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Abstract

The sensitive data our modern computing systems process, transmit, and store poses
a highly valuable target for cybercriminals and forensic investigators. Ranging from
mobile devices and embedded devices in the internet of things to desktop and server
environments, all systems expose characteristic vulnerabilities exploitable by remote and
physical attack vectors of different sophistication. A resulting disclosure of confidential data,
such as key material, passwords or classified documents, can lead to severe consequences
for individuals, organizations and governmental bodies. The goal of this work is both
the systematic protection of confidential data and the investigation of attack vectors to
acquire confidential data. For the systematic protection, we design system architectures
which assure data confidentiality on modern systems in the presence of both remote and
physical adversaries. For the investigation of attack vectors, we develop sophisticated data
extraction frameworks to demonstrate the potential of adversaries and to urge the need for
carefully designed system architectures.

We pursue a systematic approach where we first design a secure architecture to isolate
system resources based on OS-level virtualization. The architecture enables different
isolated execution environments, called containers, to restrict remote adversaries exploiting
a vulnerable container from accessing other containers possibly processing confidential
data. While the design is generally platform-independent, we first tailor the architecture
to mobile devices. This enables us to operate multiple virtualized Android containers
on a single device having one container run in foreground and the others in background.
We further demonstrate the applicability of this architecture in real-world ecosystems by
providing a holistic security concept. This concept covers identity management and device
provisioning and enrollment based on a public key infrastructure and secure elements
for users, such as smartcards. In the next step, we tailor the architecture to embedded
use cases, such as to platforms for the internet of things or cyber-physical systems. We
demonstrate how to integrate the architecture into productive environments at the example
of a cross-domain data exchange platform connecting organizations.

While our virtualization architectures for resource isolation defend against remote
adversaries, these do not remediate physical memory attack scenarios, such as cold boot or
DMA attacks. These attacks make it possible to extract the confidential data stored in
main memory while circumventing OS protection mechanisms. To emphasize the urge for
the protection of data against physical adversaries, we design a framework for cold boot
attacks on mobile devices. Our framework enables the systematic extraction of data from
the main memory of mobile devices. Since the main memory is not encrypted and thus
stored in plaintext on common systems, memory extraction leveraging the cold boot attack
is not only limited to mobile devices.
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To counter the threat of memory attacks from physical attack vectors, we design main
memory encryption architectures for different types of systems. For notebooks and desktop
systems, we introduce an architecture to encrypt the main memory during device suspension.
This makes memory attacks futile on suspended, likely unattended devices. While we also
design this architecture for environments virtualized with a hypervisor, it does not apply to
the different usage model of mobile devices. The operating systems of mobile devices do not
fully suspend to support background activities in the absence or inactivity of the users. To
also enable memory protection on mobile devices, we develop a main memory encryption
architecture on the granularity of process groups. We combine our secure virtualization
and main memory encryption architectures, making it possible to encrypt main memory of
individual containers. We keep actively used containers in normal operation and encrypt
suspended containers in background. The combination of the architectures not only protects
the Android containers from remote adversaries, but also from physical attackers once
suspended. For systems which do not necessarily suspend, such as embedded IoT devices,
we present an alternate architecture for transparent runtime memory encryption based on
a minimal hypervisor.

When encrypting memory at runtime, attackers may still fully interact with the non-
suspended systems. We point out that such encryption techniques require particularly
careful design by developing a memory extraction framework targeting virtual machines on
server systems that leverage hardware extensions for transparent runtime memory encryp-
tion. Our framework makes it possible to fully extract the memory of encrypted virtual
machines possibly being under heavy load, such as virtual machines hosting productive
web servers open to the public. We additionally equip our framework with techniques to
specifically extract targeted resources in short time, such as TLS, SSH, or disk encryption
keys, requiring only minimal interaction with the system and leaving only a small footprint.



Kurzfassung

Die sensitiven Daten, die unsere heutigen Systeme verarbeiten, übertragen und speichern
stellen für Kriminelle und Forensiker ein äußerst attraktives Ziel dar. Zu diesen Systemen
zählen beispielsweise mobile Endgeräte, eingebettete Geräte für das Internet der Dinge,
aber auch Desktop- und Serverumgebungen. All diese Systeme weißen charakteristische
Schwachstellen auf, welche beiderseits von physischen Angreifern und Angreifern über ent-
fernte Schnittstellen hinweg mittels Angriffsvektoren verschiedener Komplexität ausgenutzt
werden können. Eine resultierende Enthüllung vertraulicher Daten, wie etwa Schlüssel-
material, Passwörter oder klassifizierter Dokumente, kann zu starken Konsequenzen für
Einzelpersonen, aber auch für Organisationen und Behörden führen. Das Ziel dieser Arbeit
ist beiderseits der systematische Schutz vertraulicher Daten, als auch das Untersuchen
von Angriffsvektoren, um an vertrauliche Daten zu gelangen. Für den systematischen
Schutz entwerfen wir Systemarchitekturen, die die Vertraulichkeit von Daten auf modernen
Rechengeräten unter der Bedrohungssituation von beiderseits entfernten und physisch
präsenten Angreifern sicherstellen. Zur Untersuchung von Angriffsvektoren entwickeln wir
fortgeschrittene Rahmenwerke zur Extrahierung von Daten, um das Potential von An-
greifern zu demonstrieren und um den Bedarf für sorgfältig entworfene Systemarchitekturen
zu motivieren.

Wir verfolgen hierbei einen systematischen Ansatz, bei dem wir zunächst eine Sicher-
heitsarchitektur entwerfen, welche Systemressourcen auf Basis von Virtualisierung auf
Betriebssystem-Ebene isoliert. Diese Architektur ermöglicht es, verschiedene voneinander
isolierte Ausführungsumgebungen, sogenannte Container, zu betreiben, um Angreifer, die
eine Software-Schwachstelle eines verwundbaren Containers ausnutzen, innerhalb des Con-
tainers zu isolieren. Dies bewahrt andere Container mit deren vertraulichen Daten vor den
Auswirkungen des Angriffs. Während der Architekturentwurf generell plattformunabhängig
ist, schneiden wir die Architektur zunächst auf mobile Endgeräte zu, auf denen wir mehrere,
virtualisierte Android-Container betreiben. Dabei läuft ein Container für den Nutzer
sichtbar im Vordergrund und die anderen Container im Hintergrund. Des weiteren demon-
strieren wir die Anwendbarkeit der Architektur innerhalb produktiv genutzter Ökosysteme
durch Bereitstellen eines ganzheitlichen Sicherheitskonzepts. Dies beinhaltet das Verwalten
von Identitäten, sowie Geräteprovisionierung und -ausrollung, basierend auf einer Infras-
truktur mit öffentlichen Schlüsselpaaren und Sicherheitselementen, wie Chipkarten, für
Endnutzer. Im nächsten Schritt schneiden wir die Architektur auf Benutzungsszenarien im
Bereich eingebetteter Systeme zu, wie zum Beispiel auf Plattformen im Internet der Dinge,
oder auf Cyber-physische Systeme. Wir beschreiben darüber hinaus die Integration dieser
Architektur in produktive Umgebungen am Beispiel einer Bereichsgrenzen überschreitenden
Plattform zum Datenaustausch zwischen Organisationen.

vii



viii

Während die Sicherheitsarchitekturen zur Isolation von Ausführungsumgebungen gegen
Angreifer wirkt, welche Softwareschwachstellen ausnutzen, verhindert diese aber nicht die
Angriffsszenarien auf den Hauptspeicher durch physische Angreifer. Ein Beispiel dafür
sind Kaltstart- oder DMA-Attacken, welche es ermöglichen, vertrauliche, im Hauptspe-
icher abgelegte Daten unter umgehen der Schutzmechanismen der Betriebssysteme zu
extrahieren. Um die Notwendigkeit des Schutzes von Daten gegen physische Angreifer
aufzuzeigen, entwerfen wir ein Rahmenwerk für Kaltstartangriffe auf mobilen Endgeräten.
Unser Rahmenwerk ermöglicht es, systematisch Daten aus dem Hauptspeicher von mobilen
Endgeräten zu extrahieren. Da der Hauptspeicher auf herkömmlichen Systemen unver-
schlüsselt ist und deshalb im Klartext vorliegt, ist die Extrahierung von Hauptspeicher
mittels Kaltstartangriffen nicht auf mobile Endgeräte beschränkt.

Um der Gefahr von Speicherangriffen durch physische Angreifer entgegenzuwirken, en-
twerfen wir Architekturen zur Hauptspeicherverschlüsselung für verschiedenartige Systeme.
Für Klapprechner und Desktop-Geräte führen wir eine Architektur zur Verschlüsselung
des Hauptspeichers während des Einleiten des Ruhemodus ein, was Speicherangriffe auf
ruhenden, dann oftmals unbeaufsichtigten Geräten zwecklos macht. Während wir diese
Architektur auch für Umgebungen, welche mit einem Hypervisor virtualisiert werden,
entwerfen, lässt sich diese nicht auf das Nutzungsmodell mobiler Endgeräte transferieren.
Betriebssysteme auf mobilen Endgeräten setzen das System nicht vollständig in den Ruhe-
modus, um Hintergrundaktivitäten während der Absenz oder Inaktivität des Nutzers zu
ermöglichen. Um ebenso Speicherschutz für mobile Endgeräte zu ermöglichen, entwerfen
wir eine Architektur zur Hauptspeicherverschlüsselung auf Basis von Prozessgruppen. Wir
kombinieren unsere Virtualisierungs- und Hauptspeicherverschlüsselungs-Architekturen,
was es ermöglicht den Hauptspeicher auf individueller Container zu verschlüsseln. Wir
halten dabei aktiv genutzte Container im normalen, unverschlüsselten Betrieb, und ver-
schlüsseln sich im Ruhemodus befindliche Hintergrund-Container. Die Kombination der
Architekturen schützt die Android-Container nicht nur vor entfernten Angreifen, sondern
auch von physischen Angreifern, sobald sich diese im Ruhemodus befinden. Für Systeme,
auf welchen nicht notwendigerweise ein Ruhemodus vorgesehen ist, wie zum Beispiel einge-
bettete Geräte im Internet der Dinge, präsentieren wir eine alternative Architektur zur
transparenten Laufzeitverschlüsselung basierend auf einem minimalen Hypervisor.

Bei transparenter Verschlüsselung des Hauptspeichers zur Laufzeit können Angreifer
allerdings im vollen Umfang mit dem nicht ruhenden System interagieren. Wir zeigen
auf, dass der Entwurf solcher Verschlüsselungstechniken besonders gründlicher Konzeption
bedarf, indem wir ein Rahmenwerk zur Extrahierung von Speicher von virtuellen Maschinen
auf Serversystemen, welche Hardware-Erweiterungen für die Laufzeit-basierte Hauptspe-
icherverschlüsselung nutzen, entwerfen. Unser Rahmenwerk ermöglicht es, den kompletten
Hauptspeicher verschlüsselter virtueller Maschinen, welche auf derartigen Servern betrieben
werden und welche möglicherweise unter hoher Last stehen, zu extrahieren. Ein Beispiel
sind öffentlich erreichbare, produktiv eingesetzte Web Server. Zusätzlich statten wir dieses
Rahmenwerk mit Techniken aus, um spezifische Ressourcen, wie TLS- oder SSH-Schlüssel,
oder Schlüssel zur Festplattenverschlüsselung, innerhalb kürzester Zeit gezielt zu extrahieren.
Dabei bedarf es nur minimaler Interaktion mit dem System, auf welchem dadurch ein
lediglich geringer digitaler Fußabdruck entsteht.
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CHAPTER 1
Introduction

The first part of the introduction motivates the importance of protecting confidential data
on modern systems and highlights possible strategies against attackers. Based on that, we
formulate a problem statement, which involves different challenges that arise when aiming
to reliably protect data on modern systems and when seeking to extract confidential data.
Subsequently, we address these challenges by briefly presenting the scientific publications
and their contributions relevant for this thesis. The introduction ends with an outline
describing the structure of the thesis, oriented along the elaborated challenges.

1.1 Motivation
During the past decades, more and more sensitive data has spread into the digital world. For
example, individuals starting with setting up passwords for mail accounts and exchanging
private mail contents have increased their digital footprint by moving more and more parts
of their former non-digital identity onto their computers and the internet. The trend of
the digitalization was initiated and continuously pushed forward by IT enterprises and
innovative start-ups. This led not only individuals, but also companies and institutions
of all kind to digitalize their infrastructures and workflows and to offer various types of
services via the internet. The amount of sensitive data stored, processed and distributed
on our nowadays diverse computing systems thus increased and digital resources of high
value, such as banking credentials, intellectual property, or classified documents, were
rapidly created. This data poses a highly valuable target for both sides of the law, forensic
investigators and cybercriminals, where disclosure can lead to severe consequences for
individuals, organizations and governmental bodies. With the quick innovation cycles
of both software and hardware, the diverse types of devices on the market are capable
of offering and consuming an abundance of services, but also exhibit their weaknesses.
This embraces, for instance, smallest Internet of Things (IoT) devices used in industrial
environments or in smart homes, mobile devices, notebooks and desktop computers used
for business and private purposes, up to large-scale server and cloud systems of enterprises.

Despite efforts being made to increase system and network security, critical and char-
acteristic vulnerabilities of devices are nevertheless frequently identified and exploited
by criminals, launching attacks of different complexity. For example, smartphones pose
attractive targets for attackers [Bec11; Fei15] even though many approaches to mitigate
their susceptibilities were proposed [Alm14; Bac14; Chi11; Enc09; Ong09]. The over and
over occurring security issues on their software layers make the devices vulnerable to a
large number of remote attacks [Fel11; Pen14; Poe14; Zho12]. Various system architectures
making use of additional or specifically designed hardware to improve system security

1



2 Chapter 1 Introduction

were proposed, for instance, in [Wag18; Wei16] for autonomous, embedded environments.
This includes infrastructures for secure boot [Arb97], leveraging Trusted Platform Modules
(TPMs) as hardware trust anchors for measured boot [Tru] up to the application layer
[Sai04] for remote attestation [Eng03; Gar03], or Trusted Execution Environments (TEEs)
for executing sensitive tasks in environments isolated from the rest of the system [ARM09;
Cos16]. These architectures prevent attackers, for instance, from unnoticed overwrites of
boot code and allow system designers to move specific tasks to the isolated TEE. This
can be sufficient to protect confidential data on embedded systems fulfilling a very specific
purpose where all sensitive data can be ensured to be relocated to the TEE. However,
end user systems are usually more complex regarding the amount of sensitive data. This
means that these architectures are not sufficient for protecting all the confidential data
possibly found on a system. Also, proposed approaches for dynamic attestation [Dav09;
Kil09], isolated execution of security-sensitive code combined with attested execution
[McC10; McC08], or system monitoring combined with integrity verification [Vel17], all
possibly building up on TPMs or on TEEs, do not primarily defend against the theft of
confidential data. As a result, there is a clear need for system architectures designed to
protect confidential data and to understand how attacks can be carried out.

Attackers pursuing the goal of data theft do not necessarily care about preserving certain
imposed integrity conditions, but must be assumed to be primarily interested in finding
any means to access sensitive data. While also TEEs and secure boot infrastructures
were integrated onto mobile devices to increase system security, malicious applications
installed with certain permissions have still shown to be capable of providing sensitive data
to third parties. The same holds for other platforms. Despite being possibly equipped
with a TPM for code integrity and remote attestation, the vast and diverse amounts of
possibly confidential data on those devices are not safe from software-level attacks during
the runtime. This is due to the incomplete isolation of possibly sensitive data from integral
and possibly compromised parts of the system. While some sensitive data or code can
be processed in a TEE, such as specific key material in the ARM TrustZone [ARM09] or
in enclaves with Intel Software Guard Extensions (SGX) [Cos16; McK13], the systems
cannot ensure to secure all the vast amounts of other possibly sensitive data from access.
Exacerbating this problem, attacks vectors like Rowhammer [Kim14], or Spectre [Koc18]
and Meltdown [Lip18b] have recently demonstrated that such software-level attacks are
hard to fully defend against, even in cases where attackers have only minimal access to
the system [Gru16; Lip18a; Tat18]. The nature of these so far unconventional attack
vectors rendered traditional OS security mechanisms ineffective, as these exploited flaws in
hardware, such as on Dynamic Random Access Memory (DRAM) modules or on modern
CPUs, leading to unauthorized data access or privilege escalation. These are problems
that need to be overcome in hardware design or microcode.

In this thesis we consider attackers that try to remotely exploit vulnerable code to gain
access to confidential data as well as attackers aiming to gain access via physical interfaces.
An important step to protect confidential data is thus the design of data-centric security
architectures to isolate full execution environments on user-level with all their data from
other environments possibly compromised by attackers. Such architectures are especially
valuable when practically usable on a wide range of device types in different environments,
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such as smartphones for end users in corporations or embedded devices in industrial
facilities. A data-centric system securely isolating resources, resistant against software-layer
threats of remote attackers is however only the first part for increasing overall system
security. The system likely remains susceptible to physical attackers on hardware-layer.
As a protection against physical attacks, many systems have security measures in place,
such as tamper-proof hardware-locations for key material or Full Disk Encryption (FDE).
When the system properly encrypts persistent storage, an attacker with physical access
only to the storage medium must pay considerable effort to decrypt the data. However,
there still remains considerable attack surface on sensitive data in main memory. The key
used for FDE during the system’s runtime is, like vast amounts of other possibly sensitive
data, stored in main memory in plaintext [Apo13; Nta14; Pet07; Tan12]. Confidential
data, where key material is only one example, accessed from main memory by a physical
attacker could be reused in order to decrypt storage volumes, conduct transactions or to
spoof an identity. Attacks yielding main memory access are called memory attacks and can,
for example, be achieved by physical attackers via Direct Memory Access (DMA) [Ste13],
Joint Test Action Group (JTAG) [Wei12], or cold boot [Gru13; Gut01; Hal09; Mül13]. For
DMA attacks, the PCIe [Dev09], Firewire [Bec05; Boi06], or Thunderbolt [Maa12; Sev13]
interfaces have shown to be exploitable on various platforms.

It is an essential aspect to investigate memory attacks, for example, cold boot attacks
on mobile devices, to raise awareness for the threat and for the possibility of their forensic
application. A likewise important goal is to develop mechanisms that counter such memory
attacks and integrate them into secure system architectures. A way to address this is
to not only encrypt the persistent storage, but also to encrypt the sensitive contents of
main memory. It is in the next step essential to investigate the design of main memory
encryption mechanisms for shortcomings to emphasize the requirement for their thorough
design.

To summarize, while many other lines of work focus on architectures preventing attacks
or on protecting specific secrets, this work focuses on preserving data confidentiality in the
event of both remote and physical attacks taking place. Further, this work investigates
methods for main memory extraction.

1.2 Problem Statement
We pointed out that the design of many common systems does not sufficiently protect the
confidentiality of sensitive data against remote or physical attackers. This results in the
need for improvements in system security by developing system architectures applicable
in practice, and which address existing systems’ shortcomings. There is also a need to
investigate the attack vectors on data confidentiality, for forensic purposes, as well as for
raising awareness and recognizing the design problems that need to be overcome. The goal
of this work is to systematically find solutions to the challenges we list and briefly describe
in the following.

Challenge 1: Design of Architectures for the Secure Isolation of System Resources
Remote or local attackers exploiting existing architectural shortcomings and software
vulnerabilities must be prevented from accessing confidential data. An adversary gaining
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root privileges by exploiting resources must be restricted to a defined part of the system,
but not affect other, isolated environments. Sensitive data part of isolated environments
then remains inaccessible to the attacker. To increase overall system security, the design
of secure architectures should enable the protection of integral parts of a system and
comply with embedded systems, mobile devices, but also desktop platforms. A particular
challenge are mobile device platforms, which pose a high value target, are widely distributed,
communicate over lots of interfaces and process vast amounts of sensitive data.

One of our goals is to realize a secure virtualization architecture for mobile devices
to increase system security on mobile platforms. Not only mobile device platforms are
widespread, but also platforms found in IoT ecosystems and other distributed embedded
environments. Protecting such platforms is especially challenging, because the end user is
often not part of the usage model and the systems operate mostly autonomously. For this
reason, we also seek to realize a secure virtualization architecture for IoT platforms and
usage scenarios.

Challenge 2: Applicability of Architectures for Secure Resource Isolation in Operational
Environments
A secure architecture for mobile devices, or for IoT ecosystems, should not only result in a
technical proof of concept prototype, but also be applicable in real-world scenarios. This
requires the definition of an ecosystem in which the devices and their software are deployed.
In turn, this requires concepts for deploying the virtualization architecture as a secure
solution within productive infrastructures, especially when devices are located in untrusted
environments. This includes overcoming the challenges of secure device provisioning and
enrollment, secure software updates, as well as identity management for all entities in
the ecosystem, such as a backend for remote management, the devices, their users, or
operators. The specific field of application particularly influences the challenge and requires
for different models. An example are devices without end users autonomously deployed in
infrastructures, compared to smartphones being assigned to employees in an organization.

We address this challenge by introducing the relevant ecosystems and concepts for our
secure virtualization architectures for both mobile devices for use in organizations, and for
embedded devices for use in industrial IoT environments.

Challenge 3: Main Memory Extraction on Conventional Platforms
While the design of secure virtualization architectures defends against attacks on software
layer, it does not remediate physical memory attack scenarios. Common hardware platforms
ranging from embedded devices over mobile phones to traditional desktop devices keep
their main memory in plaintext. Security mechanisms implemented in software may not be
sufficient to protect the sensitive data in main memory when it comes to physical attacks
circumventing the security mechanisms of the OS by directly accessing the main memory.
This can be demonstrated with cold boot, JTAG, or DMA attacks, for instance. The
challenge is thus to investigate the feasibility of such attacks on modern systems and to
evaluate their usability for forensic frameworks. Especially mobile devices are a valuable
target as they can easily be stolen or found to be unattended.

We aim to build a forensic framework for main memory extraction using the cold boot
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attack. The framework enables the systematic extraction of sensitive system resources from
main memory. With this framework, we urge the need to design effective countermeasures
against physical attackers.

Challenge 4: Design of Architectures for Main Memory Encryption
The design of architectures for main memory encryption can enable an efficient defense
against memory attacks. Main memory encryption does not prevent memory attacks
themselves, but rather renders their effects futile. The architectures should not allow
attackers to access any sensitive data in plaintext to sustain data confidentiality in case
of a physical memory attack. This also requires secure key management for the main
memory encryption key. The different usage models on the versatile systems must be
considered as well. Smartphones operate in background and do not fully suspend compared
to desktop computers and laptops where a full suspension is initiated. Some systems do
not suspend at all. Main memory encryption must be accordingly designed to increase
overall system security. For example, transparent encryption during a system’s runtime
causes performance overhead, whereas encryption during suspension protects only when
the device suspends.

We address this challenge by introducing main memory encryption architectures for
different device and usage types and by combining our secure virtualization architecture for
mobile devices with main memory encryption to establish a system both resistant against
software-layer and memory attacks.

Challenge 5: Main Memory Extraction on Platforms with Hardware-Based Memory
Encryption
It is important to design memory encryption architectures with care, keeping in mind that
a physical attacker may not only carry out memory attacks, but also gain privileges on
the running system. An important aspect is to analyze existing solutions for architectural
weaknesses. An example are virtualized server systems using hardware extensions for full-
memory runtime encryption of their Virtual Machines (VMs). This relieves, for instance,
customers from fully trusting their server providers, otherwise being able to access all the
VM’s memory in plaintext from the Hypervisor (HV).

We address this challenge by developing a framework that nevertheless allows to extract
the full memory contents of the encrypted VMs in plaintext. Our framework is further
capable of efficiently identifying and extracting specific resources, such as private and
symmetric keys, with a minimal footprint left behind. This is even feasible in productive
scenarios with the VM, such as a web server, being under high load. Our work raises
the awareness for the limitations of runtime memory encryption platforms. Further, our
work motivates the design of future architectures thwarting memory extraction vectors, an
aspect we cover as well by proposing possible solution approaches.

1.3 Publications and Contributions
The following lists and briefly summarizes the scientific publications and their contributions
with which we address the described challenges in the subsequent chapters of this work.
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Publication 1: A Secure Architecture for Operating System-Level Virtualization on
Mobile Devices

[Hub16a] Huber, Manuel et al.: ‘A Secure Architecture for Operating System-Level
Virtualization on Mobile Devices’. Revised Selected Papers of the 11th International
Conference on Information Security and Cryptology - Volume 9589. Inscrypt 2015.
Beijing, China: Springer-Verlag New York, Inc., 2016: pp. 430–450. isbn: 978-3-319-
38897-7. doi: 10.1007/978-3-319-38898-4_25. url: http://dx.doi.org/10.
1007/978-3-319-38898-4_25

With this work, we address Challenge 1. We designed a secure virtualization architecture,
which isolates system resources to inhibit potentially compromised parts of the system
from accessing other, protected resources. Our architecture builds on the OS-level virtual-
ization solution from [Wes13]. The virtualization allows to instantiate different isolated
execution environments, which we call containers and which share the same OS kernel. We
systematically isolated and constrained the containers to restrict adversaries exploiting a
container from accessing other containers’ resources. The platform ensures that the entities
exclusively communicate over well-defined and secured channels.

We realized the architecture with the implementation of a prototype for mobile devices
on the ARM platform [Fraa]. We leveraged and combined the underlying Linux kernel’s
security mechanisms. Our prototype operates multiple virtualized Android containers
where one container is running at the foreground and others in background. Our prototype
and its architecture comprise a fully working implementation where we also solved the
challenges of secure hardware resource virtualization and secure foreground-background
container switching, always considering that one or more containers may be compromised.
In our security evaluation, we showed how the architecture efficiently protects containers
with confidential data from remote attackers trying to extract resources.

Contribution 1: A secure OS-level virtualization architecture for resource isolation.
Contribution 2: Implementation of the secure architecture for mobile devices running

Android containers.

Publication 2: Improving Mobile Device Security with Operating System-level Virtu-
alization

[Wes15] Wessel, Sascha et al.: ‘Improving Mobile Device Security with Operating
System-level Virtualization’. Computers & Security. Vol. 52. C. Oxford, UK:
Elsevier Advanced Technology Publications, July 2015: pp. 207–220. doi: 10.1016/
j.cose.2015.02.005. url: https://doi.org/10.1016/j.cose.2015.02.005

This work represents an extended version of the former conference paper [Wes13] under
the same title. With this work, we address Challenge 2. The conference paper presented
the OS-level based concept for realizing Android containers sharing the same OS kernel.
We extended the conference paper with a holistic security concept to apply the mobile

https://doi.org/10.1007/978-3-319-38898-4_25
http://dx.doi.org/10.1007/978-3-319-38898-4_25
http://dx.doi.org/10.1007/978-3-319-38898-4_25
https://doi.org/10.1016/j.cose.2015.02.005
https://doi.org/10.1016/j.cose.2015.02.005
https://doi.org/10.1016/j.cose.2015.02.005
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device architecture in real-world ecosystems. We introduced a Secure Element (SE) for
two factor authentication to the system architecture, which each user must unlock to
start containers. Furthermore, we classified the different physical entities and software
components, for example, the backend, users, containers, and devices, and systematically
secured their relationships based on a Public Key Infrastructure (PKI). An example is
to achieve the confidentiality, integrity and authenticity of containers with a concept for
container software signatures and container storage encryption. We furthermore presented
an applicable provisioning, enrollment and management process for devices and their
assigned users.

Contribution 3: Security concept for the application of the secure virtualization archi-
tecture for mobile devices in operational end user ecosystems.1

Publication 3: An Ecosystem and IoT Device Architecture for Building Trust in the
Industrial Data Space

[Bro18] Brost, Gerd S. et al.: ‘An Ecosystem and IoT Device Architecture for Building
Trust in the Industrial Data Space’. Proceedings of the 4th ACM Workshop on
Cyber-Physical System Security. CPSS ’18. Incheon, Republic of Korea: ACM,
2018: pp. 39–50. isbn: 978-1-4503-5755-5. doi: 10.1145/3198458.3198459. url:
https://doi.org/10.1145/3198458.3198459

This work transfers the secure virtualization architecture and its application concepts
previously designed for the mobile domain [Hub16a; Wes15] to embedded IoT platforms,
and thus addresses Challenge 1 and Challenge 2. The work also focuses on a specific
use case, the Industrial Data Space, a data exchange platform for organizations, where
embedded devices gather and exchange data with other devices in a distributed network,
for example, sensor or manufacturing data in Cyber-Physical Systems (CPS). We called
these devices trusted connectors, which can be regarded as IoT devices part of an untrusted
industrial ecosystem. We isolated the trusted connectors’ different services which gather
and process the data and which possibly originate from third parties. As the exchange
of data is a central point in IoT ecosystems, we provided a secure protocol to establish
mutual trust between connectors for the secure exchange of the confidential data between
connectors likely dispersed over different organizations. As end users are not part of the
usage model, we did not use a passphrase-based SE as trust anchor for the connectors, but
instead used a TPM with its sealing and attestation functionalities. Addressing Challenge
2, the work also focuses on identity management for the whole ecosystem, on connector
and service provisioning and their lifecycle to integrate the architecture into productive
industrial environments.

Contribution 4: Implementation of the secure architecture for embedded platforms and
application in industrial IoT environments.2

1 Joint work with Sascha Wessel who is the main contributor of the paper.
2 The first authors Gerd Brost and Manuel Huber contributed equally to the paper.

https://doi.org/10.1145/3198458.3198459
https://doi.org/10.1145/3198458.3198459
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Publication 4: A Flexible Framework for Mobile Device Forensics Based on Cold Boot
Attacks

[Hub16b] Huber, Manuel et al.: ‘A Flexible Framework for Mobile Device Forensics
Based on Cold Boot Attacks’. EURASIP Journal on Information Security. Vol. 2016.
1. New York, NY, United States: Hindawi Publishing Corp., Dec. 2016: 41:1–41:13.
doi: 10.1186/s13635-016-0041-4. url: https://doi.org/10.1186/s13635-
016-0041-4

In this work, we developed a framework for mobile device forensics based on the cold
boot attack addressing Challenge 3. For the memory extraction, we reboot devices into the
bootloader and start a minimalistic application instead of the Linux kernel on Android-
based systems, for example. The minimalistic application fills no more than a single page
in main memory mapped to a region where only constant and publicly known data of
the previously running system resides. From the perspective of memory attackers but
also forensic experts, the framework provides the possibility to systematically analyze and
extract the full and unaltered state of the previously running system. Based on a serial
connection, our minimalistic application takes memory requests from a remote forensic
host device and returns the requested memory chunks via the serial interface.

We showed how analysts can, for instance, first retrieve the list of running processes
and analyze the processes’ memory mappings to quickly access the regions where sensitive
material is located, such as username and password combinations for exchange accounts.
We demonstrated the practicality of our framework with prototypes for two different devices,
the Samsung Galaxy S4 and Nexus 5 phones. We also extracted sensitive key material of
the containers from the secure virtualization architecture for mobile devices. With this,
the framework emphasizes the urge for the protection of system resources against physical
adversaries.

Contribution 5: A forensic framework for memory extraction on mobile devices based
on the cold boot attack.1

Publication 5: Protecting Suspended Devices from Memory Attacks

[Hub17b] Huber, Manuel et al.: ‘Protecting Suspended Devices from Memory Attacks’.
Proceedings of the 10th European Workshop on Systems Security. EuroSec’17. Bel-
grade, Serbia: ACM, 2017: 10:1–10:6. isbn: 978-1-4503-4935-2. doi: 10.1145/
3065913.3065914. url: http://doi.acm.org/10.1145/3065913.3065914

In this work, we developed a main memory encryption architecture for platforms which
support full OS suspension and resumption to tackle Challenge 4. We primarily focused
on the x86 architecture with Linux-based OSs, and aimed to protect the main memory
of devices left unattended. During suspension, the architecture ensures the encryption of

1 Joint contribution with Benjamin Taubmann.

https://doi.org/10.1186/s13635-016-0041-4
https://doi.org/10.1186/s13635-016-0041-4
https://doi.org/10.1186/s13635-016-0041-4
https://doi.org/10.1145/3065913.3065914
https://doi.org/10.1145/3065913.3065914
http://doi.acm.org/10.1145/3065913.3065914
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the full memory of all processes on the system and only decrypts when the user provides
correct credentials upon resumption. This protects devices, such as laptops or desktop
computers, from memory attacks once fully suspended.

We implemented our prototype for the Linux kernel and provided a stable and real-life
applicable solution. Our design and implementation both leverage core concepts of OSs,
such as cryptographic functionalities, the memory management infrastructure and process
freezing capabilities. This makes the prototype easily deployable onto systems and can be
combined with a TPM for the hardware-based protection of the encryption key, preventing
brute-force attacks. The system automatically encrypts the memory when the device is
suspended or left idle for a certain amount of time. In order to restore the system, the
user has to provide the FDE passphrase. We also developed a concept to protect the full
memory of guest OSs, like Windows, based on our Linux prototype by transferring our
concepts into a Linux-based HV.

Contribution 6: A main memory encryption architecture for platforms with suspension
features.

Publication 6: Freeze and Crypt: Linux Kernel Support for Main Memory Encryption

[Hub18] Huber, Manuel et al.: ‘Freeze and Crypt: Linux Kernel Support for Main
Memory Encryption’. Computers & Security (2018), vol. 86: pp. 420–436. issn: 0167-
4048. doi: 10.1016/j.cose.2018.08.011. url: http://www.sciencedirect.
com/science/article/pii/S0167404818310435

To further address Challenge 4, we presented a main memory encryption architecture for
arbitrary process groups, for example, to protect VMs and container-based environments
from memory attacks. The architecture ensures to encrypt the memory of process groups
when freezing, i.e., suspending, a process group and ensures to decrypt the memory when
thawing the group, i.e., when resuming it. While our design is platform-independent,
we implemented a prototype for the ARM architecture on a Linux-based system. We
combined the prototype with our secure virtualization platform to encrypt suspended
Android containers. This results in a system protecting against both remote and physical
adversaries. We encrypt idle or background containers with an SE-backed key that is only
present during ongoing en- and decryption. Since encrypted containers are frozen and not
responsive, we extended the virtualization architecture to handle and display encrypted
containers’ incoming events, such as phone calls or data packets, to preserve the usability
of the system. To verify the effectivity of our memory encryption architecture, we acquired
memory with our cold boot-based memory extraction framework from the devices. The
extraction of sensitive data from suspended devices was no longer possible.

Contribution 7: A main memory encryption architecture on the granularity of process
groups, suitable for encryption of containers.

Contribution 8: Combination of the memory encryption architecture for containers
with the secure virtualization architecture for mobile devices.

https://doi.org/10.1016/j.cose.2018.08.011
http://www.sciencedirect.com/science/article/pii/S0167404818310435
http://www.sciencedirect.com/science/article/pii/S0167404818310435
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Publication 7: TransCrypt: Transparent Main Memory Encryption Using a Minimal
ARM Hypervisor

[Hor17] Horsch, Julian et al.: ‘TransCrypt: Transparent Main Memory Encryption
Using a Minimal ARM Hypervisor’. Proceedings of the 16th International Conference
on Trust, Security and Privacy in Computing and Communications. TrustCom
’17. Sydney, Australia: IEEE, Aug. 2017: pp. 408–417. doi: 10.1109/Trustcom/
BigDataSE/ICESS.2017.232

To address Challenge 4 with regard to platforms which do not necessarily suspend or
which do not even support suspension, we proposed an architecture for transparent runtime
memory encryption on the ARM platform. The architecture ensures the encryption of the
full memory of a single guest OS with a minimal HV transparent to the guest. The HV,
almost completely agnostic to the guest OS, leaves only a small amount of the currently
utilized memory unencrypted, the so-called working set of pages. The ephemeral key
resides in hardware-protected memory, which it never leaves, such as memory protected by
the ARM TrustZone. This architecture allows making a choice on the trade-off between
security and performance by keeping the amount of memory left unencrypted adaptable.
We implemented and evaluated the prototype on an embedded board running Android
and determined a plausible trade-off between security and performance.

Contribution 9: A runtime memory encryption architecture using a minimal hypervisor.1

Publication 8: SEVered: Subverting AMD’s Virtual Machine Encryption

[Mor18] Morbitzer, Mathias et al.: ‘SEVered: Subverting AMD’s Virtual Machine
Encryption’. Proceedings of the 11th European Workshop on Systems Security.
EuroSec’18. Porto, Portugal: ACM, 2018: 1:1–1:6. isbn: 978-1-4503-5652-7. doi: 10.
1145/3193111.3193112. url: http://doi.acm.org/10.1145/3193111.3193112

AMD Secure Encrypted Virtualization (SEV) provides a hardware extension for main
memory encryption for VMs. Mainly designed for VMs in (cloud) server systems, AMD
SEV includes a protocol to ensure clients that their VM runs encrypted on the host system
with SEV enabled. This protects the confidential data on guest VMs from a possibly
malicious HV and from physical attackers. Addressing Challenge 5 with this work, we
undermined this hardware security mechanism with a framework capable of extracting
arbitrary encrypted main memory pages of the protected guest VMs in plaintext. Our
framework makes it even possible to extract memory when the VM is under heavy load,
possibly in productive environments where many remote peers simultaneously request
resources. Our framework allows to fully extraction the memory of encrypted VMs running
on the servers. We implemented a prototype which realized the attack on real hardware,
AMD’s EPYC processor. With the framework, we showed that the AMD SEV technology

1 Joint work with Julian Horsch who is the main contributor.

https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.232
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.232
https://doi.org/10.1145/3193111.3193112
https://doi.org/10.1145/3193111.3193112
http://doi.acm.org/10.1145/3193111.3193112
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exposes design weaknesses exploitable in practice and pointed out the need to carefully
design memory encryption schemes withstanding attackers with HV privileges on the
system. We discussed several mitigation strategies to overcome the weaknesses.

Contribution 10: A main memory extraction framework for platforms with hardware-
based runtime memory encryption.1

Publication 9: Extracting Secrets from Encrypted Virtual Machines

[Mor19] Morbitzer, Mathias et al.: ‘Extracting Secrets from Encrypted Virtual Ma-
chines’. Proceedings of the Ninth ACM on Conference on Data and Application
Security and Privacy. CODASPY ’19. Richardson, Texas, USA: ACM, 2019:
p. 10. isbn: 978-1-4503-6099-9. doi: 10.1145/3292006.3300022. url: https:
//doi.org/10.1145/3292006.3300022

To further address Challenge 5, we extended the main memory extraction framework
for hardware-based runtime encryption platforms with a method to specifically extract
a VM’s most valuable resources, such as Transport Layer Security (TLS), Secure Shell
(SSH) or FDE keys. When targeting specific resources, the prior framework for memory
extraction likely requires a considerable amount of time until the desired secrets are
extracted and leaves a large footprint due to the many repeated requests for data. We
extended the framework with the capability to extract targeted resources while requiring
minimal interaction with the target system and leaving only a minimal footprint. By
observing the page access types and timings of the guest VM in the HV, we recognized
the relevant memory pages and specifically extracted them. An example is to observe a
single TLS handshake from the outside while recording the VM’s page accesses, and to
then extract a specific subset of the pages the VM accessed during the recording phase.
This extension of the framework makes it possible to extract sensitive key material in less
than a minute with a drastically reduced amount of requests to the VM, making the attack
inconspicuous and especially feasible in productive server environments.

Contribution 11: A method for the efficient extraction of targeted secrets from platforms
with hardware-based memory encryption.2

Publication 10: A Lightweight Framework for Cold Boot Based Forensics on Mobile
Devices

[Tau15] Taubmann, Benjamin et al.: ‘A Lightweight Framework for Cold Boot Based
Forensics on Mobile Devices’. Proceedings of the 2015 10th International Conference
on Availability, Reliability and Security. ARES ’15. Washington, DC, USA: IEEE
Computer Society, 2015: pp. 120–128. isbn: 978-1-4673-6590-1. doi: 10.1109/ARES.
2015.47. url: https://doi.org/10.1109/ARES.2015.47

1 Joint work with Mathias Morbitzer who is the main contributor.
2 The first authors Mathias Morbitzer and Manuel Huber contributed equally to the paper.

https://doi.org/10.1145/3292006.3300022
https://doi.org/10.1145/3292006.3300022
https://doi.org/10.1145/3292006.3300022
https://doi.org/10.1109/ARES.2015.47
https://doi.org/10.1109/ARES.2015.47
https://doi.org/10.1109/ARES.2015.47
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This is the conference paper version of the journal paper on our cold boot framework
[Hub16b]. The conference paper covers a subset of the contents from the previously
described journal paper.

Publication 11: Freeze & Crypt: Linux Kernel Support for Main Memory Encryption

[Hub17a] Huber, Manuel et al.: ‘Freeze & Crypt: Linux Kernel Support for Main
Memory Encryption’. 14th International Conference on Security and Cryptography.
SECRYPT 2017. Madrid, Spain: ScitePress, 2017: pp. 17–30. isbn: 978-989-758-
259-2. doi: 10.5220/0006378400170030

This is the conference paper version of the journal paper on our main memory encryption
architecture for process groups [Hub18]. The conference paper covers a subset of the
contents from the previously described journal paper.

Publication 12: Dominance as a New Trusted Computing Primitive for the Internet
of Things

[Xu19] Xu, Meng et al.: ‘Dominance as a New Trusted Computing Primitive for the
Internet of Things’. Proceedings of the 2019 IEEE Symposium on Security and
Privacy. SP ’19. San Francisco, CA: IEEE Computer Society, 2019

This paper defines a new trusted computing primitive, called dominance, for the internet
of things. The central goals of dominance are device recoverability and availability.
Dominance allows a remote administrator to recover compromised or malfunctioning
devices within a bounded amount of time. Dominance even enables the eviction of malware
on devices, which runs on the highest privilege level and which actively refuses updates. This
is of special importance in settings where a large number of devices is spatially dispersed.
While manual repair can lead to a time-consuming and expensive recovery process, an
automatted remote recovery can effectively reduce cost, time and bring otherwise bricked
devices back to their original mission.

We decomposed dominance into two simpler primitives, the gated boot and the reset
trigger primitives. Gated boot ensures that only the software that is authorized by the
administrator is ever booted on the device. In order to protect the code and data of gated
boot, we introduced so-called latches. Latches are either in locked or unlocked state. Once
locked, latches effectively fulfill a security function until the next reset of the device. In the
simplest case, the functionality of a latch is to prevent accesses to certain memory range
until the next reset. Once gated boot passes control to untrusted software, it latches its
memory regions.

The reset trigger primitive enforces that the device can always be reset by its administrator
within a bounded amount of time. A reset trigger can be realized with an Authenticated
Watchdog Timer (AWT). An AWT resets the device after a certain amount of time unless
the administrator issues the AWT an authenticated ticket, which extends the time until
reset. The AWT is isolated from possibly malicious software at runtime, for instance,
as a separate hardware implementation, or implemented in TrustZone. We implemented

https://doi.org/10.5220/0006378400170030
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dominance on three popular IoT devices, on the i.MX6 HummingBoard, the Raspberry Pi 3,
and an STM32L4 microcontroller, ranging from high to low end devices. In our evaluation,
we showed that the overhead of our prototypes is negligible and that our concept can be
realized in practice.

Publication 13: Cryptographically Enforced Four-Eyes Principle

[Bil16] Bilzhause, Arne et al.: ‘Cryptographically Enforced Four-Eyes Principle’. 11th
International Conference on Availability, Reliability and Security (ARES). IEEE,
Aug. 2016: pp. 760–767. doi: 10.1109/ARES.2016.28

In this work, we introduced a formal framework, which enforces the four eyes principle
(4EP), a control and authorization principle to minimize the likelihood of forging bogus
data in networks. Our framework comprises cryptographic security definitions capturing
the main idea of the 4EP and uses Sanitizable Signature Schemes (SSS) to design a provably
secure construction meeting the requirements of the 4EP.

1.4 Outline
This thesis is organized as follows. We first introduce a system architecture and attacker
model in Chapter 2 to give an overview on the general system layout serving as the basis for
the subsequent chapters, as well as to provide a unified understanding of the attacker and
of the problems to be solved. Afterwards, we focus on the previously described challenges
in Chapter 3 to Chapter 6. Each of those chapters introduces the specific challenge and
contributions in more depth and provides an overview on related work. Where necessary,
the chapters additionally provide a brief background.

Chapter 3 presents our OS-level virtualization-based architecture for the isolation of
system resources to tackle Challenge 1. We first realize the architecture for mobile devices
and describe its integration into productive end user environments, providing a solution for
Challenge 2. Based on that, we also realize an architecture for embedded use cases without
end users and describe its integration into untrusted environments in the industrial IoT.

We present our main memory extraction framework based on the cold boot attack,
referring to Challenge 3, in Chapter 4.

Chapter 5 focuses on Challenge 4, the architectural design to defend against memory
attacks. We start with a main memory encryption architecture for devices, which support
suspension, such as notebooks and desktop computers. Then, we introduce our main mem-
ory encryption architecture for process groups and combine it with the secure virtualization
architecture for mobile devices to protect suspended Android containers. This results in
an architecture for main memory encryption for systems which are not designed to fully
suspend, such as smartphones processing background events during phases of inactivity.
We also develop a runtime memory encryption architecture that additionally supports
systems not suspending.

In Chapter 6, we cover Challenge 5, the extraction of main memory from hardware-based
runtime memory encryption platforms. We first present the framework we designed for
the extraction of full memory dumps from encrypted VMs. We extend that framework by

https://doi.org/10.1109/ARES.2016.28
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introducing methods to directly extract specific assets with a reduced footprint instead of
acquiring full memory dumps.

We finally draw our conclusions and point out future research directions in Chapter 7.



CHAPTER 2
System Architecture and Attacker Model

In the following, we introduce a generic system architecture and attacker model as basis
for the remainder of the thesis. Based on that, we also sketch existing defense mechanisms
and briefly relate the defense mechanisms we propose in this thesis to the attacker model.

2.1 System Architecture
With the introduction of a generic system architecture, we provide a unified view on a
computing device’s hardware components and software stack used as common basis for the
later chapters. Furthermore, this helps relate the attack vectors resulting from the attacker
model we introduce to the architecture.

Our system architecture considers computing devices that are both remotely and phys-
ically accessible to attackers. These are widely used devices based on the prevalent
architectures, such as x86- or ARM-based devices. We focus on devices with sufficient
storage and memory, such as on Cortex-A processors, that can host a complex execution
environment, for instance, Linux-based OSs. We differentiate between devices designed for
end users, i.e., smartphones, tablets, desktop computers, or notebooks, and devices applied
in environments without end users. The latter can be devices deployed in an industrial
setting, such as gateway devices connecting enterprises and facilities to the internet of
things. We assume that the devices store and process confidential data that needs to be
protected from adversaries. These data can be manufacturing plans, cryptographic key
material, sensitive documents, or user credentials, just to name a few.

Despite the devices possibly being used in different ways and environments, we abstract
with our system architecture from particular usage characteristics or peripherals. We
assume that devices typically interact with their users or communicate with other devices.
For this purpose, the devices expose interfaces for the communication to the outside,
either for direct interaction with users, for remote communication within a network, or to
communicate with other devices in the proximity. These interfaces may be Wi-Fi, USB,
LAN, bluetooth, or radio interfaces, for instance. This not only makes the devices remotely
available and possibly connect to untrusted networks, such as the internet, but also makes
them physically attachable.

Figure 2.1 illustrates an abstract hard- and software stack for our system architecture.
The software layer consists of a complex OS with middleware and different applications on
top. This may, for instance, be an Android OS with several apps running, or a Linux kernel
with several user space functionalities. The Trusted Computing Base (TCB) typically
involves the layers highlighted in gray colors. Secrets relevant for attackers can be processed
and stored on any layer of the software stack, such as by user space processes or in the form
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Figure 2.1: Abstract view on the hard- and software stack of our system serving as basis for
the proposed security architectures and memory attacks.

of kernel objects. From the hardware-perspective, Figure 2.1 illustrates various generic
interfaces of a computing device, as well as RAM modules and persistent storage, where we
assume that the sensitive secrets are stored. In case of RAM modules, the stored data is
volatile, but present as long as the system is powered and as long as data is not specifically
erased or overwritten. For persistent storage, we assume for the remainder of the work
that storage volumes with confidential data are properly secured with state-of-the-art FDE.
This makes an attacker with physical access to the storage drive unable to read out the
plaintext contents of the storage volume, unless not in possession of the FDE key. Secrets
may also be temporarily present in other locations, such as registers or caches, which are
aspects this thesis does not cover.

Figure 2.2 provides an abstract, hardware-centric view of our system architecture, showing
a device with several interfaces and hardware peripherals. With the illustration, we put the
focus on sensitive data possibly stored in the RAM modules. Data in main memory can be
accessed via software running on the main CPU, or via firmware running on peripheral
components with access to the system bus, such as the Graphics Processing Unit (GPU).
Peripheral components can also represent the interfaces to the outside, such as a Wi-Fi
chip, PCIe controller or a JTAG/UART interface, as shown in in Figure 2.2. Depending on
the type of interface and on the control the attacker has over the interface, the interfaces
can either allow attackers direct access to main memory, or allow to interact with the OS
and its user space components. Note that we refine this generic system architecture in
subsequent chapters where necessary and that we assume that the OS encrypts persistent
storage.
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Figure 2.2: Hardware-centric view of our system architecture.

2.2 Attacker Model
This thesis focuses on the protection of the confidentiality of data stored on computing
devices. We thus do not seek to defend against Denial of Service (DoS) attacks, and not
explicitly against attacks on control flow integrity, for example. Note that to reach the
goal of obtaining confidential data, an attacker might violate control flow integrity, though.
The protection of confidential data is retained as long as an integrity violation does not
yield the attacker access to confidential data.

In turn, this means that the goal of the attacker is to read out confidential data in
plaintext from main memory or persistent storage on our devices. Confidential data may,
for example, entail cryptographic key material, documents, credentials, or images. The
disclosure of confidential data has an adverse impact across the boundaries of the system.
From this point on, we consider confidential data to form a subset of a system’s sensitive
data. Sensitive data refers to segments of main memory which are, for instance, crucial to
the security of the system itself. An example is data that needs to be protected to preserve
the integrity of the OS, such as kernel structures.

In Section 2.2.1, we define the different attacker types relevant for the thesis. We describe
resulting attack scenarios in Section 2.2.2.

2.2.1 Attacker Types
In our attacker model, we differentiate between three attacker types aiming at confidential
data, each of which has different capabilities.

Physical Attacker. This type of attacker has physical access to the full system. The
attacker can launch cold boot and DMA attacks and access all the physical interfaces
the system exposes, such as debug interfaces, or interfaces for peripheral hardware.
Furthermore, the attacker can dismount removable components. Our assumption
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that persistent storage is properly encrypted prevents physical attackers from directly
reading out all contents on persistent storage. In order to violate data confidentiality,
the attacker thus targets the contents of main memory.

Local Attacker. The local attacker has local privileges on the running system, but is due to
common access control mechanisms restricted from accessing the desired confidential
data. This means that the attacker can execute code and access data within the
privilege boundary enforced by the OS. The attacker can try to escalate privileges by
exploiting software flaws, i.e., to execute runtime attacks on the TCB. Only when this
succeeds, the attacker can read out confidential memory according to the privileges
achieved. The local attacker may not only act from a remote position, but may
in addition be physically present. However, the attacker can only benefit from the
physical presence by making use of the common interfaces for end users, such as
the touchscreen, keyboard strokes, or common USB interface functionality. This
restriction separates the definition of the local attacker from the physical attacker’s.

Remote Attacker. In contrast to the local attacker, the remote attacker starts without
any privileges on a running, non-compromised system. Like the local attacker, the
remote attacker may also be physically present. The remote attacker can try to
gain privileges with remote exploits targeting the different layers of the system’s
software stack. The attacker can communicate with the system via its communication
interfaces, for example, via remote or LAN connections, or via protocols over a radio,
Wi-Fi, or bluetooth hardware interface. When the attacker gains control over an
application on user-level, for example, because it incorrectly processes incoming data
packets, this results in local privileges providing the capabilities of a local attacker.
Note that the attacker may not only try to compromise the runtime environment on
the application processor, but also send malicious data to peripheral devices in order
to obtain access to confidential data. These may have their own runtime environment,
such as firmware on a Wi-Fi chip, and have access to main memory.

We assume the following capabilities to be out of scope for all described attacker types:

Breaking cryptographic primitives. The attacker is not able to break properly applied state-
of-the-art cryptographic primitives. This capability is reserved to parties with access
to extraordinary computational resources, such as governmental bodies, or parties
with undisclosed knowledge about cryptographic flaws and backdoors.

Physical lab and complex side-channel attacks. The attacker is unable to execute sophisti-
cated physical lab and side-channel attacks on hardware elements. This exclusion
comprises other physical attack vectors than those described. We thus exclude,
for example, cache attacks, fault attacks, microprobing attacks, as well as complex
software- or hardware-based side-channel attacks like attacks exploiting speculative
execution or power consumption and timing. It is important to provide countermea-
sures against these attacks acting on the specifics of the hardware layer and design.
There exists a vast body of work in this topic, which we leave out of scope and which
may complement the mechanisms we propose.
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Figure 2.3: Possible exploitation paths for acquiring privileges as a local or remote attacker.

Together with having storage properly encrypted, this implies that the attacker can
target confidential data only in main memory. The attacker can access the data either
via a physical channel or in software with sufficient privileges. This also implies that
we may assume that hardware protection mechanisms securely store confidential data.
An example is data in caches, on-chip memory, such as in iRAM, or data protected
with the ARM TrustZone, or key material located in an SE.

2.2.2 Attack Scenarios
In the following, we present the different attack scenarios on confidential data on the
basis of the capabilities and limitations of the introduced attacker types. We also provide
illustrations with different views on our system architecture to emphasize the shortcomings
of common systems.

2.2.2.1 Scenario 1: Software Exploits
Figure 2.3 comes back to the software-centric view on a device with a user-level, or
application-layer, a middleware, a kernel and an abstract hardware layer. User applications
run on the topmost layer and usually have least privileges. This is the starting point
of a local attacker trying to exploit other processes or layers. The local attacker, as
depicted on the top middle layer, can try to exploit other application-layer processes, the
middleware or the kernel. The interaction with other layers involves their typical resources,
for example, libraries, services, drivers, or kernel objects. The interaction can be made
via system or library calls, Inter-Process Communication (IPC) or or kernel interfaces, for
instance. The middleware layer consists of usually higher privileged system services or
library functionalities, which, for instance, facilitate the communication with the kernel
or with external entities. Control over the kernel layer entails the full set of privileges.
Depending on the targeted data, gaining control over another user space process may be
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Figure 2.4: Scenarios for memory attacks circumventing OS and CPU protection mechanisms.

sufficient, or require a kernel exploit.
Communication from outside via a hardware interface usually involves the kernel including

drivers and the middleware layer. In case an application on user-level communicates, data
and code flow first traverses these layers, as depicted in Figure 2.3. A remote attacker,
bottom left, can thus try send rogue data to exploit one of the involved software layers
over any available interface. We consider software exploits on the runtime environment
of the system running on the application processor as indirect attacks on memory. The
attacker first acquires a higher set of privileges and then uses the acquired privileges to
access memory. This means that the local or remote attackers first have to bypass certain
security mechanisms of the OS to access the targeted data.

Figure 2.3 omits direct attacks on memory via software exploits, because it focuses
on the scenario of exploiting the runtime environment on the application processor. In
general, a remote attacker can also try to exploit peripheral firmware on the lowest layer,
for example, to reach code execution on a Wi-Fi chip when it processes incoming data. We
consider these direct attacks on memory, which we cover in the following two scenarios.

2.2.2.2 Scenario 2: DMA Attack
A DMA attack refers to the scenario where an attacker makes use of DMA-capable
peripheral devices to directly access the system’s memory without involving the CPU. This
path circumvents the security mechanisms of the OS, not requiring to gain privileges on the
running OS. This scenario mainly refers to physical attackers, but with remote exploits for
externally communicating DMA devices, DMA attacks can also be carried out by remote
and local attackers. Figure 2.4 illustrates this setting, showing attack scenarios on DMA
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Figure 2.5: Boot procedure of a system and memory attacks via different cold boot paths.

devices and peripherals. These devices are, like the main application processor, connected
with the system bus and in turn to the RAM modules. One attack path, illustrated on the
top right hand side, is to attach to a physical interface that is DMA-capable, for instance,
to the PCIe interface. When attached, some systems allow direct access to arbitrary main
memory, such as kernel or process memory, instead of exclusively to DMA memory. This
direct access is illustrated with gray-dashed arrows.

As mentioned, a DMA attack can also be realized by remote and local attackers. A
remote attacker can, for instance, try to exploit the firmware of the device’s Wi-Fi [Embb;
Exo] or bluetooth peripheral [Mica] by sending rogue data. The attacker can in turn use
the peripheral’s DMA capability for direct access to main memory. A local attacker can
try misuse or exploit DMA devices accessible within the privilege boundary, such as the
GPU, to access arbitrary memory.

Figure 2.4 also illustrates the case where a physical attacker might attach to debug
interfaces other than DMA peripherals. The JTAG debug interface is a feature that the
system’s CPU may have enabled and may be exploited when the interface is accessible
from outside. This also provides direct access to main memory, but is not a DMA attack,
as the CPU is involved. Another non-DMA means to get access to main memory is the
Universal Asynchronous Receiver Transmitter (UART) debug interface. However, this
interface needs to be configured by kernel, which is also involved in UART communication.
Note that attackers can also launch bus monitoring attacks [EPN; Fut] to get access to
main memory contents.

2.2.2.3 Scenario 3: Cold Boot Attack
Another path to directly access the main memory of a device is the cold boot attack.
Compared to the other two scenarios, this scenario only applies for physical attackers.
Like in the DMA attack case, the attacker does not need to acquire privileges on the
running system. Figure 2.5 illustrates the cold boot attack paths with a view on a booting
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device. On systems where RAM modules are not soldered, an attacker can remove the main
memory module to read out all the module’s contents on an attacker-controlled device,
depicted on the bottom center part. Memory contents fade over a function of time and
temperature while non-powered, resulting in loss of information upon removal [Gut01]. On
systems with RAM modules soldered on-chip, removal is however not possible.

The boot-time perspective on a device in Figure 2.5 emphasizes that a cold boot attack
can also be executed during the boot process of the system. When causing a reboot of the
system, an attacker has a fair chance that the contents of main memory do not fade at
all, as the memory may be continuously supplied with power. While only the bootloader
and initial firmware, or ROM code, is executed, most of the main memory contents of
the previously running system still exist and are likely not to be overwritten before the
kernel and user space processes start. This is why the attacker who does not remove RAM
modules typically tries to gain control over the system before the OS kernel is loaded. On
some systems, the first point of user interaction is even before the firmware starts the boot
loader. After basic hardware initialization, the initial firmware chooses the boot option in
that case, depending on which devices are present. This gives the attacker the opportunity
to boot from another device and to directly load attacker-controlled code. In case the
firmware loads a fixed bootloader, the attacker can still try to influence the system to make
the bootloader not load the common OS kernel, but instead attacker-controlled code. We
show how this can be carried out on mobile devices in Chapter 4.

2.2.2.4 Outlook on Defenses
Having described the system model and attacker, we give a brief overview on state of
the art mitigations for the presented attack scenarios and outline how we defend systems
against the introduced attacker with our contributions.

Software Exploitation
A huge variety of defense mechanisms against software exploits exists in both practice and
academia, implemented in different layers of the software stack, such as compiler-based or
binary load-time approaches enforced by the OS. The enforcement of these mechanisms
often depends on the platform the software stack is deployed onto and on the particular
OS, such as stack canaries, ASLR, DEP enforcement, or control flow integrity mechanisms.
The bottom line is that these mechanisms are often circumvented by attackers, which we
discuss in more depth in Chapter 3. We assume that state of the art mechanisms are
present in the systems we consider.

A possibility to increase the security of systems is to isolate attackers based on OS-level
virtualization. OS-level virtualization allows to run multiple userland instances of an OS in
parallel on a single, shared kernel and can thus be regarded as an OS kernel functionality.
We pursue this approach in Chapter 3 in combination with system hardening to develop
secure OS-level virtualization-based architectures. Figure 2.6 briefly sketches our approach
and emphasizes the isolation of attackers with the bold elements. This makes it more
difficult for local and remote attackers to exploit the hardened OS kernel, and in case
the attacker acquires control over applications or over the middleware, the attacker still
remains isolated in the respective userland instance without access to other instances that
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Figure 2.6: System architecture providing resilience against runtime attacks and direct
attacks on memory.

may contain the targeted confidential data.

DMA and Cold Boot Attacks
An effective countermeasure against DMA attacks can be to attach an I/O Memory
Management Unit (IOMMU), also known as system Memory Management Unit (MMU),
to DMA-capable devices. The IOMMU represents an MMU for I/O devices. The CPU
can configure the IOMMU upon system start to restrict a DMA device or interface to
only access specific DMA memory ranges. However, it has been shown that devices have
frequently been incorrectly configured or are missing IOMMU protection.

A defense to overcome cold boot attacks is on the one hand to solder RAM modules
onto the CPU package, making them irremovable. Another way to mitigate the effect of
cold boot attacks is, besides ensuring to load only authenticated software, to clear contents
of main memory in the initial firmware, or in the bootloader. Despite these possibilities,
modern systems are still vulnerable to the cold boot attack, which we show in Chapter 4.

Figure 2.6 also shows our approach to mitigate DMA and cold boot attacks, namely with
RAM encryption on kernel-level, which we present in Chapter 5. Note that our architecture
makes DMA attacks futile only in case of a reading memory attacker. A writing memory
attacker interacting with a running system may be capable of modifying the OS and is
especially hard to defend against. We address this point in our security discussions in
our chapter about main memory encryption architectures. Even hardware architectures
transparently encrypting main memory to prevent direct attacks on memory can only
provide limited protection, which we emphasize in Chapter 6.

The presented attacker and system model lays the foundation for our security architectures
and main memory extraction frameworks we explore in the following. We refine the attacker
model according to the specific system setting and use case where necessary.





CHAPTER 3
OS-Level Virtualization Architectures for Secure Resource Isolation

This chapter covers our contributions for Challenges 1 and 2. These are, first, the design
of architectures for the secure isolation of system resources and, second, the application of
such architectures in productive environments. We first focus on Challenge 1, where we
start with the design of an OS-level virtualization architecture for the secure isolation of
system resources on mobile devices. The architecture protects the confidentiality of data by
separating the system into different, isolated containers. This prevents possibly malicious
containers from accessing data of other containers with sensitive contents. With the
implementation of this architecture for containers running the Android OS on ARM-based
mobile devices, this part reflects Contributions 1 and 2, which we describe in Section 3.3.

An implementation of prototypes for the virtualization architecture alone is not sufficient
for its application in real-life environments. In particular, its applicability requires secure
management of the whole device lifecycle, the topic reflected by Challenge 2. These
environments require, for instance, concepts for the secure provisioning and enrollment of
devices for end users, identity management, or the attachment to a backend for remote
device management, especially for software updates. In Section 3.4, we therefore present
Contribution 3. We develop a holistic security concept for the application of the secure
virtualization architecture on mobile devices in productive end user environments. An
example for a use case is a corporation providing employees smartphones with a container
for business use and thus with sensitive contents, and a container for private use. For
instance, this makes the possession of a separate business device with limited functionality,
to keep business data secure, obsolete.

While Section 3.3 focuses on the design of the architecture for mobile devices where
mechanisms for secure hardware device virtualization and user-based secure container
switching are required, the isolating primitives of the architecture themselves are not tied to
the mobile domain. The architecture design can also be transformed for use on traditional
devices, or on embedded systems without end users, and be applied in respective other
ecosystems, such as in industrial IoT ecosystems. We pursue this with Contribution 4. For
that purpose, we transform the architecture design for use on environments without user
interaction and implement it for different embedded hardware platforms in Section 3.5.
Furthermore, we develop a security concept for managing the lifecycle of devices in IoT
ecosystems running our virtualization architecture. This results in a trust ecosystem for
the internet of things where devices are interconnected and form a distributed network for
securely exchanging confidential data. This complements our elaborations from Section 3.4,
which focus on a secure ecosystem with end users.

25
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With these contributions, we increase the protection of systems from the local and
remote attacker introduced in Chapter 2 and extend the therein introduced generic system
architecture.

An overview on related work in Section 3.1, a brief background on Linux kernel mecha-
nisms for OS-level virtualization in Section 3.2, and a subsequent summary in Section 3.6
complement our work on the resource-isolating security architectures in Section 3.3 to 3.5.

The following contributions can also be found in the publications [Bro18; Hub16a; Wes15].
Contributions 1 and 2 resulted from joint work with the co-authors Sascha Wessel, Michael
Weiss, Julian Horsch, and Michael Velten [Hub16a; Wes15] and stem from previous work
on OS-level virtualization [Wes13]. Contribution 3, part of the contents found in [Wes15],
was co-developed with Sascha Wessel. In addition to the mentioned authors, Contribution
4 resulted from joint work with Mykolai Protsenko, Gerd Brost and Julian Schütte. All
authors collaborated in the development of the concepts and implementations.

3.1 Related Work
The necessity for exploring novel approaches to protect data confidentiality results from the
numerous attacks on today’s interconnected devices, especially on widespread platforms like
Android [Fel11; Pen14; Poe14; Zho12]. Another threat for confidentiality pose applications
that actively leak sensitive data [Enc10]. Various approaches for security enhancements
on Android have been presented, such as in [Alm14; Bac14; Chi11; Enc09; Ong09]. These
approaches focus on the middleware layer to, for example, reach fine-grained control over the
OS permission system [Bac14; Ong09], to restrict applications from OS resources [Chi11;
Enc09], or to harden the OS [Alm14]. Introducing security mechanisms on the large
middleware layer often results in a highly complex system, in a large TCB and in a highly
OS-specific solution, not easily portable and dependent on specific versions of the OS.
Virtualization techniques enable to create isolated environments and can help overcome
these problems not only on mobile devices, but on many platforms. In the following, we
discuss related work on different virtualization techniques, whereby we focus on OS-level
virtualization.

Virtualization Techniques
We discuss three different approaches to virtualization, namely user level isolation, system-
and OS-level virtualization. User-level isolation [Bug11; Bug13; Rus12] is an approach to
create separate environments through isolating applications on the framework level. A
successful attack on privileged processes still results in gaining full control over the system.

System virtualization [Dal14; Hwa08; Ros12] is a wide spread mechanism and provides
full OS virtualization including the kernel, depicted on the right side of Figure 3.1. An
advantage of system virtualization is that it can, depending on the use case, be realized
with a small HV and thus result in a system with small TCB. However, the approach is
strongly hardware dependent, because drivers have to be reimplemented for all hardware
devices. Currently used open-source implementations for embedded systems are, for
example, KVM [Dal14] or Xen [Bar03; Hwa08]. Even though current embedded CPUs
more and more support hardware-assisted system virtualization, the performance overhead
compared to native execution could be a crucial issue in embedded systems. Another
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Figure 3.1: Overview on the software layers of a system with OS-level virtualization (left)
and with system virtualization (right).

issue of full system virtualization is the overall system boot time, for instance, for IoT
devices when frequently switching between power on/off states and booting the system
from scratch.

OS-level virtualization, or container-based virtualization, aims to solve the shortcomings
of user-level isolation and system virtualization. Depicted on the left side of Figure 3.1,
OS-level virtualization separates userland OS instances running on a single modified
kernel, which is responsible for resource virtualization. When properly virtualized, an
attacker needs to compromise the kernel to break out of a container. Achieved with LXC,
Jails [Kam00], Docker [Mer14], OpenVZ, or Linux-VServer, the technique is established on
x86 and considered efficient [Res14; Xav13]. For Docker containers, Felter et al. [Fel15]
showed that the performance overhead is negligible compared to native execution. Secondly,
containers boot much faster than virtual machines [Seo14], since they do not have to
run a whole new kernel for each virtualized environment. That is why we decided to
design a container-based architecture instead of using full system virtualization. Due to
the bootstrapping and performance advantage, container-based virtualization found wide
application for server virtualization in cloud-based use cases [Ber14; Ger14; Pah15; Pei16].
Lately, Kaur et al. [Kau17] proposed an architecture called Container-as-a-Service which
utilizes container-based virtualization as efficient approach for nano data centers.

In contrast to solutions like Docker, our virtualization approach specifically aims to
reduce and modularize the TCB as well as the complexity of the overall virtualization
infrastructure. In our architecture, we move critical functionality not necessarily required
in the privileged virtualization layer to a separate container. Despite that this separate
container is more privileged than other containers, the container is isolated from the
virtualization layer and may only interact with it via a well-defined channel. Further, our
proposed architecture provides a holistic security concept from software signing, build,
deployment, rollout and operation, and leverages platform capabilities to build a secure
platform as basis for the OS-level virtualization architecture [Fraa; Frab]. As we design
our architecture for mobile devices and for embedded device use cases in the IoT, we now
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discuss OS-level virtualization in these areas in more detail.

OS-Level Virtualization on Mobile Devices
Cells [And11] is an OS-level virtualization approach for Android mobile devices. The
authors introduce device namespaces to provide a framework for device driver virtualization
on kernel-level. Device namespaces multiplex hardware driver states on a per-container
basis. With the concept of active device namespaces, drivers are made aware of the current
active namespace, i.e., the foreground container. The work puts the main focus on realizing
the functionality, but lacks the consideration of security aspects. No secure architecture is
provided and data confidentiality is not discussed.

Based on Cells, Condroid [Che15] puts the focus on efficiency. Device virtualization
is mostly realized in the Android framework. More OS resources are shared among the
containers, such as their read only parts and OS services. For container management,
the authors port LXC and run it in a single host Android in the root namespace. This
makes the solution highly specific to a certain OS version and blends domain isolation with
domain interaction, resulting in a weaker security model and a larger TCB.

AirBag [Wu14] leverages OS-level virtualization for a device model where probing
and profiling of untrusted applications can be done on the respective device itself. The
framework allows the user to install and execute new applications quarantined inside a
second, untrusted container. In contrast to our goal, their objective is the preliminary
analysis of Android applications before their execution in the trusted container.

The virtualization approach by Wessel et al. [Wes13] forms the starting point of our work.
The authors leverage mechanisms, like (device) namespaces and control groups (cgroups)
to realize the operation of different Android containers on mobile devices. The work lays
the foundation for our secure architecture. We extend the work with a systematic approach
for container isolation for achieving data confidentiality, and with mechanisms for secure
device virtualization and secure container switching on mobile devices, aspects which we
focus on in Section 3.3.

OS-Level Virtualization for IoT Devices
Mulfari et al. [Mul16] extended the container-based approach to embedded IoT devices,
which they call smart objects in a message-oriented middleware for a cloud architecture
named MOM4C [Faz13]. Their prototype for a smart object is a Raspberry Pi2 using
Docker for containerization. The same prototype is evaluated more generally regarding
container-based virtualization on IoT devices by Celesti et al. [Cel16].

In the context of IoT or embedded devices, nowadays further container-based solutions
exist, such as Pulsar Linux [Ash16] or balenaOS [Bal]. Pulsar uses LXC, while balenaOS is
based on Docker. However, those projects focus on the ease of deployment and developer
convenience, but not secure isolation and data integrity. The latter is what we are going to
focus on in Section 3.5.

3.2 Background on Linux Kernel Mechanisms for OS-Level Virtualization
In the following, we briefly introduce the Linux kernel mechanisms we leverage for our
OS-level virtualization architecture.
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Namespaces. Namespaces virtualize kernel resources for processes and are the foundation
for containers. These virtualized resources are, for example, mount points, or process
and user IDs. Groups of processes can be run in separate namespaces, making these
groups individual containers. The kernel resources each container, i.e., process group,
uses during runtime are then independent of processes in other namespaces, making
containers unaware of others. All properties and changes to these resources are
shared between the members of the same namespace, but inaccessible from outside
the namespace. For the mobile device case, device namespaces were additionally
introduced in [And11]. Device namespaces virtualize those hardware devices, for
which their driver is fully located in the kernel, for example, the alarm device or
input devices. This makes it possible to share hardware devices between containers.

Cgroups. The cgroups feature allows for flexible allocation and enforcement of policies
on the basis of process groups, i.e., containers, to constrain their access to system
resources. This makes it possible to form groups of processes and thus to enforce
container-specific policies. The cgroups features is split into several subsystems
representing the different policies, such as the CPU, memory, or devices subsystem.
For instance, the CPU and memory subsystems allow restricting containers to a
fixed share of CPU and main memory, preventing containers from exhausting other
containers’ resources. Another example is the cgroups devices subsystem which allows
to define hardware device access rules for process groups, constraining containers
from accessing certain devices.

Capabilities. Linux capabilities allow to restrict processes to fine-grained sets of permissions
for bypassing kernel permission checks. The set of all capabilities forms the root user
privileges set while a single capability represents a specific set of permissions. Each
permission refers to one or more security-critical actions on kernel objects, such as
the creation of special files or setting the system clock. Dropping capabilities allows
to revoke permissions from processes or process groups. Especially, this allows to
constrain privileged processes from bypassing the kernel permission checks. We use
capabilities to further constrain containers and to restrict critical components from
privileges that are not necessary for their operation.

Linux Security Modules. The Linux Security Modules (LSM) infrastructure of the Linux
kernel provides a means to enforce custom policies on kernel objects by introducing
hooks at critical points of execution, for instance, inside system calls. These hooks
are callbacks, which are triggered at the respective point of execution. An LSM
realization implements code at these hooks in order to enforce protection policies.
This, for instance, enables us to implement an LSM aware of namespaces that
distinguishes between containers and enforces different policies depending on the
container. Existing LSM implementations, part of mainline kernels, are SELinux,
Tomoyo, SMACK, or AppArmor, for example. AppArmor is shipped and enabled
on modern Ubuntu versions and controls specific processes according to AppArmor
policies explicitly written for the controlled processes [Ubu]. Android uses SELinux
since version 4.3 for application sandboxing [And].
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3.3 Design of the Secure Virtualization Architecture for Mobile Devices
In this part, we present our secure virtualization architecture for mobile devices and ensure
data confidentiality at container boundaries. The protection of data is especially necessary
for the mobile domain, because today’s mobile devices are not only widely used, but
also represent a fingerprint of their users. Essential corporate and private data is likely
to be found on those devices, rising the necessity to carefully consider security aspects,
such as data confidentiality protection. The prevalence of only few OSs, and the pace of
their development make them prone to getting targeted by attackers [Bec11; Fei15]. The
abundance of security issues made these devices vulnerable to a large number of attacks
[Fel11; Pen14; Poe14; Zho12]. While efforts were made to mitigate the susceptibility towards
common attack vectors [Alm14; Bac14; Chi11; Enc09; Ong09], none of the approaches
features an overall secure architecture for data confidentiality. A promising way to approach
data confidentiality is to provide multiple, virtualized containers with separated usage
contexts on a single mobile device [Bra08].

We base our work on [Wes13], where Wessel et al. proposed a concept based on OS-level
virtualization for Android systems. This allowed to operate multiple Android containers in
parallel on a single mobile device. Not only their, but also other OS-level virtualization
approaches [And11; Che15] lack a full-fledged secure architecture for the protection of
the confidential data of containers. Our main objective is the confidentiality of sensitive
user data at container boundaries in the presence of local and remote attackers. This
means, we achieve data confidentiality when data inside a container remains inaccessible to
other, possibly malicious containers at all times. To achieve this, we isolate containers by
restricting them to a set of minimal, controlled functionality and confine the communication
between components to only specific channels. We focus on the development of a solution
including an SE for Linux driven OSs, easily portable between mobile devices, and suitable
for real-life application.

We start with an overview on the components of our kernel-based secure virtualization
architecture in Section 3.3.1. In Section 3.3.2 we present our concept for container
isolation, where we confine containers to minimal, controlled functionality and to only
specific communication channels. Based on that, we elaborate the refined secure device
virtualization mechanisms in Section 3.3.3. We allow to dynamically assign hardware device
functionalities on a per-container basis and classify devices into different categories. We
develop a secure container switching mechanism with security devices in Section 3.3.4. In
Section 3.3.5, we conduct a systematic security discussion of our architecture showing that
data confidentiality is preserved even when large parts of the system are compromised. We
describe a full implementation for the Samsung Galaxy S4 and Nexus 5 devices, available
open source [Fraa], and show performance results for the Nexus 5 device in Section 3.3.6.

3.3.1 Architecture Overview
Figure 3.2 gives an overview on the components of our secure virtualization architecture and
refines the system architecture from Chapter 2. The illustration depicts different containers
C0, C1, ..., Cn sharing a single Linux kernel. We differentiate between components located
in user and in kernel space. Another differentiation is between the components found
on a stock Linux-based mobile device and the components we add. The latter ones are
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Figure 3.2: Overview on the components of the secure virtualization architecture.

highlighted in bold. The varying background grayscale colors visualize the separation of
components into different privilege levels. The dark gray colored components are in the
TCB. The mid gray C0 is a privileged container in contrast to the unprivileged containers
C1..n. We explain these components in the following.

3.3.1.1 Hardware and Kernel Components
The hardware part consists of common hardware devices and security devices. These
are non-virtualized hardware devices, because they serve a security critical purpose. We
introduce the notion of security devices to provide the user devices that can be trusted
even when a container is compromised and, for example, displaying bogus contents on
the touchscreen. We define the SE, LED and power button as minimal set of required
security devices. They are not accessible to C0..n. The LED and power button are usually
available on common mobile devices. In our architecture, the power button’s purpose is to
securely initiate a switch between containers, see Section 3.3.4. This allows a user to trust
the switch from one container to the other is actually happening. The LED is a secure
container indicator for the user, showing the unique color of the currently active container.
C0..n are thus unable to disguise their identities to impersonate another container. We
use the SE as secure storage for integrity and confidentiality protection, to be described
later. The SE is a passphrase-protected device, for example, a smartcard connected via
Near Field Communication (NFC). We securely virtualize the remaining devices in order
to ensure a seamless user experience and the operability of the containers on the device
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see Section 3.3.3. That includes, amongst others, device virtualization for graphics, input,
the Radio Interface Layer (RIL), sensors, or the Wi-Fi functionality. In kernel space, we
substitute the stock mobile device’s kernel with our modified Linux kernel. We use the
kernel’s namespaces feature for containerization. For the isolation of containers and for
controlling their access to system resources, we leverage the capabilities and cgroups kernel
features, as well as LSM stacking functionality, using Security-Enhanced Linux (SELinux)
and a custom LSM.

3.3.1.2 User Space Components
Containers C0..n, and the entities Container Management (CM) and Security Management
(SM) are located in user space. Only the SM and the CM are part of the TCB.

Security Management. The SM has the responsibility to securely and exclusively commu-
nicate with different SEs. The SM performs cryptographic operations for the CM,
such as unwrapping keys for container storage encryption using the SE.

Container Management. The CM configures the kernel features and acts as mediator
between the containers. It has exclusive access to the LED and power button. The
CM is responsible for container operations, such as to start C0..n or to securely
switch between containers, see Section 3.3.4. The CM is also responsible for setting
up container storage encryption. We protect container storage with a symmetric
container key. This key is wrapped with the public key belonging to the SE’s private
key. When a container starts, the CM asks the SM with a provided passphrase to
unwrap the container storage key using the SE.

Container C0. This is a special, privileged container, comparable to dom0 in Xen [Bar03].
This container realizes functionalities required for the virtualization of the user
containers. For this purpose, the container uses its privileges to interact with the
kernel with less constraints - for instance for hardware device access, interaction which
we partly prohibit other containers from. To further reduce the size of the trusted
virtualization layer, we encapsulate such functionalities not necessarily required to run
directly in the virtualization layer into C0. Once an attacker manages to compromise
functionality in C0, e.g., through untrusted input channels, the attacker still lacks
control of privileges to access other containers’ data.
C0 provides users with an interface for local container management with a Trusted
GUI and provides functionalities for secure device virtualization, see Section 3.3.3.
The Trusted GUI enables the user to securely enter the passphrase required for
starting containers, to initiate a container switch and to make container-specific and
device-global settings. We use the Driver MUX entities as device multiplexers for
user space device virtualization over container boundaries. Device drivers, often
proprietary binaries, are mostly running only within a userland OS, such as Android.
We therefore require C0 to run a minimal OS for hardware device driver access.

Container Ci. These components are the isolated and unprivileged containers. The CM
encapsulates C0..n into their specific namespaces, maintained by the kernel. During
start-up of a container, the CM, creates the namespaces for Ci and configures the
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Figure 3.3: Overview on the kernel mechanisms used for container isolation.

security mechanisms. The vService in each container realizes an interface to the
CM in the root namespace. We use this interface for sending commands to C0..n,
for example, to shutdown, suspend or resume. The Driver Proxies request device
functionality from C0’s Driver MUXs, see Section 3.3.3. This enables Ci to make use
of specific device functionalities without direct device access. For the channels we
introduce between container boundaries, we introduce well-defined interfaces and
allow no other communication by isolating them from unnecessary OS functionalities.

3.3.2 Container Isolation
In the following, we describe the isolation of the containers from each other and from
the root namespace. In order to achieve strict isolation, we restrict C0..n to a minimal
set of functionalities. We allow communication only over well-defined and protected
communication channels. Figure 3.3 depicts a detailed view on the container isolation
at the example of Ci and Cj with the kernel mechanisms we make use of. We isolate
components on intra- and inter-container basis. We support and enforce the commonly
deployed LSM implementation SELinux inside containers. This isolates processes inside
containers to protect it from being compromised at first instance. The CM loads and
enforces a global LSM policy for each container. Individual SELinux policies for containers
are not applicable, because SELinux is not virtualized, i.e., not aware of namespaces. We
also require LSM mechanisms for inter-container isolation. Therefore, we use the LSM
stacking mechanism [Sch]. This mechanism allows to register multiple LSMs in the kernel.
Multiple handlers are hence called on an LSM hook to perform access control. A hook is
successfully passed only if each of the handlers grants access to the kernel resource.

3.3.2.1 Communication Channels
We specify secure and exclusive communication channels between the components over well-
defined interfaces. This restricts the components to interfaces exclusively used for container
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management and for secure device virtualization. First, we classify communication channels
into three different layers of communication, as depicted in Figure 3.4.

Layer 1 Communication. Layer 1 communication is on system call level, i.e., calls like
open, write or ioctl, which are executed in the kernel. Any communication between
components results in layer 1 communication interacting with the kernel. On this
layer, we prevent containers from unspecified device access using the cgroups devices
subsystem based on device major minor numbers. We allow C0..n to directly access
device drivers virtualized on kernel-level via device namespaces, see Section 3.3.3. To
constrain components from critical system calls, we use Linux capabilities and our
LSMs.

Layer 2 Communication. Layer 2 communication involves the communication between two
or more processes. This layer represents all types of low-level IPC over OS resources,
for instance, sockets, and results in system calls. We separate this layer between
containers through namespaces isolation. With our custom LSM, we selectively allow
access to defined kernel resources relevant for IPC. An example is the denial of
accessing certain sockets. This makes it possible to explicitly grant or refuse the
establishment of communication channels.

Layer 3 Communication. This layer uses a protocol for IPC between the components. We
secure the communication by message filtering and by utilizing a secure protocol.
Figure 3.4 illustrates the following layer 3 channels we allow.

CM with SM: The CM uses this channel in the root namespace to retrieve the
results of the cryptographic operations that the SM executes.
CM with external components: For remote device management via a backend,
the CM offers a protocol on an update and remote control interface.
CM with vService: To send commands to C0..n and to check their status, the
CM communicates via the status interface with the vService inside C0..n.
CM with Trusted GUI: The CM offers a control interface for local container
management. The Trusted GUI in C0 uses this control interface.
CM with Driver MUX: The Driver MUX utilizes this channel to notify the CM
via the vDeviceRegister interface of the user space-virtualized device functionality
the multiplexer offers.
CM with Driver Proxy: The Driver Proxy uses this channel to demand the CM
via the vDevice interface for setting up the connection channel to the Driver MUX
to obtain functionality of user space-virtualized devices. Only the CM may grant
and set up this channel.
Driver MUX with Driver Proxy: This channel, set up by the CM, exists for
user space-based device virtualization. C0 accesses hardware devices on layer 1 on
behalf of Ci and selectively provides the functionality to Ci.
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3.3.2.2 Identification and Isolation of OS Functionalities
To enforce data confidentiality across container boundaries, we prevent C0..n from crossing
namespace boundaries through other than the specified channels. In order to do so, we
confine the containers to minimal OS functionalities with kernel security mechanisms, as
depicted in Figure 3.3. System calls represent the interface via which all components act
and are thus critical for the isolation. In order to achieve a global view on these resources,
we investigate all system calls and their usage. Based on the whole set of system calls, we
try to identify and group OS functionalities. In the following, we list these functionalities
and elaborate their protection using the aforementioned security mechanisms.

Mounting. We only allow containers to execute non-critical mount operations. First,
we embed every container into its own mount namespace, which provides each
container with isolated filesystem mount views. For managing the mount permissions
of containers, we then introduce mount restrictions with our custom LSM. This
prohibits mounting of non-required resources and specifies paths where a container
can mount to. For example, C0..n are only allowed to mount sysfs to /sys and
procfs to /proc. Containers are, for example, not allowed to mount cgroups, which
prevents C0..n from overwriting cgroups configurations. Our custom LSM performs
the mount permission checks based on a static mount whitelist in our LSM policy.
The list specifies the device, mount point, filesystem type and mount flags. We
furthermore drop the capability CAP_SYS_ADMIN, because it comprises various other
critical functionality we prohibit, as described later. However, the mounting privileges
are part of this capability. We therefore introduce a new capability CAP_SYS_MOUNT,
which only allows a process to (un)mount and to create new mount namespaces.
The new capability contains the minimal required subset of mount-related privileges
former part of CAP_SYS_ADMIN.

Filesystem Access. For some of its mounted filesystems, a container should only have
limited file access. To achieve this, we define protection rules with our custom
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LSM. These rules restrict containers to access only specified locations in their own
filesystems. We may assume fixed locations of objects in the filesystem due to the
fixed mount points we defined. We utilize path-based whitelists to specify the access
permissions for filesystem locations. We define read-write, read-only and privileged
container whitelists in our LSM policy. The LSM traverses the whitelists when the
system triggers the corresponding LSM hooks, for example, for the open or ioctl
system call. An example is the access restriction to the sysfs filesystem. We allow a
container to mount it in order to operate correctly, but we limit the access in this
filesystem. For example, the LSM restricts an attempt from C0..n to set the LED
color via the sysfs filesystem.

Device Access. Containers must be able to fulfill their usage purpose, which often requires
virtualized device functionality from C0, such as telephony or sensors, see Section 3.3.3.
The goal is thus to enforce fine-granular control over device access permissions on
a per-container basis. We grant or deny containers access to devices using the
cgroups devices subsystem. This subsystem uses a whitelist configuration. The list
specifies rules, which contain the device major minor numbers, its type, and the kind
of operation allowed, for instance, mknod, read, write. The /dev/random pseudo
device is an example for a device we allow a container to access. Since each container
is in a different cgroup, we provide different per-container configurations. We adapt
the configurations dynamically according to whether a container is in the fore- or
background, see Section 3.3.4, as containers may have different requirements and
different allowed device access behavior in either state. With the device namespaces
for kernel-virtualized devices, we provide filtering mechanisms for fine-granular usage
control of a device’s functionality even when device node access is generally granted.
Using the described mechanism allows us to permit the container to populate its own
device directory. This results in less changes to containers and provides maximum
compatibility. Therefore, we do not drop the capability CAP_MKNOD used for creating
filesystem nodes. We enforce the security in using mknod via cgroups devices and
LSM mount whitelisting.

IPC. To achieve container isolation, we generally restrict all kind of IPC between namespace
boundaries. Solely for container management and secure device virtualization, we
allow IPC functionality via protected and controlled communication channels, as
described in Section 3.3.2.1. For inter-container isolation, IPC namespaces provide
containers with dedicated resources for IPC inside containers and isolate them at
container boundaries. With our custom LSM, we restrict unauthorized namespace-
crossing IPC. The LSM considers the PID namespaces for file-based IPC via the
mounting and filesystem access restrictions. An example are checks for socket
functionality with LSM hooks responsible for controlling inter-container IPC. We drop
the capabilities CAP_IPC_(OWNER, LOCK) and CAP_SYS_ADMIN. These capabilities
include critical IPC privileges. For instance, CAP_IPC_LOCK allows a process to lock
memory, for instance, to prevent the OS from swapping. Such locking goes beyond
the scope of a container and can lock-up the whole system if used by a malicious
process.
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Networking. We allow containers to individually setup the network within their boundaries.
Therefore, we keep the networking capabilities CAP_NET_*. We embed containers into
their own network namespace. Thus, the scope of the capabilities is limited to only
affect the container’s own subnet. However, we preserve the privilege to control the
network dataflow. The CM sets up the global network configuration of the containers.
The CM provides virtual network interfaces (veth) for each container with individual
IP addresses. We filter and control network packages on global level with netfilter
components.

Signal Handling. With signals, a malicious container might adversely influence other
components of the architecture. However, a container should be capable of sending
signals inside its namespace. We thus restrict containers from sending signals over
namespace boundaries. We secure this functionality through PID namespaces, which
ensure that signals from processes remain only visible inside a container’s namespace.
Therefore, we are not required to drop the capability CAP_KILL.

Resource Consumption. We provide containers access to sufficient system resources for
working conveniently, but not to excessively exhaust resources. Mount namespaces
provide a container with its own fixed and limited filesystem. With the cgroups CPU
subsystem we determine a maximum share of the CPU resource for a process group.
With the memory subsystem, we ensure that a process group can only allocate a
fixed maximum amount of memory. This prevents containers from excessively slowing
down the system by blocking the CPU or exhausting memory. We do not need
to drop the capability CAP_SYS_NICE, because even if a container changes process
priorities, it cannot exceed its CPU usage limit.

Process Management. We grant a container to reduce the capabilities of its processes. We
thus do not drop the capability CAP_SETPCAP. It allows processes to drop capabilities
for child processes. The init process of each container has a reduced set of capabilities
and is only allowed to further reduce this set. We prevent processes from process
directory manipulation and accounting. For that purpose, we drop the capabilities
CAP_SYS_(PACCT, CHROOT, ADMIN).

Time Management. We allow only C0 to set the system time. Consequently, we drop the
capability CAP_SYS_TIME from Ci in order to prevent them from setting the system
time via system calls. However, in Android the time setting functionality works via
the /dev/alarm driver. This is unfortunately not covered by CAP_SYS_TIME. We thus
prohibit the access to /dev/alarm driver functionality for Ci with LSM hooks in our
custom LSM.

Power Management. In order to prevent containers from changing the global power state,
such as from shutting down or waking the system, we drop the capabilities CAP_SYS-
_BOOT and CAP_WAKE_ALARM.

Kernel Module Loading. We prevent containers from loading kernel modules by dropping
the capability CAP_SYS_MODULE.

Debugging. To prohibit containers from obtaining debugging control over other processes,
we drop the capability CAP_SYS_PTRACE. We also enforce this with PID namespace
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checks in the ptrace controlling LSM hooks.
Logging. In order to prevent containers from making changes to the kernel logging func-

tionality, we drop the capabilities CAP_AUDIT_(WRITE, CONTROL) and CAP_SYSLOG.

3.3.3 Secure Device Virtualization
Our architecture allows to securely and dynamically assign device functionalities to C0..n
on a per-container basis. We classify each device as either a non-virtualized, security,
user space-virtualized, or kernel-virtualized device. The classification depends on whether
a device is, e.g., used only by the virtualization layer, or whether device drivers to be
virtualized are implemented only in kernel or also in user space. Depending on device
type and container, we handle its access to device functionality. Figure 3.5 depicts the
virtualization and access mechanisms for the device types.

3.3.3.1 Non-Virtualized and Security Devices
Security devices are part of the non-virtualized device category. We do not virtualize security
devices, since they provide critical, security relevant functionality. In our architecture,
these are the SE, LED and power button, as defined in Section 3.3.1. We prohibit C0..n
access to these devices, as depicted by the crossed dashed lines in Figure 3.5. The hardware
driver for accessing security devices is exclusively accessible to management components
inside the TCB. As described in Section 3.3.2, we restrict access using the cgroups device
access protection mechanism.

We allow access to other non-virtualized devices only to foreground containers. We
enforce this device access rule during a container switch by dynamically adapting the
cgroups devices whitelist, which we cover in more detail in Section 3.3.4. An example for
such a device is the display, exclusively used by the foreground container.

3.3.3.2 Kernel-Virtualized Devices
We virtualize kernel-virtualized devices on kernel level using the device namespace mech-
anism [And11]. In Figure 3.5, Ci is in foreground as active device namespace, while Cj
is in background. Ci is trying to access kernel-virtualized devices from userland. The
device driver in the kernel is addressed via the container’s /dev filesystem. Examples for
kernel-level virtualized devices are the alarm and input device (except for the power button),
handled via the /dev filesystem. The driver decides about access to the functionality
it offers based on the information about the active namespace (provided by the device
namespaces). This is represented by the device namespace filter component in Figure 3.5.
This enables us to selectively grant or refuse functionalities to background containers
running in inactive device namespaces. With the cgroups devices subsystem, we have
an additional driver-independent and dynamic mechanism to deny containers access to a
device, i.e., to deny access to the device driver.

3.3.3.3 User Space-Virtualized Devices
A lot of devices are accessed via proprietary user space drivers. In user space, we can
re-use the existing drivers and achieve a portable solution. Thereby, we do not expand the
TCB and avoid growing kernel complexity incurred by the virtualization. Since critical
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Figure 3.5: Overview on our different secure device virtualization mechanisms.

and exposed to untrusted input, we place the virtualization functionality inside C0 and
reuse its userland drivers. With the cgroups devices subsystem, we grant access to user
space-virtualized devices exclusively to C0, highlighted by the crossed dashed lines in
Figure 3.5. Like Ci, C0 is also allowed to use kernel-level virtualized devices, omitted in
the illustration.

The Driver MUX in C0 multiplexes the hardware device functionality for Ci. It utilizes
the existing userland functionality and user space driver for hardware device access. The
Driver MUX keeps track of the driver states and is aware of the different Ci. We forward
device functionality from C0 over a dedicated communication channel to Ci. User space
components in Ci are not aware of the Driver Proxy redirection. The CM sets up the
channel between C0 and Ci. The Driver MUX registers the device it virtualizes at the CM
via the vDeviceRegister interface. When Ci tries to make use of a user space-virtualized
device’s functionality, the Driver Proxy requests the CM for setting up a communication
channel to the Driver MUX over the vDevice interface. Depending on whether we allow Ci
access to the functionality of that device, the CM establishes the communication channel,
as illustrated in Figure 3.5. This can, for example, be realized by creating a socket pair in
the CM with the system call socketpair. The CM also informs C0 of Ci requesting the
device functionality. C0 is thus aware of the specific container it is communicating with
to securely provide Ci with different sets of functionalities for each hardware device. An
example is the radio interface where Ci might be allowed to use the telephony and mobile
data feature, while Cj might only be allowed to make use of the mobile data feature. The
filter in the Driver MUX selectively handles device functionality access for Ci and filters
non-protocol compliant data.
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3.3.4 Secure Container Switch
When the user is in C0, we use the Trusted GUI to trigger a switch to Ci. The user initiates
a container switch from Ci back to C0 by a long power button press, i.e., by using a security
device. The CM handles the switch between containers. In the following, we describe the
container switch procedure and its initiation inside Ci.

3.3.4.1 Container Switching Procedure
Figure 3.6 depicts the container switch procedure. The illustration shows the switch
between a foreground container CF and a background container CB to be put to foreground.
The CM requests the suspension of CF via the status interface to the vService. The vService
triggers the suspend routine of the container OS, for example, PowerManager.goToSleep
on Android. The CM waits in a non-blocking mode for the OS to suspend. In the next
step, the CM restricts CF access to non-virtualized (and possibly kernel-level virtualized)
devices, which are prohibited to background containers. We achieve this by dynamically
reconfiguring the cgroups devices whitelist in the CM. With this mechanism, we separate
device access decision making from device functionality filtering while accessing the device
driver. A container could refuse or fail to suspend if certain processes do not release their
resources. In that case, the CM kills those suspend blocking processes after a timeout. This
forces the open devices to be closed and the container to suspension. In the next step, the
CM grants CB device access via dynamic cgroups device allocation. The following step is to
switch the active device namespace to the new foreground container. The CM requests the
resume of CB via the container’s vService, for instance, PowerManager.wakeUp on Android
OS. To complete the container switch process, the CM sets the LED color according to the
color of CB via the kernel using the LED driver.

3.3.4.2 Switch Initiation in Ci

In order to securely switch to C0 despite being in possibly malicious Ci, we use the power
button. As a security device, it is exclusively accessible by the CM, meaning that power
button events never arrive in C0..n. We define the behavior, visualized in Figure 3.7,
as follows: Pressing the power button in Ci for more than a fixed time interval 𝜀, for
example, 0.5 seconds, triggers a switch to C0. Otherwise, the button triggers the suspend
or resume functionality of CF. We modify the kernel in order to forward power button
events exclusively to the CM, i.e., to the root namespace. The power button driver notifies
the kernel of a power button pressed event (KEY_POWER, 1). The kernel forwards this event
to the CM, which starts a timer at time t1. When the power button is released, the release
event (KEY_POWER, 0) arrives at the CM at time t2. The CM then decides about the action
to be carried out according to the fixed time interval 𝜀. Until now, none of the events has
reached any of the containers. When the user is in Ci and t2-t1 ≥ 𝜀, the CM conducts
the switch to C0. Otherwise, the CM transparently forwards the power button press and
release events to CF, resulting in either a resume or suspend. For the injection of power
button events into C0..n, we add a custom event, KEY_POWER_INJECT, to the kernel. We
modify the kernel to recognize this special event type and to forward it as a common
KEY_POWER event type to CF. The power button event now appears to CF as a common
input event resulting from an input device. In case the foreground container is C0, the CM
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Figure 3.6: Secure switching procedure between a fore- and background container.

always injects the power button events unmodified.
A malicious container spoofing C0 could try to trick the user into believing of having

switched, while stuck in the malicious one. In the worst case, the user might enter critical
information inside malicious Ci. As the LED is a security device, we use it in order to
securely identify CF. The CM sets the LED color to the container’s specific color.

3.3.5 Security Discussion
In this part, we present a conceptual analysis of the security of our architecture regarding
our main protection objective: the protection of data confidentiality. In accordance with
Chapter 2, we assume local and remote attackers able to execute runtime attacks and
furthermore to be capable of acting as a Man-In-The-Middle (MITM) between the device
and backend according to the Dolev-Yao model [Dol81]. We also assume an attacker to
obtain physical access to the device trying to manipulate it via common physical interfaces,
for instance, via USB and the touchscreen, according to the definition of the local and
remote attacker from Chapter 2. A typical attack scenario is given in Chapter 2 with
scenario one. However, we do not consider the physical attacker from Chapter 2. This
excludes side-channel attacks, especially cold boot, DMA, and JTAG, capabilities which
the physical attacker from Chapter 2 has, see scenario two and three. Note that we address
protection against the physical attacker in Chapter 5. Note that our physical attacker is
unable to conduct covert channels and advanced physical lab attacks on the device or the
SE, such as microprobing attacks. As a refinement to Chapter 2, we however consider the
remote attacker to be able to fully compromise a remote management backend.

Through these attack vectors, we consider an adversary having the capability of com-
promising every component outside the TCB. This includes taking full control over the
privileged C0 and the unprivileged Ci. If a container is compromised, our isolation mecha-
nisms ensure that the attacker with local root privileges cannot break out of the container’s
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boundary, unable to leverage global privileges. An attacker can affect other components
only through the specified communication channels. In the following, we discuss different
compromise scenarios and the implications on data confidentiality.

3.3.5.1 Compromise of Ci

Ci is exposed to common attacks on the OS. In order to harden a container from compromise,
we propose to limit it to trusted applications and to functionality required for its special
purpose only. The processes inside Ci are isolated and protected by SELinux. Full control
over the container and its data is only exposed when the attacker manages to take control
over a process and to circumvent SELinux protection. Ci cannot retrieve more device
functionality via established user space virtualization channels than it is supposed to. C0’s
Driver MUXs prevent this by making data routing decisions and input validation. Ci is also
not capable of retrieving additional device functionality via the vDevice interface, as the
CM handles setting up the connection between C0 and Ci. The cgroups devices subsystem
and device namespaces prevent Ci from prohibited device access to kernel-level virtualized
devices. Ci can send fake status information or refuse commands from the CM via the
status interface. However, Ci cannot deny container switching. Consequently, the overall
system’s behavior is not adversely affected by the compromise of Ci. Data confidentiality
is retained beyond container boundaries, meaning that sensitive user data stored in other
containers remains protected.

3.3.5.2 Compromise of C0

We tailored C0 to the minimal amount of required functionality. SELinux policies further
raise its security level. However, proprietary code of the container’s drivers cannot be
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completely controlled. In case of the compromise of C0, the attacker has access to the local
control interface to the CM. The adversary can misuse device management functionality
and intercept the user’s passphrase entry for the SE. In this case, the attacker can start
containers without user interaction when the SE is present. The attacker is also able to
change settings, create and shutdown containers. C0 has full access to user space-virtualized
devices and to already established Driver MUX channels. The attacker can hence drop,
eavesdrop and transmit forged data from, resp., to those devices. Sensitive data transmitted
over these communication channels must be encrypted to protected from C0. The adversary
controls the registering of device functionalities via the vDeviceRegister channel, but cannot
set up new channels. The same consequences as for a compromised Ci hold regarding the
status interface. Kernel-level virtualized devices and security devices cannot be impaired.
The adversary also cannot take advantage of the update functionality of the CM, since the
update interface is not accessible for C0. In sum, the attacker controls many functionalities.
However, the data in other containers remains confidential.

3.3.5.3 Compromise of the TCB
The TCB exposes full access and control over all functionalities, communication channels
and data on the device. In contrast to running containers, non-running ones are still
encrypted and hence remain opaque to the attacker. Only if the passphrase of the SE was
intercepted and the SE is present, as well as unlocked, the adversary is able to retrieve to
the containers’ data. If the passphrase was not intercepted, the attacker cannot brute-force
a present SE, because it locks itself after a certain amount of retries. In order to obtain
control over the SE, physical access to the SE is required. The attacker has control over
the backend communication channel between the device and backend. This exposes the
capability to download updates and encrypted backups.

3.3.5.4 Backend and Communication Channel
The network communication between the device and backend is exposed to attacks according
to the Dolev-Yao model. The channel is protected by TLS encryption using certificates,
which prevents gaining control over this channel. In case the backend is compromised,
the adversary can access the CM’s control interface. The attacker is furthermore capable
of carrying out denial of service attacks towards the device. The device verifies software
updates through signature verification. The adversary cannot sign updates of the device’s
software entities, since a valid assumption is that the software-signing key and functionality
are separated from the backend. Data confidentiality is hence preserved.

3.3.5.5 Physical Device Access
If the device is switched off and an attacker manages to extract all data, data confidentiality
is not impaired. The storage cannot be decrypted, since the SE and its passphrase are
both required for decrypting the containers. We also lock the device to prevent attackers
from overwriting partitions, for example, in firmware upgrade mode. We provide our own
tailored recovery image featuring only uncritical functionality. Connecting to the USB port,
an attacker has no access to the device’s data and functionality. We remove functionalities,
such as ADB, or mounting the device storage.
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3.3.6 Implementation and Performance Evaluation
We fully implemented the proposed architecture for the Samsung Galaxy S4 and Nexus 5
smartphones, where we used Android 5.1.1, resp. Android 4.4.4, as container OSs. The
implementation is open source, accessible via [Fraa]. We verified the easy portability of
the architecture by a proof-of-concept prototype for the Nexus 7 tablet.

Linux kernel. We enabled the support of namespaces, capabilities and cgroups features
on the device’s kernel (AOSP kernel 3.4 [Gooc]). We extended the kernel with our
new capability described in Section 3.3.2 and with power key event capturing, as
described in Section 3.3.4.2, as well as with the LSM stacking feature proposed in
Section 3.3.2. For the latter, we included the LSM stacking patch, SELinux and our
custom LSM implementation. We used device namespaces [And11] for kernel-level
virtualization, for example, for the alarm, audio, binder and input devices.

CM. We implemented the CM as a non-blocking callback-based daemon in C using the
epoll, inotify and timer kernel features. In contrast to LXC, the CM is a specifically
tailored, minimalist implementation. It consists of less than 10,000 lines of code.
We realized the update, control, vDevice and status interface’s protocol layer with
protobuf [Gooe]. Protobuf serializes structured data transmitted over the different
components and validates input. The CM processes incoming messages with callbacks.
For the internal status, control and vDevice interfaces, we used UNIX domain sockets.
We realized the remote control and update interfaces for the backend with TLS
protected internet sockets. The CM establishes communication channels into Ci
during its startup procedure. For that purpose, the CM creates a new Unix domain
socket and inherits the corresponding file descriptor to the newly created root process
of Ci. The root container process, still under control of the CM, binds the socket
to a specific location in the container’s filesystem. This location inside Ci can be
accessed by specific processes supporting the virtualization, for instance, the vService
or the Trusted GUI. The CM listens on the shared file descriptor and is hence able
to accept connections from these processes over container boundaries. The CM
sets up the cgroups subsystems, drops capabilities, loads the SELinux policies and
revokes custom LSM privileges for Ci before delivering control to the container’s init
process. For dropping privileges, our LSM provides a special file in the securityfs
pseudo filesystem. As soon as a process opens this file, its namespace and nested
namespaces lose their LSM privileges, which is a one-way operation. We drop the set
of capabilities in Ci to a minimal amount, represented by bold letters the following
list:
CAP_IPC_(LOCK, OWNER)
CAP_MAC_(OVERRIDE, ADMIN)
CAP_AUDIT_(WRITE, CONTROL)
CAP_DAC_(READ_SEARCH, OVERRIDE)
CAP_NET_(RAW, BROADCAST, BIND_SERVICE, ADMIN)
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CAP_SYS_(MODULE, CHROOT, PACCT, BOOT,
ADMIN, TIME, TTY_CONFIG, PTRACE, NICE,
RAWIO, RESOURCE, MOUNT)
CAP_(LEASE, SETFCAP, LINUX_IMMUTABLE,
WAKE_ALARM, SYSLOG, FSETID, CHOWN, KILL, FOWNER, SETGID, SE-
TUID, SETPCAP, MKNOD)

In C0 we drop the same capabilities, but retain CAP_SYS_TIME for C0’s time
setting functionality.

SM. We also implemented this component in C as a non-blocking callback-based daemon
using the epoll, inotify and timer kernel features. The SM includes the OpenSSL
library for cryptographic operations. In our implementation, we replaced the SE by
a PKCS12 softtoken. With the token’s private key, the CM wraps the symmetric key
for container en-/decryption using dm-crypt. We protect the container images with
a hash in a signed container configuration, including mount points, and user data
images. The SM implementation comprises less than 1,500 lines of code.

C0. This container runs a minimal Android. We kept only basic functionality and the
native user space drivers and modules, such as the daemon rild for accessing the
radio hardware. We implemented the vService as an Android Service and the Trusted
GUI as an Android system application. We realized the Driver MUXs as daemons
that utilize the native drivers for user space-virtualized devices, such as RIL, Wi-Fi
and sensors, including GPS. The interfaces for user-space virtualization are also
realized via UNIX domain sockets.

Ci. We modified the init process of Android to prevent init from firmware loading. The
firmware is loaded only once into the system by C0. We also prohibit the OS from
loading the SELinux policy. We modified the Android framework to comply with a
dropped resource set. For example, the stock Zygote process checks capabilities and
would prevent the OS from booting.

To evaluate the performance impact of our implementation, we ran the benchmark tools
PCMark [UL b] and 3DMark [UL a] on the Nexus 5 with stock Android and with our secure
architecture on Android 5.1.1, resp. Android 4.4.4. PCMark measures performance and
battery drain based on regular user behavior, such as when using a web browser, a video
and photo editor, or data and document processing while 3DMark specifically measures
CPU and GPU performance. For our test, we deployed C0-2 onto the secure architecture
and ran the containers simultaneously. We executed the benchmarks in foreground C2.
Figure 3.8 summarizes the performance results, which are average values over more than 30
test runs. The total number of points achieved with our secure architecture in 3DMark is
close to the stock device results, because 3DMark is rather stressing the graphics hardware.
3DMark determines this figure based on the graphics and physics test results in Figure 3.8b,
deducted from the results in Figure 3.8c. The performance impact of our architecture in
PCMark is no more than than 6.5% compared to stock Android 5.1.1, resp. 10% with
Android 4.4.4. PCMark obtains the total amount of points by aggregating over the subtest
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(a) Evaluation results for the PCMark workbench test

(b) 3DMark results (Ice Storm Unlimited) (c) 3DMark subtest results
Figure 3.8: Performance comparison for the Nexus 5 device between stock Android and our
secure architecture using the benchmarks PCMark and 3DMark on Android 4.4.4 and 5.1.1

results in Figure 3.8a. In general, the user experience with the secure architecture exposed
no recognizable performance impact.

We measured the container switching time, C0-2 running, from C0 to Ci and vice versa
when CF is not suspended. The switching procedure consumes about 330 ms to switch
from Ci to C0 and 300 ms from C0 to Ci. High load in C1 and C2, such as running HD
videos, caused only negligible overhead. Most time is allocated for suspending CF. We
measured the switching time in case CF is already suspended to consume only about 60 ms.
Thereby, most time is spent in resuming former CB and only very little time in the CM.

3.4 Application of the Secure Architecture in Corporate Environments
In this part, we develop our holistic security concept for the application of the secure
virtualization architecture for mobile devices in productive end user environments, i.e.,
Contribution 3 addressing Challenge 2. We design an ecosystem in which the devices are
utilized, and describe its entities with their relationships. Together with a description of a
secure device lifecycle, this makes the architecture suitable for use in real-world scenarios.
The overview on the ecosystem is part of Section 3.4.1. Following that, we describe the
PKI to establish trust between all the entities in Section 3.4.2. We elaborate the concepts
for secure device provisioning and enrollment in Section 3.4.3.

3.4.1 Ecosystem Overview
In the following, we introduce the entities of the ecosystem and describe their interaction
based on a system-centric and device-centric view.

3.4.1.1 System-Centric View
We distinguish between the mobile device entity and global entities. As depicted in
Figure 3.9 (right-hand side), the device entity and its software interacts with the global
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Figure 3.9: Entities on the mobile devices (left) and global entities (right)

entities user and backend. These entities represent our overall ecosystem structure and are
detailed in the following.

Device. The device entity represents a mobile device, for example, a smartphone or a
tablet. Each device is bound to a device certificate as described in Section 3.4.2.2.

User. The user entity represents a user identity/account. A person may have multiple
identities for, for instance, private and business usage. Each identity of a user is
bound to a certificate as described in Section 3.4.2.4.

Backend. Devices and users are managed by the Mobile Device Management (MDM)
system. The MDM, for instance, provides updates for both containers as well as for
the components of the TCB.

The 1:n relation in Figure 3.9 between the MDM and the device defines that each device
is managed by one MDM, which is in turn able to maintain multiple devices. Similarly,
there is a 1:n relation between the MDM and the user entity. Finally, we have an n:m
relation between the user and device entity. This means that a device may be used by
multiple users and each user identity may be associated with multiple devices in our
ecosystem.

3.4.1.2 Device-Centric View
Figure 3.9 (left-hand side) points out the main logical entities on the mobile device. These
are the container, the guestOS, as well as the device and user entities. These entities are
detailed in the following sections.

To support multiple users on one physical device, our device architecture allows multiple
containers on a physical device. Figure 3.9 (left-hand side) shows with the n:m relation
between the user and container entity that containers on a mobile device can be used and
shared by multiple users and that a user can have multiple containers. Hereby, a container
is not exclusively tied to a certain mobile device. It can be present on different physical
devices, and may be moved by the MDM. This is realized by the fact that the encryption
of container data is linked to access tokens, for example, an NFC-based smartcard. Tokens
can be moved between different devices. This is expressed by the n:m relationship between
the container and device entities. Finally, the container entity is an instance of the guestOS
entity, which we introduce in the following.
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Device Entity. This entity represents the device-global characteristics, such as a device-
wide configuration. On the one hand, the entity comprises device-wide policies. One
of these policies is, for instance, the capability to receive phone calls, usually given
exclusively to one of the containers. On the other hand, the device entity defines the
remote link to the MDM in order to associate the device with a certain backend, i.e.,
with a group of managed devices.

Container Entity. To the common user, a container is one of the multiple operating
system instances that runs on the device. The container entity is characterized by
a configuration with different components that allow the personalized instantiation
of a generic OS type, as described below. For example, each container has a user-
defined container name, which is shown in the user interface and an internal container
identification based on a unique identifier. It is also possible to define policies for
a container, for example, to define the size of its data partition. The container
configuration and the container’s data are protected with a symmetric key. As
there is sensible user data contained and because important container properties
are defined in the container configuration, the confidentiality and integrity of the
data must be protected from unauthorized third parties. The symmetric key is hence
used for cryptographic operations on the container configuration and the container’s
corresponding data and cache partition’s image files. Cryptographic operations
with this key are performed on the application processor. This key is wrapped, i.e.,
encrypted with a private key in the SE, and can only be unwrapped when the user
unlocks the SE with its passphrase. The wrapping of the symmetric key for container
encryption with user-specific tokens allows to have multiple users for one container
and is described in Section 3.4.2.

GuestOS Entity. The guestOS entity represents the type of a container. On a mobile
device, multiple guest OSs, such as Android, Firefox OS or Ubuntu may be available
and can be instantiated by a user in form of a container. The guestOS entity is
represented by a configuration with general OS components and is signed with a
software signing key to guarantee its integrity. This signature is verified when a guest
OS is booted in order to secure the boot process, see Section 3.4.2.3. A guestOS
may implement one or more features. An example is the radio feature indicating
the ability to make phone calls. OS-specific features can however be revoked with a
device-global configuration policy of the device entity.

3.4.2 Trust Management with a Public Key Infrastructure
This section gives an overview of the PKI and certificates used in our ecosystem. These
are shown in Figure 3.10. The goal is to protect the device from unauthorized third
parties trying to obtain any sensitive data. The purpose of the certificates is furthermore
to harden the system against tampering to improve data integrity, e.g., it is crucial to
sustain the integrity of the CM to sustain data confidentiality. The certificates enable
to authenticate the backend, the device and users against each other to establish trust
relationships. Our concept also includes the protection of containers and software updates
against tampering. For this purpose, there are four different types of certificates involved
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in the PKI: the backend certificate, device certificate, software signing certificate and user
certificate. The certificates are issued by their respective Certificate Authorities (CAs) as
shown in Figure 3.10. Note that we describe the certificate lifecycle on the devices in the
provisioning and enrollment part in Section 3.4.3.

3.4.2.1 Backend Certificate
To allow the device to communicate with the backend, i.e. the MDM, both communication
partners have to be capable of proving their identity to each other before starting to
exchange data. This is realized by certificates associated to both sides. The backend
certificate’s function proves the trustworthiness of the MDM by transmitting it to the
device, which can in turn verify the certificate’s integrity by verifying the signature of
the whole certificate chain up to the trusted root certificate. The device must know the
trusted CA’s public key to verify the validity of the certificate’s signature. In case the
verification is successful, the device knows that the certificate corresponds to its associated
backend. This is because the device trusts the CA and because only the backend holds the
private key corresponding to its certificate. The latter makes the backend uniquely able to
decrypt messages from the device encrypted with the backend public key. This means that
attackers cannot eavesdrop unencrypted information transmitted between the device and
backend and are not able to forge malicious valid messages.

3.4.2.2 Device Certificate
For the purpose of authenticating the device on the MDM, the device certificate of the
mobile device is utilized. The MDM is able to verify the device certificate in the certificate
chain. The device is not able to transact with the MDM without a valid certificate, which
can also be revoked, for example, in case the device gets lost or stolen. When the device is
revoked within the PKI, the validation of the signature fails and the backend stops trusting
the device. Revocation can either be realized using Certificate Revocation Lists (CRLs) or
protocols like Online Certificate Status Protocol (OCSP)

3.4.2.3 Software Signing Certificates
Besides the device-backend communication, the software transferred to the device must
be protected against malicious modifications. Therefore, we introduce software signing
certificates to the PKI. These certificates are used to sign data such as software and
configuration files. This especially includes the guest OSs. Every software update or change
to a static configuration must be signed by the developer. On the device, the incoming
update including a signature is verified with the software signing certificate it has to come
along with. The certificate itself is then verified in the secure environment with the CA’s
public key. This way, manipulations to the guest OS and its configuration on the device
will be detected. The private software signing key does not reside on the backend but is
kept in a secure location which provides the backend with signed updates.

3.4.2.4 User Certificates
Our system depicted in Figure 3.9 allows multiple user identities on a single mobile device,
as one or more containers on a device can be used by multiple users. Furthermore, a
container’s sensitive data, i.e. configuration and filesystem, is encrypted with a symmetric
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Figure 3.10: Overview on the PKI and certificates in our ecosystem for secure mobile device
provisioning, enrollment and management.

key and this key has in turn to be protected. This is achieved by encrypting it with the
public key of each user identity which is associated with the container. This public key
forms the user certificate, as depicted in Figure 3.10, which must be signed by the user
CA. The respective private key is typically securely stored on the SE and never leaves
it. This key is used by the trustworthy environment when decrypting the symmetric
container key on the SE. With the PKI, authorized users are thus enabled to decrypt
the symmetric container key and hence the container by using their passphrase-protected
SE and conducting a Multi-Factor Authentication (MFA) to unlock it. This approach
enables only authorized users, associated to a container, to attain information on containers.
Attackers are prevented from decrypting any of the container’s information, which also
improves data integrity. Note that even the MDM or an administrator can not decrypt
such data. The certificates for authorized users on the device must be securely stored and
transferred to the device in a provisioning step, which is explained in Section 3.4.3.

An advantage that comes with the PKI appliance is the capability of an administrator
to withdraw or add accepted user certificates, for example, via the MDM. In addition, the
validity of the certificates can be regulated in time and users can be revoked when they are
no longer in the corporation or trusted. This principle also enables to differentiate between
privileged and common users, resulting in the realization of, for instance, different policy
settings for a device. Note that in a typical PKI, a user identity may have more than one
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certificate, for example, different certificates for decryption, authentication and signing.

3.4.3 Device Provisioning and Enrollment Process
This section gives an overview of our concept for device provisioning and enrollment. To
be able to utilize the certificates presented in the previous section, the device must be
provisioned with a CA certificate, i.e., the verification root public key. To enroll the device
for usage, a device certificate has to be generated for each device.

3.4.3.1 Device Provisioning
When a mobile device is released for a customer, it needs to be provisioned with the base
system in a secure environment. Therefore, the public key pair of the CA and the address
of the MDM must be available and also transferred. This step is necessary in order to
equip the device with the certificate required to verify the user, backend and software
signing certificates, see Section 3.4.2. Hence, the device is able to reliably verify identities.
The CA certificate can hereby consist of further certificates in a certificate chain, which
however does not affect any of the principles mentioned.

3.4.3.2 Enrollment
A provisioned device, which is supposed to be initially activated, must be securely enrolled
via a channel to the certificate signer. The goal is to obtain a device certificate to be able
to communicate with the backend. A random public key pair is generated on the device in
hardware-protected environment, like a Hardware Security Module (HSM). As a standard
Certificate Signing Request (CSR), the device transfers the device-specific CSR data within
a secure environment to the CA. The CA generates the certificate by signing it with its CA
private key. Note that this step includes the insertion of manufacturer, model and device
serial number into the certificate. A trusted entity then transfers the certificate back to the
device. The result is the existence of a valid device certificate with a corresponding private
key. After this step, the device is ready for communication with the backend and hence for
personalization. The backend only accepts devices with properly signed certificates and is
thus protected against device spoofing.

A further possibility to craft the certificate is to generate the device certificate in a
trust center. Hereby, the trust center generates the (passphrase protected) software-based
cryptographic token containing the public key pair and gets it signed by the CA. As a
next step a privileged user transfers the software token back to the device, where it is
unlocked. The problem of this solution is the rather insecure transfer of the cryptographic
token including the private key compared to generating it directly on the device with a
HSM. However, for devices without HSM this solution is preferable, as the key generation
is rather insecure on a field device without HSM.

3.4.3.3 Personalization with the Secure Element
Having the device equipped with the device and CA certificates, as well as with the device
certificate’s private key, the next step is to add new users to devices. The purpose of this
is to associate users with containers in later steps, such that users are able to decrypt or
create new containers. The trust center sets up a new user and creates a user certificate
(signed by the CA) including its private key. This step also involves either transferring the
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generated private key to an SE, for example, the user’s smartcard and to securely transfer
it to the user, or to directly generate the key in the SE. Next, the user certificate is synced
from the MDM to the device. For existing users in the system, syncing their certificate to
the device is the only step.

3.4.3.4 Container Generation with the Secure Element
A user registered on an enrolled device is capable of generating disk-encrypted containers.
In the first step, the required strong symmetric key for the new container is created on
the SE and encrypted with the user’s public key. The encrypted version of the symmetric
container key is stored on the device. The plaintext key is only present in main memory
when the SE is unlocked and used to unwrap the encrypted version with its private key.
Hence, the decryption key for the symmetric container key is solely stored in the SE of the
corresponding user. In the second step, the device then creates a new container image and
encrypts it and the container configuration file with the symmetric container key. After this
process, the container is created, and the device optionally sends the encrypted container
key and container data to the MDM as a backup. Since the MDM is not in possession of
private keys of users, it can never decrypt this information.

3.4.3.5 Linking Users to Containers
Having user certificates and containers on the device, further users can be associated with
containers and privileged users can create containers on the device. A privileged user
having created a container beforehand can add another user to a container. This privileged
user is the only instance to do this, as only this user holds the private key for decrypting the
container’s symmetric key. The privileged user creates the newly encrypted container key
from the decrypted symmetric container key with the new user’s verified certificate public
key. This new key is added to the decrypted containers’ keys on the device. Note that this
process can be compared with adding keys derived with a key derivation function to the
key slots in Linux Unified Key Setup (LUKS) headers. After that, the new user is able to
decrypt the symmetric container key, and hence the container image and configuration,
with his own private key.

3.5 Design and Application of the Secure Architecture for IoT Scenarios
In Section 3.3, we presented the secure virtualization architecture for mobile devices, and
embedded the architecture into an ecosystem with end users in Section 3.4. In this section,
we develop an industrial trust ecosystem for the industrial internet of things, and transform
our virtualization architecture and device lifecycle to hardware platforms representative for
such ecosystems, see Contribution 4. With this, we show that the virtualization architecture
is not tied to the mobile device domain, but can also be leveraged for different fields of
application addressing Challenge 1 and Challenge 2. While the key challenges, such as
isolation of critical components to protect data confidentiality, or provisioning, enrollment
and secure operation, remain the same between the two application fields, new solutions
are required for solving these challenges within Industrial IoT (IIoT) scenarios. In the
remainder of this paragraph, we motivate the industrial application field and a concrete
instantiation of our trust ecosystem, the so-called Industrial Data Space (IDS) to emphasize
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the differences from the mobile device domain with end users. In the end, we provide an
outline for the section.

The modern IIoT computing landscape is shaped by emerging use cases that rely on
interconnecting networks and components that used to be isolated [Ope; Ott16; Pló16].
This means that valuable corporate data is exchanged over the interconnecting networks,
which are oftentimes characterized by the presence of a large number of interconnected
devices without end user interaction. Use cases in the IIoT domain are often associated
with the term Industry 4.0 or CPS where sensor nodes or automation actuators form a
substantial part of the IIoT use case, gathering data and actuating based on the gathered
or exchanged data. The data produced and exchanged in such scenarios constitutes an
important part of the underlying business processes and is therefore a valuable core asset
by itself. With the demand for this data to flow across different trust domains, new security
challenges arise.

One of the emerging use cases in the IIoT domain is the IDS, a data exchange platform
composed of interconnected devices, which gather, process, and exchange data [Ott16;
Ott17]. The goal of the IDS is to go beyond traditional scenarios, where few partnering
organizations knowing each other beforehand created a common trust domain and exchanged
data in a closed system. The IDS creates a common data space that spans multiple sectors
with different needs and standards, bridging these sectors and allowing for new use cases,
workflows and business models. The software that realizes the functionality required for
the IDS forms the concept of the IDS connector. IDS connectors can be deployed on
different interconnected devices part of the IDS ecosystem. Each connector runs different
services, possibly from third parties, used for the exchange and processing of sensitive data
in the distributed network of IDS connectors. To create trust in complex and decentralized
ecosystems like the IDS, it is mandatory to design a solid yet flexible security architecture
for the ecosystem and its components.

We design a holistic security architecture for these kinds of ecosystems and connectors.
Our architecture allows for secure and controlled exchange of the sensitive data between
the interacting connectors in a decentralized, untrusted environment. We keep the design
of the trust ecosystem generic and thus abstract from the IDS use case. We call the
interconnected devices of the trust ecosystem the trusted connectors. The abstraction
makes our architecture suitable for general use in IIoT scenarios. We start with defining
and assessing security requirements for the trust ecosystem with its data flow and entities.
Based on these requirements, we establish our overall security architecture for the ecosystem.
We provide a flexible identity management concept for the whole ecosystem including
fine-grained data access control, remote integrity verification of connectors, and the ability
to enforce data usage policies over the data lifecycle. As the central part of the ecosystem,
we transpose our OS-level virtualization-based security architecture from Section 3.3 for
use within the trusted connector, The virtualization architecture isolates services with
their confidential data from each other. We realize a full open-source implementation of
the architecture [Fraa; Ind].

This section is organized as follows. Section 3.5.1 provides a high-level overview of the
IDS ecosystem and its entities. In Section 3.5.2, we define the main security requirements
for our trust ecosystem. We describe the security architecture of the trust ecosystem
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Figure 3.11: Functional roles of the essential entities in the IDS.

in Section 3.5.3. The architecture of the trusted connector is provided in Section 3.5.4.
We present a secure communication concept for trusted connectors in Section 3.5.5 and
focus on data usage control in Section 3.5.6. Section 3.5.7 covers the trusted connector
implementation. For a security discussion of the architecture to evaluate it against the
local and remote attacker from Chapter 2, we refer to Section 3.3.5.

3.5.1 Industrial Data Space Overview
In the IDS ecosystem, participating organizations buy connectors from approved device
vendors to operate their own connectors. This is coupled with a service repository concept,
where IDS repositories offer services for download to connectors. Figure 3.11 depicts the
functional roles of the most essential entities taking an active part in the communication
within the IDS with the example of organization A and B exchanging data. We describe
these entities in the following.

IDS Connector. The IDS connector operates the services, which produce or consume data,
or which provide an ecosystem management functionality. An example are connectors
deployed on edge devices in a manufacturing unit or in a cloud center. Each connector
has a core system, which is a service integrating the connector to the IDS ecosystem
and to manage other services. The data services in case of organization A and B
gather, process, and exchange data, such as manufacturing data from connected
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hardware or sensor arrays. In addition, services on the core system can represent
infrastructure services for the management of the IDS ecosystem, such as for service
downloads or service discovery. As the infrastructure functionalities of the IDS are
deployed in the form of services on IDS connectors [Ott16], they are the defining
element and the central part of the ecosystem.

Broker. The broker service running as part of a connector, see Broker Service in Figure 3.11,
serves as a directory for all services deployed onto connectors. For this purpose,
the broker stores the metadata of known services, for example, service descriptions
and policies. In order to make itself known in the network, every service on a
connector must register itself at a broker service. The service on a connector can
then be discovered by other connectors querying the broker, for example, enabling
organization A to discover a data service of organization B.

Service Repository. This entity serves as a download repository for services. Service
repositories are services themselves, see Service Repository in Figure 3.11, and
are locatable by connectors using the broker service. Organization A can use an
appropriate service downloaded from a service repository to retrieve data from a
corresponding service of organization B. Broker services and service repositories
themselves form a decentralized network, in turn.

Identity Provider. The identity provider manages all identities of the involved entities
part of the ecosystem. Services can query the identity provider to gain information
whether a service they connect with is a legitimate entity in the ecosystem. Note
that an identity provider can also be represented by a service on a connector, for
example, hosting a service offering revocation statuses of connectors.

In addition to the described entities, the IDS ecosystem is based on several administrative
units, which do not participate in data exchange between trusted connectors. Due to the
heterogeneous structure of such a loosely coupled network like the IDS, strong security
requirements exist for the connectors, their interaction and the sensitive data they exchange.
This requires a concept for the root of trust and a clear definition of trust boundaries,
as well as the definition of secure gateways, the IDS connectors, between those trust
boundaries.

3.5.2 Definition of Security Requirements
In this part, we define the main security requirements for the design of our trust ecosystem
and trusted connectors, categorized according to the upcoming design sections 3.5.3 to
3.5.6. We first summarize the motivated specifics of IIoT scenarios to substantiate the
security requirements to be defined for the trust ecosystem. In the following, we refer with
the term trusted connector to both its core and service software functionality and to its
underlying platform as an integral unit.

Compared to the previous ecosystem designed for smartphones, ecosystems considered
here are no longer centered around end users, but rather comprise of spatially dispersed,
embedded devices without direct user interaction. Data valuable for corporations is
processed on the devices and heavily shared, oftentimes with other corporations. The
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perspective shifts from privacy of user data to high-value corporate data with usage control
requirements, and as a result to controlling all software running on the devices which ensures
that none of the data may be used illegitimately. A further result is that the valuable data
transferred between devices needs special protection and mutual trust between devices
and their software configurations. With these requirements, the operator of the ecosystem
plays an important role, responsible for controlling the software running on the devices, for
the data they store and that flows in the ecosystem.

Based on the presented specifics and considering our attacker from Chapter 2, we thus
define requirements on the operation of the trust ecosystem, trusted connectors, their
communication and data usage. In the IIoT ecosystem, our attacker may have physical
access to trusted connectors, is able to compromise services running on the connectors and
may interact on all communication channels in the ecosystem and spoof parties.

Trust Ecosystem, exposed to untrusted third parties and software, which the operator
needs to be able to regulate:

TE-I The operator must be the exclusive authority in the ecosystem to approve and reject
parties, such as service developers, assigning them fixed roles.

TE-II Services may only originate from approved sources in service repositories. Prevents
untrusted parties from introducing software and repositories, which might, for instance,
leak data.

TE-III Security analysis and quality assessment for services to be offered in service
repositories, reduces the risk of exploitable vulnerabilities and backdoors.

TE-IV Licensing/certificates for service instances installed on connectors, allowing only
approved service instances the interaction with other services.

Trusted Connectors, running possibly insecure or untrustworthy third-party services,
which can be leveraged or exploited by attackers:

TC-I Enforcement of service integrity before download and start, only verified services
may run.

TC-II Strict isolation for all running services, prevents compromised services from unin-
tended data access.

TC-III Resource limitation for services, such as CPU usage. This prevents a service from
exhausting other services’ resources.

TC-IV Fine-grained data access control for services, allows to define data usage policies
that ensure services access only intended data.

TC-V Confidentiality for data stored by services, prevents attackers with physical access
from obtaining data.

Trusted Connector Communication, possibly eavesdropped, altered, or spoofed by
attackers on the communication channels:
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CC-I Verifiability of the integrity of the software stack of connectors before allowing a
connection. As confidential data is transferred through connectors, this requirements
ensures that only verified connectors may exchange data.

CC-II Authenticity, confidentiality, and integrity. This prevents an attacker on the
communication channel from gathering and modifying data.

Data Usage. Exchanged data can possibly be disclosed by services on other connectors:
DU-I Attachment of usage policies to exchanged data.
DU-II Enforcement of usage policies defined by data owners.
DU-III Logging and accounting of all relevant data use.
At the end of each of the following design sections, we refer back to the corresponding
security requirements category summarizing how we achieve the requirements.

3.5.3 Trust Ecosystem Architecture
This section presents the architecture of the trust ecosystem in response to the defined
requirements. We first focus on the entities and then on our PKI for managing their digital
identities.

3.5.3.1 Ecosystem Entities
Figure 3.12 depicts the different entities of the generic trust ecosystem and their relation-
ships, described in the following. These entities can, for instance be mapped to the IDS,
but also to other scenarios.

Ecosystem Operator
The operator has the responsibility to approve new parties to become part of the trust
ecosystem. The operator determines the role of each new party, such as representing a
service repository, device vendor, service developer, or service authority. Only if granted
by the ecosystem operator, these entities may introduce components to the ecosystem, for
example, new services, or devices. To enable the operator to establish trust for protecting
the parties of the ecosystem and to ensure that they comply with their roles, the operator
manages a PKI, see Section 3.5.3.2. The operator enforces PKI functionality in the form
of the identity provider, see Section 3.5.1, for instance, offering CSR signing functionality,
OCSP services, or CRLs.

The operator may, for instance, be an association, or an operating company, which can
be a single unit, but also a consortium. For the sake of simplicity, we refer with the term
operator to a centralized, singular unit in the following. However, the operator may also
represent a decentralized instance in practice.

Device Vendor
The device vendor retails or produces trusted connectors and is responsible for their
initial provisioning with a software system and trust anchors. This allows connectors to
automatically enter the ecosystem when deployed by an organization. After the initial
provisioning, the vendor ships the trusted connector in a completely enrolled and pre-
configured state.
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Figure 3.12: Entities and their relationships in the trust ecosystem.

Trusted Connector
The trusted connector is a hardware device that is running the software stack allowing to
securely interact inside the ecosystem. We allow a connector to communicate with other
connectors only if it origins from an approved device vendor, operates approved services
only, and if it is capable of proving the integrity of its software stack.

Service Repository
Service repositories provide trusted connectors with approved services. Connectors only
accept services from repositories approved by the ecosystem operator. Service repositories
are also responsible for managing licenses of the services. We only allow services with a
valid license to run on the connectors. The service repository also provides fingerprints of
legitimate service versions and service licenses for mutual verification prior to connector
communication, see Section 3.5.5.

Service Developer
Only approved service developers may develop services for connectors. After implementing
a service, developers must sign their service. Then, developers must inquire the service
authority for service approval. The service developer can only upload services to the service
repository when approved by the service authority.

Service Authority
The service authority ensures the quality and security of services as criteria for approval.
Every service is subject to analysis and evaluation performed by service authority before
approval or rejection.

3.5.3.2 Public Key Infrastructure
The ecosystem operator establishes mutual trust between the parties based on a PKI and
issues or revokes certificates for the entities. Figure 3.13 depicts the PKI structure for
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the trust ecosystem, which reflects the control relationships between the entities. Our
structure has two separate PKI hierarchies managed by the operator, the service provider
and service signing CAs.

Service Signing
The service signing hierarchy is for managing the service developers and authorities, which
use their certificates to sign and hence approve services prior to distribution. Service
developers and authorities receive their certificate after approval by the operator. The role
and properties of each entity are provided in the certificates’ attribute fields. Services are
only valid with two signatures, each from one of the both entities.

Service Provider
The service provider hierarchy is for the device vendor and service repository. The device
vendor and service repository both can leverage or operate a sub CA in the hierarchy of
the operator’s root CA. The device vendor uses the sub CA to sign particular instances of
services to for initial deployment on a device. Similarly, the service repository uses the
sub CA to sign the particular service provided to a particular device. Instances of services
are thus represented by their service certificate, serving as a license. Trusted connectors
verify whether downloaded services have valid service licenses before deployment and refuse
connections with connectors with expired or revoked licenses. The connector can refresh
expired licenses using the service repository.
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3.5.3.3 Service Types and Distribution
Figure 3.14 provides an overview of the service types, certificates and trust anchors deployed
on the trusted connectors. The illustration emphasizes that each service has a digital
signature from the service developer and from the service authority. Additionally, each
service instance has a service certificate signed by the service repository or device vendor.

Depending on the different types of deployed services, a trusted connector may represent
a special role in the ecosystem. This means that a service repository is a connector running
a special service type, same as a broker or an OCSP server. The service repository type
has its sub CA certificate and key, used for creating service certificates. This allows to
provide services with a valid license. The core system is a service type present exactly
once on every connector. The core system manages the connector, its services and the
connections with other connectors. The core system can verify service certificates using the
CA certificate as trust anchor, initially deployed during provisioning by the device vendor.

The provisioning of trusted connectors includes the installation and configuration of the
core system, and issuing the initial services’ certificates. The customer can still use the
pre-installed core system to exchange it with another core system, or replace trust anchors,
remove and install further services. Figure 3.15 illustrates the steps for setting up and
starting a newly developed service on a trusted connector.

1. The service developer uses its private key corresponding to the service developer
certificate to sign newly implemented services. The developer sends the signed service
to a trusted service authority for approval.

2. The service authority verifies the developer’s signature of the submitted service and
performs its approval process with regard to the software quality and security. In
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case of successful evaluation, the authority signs the service and sends it back to the
developer.

3. The developer uploads the service to a service repository running on trusted connector
A. The service repository accepts the service with the two valid signatures and
publishes it.

4. Trusted connector B can download the new service from the service repository. To
issue a service download request, connector B creates a service key-pair and a CSR
and sends the CSR to the service repository. The service repository signs the CSR and
issues a service certificate representing the service instance and license for connector
B.

5. Trusted connector B then downloads the new service and certificate. The connector
checks the service developer and authority signatures, as well as its own certificate
for the received service using its deployed trust anchor. The connector is only able to
use the service for remote connections, with a valid certificate. Otherwise, interacting
connectors will refuse to connect, see Section 3.5.5.

Summary
The ecosystem operator is in full charge of the PKI infrastructure, making it possible to
approve and revoke every party from the ecosystem and to assign them fixed roles (TE-I).
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Each service in the service repository carries digital signatures by an approved service
developer and service authority, which guarantees that services originate from trusted
sources only (TE-II). The security and quality analysis by the service authority ensures all
services in the service repository are assessed (TE-III). Additionally, each service installed
on the trusted connector receives a certificate from the service repository. The certificate’s
validity period defines the service license and ensures that only licensed services may
exchange data (TE-IV).

When enforcing the integrity of the software loaded on the trusted connectors such as
OS kernel and services as referred to by TC-I, the trusted ecosystem may form a closed
ecosystem, for instance comparably to the system architecture of Apple’s iOS. All software
intended for running on the trusted connectors has to be approved by the operator, and the
trusted connector enforces from early boot to service start time that only such approved
software is loaded (and sandboxed when achieving TC-II). The ecosystem operator is thus
the only party to approve services and service developers in the ecosystem. With the
introduction of service authorities, however, the ecosystem operator may delegate service
approval. This allows different service authorities to introduce services - but not privileged
software components such as an OS kernel - into the ecosystem. On the trusted connector
side, this further allows to enforce that services originating only from a specific authority
may be loaded. It depends on the enforcement of the operator in an instantiation of the
trust ecosystem whether the system is considered closed or open. The IDS is designed to
be an open ecosystem. For IIoT use cases where the software running on connectors plays
a crucial role for data usage and thus confidentiality, at least certain control over service
origin and quality must be enforced.

3.5.4 Trusted Connector Architecture
Figure 3.16 depicts the security architecture of the trusted connector. The design of
our architecture enables trusted connectors to run their services in containers similar to
Section 3.3. The illustration shows the OS-level virtualization-based architecture. Like in
Section 3.3, we only allow the containers to communicate over strictly defined channels
and assign them minimal privileges only. Despite that our trusted connector architecture
generally follows Section 3.3, the overall design changes for IoT devices. In contrast to
the usage model on mobile devices, where the end user plays a crucial role, functionalities
and interfaces for end users are not an integral part of our architecture, for instance.
This section briefly describes the main components of our trusted connector architecture
bottom-up starting with the hardware layer.

3.5.4.1 Hardware Layer
Compared to a mobile device use case, where full Android containers share the various
hardware devices, such as the radio interface, the Wi-Fi chip or bluetooth interface, the
services in our ecosystem are mainly designed to access and process sensor data. The
hardware devices on the trusted connector used by services are thus interfaces for the
connection of sensors and actuators to the connector, such as the network interface. To
provide a root of trust for the software stack and for the attestation between connectors,
we integrate a TPM into our architecture. To verify the integrity of software loaded at
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boot time, trusted connectors must provide a root of trust for realizing a chain of trust
implementation, such as UEFI secure boot.

3.5.4.2 Kernel Layer
The features to realize the separation with OS-level virtualization form the Linux kernel’s
namespaces feature and parts of the cgroups feature. The other building blocks are
responsible for the isolation of the containers. We briefly explain how we use these blocks
in the following.

Namespaces
Each container runs in a separate namespace like in the virtualization architecture for
mobile devices. For instance for regulating network device access between containers, we
use the network namespaces. We can re-use the device namespaces feature to virtualize
the access of containers to further sensor and actuator interfaces connected other than via
the networking interface.
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Cgroups
Like on the mobile device architecture, we use the CPU and memory subsystem to restrict
containers to a fixed share preventing containers from exhausting these resources. We also
make use of the cgroups devices subsystem. We restrict containers to the access to hardware
devices, the sensor and actuator interfaces, depending on the specific service they host.
This makes it possible to restrict containers from accessing any device or interface except
for those a service is designed to use, for example, to gather data from a network-connected
temperature sensor.

Container-Isolation LSM
With our container-isolation LSM from Section 3.3.2, we restricted containers from making
uncontrolled system calls, for instance, and to protect objects relevant for container isolation.
We use this LSM and tailor it to our platform.

Capabilities
We re-use the capabilities feature from Section 3.3.2 to restrict containers to the minimal set
of their necessary permissions. Depending on the purpose and privileges of the containers,
we drop not necessarily relevant capabilities.

FDE
The mobile device architecture used the Linux kernel’s FDE infrastructure to transparently
encrypt all the Android containers’ persistent service data. The container storage protection
key was bound to an SE, such as a smartcard, to prevent brute-force attacks on the
encryption key. The user had to provide the SE’s PIN via the user interface to unlock
the SE. User interaction and user authentication are not part of the model on our devices.
Therefore, we make use of the TPM as secure key storage. We use the sealing functionality
to bind the storage protection key for containers to the TPM and ensure that it is unsealed
on container start only in a known-good system state.

Netfilter
In contrast to the use case for mobile devices where containers must access the internet
unimpeded, our architecture confines the network traffic of containers to specific network
addresses. We make use of the netfilter Linux firewall to ensure that containers use the
network interface only to communicate within the boundary of our ecosystem. A data
service may, for instance, be restricted to only gather data from a sensor in the local
network via a specific route.

3.5.4.3 Virtualization Layer
The virtualization layer in user space is part of the TCB and hence a privileged component.
Its integrity is verified at boot time by a chain of trust implementation. This layer splits
up into the entities CM and SM.

Container Management
Like in the prior mobile device case, the CM is responsible for starting and stopping of
containers. Before starting a container, the CM uses the SM to verify the signatures of the
container to be started Section 3.4. Then, the CM configures and activates the kernel’s
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security and virtualization mechanisms associated with the container. An example is to
enforce the cgroups devices subsystem for a container to be started, such that access is
granted to only the specific hardware devices the contained service is allowed to use. When
starting a container, the CM mounts its partitions and embeds the container into its own
namespace. The CM is also capable of updating containers and the virtualization layer.
The CM applies new updates for containers and the virtualization layer only when the
signatures match against the CA certificate. The core container is responsible for providing
the CM with the updates.

Security Management
The SM performs the cryptographic operations for the container’s FDE obtaining the FDE
key from the TPM prior to container start. Furthermore, the SM performs the signature
checks on all read-only container images, which are signed prior to distribution, before
allowing the CM to start a container. Another task of the SM is to make use of the
TPM’s remote attestation functionality for establishing communication channels with other
connectors before exchanging confidential data, see Section 3.5.5.

3.5.4.4 Container Layer
The software layer on container level consists of a number of untrusted service containers
and one higher privileged core container.

Service Container
Each service container runs an isolated service or a service bundle in a separate execution
environment based on a generic Linux OS stack. The architecture confines the service to
only communicate with the CM and with other services of remote connectors after the core
container established the communication and set up the channel for the container. The
vService entity, also available in the core container, is used by the CM to communicate
with containers. For example, the vService sends a message to the CM after startup to
indicate the successful completion of the boot process. The CM also uses the vService to
initiate a container shutdown.

Core Container
In the mobile device architecture, a responsibility of the core container was to securely
virtualize those hardware devices, which could not be virtualized in kernel space using the
device namespaces. Devices, such as the Wi-Fi or radio interface, have parts of their driver
base realized in user space, for instance, in the form of background daemons. We re-use
this principle and existing infrastructure to virtualize the access for such sensor-actuator
interfaces. We replaced the Android OS userland stack with a minimal GNU OS user space
stack keeping the attack surface of the privileged connector small. In the trust ecosystem,
the privileged core container bundles the management functionality for service containers
and provides the integration into the ecosystem. This is the responsibility of the core
system service, called Connector Operation Module (COM), described in the following.
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3.5.4.5 Connector Operation Module
We designed several software components on a generic Java stack representing the functional
blocks of the COM. For instance, the Trust Ecosystem Secure Communication Protocol
(TESCP) endpoint functionality represents the connector-to-connector protocol integration
point for the trust ecosystem. We designed the TESCP to realize remote attestation,
metadata exchange and policy handshaking prior to data exchange between containers,
see Section 3.5.5. Another example is the service manager, which uses the CM interface
to manage service lifecycles, i.e., to start, stop, deploy, or remove containers. The service
manager also provides runtime information to the administration interface component.
The routing manager controls data routes between deployed service containers and internal
and external devices, like sensors or external connector instances and services. The COM
sets the routes of the containers’ network to grant or prevent services from network access
to sensor and actuators. Services are not reachable from the outside until a valid route
has been declared by the routing manager making it the central configuration point for
connectivity. This is possible, because the COM, running in the privileged container, shares
the network namespace with the CM. The dataflow control component allows for creation
and monitoring of data flow policies that enable usage control to be performed by the
routing manager.

Further details on the COM’s design and implementation based on the Open Service
Gateway Initiative (OSGi) framework [OSG] can be found in [Bro18]. All the components
are bundles running in OSGi, which we can dynamically bind or replace whenever there is
a need for change of functionality. Our COM implementation is part of the Trusted IoT
Connector open-source platform [Ind].

Summary
We achieved the service integrity (TC-I) with a chain of trust implementation and by
verifying and only loading signed container images. This reduces the risk of uncontrolled
drain of confidential data. The container isolation with the Linux kernel security mechanisms
achieves the strict service isolation between containers (TC-II). The kernel security layer
also achieves resource limitation (TC-III) and access constraints (TC-IV). In particular,
the management of critical resources and accesses is configured by the core container. The
confidentiality of the data of services (TC-V) towards attackers with physical access is
achieved with the storage protection.

3.5.5 Connector-to-Connector Communication
In this section, we describe the model for secure connector-to-connector communication,
the TESCP for our trust ecosystem. The COM is responsible to enforce this model for
every connector communication attempt on behalf of the isolated services. A successful
access control decision is the precondition for data exchange between services. Figure 3.17
depicts the process for connector A establishing an active channel with connector B, as
described in the following.
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Figure 3.17: Simplified secure communication protocol between trusted connectors.

Secure Channel
Both connectors first establish an authenticated TLS tunnel with mutual authentication.
For that purpose, the COM, as a service, uses its service certificate. The certificate
must be signed by an approved entity, neither expired nor revoked, see Section 3.5.3.1.
The connectors contact the identity provider to query the revocation status of the other
connector. Thereby, the identity provider, for example, operating an OCSP server, returns
whether the certificate has been revoked or is still valid. In scenarios where OCSP services
are offline, certificates must be checked against a local, updated CRL. After successful
tunnel creation, the connectors exchange their metadata in form of dynamic attributes.
These are represented by so-called Dynamic Attribute Tokens (DATs) signed by a service
operated by the identity provider. The token format could be, for instance, an OAuth
or JSON web token format. In Figure 3.17, connector A presents a DAT to connector
B, which verifies the validity of the DAT using the identity provider. The DAT contains
current identity attributes, for example, describing a specific domain or business area, or
the connector’s additional security features, for instance, a secure server room. Connector
B can then allow or deny access based on the contained attributes. We decided to use this
dynamic attribute approach over static attributes tied to service certificates, because the
attributes can change over time. For instance, if the connector is moved from the secure
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server room to a public location, it looses that attribute. In case of static attributes, the
COM’s service certificate must be invalidated and a re-approval performed.

Remote Attestation
In the next step, both connectors must provide proof of the integrity and validity of their
software stacks. The attestation considers the core system, as well as all installed services
along with their certificates. This step is referred to as remote attestation, which we based
on the TPM 2.0. Note that Figure 3.17 simplifies the procedure by showing only attestation
of connector A.

We base the attestation of connectors on the measured boot process proposed by the
Trusted Computing Group (TCG). With the Core Root of Trust for Measurement (CRTM),
we verify the boot firmware, for example, BIOS, and extend the verification chain to the
OS. We then ensure the integrity of the virtualization layer and the core container. To be
able to cope with software updates, we use the custom policies specified by the TPM 2.0
delegating the decision about the legitimacy of particular Platform Configuration Register
(PCR) values to third parties. In the trust ecosystem, these are the service repositories,
to which connectors provide the relevant quote of the PCR values signed by the TPM’s
private key. We simplified this step in Figure 3.17, omitting connector B contacting the
service repository.

The service repositories not only provide the knowledge about the fingerprints of the
core container and virtualization layer, but also about approved and rejected fingerprints of
all other services. The verification of the measurements of services by the service repository
requires the connectors to provide a measurement log in addition to the quote of the
PCR values. This log contains fingerprints of installed services along with their metadata.
Connectors query the service repository to reconstruct the sequence of service installations
and PCR updates using the measure log. The service repository then verifies the correctness
of the PCR value. The service repositories relieve connectors from maintaining a whitelist
of allowed software by themselves and preserve connectors’ privacy, because connectors
only have to be provided with service fingerprints. Additionally, the connectors contact
the identity provider to validate each service’s validity regarding its license represented
by the service certificate. We also omitted this step from the illustration. Only when a
connector meets all conditions, we allow the interaction between services.

Summary
The communication requires mutual remote attestation between connectors based on the
TPM 2.0 to verify the integrity of their software stacks before exchanging data (CC-I).
Communication between trusted connectors is performed through TLS tunnels with mutual
authentication based on service certificates issued by the ecosystem operator (CC-II).

3.5.6 Data Usage Control
One key aspect of the IDS use case is the promotion of data sovereignty. On the one hand,
this means that the owners of data can be ensured that data kept locally is protected on
their premise with solid security measures, while allowing them control over data usage. On
the other hand, this also means freedom of choice to define usage and access rules for data
in transit at the owner’s discretion. The protection of confidential data is thus not only a
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fundamental aspect when it comes to protect devices or communication channels, but also
the further usage of data by other connectors. Data usage control addresses this aspect.
In the context of the trust ecosystem, the ability to control fine-grained message-based
data usage is important to avoid drain of sensitive data by trust connectors. Services
may accept input data records, process them and generate a new set of data records to
be output. The data services output may be sent across trust domain boundaries, i.e., to
other corporations. We attach data usage policies to all data connectors exchange. With
this, we restrict the flow and usage of data. For example, this allows to anonymize data
before sharing with other connectors.

For defining data usage policies, we assign the data and the services predicates, which
serve as labels and descriptors for service properties. The predicates may be simple tags,
such as data being labelled personal, or represent data usage conditions, such as a time-
to-live before the data record must be destroyed at the recipient. Data gets first labelled
at its origin, depending on the service collecting the data record. Services with special
properties, such as data anonymization or filtering of contents, then remove the specific
labelled information in data records before their transmission.

We define data flow policies to model the possible data flows in the ecosystem. We base
data transmission on predefined routes, based on which we model data flows and enforce
flow policies. To realize the data usage control for the trusted connector, we designed a
policy framework that enforces label-based usage control. This framework builds on the
work in [Sch16]. The key aspects are the following:

1. Definition of a policy language that we translate into a first-order logic representation.
2. Introduction of a component responsible for the runtime evaluation of policies based

on their first-order logic representation.
3. Static model checking of message routes against policies.

The framework allows to create policies, which are easy to administer and supports
attaching usage policies to connectors to restrict data flow and usage. Our container-based
isolation architecture enforces the local compliance with the policies. The attestation
capabilities in the trust ecosystem allow the verification of deployed policies on other
trusted connectors. Further details on data usage control for the trust ecosystem and the
implementation on trusted connectors can be found in [Bro18].

Summary
Each communication message is appended a label by the COM with a set of predicates,
which specify a data usage policy associated with the transmitted data (DU-I). The COM
of the respective connectors enforces the data usage policy (DU-II). The COM provides
the functionality for data audit logging and log signing (DU-III).

3.5.7 Implementation
We implemented a prototype for the trusted connector based on the implementation
of the virtualization architecture in Section 3.3.6, both to be found in the open-source
project trustm3 [Fraa]. Instead of an Android build chain, we based our build chain on
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the Yocto project [Sal14] to ensure high portability of the connector’s software layers
to a variety of hardware architectures and application scenarios. The corresponding
build environment includes Linux kernel configuration as well as bitbake recipes for the
software components. Furthermore, several build configurations are provided, producing
the system images for the different containers and the base system. With this build setup,
we successfully executed and tested the prototypes on various x86, ARM, and PowerPC
architectures. Following Figure 3.16, we describe the most important aspects for software
layer components bottom-up. We then focus on the communication between connectors.

3.5.7.1 Kernel Layer
On kernel layer, we ported the necessary features from the 3.10 Android kernel from
Section 3.3.6 to kernel version 4.4 and built it for the x86 architecture. The kernel starts
the CM and SM as privileged processes after kernel boot completion.

On our current connector prototype, we could abstain from device namespaces. First, the
foreground-background usage model does not exist. Instead, the containers all run in parallel
and do not require simultaneous access to hardware devices, such as a touchscreen. Second,
the sensor/actuator interfaces were all connected via the network interface, which we could
virtualize with veth interfaces and container-specific routing. When other interfaces or
hardware devices for accessing sensors and actuators are used, the multiplexing can be
enabled using device namespaces. To prevent access to other hardware devices than the
network interface, we restricted the access using the cgroups devices subsystem.

3.5.7.2 Container and Security Management
We implemented the CM as a Linux daemon close to Section 3.3.6. The CM is responsible
for the basic container network setup by creating a veth pair in the core and service
container when a new container starts. The core container and CM share the same network
namespace. The network namespace sharing and set-up of veth pairs allows the core
container to set the network routes for the service containers using ipconfig and the netfilter
firewall. The CM sends the core container a message via the vService to trigger that
functionality when a new container starts.

We split up the SM into two separate daemons, the security helper daemon and the
tpm2d. The security helper daemon handles the containers’ FDE and signature verifications
using the OpenSSL library in combination with the TPM engine. The responsibility of the
tpm2d is to implement an interface between the TPM and its users, the core container and
the security helper daemon. The tpm2-daemon’s code base includes IBM’s TPM 2.0 TCG
Software Stack (TSS) [Gol]. We used the tool tpm2simulator based on [Wag] to emulate
a TPM and test the functionality of our daemon. We adapted the TSS implementation to
directly communicate over a UNIX domain socket with the simulator.

The labelled, shaded rectangles in Figure 3.18 depict the interfaces between the vir-
tualization layer and the containers, for which we use UNIX domain sockets. The tpm2
socket offers the core container TPM functionality, whereas the core container uses the
control socket for service container management with collaboration of the CM. The service
socket is used for the vService communication between each container and the CM. The
unlabelled, shaded rectangles depict the internal socket communication between the entities
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Figure 3.18: Communication channels between container and virtualization layer.

of the virtualization layer. To provide a secure implementation, we used protobuf [Gooe] as
communication protocol over all sockets except for the tpm2simulator, which implements
the corresponding protocol of the TSS.

3.6 Summary
We developed a secure architecture for OS-level virtualization on mobile devices in Sec-
tion 3.3. Including an SE, the main objective of the secure architecture is data confidentiality
at container boundaries. To fulfill this goal, we systematically isolated the different, si-
multaneously running containers from each other. Therefore, we restricted the different
containers to a minimal set of controlled functionality. This made it possible to confine
communication of the architecture’s components to only well-defined channels for container
management and device virtualization. In order to realize the strict isolation, we devised a
stacked LSM concept using SELinux and a specially tailored, custom LSM. We furthermore
leveraged Linux capabilities and the cgroups devices subsystem. Based on that, we devel-
oped mechanisms for secure device virtualization and secure container switching sustaining
a seamless user experience. Thereby, we classified devices into different categories and
provided containers with distinct hardware functionalities on a per-container basis. To
demonstrate the feasibility of our approach, we realized the secure architecture with a
fully-functional implementation on the Samsung Galaxy S4 and the Nexus 5 devices. The
performance evaluation shows that the system performs well and that it is suitable for
real-life application. In our security discussion, we concluded that the architecture provides
data confidentiality even when large parts of the system are compromised.

In Section 3.4, we focused on the applicability of the secure architecture in real-world
scenarios. Our approach was driven by the application of mobile devices in corporations or
governmental institutions. In such scenarios, users are likely to work with sensitive data
while using the devices for miscellaneous other tasks. We introduced a secure provisioning,
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enrollment and update process to cover the whole lifecycle of devices. To associate users
with containers and devices, we introduced an SE. We also introduced PKI hierarchies to
provide trust between container software, users, devices, and the management backend.

In Section 3.5, we designed the secure virtualization architecture for ecosystems where
heavily interconnected devices in distributed networks exchange, gather and process sensitive
data. As the interconnectivity of devices and system progresses, like in IIoT scenarios, and
because more and more sensitive data is exchanged, our proposed concepts represent an
important building block for securing these heterogeneous systems. One of the characteristic
scenarios we referred to was the IDS, a platform to exchange data across the boundaries of
organizations. We started with identifying security requirements representative for such
ecosystems. We then developed a holistic security architecture of a trust ecosystem in
which we sought to address the identified requirements. We covered identity and trust
management, a trust ecosystem’s data-, application- and device-lifecycle, as well as secure
device-to-device communication. On device-level, we transformed the previous secure
virtualization architecture for mobile devices with end users to the embedded domain
without end users. We called the embedded devices trusted connectors, on which we
isolated the containers, securing their sensitive services and data from malicious third
parties and other possibly malicious containers. We implemented a full-fledged prototype
of our secure architecture on device-level including a communication protocol to establish
trust between devices. Compared to smartphone use cases, the exchange of data has higher
requirements on achieving data confidentiality. Therefore, we extended our embedded
architecture with secure and measured boot capabilities for boot-time integrity verification
and measurements. This allows to establish trust between connectors through remote
attestation before exchanging data. Future design of ecosystems for connected devices
can thus benefit from our work building on our architectural design and our open-source
implementation [Fraa] and documentation [Frab].

With the design and implementation of our virtualization architectures and with the
design of ecosystems for their application in practice, we made Contributions 1 through 4
and tackled Challenges 1 and 2.



CHAPTER 4
Main Memory Extraction based on the Cold Boot Attack

This chapter addresses Challenge 3, the main memory extraction from conventional
computing platforms. For this purpose, we present Contribution 5, a forensic framework for
main memory extraction based on the cold boot attack, for the domain of mobile devices.
With this framework, we not only develop a method for systematic memory extraction,
but also urge the need for mechanisms protecting against memory extraction by physical
attackers, a topic we cover in Chapter 5. This domain is of special interest because our
today’s mobile devices store vast amounts of sensitive data about their owners in both
volatile and non-volatile memory [Nta14; Pet07; Tan12]. This includes contact details,
user credentials, personal and business emails, pictures, location history, or perhaps even
the user’s health states. Especially in sensitive corporate or governmental domains, the
reliable protection of valuable and possibly classified data is an important topic. While
modern mobile device OSs, like Android and iOS, increase the confidentiality of data by
encrypting the file system, main memory remains unencrypted, making confidential data
prone to getting extracted with a cold boot attack.

Cold boot attacks exploit the remanence effect of DRAM, which causes data to fade
gradually in main memory [Gru13; Gut01]. The longer the timespan between the power
cut-off and restarting the device, the more bits degrade in main memory. Cooling down
the physical memory mitigates the amount of data loss by the remanence effect. While
on desktop devices, RAM modules can be removed and plugged in to a host device for
memory analysis, RAM modules of mobile devices are soldered on the System on a Chip
(SoC) and thus not removable. A cold boot attack can be initiated on mobile devices
by either shortly removing the battery from the device or by triggering a hardware reset
functionality. This makes it possible to reset the system and to deploy forensics tools in
early boot to conduct the data acquisition, instead of booting back into the OS [Mül13].

The first part of this chapter describes the design of our novel framework for main
memory extraction on mobile devices based on the cold boot attack. Our framework does
not require any runtime privileges on the targeted device’s OS. Our framework almost
completely sustains the device’s previous memory contents and requires overwriting only
a minimal amount of bytes in main memory while not initializing device memory. Keys
usually have known patterns or kernel structures, which makes them easy to identify.
Examples are the kernel structures for FDE keys [Hew; Pet07], or the patterns of AES and
RSA keys in memory, such as key schedules [Pri]. The more memory contents are sustained,
the higher the chance to precisely reconstruct the device’s previous state and its secrets.
The amount of unimpaired bytes in memory after the restart thus reflects the quality of
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an attack. This not only depends on time and temperature, but also on the impact of
the framework on the device’s memory. Not allowing the forensics module to overwrite
important content during the acquisition process is essential and an often neglected factor
in the data acquisition process. The existing Forensic Recovery Of Scrambled Telephones
(FROST) framework [Mül13], for instance, overwrites kernel memory when booting the
forensics tool, deployed on the recovery partition, on the device. In particular, this includes
the system state, for example, the list of running processes and their mapping in physical
memory. Instead of utilizing a full-fledged Linux kernel, like in the FROST framework, we
boot the mobile device with a minimalistic and easily portable application. Our framework
thereby sustains all the data relevant for the analysis of the previously running system by
overwriting no more than three kilobytes of constant data in the kernel code section. For
the practical demonstration of the feasibility of our framework, we implement it for the
Samsung Galaxy S4 mobile device and port it to the Nexus 5 device.

Based on the memory-preserving property of our framework, we present a method for the
systematic acquisition and analysis of the device’s memory contents in the second part of this
chapter. As the memory still reflects the previous system state, such as the kernel structures
and page tables of the MMU, we make use of this unaltered state for our systematic analysis
of the data. This allows us to efficiently analyze the memory contents with existing memory
forensics tools. For that purpose, our application provides a communication interface
to a host system via the UART serial interface. The communication interface makes it
possible to request memory dynamically and offload the analysis to the host system. Data
acquisition tools utilizing this interface can thus be leveraged for the forensic analysis on
the host system instead of running them on the device [Aga15; Hoo11]. We extend the
memory forensics tool Volatility with an implementation of the communication interface
for data acquisition. We conduct an extensive evaluation of our proposed framework and
compare the cold boot-based analysis with traditional memory dump analysis. We also
show the potential of our framework by acquiring sensitive user data in a concrete use case.
In addition, we extract the container storage encryption keys from mobile devices running
our virtualization platform from Chapter 3.

The remainder of this chapter is organized as follows. In Section 4.1, we present related
work in the fields of forensics and cold boot attacks. In Section 4.2, we provide background
information about the interpretation problem of raw data obtained from memory dumps.
We elaborate the design of our framework in Section 4.3. In Section 4.4, we describe
the implementation of our framework. We explain the device-specific realization for the
Samsung Galaxy S4 device and describe the framework’s portability in Section 4.5. We
then evaluate our forensic framework in Section 4.6 and discuss important aspects in
Section 4.7 before we summarize this chapter in Section 4.8.

Contribution 5 is based on publications [Hub16b; Tau15]. The contribution results from
joint work with Benjamin Taubmann, Sascha Wessel and Lukas Heim. Both Manuel Huber
and Benjamin Taubmann collaborated in the conception, implementation and evaluation.
Benjamin Taubmann formulated the idea and defined the architecture of using a cold boot
attack for the forensic data acquisition process on mobile devices. He also introduced the
concept of the bare-metal application. Lukas Heim worked as part of a student project on
the implementation while Sascha Wessel provided input to the concept work.
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4.1 Related Work
In this section, we present related work that addresses cold boot attacks and alternative
memory extraction methods, especially in the context of mobile devices. We also provide a
brief overview regarding forensic data analysis on Android devices and on countermeasures
to cold boot attacks.

Cold Boot Attacks
A preliminary approach to cold boot attacks for acquiring memory of a previously running
system was to force a reboot where memory is fully preserved [Cha08]. The preserved
memory was leveraged to circumvent OS authentication mechanisms and allowed to even
recover the state of the previously running system. The first cold boot attack was published
by Halderman et al. in [Hal09], where the authors showed that it is possible to extract
data from main memory on the x86 architecture after a short interruption of the power
supply. This also works when a DRAM module is moved to another host computer. They
showed that the rate of the degradation of volatile memory can be drastically reduced
by cooling down the RAM module. For data acquisition, the tool bios memimage boots
directly from a USB flash drive or via Preboot eXecution Environment (PXE) boot [Pri].
The tool transmits the content of the DRAM modules via network to another investigation
host or stores it on a USB flash drive. Additionally, the tool provides features to find and
fix corrupted RSA and AES keys in a memory dump.

Based on the approach for desktop computers, the cold boot attack found its adoption
on the ARM architecture. With FROST [Mül13], Müller et al. showed that cold boot
attacks are feasible on Android phones. On those devices, it is not possible to boot from
external sources, like USB sticks. In addition, the RAM module is non-removable because
it is integrated into the SoC. The approach with FROST is to force a restart of a running
device by interrupting the connection to the battery. Afterwards, the already installed
FROST framework is booted from the recovery partition by pressing the corresponding
buttons on the device that trigger the recovery mode. The FROST framework loads an
entire Linux kernel and features a kernel module that searches for AES keys in main
memory. The FROST boot image is flashed onto the recovery partition before the analysis.
This circumvents the restrictions in booting external sources. To flash the boot image, the
bootloader has to be unlocked. This usually triggers a routine that formats the user data
partition. A drawback of the FROST framework is that the heap of the previously running
kernel gets overwritten, because the framework boots a full-fledged Linux kernel. The
overwritten contents include information like structures of the MMU, the list of running
processes and the memory mappings of processes to physical locations. Additionally,
the kernel likely reinitializes I/O devices, which resets the corresponding device memory,
possibly in the interest of a forensic investigator.

Alternatives to the Cold Boot Attack
Cold boot attacks do not allow for live forensics, as the system halts for a short moment
rebooting the device. For live forensics, it is possible to directly access memory on a
running device. The two most obvious ways are to either read directly from /dev/mem or
to use tools like the Linux Memory Extractor (LiME) kernel module [Syl12a]. One problem
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is that both approaches require root permissions [Ros]. It is only possible to bypass that
problem by exploiting security flaws in processes that have root access. The other problem
is when using kernel modules, the running kernel has to be capable of loading custom
kernel modules.

Another option to access main memory is the use of devices that offer DMA. For the
x86 architecture, this was shown for the PCIe [Dev09], Firewire [Bec05] and Thunderbolt
[Maa12; Sev13] interface. Those interfaces are in general not available on mobile devices.
However, mobile devices often have a JTAG interface for debugging purposes. This provides
full access to main memory at runtime. In [Wei12], the author uses the JTAG interface
to exploit the baseband of a smartphone. The RIFF Box [RIF] is a device that makes it
easy to retrieve a memory dump or even to read or write the memory on the internal flash
drive via the JTAG interface.

Forensic Data Analysis
Digital forensics goes back to approaches on early computers decades ago [Aga15] and
nowadays finds its adoption on Android devices. In [Thi10], the authors use the process
trace system call to stop and resume processes and to create memory dumps of their
address spaces. This is useful when data remains in memory only for a very short period.
This happens, for example, when it is loaded and erased in only one routine.

In [Apo13; Nta14], Apostolopoulos et al. search for authentication credentials in the
process memory of applications. They use the Dalvik Debugging Monitor Server (DDMS)
tool [Apo13] and the LiME kernel module [Syl12a]. The authors execute both analyses
on running mobile phones with root privileges. Hilger et al. show a memory forensics
application that uses the memory of cold booted devices in [Hil14]. They create tools based
on the FROST framework to analyze the heap of the Dalvik Virtual Machine. With this
approach, they are able to obtain critical data, for example, the phone call history, the
last user input, and passwords [Syl12b]. Gruhn et al provide a detailed analysis on the
susceptibility of DDR1 and DDR2 RAM to the cold boot attack [Gru13]. The work in
[Lin15] shows how to run cold boot attacks against DDR2 and DDR3 RAM while [Yit17]
investigates the feasibility of the cold boot attack on DDR4 modules. Carbone et al analyze
the applicability and the effects of memory decay in detail in [Car11].

Countermeasures against Cold Boot Attacks
Research on mitigating cold boot attacks mainly focuses on protecting the FDE key
against the attack [Göt13; Mül11; Mül12; Ski13]. In [Göt13], the authors relocate the
disk encryption key from main memory to the CPU registers of the ARM microprocessor.
This goes back to [Mül11], where the authors develop the approach for keeping the disk
encryption key in registers for the x86 architecture. Note that these approaches specifically
protect against cold boot attacks, but do not defend against DMA attacks where an attacker
is capable of writing memory [Bla12]. The work in [Ski13] describes a software-based
approach to protect the key while being in a private mode that allows using basic device
functionality. In [Col15], the approach is to encrypt user data in main memory when the
device switches to the screen-locked state. The utilized key is stored on the ARM SoC
rather than in DRAM. There is however only little research on the application of the cold
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boot attack for sophisticated forensic analysis or for the inspection and improvement of
security features. Anti-forensics techniques, for example, [Zha15] for the x86 architecture,
aim to defeat memory acquisition modules by manipulating the physical address space
layout. Data scrambling in DRAM interfaces is another countermeasure, which however has
been shown to be still susceptible to the cold boot attack [Bau16; Lin15; Yit17]. Another
approach against cold boot and memory attacks is main memory encryption, which we
focus on in Chapter 5.

4.2 Background on Data Interpretation
In order to interpret the raw data in main memory, we require meta information. The
problem of data interpretation is the semantic gap in the fields of Virtual Machine
Introspection (VMI) [Che01]. The required meta information depends on the OS, the
kernel version, and its configuration. This information is necessary to determine the
location of kernel structures and which components those structures include.

The kernel data structures are important for a full analysis, for instance, to reconstruct
the list of running processes and their memory mappings. In FROST, the full Linux kernel
is booted and overwrites the data of the former running kernel. This causes a high amount
of crucial information loss and results in non-reconstructible data.

In our framework, we utilize the tool Volatility for data interpretation [Theb]. Volatility
is an easily extendable open source application for memory forensics. Volatility consists
of a collection of tools for acquiring memory, for bridging the semantic gap and for the
extraction of relevant information. Volatility provides a decent amount of plug-ins that
obtain detailed information on the target system. For example, the plug-in linux_pslist
retrieves a list of running processes. The application supports different operating systems
(Microsoft Windows, Mac OS X, Linux and Android) and architectures (x86 and ARM).
Volatility requires supplementary data about the target system. Volatility profiles reflect
this supplementary data. Profiles contain the metadata about the structures and debug
symbols of the kernel running on the target system. Volatility comes with a set of standard
profiles, such as for Windows systems. Profile information can be automatically extracted
from the kernel source code, such as with [Thec] for Linux-based systems.
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Figure 4.1: Schematic overview of our main memory extraction framework showing the BMA
on a mobile device communicate with a forensics application on the host.

4.3 Design of a Cold Boot-based Memory Extraction Framework
The central design primitive for our memory extraction framework is to preserve as much
memory as possible on the target device. We construct a minimalistic module that runs
on the device during memory extraction. This module is an application which does not
require a Linux kernel or any libraries at runtime. The sole purpose of this module is to
read the device’s main memory and transfer it to a host device, which can systematically
analyze and interpret the device’s main memory contents. This module, once deployed
on the target device, occupies only a smallest amount of main memory. Amongst other
important memory regions, we preserve the structures of the formerly running Android
kernel when booting our module. We call this module the Bare-Metal Application (BMA).

In order to transfer the data between the target device and the host device, the BMA
uses the target’s serial interface. Mobile devices usually expose a serial interface to the
outside. The corresponding driver to initialize and access the serial interface is part of the
BMA. The driver can be implemented very efficiently in terms of memory, which keeps our
BMA small. Drivers for other hardware peripherals that can be used to transfer data from
the mobile device, such as the USB interface, are significantly more complex. In particular,
our driver only comprises functionality for reading and writing from a dedicated register of
the UART interface.

Figure 4.1 depicts an overview of our framework. The illustration shows the two main
elements of our framework: the minimalistic BMA on the mobile device and the forensics
application on a host device. The design choice of using a minimal BMA and serial interface
has the advantage of the framework being optimized for the memory footprint on the
target device. However, due to the slow transmission rate of the serial interface, this choice
comes at the cost of performance when transferring the memory contents to the host device.
In our framework, we thus aim to only request relevant data from the target device, see
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Section 4.4.2. The relevant data comprises of the data intended to be extracted, such as
key material or other valuable secrets, and the data that is necessary to efficiently locate
the secret, such as kernel structures pointing to areas where secrets are likely to be found.
Because the location of secrets in main memory is usually not known beforehand, the latter
data helps to significantly speed up the extraction of the desired data, compared to the
naive extraction of main memory contents. The utilized forensics application on the host
device contains the decision logic for acquiring the relevant data from main memory.

The left side of Figure 4.1 shows that we map the BMA to the code segment of the
previously running kernel. We assume that (at least the small portion of occupied memory
in) the kernel’s code segment does not contain any relevant data. The BMA boots directly
on the target system without requiring any other dependencies. The BMA implements
a simple protocol on top of the serial driver in order to receive and process commands
from the forensics host. For our framework, we only require one command. This command
includes a physical start address and the amount of bytes the BMA has to read from main
memory and return.

The forensics application for data acquisition and analysis on the host system is depicted
on the right side of Figure 4.1. The application directly requests data from the serial
interface, connected with the target device via a serial cable. The forensics application uses
data acquisition modules, for example, to retrieve a list of the former processes running
on the system. This list is represented by data structures of the former running kernel in
memory. Based on the list of former running processes, sensitive data of processes can
be extracted in a targeted way. A forensic investigator can choose a specific process and
retrieve the kernel structures, which indicate in which regions the memory of a targeted
process can be found. However, these memory regions are expressed as virtual addresses,
because of the kernel’s virtual memory management for processes.

Forensics applications usually use a memory dump for the analysis, instead of directly
analyzing memory contents with the BMA. Based on a traditional memory dump, two
steps are required to locate a the virtual address of a process in the dump:

1. Translation of virtual to physical addresses in main memory. This is hardware
dependent and requires the information stored in the page tables of the MMU.

2. Translation of the physical address to an offset inside the dump. This depends on
the storage format and requires the meta information for memory segment mapping
inside the dump.

As shown in Figure 4.1, the virtual address translation layer in our proposed framework
determines the virtual to physical address mapping. The data request layer usually
translates the physical address to an offset in an acquired dump. Normally, this layer reads
a dump file at the determined offset. In our framework, this layer makes use of a UART
driver to directly request the memory starting from the physical address from the BMA on
the mobile device. We explain the details of the data acquisition process in more detail in
Section 4.4, where we use Volatility as forensics application.

On the one hand, despite a comparably slow throughput using the serial interface, the
design of our framework allows to gather full, genuine memory dumps from devices for later
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analysis. On the other hand, the design allows to directly conduct the analysis of main
memory on the powered device. In both ways, we are able to reliably identify confidential
data, ranging from FDE keys to vast amounts of confidential user data. The flexibility
of the framework allows for customization, depending on the goals of an investigator.
Volatility is our choice of forensics application on the host, but other tools for systematic
memory analysis and extraction can be leveraged. However, utilizing tools or plug-ins for
exhaustive search results due to the serial interface in poor performance. Since the kernel
code segment is way larger than the size of our BMA, it is possible to extend the BMA
and its communication protocol. One such possibility is to establish algorithms as part
of the BMA that search for known patterns or structures, such as for FDE keys [Hew;
Pet07], and other AES and RSA key structures [Pri]. The advantage of this approach is
that memory can be rapidly accessed from within the BMA, and that only the identified
key material needs to be transmitted to the host system. Another extension of the BMA
can be to introduce a simple compression mechanism to the protocol. This increases the
performance of the data requests, for example, when an application requests large amounts
of data which mostly consist of zerobyte chunks. However, the current functionality of
our BMA fulfills our design goal of only overwriting a minimal amount of memory on the
target device.

4.4 Implementation
In the following, we first describe the implementation of the BMA. Afterwards, we elaborate
on the extension of the memory forensics application Volatility.

4.4.1 Bare-Metal Application
As already discussed, there are two ways to execute a cold boot attack. The first way is to
move the memory module to another host device with an installed forensics application.
On mobile devices, this is not feasible because the memory is integrated into the SoC and
cannot be removed. The second way applies for mobile devices, where it is possible to
halt the system and to abruptly restart the device in order to directly boot a forensics
application on the device itself, which is the BMA in our case.

The main tasks of our BMA is to initialize the UART interface and to process incoming
data requests. We utilized a large portion of the code for initializing the UART interface
directly from the Qualcomm Linux kernel [Cya]. The BMA, comparable to a daemon with
an infinite loop, waits for incoming requests on the UART port. For this purpose, the
initial code of the BMA sets up a stack with a size of 1,024 bytes. In the next step, the
BMA reads and parses these requests. We implemented the parsing routine for incoming
commands with a minimal encoding, which saves memory to be allocated. After parsing
the command, the BMA iteratively reads the corresponding data from main memory and
writes it to the UART interface. The BMA allows the forensics application to request
arbitrary memory chunks up to a full image of main memory.

In contrast to the Linux kernel, our BMA does not initialize any other peripherals, but
only configures the UART interface. We thus also preserve device memory, which otherwise
might be altered by the set-up routine of a device driver of the Linux kernel.

We discussed that the UART interface provides only a low data transfer rate, which
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makes the extraction of a full dump of main memory inconvenient. As an extension, we
implemented an FDE key search functionality based on the kernel structures wrapping
this key, close to [Hew]. This functionality comes with a simple heuristic that identifies
keys even when bit flips occur. We trigger this functionality with a further command in
the protocol to make the BMA search and return identified keys.

4.4.2 Extension of Volatility
We execute the forensic analysis of the contents of main memory with the memory forensics
application Volatility. Volatility commonly requests data from memory dumps, for example,
acquired directly on running devices using the LiME kernel module. Volatility provides the
possibility to translate virtual addresses to physical addresses with its concept of Address
Spaces (ASs). Depending on the use case, Volatility allows to combine and stack ASs. We
used the ARM address space for virtual to physical address translation on the ARM-based
mobile devices in our framework [Syl12b].

According to our framework design, we need to extended Volatility with the implementa-
tion of a custom AS to realize the data request layer, as depicted on Figure 4.1. This AS,
which we call serial address space, requests data over the serial port, instead of requesting
data from a memory dump file. Furthermore, we require a Volatility profile for the specific
device under analysis [Hil14]. We describe the implementation of the serial address space
and how to create a Volatility profile in the following.

4.4.2.1 The Serial Address Space
Our implementation of the serial address space resembles the existing file address space.
The latter requests the contents from a local memory dump file. Instead, the serial AS
implements the protocol required to request data from the BMA via the UART interface.
The serial AS opens the serial port on the host device upon AS initialization. Consequently,
when a plug-in requests data from an address, the serial AS directly passes the request to
the BMA on the target device. For this purpose, the serial AS writes the dump command
with the start and end address of the request to the UART interface. When the BMA
returns the requested data via the serial interface, the serial AS receives the requested
data and returns it to overlying ASs. Figure 4.1 depicts the different layers used by a
standard Volatility plug-in, such as linux_pslist. In the example of linux_pslist, the plug-in
retrieves the list of running processes by following the linked list of task structures, called
task_struct, in the Linux kernel.

As some address requests are repeatedly made during forensic analysis, such as for
reading the page tables, we equipped the serial AS with a cache that stores the data of
former requests. In case a request occurs repeatedly, the serial AS immediately returns
the cached data instead of repeatedly requesting the chunk from the device. This likely
decreases the duration of the analysis many times over.

4.4.2.2 The Volatility Profile
Volatility stores the meta information required to interpret the data extracted from main
memory in a Volatility profile. The profile bridges the semantic gap, see Section 4.2. For
example, it provides a map of the Linux kernel’s data structures in memory. A profile
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Figure 4.2: An Android boot image wrapping the BMA.

strongly depends on the OS type and the corresponding kernel version on the target device.
In order to create a Linux profile, the source code of the deployed kernel is required, see
Section 4.5. The source code for mobile devices is, at least for Android-based devices,
typically available open source for the different devices on the market. Despite that
hardware vendors might make non-public changes to the kernel, its data structures required
for forensic analysis remain usually unmodified.

4.5 Device-Specific Realization
We selected the Samsung Galaxy S4 GT-I9505 device for our specific use case to re-
alize our framework. The Galaxy S4 device is a commonly used mobile phone and
provides a serial port. We deployed the CyanogenMod Android 4.4.4 distribution (in
version 11-20141008-SNAPSHOT-M11-jflte) on our target device. To create the Volatil-
ity profile, we utilized the corresponding CyanogenMod kernel source code (in version
3.4.104-cyanogenmod-g42b4b50-dirty) [Cya].

We first describe the deployment of the BMA onto the device’s recovery partition. For
flashing the BMA onto the recovery partition, we wrap the BMA into an Android boot
image. Then, we describe the boot procedure in order to launch the BMA. To be able
to connect the BMA with a host system, we also describe our hardware setup. Finally,
we show that our solution is easy to port to other devices that offer a serial interface by
porting the framework to the Nexus 5 device.
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Listing 4.1: Truncated output of /proc/iomem on a Samsung Galaxy S4 device.
1 ...
2 2a03f664-2a03f6a4 : pc-cntr
3 2a03f720-2a04071f : tz_log.0
4 80200000-87dfffff : System RAM
5 80208000-80f8e523 : Kernel Code
6 8111a000-817a6da3 : Kernel Data
7 89000000-8d9fffff : System RAM
8 8ec00000-8fdfffff : System RAM
9 8ff00000-9fdfffff : System RAM

10 a6700000-fe1fffff : System RAM
11 fff00000-ffffefff : System RAM

4.5.1 Wrapping and Deployment of the Bare-Metal Application
In order to be able to deploy the BMA on the recovery partition of the mobile device,
we wrapped the BMA into an Android boot image. This makes the device’s bootloader
capable of loading the BMA as a regular Android boot image. Our generated boot image
contains the addresses the bootloader reads to map the BMA into main memory when
loading it from the recovery flash partition.

Figure 4.2 illustrates the structure of the boot image. An Android boot image has a flash
page-sized header. The header always carries an eight byte magic start value (ANDROID!).
The header contains the necessary fields of different size to provide the bootloader with
information about the image’s contained data elements. In the kernel address field, we
store the address the BMA gets mapped to in main memory (0x8020800). The flash page
size of the Samsung Galaxy S4 device is set to 2048 byte (0x800). The size of the kernel,
here the BMA, is exactly one page. The BMA is located in the boot image right after
the header, where the compressed kernel binary can normally be found. Our boot image
neither contains a ramdisk, a second stage bootloader, nor a Device Tree Blob (DTB).
The remaining fields in the header are optional and can remain empty. The exact layout
depends on the device’s bootloader, see Section 4.7.

Our configuration in the boot image header maps the BMA to the address 0x80208000.
According to the iomem output for the Galaxy S4 device, this address is where the code
segment of the formerly running Linux kernel is located, see Listing 4.1. The initial code
of the BMA sets its 1,024 byte stack adjacent to its own code segment, i.e., also within the
kernel code section. In doing so, we overwrite no more than 3 KB of memory completely
located in the kernel code segment.

In order to launch the BMA, we flash the generated Android boot image to the recovery
partition of the device. We execute this step after the short power cut-off, respectively, the
hardware reset of the device during the cold boot attack.

4.5.2 Boot of the Bare-Metal Application
To deploy and boot the BMA on the target device, we need to consider the particular
device’s boot procedure. Figure 4.3 illustrates a schematic representation of a typical
device boot process. The illustration describes the different boot stages between pressing
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Figure 4.3: Boot procedure when starting the BMA from the recovery partition on a cold
booted device.

the power button and booting the recovery image. The bootloader boots our pre-deployed
boot image from the recovery partition and places the BMA inside the former kernel code
segment. In order to do so, the bootloader reads out the values inside our boot image
header and also checks the header’s magic value.

The common boot procedure requires the following steps. When turning on a device, the
system initializes the hardware and executes the routines stored in the boot ROM. These
routines load the bootloader. Upon its execution, a routine in the bootloader checks the
status of the hardware buttons to identify which boot mode to trigger. In general, most
Android devices can boot in three different modes: normal, recovery and download. The
normal mode is the default boot mode. This mode starts the Android OS when switching
on a device the common way. In order to do so, the bootloader starts the kernel stored on
the boot partition of the embedded Multi-Media Controller (eMMC).

Figure 4.3 describes the scenario where a startup into recovery mode takes place. The
usual purpose of the recovery mode is to update, install or repair an Android system.
In order to trigger the recovery mode, a special key combination must be pressed when
switching on the device. On the Samsung Galaxy S4, this is the combination of the Volume
Up and Power buttons.

The download mode allows to directly write data to partitions via USB, for example, to
the recovery partition. In this mode, we use the tool heimdall [Gla] to write the BMA via
the USB interface to the device’s recovery partition. To trigger the download mode on the
Galaxy S4, the Volume Down and Power buttons must both be kept pressed.

4.5.3 Hardware Setup
We realized the connection between the Galaxy S4 and the host system, a common PC,
via the Samsung Anyway Jig [XDA]. The Samsung Anyway Jig serves as a universal
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maintenance tool for various devices produced by Samsung. It is equipped with a D-Sub
DB-25 connector and can be connected to the supported device via a proper adapter cable.
To connect the jig to the test device, we used a custom Micro-USB to D-Sub DB-25 cable.
We established the connection to the host PC via the RS-232 interface. The Samsung
Anyway Jig Adapter connects the GND and ID-line of the Micro-USB of the device port
with a resistor. This configures the Micro-USB port such that it acts as a serial interface
port. We configured the dimension of the resistor with the DIP-switches of the Samsung
Anyway Jig. After connecting to the UART port, the whole boot process of a device
can be monitored because the bootloader writes debug information to the serial interface.
Depending on the kernel command line parameters, the kernel can also output its debug
information over the serial interface.

4.5.4 Portability of the Framework
We verified the easy portability of the framework by realizing and deploying the BMA
for the Nexus 5 device. We did not need to modify our Volatility extensions, as the only
requirement is a new profile based on the Nexus 5 kernel code. For the BMA, only three
changes to our created boot image were necessary. First, the BMA had to be remapped in
memory to a different location. According to the iomem layout of the Nexus 5 device, the
first System RAM segment starts at address zero and the kernel code segment is located
at 0x8000. Second, the base offset value of the UART registers in the BMA had to be
adjusted. This is because the UART core is mapped to a different location in memory,
compared to the Samsung Galaxy S4 device. We could completely reuse the serial driver
of the BMA for the device. Third, the bootloader on the Nexus 5 device expects a DTB.
Otherwise, the bootloader refuses to boot up. The bootloader locates the DTB in the boot
image based on an offset determined by a pointer at an offset in the boot image’s kernel
image. We modified the BMA at that offset to have a pointer, which points to the straight
after the BMA. This allowed us to append a minimal self-crafted DTB to the BMA, which
the bootloader accepts. The bootloader relocates the DTB to the tags address. We do not
overwrite crucial data with the relocation, because at that location, the constant-valued
DTBs of the former running kernel can be found. Like on the Galaxy S4, the bootloader
required no ramdisk or second stage bootloader. To flash the boot image to the device,
we used the tool fastboot [Gooa]. On the Nexus 5 device, the physical UART interface is
integrated into the headphone socket. Therefore, we crafted a 3.3V USB to serial cable
that we soldered onto a headphone jack.
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Table 4.1: Number of successfully retrieved bytes from a 10,000-byte array in main memory
with different cold boot attacks.

Attack Type Min Max Average
Fast Cold Boot 9,983 9,998 9,991
Slow Cold Boot 26 9,521 3,379
Reset Cold Boot 9,998 10,000 9,999

4.6 Evaluation
In this section, we evaluate our proposed framework. We first measure the amount of data
that degrades due to the cold boot attack in Section 4.6.1. This quantifies the feasibility of
our approach. In Section 4.6.2, we demonstrate the application of our framework on the
Samsung Galaxy S4 device using Volatility. We compare traditional Volatility analysis on
a LiME memory dump with the cold boot-based analysis using our BMA. In the last step,
we demonstrate the potential of our framework by showing how to extract sensitive user
data from a cold-booted device in a concrete use case.

4.6.1 Loss of Information
We evaluate the loss of information with our framework considering three aspects: the
decay of memory through the device restart, during the analysis takes place, and trough
the memory the BMA occupies.

4.6.1.1 Decay based on the Cold Boot Attack
We executed two different types of the cold boot attack to evaluate the amount of data
that decays during the power cut-off:

1. Momentary removal of the battery and restart of the device once the battery is
re-inserted.

2. Power button press for a few seconds while the phone is still running, causing a
hardware-based reset.

Note that we executed both attacks at a temperature of approximately 20∘ Celsius. The
results improve when cooling down the phone and its memory modules, as described in
[Hal09; Lin15; Mül13].

Before rebooting the device, we wrote an array of 10,000 known bytes to main memory
with a kernel module, which prints the physical start address of the array. Afterwards, we
read the contents of the array’s physical address and counted the unimpaired bytes. We
executed the analysis 25 times for three different cold boot attack scenarios. Table 4.1
depicts the corresponding results. In case of the fast cold boot attack, we re-inserted the
battery as fast as possible. In case of the slow attack, we re-inserted the battery after
approximately 1 second. In case of the device reset, we pressed the power buttons as
described to reset the device.

The depicted results mainly show that a non reset-based cold boot attack does not
always return reliable results, as it depends on multiple factors like temperature and the
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speed of battery re-insertion. In case of the fast cold boot attack, we retrieved 9,991 of
the 10,000 known bytes on average. Despite the only weak degradation, the application of
Volatility plug-ins was less frequently successful. With more bytes fading in memory, the
analysis based on the possibly broken pointers of kernel structures is no longer reliable.
When conducting a slow cold boot attack, the degradation proceeded quickly. In this case,
the successful application of Volatility plug-ins became infeasible.

However, the reset-based attack provided promising results during our tests. This
scenario is more reliable as it does not depend on how fast the battery can be re-inserted.
In most cases, we retrieved all of the bytes successfully and had occasional bit flips only
in very few test cases. This shows that even in case of the reset attack, where we did
not remove the battery at all, the memory occasionally decays. In normal cases, where
we retrieved all of the bytes correctly, the application of Volatility plug-ins was always
successful.

In our test set-up, it was also possible to successfully extract data with our framework
from the device when it was restarted twice. A second restart is required on the Samsung
Galaxy S4 device to reboot into recovery after flashing the BMA onto recovery partition
before the analysis. On the Nexus 5 device, the bootloader allows to immediately boot
from a partition after flashing. This makes a second reboot obsolete.

4.6.1.2 Decay during the Analysis
As we progressively acquire data from the device’s main memory, we rely on the data to
remain intact on the target device during the whole analysis process. To demonstrate that
this requirement is given, we extracted data multiple times 15 minutes after the device
has booted the BMA. As expected, we always retrieved exactly the same unaltered data
between the test requests. Furthermore, we inspected memory dumps on Nexus 5 devices
running the virtualization architecture from Section 3.3, which comes along with FDE
using dm-crypt. Gathering the dump of the 2 GB main memory with the BMA required
about 42 hours. We compared this dump to a LiME dump created shortly before, finding
that there was no decay during the analysis. As an example, we were able to recover the
FDE keys of the Android containers in the LiME dump, as well as in the BMA’s dump.
In addition, we were able to quickly identify the keys using the BMA’s FDE key search
functionality. For this reason, we may assume that data does not decay any further when
the BMA executes, because memory is constantly supplied with power.

4.6.1.3 Information Loss based on the Size of the BMA
Another important source of data loss is the amount of data that the BMA occupies in
main memory. The boot image containing our BMA has a size of 4 KB and the size of the
stack that the BMA sets up is 1,024 bytes. The bootloader loads the image header of size
2,048 bytes to a fixed location in memory. Based on the information in the header, the
bootloader maps the BMA of the same size to the kernel code section. Thus, we overwrite
no more than 3 KB of memory in the kernel code section. This is way less than the
previously running kernel’s size. The size of the CyanogenMod boot image for the Galaxy
S4 device is about 5.9 MB. The kernel is compressed and extracted before it gets started.
Because the kernel code segment forms a set of constant and known bytes, the segment
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Table 4.2: Comparison of the outputs and runtimes of different Volatility plug-ins when using
a dump file and the BMA for data acquisition.

Plug-in Results Dump Results BMA Time Dump Time BMA
pslist 230 entries 225 entries 03.54 s 24.23 s
iomem 138 entries 138 entries 02.18 s 08.97 s
proc_maps (init) 9 entries 9 entries 02.00 s 06.03 s
dump_maps (init, heap) 340.0 KB 340.0 KB 01.98 s 35.84 s
dump_maps (init, stack) 139.3 KB 139.3 KB 01.94 s 07.02 s
proc_maps (rild) 156 entries 156 entries 05.38 s 18.55 s
dump_maps (rild, heap) 380.9 KB 380.9 KB 02.05 s 41.48 s
dump_maps (rild, stack) 139.3 KB 139.3 KB 02.06 s 08.29 s

does not change between different runs of the system. This means that the overwritten
bytes do not overwrite relevant data as the code segment of the formerly running kernel is
mapped to the BMA’s address range, see Section 4.4.1.

4.6.2 Forensic Memory Analysis
In the first part, we compare the application of multiple Volatility plug-ins using the BMA
with a traditional LiME dump-based analysis. With this comparison, we show that we
are able to similarly analyze the data retrieved from the BMA, compared to previously
recorded memory dumps on running systems. Thereby, we also focus on the performance
impact and on the caching effect of our serial AS during the BMA analysis. In second part,
we demonstrate the potential of our framework by retrieving sensitive user data through
an analysis with various Volatility plug-ins.

4.6.2.1 Comparison with LiME Dump Analysis
We created a memory dump on the running phone with the LiME kernel module as a
reference right before we executed the analysis with our framework. Then, we reset the
device to execute the Volatility plug-ins with our framework using the BMA running on
the phone. Afterwards, we restarted the device, pulled the LiME dump and executed the
same set of plug-ins on the dump file. Table 4.2 lists the results and runtimes of the plug-in
applications on the LiME dump and on our BMA in combination with the reset attack.

The plug-in linux_pslist extracts a list of running processes. The resulting entries of our
measurements differed between the dump file (230 entries) and the cold boot analysis (225
entries) by solely five more threads. This comes from the LiME kernel module creating
these threads during the acquisition process. The analysis with the BMA took 24.23
seconds, whereas the LiME dump analysis took 3.54 seconds.

The plug-in linux_iomem extracts the map of the system’s memory for physical devices.
The results received from the cold boot-based analysis were equal to the memory dump
analysis. As in the scenario before, the runtime of the plug-in was longer in case of the
BMA application. Compared to the LiME dump analysis with a duration of 2.18 seconds,
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the analysis with the BMA took 8.97 seconds. According to Table 4.2, the application
of other plug-ins shows comparable runtime differences between the BMA and the LiME
dump analysis.

The plug-in linux_proc_maps returns the memory mappings of a single process. This
renders results similar to contents in /proc/<pid>/maps. For our measurements, we
requested the mappings of the init and the rild process. The latter is responsible for
the radio functionality of an Android phone. In both cases, the measurements returned
exactly the same results: 9 entries in case of the init process and 156 entries in case of
the rild process.

We finally requested the stack and heap memory segments of the rild and the init
process with the plug-in linux_dump_maps. The amount of data in bytes was for both
processes the same for the stack and heap. The data of the stack of the init process
turned out to be consistent between the two acquisition methods. The same holds for the
rild process.

In every test case, the time required for executing a plug-in which operates on the
memory using the BMA was significantly higher. This emerged as a result of the low
transfer rate of the UART interface. The average transfer rate we measured with our
hardware was at about 11.25 KB/s when requesting large chunks of data. This speed
reduces when plug-ins make lots of small data requests during the analysis due to the
BMA’s protocol overhead. For our purposes, the low transfer rate was acceptable, since
the plug-ins terminated within less than 45 seconds.

The speed strongly increases due to the caching functionality in our serial AS, which
buffers previous requests. Data once requested from the device is thereby stored in the
cache. Caching was particularly useful for plug-ins that accessed the same sets of addresses
frequently, such as linux_lsof. Furthermore, all the plug-ins frequently requested only small
amounts of bytes at a time from the memory during the analysis. For example, the plug-in
linux_pslist requested about 93 KB of data in total, 4 bytes in average, and due to caching
we reduced this amount to about 12 KB. The plug-in linux_iomem requested about 58
KB of data in total, 9 bytes in average, and due to caching we reduced this amount to
about 30 KB. The application of other plug-ins yields comparable results. Considering the
time required for dump file creation in other approaches, our framework can even provide
faster results.

4.6.2.2 Acquisition of Sensitive User Data
We show the potential of our framework for data acquisition at the example of launching
a cold boot attacker after a real user session. Since we demonstrated that we are able
to retrieve FDE keys with the BMA, see Section 4.6.1, we focus on other sensitive assets
in the following. There is way more confidential information to detect, which is possibly
never persisted and can only be found in main memory. Therefore, we created a potential
usage scenario where the user enters confidential data on the phone, which is masked in
the following. After the scenario, we reset the device, flashed and booted the BMA. Then,
we started an investigation using various Volatility plug-ins.

The scenario starts by booting the phone, using it for approximately 15 minutes and
ends after leaving it idle for about one minute. During that time the user carries out the
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Listing 4.2: Truncated output of the Volatility plug-in linux_pslist using a cold boot attack
for data acquisition.

1 Offset Name Pid Uid Gid ...
2 0xc000e000 init 1 0 0
3 0xde9da400 keystore 227 1017 1017
4 0xdd25ac00 d.process.acore 798 10003 10003
5 0xdcea3000 m.android.phone 828 1001 1001
6 0xdbf8e000 m.android.email 1480 10032 10032
7 0xdbeb7c00 droid.gallery3d 1505 10035 10035
8 0xdc1a8400 ndroid.exchange 1522 10033 10033
9 0xdcd0d000 ndroid.contacts 1689 10003 10003

10 0xdbb99c00 mod.filemanager 2028 10022 10022
11 0xdca5bc00 android.browser 2364 10020 10020

Listing 4.3: Truncated output of the Volatility plug-in linux_lsof using a cold boot attack
for data acquisition.

1 Pid FD Path
2 828 0 /dev/null
3 828 70 pipe:[12680]
4 828 71 /data/data/com.android.providers.telephony/databases/mmssms.db
5 828 88 anon_inode:[4225]
6 828 89 /data/data/com.android.providers.telephony/databases/telephony.db

following activity:

• Create a new contact Secret Contact with phone number 017* in the contacts
application.

• Synchronize a previously set up exchange account within the mail application.
• Create a draft short message Top Secret Short Message Draft to Secret Contact using

the messenger application.
• After a while, edit the stored short message draft to Top Secret Message and send

the message.
• Visit webpages with the browser, use search engines. Login to pages with a user

account and enter confidential data, such as Top Secret Information.
• With the filemanager, create a new file /data/secret.txt and edit the file with the

content Top Secret Text.

As a first step of the analysis, the investigator with physical access to the device retrieves
the process list with linux_pslist, see Listing 4.2. The full list has 239 entries in total. The
amount of processes that an investigator suspects confidential data to be contained is way
smaller. Inspecting the open file handles of the phone process com.android.phone with
the plug-in linux_lsof reveals the potential sensitive file mmssms.db. The truncated list is
depicted in Listing 4.3. In total, the plug-in finds 90 open files, but most of them can be
left out of consideration.
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Listing 4.4: Truncated output of a file acquired with the Volatility plug-in linux_find_file
using a cold boot attack for data acquisition.

1 %004917*
2 h13Top Secret Short Message Draft
3 Top Secret Message
4 004917*
5 Top Secret Short Message Draft

Using the plug-in linux_find_file, we searched the corresponding inode and retrieved the
cached file contents of about 103 KB. By dumping the strings of the read file, we obtained
about 105 strings. This helped us to quickly recognize the recipient, the initial draft and
the edited message, see the truncated output in Listing 4.4. The plug-in linux_lsof is
especially useful for determining open files of processes, such as logs.

As a next step of the analysis, we retrieved the memory segments of the process
com.android.exchange using the plug-in linux_proc_maps. We suspected relevant data
of the process to be located in the processes’ heap segment. Listing 4.5 shows the output
cut to the lines containing the keyword heap.

Using the plug-in linux_dump_maps, we retrieved the heap segments. The strings in the
dalvik-heap segment quickly revealed the mail account’s username and password, separated
by a semicolon firstname.lastname@*.de:*. Even though the dalvik-heap segment seems to
be large, the request for the segment was quickly handled, because Volatility recognizes
that the segment is sparsely allocated.

We conducted the same steps for the process android.process.acore, which serves An-
droid’s contact provider, for com.cyanogenmod.filemanager and for com.android.brow-
ser. Inside anonymous memory segments, we were able to find the contact Secret Contact
with phone number 017*. The browser’s memory segments contain vast amounts of loaded
websites, user account names, search queries and text entered in webmail and social media

Listing 4.5: Snippet of the output of the Volatility plug-in linux_proc_maps for the Android
exchange process, using a cold boot attack for data acquisition.

1 PID Start End Flags Pgoff Major Minor Inode Path
2 1522 0x41a22000 0x41a2a000 rw- 0x0 0 0 0 [heap]
3 1522 0x41e82000 0x61a2a000 rw- 0x0 0 4 8872 /dev/ashmem/dalvik-heap

Listing 4.6: Snippet of the output of the plug-in linux_route_cache using a cold boot attack
for data acquisition.

1 Interface Destination Gateway
2 --------- ---------------- -------
3 wlan0 131.159.0.91 10.144.207.1
4 wlan0 173.194.112.136 10.144.207.1
5 wlan0 131.159.0.91 10.144.207.1
6 lo 10.144.207.39 10.144.207.39



92 Chapter 4 Main Memory Extraction based on the Cold Boot Attack

pages. This made it possible to recover entered data, such as Top Secret Information. The
dalvik-heap of the filemanager exposes the filename /data/secret.txt and its content Top
Secret Text.

In a further step of the investigation, we inspected the data in the routing table cache
with the plug-in linux_route_cache. We recovered the hosts we recently connected to
during our browsing session, such as our webmail page, see Listing 4.6.

In order to successfully and efficiently carry out an analysis, the investigator has to be
aware of where Android processes store their relevant data. Open file handles and the
dalvik-heap are the most probable locations to expose such data. We were in knowledge of
the data we were searching for in our scenario. However, relevant processes and data can
be relatively quickly identified and filtered from memory dumps.

4.7 Discussion
As we read memory from a cold booted device, we need to be aware of the decay of data. In
case of corrupted data, this could lead to the situation where the pointers in the structure
task_struct of the Linux kernel cannot be correctly dereferenced, for example. This
causes the forensic analysis to fail at some point, because previously running tasks cannot
be detected. In order to treat these cases, we propose to extend forensics applications to
work in combination with corrupted data acquired by a cold boot attack. Heuristics can
help fixing invalid pointers, or to at least ignore them. However, our data remained in
almost all of our test cases intact so that we did not have to deal with this problem. This
is due to the reset attack where the battery is not removed. The feasibility of the reset
attack depends on whether the specific device offers the hardware reset functionality or
not.

Another important aspect is that the target device must expose a UART port for allowing
a simplistic BMA implementation. A lot of devices have it even though it is not visible at
first glance. The UART port is often integrated into the Micro-USB port or the headphone
socket.

Care has to be taken considering the bootloader. Using the Samsung Galaxy S4 device,
the bootloader accepted a simply crafted boot image, but the requirements changed for
the Nexus 5 bootloader. To figure out what the bootloader requires is not always obvious,
but open source bootloader code helps to recognize such requirements [Lit]. Fortunately,
most of the mobile device bootloaders work similarly. Nevertheless, it is possible that
bootloaders are capable of overwriting volatile data. This would represent an inevitable
problem and be a possible mitigation on mobile devices.

The deployment of the BMA onto the device either requires direct write access to the
recovery partition at runtime or at bootloader that can be unlocked for flashing the BMA.
However, write access is only possible with root privileges. In case the bootloader is locked,
it has to be unlocked before flashing partitions. Unlocking the bootloader normally leads
to erasing all user data on persistent storage. Persistent memory can then no more be
recovered. But with our method, volatile memory remains unimpaired when unlocking the
bootloader and we do not require root privileges on the phone. This means that we are
still able to recognize crucial contents of the previous session in main memory, which were
possibly never made persistent.
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We expect that our framework can be used for further scenarios, because our implemen-
tation is easy to extend and can be easily ported to other devices. The framework can be
used, for example, to further evaluate whether it is possible to access application memory
running in the secure world of the TrustZone [ARM09].

4.8 Summary
In this chapter, we tackled Challenge 3 by introducing a novel forensic framework for mobile
devices based on the cold boot attack. In contrast to other state-of-the-art techniques, we
do not boot a full-fledged Linux kernel on the target device. Instead, we boot our easily
portable, minimal BMA, which occupies no more than three kilobytes in main memory.
The BMA preserves the data structures of the previously running kernel and does not
initialize device memory. As we only overwrite constant data in the kernel code section,
this ensures that all of the important kernel data remains available for analysis. The BMA
provides a serial communication interface. This interface allows to dynamically request
parts of the main memory. Forensic analysis can thus be conducted on the host system.
For this purpose, we extended Volatility with a serial communication module for the
systematic analysis of the target device’s memory. The framework with the implementation
of the BMA and with the host-based model for the systematic analysis represented our
Contribution 5.

We realized the framework for the Samsung Galaxy S4 and ported it to the Nexus
5 device in order to demonstrate the feasibility of our approach. In our evaluation, we
compared our cold boot-based analysis with traditional memory dump analysis using
Volatility, providing proper results. We have shown that our BMA allows to request full,
genuine memory dumps and have demonstrated how to efficiently gather vital information
based on the sustained kernel structures, such as FDE keys and further confidential data.
We have also shown that we were able to extract the FDE keys of containers running on
our secure virtualization platform from Chapter 3. This motivates the urge for techniques
to mitigate the effect of physical attacks, such as main memory encryption for devices
susceptible to cold boot attacks. In the next chapter, we provide several architectures for
main memory encryption for different types of devices.





CHAPTER 5
Architectures for Main Memory Encryption

In this chapter, we pursue Challenge 4, the design of architectures for main memory
encryption, for which we present with Contributions 6 to 9 different architectural solutions
to defend against the physical attacker from Chapter 2.

We first present two suspension-based memory encryption architectures where the system,
or parts of the system, suspend before the memory encryption. Contribution 6 focuses on
traditional computing devices like laptops or desktop PCs with en- and decryption tied to
full system suspension and resumption. The architecture for Contribution 7 allows for the
suspension and encryption of arbitrary process groups, and hence containers. The flexible
encryption of only parts of the system adds complexity to the architectural design. Some
process groups might remain unencrypted while others are in turn encrypted. This, and
the group formations may dynamically change. This is why the encryption procedure must
consider memory shared between arbitrarily formable process groups and ensure that the
process space of non-suspended processes remains unencrypted. We describe the concepts
and implementation of this architecture in more detail in Section 5.3, and the architecture
for full system suspension in Section 5.2.

We present Contribution 8 by combining the main memory encryption architecture for
containers with the secure virtualization architecture for mobile devices from Section 3.3.
This enables main memory encryption for suspended Android containers. In combination,
these architectures defend both against local and remote attacks during runtime, and
against physical memory attacks. This results in a container-based platform achieving a
high level of data confidentiality against the attacker types defined in Chapter 2.

In contrast to Contribution 6 and Contribution 7, we present a runtime memory en-
cryption architecture with Contribution 9. This architecture does not rely on suspension,
but transparently encrypts all main memory of a system. We base this architecture on a
minimal HV, at the example of ARM mobile devices with the ARM TrustZone.

This chapter is organized as follows. We first describe related work in the field of main
memory encryption in Section 5.1. Then, we present our suspension-based architectures
with the integration in real-world scenarios in Section 5.2 and Section 5.3. After that, we
describe our runtime memory encryption architecture in Section 5.4 and summarize the
chapter in Section 5.5.

The comprised Contributions 6 to 9 can also be found in the publications in [Hor17;
Hub17a; Hub18; Hub17b]. The contributions emerged from joint work with Julian Horsch,
Sascha Wessel and Junaid Ali. Julian Horsch and Manuel Huber jointly worked on the
concepts, implementations and evaluation. Sascha Wessel supported in the work on
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the concepts. Julian Horsch mainly contributed to [Hor17]. Junaid Ali contributed to
implementational aspects as part of his master’s thesis.

5.1 Related Work
In the following, we discuss related work on main memory protection. We start with key
hiding techniques, describe hardware- and software-based runtime memory encryption
techniques, and present suspend-time memory encryption approaches.

Key Hiding
The following approaches only protect a specific key, for example, the FDE key, in RAM
from memory attacks. Approaches for x86 [Gua14; Gua15; Mül10; Mül11; Sim11], as
well as for ARM [Göt13] and HVs exist [Mül12]. The approaches either store the key in
the CPU/GPU registers, or in the CPU cache, and implement the cipher associated with
the key on-chip at the cost of performance. These approaches leave all other assets in
RAM unprotected and are hence vulnerable to memory attacks. Hiding or isolating key
material from possible memory attacks forms the basis for runtime memory encryption
where the memory encryption key must be insusceptible to memory attacks. Some of the
software-based runtime memory encryption techniques make use of the proposed key hiding
techniques in order to secure their encryption key.

Hardware-based Runtime Memory Encryption
Several hardware-based memory encryption architectures, such as Aegis or XOM, have
been proposed [Che08; Duc06; Gut99; Lie03; Lie00; Mau84; Su09; Suh03; Suh07; Suh05;
Wür16; Yan03]. These approaches are capable of protecting all main memory. Sensitive
data of protected processes is unencrypted exclusively in the processor chip, which is the
single trusted component. These hardware architectures are difficult and expensive to
realize and usually not available on common consumer devices, but designed for special
purposes, such as Digital Rights Management (DRM) protection.

The recently launched AMD SEV technology is designed to encrypt the main memory of
x86 AMD virtual server systems [Kap16], protecting from memory attacks and a possibly
malicious HV. SEV builds on AMD Secure Memory Encryption (SME). SME makes it
possible to transparently encrypt the whole main memory of an x86 system based on an
Secure Processor (SP) isolated from the rest of the system. When using SME, the SP
creates an ephemeral RAM encryption key and en-/decrypts each page before being stored
in main memory, respectively before being loaded from main memory into the CPU. For
SEV, the SP ensures to create different main memory encryption keys for each VM and
encrypts their memory independently. Research has highlighted different attack vectors
on AMD’s SME and SEV [Buh17; Het17], which we are going to focus in more detail
in Chapter 6. The crucial point about AMD SEV is the missing integrity protection of
the encrypted memory pages, making it possible to modify the VM’s memory contents or
change memory mappings with a HV. This allows, for instance, to alter code execution
flow [Het17], or to extract the contents of main memory tricking a service inside the VM
into rendering arbitrary VM data in plaintext to the outside [Mor18].

Intel announced an equivalent, Intel Total Memory Encryption (TME) and Multi-Key
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TME (MKTME) for server systems [Int]. While Intel has not clearly pointed out an
attacker model so far, MKTME does not seem to protect VMs against a malicious HV.
The HV retains more privileges regarding key management, and can handle the sharing of
memory between VM, or turn off encryption of pages, for instance. The technology also
allows for tenant-provided keys for encryption, for example, for NVRAM, and enables the
encryption of I/0, of which AMD’s SEV is so far not capable. Like SEV, MKTME protects
from cold boot and DMA attacks, but the HV remains the trusted entity managing VM
encryption. Note that both technologies are not designed to protect VMs from attacks
vectors like Spectre or Meltdown.

There also exist processors for consumer devices with extensions to provide secure
enclaves, which can be leveraged to thwart memory attacks, such as the ARM TrustZone,
or Intel SGX [ARM09; McK13]. These enclaves constitute hardware-protected memory
areas to which the OS can move sensitive data, but are limited, for instance, regarding the
size of the memory areas. It is thus common to only move smaller amounts of sensitive
data of processes to an area in the enclave’s hardware-protected memory. Developers need
to specifically design enclave-aware, hardware-dependent software and the underlying OS
must support the processor extensions. These extensions themselves thus represent building
blocks that can be leveraged to protect a system, for instance, for secure encryption key
storage while realizing memory encryption inside an enclave.

Software-based Runtime Memory Encryption
We classify software-based memory encryption approaches into either runtime encryption
techniques where main memory is encrypted throughout process runtime, like our architec-
ture in Section 5.4, or into suspend-time techniques which rely on process suspension in
order to encrypt memory, as presented in Section 5.2 and Section 5.3.

Cryptkeeper [Pet10] is an extension of the virtual memory manager to reduce the
exposure of unencrypted data in RAM. The mechanism separates RAM into a smaller
unencrypted working set of pages, called the Clear, and an encrypted area, the Crypt. The
Clear is a sliding window of unencrypted pages directly susceptible to memory attacks. By
the time the Clear fills up, pages are automatically swapped into the Crypt and decrypted
on demand. The Clear is an area susceptible to memory attacks.

HyperCrypt [Göt16a] transfers the concept of Cryptkeeper into a HV to transparently
encrypt the full memory of a guest OS. Such approaches require a secure key storage
location and isolated encryption environment for the encryption. For full memory encryption
techniques, there is a notable performance impact on the system, and the mechanisms
usually keep an undefined amount of RAM unencrypted. This means that there is only a
statistical probability that the sliding window contains solely non-sensitive main memory
contents when a memory attack is executed. In contrast to techniques suspending the
system, an attacker could time an attack by observing a running device waiting for a
suitable moment where sensitive material is likely unencrypted. Furthermore, compared to
approaches where memory decryption is only possible when a user provides a legitimate
token, an attacker can also try to gain control over the device via privilege escalation.
Even though the attacker might still be unable to read the encryption key, for example,
when stored on-SoC, the attacker controls the main application processor and can load any
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page unencrypted into the sliding window. As the encryption key is usually ephemeral for
main memory encryption and valid only during a particular boot cycle, the extraction of
encrypted data itself poses the main target of attackers.

RamCrypt [Göt16b] is an encryption approach for x86-based Linux systems and also
transparently encrypting the memory of running processes. For key-hiding, RamCrypt
stores the memory protecting key in processor registers. Therefore, deep interference into
the kernel’s page fault handler is necessary to encrypt pages and to decrypt them when
accessed. Processes to be protected have to be marked a priori by setting a flag inside
the ELF program header. RamCrypt encrypts anonymous non-shared segments only and
there also remain unencrypted pages in the sliding window. This means that, for instance,
any file-backed resource in the page cache is not encrypted, leaving a considerable amount
of memory unprotected. The cost of encrypting pages on the fly comes with a notable
performance impact. As with all other runtime protection mechanisms, a physical attacker
gaining privileges on the system can request the decryption of encrypted memory on the
main application processor.

Another approach for x86 platforms is presented in [Pap17], which allows full and
process-selective memory encryption. The authors store the memory encryption key on-
chip and instrument load and store instructions to en-/decrypt main memory when being
stored/loaded in/from main memory. For process-selective encryption, the authors propose
a new memory allocation for programmers to manage granular application-specific sensitive
memory regions. The approach uses process-specific encryption keys, which are wrapped
with a master key stored in a pair of the processor’s debug registers. In case of full
memory encryption, the sliding window never renders sensitive data, but causes significant
performance overhead, for instance, about 17% to 27% for HTTP and HTTPS web server
applications.

The authors in [Che08] use the processor cache as a secure storage via cache locking.
The objective is to protect the processor-memory bus against physical attackers. This
results in encrypted RAM for protected processes. However, this idea only exists in full
system simulation. An implementation strongly depends on the OS cache routines and
locking functionalities adversely affecting performance.

Approaches specifically tailored to the mobile domain have also been developed. Sentry
[Col15] presents a runtime memory encryption concept for Android devices. The user has to
mark sensitive apps and OS subsystems in the settings menu. When the device gets locked,
the mechanism encrypts specific memory of the chosen apps. Sentry creates the cipher key
on boot and stores it On-SoC in the iRAM. For apps that run while locked, Sentry reads
encrypted memory pages from RAM, decrypts and keeps them inside the ARM SoC with
cache line locking. Pages are encrypted on a page-out before writing them back to RAM.
With increasing background activity and a full cache, the performance strongly degrades
since the mapping of called-in pages to the cache triggers costly page faults. The approach
uses ARM specific (legacy) mechanisms originally designed for embedded systems. Hence,
the feasibility strongly depends on the architecture and platform specific hardware features.
Their prototype on the mobile device does not support cache locking and does hence not
realize full runtime encryption nor support background activities, such as incoming phone
calls or network data.
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CleanOS [Tan12] is a memory encryption mechanism integrated into the Android
framework. This approach only works in combination with trusted, cloud-based services
for key management to which the phone needs connectivity and only covers parts of all
the possibly sensitive data. The idle eviction mechanism encrypts data that is not in
active use. Afterwards, the key is purged on the device and fetched on-demand from the
cloud. The main modifications were made by the introduction of Sensitive Data Objects
(SDOs), which represent sensitive user data, and a special garbage collector, eiGC. The
latter searches and encrypts SDOs that were not used for a specific period of time. Apps
either implement an SDO API to add and register SDOs, or the framework registers default
SDOs along with heuristics to identify SDOs. To decrypt the SDOs, a modified Dalvik
interpreter faults and retrieves the key from the cloud. Not only regarding the scope of
encrypted memory, or key retrieval and availability concerns, but also due to the heuristics
and workload to adjust apps, this mechanism represents a scheme prone to leaving sensitive
memory unencrypted.

In contrast to CleanOS where the encryption key is offloaded into the cloud, TinMan
[Xia15] evicts security-critical code and data to the cloud, making it unavailable on mobile
devices. This represents another way of mitigating the effect of memory attacks on specific
secrets worth of protection.

In Section 5.4, we introduce a transparent runtime memory encryption architecture
with a minimal HV, allowing encryption of unmodified guest OSs on ARM platforms
with high throughput, not requiring special registers or hardware-specific mechanisms,
using ARM TrustZone as secure environment for key storage and cipher computation. We
oppose runtime and suspension-time encryption approaches more to each other in the next
paragraph.

Suspend-Time Memory Encryption
Hypnoguard [Zha16] en- and decrypts main memory during OS suspension and wakeup
on x86 platforms. The mechanism hooks into the ACPI S3 suspend/wakeup procedure at
stages where the OS is not active. At this point, there is no support for hardware devices,
such as (VGA/HDMI) displays or (USB/Bluetooth) keyboards. Therefore, their design
requires to implement highly hardware-specific crypto routines for hardware accelerators
and for drivers to interact with hardware devices, for example, for passphrase input. The
encryption key is bound to a TPM, which is used to wrap and unwrap the encryption key
making it only present during en- and decryption. The encryption is executed in Intel’s
Trusted Execution Technology (TXT) environment [Gre12]. This makes the approach in
contrast to Section 5.2 more hardware-specific and particularly cumbersome for portability
and for interacting with different hardware devices.

In Section 5.2, we focus on the same goal, but design a hardware-independent OS kernel
mechanism, which can be integrated into deployed Linux systems. The design extends
the scope of the FDE key using it to also encrypt main memory during suspension. After
main memory encryption terminates and the system is suspended, the key is removed from
main memory. The key is regenerated on wake-up with a passphrase query asking the
user for the FDE key. The concept allows for binding the FDE key to a TPM remediating
brute-force attacks on the FDE key.
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Both the approaches were implemented on traditional x86 computing devices where
background activities during OS suspension are not a focal point. Mechanisms designed for
mobile devices, as presented in Section 5.3, must however sustain their ability to process
background activities, such as incoming data or phone calls.

Transient Authentication [Cor03] is also an approach for x86 platforms to protect
processes transparently, but depends on the presence of a hardware token [Cor02]. The
token provides fresh cryptographic keys. The concept comes with two protection variants,
the application-transparent and application-aware protection. In the first mode, the system
suspends and encrypts in-memory pages when the user removes the token. The only
processes that remain running are tasks for transient authentication and OS threads.
Despite that the OS is not completely suspended and that management tasks continue
running, suspending/waking takes about 8 seconds. Therefore, an application-aware
mode is proposed. In the application-aware mode, software developers are responsible for
protecting specific applications by utilizing a special API. This allows to selectively protect
chosen assets, such as an application’s secret key. However, this requires in contrast to our
approach new software to be specifically tailored to the approach and existing applications
to be modified.

Suspension-based encryption has the advantage that the encryption key must not
necessarily be constantly present like in the case of runtime memory encryption mechanisms,
but present only during en- and decryption. This allows for more flexibility regarding key
management compared to runtime-memory encryption. Further, even when the software
stack gets exploited, encrypted information cannot be decrypted due to the unavailability
of the encryption key on the system. For these reasons we introduce in Section 5.2
and Section 5.3 two suspension-based mechanisms that can easily be added to existing
infrastructures. Section 5.2 can be used to secure traditional desktop devices - in contrast
to the existing approaches - with only minimal changes to the software stack and without
hardware dependencies. With our mechanism in Section 5.3, we enable the encryption of
individual process groups’ main memory. This stands in contrast to existing approaches
which work on (parts of) the system as a whole, and can thus be applied to containers. In
particular, we apply this mechanism to our OS-level virtualization architecture. For systems
where suspend-time encryption is not applicable, we propose a transparent runtime memory
encryption architecture with a minimal, almost completely guest-agnostic hypervisor for
the ARM platform in Section 5.4.

5.2 A Main Memory Encryption Architecture for Suspending Devices
This section proposes Contribution 6, a lightweight architecture for main memory encryption
that safeguards unattended devices, such as desktop PCs or notebooks, from memory
attacks when a device is fully suspended. This prevents attackers with physical access to
an absent user’s device from disclosing the secrets in main memory. When the user or the
idle system suspends a device, i.e., on Suspend-to-RAM, we encrypt the confidential data
in main memory with the FDE key and remove the key afterwards from main memory.
We request a passphrase from the user to restore the FDE key and initiate the decryption
while waking up the system. The architecture ensures to protect all user space process
memory, the valuable assets in kernel memory and ensures to remove other sensitive memory
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remnants, such as cipher states. Our primary design characteristics are the following:

Lightweightness. The architecture does not require configuration from the user, leverages
the existing OS infrastructure and can be easily integrated into systems in use.

Hardware Independence. The implementation is hardware independent and thereby ensures
simple portability to other devices.

Usability. The user is not adversely affected in the workflow and is only required to type
the FDE passphrase upon wakeup.

Performance. The implementation sustains the almost seamless suspend/wakeup cycles
and uses hardware accelerators for encryption and decryption, if present.

We implement our architecture as a kernel mechanism for x86-based Linux devices and
current kernel versions, but its design can likewise be transferred to other OSs and platforms.
Additionally, we propose a design variant using Linux as a HV with which protect the
full memory space of guest OSs, such as Windows. We also conduct a representative
performance evaluation of our x86-based prototype and discuss the architecture’s security
aspects.

This section is organized as follows. First, we present the design and implementation of
our architecture for Linux-based systems in Section 5.2.1 and Section 5.2.2. In Section 5.2.3,
we present the design variant with a virtualized environment to protect full guest OSs. We
evaluate the performance and security of our prototype in Section 5.2.4.

5.2.1 Basic Design for the Protection of Linux-based Systems
Today’s Linux devices usually use FDE in combination with LUKS to protect the confi-
dentiality of persistent data. Our idea is to extend the coverage of FDE encryption of the
data (and swap) partition to main memory contents when the device is suspended. When
powering on, the system boots normally, i.e., the user is queried for the FDE passphrase
after starting the initial ramdisk. By entering the valid passphrase, the system derives the
FDE key and boots the OS. Figure 5.1 shows how we integrate our idea into the wake and
suspend transitions of an existing system. While the device is actively used, the processes
are not encrypted and the FDE key is present to transparently encrypt storage. After an
idle time or active suspension, the common ACPI S3 suspend procedure starts. The kernel
freezes its tasks, i.e., processes and threads, concurrently by sending every task a signal.
This causes them to switch from user space execution to entering a non-schedulable state
in kernel space.

At this point of state transition, we make each user space process encrypt its associated
memory regions in its own context, i.e., anonymous, mapped, or shared memory and so on.
Threads share the memory regions and kernel structures with their parent processes and
siblings. To avoid multiple encryptions of the same regions, only the last task (of a process)
to enter the frozen state encrypts the associated memory regions. A further challenge is
that the physical pages to be encrypted can be shared across process boundaries. Therefore,
every encrypting task marks its present pages as encrypted, if not marked before. Other
tasks considering to encrypt a shared page skip already marked pages. As soon as every
process has finished encryption, we purge the FDE key and further kernel memory possibly
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Figure 5.1: Overview on the steps (marked in bold face) introduced to the ACPI S3 suspension
and resumption procedures.

containing sensitive data in a cleanup phase. After that, the common S3 suspension
continues. All confidential data on the device is encrypted or removed.

Upon waking up the device, the S3 resumption is triggered. Before thawing (i.e., waking)
the processes, we query the FDE passphrase from the user, as Figure 5.1 depicts. A secure
routine takes the passphrase and derives the key with the Password-Based Key Derivation
Function 2 (PBKDF2), which is used to decrypt LUKS headers. The decrypted LUKS
header contains the FDE key, which we re-supply to storage encryption (dm-crypt) and use
for the decryption of the processes while thawing (i.e., resuming) them. During decryption,
each previously encrypting task decrypts the same set of pages and resets their flags to
decrypted. After the decryption, the S3 wakeup continues and the system gets back to
operation. The mandatory passphrase query allows to disable the screen lock after suspend
requiring the end user to enter only a single passphrase.

We intentionally did not refer to a TPM or to other SEs for key protection to present a
hardware-independent solution, especially for cases where a TPM is not required, available,
or admitted. The security of the FDE key hence correlates with the complexity of its
associated passphrase. However, a TPM can be easily combined with LUKS [Yod]. This
implies that our proposed design can be easily adapted for cases where a TPM is desired
and thus prevent brute-force attacks on the FDE key. In addition, the concept does not
depend on processor extensions, such as Intel TXT or AMD Secure Virtual Machine (SVM),
to protect the system.

5.2.2 Implementation
We implemented a prototype for recent Linux kernel versions (version 3.16 and 4.5, 32
and 64 bit, for example). In this section, we focus on the three crucial steps of the
implementation: The process en-/decryption procedure, the cleaning of further sensitive
data and the FDE passphrase query for restoring the FDE key.

5.2.2.1 Process Encryption and Decryption
During suspension, every frozen task increments a counter we integrate into a structure
shared with all tasks of a process. Every frozen task then compares the incremented counter
with the number of tasks associated with the structure. In case the values equal, a task
marks itself as the en-/decrypting task and starts the encryption of the Virtual Memory
Areas (VMAs). The VMAs represent the user space memory regions, such as the stack,
heap, code, shared and further anonymous or mapped memory segments.

The tasks responsible for en-/decryption iterate over their VMAs and asynchronously
en-/decrypt the associated present pages using the kernel crypto API on all available
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cores. The only exception for excluded VMAs are non-confidential ones containing special
segments and shared library code. The latter segments solely contain constant read-only
data while special VMAs map memory shared with hardware devices, for instance, memory-
mapped I/O or DMA memory. These VMAs can not be encrypted, because devices are not
aware of the encryption and writing that memory likely corrupts the system. Encrypting
the whole process memory as a single chunk would compromise these segments and fault
on non-present pages.

The kernel considers a task frozen/thawed when all requests of a task are processed. We
use AES in CTR mode as cipher and physical addresses as Initialization Vectors (IVs).
Hence, we provide different IVs for all blocks to be encrypted. The crypto API selects the
preferred cipher driver and available hardware accelerators, AES-NI instructions in our
case.

5.2.2.2 Cleanup Phase
After the encryption, sensitive data may still persist in regions not covered by the tasks’
encryption. First, we zero out the FDE key. Second, we remove the remnants of the used
ciphers: we zero the utilized cipher structures and also the relevant kernel stack regions
using the kernel stack pointer. This makes it infeasible to deduct the encryption key from
such information. Third, sensitive data may still exist in free pages, which were previously
used by the kernel or user space processes and then freed. To remove these contents, we
walk the list of free pages maintained by the page allocator and zero them out, which can
be accomplished with very high throughput [Col15]. This step can be omitted when secure
deallocation [Cho05] is in place.

5.2.2.3 Passphrase Query
We implement a simple passphrase query in the kernel comparable to [Mül11] and derive the
FDE key based on the supplied passphrase. The kernel and its drivers are fully operational
at this stage and only user space processes are frozen. We easily reuse the drivers and
software stacks in the kernel to display the user a password prompt and to utilize connected
keyboards. For using a sophisticated GUI and for re-plugging input devices, for example,
(bluetooth) keyboards, during suspension, it is possible to keep relevant processes (udevd,
bluez) unencrypted and to thaw them in time when ensured that the daemons keep no
confidential data. This also allows for using SEs, for instance, a smartcard, for two-factor
authentication.

5.2.3 Design Variant for the Protection of Other Operating Systems
Our basic design can be easily transformed into a variant which allows to protect the
full memory of other OSs, such as Windows. Figure 5.2 gives an overview on the design
variant of our architecture, where a minimal Linux serves as a HV for guest OSs using
Kernel-based Virtual Machine (KVM). The gray elements in Figure 5.2 constitute optional
components, such as multiple guest OSs on the system. The underlying Linux system
only appears to the user when asking for the FDE passphrase on boot and wakeup. At
any other time, end users work with their OS of choice with almost native performance.
This makes it possible to, for example, transparently protect Windows systems without
impairing the usability for Windows users. When the device and hence the guest OS gets
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Figure 5.2: Design variant of our architecture to secure virtual guest OSs with KVM.

suspended, the full memory of the guest (including its kernel memory) is hence encrypted
with our underlying mechanism. The FDE, i.e., dm-crypt, transparently encrypts storage
and because we purge the FDE key after suspension, the guest OS’s storage is fully secured
from memory attacks. In addition, there is no confidential data stored in the Linux HV
itself.

To further protect the system, the optional components in Figure 5.2 emphasize that
the guest’s network traffic can be transparently protected by a user space Virtual Private
Network (VPN) client, for example, OpenVPN. The VPN client encrypts and routes the
guest OS’s network data over a secure VPN tunnel, for instance, through a corporate
network. The Linux HV automatically establishes the VPN connection such that common
end users do not need to provide further credentials and always benefit from the secure
connection. Since the network credentials are part of a host user space VPN process, the
corresponding key is also encrypted during suspension.

5.2.4 Evaluation
In the following, we first present our performance measurements before evaluating the
security.

5.2.4.1 Performance Measurements
We ran a Debian userland with a Linux 4.5 kernel (4 KB page size) on a Lenovo T450s
notebook (Intel Core i7-5600U CPU @ 2.60 GHz, dual core; 12 GB DDR3 RAM 1600 MHz).
To fill and stress the RAM in a representative manner, we deployed a desktop environment
and installed numerous applications, including business and graphics tools, browsers and
virtual machines. Figure 5.3 shows the timing of 100 suspend and wakeup cycles of different
sessions we measured using AES in CTR mode with a 256 bit key size. After booting the
system, the suspension and wakeup of processes took about 150 ms, where about 125,000
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Figure 5.3: Suspend (crosses) and wakeup (circles) times in milliseconds
in relation to the number of en-/decrypted pages.

pages (500 MB) were encrypted. The trendlines show the linear increase in suspension and
wakeup times when loading more and more applications and data into RAM. When the
memory is under high load, i.e., 10-12 GB reserved, the suspension/wakeup took about 1.3
s. In such cases more than 1,600,000 pages (6,4 GB) were encrypted. The non-encrypted
memory consists of non-confidential VMAs (special mappings and library code) and kernel
memory. With our encryption model, we have fine-grained control over the regions requiring
protection and do not need to encrypt the full space. Table 5.1 averages all measurements
from Figure 5.3 and shows minimum and maximum values. In an average suspension cycle,
105 processes were suspended which encrypted about 900,000 pages. One cycle involved
the encryption of more than 20,000 out of total 25,548 VMAs. The average suspend time
was 807 ms and even faster 745 ms for the wakeup. The prototype virtually reached an
en-/decryption speed of 4,453 MB/s, resp., 4,824 MB/s. Compared to the maximum of
about 2.6 GB/s on one core (measured with tcrypt benchmarks), our prototype performs
well and the system remained fully stable at all times. Ideas for future speed-ups are, first,
to zero out and unmap page-mapped files instead of encrypting them, and, second, to
decrypt encrypted pages on the fly after the wakeup. However, both approaches would
affect runtime performance, because the mapped pages must be reloaded from persistent
storage and in the latter case, pages are decrypted on demand.

5.2.4.2 Security Discussion
In the following security discussion, we consider the attacker types as defined in Chapter 2.
This includes our descriptions on the local, remote and physical attacker and our three
presented attack scenarios. We assume that the attacker attempts to gain confidential
data when a suspended device, not previously tampered with, is unattended. According
to Chapter 2, the attacker has sufficient time and can exploit software and hardware
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Table 5.1: Minima, maxima and averages over all test runs regarding encryption time,
throughput, and the number of encrypted processes, VMAs and pages.

Measurement Minimum Maximum Average
Processes 83 127 105
VMAs Encrypted 11,899 28,245 20,379
VMAs Total 15,241 35,050 25,548
Pages Encrypted 110,148 1,640,439 898,384
Suspend Time [ms] 142 1,497 807
Wakeup Time [ms] 125 1,373 745
Enc. Speed [MB/s] 2,860 5,106 4,453
Dec. Speed [MB/s] 3,081 5,387 4,824

vulnerabilities, for example, via JTAG [Wei12], cold boot [Gut01; Hal09; Mül13], or DMA
[Bec05; Boi06; Dev09; Ste13], to gain access to both volatile and persistent memory.
However, we make the assumption that the attacker cannot modify the memory to execute
evil maid attacks waiting for the user to return (for the latter, we refer to system hardening
techniques). A device once tampered with is hence no longer trusted, for instance, after
longer absence through theft, loss, or because the user notices the tampering attempt. This
either results in an attacker conducting a reading memory attack, see Chapter 2, or in a
writing memory attack that is however apparent to the victim. With physical possession
of the suspended device, our considered attacker trying to obtain confidential data can
possibly access persistent and volatile memory, categorized as follows:

Persistent Memory. Storage is protected by FDE and we removed the FDE key from
kernel memory. The only way to decrypt storage is to decrypt the persistent LUKS
header of the storage volume. This depends on the complexity of the FDE passphrase.
Brute-force attacks take much effort, because the header decryption key is derived
using the slow PBKDF2. A high number of iterations for PBKDF2 further slows
down the repetition rate. In our design, we emphasized the possibility to easily
integrate a TPM or to use an SE to prevent brute-force attacks.

Process Memory. All confidential VMAs were encrypted using AES in CTR mode with
unique IVs. For the encryption, the FDE key was used and removed afterwards. The
efforts hence coincide with the decryption of persistent memory.

Freed Memory. Since we zeroed out freed pages, there is no data remaining.
Kernel Memory. This part is not encrypted. However, we removed the FDE key, other

possible key material, and remnants of our cipher operations.

In sum, the attacker not only has to possess the device for long time, but also invest
remarkable effort to retrieve confidential data as the attacker is assumed to be unable to
break cryptographic primitives.
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5.3 A Main Memory Encryption Architecture for Containers
In this section, we present Freeze & Crypt (F&C) as Contribution 7, a flexible main memory
encryption architecture for OS kernels. F&C adds efficient and transparent process memory
en- and decryption on the granularity of process groups to OS kernels. We use F&C to
protect unattended or stolen mobile devices from memory attacks. We design F&C at the
example of the Linux kernel to comply with multiple platforms, kernel versions and incur
only minimal changes sustaining the kernel’s common operability. We integrate F&C into
the kernel building upon the existing cgroups freezer subsystem. The cgroups mechanism,
already introduced in Section 3.2, itself allows for the dynamic formation of groups of
processes, to which we refer to as cgroups in the following. The cgroups freezer subsystem,
referred to as freezer in the following, allows for freezing and thawing of cgroups, i.e., for
their suspension and resumption.

When freezing a cgroup, the kernel sends a signal to all processes in the cgroup. Each of
those processes reacts to that signal by entering the so-called refrigerator in kernel space.
The refrigerator is a loop function which ensures that processes neither execute in user
space nor react to external events. When frozen, the user space part of a process has
no means to access or alter its memory space. The refrigerator is thus a proper place to
temporarily alter the processes’ memory without side effects occurring on its user space
part. In particular, we let the processes en- and decrypt the segments of their memory
space, for example, the heap, stack, code or anonymous segments, on their own and in
parallel. This makes our approach especially efficient on multi-core systems. Upon thawing
a cgroup, the processes decrypt their memory before we allow them to leave. For the
parallelization, F&C synchronizes the processes and threads inside the refrigerator, as they
operate on shared resources like physical memory pages or kernel structures. The key we
use for en- and decryption of a cgroup is present only during freezing and thawing and may
change on each freeze. While our design keeps F&C independent of a hardware platform, it
can also be implemented on other OSs supporting process suspension and process groups.

As Contribution 8, we demonstrate the utility of our F&C by implementing a prototype
and combining it with the secure virtualization architecture from Chapter 3. We use
F&C to amend the protection of data confidentiality from local and remote attackers with
the protection of suspended containers from physical attackers. The secure virtualization
architecture is especially suitable for F&C as it enables secure encryption key management
with an SE preventing brute-force attacks on encryption keys. We wrap the encryption
keys using the SE during the time containers are encrypted, allowing only legitimate users
in knowledge of the SE’s passphrase to decrypt containers. We conduct a thorough security
and performance evaluation to demonstrate the practical usability on mobile devices.

This section is organized as follows. In Section 5.3.1, we first present the design of
F&C. Next, we elaborate on the implementation of our prototype for the Linux kernel in
Section 5.3.2. We present an overview of the combination of F&C with the virtualization
architecture in Section 5.3.3. Our performance evaluation and security discussion can be
found in Section 5.3.4 and Section 5.3.5, respectively.
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5.3.1 Memory Protection Concept
We first present an overview on F&C’s overall design and the involved OS components in
Section 5.3.1.1. Subsequently, we elaborate the synchronization of the processes during
main memory encryption in Section 5.3.1.2. In the following, the term encryption also
applies for decryption and we differentiate only where decryption differs from encryption.

5.3.1.1 Design of Freeze & Crypt
Based on the Linux kernel’s cgroups freezer, F&C allows for the dynamic creation of
cgroups containing the processes and threads whose memory space we encrypt. From here
on, we subsume processes and threads under the term task and only differentiate when
relevant. For every cgroup, we use an independent, ephemeral key for each encryption pass.
We categorize the memory space of processes into the following segments:

Text. The executable, read-only code of a task.
Data. Writable, as well as read-only data belonging to the task’s code. Contains statically-

allocated variables initialized at compile-time.
BSS. Zero-initialized, writable data. Contains the at compile-time uninitialized statically-

allocated variables.
Heap. A task’s dynamically allocated memory.
Stack. Local variables of functions and their parameters, etc.
Anonymous Mappings. Large, dynamic memory allocations a task can map into its process

space and share with others.
File Mappings. All parts of memory-mapped regions. For example, large writable files, but

also read-only files, such as code of shared libraries. We further differentiate between
regular and non-regular mappings, as well as between their access permissions. Non-
regular mappings are, for example, memory-mapped devices, DMA or IPC resources.

Special Mappings. The timers, vectors, vdso and vsyscall segments. They contain no
confidential user data. The kernel manages these segments as system-wide shared
kernel resources providing them to tasks as kernel interfaces.

Except for special mappings, a task can load or store confidential information in all other
segments. F&C thus allows to select all other segments for encryption except the special
mappings. Depending on the use case, fewer segments can be critical and thus omitted
from encryption. We outline the critical segments for the protection of memory on devices
running the secure virtualization architecture in Section 5.3.3.

States of a Cgroup
Figure 5.4 depicts the four different states of a cgroup along with its tasks. On the system,
we have an arbitrary number of cgroups in any of the states, as well as tasks not assigned
to a cgroup, which can potentially become part of a freezer cgroup or form a new cgroup.
This allows us to create disjoint cgroups, to freeze or thaw multiple cgroups at the same
time, and to assign different encryption keys.
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Figure 5.4: The four states of the freezer along with the behavior of tasks in the different
states.

Thawed. In the default state, multiple tasks are running, such as Task1 in Figure 5.4, and
the cgroup has no encryption key assigned. The cgroups mechanism ensures the
inclusion of future child tasks to the cgroup by default. The arrows demonstrate that
tasks execute their code in user space, access their memory segments and possibly
jump between kernel and user space when making system calls.

Freezing. After starting the freeze, the cgroup enters the freezing state and has an arbitrary
encryption key assigned. Tasks in the refrigerator go into an uninterruptible state
and dwell inside until the cgroup is thawed. Task1 already entered the refrigerator
and is currently encrypting its memory segments. The arrow for the running Task2
shows that it is just jumping from its execution in user space to kernel space into the
refrigerator. In the refrigerator, the user space part of a process has no means to
access or alter its memory. The tasks are unable to react to incoming IPC or external
events, such as kill signals. The kernel buffers such data and events, enabling tasks
to process them after thawing.

Frozen. After finishing the encryption, the cgroup is in the frozen state and has purged its
encryption key. Its tasks are all in the uninterruptible state, stuck in the refrigerator
in kernel space off the run-queue. Once scheduled, the kernel immediately calls the
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scheduler again to switch to another task. All tasks have encrypted the previously
specified memory segments.

Thawing. After starting the thaw, the cgroup is in the state thawing and decrypts with
the same key as used for freezing. The cgroup brings its tasks into a waking state.
When scheduled, the tasks simultaneously decrypt their segments before leaving the
refrigerator. Task1 in Figure 5.4 is about to decrypt its segments, while Task2 has
already finished. We retain Task2 in the refrigerator for synchronization until all
tasks of its cgroup finish decryption. This causes tasks depending on each other to
be released simultaneously.

Extension of the Freezer
We extend the freezer’s initialization, freezing and thawing functionalities to manage the
protection of cgroups. Figure 5.5 illustrates these functionalities in the form of a sequence
diagram. Bold elements represent the new functionality we introduce to the freezer.

Initialization of F&C. Privileged processes in user space can manage the cgroups function-
ality via an interface to the kernel, which allows for creating cgroups and adding or
removing tasks. To initialize a freezer cgroup, a privileged process adds tasks to the
cgroup, here TaskX and TaskY. We extend the interface with the option to associate
the freezer with an arbitrary key and the list of memory segments to be encrypted.
The concept intentionally leaves the key management open to the specific use case
F&C gets applied. A privileged entity in user space must ensure to provide F&C the
keys for encryption and to securely store the keys for encrypted cgroups. The key
can, for example, originate from password derivation, a TPM or an SE, as described
for the secure virtualization architecture in Section 5.3.3.

Freezing Procedure. As depicted in Figure 5.5, a privileged process starts the freeze and
thaw of cgroups. The freezer changes its state and signals its tasks to enter the
refrigerator. Every task notifies the freezer after finishing its encryption. When
the freezer has received all encryption notifications, the cgroup goes into the state
frozen and the freezer purges the encryption key. To erase potentially remaining
sensitive remnants, the freezer also zeroes out pages freed by running or terminated
processes, as well as the used cipher kernel structures and the relevant kernel stack
range in memory after the encryption. Finally, the freezer notifies user space about
the finished encryption of the cgroup. The standard freezer only toggles its state
when user space requests the actual state from the freezer. In F&C, the subsystem
actively manages its state to be able to purge the key and other remnants as early
as possible. We also actively notify user space, for example, the entities managing
the cgroups encryption, about the change of state. We show the usefulness of this
feature in the example of the secure virtualization architecture.

Thawing Procedure. Before triggering the thawing of a cgroup and therefore starting
the decryption, a privileged process passes the corresponding key to the freezer.
The freezer wakes every included task. When scheduled, this normally causes a
task to leave the refrigerator. With F&C, the tasks first decrypt their previously
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Figure 5.5: Extensions (bold) to the initialization, freezing and thawing procedures of a
cgroup with its tasks for Freeze & Crypt.

encrypted memory segments and notify the freezer. Unlike the original freezer, we
do not immediately switch to the state thawed, but wait until the last task finishes
decryption and notifies the freezer before switching states. Then, the tasks safely
leave the refrigerator when scheduled and resume their execution. The freezer purges
the decryption key, other remnants and notifies user space. The key and traces of it
are hence only present in the freezer during en- and decryption.

5.3.1.2 Synchronization of Tasks
Since the tasks of a freezing cgroup enter the refrigerator in parallel and share resources,
we synchronize their concurrent encryption. The synchronization of shared resources is
important, because some tasks may not yet be suspended or not be part of the encrypting
cgroup. In these cases, we ensure that shared resources are only encrypted when all resource-
sharing tasks enter the refrigerator. The kernel’s memory management is responsible for
resource sharing between tasks. Shared resources can be ASs and physical pages, as shown
in Figure 5.6. ASs describe the different memory segments a task has, for instance, the
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heap, stack, or the code segment. Each process has its own virtual AS, presenting the
virtual memory layout of the segments. Memory pages in the AS point to physical pages
in main memory when a mapping exists. Physical pages are shared when mappings from
multiple ASs point to the same physical page. In the following, we first focus on the shared
ASs before addressing shared physical pages.

Shared Address Spaces
A task can spawn threads and fork new processes. The kernel assigns a forked process its
own AS. When spawning, the parent process shares its AS with the spawned thread. This is
illustrated by Figure 5.6 where the tasks of process A and B share their ASs. Our goal is to
ensure that every AS is encrypted by exactly one task to avoid multiple encryptions of the
same AS. Without synchronization, sharing tasks would encrypt the same AS repeatedly
when entering the refrigerator, and tasks might be accessing memory that is already being
encrypted.

Figure 5.7 focuses on the chronological sequence of tasks entering the refrigerator with
processes A and B belonging to the same cgroup. Upon freezing, the tasks enter the
refrigerator at an undefined point in time in an order determined by the scheduler. The
first task to enter the refrigerator, here Task2 of process A and Task1 of process B,
predetermines the segments to be encrypted. The last entering tasks, TaskX and TaskY
respectively, encrypt the previously identified memory segments. Only the last task can
safely encrypt the segments, because at that time all other tasks sharing the AS have
entered the refrigerator. At that point in time, the user space parts of the tasks are inactive
and thus not accessing, allocating or freeing memory.

We let the first entering task identify the segments to be encrypted, because an AS
can have a large number of segments. While some of them may be special segments or
segments that were not selected for encryption, the identification of segments creates a
list of those segments to be encrypted. This allows the last arriving task to quickly start
encryption based on the list. We ensure that encryption does not start unless all segments
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are identified. As depicted in Figure 5.7, TaskY of process B encrypts its AS in parallel
to TaskX. Both tasks start encryption after all other tasks sharing their AS entered the
refrigerator. In reverse, only the first scheduled, waked task of a process decrypts the
segments. Once decryption of all process spaces is completely finished, we allow all tasks
to leave the refrigerator. After that, tasks get back to user space operation and may access
their ASs and allocate or free memory.

Shared Physical Pages
The tasks use virtual addresses during their encryption. However, the physical pages
effectively encrypted can be shared between process boundaries complicating the encryption
process. Hence, we have to determine whether the page to be encrypted is shared with
other processes before encrypting it in order to prevent the corruption of other ASs. Shared
pages are contained in more than one AS and can be further categorized. First, these
can simply be pages intended to be read-only for all tasks. Second, these can be writable
Copy-On-Write (COW) pages, which are shared between processes for the time they only
read the page. As soon as a sharing process writes the page, COW allocates a new page
to ensure that the task writes on a separate copy of the page. Third, shared pages can
represent shared memory for IPC, where distinct processes work on the same set of physical
pages. Fourth, pages could have been merged via the kernel’s Kernel Samepage Merging
(KSM) mechanism, which searches identical pages in process space and merges those pages
to one shared page to save memory.

Our goal is to ensure that pages are encrypted only once and to exclude pages from
encryption shared beyond the boundaries of the cgroup. Before a task encrypts a shared
page, we thus ensure that the page is not referenced by other tasks possibly not part of
the cgroup or not yet in the refrigerator. F&C ensures encrypting these shared pages only
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Figure 5.8: Example for the synchronization of tasks during physical page encryption.

once. We also ensure that page encryption does not trigger COW on shared pages. This
would cause a task to encrypt a copy of the original physical page and the sharing tasks to
later encrypt the original page again possible causing page replication. When thawing, an
encrypted page can always be decrypted as long as no other task is currently decrypting it.

Figure 5.8 provides an example for the encryption procedure showing the two encrypting
TaskX and TaskY from Figure 5.6 and 5.7 with the same physical AS layout. TaskY enters
the refrigerator before TaskX and first considers encrypting page 2, but skips. The page is
shared with process A only, but TaskX, part of process A, is not yet inside the refrigerator.
Then, TaskY encrypts page 3, because process B is its only user. Next, TaskY encrypts page
4, because the page is shared with process A only and in the meantime all tasks of process
A entered the refrigerator. Afterwards, TaskX starts the encryption of its AS beginning
with page 1, which process A exclusively uses. In the next step, TaskX considers page 2
for encryption and encrypts it, because TaskY previously skipped the encryption. Then,
TaskX considers encrypting the shared page 4, but realizes that it is already encrypted.
Still scheduled, TaskX encrypts its exclusively used page 5 and continues with page 6. At
the time of encryption, page 6 is shared with process B, but not yet encrypted. Shortly
after that, TaskY gets scheduled and skips page 6, because it is currently being encrypted
by TaskX. Finally, TaskX and TaskY attempt to encrypt page 7. According to Figure 5.6,
process C is also using that page. Depending on whether process C is part of the cgroup
and already in the refrigerator, either one of the two tasks encrypts the page or both skip
it.

5.3.2 Implementation
In this section, we describe the implementation of our prototype for the Linux kernel on
ARM and x86, tested with 3.4, 3.10 and recent 4.x kernel versions. We start with the
management of F&C from user space. Afterwards, we focus on the extensions we make to
memory management and on the synchronization of tasks during freezing and thawing.
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Then, we elaborate the procedure used by a task to encrypt its memory space.

5.3.2.1 Interaction with User Space
In order to pass the key and the list of segments from user space to the kernel, we create
additional files in the cgroups virtual filesystem. We read the key and list of segments
we receive from user space via file handles similar to the existing freezer state change
functionality. However, getting notified in user space about changes in filesystems (via
inotify) does not work with the cgroups virtual filesystem’s pseudo files. Instead, user
space must periodically read the state file to check whether the freezer changed state. To
avoid this polling, we use the eventfd and the cgroups notification API to explicitly notify
user space when freezing and thawing terminates.

A limitation of F&C is that our current prototype allows passing arbitrary keys from user
space only for disjoint freezer cgroups. In this case, disjoint means that the cgroups share
no pages with each other. An example are, for instance, the containers of the virtualization
architecture, see Section 5.3.3. Using the same key for non-disjoint cgroups ensures correct
decryption independent of the encryption order in contrast to using different keys. For the
example of two cgroups A and B sharing pages with each other, the first freezing cgroup A
would encrypt its memory with its own key, but leave shared pages unencrypted, because
the tasks of the other cgroup may still use the page. When cgroup B encrypts its memory
space, it would eventually encrypt the shared physical pages with its own key when cgroup
A is still frozen. If both keys are identical, both cgroup A and B can decrypt in any order.
When using different keys, the user space entity managing the cgroups must ensure to thaw
reversely to the order of encryption. Otherwise, cgroup A would decrypt shared pages with
its own key. A possible solution for this would be to use introduce a shared key for shared
pages. Another direction can be to use commutative encryption algorithms to relax this
restriction. This would allow to shuffle the order of decryption while using different keys.
The restriction of this approach is that despite the order of decryption becomes irrelevant,
we still have to keep cgroups sharing pages in the refrigerator until the depending cgroups
are thawed in order to complete the decryption.

User space must also avoid the thawing and freezing of non-disjoint cgroups at the same
time, because encrypting tasks could potentially clash with decrypting tasks when sharing
physical pages. These limitations have to be taken into account when triggering process
group encryption from user space. Containerization where the sharing of physical pages is
avoided ensures to create disjoint cgroups.

5.3.2.2 Memory Management
A process and its spawned threads share the kernel structures which describe a task’s
memory layout. Figure 5.9 shows relevant components the Linux kernel uses for memory
management and how the tasks share resources. The illustration outlines the sharing of
resources at the example of processes A and B. Each task has its own process descriptor
for process management which contains, for example, the name and PID. We temporarily
modify the light gray colored components during encryption, like VMAs and Page Table
Entries (PTEs). Medium-gray colors denote components to which we introduce new
functionality for handling shared resources.
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Figure 5.9: Linux memory management data structures and our modifications highlighted in
gray colors.

The process descriptor points to a memory descriptor, which describes the virtual memory
layout of a process. The memory descriptor tracks the number of users it has, i.e., the
number of threads that share the memory descriptor with the parent process. We extend
the memory descriptor to additionally count the number of frozen sharing tasks which are
tasks that have already entered the refrigerator. This way, the tasks are able to determine
whether they are the first or last one to enter the refrigerator. The memory the descriptor
points to is reflected by a linked list of VMAs representing the memory segments we
selectively encrypt. For the encryption, we make non-writable VMAs temporarily writable.

The memory descriptor keeps a reference to a Page Global Directory (PGD) used for
translating a process’ virtual addresses to corresponding physical addresses. Based on a
page walk from the PGD traversing the Page Upper Directory (PUD) and Page Middle
Directory (PMD), we determine the PTE corresponding to a virtual address if mapped, i.e.,
if the page exists in main memory. A PTE has several values tracking the page’s state, for
instance, if the page is shared between processes, or if the process has accessed or written
the page. By writing a physical page, the kernel also possibly modifies the PTE’s values.
Before the encryption of a physical page, we thus save the PTE’s values and restore them
right after the page’s encryption. This especially prevents file-backed pages accidentally
being made persistent through the page cache by not setting the dirty flag.

A present PTE maps one physical page by referencing a so-called page descriptor, which
describes one specific physical page in memory and which directly points to the page’s
physical address. We set a flag in the page descriptor indicating a lock on physical pages in
memory during encryption. By locking the page, we make sure that the locking task obtains
exclusive page access. Furthermore, we extend the page descriptor with the functionality
to mark a page as encrypted. With this functionality and page locking, we ensure that
tasks encrypt pages only once. To keep track of the entities referencing the page, the page
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Figure 5.10: Extended procedure for the synchronization of tasks entering and leaving the
refrigerator.

descriptor holds a reverse map to referencing VMAs. Since VMAs have a back reference to
their memory descriptor, we are aware of all tasks, possibly outside the cgroup, referencing
the page described. This allows us to determine whether the shared pages a task references
may be encrypted or not.

5.3.2.3 Synchronization of Tasks
Figure 5.10 depicts a sequence diagram, which describes how a task runs through the
refrigerator. We highlight the new functionality with continuously lined boxes, while
the standard freezer functionality is represented in dotted boxes. A task entering the
refrigerator first saves its current task state. We then increment a cgroup-wide barrier
we newly introduce, which counts the tasks entering the refrigerator. When thawing, the
barrier forces thawing tasks to wait in the refrigerator until decryption of the whole cgroup
completes. In the next step, we increment the frozen user count of the task’s memory
descriptor. The first user, i.e., the first task, identifies the memory segments in the process
space, which were selected for encryption. After possibly identifying the memory segments,
a task goes as usual to the state TASK_UNINTERRUPTIBLE. If the process is not yet encrypted,
the task checks if it is the last entering user of the memory descriptor. If yes, the task
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marks the memory descriptor as encrypted and encrypts the identified memory segments.
After that, or in cases where the task was not the last user of the memory descriptor, the
task notifies the freezer about being frozen. Then, the common freezer procedure executes.
The task flags itself FROZEN and ends up in a loop, checking if its cgroup is frozen or not.
When scheduled, the frozen task executes the common functionality and indicates the
scheduler to switch to another task.

When thawing a cgroup, the freezer wakes the cgroup’s tasks, leaves the frozen state, and
each task clears its FROZEN flag. The tasks normally leave the refrigerator and restore their
previous process state. However, F&C handles the decryption of the tasks before leaving.
For this purpose, thawing tasks first decrement the frozen user counter. This ensures that
only the first thawing task using the memory descriptor decrypts the associated memory
space. Otherwise, the task skips decryption. In the next step, every task decrements the
cgroup-wide barrier. The last task about to leave the refrigerator completes the barrier.
All other tasks waiting at the barrier are finally free to leave the refrigerator. The last task
also notifies the freezer about the terminated decryption of the whole cgroup.

5.3.2.4 Process Space Encryption
For the encryption in main memory with the kernel crypto API, we apply the asynchronous
bit-sliced AES CTR implementation using NEON instructions with a 256 bit key size.
The CTR mode achieves especially high performance on multi-core systems through its
parallelization. We use the physical page addresses as IVs, resulting in distinct IVs for
each encrypted block. During the encryption, a task iterates over the previously identified
VMAs of its memory descriptor. The task first checks the VMA’s write permissions. If
a VMA is not writable, the task makes the VMA writable. The task then encrypts the
VMA page by page. After encrypting the whole VMA, the task restores the VMA’s write
permissions, if necessary. A task’s encryption terminates after encrypting the last VMA.

Figure 5.11 presents the scheme of the encryption procedure on page level. The page level
encryption procedure starts by checking if the virtual page to be encrypted is physically
present in main memory. We skip non-present pages. As swapped pages are also flagged
non-present, we do not encrypt swapped pages. For the encryption of swap, we refer to
standard Linux swap encryption. On a present page, the task tries to acquire our lock.
Failing to do so indicates that the page is currently being encrypted by another task. Hence,
the task skips the encryption of this page.

The next step in Figure 5.11 differs depending on whether we are en- or decrypting
the cgroup. In the decryption case, we only need to check whether the page was already
decrypted. If so, the page simply gets unlocked, otherwise we mark it as decrypted and
start its decryption right away. This step is simplified in the illustration, which omits the
check and possible page unlocking.

In the encryption case, we are obliged to make sure the page is ready for encryption.
This means to first check if the page descriptor was already marked as encrypted. If this
is the case, the task releases the lock and skips the page. If the page was not already
encrypted, the task then checks if the page descriptor is referenced more than once. If there
is only one PTE referring to that page, the task immediately considers the page ready for
encryption. Multiple references indicate that the page is shared and may not be ready. In
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Figure 5.11: Schematic procedure for the encryption and decryption of physical pages.

this case, the task must specifically check the page’s readiness for encryption, because it is
shared across AS boundaries. Considering non-ready pages for encryption would corrupt
the AS of other processes. The task thus releases the lock on a non-ready page and skips
it. Another task of the cgroup considering that page for encryption will ensure the page’s
encryption later if the page is only shared with processes within the same cgroup.

After marking a page as en-/decrypted, the procedure continues equally both for en-
/decryption, as shown in Figure 5.11. In case the page is ready, the task marks it as
encrypted. Before writing the page, the task stores the PTE’s flags. These flags indicate
whether the page is, for example, writable, dirty, or young. The task checks whether the
page is writable or not, because writing a read-only page causes COW in the triggered page
fault. This would cause a replication of that page and the encryption of the copy. Since
the task made sure the page is only used within the cgroup, it makes the PTE writable
before encryption to circumvent the page fault. In the next step, the task encrypts the
physical page and subsequently restores the PTE’s flags. This ensures that PTE flags
remain unaltered. The task finally unlocks the page.

5.3.3 Combination with the Secure Virtualization Architecture
We combine F&C with the secure virtualization architecture from Chapter 3 to establish
a platform which protects confidential data on mobile devices both against physical and
remote attackers. With the combination, we also demonstrate the capability of F&C on
smartphones in practical use. We use Nexus 5 smartphones running multiple Android
containers based on the virtualization architecture. When a mobile device with the
virtualization architecture is actively used, one Android container is in foreground, while
one or more containers run in background. We encrypt background containers and only
leave actively used containers unencrypted. After the device is idle for a certain period,
we ensure to encrypt all containers in order to protect all sensitive data from memory
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Figure 5.12: Most relevant components of the secure virtualization architecture for mobile
devices along with our extensions.

attacks. We first describe our extensions to the virtualization architecture to leverage F&C
in Section 5.3.3.1. Then, we focus on the key management and describe how we employ
F&C to protect the containers’ sensitive data in memory in Section 5.3.3.2. Section 5.3.3.3
details how we handle background events for frozen containers, such as incoming phone
calls or alarms.

5.3.3.1 Extension of the Virtualization Architecture
In this part, we describe Contribution 8, the integration of F&C into the secure virtual-
ization architecture for mobile devices. Figure 5.12 shows the components of the secure
virtualization architecture that are most relevant for the extension with F&C. We refer to
Chapter 3 for more details on the virtualization architecture. The illustration depicts a
scenario with running containers C0..n on top of the trusted components in user and kernel
space. The C1..n are the isolated Android user containers with apps and possibly sensitive
data, for example, a private and a corporate container. C1..n store their persistent data in
images protected with kernel-based FDE. Therefore, the CM stores wrapped, persistent
disk encryption keys for C1..n. We denote these keys with KFDE1..n for C1..n. These keys
can only be unwrapped using the SE, which the CM communicates with. For F&C, we
assume that incoming sensitive data for C1..n is encrypted and that encryption terminates
inside C1..n. We need to encrypt those C1..n, which process sensitive data, such as corporate
secrets, and can leave others unencrypted. We do not encrypt C0’s RAM contents, because
it contains no sensitive user data. We extend the CM with functionality to configure F&C
and to generate, wrap and unwrap the RAM encryption keys, denoted by KRAM1..n for
C1..n, using the SE similar to the wrapping of KFDE1..n. KFDE1..n are unwrapped after
the start of C1..n, part of the CM and thus not covered by C1..n’s encryption. These keys
thus need to be as well protected from attacks. We remove unwrapped KFDE1..n at the
moment we encrypt the previously started C1..n.

The bold-faced components in Figure 5.12 depict the scenario where C1 is in foreground,



5.3 A Main Memory Encryption Architecture for Containers 121

while the other containers are in background. The illustration shows the freezer using
unwrapped KRAM1, which indicates that the system has locked C1, is about to switch to
C0 and to encrypt C1 in background. Meanwhile, the FDE module solely keeps unwrapped
KFDE1. The kernel does not require KFDE2..n to be unwrapped, because C2..n are frozen
and cannot access their filesystem. After freezing C1 completes, the CM also removes C1’s
unwrapped KFDE1 from the kernel.

Like on common smartphones, we require users to re-authenticate to start or resume
a suspended, encrypted container. The virtualization architecture suits F&C, because it
builds on an SE with two-factor authentication for secure cryptographic key management,
for instance, a smartcard via NFC or a microSD. This allows us to securely wrap encryption
keys with the SE. While using an SE prevents brute force attacks on the encryption keys,
it can weaken usability when re-authenticating. However, the usage of an SE was the
preferred choice due to possibly high security requirements in production scenarios. For
other use cases, our system can easily be adapted to a less secure, but more usable scheme,
such as PIN or password-based key derivations or swipe patterns.

5.3.3.2 Container Encryption and Key Management
For the encryption of C1..n, we consider all selectable memory segments described in
Section 5.3.1.1 relevant for the virtualization architecture except the following:

Read-only executable file-mapped segments. This is shared library code, which does not
contain sensitive user data in our system, but solely shared constant data. Since each
container features a full userland, C1..n include separate libraries, for example, libc.
The data segments of libraries do not fall in this category and are hence encrypted.

Writable non-regular file-mapped segments. These segments constitute memory areas of
memory-mapped devices, IPC resources, or DMA files where drivers share memory
with hardware devices. Encrypting such memory can corrupt the memory space
on most platforms, for example, because hardware devices are not aware of the
encryption.

All other segments must be protected, because processes might store or load sensitive
data there. The diagram in Figure 5.13 describes the procedure for protecting C1..n’s
sensitive data with F&C. The illustration shows the crucial steps of starting, encrypting
and decrypting Ci.

Start Ci. To start Ci, we enter the PIN of the present SE in the Trusted GUI of foreground
C0. The GUI passes the information to start Ci with the PIN to the CM. The CM
generates a fresh random KRAMi using the kernel random number generator seeded
with hardware entropy based on hardware random numbers. The CM unlocks the
SE and uses it to wrap the generated KRAMi. At this point, the CM holds both the
wrapped and unwrapped KRAMi. The unwrapped KRAMi is stored to be able to
immediately encrypt Ci without user interaction and without the SE when locking
or switching back to C0. Reversely, the wrapped KRAMi is stored for the next
decryption pass of Ci using the SE. Next, the CM starts Ci in foreground, which
brings C0 to background. Therefore, the CM creates Ci’s namespaces, configures its
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Figure 5.13: Chronological sequence for starting, freezing and thawing containers along with
involved key management operations.

cgroups and mounts its images. The CM also specifies the segments to be encrypted.
Starting Ci includes unwrapping Ci’s KDFEi using the SE to provide the key to
the FDE module for accessing the encrypted data image. This aspect is omitted in
Figure 5.13.

Freeze Ci. We freeze and hence encrypt Ci’s RAM when the user actively switches back to
C0, or when the user or the system locks Ci, causing a switch back to C0. According
to Figure 5.13, the CM then suspends Ci and immediately switches to C0. The
CM provides the freezer with the stored, unwrapped KRAMi and starts Ci’s freeze.
This triggers F&C, which encrypts Ci. In the meantime, the CM purges its stored,
unwrapped KRAMi from user space. After the encryption, the freezer purges its
utilized KRAMi in the kernel and notifies the CM. The CM then purges the no longer
required, unwrapped KFDEi in user and kernel space. We destroy the encryption
keys by overwriting them in RAM and by flushing the corresponding caches. After
that, the CM stores only the wrapped KRAMi and KFDEi, leaving no trace of Ci’s
volatile and persistent data. All confidential assets in kernel memory are deleted and
the non-encrypted segments contain no confidential information. In other use cases,
the entity managing the encryption can purge further assets in kernel at this point if
present, for example, the credentials of IPSec, which is a kernel level VPN mode.
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Thaw Ci. Only to start and to thaw Ci, i.e., when decrypting and putting Ci to foreground,
the user has to provide the PIN of the SE to the Trusted GUI. The CM unwraps the
wrapped KRAMi using the SE and provides the freezer with the unwrapped KRAMi.
Afterwards, the CM triggers the thaw. The freezer decrypts Ci, purges its utilized
key in the kernel and notifies the CM. Then, the CM resumes Ci, switching it to
foreground. To simplify matters, Figure 5.13 omits that the CM also unwraps the
wrapped KFDEi and provides it to the FDE module before thawing Ci. The CM
keeps its user space copy of the unwrapped KRAMi for the next freeze. At this point,
the CM could also generate a new unwrapped KRAMi with a wrapped counterpart
for the next freeze. This would prevent replay attacks swapping old portions of
encrypted RAM. However, such scenarios are not part of our attacker model from
Chapter 2 and we consider this threat negligible.

5.3.3.3 Background Activities
In this part, we describe how background activities can be handled for encrypted, suspended
containers. When a device running the virtualization architecture is suspended, the main
application processor sleeps like on regular smartphones. For background activities, devices
sustain their connection to external sources via hardware components and interrupt
controllers. In case of an event, for example, causing a notification in the Android OS,
the main application processor and hence the kernel and processes get woken. With
the virtualization architecture, incoming events for encrypted containers are, similarly to
common mobile devices, processed by our underlying kernel. Due to our virtualization
architecture’s hardware device virtualization infrastructure, the kernel forwards all incoming
events to the virtualization components. This enables the components to handle background
activities for frozen Ci even though Ci is inactive and encrypted until the next unlock.
The architecture virtualizes hardware devices either in user space or directly in the kernel.
By extending these virtualization components, we have the possibility to buffer incoming
events and to notify the user in the non-encrypted C0.

User-Space Virtualized Devices
For this class of hardware devices, multiplexers in C0 virtualize device functionality for
all containers. Multiplexers virtualize those devices in user space for which a part of the
driver functionality is implemented in user space, for instance, the radio interface as part
of the RIL, or Wi-Fi functionality. Our virtualization architecture thus receives incoming
short messages and phone calls for possibly frozen Ci via the radio interface in the kernel
and hands them over to the multiplexers in C0. This allows us to extend our architecture
by adding functionality to the multiplexers to notify the user of events for frozen Ci inside
C0. For this purpose, we can use regular Android notification intents in the multiplexers to
raise a notification in C0’s GUI application. The multiplexers must buffer Ci’s data until
Ci thaws and processes the data, for instance, by reading on a socket terminating in C0.
We verified the functionality of our extension with various incoming user-space virtualized
data sources. For phone calls and short messages, users were notified in C0 and able to
take incoming calls or receive short messages seamlessly right after thawing.
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Kernel-Space Virtualized Devices
Processing data on behalf of frozen Ci for hardware devices virtualized in the kernel, such
as the alarm or networking devices, can be achieved in the same way. We receive alarm
events and incoming network data packets for frozen Ci in the kernel, which buffers the
data. We can use UNIX domain sockets with an endpoint in C0 to inform C0 to raise a
notification in its user interface. In particular, this allows to reliably notify the user about
expired timers and alarm clocks previously set in frozen Ci.

Full Background Operability
For all incoming data, we can notify the user in Ci. We can use the multiplexers to show
the user a specific notification for different events depending on the incoming data. In
practice, only the handling of outgoing traffic for Ci is conceptually confined. Outgoing
traffic can, for instance, be responses to incoming messages via the network interface, or
be keep-alive packets to remote network servers. For the networking, apps mainly use the
Google Cloud Messaging (GCM) infrastructure and receive data, such as instant messages,
only when the device reports back to GCM. From the perspective of remote entities, this
makes frozen Ci appear to be temporarily lacking connectivity. The remote services not
aware of the container encryption buffer their data and send it when Ci reports back. This
makes the virtualization layer unable to retrieve further incoming network events.

As network connections are usually end-to-end encrypted, we can neither inspect plaintext
data received in C0 nor keep the connections alive on behalf of Ci. For full network traffic
handling, we could virtualize the connection management for Ci in C0. The downside to
this is that this would require to keep the involved connection credentials in plaintext into
C0. Because this makes the credentials susceptible to memory attacks, this is not an option.
A more secure possibility regarding memory attacks would be to leverage a remote backend
with a copy of the connection credentials. This enables, for instance, the CM to forward the
encrypted data to the backend, which can decrypt and interpret the end-to-end encrypted
data. The backend can then notify the CM about the particular event and handle the
remote connections on behalf of Ci, for example, to the GCM services. The CM in turn can
raise an Android intent in C0 to notify the user about any ongoing network-related events.
This would make our prototype fully background-operational. However, keeping sensitive
user data in a backend can raise privacy concerns and is thus only advisable for fully
corporate-managed containers, i.e., a corporate container. For the users’ private containers,
this solution is less advisable. Further this causes communication overhead on the device
and requires a comparably high implementation effort to realize this functionality. For this
reason, our current solution keeps all used connection credentials safe inside all frozen Ci.
This constitutes a trade-off between functionality and security. After thawing, we always
observed the intended functionality of the apps to continue seamlessly and apps quickly
retrieved their data from remote services.

5.3.4 Performance Evaluation and Statistics
In this section, we present our performance results and statistics on the tasks, VMAs, and
pages encrypted with F&C on the secure virtualization architecture. We deployed the
virtualization architecture with two full-fledged Android 5.1.1 containers in addition to the
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Figure 5.14: Measurements of container freeze (crosses) and thaw (circles) times in millisec-
onds related to the number of encrypted pages.

management container on top of a single Linux 3.4 kernel (4 KB page size; as on stock
Android, no swap or KSM) on Nexus 5 devices (Quad-core 2.3 GHz Krait 400 CPU). This
resembles a realistic scenario with a private and business domain. For the evaluation, we
intentionally encrypt both containers to challenge F&C with multiple, large cgroups. For
common use, encrypting only the business container processing corporate secrets may be a
more appropriate choice with higher usability. We adhered to the selection of segments for
encryption as described in Section 5.3.3.1.

We identified several test users to utilize F&C on their Nexus 5 smartphones running
the virtualization architecture to generate our statistics. To deploy F&C on the phones,
we provided the users an update with our modified kernel and virtualization layer enabling
main memory encryption support after a device reboot. The users were able to seamlessly
continue utilizing their two containers with their data and dozens of apps, for instance, social,
business, mail, or media apps. Thawed containers continued running stable, even after a
long freeze. The evaluation period also incorporated a number of especially challenging test
cases with background events, where users stressed the memory limit or received phone
calls in a frozen container. With these test cases, we verified that F&C reliably works even
when the system is under heavy load, that the phone is still practically usable and that it
remains fully stable.

To gather the statistics, we introduced a performance profiling mechanism to F&C.
We extended our prototype to gather the most important statistics in the kernel during
encryption, such as the duration of the encryption or the number of encrypted pages and
tasks. The extension writes the statistics to a pseudo file after each en-/decryption pass.
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Table 5.2: Statistics on the average number of encrypted tasks, VMAs, and pages along with
the types of memory regions.

Tasks Total Threads Processes
1,043 991 52
VMAs Total Skipped Encrypted
27,410 14,019 13,391
Pages Total Skipped Encrypted
380,545 238,090 142,455
Encrypted
Pages Total

File-
backed

Anonymous Text/Data/
Stack/Heap

142,455 71,606 68,976 1,873

This allowed us to query and store the statistics for every en-/decryption pass in a file,
which we pulled from the devices at the end of the evaluation phase. Figure 5.14 illustrates
the measured en-/decryption times in relation to the number of pages. The black crosses
and gray circles refer to container freeze and thaw times in milliseconds. In total, we have
more than 730 container en- and decryption samples where our users ran arbitrarily many
apps on the smartphone for an indefinite period of time. The more apps run, the more
pages are present, the more pages we encrypt. On average, about 142,500 pages were
encrypted in parallel on the four available cores requiring 2,468 ms for freezing and 2,266
ms for thawing. In extreme cases where the Android low memory killer is triggered active
and a container exhausts all of its resources, the duration increases roughly to fairly, still
practicable, 4,000 ms. When starting the freeze of Ci, the CM directly and quickly switches
back to C0, see Section 3.3. This means that a user intending to switch to another container
Cj can start entering the SE’s passphrase in C0 during Ci’s encryption in background.
Since typing takes some time, the additional cost of a switch usually amounts to only the
time required for thawing Cj. Both trend lines in Figure 5.14 point out the linear growth
of encryption times and show that decryption is faster than encryption. This is reasonable
due to the additional synchronization effort during encryption. The variance originates
from the many different events and processes that the kernel schedules in this complex
system. The measured encryption time comprises the instant of writing to the freezer state
file until user space receives the notification from the freezer. In between, the performance
mainly depends on the synchronization inside the cgroup and on the scheduler.

In sum, our solution is suitable for daily use in environments where the protection of
sensitive data plays a crucial role. Our prototype device ran without hardware cryptographic
accelerators. We expect considerable performance boosts for F&C on devices making benefit
of hardware cryptographic accelerators, for example, as available on the x86 architecture,
or on devices based on the ARMv8 architecture.

Table 5.2 shows further statistics we gathered. On an average encryption cycle, 1,043
tasks were running, including 52 processes spawning 991 threads. This points out the large
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size of the cgroups and that users were running many apps. The second row shows that
during freezing, the 52 encrypting tasks identified 27,410 VMAs, where 13,391 were subject
to encryption. The remaining 14,646 VMAs represent the non-sensitive segments. Freezing
tasks altogether had about 380,500 virtual pages mapped on average. When multiple PTEs
point to the same physical page, there are numerous duplicate pages. This is why the total
number of encrypted physical pages, about 142,500, is on average clearly smaller and many
pages, about 238,000, could be skipped. The average number of encrypted pages accounts
for about 560 MB of memory. The bottom row shows the classification of the encrypted
pages into the different VMAs. Most pages are either part of file-backed or anonymous
segments. Only a small number of pages belong to the stack, heap, data and text segments.
A future improvement would thus be to zero out and unmap file-backed segments instead
of encrypting them. This comes later at the cost of runtime performance, but probably
remains barely perceptible and can clearly improve suspension and resumption.

To measure the effects of F&C on power consumption, we separately conducted power
measurements. The additional battery drain depends on the frequency of suspending
and resuming containers, as well as on the amount of memory to be encrypted. For
our measurements, we automatically switched between the two user containers and the
management container, suspending and resuming in 10 second intervals for a 100 times
while holding a wake lock. We conducted this process on devices with the same software
configuration with and without F&C. We independently repeated that experiment 5 times
with fully charged new phones. Prior to each of the repetitions, we started a varying
number of applications to test under scenarios from low to high main memory consumption.
To be able automatically switch between containers, we adapted F&C to use a fixed key.
To track the battery drain from user space, we used the Linux kernel’s interface to the
power supply class. We measured an average battery drain of about 2.5% without and no
more than 4.0% with F&C. There is hence little perceptible effect on power consumption
under normal phone use.

5.3.5 Security Discussion
In our conceptual security discussion, we consider an attacker who aims at extracting
sensitive data from an unattended and non-tampered device under protection of F&C.
The attacker obtains physical access to the protected device, has sufficient time and the
ability to access both all of its volatile and persistent memory. The local, remote and
physical attacker and scenarios one to three in accordance with the attacker model from
Chapter 2 are thus in scope. For accessing the memory, the attacker may exploit hardware
and software vulnerabilities, for example, through DMA, JTAG or cold boot attacks. This
enables the attacker to obtain and analyze its full memory contents. This also allows
the attacker to compromise non-suspended parts of the system including the OS kernel.
However, the attacker is unable to execute evil maid attacks, i.e., to covertly deploy
backdoors on the device waiting for the user to return. This implies that a device once
tampered with is not trusted again, for instance, after theft or loss, or because the user
notices the tampering attempt. This means that a writing memory attack or successful
remote attack as described in Chapter 2 does not remain unnoticed and is thus precluded.

Regarding the virtualization architecture, the adversary may be in possession of the SE,
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but lacks knowledge of the SE’s passphrase and is unable to unveil the secrets stored on
the SE. Furthermore, the attacker has no means to break state-of-the-art cryptographic
primitives. An attack scenario may possibly occur in sensitive corporate or governmental
domains where the device owner uses a corporate and private container. In this case, the
attacker aims to retrieve sensitive data stored in the corporate container after gaining
physical access to the device.

In the following, we first discuss the security aspects of F&C itself on the basis of a
generic process group and then extend our considerations to the virtualization architecture.
As a last point, we elaborate on the precluded unnoticed tampering of protected devices in
the absence of their users.

5.3.5.1 Encrypted Process Groups
F&C encrypts the pages of the selected memory segments in RAM using AES in CTR
mode and uses its unique physical address as IV for each page encryption. Identical pages
are consequently encrypted with a different outcome and since the attacker cannot break
cryptographic primitives, encrypted pages reveal no sensitive information. After encrypting
a cgroup, we purge the key used in the freezer, as well as other AES remnants and freed
pages. When the key is removed in user space as well, the adversary has no means to
decrypt protected pages. This means that the attacker can only attempt to obtain sensitive
data in non-encrypted pages and segments. F&C allows for the selection of all memory
segments for encryption, except the special segments very unlikely to contain confidential
data. For encrypted segments, we leave only those pages unencrypted which are shared with
unencrypted, running processes. When making sure that processes which share sensitive
data with other processes are contained in the frozen cgroups, we do not leave a single
sensitive page unencrypted. Even a reduced set of selected memory segments can cover all
sensitive areas when assuming knowledge of the segments where processes on the system
store their sensitive data.

5.3.5.2 Secure Virtualization Architecture
Regarding the secure virtualization architecture, the goal of the attacker is to obtain the
containers’ confidential data both from persistent storage and RAM. The security of the
platform itself against attackers compromising software components at runtime without
memory encryption, for example, for C0 and the CM, was already discussed in Section 3.3.5.
F&C encrypts containers when the user actively switches them to background, locks the
phone, or leaves it idle for a specific amount of time. Based on this, we discuss the scenarios
where the device is already suspended, where a container is active and unlocked, and where
a container is locked, but not yet completely suspended.

Suspended Device
This attack scenario is most likely, because smartphones are suspended most of the time
implying that the containers are already encrypted. In this scenario, the attack thus starts
when the device is fully suspended. At this point in time, all containers, except for C0, are
encrypted. Containers share no sensitive data with other entities, because the memory
usage of physical pages is tied to container boundaries. Since we encrypt all relevant
memory segments, see Section 5.3.3, we fully cover the containers’ sensitive data in RAM.



5.3 A Main Memory Encryption Architecture for Containers 129

F&C purges the unwrapped RAM encryption key in the kernel. Persistent memory is
always encrypted due to FDE where the kernel stores the unwrapped FDE key.

On the virtualization architecture, the unwrapped FDE key in the kernel and the
unwrapped RAM encryption key in user space are the only assets not protected through
the encryption. However, at the moment the container encryption terminates, the CM
purges these unwrapped keys, preventing the attacker from decrypting any persistent and
volatile memory. The wrapped key complements can only be unwrapped using the SE.
The attacker is possibly in possession of the SE, but lacks knowledge of the passphrase and
cannot brute-force the SE. Hence, wrapped encryption keys are securely stored in main
memory. This means that we need no special key storage, such as CPU registers. The
CM only keeps the unwrapped key counterpart in RAM during encryption and when the
container is unencrypted. Relocating the unwrapped key for that time, for example, to
memory protected through the ARM TrustZone, does not increase our platform’s security,
as sensitive data is in plaintext anyway.

Being in possession of the device, the attacker can hence only wait for incoming data,
such as short messages or network traffic. Since sensitive data is generally end-to-end
encrypted and encryption terminates inside the container, the attacker has no means
to decipher that data. Unencrypted data, for example, short messages, can already be
intercepted before it reaches the mobile device independent of memory encryption.

We assured to leave no sensitive data behind by reading out process spaces as privileged
user and by analyzing memory dumps of locked devices with the tool Volatility and with
cold boot attacks, such as presented in Chapter 4. On common devices, we were able to
easily recover vast amounts of sensitive data, such as passwords for Exchange accounts,
FDE keys and further credentials, see Section 4.6. Even though in knowledge of the
sensitive assets, we had no means to detect any sensitive data on devices protected by
F&C. Listing processes during forensics analyses of the system, one finds that F&C even
disguises the processes’ arguments and environment variables, since these are part of the
encrypted process stack.

Unlocked Foreground Container
In this scenario, we assume that the victim was actively using a container until the moment
the attack starts, for instance, in case of coercion or a violent offence. During that time,
the actively used container is not encrypted until the system triggers the suspension. When
the attacker prevents the container from locking itself, the attacker can directly interact
with the container and gather all its data without carrying out a memory attack. With
a memory attack, the attacker is able to read the plaintext memory encryption key of
the unlocked foreground, which however renders no additional attack vector, as the other
containers are encrypted with independent ephemeral, random keys.

Regarding the frozen background containers, the adversary has no influence on their
processes, memory contents are not shared between containers and the keys to decrypt
pages of frozen containers are not present. The background containers thus remain securely
protected.
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Locked Foreground Container
A locked foreground container is either just suspending or soon about to suspend after
a certain idle time. As in the previous scenario, background containers remain securely
protected. When suspension is ongoing, the encryption process terminates quickly even for
fully loaded containers, as evaluated in Section 5.3.4. This means that the time frame to
extract valuable plaintext data or the encryption key is very likely to be impractical when
the attacker gets control over the device at that point in time.

The scenario where the device is not yet suspending the container is similar to the
previous scenario with the exception that the foreground container is locked. The attacker
can constantly interact with its screen lock app, managing that the locked foreground
container never suspends. In the next step, the attacker can either try to exploit the
software layer to get access to the non-suspended container, or try to conduct a memory
attack to acquire the container’s data or its memory encryption key. Configuring containers
with a short inactivity timeout until suspension mitigates the occurrence probability of
this scenario.

5.3.5.3 Unnoticed Tampering
A memory-encrypted device which the attacker is able to tamper with in the absence of its
owner was not part of our security discussion. This would include an attacker who is capable
of unnoticedly gaining full privileges or of unnoticedly replaying memory contents, for
example, by carrying out a writing memory attack. This model is especially hard to defend
against and requires additional tamper-resiliency regarding both soft- and hardware level
attacks. In case of runtime memory encryption techniques, which transparently encrypt
main memory and possibly keep a working set of RAM unencrypted, this scenario would
even make the attacker immediately able to extract all sensitive data, because the container
remains fully operational and can be resumed at any time. The attacker can either wait for
the main application processor to load sensitive memory into the unencrypted working set,
or just directly use the acquired privileges to read the memory. Our encryption based on
container suspension has the advantage that containers cannot resume without intervention
of the legitimate user unwrapping the memory encryption key. In this case, the attacker
must wait for the user to provide the key. The attack must be carried out in a way that the
user remains unsuspecting, because otherwise the user is unlikely to resume the container.

5.4 A Runtime Memory Encryption Architecture with a Minimal Hypervisor
The main memory encryption architectures presented in Section 5.2 and Section 5.3 protect
against memory attacks while the system, respectively containers in case of Freeze &
Crypt, are suspended. The architectures enforce that memory can only be decrypted
when its user provides a cryptographic token, for instance, an SE or a key derived from
a passphrase. However, main memory is only fully protected when the memory attack
takes place after suspension is completed. This is effective for scenarios where it is likely
that attackers do not acquire access to actively running devices, for example, to unlocked
smartphones or idle, but non-suspended notebooks. We elaborated on this in our security
discussion in Section 5.3.5. In scenarios in which systems have no suspension features, or
in which an attack is likely to take place at any time, for instance, when attackers may get
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hold of smartphones in current use by their owners, suspension-based memory encryption
may not be applicable or only insufficiently protect the devices. To provide continuous
protection in such scenarios, we introduce an architecture for transparent runtime main
memory encryption, which we call TransCrypt. This represents Contribution 9. We briefly
describe the design of TransCrypt in Section 5.4.1, and its implementation and evaluation
in Section 5.4.2.

5.4.1 Design of TransCrypt
We base TransCrypt on a minimal HV which acts as a privileged entity responsible for
the transparent encryption of the full memory contents of an arbitrary guest OS. We
design TransCrypt to not require any changes to the guest OS and to be almost agnostic
to the specific OS running. The HV restricts the guest’s direct access to physical main
memory to a small and scalable set of unencrypted memory pages, which forms a subset of
all the guest’s physically allocated pages. The subset of unencrypted pages is commonly
referred to as a sliding window or working set. This working set dynamically changes based
on the guest’s page accesses. The HV enforces the page access restrictions by making
pages accessible/inacessible to the guest by mapping/unmapping the guest’s pages in the
system’s page tables, e.g., nested page tables. The HV maintains these tables for guest
memory management. All guest-allocated pages outside the working set are transparently
encrypted and unmapped by the HV, which ensures that encrypted pages are no longer
directly accessible by the guest. The guest trying to access an encrypted page will be
interrupted. This triggers the HV, which decrypts and maps the page on the fly, making
the page again directly accessible and thus part of the working set. As soon as the working
set is full, the HV evicts, i.e., encrypts and unmaps, the least recently mapped page from
the working set. This process is summarized in Figure 5.15. During the boot of a guest OS,
the working set will quickly fill and cause most of the guest memory to be encrypted at all
times. TransCrypt generates an ephemeral encryption key inside a TEE before booting
the guest and exclusively executes page en-/decryption inside the TEE. This protects
the encryption key itself from memory attacks at all times. For the page encryption, we
propose AES-CBC with physical page base addresses as IVs. This ensures that all pages
are encrypted with unique IVs.

TransCrypt potentially allows the HV to dynamically adapt the working set size when
the system is under high load to reduce the performance impact caused by the runtime page
en-/decryption and re-mapping. An implementation used in productive environments must
carefully address the choice of the maximum working set size. The higher the maximum
set size is chosen, the less decreases the system’s performance. However, this increases the
probability that a memory attack reveals sensitive data to the attacker reading the working
set. Furthermore, the attacker might be able to take influence on the load of the system to
cause the HV to deliberately extend the working set at the time of a memory attack.

TransCrypt supports efficient multi-core operation, where each core manages its own
share of the global working set [Hor17]. Similar to suspend-time memory main encryption
architectures, the encryption of special pages, i.e., devices mapped to memory, and DMA
memory shared with hardware devices, is not possible, because the hardware periphery is
neither aware of the encryption, nor in possession of the memory encryption key. TransCrypt
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Figure 5.15: Eviction, mapping and en-/decryption of main memory pages from the working
set using a minimal HV.

intercepts the guest’s access to special pages and excludes them from encryption. This is
the only step not independent of the particular guest OS, because TransCrypt requires
specific information about the guest’s mappings of special pages [Hor17].

5.4.2 Implementation and Evaluation
We realized TransCrypt on the ARM architecture using its hardware support for virtualiza-
tion. This enables the HV to control the guest’s physical page mappings using the Second
Level Address Translation (SLAT) virtualization feature. This ensures that each guest
access to a page unmapped by the HV triggers a page fault in the HV. Furthermore, using
the ARM architecture makes it possible to leverage TrustZone as TEE. We implemented a
prototype on a dual-core ARM Cortex-A15 developer board with the ARMv7 virtualization
extensions. Our HV uses a page size of 4 KB and does not support multiple guests at the
same time. As guest OS, we ran an unmodified Linux 3.0.31 kernel with an Android 4.1.1
environment on top. Running only a single guest does not require to virtualize devices
to support multiple, concurrently running guest OSs. This enables us to keep the HV
implementation minimal, at about 4,000 lines of code in our case. The dynamic working
size set adaption and cipher implementation in the TrustZone for page encryption are not
part of our prototype we developed. Instead of using the TrustZone, we realized page
encryption directly in the HV as a software AES implementation.

In our evaluation, we identified a reasonable trade-off between performance and the
working set size that makes it improbable that a memory attack reveals sensitive data to
an attacker [Hor17]. For the performance measurements, we used the CoreMark [Emba]
and Antutu [AnT] benchmark tools. Antutu represents a highly stressing real-world test
comparable to a demanding app like a 3D graphics game. As the underlying use case, we
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defined a typical smartphone usage scenario where a user fetches mails every 30 minutes
within 24 hours with the standard Android mail app using an Android mail account with
credentials stored. The mail app loads address-password combinations in plaintext into
memory, in our case on three different physical pages. Note that such pages are likely to
be heap pages and be accessed more frequently, because these may contain other data
structures used by the mail app. We determined the working set size that causes these
pages to be quickly evicted after being accessed, i.e., as quickly as possible after a fetch.
For a working set size of 10,000, we found out that the sensitive pages containing the
address-password combinations are inside the working set for about 1%, or less then
15 minutes, throughout the whole 24 hours while sustaining more than 80% of native
performance with the Antutu benchmark and almost native performance with CoreMark.
For example, for a working set size of 36,000 pages, we achieved around 88% of native
performance with the Antutu benchmark, but the sensitive pages were inside the working
set for about a quarter of the day yielding a relatively high probability to be acquired in
plaintext with a memory attack. With a working set size of 10,000, the sensitive pages were
inside the working set for less than 15 minutes throughout the whole day, still achieving
about 82% of native performance.

We expect our prototype to produce even better results on devices based on the ARMv8
architecture, which brings hardware AES support and a more efficient infrastructure for
SLAT Translation Lookaside Buffer (TLB) invalidation. This makes it possible to even
further reduce the working set size.

5.5 Summary
In this chapter, we tackled Challenge 4 by introducing different architectures for main mem-
ory encryption. With Contribution 6, we first presented an architecture easily deployable
on existing x86 devices This architecture reliably protects confidential data on suspended
devices against physical attackers. We used the Linux kernel’s FDE key to encrypt the
confidential data in volatile memory and purged the key when suspension completes. With
an average suspend and wakeup time of about 800 ms and rare peaks of less than 1.5
seconds on mid-performance devices with large main memory, our hardware-independent
design forms a fast, secure and portable solution. Existing Linux systems need no more
than a kernel update. To wake up from suspend, the end user solely needs to pass the
FDE passphrase. This not only preserves high usability of the system, but also prevents
end users disabling the OS lock screen from opening doors for everyone after resumption
of a suspended device. For end users of Windows systems, for example, we proposed a
transparent and lightweight virtualization design variant where the full memory of guest
OSs likewise benefits from memory encryption. Further, we emphasized the possibility to
combine our architecture with a TPM or SE to prevent brute-force attacks on the FDE
key derivation.

In the second part of this chapter, we presented F&C with Contribution 7, a main
memory encryption architecture for process groups, along with its successful application to
protect mobiles device from physical attackers. F&C builds upon the freezer functionality of
the Linux kernel making processes en- and decrypt their memory efficiently in parallel with
a transient key. We synchronized the encrypting processes, ensured that frozen processes
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do not touch their memory and that external events, such as IPC, are deferred. The
prototype we developed can be employed throughout different platforms, kernel versions
and allows for the selection of the process groups and memory segments to be encrypted
from user space.

With Contribution 8, we combined the memory encryption architecture for process
groups with the secure virtualization architecture running multiple Android containers. The
platform allowed us to leverage its virtualization and secure key management infrastructure
with F&C. This let us realize a fully functional system that thwarts physical attackers while
defending against local and remote attackers through container isolation. We encrypted the
containers that are not in active use and in order to maintain their background functionality,
we informed the user with notifications about incoming events for encrypted containers. In
our security and performance evaluation, we showed that the encryption provides strong
security for unattended devices and containers not in use. The average en- and decryption
time of less than 2.5 seconds makes the prototype practical for use in environments where
the confidentiality of data plays a major role.

In the last part of this chapter presenting Contribution 9, we achieved transparent
runtime memory encryption with TransCrypt. TransCrypt represents a memory encryption
architecture for the ARM platform with an almost completely guest-agnostic HV. Because
the encryption key is used throughout the whole runtime of the system in contrast to
suspend-time main memory encryption, we require a secure environment for key storage
and the cipher implementation, on-chip RAM and the TrustZone on ARM platforms. In
contrast to suspend-time main memory encryption architectures, attackers able to time
and repeat memory attacks on the target device pose a big challenge. This comes from
the fact that the device remains completely operational when the attacker gets hold of
the device. This allows the attacker to fully interact with the device, for instance, to
wake up a smartphone from suspension, possibly causing apps to fetch remote contents or
synchronize with a backend. Especially during this period of time, the attacker might be
able to successfully extract sensitive contents. It is thus especially hard to defend a system
against attackers with runtime memory encryption mechanisms. We further investigate
runtime memory encryption techniques in the presence of attackers acquiring privileges
on a system in the following chapter. We show at the example of cloud server technology
that even with transparent hardware-based runtime memory encryption support to protect
against compromised HVs and physical attackers, the extraction of main memory contents
is still possible.



CHAPTER 6
Main Memory Extraction from Encrypted Virtual Machines

In this chapter, we focus on Challenge 5, the memory extraction from platforms with
hardware extensions for runtime main memory encryption. We investigate the feasibility
of memory extraction at the example of AMD SEV [Advc; Kap17], a technology available
on the market and finding its adoption in cloud and virtual server environments. The
SEV hardware extension transparently encrypts main memory at runtime on a per-VM
granularity. With VM encryption, SEV not only aims to protect from physical attacks, but
also from privileged attackers controlling the HV, for example, a malicious administrator
or an attacker breaking out of the VM. This chapter demonstrates that sustaining the
confidentiality of main memory contents at all times against such privileged attackers poses
a severe challenge for the architectural design of runtime memory encryption mechanisms.
The contents are based on the work in [Mor18] and [Mor19]. In this chapter’s introduction,
we first relate the main memory encryption architectures we proposed in Chapter 5 to
software-level attacks and then to the AMD SEV technology. Afterwards, we highlight our
contributions and the organization of this chapter.

Our methods for main memory encryption presented in Chapter 5 are software implemen-
tations, which protect from the presented physical attacker reading main memory under
certain conditions. At the example of Freeze & Crypt, the memory contents of a container
are fully protected when the container is completely suspended. In case of TransCrypt,
confidentiality is achieved with a high probability: when the working set of unencrypted
pages contains no sensitive contents at the time of a reading memory attack. In case an
attacker not only uses physical interfaces to read out memory contents, but also to gain
privileges on the systems, the attacker can directly access the system’s memory contents
via the OS. With the security model of TransCrypt, being in charge of the OS or HV
would allow the attacker to decrypt and read all the VM’s main memory contents. In case
of Freeze & Crypt, the attacker cannot directly read out the contents of suspended and
thus encrypted containers as the decryption key is not present. However, the attacker can
read out memory contents of the containers that are not suspended. For these reasons, the
scope of our encryption architectures was to only protect against reading memory attacks,
see Chapter 2. Considering the example of common multi-tenant systems without memory
encryption, the confidentiality of sensitive VM data similarly depends on both the HV’s
integrity and on the operator’s trustworthiness. Unfortunately, this dependency is prone
to getting infringed by different attack vectors. Examples are attacks by other tenants
exploiting software-level vulnerabilities to escape their sandboxed VMs [Micc; VMw; Xen],
attackers with physical access conducting a writing memory attack to gain privileges, for
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example, via DMA [Bec05; Boi06; Dev09], or simply a malicious operator using the HV to
read the VM’s memory.

In contrast to our architectures, AMD SEV aims to protect the main memory of VMs at
all times from powerful adversaries. By implementing main memory encryption completely
in isolated hardware, AMD SEV not only protects the memory contents of VMs from
physical attackers without privileges on the system, but even from a HV-privileged, possibly
physical adversary. This allows to reliably protect the memory of VMs running in cloud
and virtual server environments from malicious administrators and provides customers the
certainty that their VMs’ memory contents are encrypted at all times. SEV transparently
encrypts all the system’s VMs using an SP, a microcontroller coprocessor based on the
ARM architecture, also referred to as Platform Security Processor (PSP). On current
AMD hardware, the SP is realized on a 32-bit Cortex-A5 core and makes use of TrustZone
[Kap16]. The SP uses individual, ephemeral keys for the encryption of each VM’s main
memory, provides the plaintext contents only to the CPU and ensures that the keys never
leave the SP. To attest tenants that their VMs’ memory is indeed encrypted, SEV includes
a cryptographic protocol to remotely verify VM encryption on an SEV-enabled platform.
In this chapter, we demonstrate that it is nevertheless possible for privileged adversaries to
extract memory contents in plaintext from VMs.

After presenting related work in Section 6.1 and background on AMD SEV and SLAT
in Section 6.2, the first main part of this chapter deals with Contribution 10. We present
our framework for main memory extraction from platforms backed with the AMD SEV
technology [Mor18]. We call the framework SEVered, enabling to extract the memory
contents of SEV-encrypted VMs running on top of a malicious HV. While SEVered allows
the extraction of data, it does not provide concepts for the targeted extraction of secrets. In
Section 6.4, the second part of this chapter, we focus on Contribution 11, based on [Mor19].
We present a method that extends our memory extraction framework with the capability
to specifically extract targeted secrets like TLS, SSH, and FDE keys, in short time instead
of extracting large amount of VM memory to find secrets. This not only reduces the time
required for the extraction, but also the overall incurred footprint of memory extraction.
We complete the chapter by presenting countermeasures in Section 6.5.

Contributions 10 and 11 resulted from joint work with Mathias Morbitzer and Julian
Horsch published in [Mor19; Mor18]. All authors collaborated in the different phases of
the work. While Mathias Morbitzer is the main contributor to the implementation and
evaluation in [Mor18], Mathias Morbitzer and Manuel Huber contributed as first authors
equally to the implementation and evaluation in [Mor19].

6.1 Related Work
In the following, we present related work on memory extraction and protection of encrypted
VMs. While there are established VMI frameworks [Lib; Rek; Theb] for data analysis and
extraction for unencrypted VMs, the systematic extraction of memory from encrypted VMs
has not been subject to extensive study. On AMD SEV platforms, the SP protects page
encryption and the corresponding keys from the HV. This makes it infeasible to directly
read memory contents from SEV-enabled VMs as long as the SP cannot be compromised
[CTS18]. However, Payer [Pay] early pointed out the missing integrity protection on AMD
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SEV platforms.
Buhren et al. presented an attack [Het17] to gain remote code execution with user

privileges on an SEV-enabled VM. Their approach exploits VM memory remapping to
modify the control flow of an SSH service. The first step is an off-line tracing of the system
call sequences performed during an SSH login on a comparable, unencrypted VM. The goal
of this analysis is to determine the behavior of a VM accessing the login information of the
SSH session, the credentials data structure. The next step is to wait for a victim user to
login to the SSH service. With the information gained in the off-line analysis, the authors
identify the memory page containing the user’s login information. They then try to illicitly
login by remapping the valid user’s credential data structure to the one the SSH service
creates during the illicit login attempt. This allows the attacker to re-use the victim user’s
login information. In their evaluation, they achieved a success rate of around 23%. The
low rate was primarily caused by the fact that the SSH service may store the credentials
data structure at different offsets within the page. As a condition for a successful attack,
the SSH service must have stored both the victim user’s and attacker’s credentials data
structures at the same page offset. Besides being quite invasive, this approach requires
access to a comparable VM, detailed analysis of the SSH service, user interaction, and
data incidentally be stored at specific offsets.

The attack described in [Du17] follows the same goal of gaining remote code execution
on an SEV-encrypted VM, but does not exploit remapping. Instead, the authors describe
a ciphertext block move attack, which also exploits the missing integrity protection. The
authors argue that it is possible to move memory contents in physical memory. This is
because the Host Physical Address (HPA) is not part of the AES-based encryption scheme
itself but is incorporated into the encryption result in a later step with a reversible physical
address-based tweak algorithm that uses static parameters. After reversing the tweak,
ciphertext can be moved and the tweak re-applied with the target HPA. The authors
describe a method that moves the pages to exploit an SSH process. Both the approaches
in [Het17] and [Du17] were, to the best of our knowledge, not confirmed on real SEV
hardware. The ciphertext block move attack could possibly be leveraged for the memory
extraction as an alternative to the remapping in SEVered. This could cause the service
returning responses to our requests with an unmodified HPA mapping, but instead with
different memory contents at the HPA.

Published after [Mor19; Mor18], the authors in [Li19] presented a method using un-
protected I/O operations as en- and decryption oracles. The HV is not only responsible
for a VM’s memory management, but also for its I/O operations. Because not all I/O
data can be end-to-end encrypted, the HV can directly read or write on unencrypted I/O
data in DMA buffers when entering and leaving the VM. An example is network packet
header information of SSH traffic. On the one hand, this allows a malicious HV to modify
incoming I/O data in DMA buffers before it is passed into the VM. On the other hand,
this alows allows crafting a decryption oracle. For this purpose, the authors combine page
tracking [Mor18] and the ciphertext block move attack [Du17]. Using page tracking, they
identify the encrypted page in the VM that contains the network packet that the VM
writes to the unprotected I/O buffer. In particular, they identify the encrypted network
packet header. Using the ciphertext block move attack, they move an arbitrary ciphertext
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block of the VM to overwrite the identified network packet header. This causes the moved
ciphertext block to appear to the HV in plaintext instead of the original network header.
In the last step, the HV restores the network header with proper values. Their paper
contains an extensive evaluation and discusses several mitigation approaches including
a temporary software solution. An advantage over SEVered is that their attack is more
stealthy, because no network traffic has to be crafted by the attacker, and because the
attack is not directly perceivable, as the network traffic is ultimately unmodified, unlike
in SEVered. A drawback of their approach is that they depend on traffic caused by SSH
connections from outside (such as through an administrator’s keystrokes), which allowed
to extract only 16 bytes per transmitted network packet.

Also after [Mor19; Mor18] was published, a new class of attacks against encrypted VMs,
called inference attacks, was introduced by [Wer19]. Inference attacks allow application
fingerprinting and, depending on available side channels, extracting sensitive memory as
well as injecting data into VMs. The authors combined system call monitoring of VMs
using hardware debug registers with monitoring the general purpose register contents on
SEV platforms. This allows to profile instructions and data accesses in the guest. On
SEV where, unlike in SEV Encrypted State (SEV-ES), the Virtual Machine Control Block
(VMCB) containing the general purpose registers is not encrypted upon a VM exit event,
inference attacks allow to read TLS traffic in plaintext or to inject attacker-controlled data
when a guest reads from disk. For the latter, this might be an attacker’s public key in
case of an SSH server. This can ultimately lead to unconstrained SSH access to the VM.
Because SEV-ES eliminates the general purpose register side channel, the described attacks
are rendered ineffective on platforms with the ES extension. Nevertheless, the authors
demonstrated that application fingerprinting is still possible. Leveraging Instruction-Based
Sampling (IBS) hardware features, they showed how to identify applications and their
version running in encrypted VMs. This method can, for instance, be leveraged as a
preliminary step towards a remote attack on application layer, or to undermine a VM’s
Address Space Layout Randomization (ASLR) protection, as the authors argue.

On the side of defenses, Fidelius [Wu18] is a software-based extension to SEV. This
extension is a privileged module separate from the HV that restricts the HV from accessing
specific critical resources with non-bypassable memory isolation, for instance, to prevent
replay attacks. The authors provide a VM lifecycle concept that describes how to start
Fidelius and provide tenants proof that the system runs Fidelius in addition to SEV. This
requires trusting the Fidelius module instead of the operating HV.

Intel announced the implementation of its own hardware-based memory encryption
approach called MKTME [Int]. According to our understanding of the specification,
MKTME in not designed to protect from a malicious or compromised HV, but only from
memory attacks from outside. The HV remains, for instance, capable of enabling or
disabling the encryption, or to handle the sharing of memory with other VMs.

6.2 Background on AMD SEV and SLAT
This section provides background information on AMD SEV and the SLAT concepts of
HVs.
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SEV
The AMD SEV technology allows for the transparent encryption of main memory of
individual VMs. SEV primarily targets server systems and builds on the AMD SME
technology, which provides transparent full main memory encryption. While the goal
of SME is to protect systems against physical attacks on the main memory, SEV tries
to additionally protect memory of individual VMs against attacks from other VMs and
from a malicious HV. The SEV encryption is executed by a hardware AES engine located
in the memory controller. The keys for the encryption are created and managed by an
additional component, the AMD SP. All keys are ephemeral and never exposed to software
on the main CPU. In contrast to SME, SEV uses different keys for each VM and for the
HV. Additionally, a VM running on an SEV-protected system can request encryption
and receive proof that its memory contents are being encrypted, which establishes trust
between its owner and the remote operator. While SME was first integrated into AMD’s
Ryzen CPUs, SEV was introduced onto the market with the EPYC processor family. The
mainline Linux kernel provides necessary software-level support for SEV.

The SEV-ES feature [Advc] complements SEV. While SEV encrypts the VM’s memory,
SEV-ES encrypts all information about the VM’s state that is not required by the HV
to work properly. The information contained in the VMCB is therefore split into an
unencrypted control area and an encrypted save area. The save area contains all VM
registers which are therefore protected from a malicious HV.

SLAT
AMD SEV integrates with the existing AMD hardware virtualization technologies marketed
as AMD-V. An integral component of hardware virtualization is an additional address
translation, often named nested paging or SLAT [Adva]. While non-virtualized systems
simply translate virtual addresses directly to physical addresses, a hardware-virtualized
system distinguishes between three different types of addresses. When the VM accesses a
Guest Virtual Address (GVA), the guest-controlled first level translation translates the
address to a Guest Physical Address (GPA). The GPA is then translated to a HPA using
the second-level translation controlled by the HV. SLAT is completely transparent to the
VM. This allows running multiple VMs that use the same GPA space while separating
them in physical memory. With SEV enabled, the first level translation from GVA to
GPA in the encrypted VM is non-accessible to the HV. But the HV is still responsible for
managing physical memory for its VMs and remains therefore able to restrict access and
change second-level mappings from GPAs to HPAs. Since there is no integrity protection in
SEV, the HV can use SLAT to transparently switch a GPA to HPA mapping to a different
HPA page belonging to the same VM.

6.3 Design and Implementation of the Memory Extraction Framework SEVered
We discussed that AMD SEV transparently encrypts the VMs’ memory on a per-page basis
using the SP, but misses to protect the integrity of encrypted memory. As the HV is in
charge of the SLAT on SEV platforms, i.e., of VMs’ second-level memory management, the
HV remains capable of modifying the GPA to HPA memory mappings of the VMs. This
allows a malicious HV to alter a VM’s memory layout and thereby influence the code the
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VM executes and the data it accesses. The missing integrity protection was also referred to
in [Pay] and exploited in [Het17] to obtain user privileges via an SSH service on an AMD
SEV-enabled VM.

With SEVered, we exploit the remapping capability to trick a service inside the VM
offering a resource, such as an HTML page or a file offered for download, into accessing
and responding a different area of VM memory. This allows the extraction of arbitrary
VM memory by repeatedly requesting the same resource from the service while remapping
its memory with the HV. According to the protection AMD SEV seeks to offer, we may
well assume the attacker to be in charge of the HV. This situation is exemplified with
Figure 6.1, where a target VM offers a resource to the outside via a remote service. The
illustration shows that the VM’s OS kernel is responsible for the GVA to GPA mappings,
which is due to memory encryption opaque to the HV. Further, the illustration depicts
the HV modify a second-level mapping in the HPA space to make the service deliberately
return a different resource.

SEVered neither requires physical access to the system, nor VMs colluding in the attack.
SEVered only requires a victim VM to offer a remote service, which is accessible to the
adversary, such as a web or SSH server. In virtual server and cloud environments, remote
communication services are typically available to the outside, and the services typically
provide resources for remote peers. We designed SEVered as a two-phased attack, starting
with a resource identification phase before the subsequent memory extraction phase. In
the following, we first describe the two phases and then present the implementation and
evaluation of our prototype.

6.3.1 Resource Identification Phase
The main challenge to be able to extract memory from an AMD SEV-protected VM is to
accurately identify the location of the resource that can be used for remapping in memory.
In particular, this means for the malicious HV to determine the GPA to HPA mappings
pointing to the physical memory pages containing the resource. As described, this resource
might be an HTML page offered by a webserver, which we can request from outside. As
AMD SEV is typically utilized in server environments, the resource identification should
even work reliably when the VM is under high load from remote peers accessing different
services and resources at the very same time the attack takes place.

SEVered iteratively determines the GPAs pointing to the resource in memory based on
a page tracking technique. We use the HV’s SLAT capability to invalidate all the PTEs
of the target VM right before we make a request to the target resource. This removes
the present flag from all the VM’s PTEs and causes a page fault in the HV for each
subsequently accessed page. During our immediately following request, the VM must
access the requested resource in memory to serve our request, and we will therefore receive
one or more page faults in the HV caused by the access to the requested resource. For each
faulting page access during our request, we re-validate the PTE and record the accessed
GPA in the HV as candidate for the target resource. Note that a resource can be contained
within a single page, but also spread over multiple pages, depending on the resource’s size.

Executing this step only once likely renders a large set of candidates reflecting all the
code pages the VM executes and all the data pages it accesses while processing our request.
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Figure 6.1: Modification of a VM’s memory memory mappings using a HV on an SEV-enabled
platform.

With a high number of concurrent accesses, for instance, caused by high load caused by
other remote peers, this set tends to be even larger and fuzzier. SEVered uses an iterative,
probabilistic approach in which we repeatedly invalidate all PTEs while making requests,
alternating between requesting the target resource and a different resource from the same
service. By properly intersecting and subtracting the sets of tracked page accesses, SEVered
converges after a varying number of iterations to an accurate set of highly likely candidates
that represent the target resource [Mor18].

Intersecting the set of candidates from all the tracking phases of our requests to the
target resource clearly reduces the set of likely candidates down to exactly those pages
accessed every time the VM serves the same request. The intersection clearly reduces the
fuzziness caused by other activities inside the VM. However, the set of likely candidates
still includes the numerous code and data page accesses made for serving a request in
general. This means that the set of likely candidates does not yet explicitly represent the
target resource. This is why we complement our requests to the target resource with the
requests to a different resource from the same service. In these cases, the set of tracked
pages is unlikely to contain the target resource when requesting a different resource, but
will contain all the pages accessed for serving a comparable request. This insight allows
filtering and further reducing the set of likely candidates, but turns our approach into a
probabilistic model.

The degree of unlikeliness that our request to a different resource involves a page access
to our target resource depends on the concurrent activities the VM executes. For instance,
when another remote peer requests the target resource while we track pages accesses for
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our request the different resource, we will find the target resource in the set of unlikely
candidates. The probability that this situation occurs likely increases with increasing load
on the target VM. However, by applying a flexible number of iterations until we reach a
threshold for the probability of having correctly identified the target resource in the set of
likely candidates, we minimize this uncertainty [Mor18]. In case SEVered fails to correctly
determine the GPA to HPA mapping representing the resource, the attack will fail. Instead
of remapping the memory of the target resource, we would unpredictably alter the VM’s
memory layout. This would likely introduce unexpected behavior inside the target VM,
for instance, causing the web service to crash. In such cases, the victim might notice the
attack, and the attacker must repeat or continue the resource identification procedure to
refine the set of likely candidates.

6.3.2 Data Extraction Phase
After determining the mapping of the resource in memory, the attacker can repeatedly
request the resource and use the HV to remap the resource to arbitrary VM memory
until the desired memory contents are extracted. After that, SEVered restores the original
mapping.

SEVered relies on the target resource to have a constant mapping inside the VM
throughout the identification and data extraction phases. Cases where the mapping
changes can be due to the OS performing memory maintenance operations, for instance,
when the VM runs out of memory and swaps contents. For this reason, a resource that
is sticky in memory represents a suitable target. An example is a file-backed resource,
such as an HTML-page, which is under normal conditions sticky, but when the VM is low
on memory, the page may be removed from memory and when it is accessed again, it is
re-read from disk while the OS kernel creates a new mapping.

During the data extraction phase, other peers requesting the same resource will also
receive the remapped memory contents. As this can cause attention, the HV can either
block requests to the VM in the meantime, choose a resource that is not frequently accessed,
or wait for an adequate point in time where the service is less frequently accessed.

Not only the throughput of the service, but also the size of the resource plays an
important factor for the throughput to be achieved during the extraction phase. The larger
a resource, the more memory pages can be remapped at a time and the less requests are
required to extract the desired amount of memory. The most suitable resources are covering
one or more full pages in memory, such as HTML pages or files offered for download.
Having only access to a small-sized resource, for instance, a data structure within a heap
page, SEVered may not be able to extract the full memory contents, but when swapping
mappings, only the respective parts of other pages. Furthermore, small sized-resources are
likely to contain other data that is accessed by the service or by other processes in the
VM, such that the re-mapping can corrupt the memory space of the VM. Note that the
attacker can disguise the attack pattern by making all requests from different, independent
peers during both the phases.
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6.3.3 Implementation and Evaluation
We implemented a prototype of SEVered on an AMD EPYC 7251 processor with SEV fully
enabled, running Debian Linux in version 4.13.0-rc1 and QEMU in version 2.9.50 with
the SEV patches provided by AMD [Advb]. We introduced SEVered’s code into KVM,
which we use as malicious HV. This included our page tracking mechanism, which we based
on KVM’s infrastructure for guest write access tracking [Gua], and the code for modifying
the guest VM’s memory mappings. Our host system works on a page size of 4 KB.

In our evaluation [Mor18], we used two web servers, Apache 2.4.25-3 and nginx
1.10.3-1, and one SSH server, OpenSSH 7.4. We introduced a noise model with different
noise levels representing the load on the target VM caused by concurrent accesses from the
outside to the VM’s different services. As a target resource, we used a webpage covering
exactly one file-backed page in memory. On each noise level, we executed a randomized
access pattern for the target resource and for different resources on the target service, as
well as for resources of the other services. Our evaluation considered noise levels from
20 to 50, representing the number of concurrent accesses per second from arbitrary peers
both during the identification and extraction phases. Our results show [Mor18] that the
set of likely candidates for the target resource converges even under high load after about
20 iterations for the web servers, which we made in around 20 seconds, to less than 5
highly likely candidates in our case. For the SSH server, we required more than a hundred
iterations at a noise level of 50, but on average only 46 iterations, took about 111 seconds
at a noise level of 40. For all noise levels, we had a high probability that other peers
request the same resource during our identification phase, which introduced noise into the
sets of unlikely candidates in our identification algorithm and thus affected the required
number of iterations to reach convergence. We recorded on average about 8,300 to nearly
16,000 different page accesses per request in case of the web servers and between 19,000
and 25,000 different page accesses for the SSH service.

These results show that SEVered is capable of efficiently eliminating candidates in the
large set of page accesses and of reliably determining the resource in memory. We were
always able to identify the target resource for all services. In case of the web servers,
we converged to two, respectively three candidates, to be highly likely to represent the
target resource. Among these candidates, the target resource was always the last tracked
candidate, making our attack very reliable. This behavior represents cases where a service
first opens a socket before finally transmitting the requested content. The code pages for
opening the socket are accessed on every request and thus also highly likely to be part of
the set of our highly likely candidates.

For our single page-sized resource, we achieved an extraction speed for the different
services between about 40 and 80 KB per second. In practice, the extraction speed both
depends on the size of the target resource determining the number of required iterations,
and on the response times of the service.

6.4 A Method for the Targeted Extraction of Secrets
Attackers are most likely interested in high-value resources, such as in TLS or SSH keys of
web or SSH servers, or in a VM’s FDE key. However, the encryption prevents the attacker
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from locating the VM’s most valuable resources in memory prior to extraction. Naive
extraction of VM memory using SEVered until finding secrets takes considerably more time
than a targeted extraction of the memory regions where specific secrets are located. In the
worst case, extracting those secrets requires a full dump of the VM’s memory. This can
take a significant amount of time, depending on the size of the attacker-controlled resource
and throughput of the service. For example, SEVered reached an extraction speed of about
80 KB/s with web servers providing a resource covering exactly one memory page. In this
scenario, it takes more than 7 hours and requires 524,288 requests to extract all memory
contents of a VM with 2 GB of main memory. During this time, other clients requesting the
same resource also receive arbitrary contents, making full memory extraction conspicuous.

In the following, we provide with Contribution 11 a method for the targeted extraction
of key material using SEVered. This method makes HVs capable of quickly locating and
extracting specific secrets from SEV-enabled VMs. Our method has two phases, the
observation and the retrieval phase. In the observation phase, we exploit the fact that the
HV is able to observe certain events triggered by VMs. These observable events can, for
instance, be page faults which the HV handles but also I/O events like network traffic or
disk writes. We observe and combine such events to identify a minimal set of VM memory
pages likely to contain the targeted secrets. Second, in the retrieval phase, we iteratively
extract and analyze the identified set of pages on the fly until we find the targeted secret.
For this phase, we use the SEVered attack, but could potentially leverage other vectors
allowing memory extraction from SEV-encrypted VMs. Like SEVered, our method neither
requires breaking SEV’s cryptographic primitives, nor control over the SP. Likewise, our
method requires control over the HV, i.e., a malicious administrator or a compromise of
the HV.

Our targeted extraction approach offers an inconspicuous, reliable and efficient method
to steal various secrets from encrypted VMs. We demonstrate the potential of our approach
by extracting TLS and SSH keys from a VM’s user space memory, and FDE keys stored in
the VM’s kernel space. We conduct our experiments on an SEV-enabled EPYC processor
running Apache and nginx web servers as well as the OpenSSH server. To show that
our approach can cope with real-world scenarios where VMs can be under varying levels
of load, we base our experiments on a load model in which multiple independent clients
concurrently access the VM’s services during our attack.

6.4.1 Design of the Method
Our concept for the targeted extraction of secrets from SEV-encrypted VMs has two phases:
In the first phase, we start by observing the page accesses of the targeted VM in the HV
until an event occurs which indicates the VM’s recent use of the targeted secret, e.g., a
TLS or SSH key. In the second phase, we search the VM’s memory for the secret by
systematically extracting and analyzing the set of observed page accesses. This section
describes both phases in detail.

6.4.1.1 Observation Phase
The goal of the observation phase is to narrow down the set of VM memory pages possibly
containing the targeted secret. We start the phase at an arbitrary point in time by tracking
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Figure 6.2: A HV first observing an activity inside an encrypted VM and then searching for
the targeted secret. The vertical lines crossing the VM boundary into the HV box depict the
events observable outside the VM.

the VM’s page accesses in the HV until observing the end of a particular activity. This
activity must make use of the targeted secret at least once. The start of the activity,
denoted by ActivityStart, does not need to be observable by the HV. In contrast, the end of
an activity, called ActivityEnd, must be a HV-observable event. This event indicates that
the VM recently used the secret one or multiple times, denoted by Use1..Usen. As soon
as we observe ActivityEnd, we stop tracking, denoted by TrackingEnd. We do not actively
attempt to trigger ActivityStart in order to interfere as little as possible.

To start page access tracking, denoted by TrackingStart, the HV invalidates all the target
VM’s GPA to HPA mappings. As a consequence, each of the VM’s page accesses causes an
observable event, a SLAT page fault. For each SLAT page fault, we record the GPA as well
as the time and type of the page access (read, write, execute) in a list and re-validate the
mapping. The re-validation clears the page from tracking. This means that each accessed
page triggers exactly one page fault and that we track the page exactly once, namely the
first time it is accessed after TrackingStart. The tracking enforces that accesses to the secret
will inevitably be recorded. Note that the secret can be contained in a single page or span
over multiple pages and can have multiple occurrences on different pages. An example for
an activity is a TLS handshake as part of a request to a web server. The server uses the
targeted secret, in this case its TLS private key, to authenticate itself to a client during
the handshake. The HV can observe ActivityEnd by monitoring network traffic, waiting for
the packet the VM sends to complete the handshake.

Figure 6.2 depicts an attack scenario with the target VM and the HV in the upper and
lower box, respectively. The illustration shows the start and end of a VM’s activity along
with events triggered by the activity, such as Use1..Usen. The vertical arrows crossing the
upper and lower box represent the events observable from the HV. These are, for instance,
SLAT page faults, network packets or disk I/O. Some of the vertical arrows do not cross
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the boundary of the VM. These are events not observable by the HV, for example, page
faults handled by the VM or possibly ActivityStart. Some of the events may be related
to concurrent activities, and multiple other activities may potentially make use of the
secret as well, cases which are not depicted in Figure 6.2. The illustration emphasizes that
TrackingEnd concludes the observation phase right after ActivityEnd.

When starting tracking between Usen and ActivityEnd, we do not observe any of the page
accesses to the secret. This means that we are unable to find the secret in the later search
phase, requiring to repeat the attack. This is why we call the timespan between Usen and
ActivityEnd the critical window. The critical window size is an important factor regarding
the quality of the attack. The smaller the critical window the higher the probability that
the attack succeeds. Further, a small critical window means quick termination of page
access tracking after Usen. This causes Usen to be tracked at the very end of the phase,
and likely only a few more pages to be tracked after Usen. We evaluate the critical window
size for different scenarios with various levels of load in Section 6.4.3.

It is not necessary to synchronize the start of the observation phase with a possibly non-
observable ActivityStart. If TrackingStart takes place long before ActivityStart, the observation
phase might take longer, but since every page is tracked only once, this does not lead to
a persistent performance impact. On the other hand, if TrackingStart takes place after
ActivityStart (but not inside the critical window), the tracking period will be shorter and
likely output less tracked page accesses.

To conclude, the result of the observation phase is a list of pages in which the page
with the targeted secret is contained at least once as long as TrackingStart is not inside the
critical window. The set of pages in the list is significantly smaller than the whole set of
the VM’s pages.

6.4.1.2 Search Phase
The goal of the search phase is to extract the targeted secret from the VM’s memory
as quickly as possible, i.e., with a minimal number of memory requests. The input to
the search phase is the list of tracked pages acquired during the observation phase. It
is unknown which of the page accesses in the list correspond to Use1..Usen. The naive
extraction of all pages in the list would still require a fairly high number of memory requests
to find the secret. In the following, we describe our approach for a more efficient extraction.

The search phase starts right after TrackingEnd, as depicted at the bottom of Figure 6.2.
We know that ActivityEnd indicates recent use of the secret. This means that Usen must
have occurred shortly before TrackingEnd. For this reason, we consecutively extract the
tracked pages in backward order until we find the secret. We thus start the extraction with
the most recently tracked pages. This backward search is shown by the arrow directed to
the left at the bottom of Figure 6.2. We analyze extracted memory chunks for the presence
of the secret on the fly to be able to terminate the extraction procedure as early as possible.
On the fly means we search the latest extracted memory chunk for the secret while we
request the next chunk. When finding the secret in the chunk, we terminate the search
phase, otherwise we request another chunk. The actual analysis is specific to the targeted
secret and described in Section 6.4.2 for different secrets.

We propose an optional preprocessing step before the extraction to further minimize
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the number of memory requests. Preprocessing filters page accesses from the list, which
cannot represent a use of the secret, and prioritizes accesses that are likely to represent
a use. The ability to filter and prioritize depends on the use case, in particular, on the
specific activity and secret. In most cases, the secret is a data structure on a page in
non-executable memory, allowing to filter all execute-accesses from our list. The page is
likely to be read, but may also be written during an activity. Depending on the use case,
it is also possible that the secret resides in a read-only area, or represents confidential
code. The information about this can often be acquired prior to the attack. A further
possibility for preprocessing is to conduct a representative offline access pattern analysis
for the activity to observe the expected timing of Use1..Usen. An offline analysis is more
representative the more the hardware platform and the software configuration inside the
VM resemble the attack target. With the gained timing information, an attacker can
further filter or re-prioritize pages in the list.

Extracting the secret from the encrypted VM using SEVered requires the secret to remain
at the same location during the attack. This means that the secret must not be erased or
moved to a different HPA by the VM’s kernel before the search phase terminates. We show
that the secrets we chose for extraction always fulfilled this requirement and investigate
preprocessing possibilities as part of our evaluation in Section 6.4.3.

6.4.2 Key Extraction Scenarios
In the following, we describe the application of our concept for the extraction of targeted
secrets at the example of private keys and symmetric FDE keys. We focus on the aspects
from Section 6.4.1 that are specific for the type of secret. These aspects are the activities
with their events and the on the fly analysis.

6.4.2.1 Private Keys
For the extraction of private keys, we focus on the example of web server TLS keys. These
keys are resources located in a VM’s user space and highly sensitive. Web servers use these
keys to establish authenticated TLS channels with clients. An attacker can make use of a
stolen private key for identity spoofing and deceive clients for fraud or data exfiltration.

Events. ActivityStart is the start of a TLS handshake. The handshake can be part of an
HTTPS request or be directly triggered by a client. Usei represents a server’s use of
the TLS key for its authentication during the handshake. The exact moment of use
depends on the key exchange method. For instance, in case of an Elliptic-Curve Diffie-
Hellman Ephemeral (ECDHE)-based key exchange algorithm, this is the moment
of signing curve parameters. For an RSA-based key exchange, this moment is the
decryption of the premaster secret encrypted by the client with the server’s public
key. ActivityEnd happens when the VM sends the client a specific network packet
during the handshake. We observe these packets with network monitoring tools. The
change cipher spec packet is an indicator independent of the specific key exchange
algorithm. Depending on the algorithm, packets sent earlier may be usable indicators
as well. Note that we can also observe or even trigger ActivityStart ourselves in this
scenario. We discuss this aspect in Section 6.4.4.
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On the fly analysis. The public key and its length are part of the server’s certificate and
known in advance. When using RSA, the private components of the key are the
factors p or q of known length dividing the modulus of the public key. For every
extraction request we make, we traverse the extracted chunk of memory and check if
it contains a contiguous bit sequence that divides the modulus without remainder. If
so, we found either p or q and can instantly determine the other factor. Otherwise,
we request the next chunk of memory. Analyzing a chunk this way usually takes less
time than memory extraction with SEVered, see Section 6.4.3.

The same approach can be used for extracting SSH private keys. In the SSH scenario, the
SSH server must also use its private key for authentication during the SSH handshake
when establishing a session. We evaluate the extraction of TLS and SSH keys using the
Apache, nginx and OpenSSH servers in Section 6.4.3.

6.4.2.2 FDE Keys
The normal approach when using SEV is to first perform an attestation of the platform.
The attestation proves to the tenant that the VM has been started with SEV enabled.
After a successful attestation, the tenant provides the FDE key in encrypted form to the
VM [Advc]. This protects the key from eavesdropping adversaries in the network and from
being read by the HV. Thereafter, the FDE key is present in the VM’s memory and can
be extracted with our approach. The FDE key is particularly important, because it allows
attackers to decrypt the VM’s persistent storage gaining access to further valuable secrets.

Events. The corresponding activity is a disk I/O operation. The trigger for ActivityStart is
not observable by the HV and unlike in the TLS key scenario, ActivityStart can have
many different triggers. The trigger can, for instance, be data uploaded to a service,
a request to a web server being logged, or an operation of the VM’s OS involving disk
I/O. The event Usei is the VM’s use of the FDE key to en- or decrypt disk content
to be read or written. We observe ActivityEnd by monitoring the VM’s disk image
file in the HV.

On the fly analysis. We can be sure that we found the secret as soon as we are able to
successfully decrypt the VM’s persistent storage. Traversing extracted memory chunks
and naively trying each possible sequence as key leads to an inefficient approach. Our
goal is thus to first identify key candidates in extracted memory chunks. For this
purpose, we search the extracted memory for characteristics specific to FDE keys
based on the following two criteria.
First, the FDE key is stored in the VM’s kernel in a specific data structure. This
structure has various fields, some of which must have certain value ranges, for
instance, kernel addresses pointing to other kernel objects. Our first criterion for a
key candidate is thus the identification of possible FDE key structures in extracted
memory chunks.
Our second criterion is based on the statistical properties of the FDE key. Because
FDE is usually AES-based, the kernel derives round keys from the FDE key and
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keeps them in AES key schedules in memory. The round keys have common statistical
properties that can be identified with linear complexity. The first-round key is the
AES key itself. We use the tool aeskeyfind [Pri] to search memory chunks for AES
key schedules. Note that candidates that turn out to be false positives are possibly
symmetric keys used for other purposes and might also be valuable secrets. The
traversal of memory chunks based on these two criteria takes considerably less time
than the extraction of memory with SEVered, see Section 6.4.3.

We evaluate the FDE key extraction scenario as part of the following section.

6.4.3 Implementation and Evaluation
In the following, we first define performance indicators and then present our prototype
and test setup. Based on that, we evaluate the extraction of TLS, FDE and SSH keys, as
discussed in Section 6.4.2. In the final part of our evaluation, we present strategies for
optimization with preprocessing and summarize our results.

6.4.3.1 Performance Indicators
The key factors we investigate are the success probability and the attack time.

Success Probability
As discussed in Section 6.4.1, the critical window size is the factor determining the success
probability of our attack. The smaller the critical window, the smaller the probability
that the observation phase ends without having tracked the access to the secret. In our
evaluation, we present the success probability for the tested scenarios and provide an upper
bound on the size of the critical window. We call the upper bound the reaction time of
our attack. The reaction time is the sum of the critical window (the time frame between
Usen and ActivityEnd) and the time our prototype requires to detect ActivityEnd and stop
tracking (the time frame between ActivityEnd and TrackingEnd).

Attack Time
We divide the total attack time of a full attack into its three components: the time
required to setup SEVered prior to extraction, the duration of the observation phase and
the duration of the search phase.
Setup of SEVered. The time required to setup SEVered is evaluated in [Mor18] and is thus

not subject of our evaluation. Setting up SEVered usually takes less than 20 seconds,
depending on the load of the VM. After setting up SEVered once, we can arbitrarily
extract the victim VM’s memory and repeat our attack when necessary.

Observation phase. The main factor for the duration of the observation phase is the
frequency of the targeted activity. For instance, a web server under high load will
often make TLS handshakes while SSH logins generally occur less frequently.

Search phase. The duration of the search phase is mainly determined by the amount of
memory that has to be extracted until the secret is found. This is driven by the
number of pages we track within the reaction time frame. The reaction time not only
provides an upper bound on the critical window, but also serves as indicator for the
expected number of tracked pages.
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In our evaluation, we investigate the number of pages that have to be extracted, and the
duration of the observation and search phase. We call the combined duration of both
phases the attack time.

6.4.3.2 Prototype and Test Setup
We implemented our prototype including the functionality required for SEVered based
on KVM. To start and stop page tracking and change mappings, we extended the KVM
API with additional calls, in particular, with KVM system ioctls [Thea]. This allows us to
launch the attack from user space by communicating with the KVM kernel module. For
page access tracking in KVM we used the technique from [Gua; Mor18]. While tracking
is active, we record all tracked pages in a list in kernel memory. Upon the call to stop
tracking, KVM returns the list of tracked pages to user space.

We ran KVM on Debian with a page size of 4 KB using an SEV-enabled Linux kernel
in version 4.18.13 and QEMU 3.0.50. We used an AMD EPYC 7251 processor with
full support for SEV. We created a victim VM with 2 GB of memory and one of the four
available CPU cores. We deployed Apache 2.4.25-3 and nginx 1.10.3-1 for the TLS
key scenarios, and OpenSSH 7.4 for the SSH scenario in the VM. The FDE scenario is
independent of a service, because the FDE key is a kernel resource exclusively used by
the OS. We deployed eleven different web resources on each web server. We used 4096-bit
private keys for TLS and SSH and a 256-bit symmetric FDE key for storage encryption
with AES-XTS. As target for memory extraction with SEVered, we used a page-sized web
resource served by nginx.

To capture the handshake messages for the TLS and SSH key scenarios, we used tcpdump
with libpcap, a library for network packet capturing. For TLS, we captured the change
cipher spec packet the services send to conclude a TLS handshake (filter tcp[37] == 0x04).
For SSH, we captured the new keys message, which concludes the SSH handshake (filter
tcp[37] == 0x15). We patched libpcap to execute a system call for TrackingStart the
moment packet capturing begins, and a call for TrackingEnd the moment the filtered packet
is captured. This tight interconnection minimizes the reaction time. To monitor disk
I/O events of the VM in the FDE key scenario, we used the tool inotifywait to observe
inotify events. In particular, the notify option allows to detect disk writes on the VM’s
disk image file. We modified inotifywait to issue the calls for TrackingStart right before
starting to watch events and for TrackingEnd as soon as an inotify event is identified.

In real-world scenarios, a tenant’s VM can show higher or less activity depending on
the load caused by its clients. To simulate this behavior, we executed all our tests based
on a load model with various load levels, representing low to high load. In our model, a
load level of nine, for instance, refers to nine requests per second to the VM. We randomly
alternate between the services for each request. With a probability of 300

301 , we make a
request to one of the resources offered by one of the two web servers with equal probability.
With a probability of 1

301 , we initiate an SSH login with a user remaining logged in for
two minutes. Compared to the number of web server requests, we execute only few SSH
logins, as these usually happen less frequently than requests to a web server. The average
duration of the observation phase thus lies in the range of a few seconds to a few hundreds
of milliseconds for the web servers and in the range of a few minutes to tens of seconds for
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Figure 6.3: Distribution of the reaction times for all scenarios and load levels. The X-axes
show discretized time steps of one millisecond while the Y-axes are normalized to one.

SSH. Note that sshd forks a new process for each new SSH connection. When the session
terminates, the process exits and purges its SSH key. This means that the search time
must be less than two minutes to extract the SSH key before the forked process exits.

We conducted 2,000 independent iterations of our attack for each of the four scenarios
on four load levels: level 1, 9, 17, and 25. We started our attacks at random points in time
while the VM processed requests according to the specific load level of our model. As an
initial preprocessing step before the search phase, we filtered all execute-accesses. In our
scenarios, all secrets are data structures located on non-executable memory pages.

6.4.3.3 Success Probability and Reaction Time
In this part, we investigate the success probability and reaction times. The four diagrams
in Figure 6.3 illustrate the distribution of measured reaction times for each scenario. The
four graphs in each diagram represent the four load levels. The X-axes are discretized
in steps of one millisecond, and the Y-axes are normalized to one. The vertical dashed
lines show the median reaction times over all repetitions for each level, providing an upper
bound on the median critical window size.

The results for Apache and nginx TLS handshakes are depicted in the top row of Figure 6.3.
Both diagrams show a clear peak for the two lower load levels, indicating a reliable reaction
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time when the VM is not under high load. For the lowest load level, we can even observe
that the reaction time never exceeded 21 milliseconds with Apache and 22 milliseconds
with nginx. For higher load levels, more concurrent activities are executed by the VM,
and the measurements are more dispersed over time. Consequently, it becomes likely that
more pages have to be extracted in the search phase until the secret is found. This led to a
maximum reaction time of around 50 milliseconds for both nginx and Apache in rare cases.
However, the median reaction time increased to about only 20 milliseconds for nginx, and
to about 16 milliseconds for Apache. As the reaction time is an upper bound for the critical
window, the latter is smaller than tens of milliseconds for both Apache and nginx. We
achieved a very high success rate of around 99.99% for both web servers on all load levels,
meaning that we started tracking inside the critical window only in a few cases. The high
success rate indicates that the upper bound we measured is a very conservative estimate.
This comes from the fact that our prototype requires some time to actually stop tracking
and (especially for the TLS scenarios) to recognize ActivityEnd. Note that if TrackingStart
occurs inside the critical window of a TLS handshake, we still have the chance to observe
Usei of other handshakes being concurrently processed on higher load levels where lots of
handshakes are made each second. The critical window can thus be even smaller on higher
load levels.

The bottom left diagram in Figure 6.3 for disk write events shows that our implementation
achieved an extremely fast reaction time of one millisecond in the median for each load
level. Only in a few cases, we encountered a slightly higher reaction time. In contrast
to the TLS key scenarios, the behavior was generally independent of the load level. In
the TLS key scenarios, the network packets must first be sent by the VM to the network
interface, on which the HV executes more time-consuming network packet capturing. The
interception of disk write events is less complex and introduces less delay. The success
rate for FDE key extraction was about 99.99%, indicating a very small critical window, as
confirmed by the upper bound in the graph.

The bottom right diagram in Figure 6.3 shows that the reaction time for SSH handshakes
was four milliseconds in the median and mostly independent of the load level. We
encountered only a few samples going up to about 30 milliseconds. As for the TLS scenario,
this indicates a small upper bound on the critical window and a possibly quick extraction.
Accordingly, our attack had a success rate of 99.98%.

6.4.3.4 Attack Time
This part investigates the attack times for each scenario. Table 6.1 summarizes the relevant
statistics for the median number of pages to be extracted and the median attack time
for every scenario and load level. For both Apache and nginx, the median number of
pages to be extracted until finding the TLS key increased between low and high load levels.
We measured an increase of the median from 102 to 301 pages (i.e., 408 to 1,204 KB of
memory) for nginx, and from 128 to 171 pages (i.e., 512 to 684 KB of memory) for Apache.
Additionally, the Median Absolute Deviation (MAD) increased from 5 to 160 from low
to high load for nginx, respectively from 21 to 109 for Apache. The median number of
extracted pages was particularly small compared to the median number of total tracked
pages, which was for both cases between 1,691 and 2,085 (not listed in Table 6.1). The
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Table 6.1: Statistics for the median length of the observation and search phases, and for
the median number of extracted pages with the median absolute deviation for the different
scenarios and load levels.

Use
Case

Load
Level

Median
Page No

MAD
Page No

Median Time
Observ. Search

TLS
(nginx)

1 102 5 1.46s 17.72s
9 116 19 0.37s 15.48s
17 165 69 0.32s 18.61s
25 301 160 0.31s 32.71s

TLS
(Apache)

1 128 21 1.42s 21.90s
9 137 40 0.37s 17.95s
17 154 80 0.33s 17.44s
25 171 109 0.32s 18.65s

FDE

1 70 8 2.43s 12.24s
9 71 9 2.15s 9.34s
17 70 8 2.08s 7.84s
25 69 9 2.04s 7.37s

SSH

1 7 1 193.36s 1.33s
9 7 1 27.23s 0.97s
17 7 1 16.19s 0.83s
25 7 1 14.41s 0.80s

median duration of the search phase was between about 15.5 and 32.7 seconds for nginx,
and between about 17.5 and 22 seconds for Apache. We measured an average extraction
time of around 123 milliseconds for a single page with our SEVered implementation and
setup. We measured this time to fluctuate quite frequently in the scale of a few tens
of milliseconds. This is why a higher median number of extracted pages did not affect
the duration of the search phase in a clearly linear way. The on the fly-analysis for a
single memory page took about 50 milliseconds. This means that the page extraction
performance is the limiting factor of our attack. The higher the load, the less time we
required for the observation phase, which ranged from 1.46 to 0.31 seconds in case of nginx,
for instance. This is because the probability of quickly observing ActivityEnd increases with
a high frequency of requests. To summarize, we measured an attack time between about
16 and 33 seconds in the median for the web services.

For the FDE key scenario, the amount of pages that had to be extracted was very small
and mostly independent of the load level. Accordingly, the median number of extracted
pages was between 69 and 71 for the different load levels (i.e., 276 to 284 KB of memory)
As in the TLS key scenario, this number is small compared to the median number of total
tracked pages, which was between 2,526 and 3,433. The overall duration of the search
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phase was between about 7.4 and 12.3 seconds. The on the fly analysis for a single memory
page took only about 2 milliseconds on average. We mostly identified the key as part of the
AES key schedule, and only occasionally by the kernel data structure, see Section 6.4.2. We
measured a slightly decreasing observation time from 2.43 to 2.04 seconds. This indicates
that the VM’s OS is regularly writing pages to disk, in our case mostly regardless of the
load level. In sum, the attack time was between less than 9.5 and 14.7 seconds in the
median.

In the SSH scenario, we merely had to extract seven pages in the median with a MAD
of one. This is a particularly small number, especially compared to the median number
of 10,102 to 11,094 total tracked pages, omitted from Table 6.1. We measured a median
duration of the search phase of about 0.80 to 1.33 seconds. This means that the attack
works reliably assuming that the SSH connection lasts at least 1.33 seconds. Similar to the
TLS key scenario, the on-the-fly analysis of a memory page took about 50 milliseconds.
With our load model, the observation time of about 14 to 194 seconds was comparably
high for the SSH scenario. This is another reason why the number of extracted pages was
especially low for the SSH case. In long observation phases, we already tracked a high
number of pages before Usen, making it very unlikely that many pages are tracked within
the reaction time frame at the end of the activity.

6.4.3.5 Optimization with Preprocessing
As discussed in Section 6.4.1, preprocessing with prioritization and filtering is an optional
optimization before the search phase. Preprocessing usually requires a priori knowledge
about the use case and behavior of the VM, which may not always be available. This
behavior may also vary between different hard- and software configurations. For our
evaluation, we already used the knowledge that all secrets are data structures located on
non-executable memory pages. This allowed us to filter execute-accesses from the list of
tracked pages. The amount of pages to be extracted was thereby reduced by about 22% on
average over all samples.

Usen was a read-access in 96% of our attacks for the TLS handshakes and in 93% a
write-access for the SSH handshakes. For disk write events, Usen was always a read-access.
Whether the page containing the secret is tracked as read- or write-access depends on the
other data located within the page. The type of access thus cannot be predetermined with
certainty. Filtering of write-accesses could significantly reduce the attack time, but could
also reduce the success probability. Also, prioritizing the extraction of read-accesses over
write-accesses in the list would boost the attack in most cases, but could also introduce
costly outliers.

Another possibility for prioritization is knowledge about the reaction time, as shown in
Figure 6.3. The graphs for the two web server scenarios show that the reaction time was
rarely less than eight milliseconds before TrackingEnd. Re-arranging these early accesses
further back in the list of tracked pages can thus reduce the amount of pages to be extracted
until the secret is found. The same observation can be made for the SSH scenario, where
Usen never happened less than three milliseconds before TrackingEnd. However, in this
case the number of pages to be extracted is already so small that further optimization may
not be required.
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The reaction times in Figure 6.3 can also help to determine a good criterion for restarting
the attack when a secret has not been found after a certain number of extracted pages.
For instance, page accesses tracked later than 30 milliseconds before TrackingEnd are likely
exceeding the reaction time frame and thus unlikely to be a candidate for Usen. This can
be used as a criterion to detect that TrackingStart was inside the critical window and to
restart the attack from the observation phase.

6.4.3.6 Summary
For all evaluated scenarios, both performance indicators are very promising. We found that
the critical window was very small in all cases. TrackingStart was thus inside the critical
window only in a few cases, resulting in a very high success probability throughout all
scenarios and load levels. The most important factor for the attack time, the duration of
the search phase, was also very small. Extracting all memory from our VM with 2 GB of
main memory would take more than 7 hours with SEVered [Mor18]. Assuming that a key
can reside not only on one but on several pages, the naive extraction would require several
hours on average to find the key. Our approach can extract secrets faster by several orders
of magnitude.

In cases when TrackingStart is inside the critical window, the attack fails and we extract
all tracked pages without finding the secret. In such cases, we have to repeat both the
observation and search phase. To avoid a lengthy extraction of all tracked pages in
unsuccessful attempts, the search can be canceled early when the likelihood of finding the
secret drops, according to our evaluated distribution. For the following search phase, all
pages extracted in the previous attempts can then be excluded from extraction given that
the secret does not change its location. In sum, our results have shown that our prototype
is able to quickly and reliably extract different sensitive secrets and performs well even
under high load.

6.4.4 Discussion
In the following, we discuss further important aspects of our attack:

Overhead
The overhead caused by the tracking itself is limited, because each accessed page only
triggers a SLAT page fault once. We neither detected perceivable effects like delays in
response times in the HV nor inside the VM. The host system and VM remained stable
even on the highest load level. We measured only a small additional delay of web and SSH
server responses when tracking was active.

Low Memory
When the VM is low on memory, its kernel might try to free memory by swapping out
pages, by unmapping file-backed pages, or by killing processes. A page containing the
secret might then be re-used by another process or by the kernel during our attack. In
such a case, we are still able to extract the memory contents of the page, but its contents
might have already been overwritten. We did not encounter such cases in our tests.
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Triggering Activities
In our concept, we start tracking at an undefined point in time and do not actively trigger
activities to interfere as little as possible with the VM’s normal operation. Our concept
worked well in our evaluated scenarios, because we extracted frequently used secrets. In
the SSH scenario, however, the key may be used rather infrequently. This is, for instance,
the case when an administrator logs in to a web server for maintenance only from time to
time. When a secret is rarely used but the attacker requires the observation phase to be as
short as possible, the attacker can consider the active triggering of an activity. In the SSH
scenario, an attacker can actively start a login procedure without a user account. SSH
servers use their key for server authentication and wait for the user to authenticate with a
default timeout of two minutes. An attacker can thus initiate a login and extract the SSH
key before the session timeout without waiting for a legitimate user to login. Note that
active triggering might increase the probability of the attack being detected and might not
always be possible.

Portability
We expect that our approach can be transferred to other scenarios and configurations
than evaluated. Our approach does not depend on specific service or library versions.
Furthermore, our approach is not tied to a specific SEV processor and mostly independent
of the VM’s performance and OS. Our approach can also be leveraged to extract other
types of memory, such as confidential code, documents or images. The performance of our
approach can differ on systems with other hard- and software configurations. However, we
expect the performance to vary only slightly assuming that TrackingEnd can be observed
quickly. We ran several tests in which we assigned our VM more memory, multiple cores
and in which we configured the web servers to utilize a high number of worker processes.
The performance indicators remained coherent with our evaluation results in all runs.

6.5 Countermeasures
A countermeasure against memory extraction from encrypted VMs is to prevent the
SEVered attack. While several software-based countermeasures against SEVered could
be deployed [Mor18], these cannot reliably protect from SEVered. This implies that only
a modification of AMD SEV itself can prevent attacks exploiting the missing integrity
protection. An effective solution would be to complement AMD SEV with a full-featured
guest memory page integrity and freshness hardware protection comparable to Intel SGX.
This works for Intel SGX, because the computation model is designed to protect the
memory of enclaves where comparably small amounts of privileged code are executed
on demand, compared to full-blown VMs on AMD SEV platforms. For AMD SEV, a
relatively high silicon cost would have to be expected to realize a similar protection. A
low-complexity yet efficient modification to prevent the remapping could be to combine
the hash of a memory page’s content with the guest-assigned GPA and a nonce into the
en-/decryption. The nonce ensures the freshness preventing old pages for the same GPA
to be replayed into guest memory. The hash and GPA combination bind the page content
to the actual mapping preventing the remapping with other pages.

A further aspect is that our attack relies on targeted secrets to remain at their memory
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location during our attack. Purging secrets in memory after use would cause the search
phase to fail. We found TLS and FDE keys to always remain at their memory location
in our tests. However, in case of SSH keys, the processes forked by the SSH daemon for
initiating new SSH connections purge their private key when a session terminates and then
exit. This means that an SSH session must remain open until the secret is extracted. This,
for instance, requires a user to remain logged in or a login attempt to remain pending over
the time of the search phase, which is less than 1.5 seconds in our case.

Systematically purging all sorts of secrets from main memory after use would require
adapting existing software. For some secrets, purging might not be feasible. An example
is the FDE key, which is constantly required for disk I/O. A more promising solution is
to relocate the most valuable secrets from main memory to dedicated hardware. Since
SEVered can only extract contents from main memory, storing secrets in hardware would
prevent them from being extracted by a malicious HV. This can, for example, be realized
using HSMs. Additionally, hardware-based disk encryption can be used to protect the FDE
key.

More generally, attacks like SEVered exploit side-channels that are very hard to close.
SEVered exploits the page-fault side-channel, which exists for the HV to manage guest
memory. [Li19] uses I/O side-channels, whereas [Wer19] leverages the general purpose
registers and the performance measuring subsystem, i.e., IBS to deduct information from
guest VMs. SEV-ES closes the general purpose register side-channel by encrypting the
VMCB where general purpose registers are stored upon a VM exit. Making SEVered harder
to apply could also be achieved by eliminating the page offset and access type information
upon page fault, for instance, which is information the HV not necessarily requires. Future
SEV generations become more resilient against attacks when further reducing side-channels.
A possible step would be to disable features providing side-channels such as IBS.

To prevent memory moving attacks, a design with authenticated encryption [Li19] is
required, or the introduction of stronger tweak functions that may vary between system
starts as a mitigation. This is a point that AMD plans to address in future versions
[Li19]. Defeating the I/O side-channel with a practical solution is a still unsolved problem.
A possible solution was raised in [Li19] where the HV would never be able to observe
unencrypted I/O data transitioning into and out of the HV. In a nutshell, the solution
introduces a trusted third party as an I/O proxy and modifies SEV’s I/O model. Using
the SEV APIs, a shared key between the proxy and VM, which the HV cannot learn,
is negotiated for I/O data encryption. This key can be used to securely pass I/O data
between VM and proxy, more particularly between SP and proxy, where the keys are
stored. For the example of network I/O, the HV would no longer be able to read headers
of in- or outgoing network packets, as these would be encrypted with the key only known
to proxy and VM. The HV is responsible for I/O packet forwarding and requesting their
mapping into the VM using the SP for en-/decryption. This approach, however, comes
with extremely high costs in performance and applicability.

6.6 Summary
In this chapter on Challenge 5, we first presented our framework for main memory extraction
on SEV-encrypted VMs as part of Contribution 10. Our results demonstrate that attacks
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leveraging our framework, which we called SEVered, are feasible in real scenarios and that
the full memory of an encrypted VM can be extracted in reasonable time. Important
aspects are the stickiness of the target resource’s mapping in the target VM and the
reliability with which the resource can be identified by the HV. As long as the resource
mapping remains constant, the resource can be repeatedly requested from outside and
swapped with the VM’s other memory contents. The goal can either be the extraction of
the full VM’s contents, or when specific secrets like a TLS key are targeted, the extraction
of memory until the desired resource is found. Our results demonstrate that SEVered
reliably works with different services even when the targeted VM is under high load from
other remote peers. Higher load complicates the accurate identification of the GPAs
representing the resource in the VM, taking SEVered more time for its identification phase.
SEVered does not rely on a specific service or resource, only on a resource the service offers
to the outside and keeps constantly mapped in memory throughout the extraction. The
current prototype is capable of extracting arbitrary memory of the targeted VMs at a
scale of tens of kilobytes per second, but the design allows for a higher scale depending
on the size of the resource used as basis for the attack and targeted service’s throughput.
However, SEVered is limited to extracting the memory of a single target VM. Requesting
another VM’s memory would expose scrambled data only, because the SP uses different,
independent keys for each VM. This means that for extracting memory from different VMs,
SEVered needs to be ran against each VM individually.

In the next step, we extended our framework with Contribution 11 with a method
for the efficient, targeted extraction of secrets from SEV-encrypted VMs. Compared to
time-consuming, bare memory extraction with SEVered, our two-phased method for the
efficient extraction of secrets unobtrusively and quickly exfiltrates secrets with a high
success probability. In the first phase, we track the page accesses of an encrypted VM
until detecting an event indicating that the VM recently accessed the specific secret. In
the second phase, we leverage SEVered to systematically retrieve the tracked pages and
simultaneously analyze their contents to quickly identify the secret. We presented various
use cases for highly sensitive secrets commonly found in VMs in cloud scenarios. We
performed an evaluation for these cases on a fully SEV-enabled EPYC processor with
varying levels of load, usually caused by independent clients not involved in the attack.
Our results show that we are able to extract TLS keys after a handshake in less than 15.5
seconds in the median on lower load levels and in no more than about 32.7 seconds in
the median on our highest evaluated load level. The extraction of the FDE key after a
disk write event took between less than 7.4 seconds and 12.3 seconds in the median. The
extraction phase for SSH keys after an SSH handshake took about 0.8 to 1.35 seconds in
the median. We expect that our approach can be used for the extraction of further types
of secrets, which we are going to investigate in future work.

By transparently encrypting main memory leveraging hardware separated from the
main application processor, AMD SEV raises the bar for attackers targeting confidential
VM data. With our framework, we have demonstrated that extraction is nevertheless
possible and that it is thus especially hard to defend against privileged attackers targeting
confidential data - even with hardware extensions for main memory encryption in place.
We discussed several approaches for countermeasures in Section 6.5.



CHAPTER 7
Conclusion and Future Work

In the following, we first discuss the outcomes of our work elaborated in the previous
chapters. We structure this discussion along the challenges presented in the problem
statement in Section 1.2 and refer to our contributions. Towards the end of this section,
we discuss future work referring to both our proposed security architectures and our main
memory extraction frameworks.

Challenge 1: Design of Architectures for the Secure Isolation of System Resources
We started with the design of a secure virtualization architecture for the isolation of
system resources in Chapter 3 (Contribution 1). We based the architecture on OS-level
virtualization to isolate resources at container boundaries [Hub16a]. This thwarts runtime
attacks of local and remote attackers aiming to gain privileges to access confidential data in
memory. We realized the architecture for mobile devices, enabling to run multiple Android
containers in parallel on a single device (Contribution 2). We showed that it is practicable
to operate, for instance, a business container with a special set of applications processing
confidential data together with an unconstrained container for private use. While the
user was allowed to run any application in the untrusted private container, secrets in the
business container remained secure despite a possibly compromised private container. The
hardened kernel and strong isolation between the containers lay the foundation for data
confidentiality during runtime, making it hard to break the isolation. FDE for container
storage using an SE for protecting the encryption key secures persistent data from being
read out by physical attackers. The performance evaluation on smartphones showed that
the architecture is an efficient means providing users with almost native experience. Our
design for the mobile domain included the secure virtualization of hardware devices for
containers, as well as a secure switching mechanism between untrusted containers, making
the architecture suitable for use in practice.

In Chapter 3, we demonstrated that the architecture we developed is not limited to
the mobile domain, but can be transformed to comply with other platforms and with
other use cases (Contribution 4). Based on the former architecture, we therefore proposed
a secure virtualization architecture for the embedded domain. We developed a mostly
platform-independent prototype and applied it in a concrete IoT use case [Bro18]. This
use case, the IDS, is a data exchange platform enabling transfer and trade across the
boundaries of organizations. The core components of this distributed network are the
trusted connectors gathering, processing and sharing data with other, possibly unknown
connectors. The challenge for such an environment was to lay foundations for data
confidentiality within and between connectors. In contrast to mobile devices, there is
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usually no end user interaction. Further, less hardware device virtualization is required
to operate the containers. Containers mostly used the network interface to gather data
from sensors. Inside each container, one specific service operated isolated from other
services, where each service, possibly originating from third-parties, is constrained by our
architecture to only access data from strictly defined resources, such as from a specific
sensor, or cyber-physical device. The TPM we employed instead of an SE for protecting the
persistent storage suits to this scenario, binding storage decryption on container start to a
known-good system state. Furthermore, we used the TPM for enabling remote attestation
to control the exchange of confidential data between connectors. Data is only transferred
to known-good connectors ensuring data confidentiality within the ecosystem.

Challenge 2: Applicability of Architectures for Secure Resource Isolation in Operational
Environments
Decisive for the applicability of the secure virtualization architecture in productive envi-
ronments are not only aspects like the achieved device-centric security, performance and
usability, but also to design a surrounding environment and processes, i.e., an ecosystem,
to securely operate devices running the architecture. Our security concept for the trust
ecosystem along with the IDS scenario in Chapter 3 referred to a decentralized, heavily
interacting embedded device use case [Bro18] (Contribution 4). Part of this was the secure
enrollment and provisioning, as well as the establishment of secure communication channels
and of data usage control rules between devices. This included a holistic security concept
for the whole ecosystem. An important aspect was ensuring the trustworthiness of service
and lower layer implementations running on the devices. Therefore, we introduced certain
authorities to the ecosystem, which are allowed to sign services and software updates for
the architecture based on a PKI. The result is that devices accept only signed services and
updates from approved parties after successful verification.

As further part of Chapter 3, we presented the basis for these concepts tailored to use
cases in the mobile domain with different user identities [Wes15] (Contribution 3). This
entailed identity management including a process for associating end users with an SE, with
a device and with containers. This also allowed to transfer containers between different
devices using our remote management backend. With secure enrollment and provisioning,
the ecosystem design made devices running the virtualization architecture ready for use in
corporate environments where the protection of confidential data plays an important role.

Challenge 3: Main Memory Extraction on Conventional Platforms
Our memory extraction framework based on the cold boot attack in Chapter 4 demonstrated
the potential of memory attacks on mobile devices [Hub16b] (Contribution 5). We showed
that it is possible to directly extract the main memory of mobile devices without acquiring
privileges on the system during its runtime. Our method preserved the full contents
of main memory of the running system after a cold boot. Even after we triggered our
minimal application for data requests and transfer to a connected host system, the mobile
device’s previous memory state was almost completely sustained. The minimal application
overwrites no more than two pages of memory at locations, which contain no confidential,
but static, publicly known data. As the entire kernel and user space memory was accessible,
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we presented a method for the systematic extraction of memory contents for forensic
data acquisition. Amongst others, we showed an example where we read out the account
credentials of an exchange application, or the last network connections made on the device,
in very short time. Another result was that our proposed virtualization architecture is
incapable of protecting against this type of memory attack, and in particular against
physical attackers. We showed this by extracting container FDE keys from devices running
the virtualization platform. This motivated the urge for protection mechanisms against
physical attackers, and thus the design of architectures for main memory encryption.

Challenge 4: Design of Architectures for Main Memory Encryption
To defend systems from physical attackers, for instance, acting via DMA or cold boot
vectors, we introduced architectures for the encryption of main memory. Encryption of
main memory does not prevent the attack vectors themselves, but mitigates their effect,
because the attacker can only read encrypted main memory contents.

We started with the protection of common x86 devices in Chapter 5 (Contribution 6). We
incorporated main memory encryption into the suspend and resume functionality of the OS,
making it also possible to apply the encryption to VMs running on a HV [Hub17b]. While
we sustained the common user experience, we also achieved a high degree of performance,
measured on a mid-performance 12 GB notebook where en- and decryption took about
800 milliseconds on average. The encryption of main memory during the suspension of a
device protects in cases where a device’s user is absent, either because the device is left
unattended or gets stolen. At that time, the system can not reconstruct the main memory
contents and can not get back to normal operation unless the user returns to unlock the
system. Memory attacks can only yield encrypted main memory contents.

The presented approach is only applicable on platforms with full suspension features,
like notebooks with common OSs. On smartphones, there is no full suspension, because the
device must be able to wake up autonomously and process incoming data, such as phone
calls, or messages originating from the network. In Chapter 5, we thus advanced with
a memory encryption architecture for process groups, i.e., for specific parts of a system.
We combined the memory encryption architecture with our previously presented secure
virtualization architecture for mobile devices [Hub18] (Contribution 7 and Contribution 8).
We encrypted the containers that are not actively used and thus in background. When
the device is not used for a certain period of time, all of a user’s containers are ensured to
be switched to background. We kept the design of the memory encryption architecture
independent from the virtualization architecture by constructing the encryption based on
generic process groups instead of tailoring it directly to Android containers. This makes it
possible to use the encryption architecture in other scenarios.

The goal for the virtualization architecture combined with memory encryption was
to design a system resilient against both remote attackers and against direct attacks
on memory. The existing infrastructure made it possible to adapt the virtualization
architecture such that the device can still process background events while containers are
encrypted and to use the SE for decryption to protect the memory encryption keys. The
management container not comprising confidential user data always remains unencrypted
and handles the background events for encrypted containers. The management container



162 Chapter 7 Conclusion and Future Work

can thereby notify the user of events, such as incoming data and calls, for background
containers. With an average total wake up and decryption time of about 2.5 seconds for
an encrypted container, the approach preserves a high degree of usability when selecting
only the container with the confidential information for encryption.

Later in Chapter 5, we presented an architecture for runtime memory encryption, for
instance, for systems where suspension is not intended, or where the full functionality of
the device needs to be preserved at all times (Contribution 9). We introduced a minimal
HV running a single guest VM [Hor17]. The HV transparently en- and decrypts the RAM
contents in a TEE, the ARM TrustZone on our platform. While a small, varying part of
the main memory is kept unencrypted at all times, most of the memory is encrypted with a
key only present in the TEE. The approach thus makes a trade-off in terms of security and
performance impact. The larger the set of unencrypted memory, the less memory needs to
be en- and decrypted during the VM’s runtime. We determined a pivotal point achieving a
high level of security while only sacrificing a moderate share of the VM’s performance in
benchmarks.

One outcome of our proposed architectures was that attackers gaining privileges on the
target system are hard to defend against. In case of our suspension-based architectures,
the attacker would be unable to read plaintext memory contents given that evil maid
attacks are not possible, e.g., an attacker deploying a backdoor in the absence of the user.
However, for our runtime memory encryption approach, an attacker gaining privileges on
the system can directly read memory contents as the system remains fully operational.
We further investigated this topic at the example of hardware-based memory encryption
architectures in the subsequent part of the thesis.

Challenge 5: Main Memory Extraction on Platforms with Hardware-Based Memory
Encryption
Runtime memory encryption has the advantage that sensitive memory is likely to be
encrypted at all times. However, because the system is always fully operational and
responsive, an attacker could gain privileges and force the system to a state where it
presents parts of the main memory in plaintext, or wait for certain parts of memory to be
decrypted, even without knowledge of the encryption key. The defense against a powerful
attacker on runtime encryption systems, possibly gaining supervisor privileges, is thus an
especially difficult topic not only in the case of our proposed architectures.

We emphasized this in Chapter 6 on the example of AMD’s SEV hardware extension,
which transparently encrypts main memory of VMs on the basis of a dedicated coprocessor,
the AMD SP, using different, ephemeral keys for each VM. The technology strives to keep
the main memory of a system’s VMs confidential even when an attacker with control over
the underlying HV is present. The SEV technology is designed for server systems hosting
VMs of remote customers. These VMs in turn usually provide a service to the outside,
which public peers, for example, in case of a web server, can access. We observed that
SEV misses to protect the integrity of encrypted pages. This makes it possible to modify
the VM’s mappings to physical pages with the HV (Contribution 10), or to move physical
memory. The memory extraction framework we constructed [Mor18] made use of this
observation and modified the memory mappings of different services, such as web servers,
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to respond us with arbitrary memory contents of the VM. After tracking the page access
patterns of a VM upon several requests to a service’s resource, we were able to pin down
the requested resource in the VM’s memory, such as a website. We also demonstrated
that our framework performs under real conditions where a web server is under high load,
frequently accessed by multiple clients. For instance, when 50 additional requests per
second from other peers to Apache and nginx web servers were made, we sustained a low
number of repetitions for page access pattern tracking until we reliably identified the target
resource in memory. We then modified the memory mapping for this resource pointing to
another region of the VM’s memory. By repeatedly accessing the resource and re-mapping
the memory, we were able to dump the full memory of a VM across a number different
services, also while other peers accessed the server simultaneously.

Since the extraction of a VM’s full memory contents can leave a large footprint in case of
many repeated requests and re-mappings, we extended the memory extraction framework
with a method for the specific extraction of targeted resources, leaving a minimal footprint
only [Mor19] (Contribution 11). We demonstrated the capability of the method at the
example of kernel and user space secrets used by different services. We extracted the
secrets by systematically reducing the number of page candidates in which they can be
contained. For example, we extracted the TLS and SSH server keys of the nginx, Apache
and OpenSSH servers, respectively, on the basis of observing only a single handshake. We
also extracted FDE keys based on observing the VM’s disk write activities. One of the
pages accessed during the handshake or disk write activity inevitably contains the targeted
key. Analyzing the VM’s page access timings and types, we were able to reduce the amount
of candidate pages to a minimum. This resulted in an extraction phase with only a minimal
amount of repeated requests and re-mappings, and with extraction times of way less than
a minute.

Future Work
The relevance of the protection of confidential data pursued in this work is reflected by
past and current developments made by major hardware manufacturers. In terms of
isolation, developments were on the one hand the introduction of hardware support to
relocate sensitive execution contexts of processes in separate hardware locations. This
protects data and execution from possibly malicious, privileged entities, for example, using
the ARM TrustZone, Intel SGX, or isolated security coprocessors. On the other hand,
there is the introduction and further development of TPM and SE applications. These
hardware building blocks were amongst others designed to provide secure storage locations
in the presence of physical attackers. The introduction of AMD SME/SEV was motivated
by the fact that physical attacks on main memory, or privileged entities on the system
circumventing isolation mechanisms, are a real threat. Recently, Intel announced the
introduction of Multi-Key (MK)/TME [Int], a hardware extension for transparent runtime
main memory encryption, as another example for the relevance of the presented topics.

Our work on the analysis of the access patterns of encrypted VMs can be continued
to learn more about the execution flow of encrypted VMs, for example, to ultimately
gain code execution on the VM. Our framework can also be developed towards locating
the VM kernel with its modules in physical memory, which can at least help defeat the
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random Kernel Address Space Layout Randomization (KASLR) physical kernel memory
shift. Future topics in the field of encrypted VMs are to critically revisit the design
and implementation of hardware-backed memory encryption mechanisms for possibly
required improvements. For the Intel MK/TME platform, an open point is, for instance,
to determine its security properties and to investigate with which means attackers can
acquire memory protected by MK/TME. Another possible problem of hardware security
extensions are the interfaces between the untrusted system and the isolated extension’s
runtime environment. These interfaces need to be properly defined and implemented,
preventing attackers from exploiting trusted environments via these interfaces. This has,
for example, been shown for the TrustZone interface [Ros14], or recently for AMD’s SP
[Good], where the SEV keys are stored.

Another path for future work is leveraging hardware extensions to enable the design and
implementation of novel applications and systems to solidly protect secrets and execution
flows. An example can be to construct a secure platform for embedded systems, which may
be based on a custom chip and board architecture providing a strong security infrastructure,
for instance, for connectors in the IDS or for critical infrastructures. The platform concepts
can be leveraged to design and implement building blocks to improve trust in diverse
systems, such as with secure boot, runtime integrity verification, secure software updates,
use of secure execution environments, or remote attestation capabilities. Specific use cases,
such as IoT applications, can then be flexibly built on top of the secure platform offering a
flexible security infrastructure. Examples for ongoing work are Azure Sphere [Hun; Micb]
and the Android Things [Goob] platform.

Potential future hardened platforms can also make use of our secure virtualization
architecture. Its further development and integration into other use cases than presented
is a promising step leading towards a full-fledged implementation for its later use as
a product. Regarding the realization for smartphones, the virtualization architecture
can also be further developed to comply with more recent mobile kernel versions and to
support more recent hardware devices. Only when working on recent hardware and offering
containers with recent OS versions, the architecture can find acceptance from end users.
The proposed concepts for the provisioning, enrollment and lifecycle of the platform in
untrusted environments like the IDS are suitable for being adopted to further productive
use cases in the future.

The design of hardened platforms should also specifically address the threat of cold boot
and DMA attacks. An open topic is to investigate the vulnerability of further systems
regarding the cold boot attack to emphasize the need to resolve possible design weaknesses.
In this case, the task is to at least employ standard methods against cold boot attacks,
such as clearing the main memory on system start, or making the memory inaccessible to
attackers. For memory attacks in general, our proposed memory encryption architectures
can be further developed and employed in practice. In general, our proposed architectures
can all be leveraged as building blocks to protect various systems and deployments. Further,
our proposed architectures can be combined with hardware extensions in order to not only
achieve confidentiality of main memory, but also to enforce its integrity regarding attackers
not only reading, but also modifying memory contents to manipulate a system.
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