on let N be the subgroup of G generated by all pseudore�ections in
G. Instead of computing the image of TrGdet directly, we �rst consider the image of TrNdet.
This is the content of the next lemma. We use the Dedekind di�erent DS/SN which is a
principal ideal in S by Lemma 7.26.

Lemma 7.45. Let θN be a generator of DS/SN . Then we have im(TrNdet) = SN · θN .
Here im(TrNdet) denotes the re�exive closure of im(TrNdet) as an SN -module.

Proof. The inclusion ιN : SN → S induces a homomorphism of SN -modules ι∗N :
HomSN (S, SN ) → HomSN (SN , SN ). By Lemma 7.40 SNp is a direct summand of Sp
for every p ∈ X(1)(SN ) and hence as in the proof of Lemma 7.42 we get that (ι∗N )p :
HomSN (S, SN )p → HomSN (SN , SN )p is surjective. Together with Lemma 5.2 this im-
plies im(ι∗N ) = HomSN (SN , SN ).
We consider the natural isomorphism η : SN → HomSN (SN , SN ), a 7→ fa with fa(b) =

ab for all a, b ∈ SN . HomSN (S, SN ) is generated by φ : S → SN , x 7→ TrN ( x
θN

) as an

S-module (see Lemma 7.18). Thus for every α ∈ im(ι∗N ) ⊆ HomSN (SN , SN ) there is an
a ∈ S such that α(b) = φ(ab) = bφ(a) for all b ∈ SN , so im(ι∗N ) = {fφ(a)|a ∈ S} =

η(TrN ( 1
θN
S)). Since η is an isomorphism, we obtain

TrN
(

1

θN
S

)
= η−1(im(ι∗N )) = η−1(HomSN (SN , SN )) = SN .

Furthermore, Proposition 7.28 implies that σ(θN ) = det(σ) · θN for every σ ∈ G. From
this it follows that θN · TrN ( 1

θN
S) = TrNdet(S) and hence

im(TrNdet) = TrN
(

1

θN
S

)
· θN = SN · θN .

For the �nal step of the computation we need to study the image of the twisted
transfer Tr

G/N
ν : SN → SGν for a character ν : G/N → R×. This is the content of the

next proposition.

Proposition 7.46. Let ν : G/N → R× be a character. Then we have an isomorphism

of SG-modules Tr
G/N
ν (SN ) ∼= SGν . Here Tr

G/N
ν (SN ) is the re�exive closure of Tr

G/N
ν (SN )

as an SG-module.
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The proof needs some preparations:

Lemma 7.47. The Dedekind di�erent DSN/SG is a principal ideal in SN generated by
an element r of R.

Proof. By Corollary 6.6, SN is factorial. By Lemma 7.21, DSN/SG is a divisorial ideal
in SN , so it is indeed a principal ideal, say DSN/SG = (r): we need to show that r ∈ R.
By Lemma 7.20 we also have DSN

K/S
G
K

= (r), but DSN
K/S

G
K

= SNK , see Fleischmann and

Woodcock [18, Lemma 5.3]. So r ∈ (SNK )× ∩ SN = K× ∩ SN ⊆ R.
For convenience we also give a proof which is independent of [18]; however, it should

be said that really the strategy of this proof is the same as in [18]. As above we see that
DSN/SG is a principle ideal (r) in SN . Let p ∈ SN be a prime element which is not in
R; we need to show that p does not divide r or equivalently that v(p)(DSN/SG) = 0; here
again we use that SN is factorial by Corollary 6.6. Let q ∈ S be a prime divisor of p.
Then (q) ∩ SN = (p), so by Remark 7.23 we need to show v(q)(DS/SG) = v(q)(DS/SN ).
Let Gi((q)) := {σ ∈ G|(σ − id)(S) ⊆ (q)} be the inertia group of (q). Since p is prime,
p /∈ R, and q|p, we have q /∈ R. Hence q is prime in SK = K[x1, . . . , xn] and thus
Gi((q)) ⊆ N by Proposition 2.16. We have Gi((q) ∩ SGi(q)) = {id} by Lemma 2.11, so
e((q) ∩ SGi(q), (q) ∩ SG) = 1 by Lemma 2.10 and hence v

(q)∩SGi((q))(DSGi((q))/SG) = 0

by Proposition 7.24. By applying Remark 7.23 to the extensions SG ⊆ SG
i((q)) ⊆ S we

obtain v(q)(DS/SG) = v(q)(DS/SGi((q))). By replacing G by N and using that Gi((q)) ⊆ N
we obtain in the same way that v(q)(DS/SN ) = v(q)(DS/SGi((q))). Putting both equalities
together �nishes the proof.

Using Lemma 7.47 we can generalize it to the twisted di�erent.

Lemma 7.48. Let ν : G/N → R× be a character. Then DSN/SG,ν is a principal ideal in
SN generated by an element of R.

Proof. SN is factorial by Corollary 6.6; let θN and θN,ν be generators of the divisorial
and hence principal ideals DSN/SG and DSN/SG,ν , respectively. By Lemma 7.47 we have
θN ∈ R. We will show that there is an r ∈ K such that rθN = θN,ν ; then θN,ν ∈ R
follows since DSN/SG,ν is an integral ideal. We can also view ν as a character of G which
is trivial on N ; then we have DSK/S

G
K

= DSK/S
G
K ,ν

(see Broer [8, Proposition 10]; this
needs the assumption that ν is trivial on pseudore�ections). Let θ and θν be generators
of DS/SG and DS/SG,ν , respectively. Then by Lemma 7.20 we obtain r0θ = θν for some
r0 ∈ K.
Now let p ∈ SN be a prime element such that p /∈ R and let q ∈ S be a prime divisor

of p in S; since R ⊆ SN we also have q /∈ R. Let again v(p) and v(q) be the discrete
valuations corresponding to the valuation rings SN(p) and S(q), respectively. Since we have
seen above that θ and θν only di�er by factors in R we have v(q)(DS/SG) = v(q)(DS/SG,ν).
Using Remark 7.23 we obtain v(p)(DSN/SG) = v(p)(DSN/SG,ν). This shows that also θN
and θN,ν only di�er by factors in R, so the claim follows.
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By combining this with Lemma 7.18 we obtain:

Lemma 7.49. Let ν : G/N → R× be a character and let r ∈ R be a generator of

DSN/SG,ν . For every f ∈ SN , the map αf : SN → SGν , g 7→ Tr
G/N
ν (1rfg) = 1

rTr
G/N
ν (fg)

is a well-de�ned homomorphism of SG-modules and the map SN → HomSG(SN , SGν ), f 7→
αf is an isomorphism of SN -modules.

Using this we can �nally prove Proposition 7.46:

Proof of Proposition 7.46. Let r ∈ R be as in Lemma 7.49. Then Lemma 7.49 shows
that

ψ : HomSG(SN , SGν )→ TrG/Nν (SN ), α 7→ r · α(1)

is a well-de�ned and surjective homomorphism of SN -modules. The embedding ι̂ : SG →
SN induces a homomorphism of SG-modules

ι̂∗ : HomSG(SN , SGν )→ HomSG(SG, SGν ), α 7→ α|SG .

For α ∈ HomSG(SN , SGν ) we have

ψ(α) = 0 ⇐⇒ α(1) = 0 ⇐⇒ ∀f ∈ SG : α(f) = 0 ⇐⇒ ι̂∗(α) = 0,

so kerψ = ker ι̂∗. Hence ι̂∗ induces an injective homomorphism

ϕ : TrG/Nν (SN ) = imψ ∼= HomSG(SN , SGν )/ kerψ = HomSG(SN , SGν )/ ker ι̂∗

∼= imι̂∗ ↪→ HomSG(SG, SGν ) ∼= SGν .

Now let p ∈ X(1)(SG); as in Lemma 7.40 we obtain that (SG)p is a direct summand of
(SN )p and hence the localized map (ι̂∗)p is surjective, so ϕp is also surjective. As ϕ is

injective, this implies that we obtain an isomorphism of re�exive closures Tr
G/N
ν (SN ) ∼=

SGν by Lemma 5.2. By Lemma 5.11, SGν is re�exive, so the proposition follows.

Now we are ready to state the main result of this section:

Theorem 7.50. Let f1, . . . , fn be a system of parameters in SG and F := R[f1, . . . , fn].
Let furthermore χ be the di�erential character of G. Then we have HomF (SG,F) ∼=
SGdet/χ.

For the proof of this we need some more notation: let ν : G→ R× be a character and
let ν0 := ν|N . We want to de�ne a twisted transfer Tr

G/N
ν : SNν0 → SGν . If ν0 = 1, then

we can just view ν as a character G/N → R× and use the usual twisted transfer. In
general let σ1, . . . , σr be representatives of the cosets of N in G (N is a normal subgroup,

so we do not need to distinguish between left and right cosets). Then we de�ne Tr
G/N
ν

as follows:

TrG/Nν : SNν0 → SGν , f 7→
r∑
i=1

ν(σ−1i )σi(f).

It follows directly from the de�nition of SNν0 that this does not depend on the choice of

σ1, . . . , σr. It is clear that TrGν = Tr
G/N
ν ◦ TrNν0 .
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Proof of Theorem 7.50. By Lemmas 7.42 and 7.43 HomF (SG,F) is isomorphic to the
re�exive closure of im(TrGdet) as an S

G-module; hence by Lemma 5.3 it is isomorphic to

the re�exive closure of Tr
G/N
det (TrNdet(S)) where by Lemma 5.5 we may also take the inner

re�exive closure as an SN -module. By Lemma 7.45 we then obtain HomF (SG,F) ∼=
Tr

G/N
det (SN · θN ), where θN is a generator of DS/SN . As DSN/SG is generated by an

r ∈ R (see Lemma 7.47), DS/SG is generated by rθN (see Lemma 7.22), so rθN is a
χ-semiinvariant by the de�nition of the di�erenial character. Since r ∈ R ⊆ SG, θN is
also a χ-semiinvariant and hence with a set of representatives σ1, . . . , σr of the cosets of
N in G we have for f ∈ SN :

Tr
G/N
det (fθN ) =

r∑
i=1

det(σ−1i )σi(fθN ) =

r∑
i=1

det(σ−1i )σi(f)σi(θN )

=
r∑
i=1

det(σ−1i )σi(f)χ(σi)θN =

(
r∑
i=1

(det /χ)(σ−1i )σi(f)

)
θN

= Tr
G/N
det /χ(f) · θN ,

so we obtain Tr
G/N
det (SN · θN ) = Tr

G/N
det/χ(SN ) · θN . This is isomorphic to SGdet/χ by Propo-

sition 7.46; note that det /χ is trivial on N by Proposition 7.28.

7.7 The main result

In this section we use Theorem 7.50 to derive a criterion for the quasi-Gorenstein property
of arithmetic invariant rings. We begin by de�ning the class of rings we want to allow as
base rings; this is an ad hoc de�nition.

De�nition 7.51. We call a ring R an allowed base ring if it satis�es the following
conditions:
(i) R is Gorenstein,
(ii) R is an integral domain,
(iii) for every prime ideal p ⊂ R, the localization Rp is factorial,
(iv) for every maximal ideal m ⊂ R, we have ht(m) = dim(R).

The following properties of allowed base rings are immediate from the de�nition:

Lemma 7.52.

a) Every Dedekind domain is an allowed base ring.
b) Every allowed base ring is Noetherian, Cohen-Macaulay, and normal.
c) If R is an allowed base ring and p ⊂ R is a prime ideal, then Rp is again an allowed

base ring; in particular, Rp is factorial and Gorenstein.

The following proposition gives a criterion for a graded algebra over an allowed base
ring to be a quasi-Gorenstein ring.
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Proposition 7.53. Let R be an allowed base ring and let S be a �nitely generated graded
R-algebra which is an integral domain. Then the following statements are equivalent:
(i) S is quasi-Gorenstein.
(ii) For every prime ideal p ⊂ R the ring S ⊗R Rp is quasi-Gorenstein.
(iii) For every homogeneous surjective homomorphism T := R[x1, . . . , xm] → S of R-

algebras ExtrT (S, T ) is a projective S-module of rank 1 where r := dim(T )−dim(S).

For the proof we need two lemmas:

Lemma 7.54. Let R and S be as in the proposition, let M be a �nitely generated graded
S-module, and let p ⊂ R be a prime ideal such that there is a homogeneous isomorphism
M ⊗R Rp

∼= S ⊗R Rp. Then there is an f ∈ R\p such that M ⊗R Rf ∼= S ⊗R Rf . Here
Rf means the localization U−1R with U := {f i|i ∈ N0}.

In the special case S = R this is a classical result in commutative algebra, see Bourbaki
[5, Chapter II, �5.1, Prop. 2(ii)] and the proof given here reduces the general result to
this special case.

Proof. We write Sp := S ⊗R Rp and Mp := M ⊗R Rp. By assumption there is an a ∈M
which is homogeneous of degree zero such thatMp = (a)Sp . We consider the homogeneous
homomorphism ϕ : S → M, b 7→ ba. Then the induced homomorphism ϕp : Sp → Mp is
an isomorphism.
We choose a d ∈ N such that M is generated as an S-module by elements of degree at

most d. Since S is a �nitely generated graded R-algebra, the R-modules M̃ := M≤d and
S̃ := S≤d are �nitely generated. Since ϕ is homogeneous, it restricts to a homomorphism
ϕ̃ : S̃ → M̃ and ϕp restricts to an isomorphism S̃p → M̃p where S̃p := (Sp)≤d and
M̃p := (Mp)≤d. Since S̃ and M̃ are �nitely generated R-modules, we now get that there
is an f ∈ R\p such that the restriction ϕ̃f : S̃f → M̃f of the homomorphism Sf → Mf

induced by ϕ is an isomorphism (see Bourbaki [5, Chapter II, �5.1, Prop. 2 (ii)]) where
Sf := S ⊗R Rf , Mf := M ⊗R Rf , S̃f := (Sf )≤d, and M̃f := (Mf )≤d. We show that ϕf
is also an isomorphism.
First of all ϕf is certainly injective since we can view it as a restriction of ϕp which

is an isomorphism. By the choice of d there are elements m1, . . . ,ml ∈ M̃ such that
M = (m1, . . . ,ml)S . Since ϕ̃f is surjective, m1, . . . ,ml are in im(ϕ̃f ) ⊆ im(ϕf ) and
hence ϕf is surjective because m1, . . . ,ml generate M and therefore also Mf .

The second lemma we need is a stronger version of Lemma 2.33.

Lemma 7.55. Let R be an allowed base ring and let T be a �nitely generated graded R-
algebra which is an integral domain. Then for every homogeneous maximal ideal m ⊂ T
we have ht(m) = dim(T ).

Proof. We de�ne n := m∩R. Then n is a maximal ideal in R, so ht(n) = dim(R) because
R is an allowed base ring. Also R is universally catenary, see Bruns and Herzog [11,
Theorem 2.1.12], so T is catenary and hence there is a chain of prime ideals

(0) = P0 ( P1 ( . . . ( Pr−1 ( Pr = m
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with r = ht(m) and Pi = T+ for some index i; note that T+ ⊆ m by Lemma 2.29. We
have i = ht(T+) and r − i = ht(m/T+) = ht(n) = dim(R). This implies ht(m) = r =
ht(T+) + dim(R), so all homogeneous maximal ideals have the same height. Now the
lemma follows from Lemma 2.33.

Proof of Proposition 7.53. It is clear that (i) implies (ii). Now we assume that (ii) holds
and �x a T as in (iii). We write M := ∗ExtrT (S, T ); this is isomorphic to ExtrT (S, T ) by
Lemma 2.39. Let p ⊂ R be a prime ideal. T ⊗R Rp is Gorenstein, so M(m) ⊗R Rp is
the graded canonical module of S ⊗R Rp for some m ∈ Z; hence there is a homogeneous
isomorphism M(m) ⊗R Rp

∼= S ⊗R Rp by Proposition 7.15 because S ⊗R Rp is quasi-
Gorenstein. By Lemma 7.54 there is an f ∈ R\p such that M(m) ⊗R Rf ∼= S ⊗R Rf .
Since this holds for every prime ideal p and R is Noetherian, there are f1, . . . , fs ∈ R
such that (f1, . . . , fs)R = R and M ⊗R Rfi ∼= S ⊗R Rfi as ungraded S ⊗R Rf -modules
for each i. This implies that M is a projective S-module, see Bourbaki [5, Chapter II,
�5.2, Theorem 1]. Finally M ⊗R Rp

∼= S ⊗R Rp implies that M ⊗R Rp is of rank one and
hence the same holds for M . So we proved that (ii) implies (iii).
It remains to prove that (iii) implies (i). The argument for this is similar to the proof

of Proposition 7.14. Fix a T as in (iii), let again M := ∗ExtrT (S, T ) ∼= ExtrT (S, T ) and
let m ⊂ S be a maximal ideal. Then Mm is a projective Sm-module of rank one and
hence Mm

∼= Sm since projective modules over local rings are free. So it is su�cient to
prove that Mm is the canonical module of Sm. Let g be the given map T → S and let
n := g−1(m). As in the proof of Proposition 7.14 we have Mm

∼= ExtTn(Sm, Tn) and g
induces a surjective homomorphism Tn → Sm. So by Theorem 7.4 it su�ces to show
that r = dim(Tn) − dim(Sm). For this again we use the same argument as in the proof
of Proposition 7.14; we only need to replace Lemma 2.33 by Lemma 7.55.

By putting all the major results on the quasi-Gorenstein property we have obtained
so far together, we obtain the follwing theorem, which is the main result of this chapter:

Theorem 7.56. Let R be an allowed base ring, S := R[x1, . . . , xn], and let G ⊆ Gln(R)
be a �nite group. Then the following statements are equivalent:
(i) SG is quasi-Gorenstein.
(ii) (S ⊗R Rp)

G is quasi-Gorenstein for every prime ideal p ⊂ R.
(iii) (S ⊗R Quot(R))G is quasi-Gorenstein.
(iv) The di�erential character G→ R× is equal to the determinant.
(v) For every prime ideal p ⊂ R we have ∗K(S⊗RRp)G

∼= (S ⊗R Rp)
G.

Proof. Using Proposition 3.2 we get (S⊗RRp)
G ∼= SG⊗RRp for every prime ideal p ⊂ R.

Now the equivalence of (i) and (ii) is Proposition 7.53 and (iii) is the special case p = (0)
in (ii). The equivalence of (iii) and (iv) is Broer's Theorem 7.30 and (iv) implies (v) by
Theorem 7.50 and Theorem 7.12. Finally (v) implies (ii) by Proposition 7.15

In the case where |G| is invertible in R we can give a criterion for SG to be a Gorenstein
ring.
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7.7 The main result

Corollary 7.57. Let R, S, and G be as in Theorem 7.56 and assume that |G| is invertible
in R. Then SG is Gorenstein if and only if (S ⊗R Quot(R))G is Gorenstein.

Proof. Since a ring is Gorenstein if and only if it is quasi-Gorenstein and Cohen-Macaulay,
this follows from Theorem 3.14 and Theorem 7.56.

Example 3.13 shows that the assumption that |G| is invertible cannot be omitted in
Corollary 7.57. Since in that example (S(n) ⊗R Q)G is Gorenstein, (S(n))G is quasi-
Gorenstein by Theorem 7.56, so this also gives an example of a ring of invariants which
is quasi-Gorenstein but not Gorenstein.
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8 Invariants of point stabilizers

An important observation in invariant theory over a �eld K is that many properties of
a ring of invariants imply the same property for the ring of invariants of the stabilizer
subgroup of a point y ∈ Kn. Kemper [34] identi�es a general class of properties, which
he calls �local properties�, for which this is always true. In this chapter, we prove similar
results over rings; however, in oder to carry over Kemper's approach we need a more
restrictive de�nition of a local property and also our proofs only work under some condi-
tion on the point y. In Section 8.1 we recall some results on étale morphisms of schemes
which we need for the proof of the main result. Then in Section 8.2 we introduce the no-
tion of a local property in the way we need it and give some examples of such properties.
Section 8.3 contains the main results on invariant rings of stabilizer subgroups.

8.1 Étale Morphisms

In this section we brie�y summarize the de�nition and some basic properties of étale
morphisms; for proofs and more details, we refer to the book by Milne [42]. For simplicity,
we assume in the following that all our schemes are Noetherian.

De�nition 8.1. Let X and Y be schemes and let f : X → Y be a morphism which is
locally of �nite type.
a) The morphism f is called unrami�ed at a point x ∈ X if with y := f(x) and my

the maximal ideal of OY,y we have that OX,x/myOX,x is a �nite and separable �eld
extension of κ(y); in particular, it is part of the condition that OX,x/myOX,x is a
�eld. Here OY,y denotes the stalk of the structure sheaf OY at y and κ(y) := OY,y/my

denotes the residue �eld of Y at y.
b) The morphism f is called unrami�ed if it is unrami�ed at every point x ∈ X.
c) The morphism f is called �at if for every x ∈ X the induced ring homomorphism
OY,f(x) → OX,x is �at.

d) The morphism f is called étale if it is �at and unrami�ed.

Remark 8.2. The notion of an unrami�ed morphism can be viewed as a generalization
of the notion of an unrami�ed ring extension introduced in Section 2.2: let A ⊆ B be a
�nite extension of Noetherian normal domains and q ∈ X(1)(B). Then the extension is
unrami�ed at q if and only if the induced morphism f : Spec(B)→ Spec(A) is unrami�ed
at q.

The �rst result on étale morphisms we need is the following lemma which describes
the set of those points in X at which a morphism f : X → Y is unrami�ed.
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Lemma 8.3. ([42, Remark 3.7]) Let f : X → Y be a morphism of schemes which is
locally of �nite type. The set of all points in X at which f is unrami�ed is open in X.

The next theorem will allow us to prove that certain unrami�ed morphisms are étale.

Theorem 8.4. ([42, Theorem 3.20]) Let f : X → Y be a morphism of schemes. Assume
that f is unrami�ed and Y is normal. Then f is étale if and only if for every x ∈ X the
induced map OY,f(x) → OX,x is injective.

The notion of an unrami�ed map has its origin in the theory of Riemann surfaces.
An unrami�ed holomorphic map between Riemann surfaces is locally an isomorphism,
see Forster [19, Theorem 4.4]. This is not true for unrami�ed morphisms of schemes;
for example, every closed immersion is unrami�ed. This is the reason why the more
restrictive notion of étale maps is introduced. However, it is still not true that an étale
morphism is locally an isomorphism, but at least we have the following theorem. As
usual we write Â for the completion of a local ring A.

Theorem 8.5. ([42, Remark 4.7]) Let f : X → Y be an étale morphism of schemes. Let
x ∈ X, y := f(x) and assume that κ(x) = κ(y). Then the induced map ÔY,y → ÔX,x is
an isomorphism.

8.2 Local properties

In this section we introduce the class of properties of Noetherian rings for which we
prove the main result in the next section. A similar de�nition has been given by Kemper
[34, De�nition 1.4], and he calls these properties local. Although our de�nition is slightly
more complicated than Kemper's as he only wants to consider graded algebras over �elds,
we also use the term �local property�.

De�nition 8.6. Let P be a property of Noetherian commutative rings. Then we call P
local if it satis�es the following conditions:
(i) If A is a Noetherian local ring with completion Â, then P(A) holds if and only if
P(Â) holds.

(ii) If S is a Noetherian ∗local graded ring with homogeneous maximal ideal m, then
P(S) holds if and only if P(Sm) holds.

(iii) If S is a Noetherian ∗local graded ring, n ⊂ S0 the maximal ideal in S0, and m ⊂ S
a maximal ideal such that m ∩ S0 = n, then P(S) implies P(Sm).

(iv) If S is a Noetherian graded ring, then P(S) holds if and only if P(S ⊗S0 (S0)n)
holds for every maximal ideal n ⊂ S0.

We call the property P R-local for a Noetherian ring R if (i) holds, (iv) holds for graded
rings S with S0 ∼= R and (ii) and (iii) hold for ∗local graded rings S with S0 ∼= Rp for
some prime ideal p ⊂ R.

Proposition 8.7. The following properties of Noetherian commutative rings are local
properties: regularity, the Gorenstein property, and the Cohen-Macaulay property. The
quasi-Gorenstein property is R-local for every allowed base ring R (in the sense of De�-
nition 7.51).
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8.2 Local properties

Proof. For regularity, Gorenstein, and Cohen-Macaulay statements (i), (ii), and (iii)
are well-known results, see for example Bruns and Herzog [11]; for statement (iv) see
Propositions 2.34, 2.35, and 2.36. All the results on the quasi-Gorenstein property have
been proved in Chapter 7: (i) is Lemma 7.6a). For (ii) we note that S has a graded
canonical module by Corollary 7.13; hence (ii) follows from Proposition 7.15. Statement
(iii) follows directly from the de�nition of quasi-Gorenstein rings, and (iv) is Proposi-
tion 7.53.

Factoriality is not a local property: if R is a Dedekind domain which is not a principal
ideal domain, then R[x] is not factorial but R[x] ⊗R Rn is factorial for every maximal
ideal n ⊂ R0, so statement (iv) does not hold.
We want to introduce a further family of local properties which is also discussed in

[34] for invariant rings over �elds. For this, we �rst need the following de�nition (see for
example Kemper [36]:

De�nition 8.8. Let A be a Noetherian ring. The Cohen-Macaulay defect of A is

cmdef(A) := sup
p∈Spec(A)

(dim(Ap)− depth(Ap)).

For local rings, we have the following result, see Grothendieck and Dieudonné [26,
Proposition 6.11.5]:

Lemma 8.9. Let A be a Noetherian local ring and let p ∈ Spec(A) be a prime ideal.
Then dim(Ap)− depth(Ap) ≤ dim(A)− depth(A). In particular, cmdef(A) = dim(A)−
depth(A).

The next proposition facilitates the computation of the Cohen-Macaulay defect of a
graded ring.

Proposition 8.10. Let A be a Noetherian graded ring. Then cmdef(S) is the supremum
over all cmdef(Sn) where n is a homogeneous maximal ideal in S.

The proof of this proposition uses the following lemma:

Lemma 8.11. Let S be a Noetherian graded ring and let m be a non-homogeneous max-
imal ideal in S. As in De�nition 2.31 we de�ne m∗ to be the ideal generated by all
homogeneous elements in m. Then we have depth(Sm) = depth(Sm∗) + 1.

Proof. This is a special case of Bruns and Herzog [11, Theorem 1.5.9].

Proof of Proposition 8.10. By Lemma 8.9 it is su�cient to show that for every maximal
ideal m ⊂ S there is a homogeneous maximal ideal n ⊂ S such that cmdef(Sn) ≥
cmdef(Sm). If m is homogeneous, we just take n = m. Otherwise let n be a homogeneous
maximal ideal such that m∗ ⊆ n; such an ideal exists by Lemma 2.29. Using Lemma 8.9,
Lemma 2.32, and Lemma 8.11 we obtain

cmdef(Sm∗) = ht(m∗)− depth(Sm∗) = ht(m)− 1− (depth(Sm)− 1) = cmdef(Sm)

and hence cmdef(Sn) ≥ cmdef(Sm∗) = cmdef(Sm).
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Proposition 8.12. Let n ∈ N. We say that a Noetherian ring R has the property Pn if
cmdef(R) ≤ n. Then Pn is a local property.

Proof. For a Noetherian local ring R we have dim(R) = dim(R̂) and depth(R) =
depth(R̂), see Eisenbud [17, Corollary 10.12 and the proof of Proposition 18.8]. Hence
we have cmdef(R) = cmdef(R̂) by Lemma 8.9 and statement (i) from the de�nition of
a local property follows. Statement (ii) follows from Proposition 8.10 and (iii) is clear
from the de�nition of the Cohen-Macaulay defect. In order to prove (iv), let S be a
Noetherian graded ring. For every maximal ideal n ⊂ S0 Pn(S⊗S0 (S0)n) implies Pn(Sm)
where m := (n, S+) because S⊗S0 (S0)n ∼= (S0\n)−1S. Now (iv) follows from Lemma 2.29
and Proposition 8.10.

8.3 The main result

Let R be a Noetherian normal domain, S := R[x1, . . . , xn], and G ⊆ Gln(R) a �nite
group. Furthermore, let y ∈ Rn be any point and Gy := {σ ∈ G|σ(y) = y} its stabilizer
subgroup. If R is a �eld, then Kemper [34] proved for every local property P that P(SG)
implies P(SGy). Our goal here is to generalize this to the case where R need not be a
�eld. I achieved this only for some points y: for an ideal a ⊆ S we de�ne the stabilizer
subgroup Ga := {σ ∈ G|σ(a) ⊆ a}. Now let I ⊆ R be an ideal and y ∈ Rn a point; we
consider a := {f ∈ S|f(y) ∈ I}, which is an ideal in S. Then we have Gy ⊆ Ga. The
points we want to consider are those where these two groups coincide:

De�nition 8.13. Let R be a ring, S := R[x1, . . . , xn], and G ⊆ Gln(R) a �nite group.
Let y ∈ Rn and let I ⊆ R be an ideal; de�ne a := {f ∈ S|f(y) ∈ I}. We say that y has
I-stable stabilizer if the stabilizer subgroups Gy and Ga coincide.

Remark 8.14. In the context of the de�nition we can view Ga as the stabilizer of the
residue class of y in (R/I)n; in particular, if G is a permutation group and all components
of y are either 0 or 1, then y has I-stable stabilizer for every proper ideal I ( R.

Next we give an easy example of a point which is not I-stable.

Example 8.15. Let R = Z(2), I = (2)R, n = 1, and G := {1,−1} ⊆ Gl1(Z(2)). Then
for y = 1 ∈ Z we have (x − 1)(y) = 0, but for σ = −1 ∈ G we obtain σ(x − 1)(y) =
(−x− 1)(y) = −2 6= 0. This shows that σ /∈ Gy. On the other hand, as 1 ≡ −1 mod 2,
we have f(1) ∈ (2) if and only if f(−1) ∈ (2) for each f ∈ R[x] and hence f ∈ a if and
only if σ(f) ∈ a, so σ ∈ Ga.

In order to analyze the invariant ring SGy we can use the ideas from Kemper's article
[34]. The main technical step is the following theorem.

Theorem 8.16. Let R be a local Noetherian normal domain with maximal ideal m and
let G ⊆ Gln(R) be a �nite group. Let y ∈ Rn be a point with m-stable stabilizer and let
S := R[x1, . . . , xn], p := {f ∈ S|f(y) ∈ m}, p′ := p ∩ SG, and p′′ := p ∩ SGy . Then the
inclusion SG ↪→ SGy induces an isomorphism

(̂SG)p′ ∼= ̂(SGy)p′′
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where as usual ̂ denotes the completion of a local ring with respect to its maximal ideal.

The proof requires a lemma:

Lemma 8.17. In the situation of the theorem, we have the following:
a) p′p′(S

Gy)p′′ = p′′p′′ .
b) The inclusion SG ↪→ SGx induces an isomorphism SG/p′ ∼= SGy/p′′.

Proof. We �rst prove part b). The kernel of the canonical map SG ↪→ SGy → SGy/p′′ is
p′′ ∩ SG = p′, so we obtain an injective map SG/p′ → SGy/p′′. Since every f ∈ SGy can
be written as f = f(y) + (f − f(y)) with f(y) ∈ R ⊆ SG and f − f(y) ∈ p′′, this map is
also surjective.
For the proof of a) we use an idea of Kemper [34, Proposition 1.1]. Assume that

p ⊆
⋃
σ∈G\Gy

σ(p). Then by the prime avoidance lemma we have p ⊆ σ(p) for some
σ ∈ G\Gy. This would imply σ(p) = p as σ is an automorphism. But then σ ∈ Gp = Gy
since y has m-stable stabilizer; this contradicts σ /∈ Gy. So there is an f ∈ p such that f is
not an element of σ(p) for any σ ∈ G\Gy. For g :=

∏
τ∈Gy

τ(f) we have g ∈ p∩SGy = p′′

and g /∈ σ(p) for all σ ∈ G\Gy.
Let J ⊆ p′′ be the subideal generated by all elements of p′′ which are not in

⋃
σ∈G\Gy

σ(p).

Then p′′ ⊆ J ∪
⋃
σ∈G\Gy

(σ(p)∩SGy). Since p is a prime ideal in S, σ(p)∩SGy is a prime

ideal in SGy and hence we can apply prime avoidance again: since g is in p′′ but not
in σ(p) for any σ ∈ G\Gy, we obtain p′′ ⊆ J and hence p′′ = J as J was de�ned to
be a subideal of p′′. This shows that there are f1, . . . , fn ∈ p′′\

⋃
σ∈G\Gy

σ(p) such that
p′′ = (f1, . . . , fn)SGy .
Let σ1, . . . , σr ∈ G be a set of left coset representatives of Gy in G with σ1 ∈ Gy.

For i = 1, . . . , n we de�ne gi :=
∏r
j=2 σj(fi). By the choice of the fi we have gi ∈

SGy\p′′ and hence g1, . . . , gn are units in SGy

p′′ . Then the ideal p′′p′′ in S
Gy

p′′ is generated

by f1g1, . . . , fngn. As fi ∈ SGy we obtain that figi =
∏r
j=1 σj(fi) ∈ SG ∩ p′′ = p′, so

p′′p′′ ⊆ p′p′(S
Gy)p′′ . The other inclusion is clear.

Kemper [34, Lemma 1.2] states that every inclusion of Noetherian local rings satisfy-
ing the two properties proven in Lemma 8.17 induces an isomorphism of completions.
However, the proof for this given in [34] is wrong; it uses a result from Eisenbud's book
[17, Theorem 7.2(a)] which only holds for inclusions of local rings R ↪→ S for which S is
�nitely generated as an R-module. So we give an alternative proof of Theorem 8.16 here
which does not need this argument. For this we use the material on étale morphisms
developed in the previous section. The special case where R is a �eld in the following
proof also shows that Theorem 1.1 of Kemper's article [34] is nevertheless true.

Proof of Theorem 8.16. The inclusion SG ↪→ SGy induces a morphism of a�ne schemes
h : Spec(SGy) → Spec(SG). Lemma 8.17 implies that h is unrami�ed at the point p′′ ∈
Spec(SGy). Then Lemma 8.3 implies that there is an open subscheme U ⊆ Spec(SGy)
with p′′ ∈ U such that h|U is unrami�ed. Since Spec(SG) is normal by Theorem 2.5 and
for every q ∈ U the induced map (SG)h(q) → (SGy)q of local rings is a restriction of the
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inclusion Quot(SG)→ Quot(SGy) and therefore injective, Theorem 8.4 implies that h|U
is étale. By Lemma 8.17b) and Theorem 8.5 it follows that h induces an isomorphism

(̂SG)p′ ∼= ̂(SGy)p′′ .

Corollary 8.18. In the situation of Theorem 8.16 we additionally de�ne p0 := {f ∈
S|f(0) ∈ m} and p′′0 := p0 ∩ SGx . Then

(̂SG)p′ ∼= ̂(SGy)p′′0 .

Proof. We show that (SGy)p′′ ∼= (SGy)p′′0 ; then the corollary follows from Theorem 8.16.
The map ϕ : S → S which maps a polynomial f ∈ S = R[x1, . . . , xn] to the polynomial
f((x1, . . . , xn) + y) is an automorphism of S which is compatible with the action of Gy,
so it restricts to an automorphism of SGy . Furthermore we have p0 = ϕ(p) and hence
p′′0 = ϕ(p′′). Thus the claimed isomorphism follows.

Theorem 8.19. Let R be a Noetherian ring and let G ⊆ Gln(R) be a �nite group and
y ∈ Rn a point with m-stable stabilizer for every maximal ideal m ⊂ R. Then for every
local property P we have

P(R[x1, . . . , xn]G) =⇒ P(R[x1, . . . , xn]Gx).

Proof. By part (iv) of the de�nition of a local property we may assume that R is local
and hence S = R[x1, . . . , xn] is ∗local. We use the notation from Theorem 8.16 and
Corollary 8.18. P(SG) implies P((SG)p′) by statement (iii) from the de�nition of a local

property. Hence by (i) we have P((̂SG)p′) and by Corollary 8.18 also P( ̂(SGy)p′′0 ). Now

(i) implies P((SGy)p′′0 ) and since p′′0 is the homogeneous maximal ideal in the ∗local ring

SGy statement (ii) implies P(SGy).

We are now ready to prove the main result of this chapter.

Theorem 8.20. Let R be a Noetherian ring and let G ⊆ Gln(R) be a �nite group and
y ∈ Rn a point with m-stable stabilizer for every maximal ideal m ⊂ R.
a) If R[x1, . . . , xn]G is regular, a Gorenstein ring, or a Cohen-Macaulay ring, then the

same holds for R[x1, . . . , xn]Gy .
b) If R is an allowed base ring and R[x1, . . . , xn]G is a quasi-Gorenstein ring, then

R[x1, . . . , xn]Gy is also a quasi-Gorenstein ring.
c) We have cmdef(R[x1, . . . , xn]Gy) ≤ cmdef(R[x1, . . . , xn]G).

Proof. Parts (a) and (b) directly from Theorem 8.19 and Proposition 8.7. For part (c)
let n := cmdef(R[x1, . . . , xn]G); then R[x1, . . . , xn]G satis�es the property Pn de�ned in
Proposition 8.12. So by Theorem 8.19 and Proposition 8.12, R[x1, . . . , xn]Gy also satis�es
Pn; the statement follows.

The fact thatR[x1, . . . , xn]G is factorial does not imply thatR[x1, . . . , xn]Gy is factorial,
not even if R is a �eld. This is shown by the following example.
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Example 8.21. Let R be a Noetherian normal domain with char(R) 6= 2 which contains
no nontrivial third root of unity; for example, this holds for R = Q or for every R with
char(R) = 3. Let S := R[x1, . . . , x4] and G := A4 viewed as a group of permutation
matrices in Gl4(R). Furthermore we de�ne y := (1, 1, 0, 0) ∈ R4; since G is a permutation
group, y has m-stable stabilizer for every maximal ideal m ⊂ R by Remark 8.14. We claim
that SG is factorial but SGy is not. First of all, G contains no pseudore�ections because
a permutation matrix is a pseudore�ection if and only if the corresponding permutation
is a transposition. Hence SG is factorial if and only if there is no nontrivial R-valued
character of G, similar for SGy . Gy is cyclic of order two, generated by σ := (1 2)(3 4),
so there is a nontrivial character Gy → R× sending σ to −1. Hence SGy is not factorial.
On the other hand, let χ be any character G→ R×. Since R contains no nontrivial third
root of unity, χ maps every 3-cycle to 1. But the alternating groups are generated by
3-cycles, so we obtain that χ must be the trivial character. Hence SG is factorial.
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9 Conclusion

9.1 Summary of the main results

We begin this summary with the three main results of this thesis concerning the question
of when a ring of arithmetic invariants has certain properties. Let always R be a ring
and G ⊆ Gln(R) a �nite group.

1. Theorem 4.22: Assume that R is a Dedekind domain. If Quot(R)[x1, . . . , xn]G and
all (R/p)[x1, . . . , xn]G where p ⊂ R is a maximal ideal with |G| ∈ p are polynomial
rings generated by homogeneous elements of the same degrees, then R[x1, . . . , xn]G

is regular. If G acts faithfully on (R/p)n for all p as above, then the converse also
holds. Moreover, under the same assumptions, if R is a principal ideal domain,
then R[x1, . . . , xn]G is isomorphic to a polynomial ring.

2. Corollary 6.6: Assume that R is a Noetherian normal domain. Then R[x1, . . . , xn]G

is factorial if and only if R is factorial and every character χ : G→ R× which takes
the value 1 on every pseudore�ection takes the value 1 on every element of G.

3. Theorem 7.56: Assume that R is an allowed base ring in the sense of De�nition 7.51.
Then R[x1, . . . , xn]G is quasi-Gorenstein if and only if the di�erential character of
G is equal to the determinant.

Next we want to consider the question of whether some ring-theoretic property of the
invariant ring remains valid under certain changes of the base ring or the group. For
simplicity, we assume that R is a Dedekind domain. Let G ⊆ Gln(R) be a �nite group
andK := Quot(R). Furthermore, let P be a ring theoretic property which R[x1, . . . , xn]G

may or may not satisfy. We consider the following statements.

1. If K[x1, . . . , xn]G satis�es P, then R[x1, . . . , xn]G satis�es P.

2. If K[x1, . . . , xn]G satis�es P and |G| is invertible in R, then R[x1, . . . , xn]G satis�es
P.

3. If R[x1, . . . , xn]G satis�es P, then for every prime ideal p ⊂ R with |G| /∈ p,
(R/p)[x1, . . . , xn]G satis�es P.

4. If R[x1, . . . , xn]G satis�es P, then R[x1, . . . , xn]Gy satis�es P for every y ∈ Rn

which has m-stable stabilizer, see De�nition 8.13, for every maximal ideal m ⊂ R.
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The following table collects all results on the question of whether these statements
are true for the following properties: regularity, Cohen-Macaulay, Gorenstein, quasi-
Gorenstein, factoriality. In the case of factoriality, we make the stronger assumption
that R is a principal ideal domain (PID). The table also contains the places where the
respective results can be found in this thesis.

P Statement 1 Statement 2 Statement 3 Statement 4

Regularity
False,
Example 3.10

True,
Theorem 4.20

True,
Theorem 8.20

True,
Proposition 4.24

Cohen-Macaulay
False,
Example 3.12

True,
Theorem 3.14

True,
Theorem 8.20

True,
see below

Gorenstein
False,
Example 3.13

True,
Corollary 7.57

True,
Theorem 8.20

True,
Theorem 7.39

quasi-Gorenstein
True,
Theorem 7.56

True,
Theorem 7.56

True,
Theorem 8.20

True,
Theorem 7.39

Factoriality
(with R a PID)

True,
Theorem 6.5

True,
Theorem 6.5

False,
Example 8.21

False,
Example 6.9

We did not consider Statement 4 for the Cohen-Macaulay property before, but this is
almost trivial: there is nothing to show in Statement 4 if p = 0, so as R is a Dedekind
domain, we may assume that p is maximal. Then R/p is a �eld and by assumption
charR/p does not divide |G|, so (R/p)[x1, . . . , xn]G is always a Cohen-Macaulay ring by
Theorem 2.20 even if R[x1, . . . , xn]G is not.

9.2 Outlook

Here are some open problems which arise in the context of the topics considered in this
thesis:

1. Prove or disprove conjecture Conjecture 4.23.

2. What can be said about the invariants of a pseudore�ection group G ⊆ Gln(R)
over a discrete valuation ring R with maximal ideal m if G does not act faithfully
on (R/m)n. This is the case where Theorem 4.7 is not applicable.

3. Is it possible to generalize parts of the results of Chapter 4 to base rings which are
not necessarily Dedekind domains? In particular, it might be possible to generalize
the results of Section 4.1 to invariants over regular local rings of dimension greater
than one.

4. Does Theorem 8.20 hold also without the assumption that y has m-stable stabilizer
for all maximal ideals m ⊂ R? While at �rst it seems natural to assume that this
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9.2 Outlook

should be true, a closer look shows that the equality of the stabilizers over R and
R/m is really essential for our proof, so I suppose that if this is true, then the proof
requires a di�erent strategy than the one used in [34] and in this thesis.

5. Can one prove analogous results to Theorem 8.20c) for other parameters than
the Cohen-Macaulay defect, e.g. the polynomial defect, the complete intersection
defect, or the Gorenstein defect? This has been done by Kemper [34] over �elds
and thus it seems natural to hope that similar results also hold over rings.

6. It might also be worthwhile to study algorithmic aspects of arithmetic invariant
theory. An algorithm which computes the ring of invariants R[x1, . . . , xn] using
Gröbner bases over R has been given by Kemper [37], but it might be possible to
avoid Gröbner bases over R and instead �rst compute generators for the invariant
ring over K := Quot(R) and then add some additional generators to obtain a
generating set of the invariant ring over R.

7. Another important topic in invariant theory not covered in this thesis are de-
gree bounds: for this we consider a ring of invariants R[x1, . . . , xn]G where R is
Noetherian and G is �nite. Then the ring of invariants is �nitely generated as an
R-algebra, so there is a number β ∈ N such that R[x1, . . . , xn]G can be generated
as an R-algebra by elements of degree at most β. A classical result, see Derksen
and Kemper [16, Theorem 3.2.2], says that if R is a �eld and |G| ∈ R×, then we
can choose β = |G|. If R is an arbitrary �eld, then Symonds [58] proved that we
can choose β = (|G|−1)n and it might be interesting to also consider this question
in the case where R is not a �eld; some special cases of this have been handled by
Almuhaimeed [1, Section 4.2].

Some more open problems on arithmetic invariant rings, in particular concerning the
Cohen-Macaulay property, have been collected by Almuhaimeed [1, Chapter 8].
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