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Summary

Team sports can be described as complex dynamic systems based on the frequent

interaction of various players. While the interaction can take on many forms, e.g.

communication on the field, it is frequently studied by analyzing passes between play-

ers. Recently, social network analysis has been introduced to the study of sports

dynamics in order to quantify the involvement of individual players in the interplay

and to characterize the organizational processes used by teams.

Although team sports, in general, rely on the interactive coordination between team

members, the method is almost exclusively applied to football thus far. Moreover, as

the current analysis is based on one snapshot of the passing network across a match, it

does not account for varying situational contexts that influence interaction patterns.

Third, current network approaches disregard the dynamics of interactions in team

sports.

Hence, the first study of this dissertation project extends the current research

beyond the sport of football. The second study implements a play-level approach in

handball to break down the analysis to individual plays aiming at a comparison of

interplay structures in different situational contexts. The third study introduces a

novel network metric to football that regards the sequential order of interplay and,

thus, pioneers the modeling of dynamics in interaction networks.

Overall, this dissertation project contributes to a more accurate modeling of team

performance under various situational contexts. This, in turn, can be used for practical

match analysis in team sports beyond football.

III



1 Introduction

”One man can be a crucial ingredient on a team, but one man cannot

make a team.”

- Kareem Abdul-Jabbar

In the 100m discipline, the skills and abilities of one man (or woman) structure

and shape the performance prerequisites for competition. Thus, the identification of

performance-relevant traits such as reaction time, speed, sprint endurance or power is

rather straightforward (Letzelter & Letzelter, 1982). In contrast, this process is more

complex in team sports like football because performance is shaped by the collective

actions of many individuals (Hohmann & Brack, 1983). Here, the identification of

relevant factors for success is impeded by the non-linear properties of team performance

(Sampaio & Leite, 2013). In other words, a sports team is more than just the sum of its

parts and, consequently, team performance cannot just be deduced from the skills and

abilities of individual players. Admittedly, in a 100m sprint, outstanding capabilities of

an athlete might not necessarily result in a winning performance, either. Here, success

is also subject to non-linearity between performance prerequisites and competition

outcomes as the link might be disturbed by the athlete’s form on the day or other

external influences (Hohmann et al., 2002). However, the interaction process between

players in team sports adds an additional layer of complexity to the understanding

of the relevant factors for the observed game performance (Lames & McGarry, 2007).

The reason why it is crucial to understand the structure of performance in any sport

is that training is shaped by insights generated from past performances. This follows

from the fact that players rely on feedback to improve their performance (Maslovat &

Franks, 2008). Thus, advances in the analysis of team performance benefit training

and coaching (McGarry, 2009). As a necessary precondition, this requires a profound

understanding of team sports as such.

1.1 Performance Analysis in Team Sports

In general, team sports can be described as complex dynamic systems characterized

by the frequent interaction of many individual parts with the common goal of winning

(Grehaigne et al., 1997; McGarry et al., 2002; Davids et al., 2013). In particular, the

aim of a team is to score more points or goals than the opponent. According to Mateus

(2005), this requires a balance between offensive in defensive actions. Teams must push

through their own strategy while preventing the implementation of the opponent’s
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strategy (Davids et al., 2005). This results in the emergence of complex interactions,

which is not referring to inter-limb or intra-limb coordination as described by Glazier

(2010), but the inter-personal coordination between and within teams (Mateus, 2005).

However, the interactions of players is not just shaped by the instructions of coaches

or captains to push through the strategy of the own team (Passos et al., 2016). In fact,

coordination in team sports is believed to emerge under a set of constraints (Araujo

et al., 2006). They are described as factors that shape, limit and reduce the available

configurations of dynamic systems such as sports teams. Following Newell (1986),

the complex interactions of teams emerge under three different types of constraints:

performer, environmental and task constraints. In team sports, performer constraints

refer to individual characteristics of players such as motivation, skill level or physical

appearance. They can be summarized as the resources to fulfill game-relevant tasks

such as the execution of a difficult pass (Passos et al., 2016). Environmental constraints

are mostly of physical nature such as wind conditions, temperature or constant factors

like gravity. Task constraints include the goals and rules of the underlying sport

as well as the boundaries and markings of the playing field. They also encompass

informational constraints such as the situational perception of a player in a particular

moment of the game which is shaped by the individually available spatio-temporal

information (Bastin et al., 2006). According to Araujo et al. (2013), the resulting

perception influences the decision-making during the goal-oriented behavior of a team.

There have been several approaches to capture, model and describe team perfor-

mance emerging from the complex interactions under constraints. Traditionally, a

notational approach was taken to especially analyze tactical aspects of performance

(Hughes & Franks, 2007). The resulting performance indicators count the frequency

of critical events to describe all or some aspects of performance (Hughes & Bartlett,

2002). Following a differential approach, they often aim at distinguishing between suc-

cessful and unsuccessful performance (Hughes & Franks, 2007). For invasion games

like football, events such as the number of shots on goal, corners, scored goals, won

tackles or the passing distribution of a team are tracked. While performance indi-

cators, resulting from a traditional notational approach, present comprehensible and

informative insights, they often struggle to capture and represent the complex emerg-

ing interactions between players and teams (Ramos et al., 2018).

Thus, more sophisticated approaches were recently introduced to the performance

analysis of sports teams. These novel methods aim at capturing the complex interac-

tions in team sports (Passos et al., 2016). This is induced by technological progress

which offers more accurate and precise data, especially on the position of players and

the ball. The resulting approaches predominantly focus on the patterns of coordinated
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movement between and within teams to characterize performance in team sports. This

is in line with Sampaio and Leite (2013) who state that performance indicators may

just describe the process of team performance and do not necessarily have to be asso-

ciated directly to performance outcomes.

There is a body of studies that calculate centroids to track the collective movement

of a team (Frencken et al., 2011; Sampaio & Maçãs, 2012). Centroids use positional

data to determine the mean position of a team on the pitch. The collective variable

reduces the data overflow by describing the movement behavior of a team as a whole.

That way, the relative collective movement between opposing teams can be analyzed.

Frencken et al. (2011) found that the probability of scoring in football significantly

increased once the attacking centroid overtook the defending centroid from a longitu-

dinal perspective. This underlines the occurrence of coordinated movement between

teams.

Other studies focus on a relative phase analysis in team sports to detect synchro-

nized behavior between and within teams (McGarry et al., 2002; Bourbousson et al.,

2010). Within teams, relative phase analysis is able to calculate the synchrony in

movement between players of a team, both in the lateral and longitudinal direction.

That way, the coordination properties of defensive lines can be assessed to detect in-

stabilities that the opponent team may take advantage of (Travassos et al., 2011).

Similar to this approach, Duarte et al. (2013) apply a cluster phase method to show

that the collective movement of a football team is more synchronized alongside the

pitch than in a lateral direction. This shows that there is also coordinated movement

within teams.

Following the idea of collective action, Duarte et al. (2012) describe sport teams

as superorganisms. The concept, which is adapted from sociobiology and traditionally

applied to animal collectives, models collaborating players as a single social unit that

jointly carries out a task through the division of labor.

1.2 Social Network Analysis in Team Sports

In general, it has become practice to introduce methods from alien fields of research

to the performance analysis of sport teams. This also includes social network analysis

(SNA), often referred to as just network analysis, which has recently gained in popu-

larity to characterize performance by analyzing interactions between players of a team.

The method originates from empirical sociology and was developed to understand and

explain interpersonal relations such as friendships or professional work relationships
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(e.g. Moreno, 1934; Roethlisberger & Dickson, 1939). Wasserman and Faust (1994)

describe SNA as a distinct research perspective that models and analyzes complex sys-

tems consisting of individual parts which, themselves, are interrelated or interacting in

a certain way. The internet is a network linked by data connections, while societies are

shaped by people connected through different kinds of relationships such as family ties

or friendships. Similarly, harbors are linked by trade routes creating logistics networks.

One can study the individual parts, e.g. how a person feels in a social network, or the

nature of an interconnection such as the dynamics of a friendship. However, network

analysis does not follow an isolated view but focuses on the patterns of interactions

between the individual parts, which is believed to determine the way a system behaves

as a whole (Newman, 2018). While the structure of the internet affects the way that

data is transmitted through the network, the setup of a logistics network determines

the shipping route of a package.

In most studies that apply SNA, networks are represented by graphs or matrices

(Ribeiro et al., 2017). Graphs model networks as sets of nodes connected by edges.

While nodes represent the individual parts, edges capture the links between them

(Newman, 2018). That way, graphs can highlight the strategic position of nodes within

the network or illustrate the general structure of the interrelations in the system. In

contrast, matrices formally and numerically capture the interactions between nodes as

a basis to compute so called network metrics. They quantify the individual importance

of each node in the overall network, often referred to as the centrality of a node

(Bavelas, 1950), as well as the structural properties of the network, e.g. the level of

interconnectivity.1

To provide an illustrative example, Figure 1 depicts the marriage network of the

most influential families in Florence in the 15th century in a graph as modeled by Pad-

gett and Ansell (1993). Their study aimed at an explanation for the strong influence

of the Medici family at that time which the authors believed to find in the strategic

arrangement of marriages. Their network model consists of nodes, each representing

a certain family, and ties that represent marriages between members of these families.

As the Medicis were neither among the wealthiest families nor in possession of any

formal political power, the authors attribute the influence of the family to their social

relationships. When analyzing the importance of the Medici family, the first obser-

vation is that they entered into the highest number of marriages as visualized by the

number of their direct links. However, they did not distance the second highest family

by much. By contrast, their advantageous strategic position within the network is

what shaped their influence. Assuming that marriage was the most important form of

1A more formal introduction to network analysis and network metrics is provided in chapter 2.
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Figure 1: Network of 15th century Florentine marriages by Padgett and Ansell (1993)

establishing frequent communication and trust between two families back in the 15th

century, the Medici family turns out to have been the main connector of non-adjacent

families, i.e. families that were not directly connected by marriage. In fact, they fa-

cilitated the connection between more than 50% of all pairwise family combinations

in the network. According to this concept, which is known as betweenness centrality

and formally introduced in section 2.3, the other families relied on the Medici family

to spread information or reach political consensus which explains the influence of the

family. This example illustrates how network analysis can assist in breaking down the

interrelations between many different actors of a particular system.

A sports team can also be understood as a complex social network consisting of a

set of agents interacting with each other (Ramos et al., 2018). That is why SNA was

introduced to the analysis of team sports. It is able to model and characterize their

interaction structure and the impact and influence of individual players to the overall

team performance (Duch et al., 2010). Players are formally represented by nodes and

the interactions or communication between them by edges or ties.

Existing studies have followed different approaches to model the interactions be-

tween players. McLean et al. (2019) focus on the direct verbal communication between

players, while Sasaki et al. (2017) model the joint defensive actions to represent inter-

activity. However, successfully played passes are the most popular approach to model

the interactive behavior between members of the same team, thus far (Ribeiro et al.,

2017; Sarmento et al., 2018). As a common performance indicator in team sports,

passes appear to be a natural choice to model team interactions (Hughes & Bartlett,
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2002).

Nodes, on the other hand, either represent the actual players by name, playing

positions or zones on the pitch, in which passes are controlled or executed by a player.

Codifying player names suggests a practical match analysis to evaluate the contribution

of actual players to the interplay of a team as executed by various studies (e.g. Cotta et

al., 2013). In comparison, tracking playing positions or zones increases the possibility

to compare network metrics across multiple matches as done by Clemente and Martins

(2017a).

Figure 2 shows two exemplary graphs that model the passing interactions of two

opposing football teams across a single match (Pena & Touchette, 2012). Currently,

the two most frequently used sources for the interaction data are aggregated passing

matrices, which are publicly available, alongside a more time consuming video analysis

of matches (e.g. McLean et al., 2018). In football, aggregated interaction matrices,

reporting the passes between the players of both teams throughout an entire match,

are provided by the UEFA Champions League and FIFA World Cup. They set the

basis for the network analysis of matches in several studies (e.g. Clemente & Martins,

2017b).

Figure 2: Illustration of two passing networks as modeled by Pena and Touchette (2012)

Based on the idea of passing networks, existing studies have focused on the iden-

tification of the individual contribution of players in the interplay and analysis of the

overall passing structure of teams to characterize performance. As an example, Gama

et al. (2014) investigate the involvement of individual players in football matches and

discover that only a subset of them is responsible for the majority of passing. Grund

(2012) assesses the general passing structure of football teams and detects a positive

link between a balanced distribution of passes and successful performance outcomes.
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Overall, SNA has proven its potential to model the complex interactive behavior of

sports teams in order to facilitate a better understanding of the nature of team sports

and to provide relevant feedback to coaches.

1.3 Critique of Current Research

However, existing studies on SNA in team sports show certain limitations and reveal

research gaps that this dissertation aims to address. This section outlines the critique

of the current research which is structured into three parts.

1. SNA, as a method to describe team performance, is almost exclusively applied

to football.

2. Passing networks are predominantly applied at match-level limiting the informa-

tional value of the analysis.

3. Network approaches hardly consider the dynamics of passing interactions.

1. Limited application to other team sports

First, SNA, as a method to evaluate team performance, is almost exclusively ap-

plied to football. Only a limited set of studies explore the interaction patterns and

most involved players in other team sports such as basketball (Fewell et al., 2012;

Clemente et al., 2015a). This might be partly attributed to the worldwide popularity

and the low-scoring nature of football. The latter aspect encourages researchers to find

alternative performance indicators because scoring opportunities might not be consid-

ered as reliable performance measures (Passos et al., 2016). Yet, other team sports

like basketball, handball or hockey are similarly complex due to their invasive nature

and number of players that need to coordinate their actions (Lemmink & Frencken,

2013). In these invasion games, teams aim at invading the territory of the opponent

team through ball interactions in order to score. At the same time, they are trying

to prevent the opposing team from scoring (Gréhaigne & Godbout, 1995). Thus, per-

formance heavily depends on the interactive coordination between team members and

the application of SNA can contribute to the understanding of interplay in these team

sports. Moreover, each team sport faces different sets of constraints. According to

Araujo and Davids (2016), this leads to different interaction patterns being needed in

order to succeed. Hence, SNA can also uncover how differences in constraints lead to

variations in the interplay structures across different team sports. This potential of

the method has not yet been exploited.
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2. Predominant application at match-level

Second, SNA is almost exclusively conducted at match-level, thus far. This implies

an analysis based on one snapshot of the interaction network that reflects all passing

interactions of a team aggregated across every ball possession or play throughout

a match.2 In fact, the majority of studies quantify network metrics based on the

aggregated passing data of a match captured in an adjacency matrix. This might be

partly induced by the easy availability of aggregated interaction data at match-level,

e.g. by the FIFA or UEFA in football. Moreover, the computation of popular network

metrics such as closeness centrality require each player to be included in the passing

interaction which is more likely when looking at an entire match.3 This leads to several

limitations that need to be addressed.

On the one hand, there is no breakdown to individual attacking plays that shape

the goal-oriented interactions under varying situational contexts. The match-level

approach does not provide an understanding of interplay in different contexts such as

variations in the starting location of a play, varying tactical formations or constraints

such as the relative location of the goal, players and the ball. However, these factors

influence the decision-making on passing and, thus, the overall coordination patterns

of a team (Araujo et al., 2006). Thus, SNA applied to teams sports needs to adjust

its level of analysis in order to provide an understanding of the emerging interaction

patterns in a variety of situational contexts. Only then, coaches can evaluate and

classify the performance of their teams and adjust training drills accordingly (Gómez

et al., 2013).

On the other hand, the match-level approach prevents a clear and rigorous identi-

fication of the relevant interplay that leads to successful or unsuccessful performance.

Many existing studies focus on the performance process of teams which is often re-

ferred to as the style of play (Grund, 2012; Clemente, 2018). However, there is also

an interest in what characterizes successful and unsuccessful performance, following a

differential approach. Eventually, this may provide coaches with insights on the inter-

action patterns and contributions of players that lead to success (McGarry, 2009). Pina

et al. (2017) aggregate passes from successful and unsuccessful plays across 15min-time

intervals, while Grund (2012) and Clemente (2018) connect match-level metrics with

match outcomes such as total shots on goal, the number of scored goals and winning,

drawing or losing the match. Although these studies follow a differential approach,

they cannot isolate the interplay of specific attacks that is relevant for the outcome of

2Henceforth, a play refers to a single ball possession of a team consisting of at least one successful
pass.

3Again, a more formal introduction to specific network metrics is provided in chapter 2.
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a match, especially in low-scoring team sports like football. According to Ramos et al.

(2018), the analysis needs to be broken down to separate plays, also referred to as a

play-level approach, and the respective interplay connected to the corresponding play-

level outcomes which drive the overall performance in team sports. There are some

studies that focus on a play-level approach already. However, they do not differentiate

between successful and unsuccessful performance (e.g. McLean et al., 2017a). By only

looking at successful plays, e.g. those that lead to scoring a goal, there is just a limited

possibility to assess the variation in individual metrics across playing positions. This

is due to the absence of a comparison value per playing position measurable from an

analysis of plays that do not lead to success. This would enhance the suitability of

the applied network metrics as valid performance indicators (Sampaio & Leite, 2013).

Moreover, these studies only focus on the overall team structure and neglect the con-

tribution of individual players. Hence, a play-level study that regards successful as

well as unsuccessful performance is required, with a special focus on the contribution

of individual players.

3. Limited consideration of dynamics

Third, irrespective of a match- or play-level perspective, current approaches ana-

lyze static snapshots of networks that disregard the dynamics of interactions in team

sports. In particular, the sequential order of passes during ball possessions cannot be

reconstructed from the static perspective that graphs and matrices provide. However,

in order to adequately describe team performance, the dynamic nature of interactions

and, thus, team performance, needs to be considered (Sampaio & Leite, 2013). Cur-

rently applied network metrics are not only unable to capture the temporal order of

passing sequences, some of the frequently used individual metrics, e.g. closeness and

betweenness centrality, even make implicit assumptions concerning the dynamics on

the passing network (Ribeiro et al., 2017). However, these do not necessarily reflect

the sequential order of passes because they are derived from an optimization process at

match-level. In particular, the metrics are built on the assumption of network flow as

introduced by Atkin (1974) and outlined in detail in section 2.2. According to Atkin,

flows are what actually passes between nodes based on a defined network structure. As

an example, understanding the connections and relationships between a group of peo-

ple is often just the basis to assess how information could be spread through the social

network. In the analysis of the influential families of Florence in the 15th century, the

importance of the Medici family was assessed by its strategic position to facilitate the

flow of information between other families. To be precise, the calculated betweenness

metric counted the frequency with which the Medici family was able to bridge the

shortest path between other families in order to pave the flow of information, i.e. via
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the shortest number of mediators.

In a sports context, players with a high betweenness value are currently attributed

the quality of a bridging player that connects players of its team in ball possession

phases (e.g. Clemente et al., 2016a). However, these studies are based on static

networks that simply aggregate the passing interactions across plays. More specifically,

the shortest path between two players at match-level does not necessarily reflect a ball

possession in its sequential order of passes. Figure 3 illustrates how the application

of betweenness centrality can lead to inaccurate sport-specific deductions. The figure

shows an exemplary graph representing the aggregated passing network between three

players. It is based on two separate ball possession phases as shown on the far left

in their sequential order of play. In its current application, betweenness centrality

would identify bridging players based on the aggregated network. According to this

procedure and the underlying directed network, each player would be assigned the

same bridging quality as they equally often bridge the flow or connection between

the other two players. However, this conclusion turns out to be inaccurate when

considering the actual order of passes in each play. In fact, player A does not connect

the other two players in any play, being positioned either at the start or end of a play.

Moreover, while player C is acting as an actual bridging player in both plays, player

B fulfills that role only in one of them. Therefore, there is no justification for equal

betweenness values from a performance perspective in sports. Thus, there can only be

a metaphorical or approximate assignment of the bridging player role when using the

traditional betweenness metric. Likewise, the application of closeness centrality leads

to the same fallacy.

Figure 3: Exemplary passing network to illustrate flaws in current betweenness application

In order to bridge the gap between SNA and performance analysis, the dynamic

nature of interactions and, thus, team performance, needs to be taken into account
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when applying network metrics (Sampaio & Leite, 2013). In particular, as many

studies apply the traditional metric of betweenness centrality, there is a need for an

alternative metric that assesses bridging players while regarding the sequential order

of passes.

1.4 Aims of Dissertation

This section outlines the aims of this dissertation built on the critique of the current

research that applies SNA to evaluate performance in team sports. Overall, the goal

is to extend and improve the existing work of SNA applied to passing interactions in

team sports. From a theoretical point of view, this aims at a more adequate mod-

eling of performance considering situational contexts, performance outcomes and the

dynamics of interactions. From a practical or applied perspective, the more accurate

quantification of team performance can potentially elevate the insights generated from

practical match analysis and, thus, lead to a better performance feedback for coaches,

analysts and players. The specific aims are subdivided into three pillars which are

outlined in the following. They are also connected to the corresponding studies that

define this dissertation.

1. The application and extension of SNA to other team sports than football.

2. The practical implementation of play-level analysis to model interplay in different

situational contexts and with different performance outcomes.

3. The consideration of the dynamic nature of interactions in team sports.

1. Extension to more team sports

The first aim of this dissertation is to extend the analysis to more invasion team

sports beyond football. Thus far, nearly all studies apply SNA to football. However,

invasion team sports, in general, are described as complex dynamic systems consisting

of interacting parts, as outlined previously (Davids et al., 2013). Hence, the goal is

to improve the understanding of the interactive behavior of players in additional team

sports. A second aim is to also contribute to the general understanding of invasion team

sports. By offering a comparison of the interaction patterns in the different sports, the

effect of varying constraints on interplay, which are induced by the different natures

of each invasion team sport, can be assessed. Among these are differences in the rules

of the game, the number of allowed players in a team or pitch sizes and markings.
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2. Practical implementation of play-level analysis

Apart from an extension to other team sports, this dissertation also aims at the

practical implementation of a play-level analysis. This is because match-level ap-

proaches can neither differentiate between interplay in varying situational contexts

nor provide a clear and rigorous identification of the relevant interplay that leads to

successful or unsuccessful performance. Thus, this dissertation aims at the implemen-

tation of practical studies that breakdown the analysis to individual plays in order to

i) achieve a tactical analysis that compares interplay in different situational contexts

and ii) statistically evaluate the connection between interplay patterns and successful

as well as unsuccessful performance outcomes.

3. Consideration of interaction dynamics

Third, this dissertation aims at the consideration of the dynamic nature of in-

teractions in team sports. Thus far, network metrics have been transferred, almost

unchanged, to the analysis of interaction networks in team sports. The frequent ap-

plication of betweenness centrality, in particular, currently leads to a violation of the

actual dynamics in team sports. To initiate the consideration of the dynamic nature

of interactions, the aim is to develop a new metric that assesses bridging (or interme-

diary) players by analyzing actual passing sequences and, thus, regard the sequential

order of passes.

Connection to studies of dissertation

The outlined aims of the dissertation were pursued in three studies. Table 1 vi-

sualizes the classification process to underline the contribution of each study to the

realization of each aim of this dissertation. The first study aimed at the application

of SNA to more team sports beyond football. For the first time, SNA is applied

to handball and a team-level analysis conducted in basketball. The study included a

comparison of their respective interaction patterns to obtain a better understanding of

invasion team sports as such. The second study aimed at the practical implementation

of a play-level analysis in handball. It specifically targeted the analysis of interplay

in varying situational contexts through a consideration of changes in the attack for-

mations. As SNA had not been applied to handball prior to this dissertation, the

study also built on the first aim of this dissertation. The third study aimed at a play-

level analysis in football applying metrics that consider the sequential order of passes

while offering a connection to successful as well as unsuccessful performance outcomes.

Thus, it contributed to the second part of the practical implementation of a play-level

analysis as well as the consideration of interaction dynamics, pursuing the final aim of

this dissertation.
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Aims of dissertation Study 1 Study 2 Study 3

1. Extension to more team sports " "

2. Implementation of play-level analysis

Consideration of situational context "

Connection to performance outcomes "

3. Consideration of interaction dynamics "

Table 1: Classification of studies in line with aims of dissertation

1.5 Outline of Dissertation

The remainder of this dissertation is structured as follows. Chapter 3 provides a deeper

insight into SNA and its application in team sports. This is followed by a presentation

of the three studies that define this dissertation in chapter 4. It includes a short

overview on each study alongside its embedding into the literature highlighting the

contribution and novelty. Chapter 5 discusses the theoretical and practical impact

of the dissertation on performance analysis in team sports. Moreover, the chapter

highlights still existing limitations of the network approach that are present in this

dissertation. Chapter 6 provides an outlook and concludes.
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2 Methods

This chapter provides an exhaustive overview on SNA including its application and

interpretation in a team sports context. Thus, it is meant to deepen the knowledge

on the method acquired during the introduction. Moreover, it targets a better under-

standing of current network modeling and analysis of performance in team sports as

well as the network procedures used in the three studies of this dissertation. Section

2.1 provides a short historical overview on the development of SNA, its diffusion into

various fields of research and general application in sports science. This is followed

by a more formal introduction of the method in section 2.2. Based on the acquired

theoretical understanding, 2.3 presents the most popular network metrics that are

commonly applied to passing networks. Both sections combine formal aspects with a

team sport-related interpretation to provide a better understanding of the method and

its applicability to performance analysis. Finally, section 2.4 provides an exhaustive

discussion on the existing studies that apply SNA in team sports.

2.1 Historical Background

The foundation of SNA dates back to the 1930s and is attributed to Jacob Moreno

and Helen Jennings who were interested in the link between individual well-being and

interpersonal relations. Hence, they modeled social relationships between individuals

as a network and visualized them in a graph. This approach, which the two researchers

labeled as psychological geography, became later known as sociometry (Scott, 1988).

The first ever published article in the field studied the interpersonal relations between

school girls in New York City using sociograms as illustrated in Figure 4 (Moreno,

1934). The aim of the study was to visualize the different structures of interpersonal

relations and, building on that, deduce a connection to the mental state of school

children, e.g. how social isolation is connected to depression or the feeling of loneliness.

In the 1940s, a research group at Harvard University, led by William Warner and

Elton Mayo, built on the idea of sociograms to explore interpersonal relations in work

environments. The aim of the research group was to observe actual group behavior at

work, independent of the formal organization, in order to study the efficiency of work-

ing teams (Roethlisberger & Dickson, 1939). Their research pioneered the assessment

of team performance applying a network model.

Starting in the 1950s, the until then qualitative procedures were complemented by

a more mathematical approach to formalize the method. Bavelas (1950) introduced
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Figure 4: Sociogram of friendships in a NYC elementary school by Moreno (1934)

the idea of structural centrality to quantify the strategic position of individual nodes

and the resulting influence on the overall network. In addition, Austrian psychologist

Siegfried Nadel was the first researcher who brought forward a mathematical approach

to quantify the global properties of network structures (Nadel, 1957).

In the 1970s, Granovetter’s work on the importance of weak ties fostered the bridg-

ing process between qualitative sociograms and the quantitative analysis of interrela-

tions. In his work, he outlined how novel information and ideas can only be found

outside of closely related groups or cliques (Granovetter, 1977). Moreover, Freeman

extended the previous work of Bavelas by formalizing and introducing a set of cen-

trality measures that quantify the role and position of nodes in a network (Freeman,

1978).

Induced by the formalization process and theoretical developments of SNA, the

1990s saw an increasing transfer of the method to other research fields beyond sociol-

ogy. Considering the research fields with the highest applications of the method, New-

man proposed a categorization of different network types. He distinguished between

social networks that focus on concepts such as friendship or collaboration, information

networks that model diffusion of information, technological networks that are rather

of physical nature such as logistics networks, and biological networks that model nano-

level processes such as the interaction between proteins in the human body or neural

networks (Newman, 2018).

Based on the work by Roethlisberger and Dickson (1939), there has also been a

growing interest in using SNA to analyze the communication and organization of work

teams in order to evaluate the ideal organizational setup to jointly perform tasks.
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Bavelas (1950) examined ideal structures for group performance and found that com-

plex tasks were best executed in a centralized setup with a single leader coordinating

actions, while decentralized structures performed better on simple tasks. Balkundi

and Harrison (2006) detected that diversified communication between work colleagues

lead to increased team performance. In their analysis of email traffic in virtual teams,

Gloor et al. (2006) attributed good performance to a balanced communication between

colleagues.

The evaluation of team performance using SNA naturally paved the way of the

method into sports science. While there is a body of research in sports management

science focusing on the network structures in sport organizations such as the collab-

oration between franchises or the communication within sports associations (Cousens

& Slack, 1996; Seevers et al., 2010; Ratten et al., 2011), network studies in sports sci-

ence address actual team performance in sports. Here, one can differentiate between

two approaches, following Wäsche et al. (2017). Competition networks apply SNA

to establish a performance ranking through the comparison of competition outcomes

between players or teams. Lai et al. (2018) model match outcomes between profes-

sional Italian table players in a network, as visualized in Figure 5, to identify the best

players in the country. By considering indirect connections, their aim was to compare

the strength of players that had not actually played against each other, similar to the

Elo rating system for relative performance evaluation in chess. In tennis, Radicchi

(2011) took a similar approach to detect the best tennis players of all-time. Dey et al.

(2017) compared the performance of cricket players to establish a performance ranking

and optimal team composition.

Figure 5: Network visualization of table tennis matches played in Italy by Lai et al. (2018)
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In contrast, interaction networks focus on the performance of sports teams by

modeling the actual interactions taking place between players of a team during a

match (Wäsche et al., 2017). Different types of interactions are modeled in existing

studies. In the majority of studies, passes are used to model the interaction between

players during a match (Duch et al., 2010; Passos et al., 2011; Grund, 2012). Other

less frequently used interaction types are the verbal communication within a team

during a match (McLean et al., 2019), the joint defensive actions of team members

as analyzed by Sasaki et al. (2017) in rugby, and the positional changes taking place

between players (Passos et al., 2011).4

2.2 Network Modeling

After an illustrative introduction to SNA, including a brief historical background, this

section takes a rather formal approach by introducing the basic concepts and terminol-

ogy of the method. This is accompanied by a sport-related interpretation to provide a

more targeted understanding of the ideas and concepts. Moreover, the concept of net-

work flow, which was briefly discussed in the introduction, is revisited and explained

in detail. Flows model the dynamics on a network and many network metrics applied

to team sports are built on the very concept. Thus, a rigorous understanding assists

in evaluating the implicit assumptions of network metrics against the actual dynamics

on passing networks in team sports.

Basic concepts and terminology

A network consists of a set of nodes connected by ties that link them (Borgatti

& Halgin, 2011). More formally, following Wasserman and Faust (1994), a set of n

nodes, referred to as N , can be denoted by N =
{
n1, n2, ..., nn

}
. Then, xij defines a

tie between nodes ni and nj, where i 6= j, often referred to as edge or link. In the

most general case, xij can take on two states:

xij =

1, if there exists a tie between nodes ni and nj

0, otherwise
(1)

If we revisit the Florentine marriage example from the introduction, xij indicates

whether any set of two families had been connected by marriage or not. In a team

4For the purpose of this dissertation, the remainder of this chapter will focus on interaction
networks that model passes between players.
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sports context, a tie indicates whether a successful pass was played between players

ni and nj or not.

Building on this basic binary model of connections, network models are often ex-

tended to a directed and/or weighted version. Ties between any set of two nodes might

not necessarily be reciprocal. In an exemplary setting, person A might like person B

but the affection is not reciprocated. Therefore, directed networks differentiate be-

tween a tie going from node ni to nj and the opposite direction. Then, xij can take on

a different value than xji. This provides a deeper insight into the underlying relation-

ship between two nodes. In a team sports context, modeling a directed network allows

a differentiation between the direction of a pass, revealing which player is passing the

ball and who is on the receiving end.

Weighted networks consider the intensity of a tie or frequency of an interaction.

While marriage or friendship are rather binary concepts, the number of meet-ups

between two friends is not. In that case, xij is not restricted to 0 and 1 anymore.

To be more rigorous, one can differentiate between state-type ties and event-type ties

in weighted networks. Weighted state-type ties describe connections with a certain

continuity and intensity to them (Borgatti & Kidwell, 2011). Examples are commonly

found in logistics networks, e.g. when modeling the distance between production

sites or distribution centers as ties. There is a natural steadiness to the distance

between locations. In contrast, weighted event-type ties have a discrete nature that

can be counted over periods of time (Borgatti & Halgin, 2011). Then, accumulating

the frequency of interactions between nodes defines the strength of the underlying

tie. Examples for event-type ties are mails sent between co-workers or the number of

meet-ups between friends.

In a team sports context, weighted networks allow the modeling of the frequency

of passes between any set of two players going beyond the pure representation of

the existence of a connection. Thus, passes are weighted event-type ties as they are

countable over periods of time defining the strength of the connection between players

which, then, define the passing network structure of a team. The accumulation process

of the interactions can be conducted over different time frames such as one passing

sequence. In football, for example, this can be defined from the first pass of a ball

possession until the ball is either lost, the game interrupted or a goal scored (Pollard

& Reep, 1997). This procedure represents the play-level approach as introduced in

the first chapter. Similarly, passing interactions can be accumulated over certain time

intervals or the entire match. The accumulation of interactions between players can

also be done according to a certain filter throughout a match such as counting all passes

from ball possessions that started in a particular zone on the pitch. Each approach
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yields different network structures.

Figure 6 summarizes the four most common forms of network modeling in exem-

plary graphs. In line with graph theory, the dots represent nodes, while the lines

connecting the dots model the ties between them. Thicker lines represent stronger

connections, while arrows indicate the direction of a connection or relationship. The

bottom left network visualizes an undirected and unweighted network. In a sports

setting, this form of modeling is able to represent which players of a team interacted

with each other ignoring any details on the passing direction or intensity. The upper

left graph represents a directed but unweighted network. Building on the previous

example, it can model the direction of the passes, though with no information on

the frequency of the event. The bottom right network models an undirected but

weighted network which can reflect the passing intensity between any set of two play-

ers, though not the direction of the passes. The upper right network depicts a directed

and weighted network completing the set of options. Following the previous example,

this model can capture the direction and frequency of passes between players.

Figure 6: Exemplary directed and weighted networks

Apart from visualizing networks in graphs, representing a rather qualitative ap-

proach, the information on connections between nodes is commonly captured in a

n × n adjacency matrix representing the ties between each pair of nodes. In such a

matrix the element of the i-th row and j-th column is given by xij and any form of

directed or weighted network model can be represented. The diagonal elements of the

matrix are usually zeros assuming that no node is connected to itself. This assumption
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also makes sense when analyzing passing networks in team sports. Figure 7 shows an

exemplary graph and its corresponding adjacency matrix.

Figure 7: Exemplary network representation in matrix form

Dynamics on networks

The interactions between nodes are modeled as ties that define the network struc-

ture. However, in SNA, ties are often only seen as the basis for studying the dynamics

on the network. Atkin (1974) outlined this idea by describing ties as the backcloth or

pipes to facilitate flow across the network structure. Ties are seen as channels to trans-

fer resources, either of material or non-material kind (Wasserman and Faust, 1994).

Thus, flows represent the dynamics on the network.5 While marriages symbolized the

official ties between families in the Florentine marriage example, Padgett and Ansell

were interested in the resulting dynamics on the network structure, i.e. the flow of

information between families. As briefly outlined in the introduction, many network

metrics that are applied in the analysis of team sports are built on the idea of flow.

In the following, the implicit assumptions they make concerning the dynamics on the

networks they are applied to are evaluated against the dynamics on passing networks

in team sports.

Technically, there are two common types of flow, walks and path. They describe

different forms of trajectories that a flow follows along edges and nodes on a par-

ticular network structure (Borgatti, 2005). In fact, they determine the rules of the

flow through the network (Borgatti & Halgin, 2011). Walks impose no rules on how

resources are transferred from one node to another through the network structure.

5For clarification purposes, these are different to the dynamics of the network which study changes
in the network structure itself (Ramos et al., 2018).
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This means that nodes and edges can be revisited multiple times, e.g. a person might

give a banknote to a store and receive it back the next day due to another purchase

(Borgatti & Halgin, 2011). In contrast, paths connect nodes without revisiting any

nodes or edges twice. In particular, geodesics are flows that resemble the shortest path

between two nodes on an existing network structure.

Figure 8 visualizes the different types of flows in an unweighted network setting. For

illustration purposes, the respective trajectories of flow are marked in color. While the

graph on the far left resembles an exemplary walk that revisits node B, the exemplary

path between nodes A and D in the middle graph does not revisit any node or edge.

The graph on the far right, depicts the shortest path or geodesic between nodes A

and D which, obviously, is facilitated by the direct tie between the two nodes. This

demonstrates why it does not make sense to model the flow of information as a walk

in the Florentine marriage example. Intelligence is only useful if supplied for the first

time and is unlikely to be passed on twice via the same link. Thus, Padgett and Ansell

applied network metrics that model the flow of information as geodesics.

Figure 8: Exemplary walk, path and geodesic

As mentioned before, marriage is of course a binary concept leading to an un-

weighted network structure. In a weighted network model, e.g. a traffic network,

shortest paths usually reveal the quickest or cheapest route between cities across an

existing network of roads. Here, the sum of edge weights, e.g. reflecting the total

travel duration in hours, is minimized on the shortest path. In that case and oppo-

site to the example in Figure 8, the direct road connection between two cities might

not necessarily resemble the shortest path and, thus, route of flow. As an illustrative

example, let the graph in Figure 9 resemble a traffic network consisting of cities A, B

and C which are connected by road. Here, edge weights denote the respective travel

durations between them in hours. Then, the shortest path between cities A and C,

and thus travel duration, is in fact facilitated via city B. This is because the sum of

the two edge weights is smaller (5 hours in total) than the edge weight of the direct

21



Figure 9: Example of a shortest path in a weighted network

connection between cities A and C (8 hours in total). Here, a traffic jam might have

caused the delay on the direct road connection between the two cities. The important

take away is that in a weighted network model, routes of flow such as geodesics are

determined by edge weights.

In a sports context, the concept of shortest paths or geodesics between players must

be interpreted differently. Strong connections, represented by the amount of passes

between players, are rather seen as favorable in sports. In contrast, traditional appli-

cation areas value small edge weights, e.g. reflecting shorter travel durations. Thus,

the reciprocal values of edges are commonly considered to adjust for the minimization

problem and, hence, detect shortest paths in a passing network (Newman, 2001). Fig-

ure 10 visualizes the idea in an exemplary passing network between players A, B and

C. Now, there have been two successful passes between players A and C. Thus, the

edge weight between them is given by the reciprocal value (1
2

or 0.5). Then, as there

were ten passes between players A and B and 20 passes between players B and C, the

summed reciprocal value of the two ties that connect players A and C, indirectly, is
1
10

+ 1
20

= 0.15. This is smaller than the reciprocal value obtained from the direct con-

nection. Thus, according to Newman’s procedure, the shortest path between players

A and C is facilitated via player B. In current network studies on team sports, this is

how shortest paths are determined.

However, shortest paths do not reflect the actual sequential order of passes be-

cause they are determined based on the aggregated passing network across all plays

throughout a match. In fact, any route of flow based on accumulated passing data

does not necessarily reflect the interplay as it unfolded. Therefore, the adaption of

the flow concept is not as straightforward in a sports setting. As outlined previously,

some commonly applied network metrics, e.g. betweenness centrality, are built on the

assumption of flow. That way, they assign dynamics on the network that do not reflect
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Figure 10: Exemplary of shortest path in a passing network

the sequential order of passes and, hence, disregard the actual performance process in

team sports. The next section will discuss these and other network metrics in detail.

2.3 Network Metrics

Having introduced the concepts and terminology of network modeling, this section

provides an overview on network metrics. They offer a quantification of the properties

of a network based on the interaction data captured in an adjacency matrix. As such,

they complement the visualization of networks in graphs. On a micro- or individual-

level, network metrics focus on the position of individual nodes within the network by

assessing their centrality or clustering tendencies. In contrast, macro- or team-level

metrics focus on the assessment of the global structure of the underlying network.

In a sports context, network metrics aim a quantification of the performance process

in team sports. Micro-level metrics quantify the individual contribution or role of a

player in the overall interplay. At a macro-level, network metrics analyze the passing

structure of a team as a whole. The position and role of players as well as the passing

structure is statically assessed based on one snapshot, most commonly reflecting the

passing interactions of a team throughout a match (Ramos et al., 2018).

This section outlines the most prevalent metrics in network studies on team sports.

It provides a formal introduction as well as an interpretation in a sports context.

The descriptions are occasionally accentuated with exemplary graphs for illustration

purposes.
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2.3.1 Individual-level metrics

On an individual-level, network metrics assess the position of a node within an ex-

isting network. This allows a comparison between nodes and quantification of their

contribution to the overall network structure (Jackson, 2010). In a team sports con-

text, individual-level metrics assess the role and importance of individual players in

the interplay of the entire team.

Technically, this is carried out by evaluating the centrality or clustering tendencies

of a node. The evaluation of centrality is commonly subdivided into four different

metrics (Borgatti & Everett, 2006): i) degree centrality measures how connected a

node is directly with other nodes, ii) eigenvector centrality assesses the importance

based on how central the immediate neighborhood of a node is, iii) closeness centrality

assesses how strong the connection is to all other nodes in the network - directly and

indirectly, and iv) betweenness centrality captures how important a node is based on

how well it facilitates the indirect connections between the other nodes in a network.

Betweenness and closeness centrality are determined based on a node’s role in the

network flow on an existing network structure as discussed preciously. In particular,

both metrics apply the concept of shortest paths to assess the importance of nodes.

Apart from centrality, a different approach to assess a node’s position is to evaluate

its clustering tendencies. This implies an assessment of the level of connectedness in the

node’s immediate neighborhood. The underlying metric is called clustering coefficient

and is outlined in detail in the following alongside the centrality measures that were

introduced above.

Degree centrality

Degree centrality assesses the direct connections of a node by counting the number

of edges between itself and the other nodes of the network. Thus, as the simplest

measure, it assesses the centrality of a node by its immediate connections as defined

by Proctor and Loomis (1951) and Shaw (1954). The degree centrality index, CD(ni),

for node ni in an unweighted and undirected network is calculated as,

CD(ni) =
∑
i 6=j

xij (2)

where xij defines the tie between nodes ni and nj. In a directed network, in-

degree counts the incoming edges of a node, while out-degree aggregates the outgoing

edges. This differentiation allows a more accurate evaluation of the connections. In a
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weighted network, the intensity of the direct connections is also considered resulting

in the weighted degree metric.

In a team sports context, degree centrality determines the importance or centrality

of a player by assessing the direct interactions with team members. If modeled as

an unweighted and undirected network, the focus lies on the simple count of different

team members that a player passes with at least once. In a directed but unweighted

network setting, there is a differentiation between the number of team members that

a player successfully passed to and received the ball from at least once. If the passing

interaction is modeled as a weighted network, the frequency of passes is considered as

well.

Figure 11 is an exemplary graph visualizing the snapshot of a passing network

between five football players. The degree centrality of player A is, CD(A) = 4, as

he interacts with all four team members at least once. His in-degree centrality is,

CID(A) = 3, because player A receives at least one pass from three players (B, C

and E) and the out-degree centrality is, COD(A) = 4, because he passes the ball to

all four players at least once. The weighted in-degree value of player A aggregates

all successfully received passes (CWID(A) = 15), while the weighted out-degree value

counts all successfully played passes by player A (CWOD(A) = 10).

Figure 11: Exemplary passing network for degree measurement

For comparison purposes across different passing networks, the metric can be nor-

malized by the maximum number of team members that a player can potentially

interact with (unweighted network) or by the player’s share in the overall passing in-

tensity of the team (weighted network). In summary, degree centrality addresses the

most direct form of involvement in the interactions of a team and does not rely on any

flow processes on a given network structure.
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Eigenvector centrality

Eigenvector centrality evaluates the importance of a node based on how central

all adjacent nodes are. Similar to degree centrality, it measures the centrality of a

node based on the number of ties it has with other nodes in the network. However,

as an extension, the importance of the node is not only dependent on the number

of direct connections but also on the connectivity of the adjacent nodes, as proposed

by Bonacich (1972). Thus, the metric assumes that not all connections are equally

important following the belief that influential adjacent nodes increase one’s own influ-

ence (Newman, 2016). The eigenvector centrality index, CEV (ni), for node ni in an

unweighted and undirected network is calculated as,

CEV (ni) =
1

λ

∑
i 6=j

xij CEV (nj) (3)

where xij defines the tie between nodes ni and nj, CEV (nj) is the eigenvector value

of node nj and λ is a constant. Thus, centrality is measured as a function of the

centrality of all adjacent nodes. By construction, the metric cannot be applied to

weighted and directed network models.

In a team sports context, the metric attributes high centrality to players that inter-

act with many team members who themselves have many direct passing connections.

Thus, passing solely with one particular player who is highly connected within the rest

of the team might lead to larger eigenvector centrality than interacting directly with

many unpopular players, in terms of their inclusion in the passing.

As the interaction can only be modeled in an undirected and unweighted setting the

intensity and direction of passing is ignored in the estimation. In order to obtain any

meaningful variation in the eigenvector centrality values across players in a team, the

network must not be complete. A complete network would imply that all players are

connected with each other leading to equal eigenvector centrality values by definition.

Closeness centrality

Closeness is a measure of centrality first introduced by Bavelas (1950) to assess how

well-connected a node is with all other nodes in a network. The concept is based on

the belief that a node is central if it is influential within its network. This is evaluated

by its proximity to all other nodes (Wasserman & Faust, 1994). Technically, this is

calculated by the inverse sum of the shortest distances between the node of interest

and all other nodes in the network. The closeness centrality index, CC(ni), for node

ni in an unweighted and undirected network is calculated as,
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CC(ni) =

[∑
i 6=j

d(ninj)

]−1
(4)

where d(ninj) denotes the shortest distance between nodes ni and nj. In an un-

weighted setting, the shortest distance between two nodes is given by the total number

of edges to be traversed on the shortest path between them. In a weighted network,

the distance is calculated by the sum of all edge weights. A technical requirement

and limitation of closeness centrality is that all nodes need to be reachable within the

network.

In a team sports context, the immediate translation is how well a player is inter-

connected with all other team members or how much he influences the overall passing

network. The evaluation is based on a snapshot of all played passes during a certain

amount of time and strong connections are seen as favorable as outlined in the previous

section. Then, the player who minimizes the distance to all other players, measured

by the inverse sum of reciprocal passing values, has the highest closeness centrality

and is, thus, regarded as most central.

Figure 12 is an exemplary graph visualizing the snapshot of a passing network

between four football players. The edge weights represent the number of passes played

to each other. As outlined in the previous section, strong connections are seen as

favorable in a sports context. Thus, the reciprocal values of edge weights should be

considered. Then, player D has the highest closeness centrality. The minimum distance

between him and player A is 1
5

= 0.2, player B is 1
4
+ 1

10
= 0.35 and player C is 1

4
= 0.25.

The corresponding centrality value is CC(D) = 1
0.35+0.25+0.2

= 1.25. In contrast, player

A has the lowest closeness centrality (CC(A) = 1
0.55+0.45+0.2

= 0.83).

Figure 12: Exemplary passing network for closeness measurement
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As closeness centrality is built on the concept of flow, shortest paths between

players do not necessarily resemble actual passing sequences. Therefore, there is rather

a metaphorical than sport-specific interpretation to closeness centrality.

Betweenness centrality

Betweenness centrality is a measure first introduced by Freeman (1977) that as-

sesses the importance of a node by its intermediary role in bridging the connection

between nodes of the same network. More specifically, the metric counts how often

a node lies on the shortest paths between any set of two nodes, evaluating centrality

by its bridging quality. Thus, the node with the best strategic position to facilitate

flow between nodes is regard as most central. Betweenness centrality index, CB(ni),

of node ni in an unweighted and undirected network is calculated as,

CB(ni) =
∑
j 6=k 6=i

gjk(ni)

gjk
(5)

where gjk denotes all shortest paths between nodes nj and nk, while gjk(ni) repre-

sents a subset of those paths in which node nj is functioning as a bridging unit. The

distance between nodes is evaluated either by the number of edges or the sum of edge

weights.

In a team sports context, the immediate translation would be how often a player

is bridging the strongest pairwise passing connection between members of his team.

Again, Figure 12 can serve as an example to illustrate the idea of betweenness centrality

in a sports context. Closeness centrality was interested in the total distances of the

shortest paths between players. Betweenness centrality assesses how often a player is

on the shortest paths between any set of two team members. In the given example,

this is the case in two occasions for players C and D, respectively. The shortest path

between players A and C is via player D, the shortest path between players B and D

is via player C, and the shortest path between players A and B is via both, players

C and D. Following Freeman (1977), betweenness values are often normalized by the

maximum number of pairs ( (n−1)(n−2)
2

) that the player of interest could potentially be

in-between of given a passing network of n players. Thus, the normalized betweenness

centrality of players C and D in the given example is 2
3

equally. Players A and B are

not on the shortest paths between any pair of players resulting in a betweenness score

of 0.

Again, the shortest path between any set of two players does not necessarily reflect

actual consecutive passes of the ball. Hence, players with high betweenness centrality
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do not necessarily connect other players during a ball possession. The calculation is

based on the aggregated passing data captured during a certain amount of time. Thus,

betweenness centrality rather provides a metaphorical than sport-specific interpreta-

tion of an intermediary or bridging player.

Local clustering coefficient

The local clustering coefficient is a measure that indicates how closely intercon-

nected the direct neighborhood of a node is. Following Watts and Strogatz (1998) and

Fagiolo (2007), it calculates the proportion of adjacent nodes that are also directly

connected with each other. That way, one can evaluate whether the node of inter-

est is part of a subgroup that frequently interacts with each other leading to strong

triangular connections. Local clustering coefficient index, CC(ni), of node ni in an

unweighted and undirected network is calculated as,

CC(ni) =

∑
j 6=k 6=i xij xik xjk

CD(ni) (CD(ni)− 1)
(6)

where xij defines the tie between nodes ni and nj and CD(ni) the degree centrality

of node ni. In a weighted and directed setting, the intensity and direction of the

connections are also considered. In contrast to the previously introduced centrality

metrics, the local clustering coefficient evaluates the immediate structural properties

around the node of interest.

In a team sports context, it is a measure to evaluate whether a player is part of

a subgroup that frequently interacts with each other. Similar to betweenness central-

ity, this does not necessarily imply that triangular relations are formed sequentially.

Calculating clustering coefficients is a static evaluation based on an existing network

structure of played passes that considers the overall interactions between players.

2.3.2 Team-level metrics

Team-level metrics assess the structure and properties of a network as a whole. In a

team sports context, they assess the general structure of interplay between the entire

team. Total links, reciprocity and density assess the general connectivity between all

nodes in the network. Centralization and heterogeneity assess the differences between

the individual-level metrics of all nodes in the network. Moreover, the average value of

a particular micro-level metric across all nodes of a network can also be considered as an

indicator for the general network structure. However, this straightforward procedure

is not further investigated in this section.
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Total links

The total links of a network offer an understanding of the general intensity of inter-

actions between nodes in a network. As the simplest measure, they are the summation

of all edges between nodes in a network. Total links index, TL, is calculated as

TL =
∑
i

∑
j

xij (7)

where xij defines the tie between nodes ni and nj. The idea can also be extended

to a weighted and directed network setting. In an unweighted setting the values are

bounded between 0 and the number of possible connections (n (n−1)
2

) given a network

with n nodes. In a weighted setting there is no upper boundary.

In a team sports context, this metric signals the total number of passing connec-

tions between players (unweighted network) or the sum of all passes played (weighted

network).

Reciprocity

Reciprocity evaluates to what extent the connections between nodes are mutual in

a network. Thus, it signals how mutually balanced or one-sided the connections of a

network are. It is measured by the proportion of reciprocal connections against the

total number of links. Reciprocity index, R, is calculated as

R =

←→
TL

TL
(8)

where
←→
TL signals reciprocal connections, while TL denotes the total number of

connections as introduced before. Thus, values are bounded between 0 and 1. The

lower bound indicates that there are no reciprocal connections at all, while the upper

bound implies that all connections are reciprocal. In a weighted setting, reciprocity

evaluates to what extent the intensity of a connection is reciprocated.

In a team sports context, reciprocity measures to what extent interplay and the

intensity of interplay between players is mutual within a team. In case the overall

passing network is considered, the metric does not reflect actual interplay in form of

one-two passes, i.e. situations in which player A passes to player B and back to player

A. Reciprocity indicates how balanced the overall passing between players A and B is

across a certain amount of time.
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Density

Density measures the general level of cohesion in a network. Following Wasserman

and Faust (1994), the metric evaluates the number of actual connections against the

number of possible connections between nodes in a network. Density index, D, is

calculated as,

D =
2 TL

n (n− 1)
(9)

where TL is the number of actual connections and n (n−1)
2

the number of possible

connections. Thus, the metric is bounded between 0 and 1.

In a team sports context, density quantifies the level of cohesion and, thus, traces

the degree to which pairwise player connections are exploited. Figure 13 provides the

example of two passing networks involving four players each. Network a) exploits half

of its six potential connections resulting in a density value of 0.5. In contrast, the

number of actual connections equals the number of potential connections in network

b) leading to a density value of 1. This implies that there is a passing connection

between every set of two players.

While density measures the general level of cohesion in terms of passing, there is

no information on the concentration of interplay around certain focal players.

Figure 13: Exemplary passing networks for density measurement

Centralization

Centralization evaluates to which extent the cohesion is concentrated around a

focal point or node in a network (Freeman, 1978). Therefore, it can be seen as a

complementary measure to density. It measures the normalized deviation of a certain
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individual-level metric between all nodes and the node with the highest metric value in

the network. Using degree centrality as an exemplary metric, the degree centralization

index, DC, is calculated as,

DC =

∑
CD∗ − CD(ni)

(n− 2) (n− 1)
(10)

where CD∗ is the highest degree value of a node in the network and CD(ni) the

degree value of node ni. The summed differences are normalized by the maximum

deviation possible ((n − 2) (n − 1)), bounding the maximum degree centralization

value to 1.

In a team sports context, the metric measures to what extent interplay is dependent

on or centralized around one player. The exact type of dependency is determined by the

choice of the individual-level metric employed. In the degree case, a high centralization

value indicates that the interplay is mostly structured around one focal player, while

a centralization towards 0 signals a balanced involvement of all players across a team.

Figure 14 provides the example of two passing networks involving five players each.

While both networks have the same density value, D = 2×4
5(5−1) = 0.4, the interplay in

network b) is more concentrated around one focal player than in network a). In fact,

the degree centralization of network b) is 1, while the value for network a) is only 1
6
.

Figure 14: Exemplary passing networks for centralization measurement

The metric assumes that there is only one focal player and is, thus, designed to

detect the extent to which the interplay is concentrated around this player. Central-

ization does not consider the distribution of the passing shares of the other players.
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Heterogeneity

Heterogeneity evaluates to which extent the cohesion is concentrated around mul-

tiple hubs (Dong & Horvarth, 2007). In contrast to centralization, the metric does

not focus on a single focal node but evaluates overall deviation tendencies in a net-

work. Following Snijders (1981), the variance of a certain individual-level metric across

all nodes of a network is measured adjusted by the mean value. Using again degree

centrality as an exemplary metric, the degree heterogeneity index, DH, is calculated

as,

DH =
n
∑
CD(ni)

2 − (
∑
CD(ni))

2

(
∑
CD(ni))2

(11)

where n is the number of nodes in the network and CD(ni) the degree value of node

ni. The metric has a lower bound of 0 signaling no prevalence of hubs.

In a team sports context, heterogeneity measures to what extent interplay is de-

pendent on or centralized around certain hubs. Hence, it identifies whether ball pos-

sessions are concentrated around a subset of players. In the case of degree centrality,

heterogeneity values are increasing with an imbalance in passing shares across players.

Figure 15 provides the example of two passing networks involving six players each.

While both networks have the same density value, D = 2×5
6(6−1) = 0.3, the interplay

in network b) is more concentrated around a hub, consisting of two players, than in

network a). In fact, the degree heterogeneity of network b) is 0.32, while the value for

network a) is only 0.08.

Figure 15: Exemplary passing networks for heterogeneity measurement

While the metric is sensitive to deviations as such, it is not designed to detect any

specific number of focal players.
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2.4 Related Work

This section provides an extensive overview on the research conducted on passing

networks in team sports using SNA. In particular, the section discusses the range of

team sports and competitions that SNA has been applied to, the procedures taken to

model passing networks and the variety of network metrics and visualization techniques

applied, thus far.

Teams sports and competitions

The majority of studies that model interaction networks in team sports have been

conducted in football. Only a few studies focus on interaction networks in other

team sports. Fewell et al. (2012) and Clemente et al. (2015a) analyze the passing

interactions between team members in basketball for multiple matches in the National

Basketball Association (NBA) and in a training environment, respectively. Sasaki et

al. (2017) model the defensive behavior of rugby players defining the strength of a tie

between two players by the number of their joint defensive actions during a match.

In other team sports, there is no immediate application of network analysis on the

interaction patterns during training or matches, thus far. Thus, the remainder of this

section focuses mostly on football as nearly all studies are conducted in this sport.

Here, most samples consist of matches from male professional leagues and major

professional tournaments. Clemente et al. (2016a) compare the passing interactions

between teams of the Spanish LaLiga and the English Premier League. Grund (2012)

focuses on a passing analysis of Premier League matches from multiple seasons, while

the study by Gama et al. (2015) provides an example of SNA conducted on matches

from the Portuguese Football League.

On a tournament-level, several studies focus on passing networks from matches in

the UEFA Champions League (Trequattrini et al., 2015; Clemente & Martins, 2017a;

Clemente & Martins, 2017b; Pina et al., 2017; Oliveira & Clemente, 2018). McLean et

al. (2017a) analyze the passing interactions of teams participating in the COPA Amer-

ican football championships and European football championships in 2016 setting the

focus on national teams. Moreover, there are several studies analyzing passing struc-

tures of national teams that participated in FIFA World Cup tournaments between

2010 and 2018 (Pena & Touchette, 2012; Cotta et al., 2013; Clemente et al., 2015b;

Clemente et al., 2016b; Peixoto et al., 2017; Clemente, 2018; Praça et al., 2019). Be-

sides, there is also some research on SNA in a controlled football training environment

(Gonçalves et al., 2017; Praça et al., 2017; Praça et al., 2018).
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Modeling passing networks

The two most frequently used sources for passing data are aggregated passing

matrices that are publicly available alongside the data extraction from self-conducted

video analysis. Aggregated interaction matrices reporting the passes between players

are provided by the UEFA Champions League and FIFA World Cup in football and set

the basis for the network analysis in several studies (e.g. Clemente & Martins, 2017b).

In contrast, McLean et al. (2018) collect passing data through a video analysis of

recorded matches at the European football championships in 2016.

The level of analysis is often determined by the data source. Passing data that is

publicly available provides a single interaction matrix per team representing the aggre-

gated passing interactions throughout a match. Thus, SNA is necessarily conducted at

match-level. In contrast, video analysis provides a flexible choice as passing sequences

from individual ball possessions can be captured in separate matrices. Although the

majority of studies are still analyzed at match-level, some studies break down the

analysis to intervals (e.g. Pina et al., 2017) or even plays (e.g. McLean et al., 2017a).

Independent of the level of analysis, nodes either represent actual players, playing

positions or zones on the pitch in which passes are controlled or executed by a player.

Actual player names are mostly used in studies that aim at a practical match analysis

to evaluate the role of players in the interplay of their team (Duch et al., 2010, Pena

& Touchette, 2012; Cotta et al., 2013; Trequattrini et al., 2015). In contrast, the

majority of studies conduct an ex-post codification of playing positions. This procedure

increases the comparability of network metrics across multiple matches aiming at a

rather general understanding of interplay in the sport. Some studies neither focus on

the individual analysis of players nor playing positions. For example, McLean et al.

(2018) divide the football pitch into zones to represent nodes.

Application of network metrics

Based on the network modeling, network metrics are applied to quantify the in-

volvement of players and the general interplay structure. Here, the majority of studies

apply network metrics at match-level.

Focusing on individual metrics at match-level, weighted in- and out-degree are

frequently used as an alternative to reporting overall passing statistics. Weighted in-

degree is employed to identify how often the ball is directly passed to a player during

a match. The midfield position is identified as the most targeted playing position

in the majority of studies (Clemente et al., 2015b; Clemente et al., 2015c; Clemente

& Martins, 2017a). In contrast, weighted out-degree is used to identify the playing
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position that is frequently passing the ball. Similar to weighted in-degree, midfielders

and especially central midfielders are attributed the highest centrality based on that

particular metric (Clemente et al., 2015 JPES; Clemente et al., 2015b; Clemente &

Martins, 2017a; Peixoto et al., 2017). There is also a study by Aquino et al. (2018)

that applies eigenvector centrality as an extension to degree centrality. This study

also highlights midfielders as most central. Other studies calculate clustering coeffi-

cients to assess potential cliques of players that frequently interact with each other.

The clustering tendencies turn out to be evenly distributed across playing positions

(Clemente et al., 2014a; Gama et al., 2015; Arriaza-Ardiles et al., 2018).

However, the two most applied individual metrics at match-level are betweenness

and closeness centrality. Betweenness centrality is used by researchers to detect inter-

mediary players in the interaction process. Players with high betweenness centrality

are referred to as bridging players that ensure the ball flow between players (Arriaza-

Ardiles et al., 2018). Pena and Touchette (2012) interpret betweenness centrality as

the dependency on a player to facilitate ball flow. Clemente et al. (2016c) describe

right defenders and forwards as bridging players as they obtain the highest between-

ness values in their study. In fact, in the majority of studies midfielders and especially

central midfielders are identified as the playing position with the highest betweenness

centrality (Clemente et al., 2015b; Clemente & Martins, 2017a; Peixoto et al., 2017;

Aquino et al., 2018; Castellano & Echeazarra, 2019).

Closeness centrality is used to identify how well connected a player is within the

team. While Clemente et al. (2016c) cannot detect any tendency towards a playing

position in their study, Pena and Touchette (2012) ascribe defensive and central mid-

fielders the highest closeness value. This is in line with Clemente et al. (2015b), Aquino

et al. (2018) and Castellano and Echeazarra (2019) who identify central midfielders as

the playing position with the highest closeness centrality. As the metric requires the

inclusion of all players in the network, it is not surprising that it is exclusively applied

at match-level maximizing the likelihood of all players being involved in the interplay

at least once.

Turning to team metrics at match-level, several studies report the average sum of

the weighted in- and out-degree value of each player (Clemente et al., 2015b; Clemente

et al., 2016b; Peixoto et al., 2017). The last-mentioned study finds this metric to be

significantly negatively correlated with the number of scored goals. The less passes

are played and received by each player on average, the more goals are scored by that

particular team. Clemente (2018) calculates the fraction of links that is reciprocal. As

he models an aggregated passing network, the weighted reciprocity coefficient is used.

36



Moreover, density and total links are computed in the majority of studies to better

assess the general level of cohesion in football matches. While Peixoto et al. (2017)

find the metric to be negatively correlated with the number of scored goals by a team,

Clemente (2018) detects a significantly positive correlation of the density value of

a team with its total number of shots on goal during a match. In addition to the

general level of cohesion, several studies focus on the extent to which the cohesion

is concentrated around focal players or hubs. Clemente et al. (2015d) and Gama et

al. (2015) apply weighted degree centralization and degree heterogeneity to detect

focal players. Their results suggest a rather balanced passing involvement across all

players in football. Grund (2012) calculates weighted in- and out-degree centralization

to assess whether the number of passes played and received is concentrated around

a focal player, respectively. He finds that centralization is negatively correlated with

the total number of goals scored by a team. This suggests that the absence of a focal

player is favorable in terms of team performance.

The discussed studies were all conducted at match-level, calculating individual and

team metrics based on the interactions of a team across an entire match. A minor-

ity of studies assesses smaller interaction networks. Interval-level analysis investigates

the passing interactions across certain time-intervals of a match, while play-level anal-

ysis looks at each ball possession separately. On an interval-level, Clemente et al.

(2016a) capture six passing networks per team per match representing 15-min inter-

vals. They identify the midfield positions to be most involved in the interplay measured

by weighted in- and out-degree. The same result is obtained by Yamamoto (2010) who

analyzes one football match using 5min-intervals. Turning to team metrics, Pina et

al. (2017) calculate density, the average clustering coefficient and degree centraliza-

tion for twelve Champions League matches using 15min-intervals. Following the idea

of using the entering of a finishing zone as a proxy for the successful outcome of a

ball possession (Tenga et al., 2010), they find density to be a significant predictor for

successful play outcomes. According to their results, reduced density corresponds to

a larger amount of successful plays.

On a play-level, McLean et al. (2017a) apply density and reciprocity to analyze

ball possessions that lead to scoring a goal. McLean et al. (2018) also calculate in-

and out-degree in a separate study. However, they do not model players or playing

positions as nodes, but define four equally large pitch zones in which the ball was either

controlled or passed from. Moreover, the concept of flow centrality is used to assess

the involvement of players in the interplay at play-level. Instead of analyzing the mean

involvement of a player in each ball possession across a match, flow centrality builds

the ratio of plays that a player is part of to the total number of plays of its team. Thus,
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each ball possession phase is looked at separately and the metric is bounded between

0 and 1 by construction. Using this metric, Clemente et al. (2014b) identify the right

defender position to be most involved in football matches. Duch et al. (2010) define

flow centrality as the fraction of plays in which a playing position is involved in that

lead to a shot on goal. They identify midfielders to be most involved. In contrast,

Fewell et al. (2012) calculate flow centrality in basketball. They identify the point

guard position as most central in terms of its overall involvement across a match.

Visualization of passing networks

Evidently, SNA in team sports is primarily facilitated by the calculation of indi-

vidual and team metrics. However, it is often augmented by the visualization of the

underlying passing networks as illustrated in Figure 2 of the introduction. In most

studies, the aggregated interactions between players across a match are visualized and

the arrangements of the nodes resemble the tactical formations of teams. The di-

rection of the connections is displayed using arrowed lines, while the intensity of the

connections is expressed by the thickness of the lines. Duch et al. (2010) extend the

representation of passing networks by also modeling possession outcomes as can be

seen in Figure 16. A directed connection towards a possession outcome either repre-

sents a shot on goal or off target. In the play-level study by McLean et al. (2017a),

the sequential order of the passes of one ball possession phase is visualized. In con-

trast to the other representations that visualize aggregated networks, their focus lies

on visualizing the passing sequences as they unfold on the pitch.

Figure 16: Illustration of two passing networks as modeled by Duch et al. (2010)
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3 Studies

This chapter outlines the studies defining this dissertation, consisting of three journal

articles (two published and one in press) and their specific contribution based on the

outlined aims in the introduction. They all focus on interaction networks using passes

to model ties. Moreover, nodes represent playing positions which is in line with the

majority of research conducted in the field. The first study addresses the scarcity

of team sports that network analysis has been applied to alongside a comparison of

interaction patterns across sports. The second study is a practical implementation

of a play-level analysis in handball to enable a comparison of interplay in different

situational contexts. The third study focuses on football and addresses the limited

consideration of interaction dynamics while connecting network measures to perfor-

mance outcomes at play-level. The original and full version of each article can be

found in the Appendix.

3.1 Study 1 - Characterizing different team sports using net-

work analysis

Citation

Korte, F., & Lames, M. (2018). Characterizing different team sports using network

analysis. Current Issues in Sport Science, 3:005.

Contribution of author

The author of this dissertation was the principal investigator and author of the

accepted article. He developed the idea for the study, the study design, and chose the

methods to be used. Moreover, he led the statistical procedures and interpretation of

the data. Martin Lames supported the development of the research design and the

statistical procedures. The author of this dissertation wrote the article, accepted in

Current Issues in Sport Science, while receiving feedback from his co-author.

Summary

The main motivation for the first article was to extend the application of network

analysis to more team sports by modeling their passing interactions as a network. Here,

the aim was not to create an in-depth performance analysis of each examined sport.

Instead, the goal was to generate first insights on the interaction patterns of various

invasion team sports and comparing the basic structure of interplay and dominant
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playing positions between the sports. As team sports differ in the constraints that

players face, different patterns of interaction are required in order to succeed (Araújo

& Davids, 2016). Thus, this study did not only aim at a better understanding of

the interaction patterns within each sport, but also at uncovering and quantifying the

resulting differences between them.

Eight matches from professional men’s tournaments in football, basketball and

handball were examined, respectively. For simplicity reasons, a match-level approach

was chosen analyzing the overall passing interactions of each match. As the focus

of the study lied on the variety of team sports and comparison of interplay between

them, the most common individual metrics of the existing literature were applied,

namely weighted in- and out-degree, closeness and betweenness. The aim was to assess

the dominant playing positions of each team. The codification of playing positions

enabled the comparison between centrality values across matches. Different types of

centralization metrics were also employed to identify to what extent interplay could

be concentrated around a focal player.

Moreover, minimum spanning trees (MSTs), previously applied in finance to un-

cover asset correlations in the stock market (Bonanno et al., 2003), were introduced to

the interaction analysis in team sports as a visualization technique. Visualizations of

passing networks in previous studies appeared rather overloaded by the abundance of

connections that are accumulated during a match. MSTs only visualize the strongest

passing connections under the side condition that each player is still part of the re-

sulting interaction network.

The defensive midfielder in football, the point guard in basketball and center in

handball were identified as most the prominent players in the interplay of their sport.

For football and basketball, this was in line with previous literature (Fewell et al.,

2012; Clemente & Martins, 2017a). As it was the first application of network analysis

in handball, there were no comparison values. The tendencies towards a focal player

were highest in handball, followed by basketball and football. The application of

MSTs uncovered the basic structure of interplay in the respective team sports. While

in football the strongest interplay was visible between defensive players and along

attacking wings, a star topology centered around the point guard became visible in

basketball. In handball, the MST resembled the basic tactical formation in attacking

plays suggesting that individual centrality values might be partly predefined by the

playing position in handball.

Overall, this was the first study that drew a comparison of the passing interactions

and dependencies on dominant playing positions between different team sports. For
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the first time, a network approach was taken for the analysis of passing structures in

handball and team properties in basketball. Moreover, the study contributed to the

understanding of the similarities and differences between invasion team sports using

their interplay structures. In line with previous studies, it highlighted how different

constraints, such as the rules of the game or markings of the pitch, affect the interaction

patterns of invasion team sports. The introduction of MSTs facilitated an alternative

and comprehensible visualization of interplay structures at match-level.

3.2 Study 2 - Passing network analysis of positional attack

formations in handball

Citation

Korte, F., & Lames, M. (in press). Passing network analysis of positional attack

formations in handball. Journal of Human Kinetics.

Contribution of author

The author of this dissertation was the principal investigator and author of the

accepted article. He developed the idea for the study, the study design, and chose the

methods to be used. Moreover, he led the statistical procedures and interpretation of

the data. Martin Lames supported the development of the research design and the

statistical procedures. The author of this dissertation wrote the article, accepted in

Journal of Human Kinetics, while receiving feedback from his co-author.

Summary

The main motivation for the second article was the practical implementation of a

play-level analysis in handball. In that particular sport, the passing interaction during

positional attacks, defined as the collective offensive actions of a team in which all

playing positions are taken, is crucial to achieve a favorable throwing position on goal

(Wagner et al., 2014). Building on the findings from the first study, passing networks in

handball were further explored. Attacks are frequently played in different formations

with variations in the numbers of attacking and defending players. This is induced

by temporary suspensions as well as the permission to replace the goalkeeper for an

additional offensive player. Thus, the second study specifically targeted a practical

play-analysis of interplay to account for varying situational contexts.

22 professional handball matches from the European Men’s Handball Champi-

onship 2018 were analyzed. In comparison to previous network studies in football,
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playing positions were directly tracked instead of tracking players in first place and

assigning playing positions ex-post. This was due to the more static setup of players

in handball (Korte & Lames, 2018). Moreover, tracking playing positions allowed a

fluent observation process due to the frequent substitutions in handball. In addition,

Gwet’s AC1 inter-rater statistic was added to the reliability testing of the data. Com-

plementary to Cohen’s Kappa, Gwet’s statistic analyzed the agreement on the actual

occurrence of a pass before turning to the passer and receiver in detail. This was due

to the rapid nature of interplay in handball prone to the oversight of passes during

video analysis.

Weighted in- and out-degree, flow centrality as introduced by Fewell et al. (2012),

density and degree centralization were computed to assess the involvement of players

and general structure of interplay in the four most prevalent attack formations in

handball. Frequently used metrics such as betweenness and closeness centrality were

not employed due to their assumptions on the network that do not necessarily reflect

actual interplay in handball. The used network measures made no requirements on

the size and connectivity of the network.

Regardless of the attack formation, interplay was found to be structured around the

center and back positions. This was in line with the results of the first study. However,

significant differences were found in the passing contribution of playing positions and

interplay structures depending on the attack formations.

Overall, this was the first study conducting an in-depth network analysis in hand-

ball at play-level. It provided deeper insights on the passing involvement of playing

positions in different attack formations. While the first study dealt with differences

in the interaction patterns due to the varying constraints across different team sports,

the differences in interaction patterns in the second study were induced by the varying

constraints within the sport itself and revealed by a play-level approach.
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3.3 Study 3 - Play-by-play network analysis in football

Citation

Korte F., Link D., Groll J., & Lames M. (2019). Play-by-Play Network Analysis

in Football. Front. Psychol. 10:1738.

Contribution of author

The author of this dissertation was the principal investigator and author of the

published article. He developed the idea for the study, the study design, and chose

the methods to be used. Moreover, he led the statistical procedures and interpretation

of the data. The data collection was conducted with the support of Johannes Groll.

Martin Lames supported the development of the research design and the statistical

procedures. The author of this dissertation wrote the article, published in Frontiers in

Psychology, while receiving feedback from his co-authors.

Summary

The main motivation for the third article was the execution of a play-level analysis

in football considering the sequential order of passes while offering a connection to

successful as well as unsuccessful performance outcomes. In particular, the study

proposed a metric that detects intermediary players and, thus, offers an alternative

to betweenness centrality. In addition, the goal was to connect the resulting network

metrics with successful and unsuccessful play-level outcomes. Following Ramos et al.

(2018), previous approaches at interval- and match-level did not pin down the relevant

interplay that lead to the overall results.

70 professional men’s football matches from the 1. and 2. German Bundesliga dur-

ing the 2017/2018 season were analyzed. As a novel approach and contrary to a video

analysis or provision of passing matrices at match-level, action feeds on successfully

played passes were combined with positional data on every player and the ball. This

facilitated the sequential tracking of passing sequences. Moreover, the differentiation

between successful and unsuccessful performance at play-level was approximated by

evaluating the entering of a finishing zone during plays, following Tenga et al. (2010)

and Pina et al. (2017).

Following Fewell et al. (2012), flow centrality was calculated to assess the fraction

of plays across a match that a playing position is involved in at least once. In addition

to that, a new metric called flow betweenness was introduced. It measures the fraction

of plays across a match that a particular playing position is actually in-between of. In

general, that is the case if a player receives and passes on the ball at least once during
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a ball possession phase, connecting two different team members. Thus, the metric

offers an alternative to betweenness centrality at play-level by actually considering the

sequential order of passes.

Central defenders were identified as most involved according to flow centrality and

most in-between according to flow betweenness. However, this was only the case in

unsuccessful plays. Central offensive midfielders were most involved in successful plays,

while central defensive midfielders were most intermediary.

Overall, this was the first study that assessed the centrality levels of playing po-

sitions in football at play-level while considering the sequential order of passes. The

introduction of flow betweenness offered a metric that assesses the intermediary role

of players reflecting actual interplay. In general, flow-based metrics were positioned as

suitable network measures in football. This is because they are robust to plays con-

sisting of only few passes and players and consider the sequential order of interplay.

Moreover, this study offered a differentiation between centrality measures in successful

and unsuccessful plays advancing the understanding of the role of playing positions in

the interplay of football.
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4 Discussion

Building on existing work, the studies of this dissertation extend and refine the model-

ing of interaction patterns in team sports using SNA. In particular, the studies focused

on the extension of the method to more team sports, the breakdown of interplay to

individual plays in order to consider varying situational contexts and the modeling

of dynamics in passing networks. Thereby, the studies of this dissertation aimed at

contributing to the theoretical and practical aspects of performance analysis in team

sports.

Figure 17 provides an overview on the studies by classifying them according to their

level of analysis and consideration of dynamics. Study 1 was conducted from a static

perspective at match-level and focused on the general application of SNA in more

invasion team sports beyond football. In fact, it is the first study that applied SNA

in handball. Moreover, it pioneered the comparison of interaction patterns, both on

individual- and team-level, between different team sports. The complexity of the inter-

action networks, due the abundance of interactions across an entire match, was reduced

using MSTs. Study 2 addressed the limited context that was provided at match-level

in the first study by facilitating a breakdown of passing networks to separate plays

in handball. The procedure demonstrated how play-level analysis regards the varying

situational contexts that impact team interactions and, thus, performance. Study 3

modeled the sequential order of plays in football by introducing flow betweenness to

consider the dynamics of team interactions. Besides, the study connected the play-

level analysis with varying performance outcomes to rigorously assess the individual

contribution of players.

Figure 17: Overview on studies by level of analysis and modeling of dynamics
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In the following, the theoretical and practical impact of the studies is highlighted

alongside a discussion on the still existing limitations of the network approach in this

dissertation.

4.1 Theoretical Impact

Theoretical performance analysis aims at determining the structure and even nature of

performance (Lames, 2018). In team sports, this implies a formalized understanding of

game behavior including the interactions between players of a team (McGarry, 2009).

Thus, the theoretical impact of this dissertation can be evaluated by its contribution

to the modeling and structuring of performance in team sports. It is outlined in the

following and subdivided into four parts. The first part discusses the overall impact of

this dissertation on the performance structuring within and across team sports. The

second part focuses on the specific theoretical implications of the play-level approach.

The third part evaluates the impact on the modeling of dynamics in the analysis of

team performance. The fourth and final part deals with the graph-theoretical impact

of this dissertation.

Performance structure within and across team sports

Team sports are characterized by the flow of interactions between players to col-

lectively outperform the opponent team (Mateus, 2005). Interactions patterns emerge

under the influence of specific constraints and are crucial in order to succeed (Araujo

& Davids, 2016). SNA models the interactive behavior between players that team per-

formance emerges from. Hence, it is self-evident that the mere extension of the method

to more team sports beyond football extends the repertoire of modeling performance

in the respective sports.

In fact, this dissertation pioneers the modeling and analysis of interplay patterns in

handball. This implies a theoretical contribution to the characterization of individual

and team performance. On an individual level, most studies in handball have focused

on physical profiles, e.g. total running distance in a match, and throwing statistics

to characterize the performance of players (e.g. Chaouachi et al., 2009). According

to Volossovitch (2013), there is a lack in the modeling of position-specific playing

performance to describe the individual contribution of players in handball. Thus,

this dissertation adds to the characterization of individual performance in handball

by modeling and quantifying the contribution of playing positions to the performance

process of a team. On a team level, research has focused on the scoring efficiency

of teams to explain performance outcomes (e.g. Vuleta et al., 2003). The collective

46



actions of handball teams, in order to create a favorable throwing position, had not

been modeled prior to this dissertation. Thus, the application of team metrics and

MSTs also contribute the modeling of collective team performance in handball.

In basketball, the interaction patterns between players of a team had not been

studied extensively, either. However, in contrast to handball, there are studies that

model the individual involvement of playing positions in successful attacks (e.g. Fewell

et al., 2012). Moreover, Bourbousson et al. (2010) assess the degree of coordinated

movement of basketball teams. Yet, this dissertation modeled the structure of inter-

play for the very first time by applying team metrics and MSTs. This facilitates an

alternative and complementary approach to modeling team performance in basketball.

In addition to that, this dissertation contributes to the general understanding of

invasion team sports by drawing a quantitative comparison between their specific in-

teraction structures and concentration around focal players. The overarching aim of

invasion team sports is to collectively outperform the opponent by overcoming defen-

sive lines in order to score. Differences in constraints, such as the rules of the game,

players per team or pitch sizes and markings, shape unique interaction patterns across

team sports. This dissertation provides a better understanding of invasion team sports

as such by focusing on the sport-specific constraints that shape unique interactive be-

haviors under the sports-covering aim of collectively outperforming the opponent team.

Impact of play-level approach

The second study implemented a play-level approach to model the interplay in vary-

ing situational contexts. The third study applied this level of analysis to distinguish

between the interaction patterns that lead to successful and unsuccessful performance

outcomes. While previous studies filter aggregated interactions across a match by fac-

tors such as tactical formations or match status (Clemente & Martins, 2017a; Praça

et al., 2019), the breakdown to plays offers a natural subdivision into the smallest

units of interplay and, thus, reduces the level of abstraction in the analysis. As the

approach can account for different situational contexts, a more precise modeling of

team performance is established. As an example, the analysis of handball in different

attack formations deepens the understanding of interplay by identifying the relevant

factors that structure and influence the performance process. Furthermore, analyzing

the passing interactions under the consideration of the novel goalkeeper rule provides

a better general understanding of the sport.

Moreover, a play-level analysis yields smaller networks in terms of the number of

involved players and amount of interactions in a play. Thus, this dissertation also

contributes to the proposition and selection of network metrics that are suitable at
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play-level. In the study on handball, the majority of individual and team metrics are

computed for each play resulting in an average value per match. While the average

number of passes ranges between five and seven (depending on the attack formation)

in handball plays from the underlying sample, 50% of all plays consist of two passes or

less in football (Tenga et al., 2010). Thus, flow-based metrics are identified as suitable

for the analysis of the individual contribution in football at play-level because they

focus on the proportional prevalence in plays across a match. Overall, the theoretical

impact lies in the modeling of interplay at a lower abstraction level and under the

consideration of specific contexts as well as the selection of sport-specific network

metrics to characterize team performance.

Modeling the dynamics of interactions

Previous research focused on the usefulness of SNA to model the complex inter-

actions in team sports. However, the dynamic nature of interactions has barely been

addressed (Ramos et al., 2018). The dynamic perspective on SNA traces the sequen-

tial pattern of interactions and exact ball flow between players to adequately model

performance in team sports. While the play-level approach is the basis for a dynamic

analysis, it still builds on the aggregation of passes and does not guarantee the con-

sideration of the sequential order. With regard to dynamics, the theoretical impact of

this dissertation lies in the proposition of flow betweenness which actively considers

the sequential pattern to trace actual bridging players. By adjusting to the nature of

ties in team sports, it offers an alternative to the traditional betweenness metric.

It should be noted, that all metrics used in study 2 and 3 do not violate the dynamic

nature of interplay. Although degree and flow centrality (individual-level) as well as

density and centralization (team-level) take a static perspective on networks, they are

not built on the traditional assumption of flow. Instead, they model walks of length 1

which reflects a single pass. This does not qualify them as metrics that can trace the

sequential pattern of passes, but, in contrast to closeness or betweenness centrality,

they do not ignore the actual dynamic nature at play-level. Therefore, a secondary

contribution, in terms of dynamics, lies in the selection of network metrics at play-level

that, although not actively modeling passing sequences, regard the dynamic nature of

interplay. Metrics that rely on the flow assumption, such as betweenness centrality, are

classified as approximations of performance in this dissertation that deliver no direct

sport-specific interpretation.

Visual representation of interaction networks

Apart from the computation of a novel metric, this dissertation also contributes

to the graph-theoretical aspects of SNA applied to team sports. Thus far, the vi-
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sualization of passing networks had mainly focused on the depiction of the overall

interactions between players at match-level (e.g. Pena & Touchette, 2012). As per-

formance analysis aims at the reduction of complexity and intuitive representation of

performance (Passos et al., 2016), the introduction of MSTs to highlight the strongest

connections and basic structure of interplay extends the repertoire of visualization

tools in performance analysis.

4.2 Practical Impact

The practical impact of this dissertation must be evaluated by its potential usefulness

and support for coaches and analysts of sport teams (Carling et al., 2005; Lames &

McGarry, 2007). They rely on objective information from past performances in order

to plan and conduct practice (Maslovat & Franks, 2008). This requires a profound

understanding of the nature of the underlying sport (McGarry, 2009). Moreover, an

adequate interpretation and classification of the observed performance is crucial for

the practical considerations of training as performance is subject to varying contexts

and situational aspects (Lames & Hansen, 2001). This dissertation contributes to the

improvement of both aspects.

The mere introduction of SNA to invasion sports such as handball already leads

to a better information basis for coaches on the performance of their respective team.

That is because the sport heavily relies on passing to achieve a favorable throwing

position and, in a practical match analysis, SNA provides insights on the crucial play-

ers structuring the interplay of their team as well as the overall passing structure.

Similarly, past performances of future opponents can be studied as part of the game

preparation.

However, the information becomes more useful if put into context. Here, play-

level analysis offers a more accurate breakdown of the emerging behavior in varying

game situations facing different constraints. It implies an enhanced ability to control

for situational variables and the connection to performance outcomes that describe

interactions leading to success - or not. According to Praça et al. (2017), the resulting

awareness of constraints and circumstances that lead to certain interactions can help in

training. Here, certain constraints can be artificially reconstructed to produce desirable

interaction patterns and, thus, use the knowledge for new training stimuli. As an

example, imagine a setting in which the match analysis of an upcoming opponent

reveals that certain playing formations or types of defense force the future opponent

into specific passing patterns. Then, this knowledge can be used to reconstruct these

setups in training and practice the anticipation and interception of passes by the
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defense. Here, MSTs could also assist in facilitating a comprehensible overview on

the strongest passing connections within a team. After all, information presented

to coaches and athletes should be intuitive and easy to comprehend (Glazier, 2010).

Following the simplicity principle of centroids which represent the mean position of

many players in a single variable, MSTs reduce the complexity of interactions by

concentrating the necessary information on a graph with only a limited amount of

edges (Passos et al., 2016).

The analysis can be even more enhanced by considering the sequential order of

passing sequences at play-level as implemented in the third study of this dissertation.

Among other advantages, it can produce insights on the role of players in passing

sequences, e.g. the revelation of bridging players that connect team members during

attacks. Thus far, metrics such as betweenness centrality were used to investigate

the dependency on these types of players (Gonçalves et al., 2017). The insights are

helpful for coaches in order to understand the vulnerability of the own or opponent

team induced by the dependency on a focal player. Flow betweenness, as the novel

and alternative measurement of betweenness, can more accurately highlight players

that facilitate and control ball flow within their teams.

In general, the validity and, thus, usefulness of performance indicators generated

from SNA heavily rely on their underlying normalization procedures. According to

Sampaio and Leite (2013), this is crucial to conduct performance comparisons within

and across matches and, thus, be able to objectively evaluate performances. For

example, flow-based metrics are only useful in football if there is a relatively common

basis of assessment in terms of the amount of plays. As the studies of this dissertation

codified playing positions, substitutions lead to a simple reassignment of positions.

This led to a common basis of plays to compare the involvement of playing positions

in the interplay. However, tracking specific players in an actual match analysis might

require further normalization or adjustments for playing time. Then, the proposed

network metrics can also be useful in practice.

4.3 Limitations of Method

Despite the theoretical and practical impact, the application of SNA in performance

analysis still faces some challenges and limitations that need to be addressed. Thus far,

including this dissertation, there is a strict focus on the interactions of one team with

limited consideration of the opponent. In team sports, the adversary team constraints

the possible actions implying an impact on the opposing passing structure. Hence,

disregarding the influence of the opponent team restricts a comprehensive analysis
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of the causes for certain passing behaviors. Apart from the consideration of attack

formations in the second study on handball, this has not been implemented in this

dissertation.

Moreover, this dissertation only focuses on successful passes between players. First,

there is no further information provided on the quality of the pass. For example,

McLean et al. (2017b) emphasize the degree of penetration as a quality feature of

a pass by counting the number of overplayed opponents. Second, ties predominantly

reflect passes between player to model the interactions within a team. This, of course,

is an abstract and simplified view on the complex interactive behavior of sport teams.

There might be other performance-relevant forms of communication between players,

e.g. the actual verbal communication or joint defensive actions as proposed by Sasaki

et al. (2017).

However, not only the modeling of ties faces limitations but also the specification

of nodes. In this dissertation, nodes represented playing positions in order to model

individual contribution while still being able to generalize and compare metrics across

matches. Yet, playing positions are interpreted differently not only across but also

within matches, which could impair the validity of the calculated metrics.

Lastly, while this dissertation focuses on the temporal aspects of interactions in

team sports, the connection to spatial information in form of positional data is still

limited. Incorporating information on the positioning of players of both teams at all

times increases the understanding of the interaction context (Passos et al., 2016; Ramos

et al., 2018). Thus, it can be a pivotal enhancement of the evaluation of interactions

in team sports.
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5 Outlook

Performance analysis in team sports remains a challenge due to the dynamic and com-

plex interactive nature, especially in invasion games like football. SNA can contribute

to a better understanding of the emerging interactive behavior under constraints. This

dissertation underlines that this does not only apply to football but invasion games as

such, provided an adequate adoption and modification of network procedures. More-

over, this dissertation breaks down interactions to a play-level analysis to account

for variations in constraints and game situations as well as successful and unsuccessful

performance outcomes. The consideration of the sequential order of passes contributes

to the modeling of the dynamic nature of interactions in team sports. In summary,

this dissertation contributes especially to the theoretical aspects of performance anal-

ysis which, in turn, can also have a substantial impact on practice enabled by a more

precise modeling of team performance.

Future studies should focus on increasing the practical impact of SNA in team

sports. Eventually, coaches and analysts should profit from the more adequate mod-

eling of interactions and, thus, increased understanding of the performance of their

team. This can be achieved by incorporating more situational variables at play-level

and controlling for varying constraints such as relative positioning of the opposition.

Moreover, the focus should be on the development of network metrics that actively

model the sequential pattern of passes. While flow betweenness offers a first alterna-

tive to betweenness centrality, further traditional metrics need to be modified in order

to consider the nature of ties in passing networks.

Besides, the modifications of the network approach in team sports might be trans-

ferable to other application areas beyond sports science. Indeed, there are cases where

SNA researchers transferred knowledge from other areas to their field. Newman (2018)

analyzed root networks of plants and found that the procedure could be transferred

to networks in the field of geography, e.g. river networks. In team sports, passing

networks are built from multiple separable sequences of interactions between players,

following no particular route such as the shortest path. Traditional metrics facilitate

a static perspective on the accumulated passing network across a certain time frame,

while metrics such as flow betweenness consider the sequential order of passes during

ball possessions. Hence, the application could be suitable for the analysis of networks

that are equally built from many separable interaction or communication sequences.
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Davids, K., Hristovski, R., Araújo, D., Serre, N. B., Button, C., & Passos, P.

(2013). Complex systems in sport. Routledge.

Dey, P., Ganguly, M., & Roy, S. (2017). Network centrality based team formation:

A case study on T-20 cricket. Applied computing and informatics, 13(2), 161-168.

Dong, J., & Horvath, S. (2007). Understanding network concepts in modules.

BMC systems biology, 1(1), 24.
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Introduction

Matches, or games, in team sports can be seen as complex 
dynamic systems (Glazier & Davids, 2009). The frequent inter-
action of various players is an integral part of any team sports 
match (Passos, Araújo & Volossovitch, 2016). Hence, a team 
must be regarded as more than the sum of its parts, and the 
secret to successful performance is believed to lie in the coll-
ective action of team members (Grund, 2012). Understanding 
the patterns of play is important to deduce the nature of the 
sport. Moreover, the individual contribution of each player to 
the organizational process is highly relevant to revealing how 

a team functions (Vilar, Araújo, Davids, & Bar-Yam, 2013). The 
complexity of matches and team dynamics makes breaking 
down such patterns difficult, creating an ongoing challenge 
for performance analysis in team sports.
There is an increasing interest in applying Social Network Ana-
lysis (SNA), a method that exploits familiar performance variab-
les such as passes, in order to detect patterns in the interplay of 
teams (Clemente & Martins, 2017). Network approaches focus 
on breaking down the web of interactions in systems of multip-
le agents also referred to as nodes (Passos et al., 2011). Traditio-
nal application areas of this method can be found in biological 
(e.g. spread of diseases) and sociological (e.g. acquaintance net-
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works) contexts. In sports, the frequent interaction between a 
limited set of players, e.g. through the passing of a ball qualifies 
network theory as a powerful performance analysis method.  
Clemente, Martins, Wong, Kalamaras and Mendes (2015b) ana-
lyze professional football matches by applying SNA. On a micro 
level, i.e. focusing on the prominence of individual players in a 
team, the authors identify the position of the central midfiel-
der as the most prominent player in their study, as midfielders 
are responsible for building offensive lines of attack. Pena and 
Touchette (2012) detect certain cliques within football teams 
that interact more frequently than others. This is in line with 
another micro-level study by Gama et al. (2014), who find that 
only a subset of players in football teams is responsible for the 
majority of interaction and thus shaping the pattern of play. On 
both, micro and macro level, i.e. focusing on the collective or-
ganization of a team, Duch, Waitzman and Amaral (2010) iden-
tify a strong connection between several network measures 
and traditional performance indicators whereas Grund (2012) 
connects the distribution of individual networks measures to 
performance outcomes. In his macro-level analysis, the author 
finds that successful teams in football demonstrate a more ba-
lanced interplay.
In basketball, SNA has been applied in professional and ama-
teur settings. Fewell, Armbruster, Ingraham, Petersen and 
Waters (2012) and Clemente, Martins, Kalamaras and Mendes 
(2015a) identify the Point Guard as the dominant player struc-
turing plays for the team.
However, the set of sports that SNA has been applied to has 
been limited so far. Moreover, the focus of most studies has 
been on the application of small sets of network metrics to a 
single sport. Our study aims at comparing the network patterns 
of different team sports in order to contribute to the under-
standing of their underlying nature. It considers three invasion 
games, namely professional matches from basketball, football 
and handball. The overarching task of each team trying to coll-
ectively outperform or -score its opponent unites these popu-
lar team sports. However, as they differ in their environmental 
constraints (e.g. areas, rules), different interaction patterns are 
needed in order to succeed (Araújo & Davids, 2016). 
SNA enables us to investigate the resulting complex webs of 
interaction between the players in the different sports. To en-
sure a thorough analysis, individual and team metrics are ap-
plied alongside the computation of minimum spanning trees, 
a network technique that facilitates an intuitive visualization of 
the strongest relationships in complex networks revealing the 
basic structure of the sports. 
In combination with the macro-level analysis, i.e. applying team 
metrics, this assesses the overall interaction patterns. The micro-
level analysis, i.e. applying individual metrics, is specifically tar-
geted at revealing the dominant tactical positions in terms of 
their involvement in the interplay for each sport and who are re-
sponsible for structuring these patterns. The combined analysis 
enables us to break down the complex organizational processes 
within teams and thus contributing to the understanding of the 
underlying nature of basketball, football and handball.

To our knowledge, this is the first study that attempts a com-
parison of different team sports applying SNA. Furthermore, it 
is the first analysis that takes handball into consideration along 
with football and basketball and applies minimum spanning 
trees in the context of team sports. 
Hence, this study breaks down the underlying complexity of 
team sports by characterizing and quantifying individual and 
team performance through SNA. 

Methods

Samples

For each sport, eight knockout round matches in the men´s 
competition at major professional tournaments are conside-
red for analysis, minimizing the home/away bias (Courneya & 
Carron, 1992). For basketball and handball the knockout sta-
ges at the Rio 2016 Summer Games Olympics tournaments are 
recorded and analyzed. For football, the authors consider the 
last eight matches from the knockout stage of the FIFA World 
Cup 2014 tournament. A total of 16 adjacency matrices for each 
sport are generated, capturing the interaction between players 
of each team. A total of 4059 passes are analyzed in basketball, 
6934 in football and 8054 in handball.

Procedure

In order to apply SNA, adjacency matrices capture the passing 
distribution seen in every analyzed match. The matrices are 
constructed from a set of nodes and edges for every team res-
pectively. Players represent nodes such that the number of pas-
ses between them defines the edge weight. The overall match-
based interaction matrix per team is a result of an aggregation 
of the units of attack defined as the moment from ball recovery 
until possession is lost (Passos et al., 2011).
The tracking process for basketball and handball games was 
executed through video analysis applying the software Dart-
fish®. The passing distribution at the FIFA World Cup 2014 
tournament was provided in the official FIFA match reports on 
their website (www.fifa.com/worldcup/archive/brazil2014). In 
a thorough post-match analysis players were assigned to their 
respective tactical position to ensure the comparability bet-
ween teams and focus on the tactical aspects of each sport. In 
line with O`Donoghue (2009), we acknowledge the increasing 
complexity of tactical roles in team sports, i.e. forwards taking 
on defending tasks in football. Players might temporarily occu-
py different areas on the pitch and fulfill different tasks which 
can be acknowledged as part of the role repertoire of the dif-
ferent tactical positions, especially in football. Eventually, this is 
part of why we see complex webs of interaction in team sports 
and why we expect that this finds its expression in the results of 
our analysis. The definition of tactical roles for the three sports 
is displayed in Table 1. 
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Basketball Football Handball

Center (C) Defensive Midfielder (DM) Offensive Midfielder (OM) Center (C)

Point Guard (PG) Goalkeeper (GK) Right Central Defender (RCD) Left Back (LB)

Power Forward (PF) Left Central Defender (LCD) Right Defender (RD) Left Wing (LW)

Shooting Guard (SG) Left Defender (LD) Right Forward (RF) Pivot (P)

Small Forward (SF) Left Forward (LF) Right Midfielder (RM) Right Back (RB)

Left Midfielder (LM) Right Wing (RW)

Following the codification for each tactical position ensured 
that frequent substitutions of players lead to a reassignment 
of the given tactical positions. Predominantly, substitutions 
lead to a direct replacement for the corresponding tactical po-
sition, meaning the player who was codified to a specific po-
sition was replaced by his substitute. However, substitutions 
occasionally implied the reassignment on multiple positions, 
mostly in basketball and handball. To detect these changes, 
each unit of attack was considered separately. Tracking and 
codification processes were executed by researchers with 
more than ten years of experience in the sports described. In 
order to ensure the reliability of the study, Cohen´s kappa and 
Gwet’s AC1 inter-rater statistic were computed in a two-stage 
process (Gwet, 2001). In a first step, the agreement on the oc-
currence of passes was analyzed using Gwet`s statistics. In a 
second step, the agreement on passer and pass receiver was 
tested applying Cohen’s Kappa. 12.5% of the overall data were 
tested for reliability purposes. The Kappa (Gwet, 2001) values 
were above 0.94 (0.85) respectively for each sport, ensuring 
the reliability of the data. 

Network Metrics

For the 16 adjacency matrices in each sport a set of individu-
al- and team-related centrality network metrics are computed. 
The analysis was carried out using the software Matlab® and 
the visualization of networks was generated by applying Cytos-
cape®. 
Centrality calculations allow a quantification of the influence 
of tactical positions on their team´s interplay as well as the ba-
lance of influence between players overall. To account for the 
nature of the sports, metrics that consider weighted directed 
graphs were applied. This allows for a breakdown of the con-
nection between any two players in both passing directions. 
For individual (or micro-level) analysis weighted in-/out-de-
gree, weighted betweenness and weighted closeness were 
computed. For team (or macro-level) analysis, the correspon-
ding centralization values were calculated. These metrics are 
explained in detail in the following.

Individual Metrics Weighted in-degree (CWID), also referred to as 
Prestige, is the sum of the incoming weighted edge values of a 
node. Hence, these metrics capture the number of successfully 
received passes of a player and a high value is often taken as 
a first indicator for the prominence of a particular player (Cle-
mente et al., 2015b). Team members appear to trust this player, 
when in possession, to positively contribute to the team´s per-
formance and therefore target him more frequently than others.
Weighted out-degree (CWOD), also referred to as Centrality, is 
the sum of outgoing weighted edges of a node. In the context 
of sports, (CWOD) is the number of completed passes of a player 
and a high value is often associated with a high contribution to 
ball circulation (Clemente et al., 2015b). 
We also calculate the ratio CWID/CWOD  to assess a potential de-
viation between the share in pass reception and execution. A 
player with a higher reception than execution share, i.e. a va-
lue above 1, could indicate a player who rather finishes attacks. 
He frequently receives the ball from team members to execute 
shots on target rather than passing on. The opposite, i.e. a value 
below 1, might be a player who initiates attacks. 
Weighted betweenness (CWB) assesses how often a node is on 
the shortest path between two other nodes (Wassermann & 
Faust, 1994). A modified version of the standard computation 
of CWB  according to Newman (2001) is applied, which is more 
suitable for team sports since it favors strong connections 
rather than penalizing them. It measures how often a player 
is in between the most frequent passing connections of any 
other two players, thus functioning as a bridging unit (Pena & 
Touchette, 2012). As this implies a certain level of dependency 
on that particular player to ensure ball circulation it can be con-
sidered as a playmaker indicator. 
Weighted closeness (CWC) addresses how well connected a 
node is to all other nodes, directly or indirectly, within a net-
work following Freeman (1978) and Opsahl, Agneessens and 
Skvoretz (2010). In a nearly complete network, i.e. in which al-
most every node is connected to each other, the metric can be 
seen as a more sophisticated approach to the weighted degree 
computations as the distribution of weights between other 
nodes is taken into account. In team sports, CWC  describes the 

Table 1:	 List of tactical roles in basketball, football and handball
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As MSTs are only applicable to undirected graphs, the total 
passing intensity between pairs of players is considered in their 
construction. Reducing the amount of edges and thus comple-
xity of the otherwise nearly complete networks, offers an alter-
native perspective on the pattern of interplay of the different 
team sports and hierarchical structure of weighted graphs (Go-
wer & Ross, 1969).

Statistical Procedures

The authors of this paper utilized multiple one-way ANOVA to 
test for statistical differences between the centrality levels of the 
tactical positions within each sport, and between the analyzed 
sports. The assumption of normality for dependent variables 
was tested using Kolmogorov-Smirnov tests (p-value < .05). The 
assumption of homogeneity for groups’ variances was exami-
ned by using Levene’s test. There were no violations of either 
normality or homogeneity. Pairwise comparisons were establis-
hed by running Bonferroni post-hoc tests. The statistical analy-
ses were all conducted at a significance level of p < .05 using 
Matlab®. Following Ferguson (2009) and Clemente and Martins 
(2017), η2 is reported to interpret the effect size according to the 
following criteria: no effect (η2 < .04); small effect (.04 ≤ η2 < .25); 
moderate effect (.25 ≤ η2 < .64); strong effect (η2 ≥ .64).

Results

The tests found statistical differences in the dependent variab-
les for all centrality measures applied for the three team sports 
considered in this study. The η2 values reported in Table 2 al-
most all demonstrate moderate to strong effects sizes for the 
multiple one-way ANOVA in this study.

Individual Parameters

Table 3 shows the descriptive statistics and post-hoc results 
for tactical positions in basketball. The PG position is assigned 
the highest values for all centrality metrics and is significantly 
more central than every other tactical position. For weighted 
betweenness, the normalized value of the PG is 0.87 and thus 
more than ten times higher than the next ranked tactical posi-
tion. There is no value assigned here for the forward positions 
implying that no strongest connection between any two play-
ers on the team runs via those tactical positions. In general, the 
other four tactical positions demonstrate similar values and no 
statistical differences are found between them for the other 
metrics applied in this study.
The CWID/CWOD ratios are shown in Figure 1. Notable in the ra-
tio revealed is the relatively low value for the center position. 
Here, the share in pass completion rate outweighs the share in 
pass reception. 

how well a player directly or indirectly interacts with all other 
team members on the field. Hence, a player with high weigh-
ted degree values but comparatively low weighted closeness 
value might only interact strongly with a subset of his team 
members.
Team Metrics Centralization measures are concerned with the 
distribution of the individual metrics in a network. Following 
Freeman (1978) and Wasserman and Faust (1994), weighted in-
degree centralization (CWIDC ) captures the deviations from all in-
degree values to the highest value in the network adjusted by 
the number of passes and the number of players. This adjust-
ment in the computation allows a comparison between diffe-
rent sports. Weighted out-degree centralization (CWODC ), weigh-
ted betweenness centralization (CWBC ) and weighted closeness 
centralization (CWCC) is calculated accordingly. 
By construction, all centralization values are bounded between 
0 and 1. A network is regarded as highly centralized, i.e. a va-
lue close to 1, when the score of a particular node clearly out-
weighs the scores of all others and rather decentralized, i.e. a 
value close to 0, when the scores are similar among all nodes 
(Grund, 2012). In a sports context, CWIDC  and CWODC  scores can 
be seen as indicators for the balance of direct interplay in a 
team. CWBC  and CWCC  scores signal how balanced the influence 
on the overall interplay is within the team, considering direct 
and indirect connections. In general, high values could imply 
that interplay depends on only a subset of players.
For reasons of comparability between different matches, we 
normalized all centrality values by the total scores of the res-
pective metrics following Leydesdorff (2007). The values them-
selves have no direct relevance. Relative comparisons between 
the different values of a respective metric for the tactical posi-
tions were highly crucial. 

Visualization

A more intuitive visualization of the underlying structure of the 
networks was allowed for by computing minimum spanning 
trees (MSTs) for each sport. MSTs are meant to provide a revelati-
on of the strongest relationships in complex networks (Manteg-
na, 1999). As a visualization method, they reduce the complexity 
of connected graphs of n nodes with up to n(n-1) connections 
to the strongest n-1 edges under the side condition that each 
node is still contained. According to Araújo and Davids (2016), 
sport teams demonstrate a task-specific organization to reach 
a common goal under certain constraints. In past studies, MSTs 
have been applied to visualize how sets of team members orga-
nize themselves to form an effective collective organization for 
a specific task (Lappas, Liu, & Terzi, 2009; Li & Shan, 2010). Hence, 
we apply MSTs to trace how teams consisting of a limited set of 
players organize their interplay in order to achieve group suc-
cess. The method reduces the complex network of passes to the 
most basic structure presenting the most intensive connections 
under the consideration of all players.
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Table 2:	 Effect size values η2 for multiple one-way ANOVA

Basketball Football Handball All

CWID .59 (moderate) .23 (small) .92 (strong) CWIDC .89 (strong)

CWOD .46 (moderate) .27 (moderate) .92 (strong) CWODC .81 (strong)

CWB .87 (strong) .32 (moderate) .91 (strong) CWBC .89 (strong)

CWC .72 (strong) .44 (moderate) .93 (strong) CWCC .83 (strong)

No effect (η2 < .04); small effect (0.04 ≤ η2 < .25); moderate effect (.25 ≤ η2 <.64); strong effect (η2 ≥ .64)

Table 3:	 Descriptive statistics and post-hoc results for basketball

  PG SG SF PF C

CWID 0.30 (0.04)all 0.20 (0.03)PG 0.16 (0.03)PG 0.16 (0.02)PG 0.17 (0.02)PG

CWOD 0.28 (0.04)all 0.18 (0.04)PG 0.17 (0.03)PG 0.16 (0.03)PG 0.21 (0.03)PG

CWB 0.87 (0.20)all 0.07 (0.19)PG - - 0.05 (0.10)PG

CWC 0.27 (0.02)all 0.19 (0.03)PG 0.17 (0.02)PG 0.17 (0.02)PG 0.19 (0.02)PG

Subscripts indicate to which tactical positions given value is statistically different for p < .05, e.g. PG: given value is statistically different to the value of the 
point guard; All: value is statistically different to all other tactical positions.

Figure 1:	WID/WOD ratios for basketball, football and handball
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For handball, C is significantly more central than all other tacti-
cal positions based on CWID , CWOD  and especially CWB . The CWB  
values indicate that C frequently functions as the bridging 
unit between other tactical positions. Table 5 shows that the 
remaining back positions (LB and RB) have similar values for 
each metric and are significantly different to all other tactical 
positions for CWID , CWOD and CWB . The same applies for the wing 
positions (LW and RW). However, their values fall into the same 
category with the pivot position. The GK values are neglecting 
low and ranked last for the considered metrics.
The CWID/CWOD  ratios in Figure 1 reveal a high value above 1 for 
the point. Its share in pass reception outweighs share in pass 
completion.

The corresponding results for football matches under inves-
tigation can be seen in Table 4. The DM position scores the 
highest CWID and CWOD  values, meaning that this position had 
on-average the highest number of successfully received and 
executed passes. Statistically significant differences can only be 
shown in comparison with the GK position for CWID and certain 
attacking positions for CWOD  additionally. DM is also leading the 
CWB scores followed by the RD and central defender positions. 
Their respective values are significantly different to the values 
of the other tactical positions; whereas the CWC  values are simi-
lar between all tactical roles apart from the GK.
The CWID/CWOD ratios in Figure 1 show values below 1 for de-
fensive positions and above 1 for offensive positions, especially 
strikers.

Table 4:	 Descriptive statistics and post-hoc results for football

GK LD LCD RCD RD DM LM RM OM LF RF 

CWID 
0.03 
(0.01)all 

0.08 
(0.02)GK

0.09 
(0.02)GK   

0.09 
(0.02)GK     

0.10 
(0.02)GK     

0.12  
(0.03)GK 

0.10 
(0.02)GK     

0.11 
(0.02)GK    

0.11 
(0.02)GK    

0.09 
(0.04)GK    

0.09 
(0.02)GK   

CWOD 
0.06 
(0.02)mult

0.10 
(0.02)mult

0.10 
(0.02)mult 

0.11 
(0.02)mult. 

0.12 
(0.02)mult

0.13  
(0.02)GK,LM,Fs

0.08 
(0.02)mult

0.09 
(0.02)mult

0.10 
(0.02)mult 

0.06 
(0.03)mult

0.06 
(0.02)mult 

CWB 
0.00 
(0.01)mult 

0.08 
(0.09)mult 

0.12 
(0.06)mult 

0.13 
(0.07)mult 

0.18 
(0.14)mult 

0.18  
(0.10)all-CDs,OM,RD

0.05 
(0.05)mult 

0.07 
(0.07)mult

0.11 
(0.09)mult

0.05 
(0.08)mult

0.03 
(0.06)mult

CWC 
0.06 
(0.01)all 

0.09 
(0.01)mult 

0.09 
(0.01)mult 

0.10 
(0.01)mult 

0.10 
(0.01)mult 

0.11  
(0.01)GK,Fs,LD,LF,LM

0.09 
(0.01)mult 

0.10 
(0.01)mult

0.10 
(0.01)mult 

0.08 
(0.02)mult

0.08 
(0.01)mult 

Subscripts indicate to which tactical positions given value is statistically different for p < .05, e.g. GK: given value is statistically different to the 
value of the goalkeeper; All: value is statistically different to all other tactical positions; All-“tactical position(s)”: value is statistically different to all 
other tactical positions except the listed ones; Mult: value is statistically different to various tactical positions that are not part of further analysis in 
this study; Fs includes LF and RF; CDs includes LCD and RCD.

Table 5:	 Descriptive statistics and post-hoc results for handball

  GK LW LB C RB RW P

CWID - 0.04 (0.02)C,Bs 0.23 (0.02)all-RB 0.36 (0.03)all 0.26 (0.02)all -LB 0.05 (0.02)C,Bs 0.05 (0.02)C,Bs

CWOD 0.01 (0.00)all-LW,P 0.04 (0.02)C,Bs 0.23 (0.02)all-RB 0.38 (0.03)all 0.26 (0.02)all-LB 0.05 (0.02)C,Bs,GK 0.03 (0.01)C,Bs

CWB - 0.03 (0.04)C,Bs 0.23 (0.05)all-RB 0.45 (0.05)all 0.25 (0.10)all-LB 0.02 (0.02)C,Bs 0.02 (0.02)C,Bs

CWC 0.04 (0.01)all 0.14 (0.02)all-P,RW 0.18 (0.01)all-RB 0.18 (0.01)all-Bs 0.18  (0.01)all-C,LB 0.15 (0.01)all-LW 0.13 (0.02)all-LW

Subscripts indicate to which tactical positions given value is statistically different for p < .05, e.g. C: given value is statistically different to the value 
of the center; All: value is statistically different to all other tactical positions; All-“tactical position(s)”: value is statistically different to all other tactical 
positions except the listed ones, e.g. All-C: given value is statistically different to all other values but the one of the center; Bs includes LB and RB.
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calculation, we were able to follow Freeman’s definition in our 
between each sport. As the highest values were unique in eve-
ry computations. The average CWIDC and CWODC values are highest  
for handball, followed by basketball in second place. This order 
for first and second rank switches between these two sports 
for CWBC  and CWCC. Football has the lowest average values for all 
team metrics employed in this study.

Visualization 

Figure 2 displays the aggregated passing distribution of all 
matches in each sport and the corresponding MSTs next to that 
on the right-hand side. As edge weights were unique in each 
network, the resulting MSTs are unique as well (Li, Hou & Sha, 
2005). The tree representing the passing network in basketball 
shows a typical star network topology with the PG as the cen-
tral node to which all other tactical positions are connected. 
The topology of the handball MST has a strong resemblance 
with the tactical formation of the sport. The C position emer-
ges as the centrally located node connected to the pivot and 
back positions who themselves are adjoined to the wings. No 

Team Parameters

The descriptive statistics and post-hoc results for the team 
metrics in Table 6 show that the considered sports have signi-
ficantly different values for almost all centralization measures  
 
Table 6:	 Descriptive statistics and post-hoc results for team 
metrics

Basketball Football Handball

CWIDC 0.13 (0.05)FB,HB 0.05 (0.02)BB,HB 0.24 (0.04)BB,FB

CWODC 0.10 (0.04)FB,HB 0.05 (0.01)BB,HB 0.25 (0.03)BB,FB

CWBC 0.89 (0.15)FB,HB 0.22 (0.09)BB,HB 0.35 (0.06)BB,FB

CWCC 0.13 (0.03)FB,HB 0.05 (0.01)BB 0.05 (0.01)BB

Subscripts indicate to which team sport given value is statistically 
different for p < .05, e.g. FB: given value is statistically different to the 
value in football.

 

Figure 2:	Visualization of aggregated passing distribution and MSTs for basketball, football and handball
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In basketball the central role of the PG becomes obvious loo-
king at the CWB scores. A majority of the strongest connec-
tions between positions run via the PG, identifying him as the 
bridging player between tactical positions in basketball. The 
star network topology of the MST with the PG situated in the 
center visualizes these findings. The dominant role of this tacti-
cal position is also in line with several previous studies (Cle-
mente et al., 2015a; Fewell et al., 2012). 
In handball, the CWB  results suggest a central role of the C po-
sition in facilitating the ball and structuring the interplay in 
that sport. The CWC metric evaluates how closely a player is con-
nected with all other players. The fact that the corresponding 
CWC  share is less than half as high (0.18 to 0.45) suggests that 
C predominantly interacts with a subset of players i.e. the back 
positions. The CWID  and CWOD  scores support the argument that 
the back positions are the dominating players here. 
A deeper role division can be taken from the reported CWID/
CWOD ratios. In football, the ratios indicate a subdivision bet-
ween attacking and defensive roles. The defensive roles show 
higher CWOD  than CWID  values, thus ratios below 1, as they initiate 
plays while attacking roles rather finish them. This observation 
is not made in the other two sports. Solely in the case of hand-
ball, the P has a relatively high CWID/CWOD  ratio as that player is 
mostly targeted to finish attacks rather than initiating them. 
Apart from these indications, a clear division into distinct ro-
les is not visible in either basketball or handball. Although 
we analyzed matches from tournaments at the highest pro-
fessional level, differences in CWID  and CWOD  values might also 
be ascribed to limited technical abilities to a certain extent. 
Whereas in basketball (13.5 turnovers against 253.7 passes for 
a 94.9% passing success rate on average per match for each 
team ) and handball (10.8 turnovers against 503.4 passes for 
a 97.9% passing success rate) this aspect might be considered 
rather negligible, the passing success rate in football for the 
considered matches is only at 76.5%. Therefore, technical limi-
tations might add to the high ratios of CWID to CWOD  in football 
for some players.
The results of the team metrics show that general interplay is 
most balanced between players in football based on the dis-
tribution of all individual metrics among tactical positions. As 
the DM and RD have relatively high CWB scores in comparison 
to the other tactical positions, the corresponding CWBC value is 
slightly higher than for the other team metrics in football. This 
could mean, that although interplay is quite balanced, there is 
a tendency towards a few players having a stronger influence 
on the structuring of the interplay. 
The interplay in basketball was demonstrated to be more un-
balanced than in football. Although pass reception and execu-
tion were equally distributed between most tactical positions, 
the PG leads both categories significantly also resulting in high-
er CWIC  and CWOC  values than in the case of football. The bridging 
player characteristic of the PG also explains the high CWBC  score 
of 0.89. In fact, in 9 of the 16 networks in basketball the CWBC  
score takes on the maximum value of 1. This implies that every 
strongest connection between any two players in these mat-

distinct shape can be taken from the football MST. However, 
defensive positions are centrally located, and the tree displays 
three clusters in the longitudinal direction. Apart from the di-
rect connection between the RD and LF, tactical positions are 
subdivided into left, central and right areas of the pitch and 
were shown as directly connected. 

Discussion

The aim of this study was to characterize and compare the com-
plex interactions visible in team sports. Network properties aid 
in breaking down this complexity and assessing the overall co-
operation or collective organization of players and their indi-
vidual contribution to a team’s interaction. This is known to be 
vital in the analysis of team sports (Vilar et al., 2013).
This research study was conducted using passing data from se-
veral matches of major professional tournaments in basketball, 
football and handball. Of course, team interactions might also 
take other forms than passing events to express the relation-
ship between players, e.g. the communication between the 
players on the field. Although there is no doubt on the impor-
tance of these forms of interaction, we assess direct passes bet-
ween players as the most relevant form of interaction to cha-
racterize collective organization in team sports (Grund, 2012). 
The resulting analysis of our study reveals statistical differences 
in the pattern of play between different sports and the tactical 
positions therein with moderate to strong effect sizes.
The results of the individual metrics identified the DM as the 
most prominent player in football. He and the central defen-
ders who act as the bridging players, as revealed by their lea-
ding CWB  scores, secure the ball circulation. The MST topology 
supports this line of argument, as these positions are centrally 
located within the tree, implying a strong contribution to the 
interaction in the sport. A centrally located player in the MST 
indicates a close connection or interaction with team members 
supporting the argument that he is a vital part in forming the 
collective organization of his team. There are several reasons 
why the RD position is also ascribed a central role to in this stu-
dy according to the network metrics. First, 50% of all attacks 
on average were built via the right wing in comparison to 31% 
via the left wing. Second, the RD was among the top 3 pass 
executers in 10 out of 16 networks confirming the involvement 
of that position in building attacks via the right wing. Third, re-
nowned players such as Philipp Lahm took on the RD position 
during the tournament. He alone produced 10-20 deliveries or 
solo runs into the attacking third per game in comparison to 
2-5 for his counterpart on the LD position. This supports the 
dominant role of the RD and strong connection to forward po-
sitions visualized trough the connection in the MST. However, 
the similar CWC  scores suggest that all players in general are 
equally strongly connected with each other, directly or indi-
rectly, implying that a quick ball circulation from any player to 
another is given in football, in line with previous studies (Pena 
& Touchette, 2010). 
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Moreover, it is important to make two remarks regarding the 
application of weighted closeness in this study. First, one could 
argue that the nearly completeness of the present networks in 
this study, in which almost all players are directly connected 
with each other, mostly account for the similar CWC scores in 
football. However, in basketball, for example, we find statisti-
cal differences especially with regard to the PG while having 
complete networks in every analyzed match exclusively. We 
claim that in weighted networks, in comparison to unweighted 
networks, strong indirect connections might dominate weak 
direct connections and thus weaken the influence of the level 
of completeness in a network to a certain degree.
Second, only 13 of the 16 analyzed networks could be conside-
red in the one-way ANOVA of the CWC  scores in handball, as the 
GK was not involved in any interplay in some matches. Howe-
ver, as the metric analyzes the connection with all players in the 
network and cannot consider disconnected components by 
definition, we had to drop three networks (Opsahl et al., 2010). 
This stresses the low involvement of the GK in building attacks 
in handball. 
Nevertheless, this study contributes to the understanding of 
the nature of team sports and the respective involvement of 
the different tactical positions within each sport. This identifies 
SNA as a powerful tool not only to break down the performance 
of a single sport but also to allow a profound comparison bet-
ween the styles of interaction in team sports. 

Conclusion

The aim of this study was to characterize the nature of team 
sports and the role of their respective tactical positions.
By applying methods from social network analysis it was pos-
sible to break down the complexity of a handful of popular 
sports, by quantifying and intuitively visualizing roles of play-
ers and overall team interaction. Thus, this is the first study 
that compares the network patterns of different team sports. 
Moreover, MSTs are applied for the first time in a team sports 
context which in particular turn out to be effective in breaking 
down the complexity of almost complete networks.
Ultimately, the analysis revealed significant findings, on the 
prominent tactical positions for building attacks in the three 
sports discussed: in basketball, this dominant tactical position 
tended to be the PG, in football the DM and C in handball. The 
general pattern of play appears to be significantly more unba-
lanced in handball than in basketball and football. As a final 
takeaway, the study indicated strong findings that the level 
of fixedness in the basic order of the tactical positions in the 
sports influences the prominence levels of players. 
We chose three popular invasion games in this study to offer 
a first comparison between the network properties of team 
sports. However, as we assess the outlook of this method as 
fruitful, more team sports should be incorporated in future stu-
dies to further examine and characterize the different dynamic 

ches involved the PG confirming the dominant role of this play-
er in facilitating the interplay.
The most unbalanced interplay between tactical positions in 
this study can be seen in handball according to the distributi-
on of the direct interplay captured in the CWIC and CWOC scores. 
However, the low CWCC  score suggest that, similar to football, all 
players in handball, are quite equally strongly connected, di-
rectly or indirectly, with each other. The low direct involvement 
of the GK in the interplay is partly offset by the consideration of 
indirect connections in this metric.
The topology of the MSTs, which reduces the complexity to the 
most intense connections between players, offers a richer in-
sight into certain patterns of play. For handball, the patterns 
in question perfectly resemble the basic order of the tactical 
line-up. This suggests that interplay is quite structured and pre-
defined and therefore that the central role of the three back 
positions is primarily a result of their tactical position in a quite 
static basic order. They are crucial for the ball circulation and 
structure the collective organization of the team in order to 
score. In football, we have similar findings, however, less strong. 
Here a longitudinal clustering, meaning a subdivision into atta-
cking wings, is visible.  The basic order of the tactical positions 
appears to foster a stronger interplay of certain dyads e.g. bet-
ween wing defenders and wing midfielders. 
In basketball, the central role of the PG in structuring the of-
fensive plays outweighs any other potential cluster formation 
of tactical positions, resulting in the star network topology of 
the MST. According to Bonanno, Caldarelli, Lillo and Mantegna 
(2003) this kind of topology is an argument for a clear hierarchi-
cal structure, i.e. that the PG has a strong impact on structuring 
the interplay of his team. Teammates continuously bring the PG 
into possession to initiate and structure plays (Bourbousson, 
Poizat, Saury & Seve, 2010).
The main limitation seen in this research study was related pri-
marily to the sample size of the data utilized. Moreover, mat-
ches from only one major tournament are considered in each 
sport. In order to generalize the results for each sport, a larger 
sample across different occasions would be needed. Besides, 
definitions of tactical positions in football are approximations 
in some instances by combining data on tactical lineups and 
positional data provided by FIFA (www.fifa.com/worldcup/ar-
chive/brazil2014). There is an overall consensus on the defini-
tion of tactical roles in previous studies focusing on basketball 
and especially handball induced by its quite static formation 
(Cardinale, Whiteley, Hosny, & Popovic, 2017; Fewell et al., 2012; 
Karcher & Buchheit, 2014). However, in football, we acknow-
ledge that tactical roles are a more complex factor. Here, we 
believe that temporarily occupying different areas on the pitch 
and fulfilling different tasks, i.e. a striker who takes on defen-
ding tasks, can be acknowledged as part of the role repertoire 
of players in football. Eventually, this is why we are faced with 
such complex webs of interaction in which different tactical 
positions interact with each other and that network analysis is 
able to capture for the purpose of our study. 
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systems present in team sports. Moreover, individual modifica-
tions of traditional network metrics may lead to an even more 
accurate quantification of performance in each sport. 
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Passing network analysis of positional attack formations in 1	

handball 2	

 3	

Abstract 4	

The aim of this study was to characterize handball from a social network analysis perspective by 5	

analyzing 22 professional matches from the European Men's Handball Championship 2018. 6	

Social network analysis has proven successful in the study of sports dynamics to investigate the 7	

interaction patterns of sport teams and the individual involvement of players. In handball, passing 8	

is crucial to establish an optimal position for throwing on goal. Moreover, different tactical 9	

formations are played during a game, often induced by two-minute suspensions or the addition of 10	

an offensive player replacing the goalkeeper as allowed by the International Handball Federation 11	

since 2016. Therefore, studying the interaction patterns of handball teams considering the 12	

different playing positions under various attack formations contributes to the tactical 13	

understanding of the sport. Degree and flow centrality as well as density and centralization values 14	

are computed. As a result, a quantification of the contribution of individual players to the overall 15	

organization is achieved alongside the general balance in interplay. We identify the backcourt as 16	

the key players to structure interplay across tactical formations. While attack units without a 17	

goalkeeper are played longer, they are either more intensively structured around back positions 18	

(7vs.6) or spread out (5+1vs.6). We also find significant differences in the involvement of wing 19	

players across formations. The additional pivot in the 7vs.6 formation is mostly used to create 20	

space for back players and is less involved in interplay. Social network analysis turned out as a 21	

suitable method to govern and quantify team dynamics in handball. 22	

 23	

Keywords 24	

social network analysis, temporal networks, centrality measures, performance analysis, tactical 25	

analysis, team sports  26	
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Introduction 27	

Matches in team sports are complex dynamic systems caused by the frequent interaction between 28	

players (Glazier and Davids, 2009). Teams work together collectively to achieve the common goal of 29	

winning (Lusher et al., 2010). In fact, the synchronized action of players in a team is regarded as a crucial 30	

part of the key factors to successful performance (Grund, 2012). Here, passing, which is a common 31	

performance variable in notational analysis of team sports, is the foundation for the collective action of 32	

players in a team (Passos et al., 2016). 33	

In handball, ball circulation is crucial to establish an optimal position for throwing on goal 34	

(Wagner et al., 2014). However, varying environmental constraints, such as the configuration of the 35	

opposing line-ups, require different interaction patterns in order to succeed (Araújo and Davids, 2016). 36	

There is a set of different tactical formations that are played during a handball game, often induced by 37	

two-minute suspensions or the addition of an offensive player replacing the goalkeeper as allowed by the 38	

International Handball Federation (IHF) since 2016. Therefore, studying the interaction patterns of 39	

handball teams considering the different playing positions under various attacks formations contributes 40	

to the understanding of the sport and its actual development.  41	

Social network analysis (SNA) has proven successful in the study of ball passing dynamics by 42	

breaking down the complexity within the web of interactions between players (Passos et al., 2011). As a 43	

match analysis tool, SNA is able to quantify the contribution of individual players to the general interplay 44	

as well as detecting patterns in the passing structure of teams (Clemente and Martins, 2017).  45	

On a mirco-level, focusing on individual performance, professional matches in football have been 46	

analyzed predominantly. As midfielders are responsible for building attacks, they are identified as the 47	

most prominent players in the majority of studies (Clemente et al., 2015a; Pena and Touchette, 2012). 48	

Clemente and Martins (2017) also consider different tactical formations in their computation of network 49	

metrics in professional football. On a macro-level, focusing on general team performance, several studies 50	

suggest a strong correlation between successful team performance and frequent but also balanced 51	

interplay between players (Clemente et al., 2015b; Duch et al., 2010; Grund, 2012).  52	

In summary, most of the studies in SNA are conducted in football. Most studies in handball, 53	

however, rather discuss physical and technical attributes of the sport (Karcher and Buchheit, 2014; 54	

Michalsik and Aagaard, 2015; Póvoas et al. 2012). Tactical components, especially in terms of interplay, 55	

have not been studied extensively yet. Korte and Lames (2018) offer a first insight into the interplay in 56	

handball on an aggregate match-level. They identify the backcourt players as most central in terms of 57	

structuring interplay but do not account for different tactical formations. The newly introduced option to 58	
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replace the goalkeeper in attacking phases alongside the frequent occurrence of temporary suspensions 59	

has enriched the sport with an extensive set of attacking formations or constellations and thus varying 60	

constraints for attacking teams. According to Gruic et al. (2006) the resulting tactical setup during attack 61	

phases influences the interplay of attacking teams. In particular, they found that backcourt players adapt 62	

their passing behavior according to changes in the tactical setup. However, their analysis is rather 63	

qualitative and tactical formations under the new IHF rule are not considered. Hence, analyzing the 64	

collective organization of teams and their passing patterns during different types of attack phases is very 65	

important to better understand the sport of handball. 66	

Therefore, the aim of this study was to characterize interplay by focusing on positional attacks 67	

across different tactical formations. As we also differentiate between playing positions, the focus did not 68	

only lie on the general structure of interplay but also on the individual contribution of players within a 69	

team. On a micro-level, we calculated weighted in-/out-degree and flow centrality to assess the overall 70	

involvement of playing positions in attacks across a match and their contribution to structuring plays 71	

within attack units. On a macro-level, density and weighted degree centralization was computed to better 72	

understand the level of cohesion between players and balanceness of interplay. 73	

To our knowledge, this is the first study that attempts a tactical analysis of interplay in handball 74	

by differentiating between prevalent tactical formations as well as playing positions exploiting metrics 75	

of SNA. Moreover, it pioneers the breakdown of the assessment on attack unit level to take the temporal 76	

component of handball into account. 77	

  78	

Methods 79	

Samples 80	

A total of 22 matches of the 2018 EHF European Men’s Handball Championship were analyzed 81	

in this study including all encounters from the main round, two semi-finals, the third-place match and 82	

final. A total of 3,100 directed adjacency matrices, one for each attack unit, capture an aggregated amount 83	

of 17,420 passes between players in our analysis.  84	

Procedure 85	

Conducting SNA requires passing networks constructed from a set of nodes and edges. The nodes 86	

represent players whereas the edge weights stand for the number of passes between them. Following 87	

Ramos et al. (2018), we conduct our analysis on attack basis instead of aggregate match level to consider 88	

the temporal character of handball. That means, instead of aggregating the passing data of a team 89	
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throughout a whole match before running analysis, we evaluate each attack separately. That way, we can 90	

track and analyze actual sequences of interplay instead of average connections across a series of attacks. 91	

When focusing on attacks, literature differentiates between counter-attacks and positional attacks 92	

in handball (Karcher and Buchheit, 2014). We only focus on the latter, meaning organized positional 93	

attacks with offensive as well as defensive players having taken their respective playing position 94	

(Yamada et al., 2014). This is because we want to focus on the structured and controlled interaction to 95	

overcome defensive lines which make up 87% (1,993 in total) of all attacks in our study. As ball 96	

possession of attacking teams is often subdivided into multiple sub-attacks or offensive attempts, caused 97	

by a referee decision, throw-in or repossession of a deflected ball (Pfeiffer and Perl, 2006), we define 98	

these as our smallest units of attack (3,100 in total) to most accurately represent the concept of interplay 99	

(Ramos et al., 2018). 100	

To characterize the different types of sub-attacks we differentiate between four common tactical 101	

formations, namely 6vs.6, 6vs.5, 5+1vs.6 and 7vs.6. Whereas the first number describes the number of 102	

offensive players, the second number states the number of defensive players within the sub-attack, 103	

accordingly. 6vs.6 can be seen as the most common base formation, 6vs.5 implies a two-minute penalty 104	

in the defending team, 5+1vs.6 reflects a two-minute suspension in the attacking team which is 105	

compensated by replacing the own goalkeeper with an additional attacking player. The tactical formation 106	

7vs.6, on the other hand, implies a goalkeeper replacement by the attacking team, as described above, 107	

without having suffered a temporary suspension. In our study, most of the sub-attacks are played in a 108	

6vs.6 formation (74.5%), 10.3% in 5+1vs.6, 7.7% in 6vs.5 and 3.9% in a 7vs.6 formation. The remainder 109	

consists of other infrequently played formations such as 5vs.5 or 7vs.5. However, we focus on the four 110	

most frequent tactical formations that make up 96.4% of all attack units. 111	

To better understand attack formations and be able to characterize handball as such, we track 112	

playing positions and not players (Póvoas et al., 2012). In handball, we find a clear differentiation 113	

between tactical roles (Cardinale et al., 2016). Therefore, we codify the following playing positions: i) 114	

left wing (LW); ii) left back (LB); iii) center (C); iv) right back (RB); v) right wing (RW); vi) pivot (P); 115	

and vii) an additional pivot in 7vs.6 (P7). As the goalkeeper is not involved in positional attacks, we drop 116	

this playing position from analysis. 117	

To overcome the issue of frequent substitutions, especially in the backcourt, we reassign playing 118	

positions (Michalsik and Aagaard, 2015). The tracking and codification process is done by researchers 119	

with more than 15 years of experience in handball. It was executed through video analysis applying the 120	

software Dartfish®. 121	
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 To ensure the reliability of the data, we compute Cohen´s kappa and Gwet’s AC1 inter-rater 122	

statistic in a two-stage process (Gwet, 2001). Using Gwet’s statistic, we first analyze the agreement on 123	

the occurrence of passes. In a second step, Cohen’s Kappa tests the agreement on pass executer and 124	

receiver. Moreover, the agreement on tactical formation is tested. 15% of the overall data was assessed 125	

for reliability purposes. The Kappa (Gwet) values were above 0.95 (0.80) respectively for passing and 126	

0.83 for the agreement on tactical formations, meeting the requirements for observer agreement 127	

(Robinson and O’Donoghue, 2007).  128	

Network Metrics 129	

The software Matlab® was used to carry out the analysis and the visualization of networks was 130	

enabled through Cytoscape®. A set of individual and team centrality metrics were computed. They allow 131	

a quantification of the involvement of playing positions in executing and structuring interplay as well as 132	

the overall distribution and layout of passing within an attacking team. We consider weighted directed 133	

graphs to consider both passing directions between any set of two attacking players. On a micro-level, 134	

weighted in-/out-degree as well as flow centrality are computed. On a macro-level, density and weighted 135	

degree centralization are calculated to assess the general structure of interplay in different formations. 136	

Weighted In-Degree 137	

Weighted in-degree, also referred to as prestige in SNA, is the sum of all incoming weighted 138	

edges of a particular node.  Thus, in a handball context, it captures the number of received passes by a 139	

player during an attack unit. Let 𝑛"	be a node of weighted directed graph G with 𝑛 nodes. Then, weighted 140	

in-degree index, 𝐶%&'(𝑛"), for player 𝑖 is calculated as  141	

𝐶%&'(𝑛") = 	-𝑎/"
0

/12
"3/

 (1) 

where 𝑎/"	corresponds to the frequency of passes from player 𝑗	to 𝑖.  The metric is often taken as 142	

a first indicator for the prominence of a player. A player that is being targeted frequently during an attack 143	

is mostly likely trusted by fellow players to structure the team’s attacking plays (Clemente et al., 2015a, 144	

Korte and Lames, 2018). 145	

Weighted Out-Degree 146	

Weighted out-degree, also referred to as centrality, takes the sum of all outgoing weighted edge 147	

values of a certain node. It therefore represents the number of executed passes by a player during an 148	

attack unit. Let 𝑛"	be a node of weighted directed graph G with 𝑛 nodes. Then, weighted out-degree index, 149	

𝐶%5'(𝑛"), for player 𝑖 is calculated as 150	
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𝐶%5'(𝑛") = 	-𝑎"/
0

/12
"3/

 (2) 

where 𝑎"/ 	corresponds to the frequency of passes from player 𝑖	to 𝑗.  In recent studies, this metric 151	

was often used to describe players with a high contribution to the overall ball circulation (Clemente et 152	

al., 2015a).  153	

Both degree metrics are computed on an absolute as well as relative level. We obtain relative 154	

values as a share of the aggregated degree levels across all playing positions. Moreover, we also carry 155	

out an analysis of a subset which only includes attack units of at least three passes for these two metrics 156	

to provide a richer insight into passing patterns in handball by focusing on longer attacking plays.  157	

Flow Centrality 158	

Flow centrality is calculated as the fraction of passing sequences (or attack units) that a particular 159	

playing position is involved in relative to all plays of its team within a match (Fewell et al. 2012). In 160	

contrast to the weighted degree centrality metrics above, flow centrality does not assess the average 161	

involvement of a particular player within attack units, but the overall prevalence in attack units across 162	

the entire match. This enters a new aspect to the assessment of interplay. By only looking at weighted 163	

degree, the intermediary role of a player, who is highly involved in the passing of only a small set of 164	

attack units across a match, might be overestimated. In contrast, flow centrality focuses on the share of 165	

attacks that a particular player is at least once involved in. As it offers a holistic evaluation of the 166	

involvement across an entire match, it is increasingly used to assess the intermediary role of individual 167	

players (Duch et al., 2010). Flow centrality index, 𝐶67(𝑛"), for player 𝑖 is calculated as 168	

𝐶67(𝑛") =
∑ 𝑠:(𝑛")	;
:12

𝑠;
 (3) 

where 𝑠; denotes the total number of 𝑚 attack units in a match and 𝑠:(𝑛") denotes the k-th attack 169	

unit in which 𝑛" is involved at least once. By construction, all flow centrality values are bounded between 170	

0 (player 𝑛" is not involved in any attack unit of its team in the match) and 1 (player 𝑛" is involved in all 171	

attack units of its team in a match). In constrast to the concept of betweenness, which focuses on paths, 172	

it rather considers walks. Paths are based on the strongest connections in terms of pass frequency between 173	

any set of two players. However, it does not necessarily describe an actual passing sequence. In contrast, 174	

walks consider direct interplay during attack phases (Borgatti, 2005). Thus, flow centrality is seen as a 175	

more appropriate metric to describe intermediary players (Ramos et al., 2018). In addition, we examined 176	

flow centrality restricted to interactions in the final three passes before a shot-on-goal situation to study 177	
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network properties in the crucial phase of an attack unit, following Fewell et al. (2012). The index for 178	

this specific metric is defined as 𝐶67=(𝑛") for player 𝑖.  179	

Density 180	

Density is the number of actual connections between attacking players as a share of the potential 181	

connections. The latter is a connection (or technically: edge) that could potentially exist between any sets 182	

of two attacking players. Thus, this metric provides a quantification of the general level of cohesion 183	

across a team within an attack unit. For the computation, we assess the direction of the pass as irrelevant 184	

as the focus purely lies on the occurrence of a connection. For a weighted digraph G with 𝑛 nodes, density 185	

index, 𝐶', is calculated as 186	

𝐶' =
2 ∗ ∑ 𝑐"/0

/12
"3/

(𝑛 − 1) ∗ 𝑛 (4) 

where 𝑐"/	is an indicator function that takes the value 1 if there is at least one pass from player 𝑖 187	

to 𝑗 or vice versa. Otherwise, it takes the value 0. The metric is adjusted by the total number of potential 188	

connections between 𝑛 nodes. 189	

Weighted Degree Centralization 190	

Weighted degree centralization takes the sum of all deviations from the weighted degree values 191	

of all nodes to the highest value in the network adjusted by the number of players and passing intensity 192	

(Freeman, 1978, Opsahl et al., 2010). The weighted degree value of a node is simply the sum of its 193	

weighted in-/out-degree values. In a sports context, the metric provides an indication to what level the 194	

cohesion is concentrated around certain players of the attacking team. For a weighted graph G with 𝑛 195	

nodes, weighted degree centralization index, 𝐶%'7, is calculated as 196	

𝐶%'7 =
∑ 𝐶%'∗ − 𝐶%'(𝑛")0
"
(𝑛 − 1) ∗ 𝐶%'

 (5) 

where 𝐶%'∗  is the highest weighted degree value of a playing position in its team, 𝐶%'(𝑛") the 197	

weighted degree value of playing position 𝑖  and 𝐶%'	the aggregated weighted degree	values of all 198	

playing positions, which can also be referred to as passing intensity (Grund, 2012). The adjustment 199	

according to the number of attacking players allows a comparison between tactical formations. 200	

Statistical Procedures 201	

For individual metrics, two-way ANOVA are carried out for each dependent variable, degree and 202	

flow centrality. Tactical formation and playing position are the independent factors of our analysis. We 203	

conduct multiple one-way ANOVA to analyze the variance within each factor and Tukey HSD post-hoc 204	

tests for pairwise comparisons between tactical formations and playing positions, respectively. For team 205	
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metrics, 𝐶'	and	𝐶%'7 , multiple one-way ANOVA are executed to test for statistical differences between 206	

tactical formations. Our statistical analysis is conducted with Matlab at a 5% significance level. 207	

Following Ferguson (2009) and Clemente and Martins (2017), 𝜂E is reported to interpret the effect size 208	

according to the following criteria: no effect (𝜂E < 0.04); small effect (0.04 ≤ 𝜂E < 0.25); moderate 209	

effect (0.25 ≤ 𝜂E < 0.64); strong effect (𝜂E ≥ 0.64).  210	

Network Visualization 211	

A visualization of the results is provided by a depiction of common network plots with nodes and 212	

edges representing playing positions and passing frequency, respectively. The 5+1vs.6, 7vs.6 and 6vs.5 213	

formations are visualized as the relative difference values compared to 6vs.6, both positive and negative. 214	

 215	

Results  216	

Individual Parameters 217	

The results of the two-way ANOVA reveal significant differences in the independent variable of 218	

playing position on 𝐶67	(𝑝 < .001	; 𝜂E = 0.744), 𝐶67=	(𝑝 < .001	; 𝜂E = 0.625), 𝐶%&'	(𝑝 < .001; 𝜂E =219	

0.163)	and 𝐶%5'	 (𝑝 < .001; 𝜂E = 0.197).	 Moreover, significant differences are found with regard to 220	

tactical formation on 𝐶67	(𝑝 < .001	; 𝜂E = 0.023) , 𝐶%&'	(𝑝 < .001; 𝜂E = 0.007)	 and 𝐶%5'	  (𝑝 <221	

.001; 𝜂E = 0.008). No statistical differences are found for the independent variable of tactical formation 222	

with regards to 𝐶67=	(𝑝 = 0.121	; 𝜂E = 0.007) . There are also statistically significant interactions 223	

between tactical formation and playing position on 𝐶67	(𝑝 < .001	; 𝜂E = 0.056) , 𝐶67=	(𝑝 =224	

0.003; 𝜂E = 0.040) , 𝐶%&'	(𝑝 < .001; 𝜂E = 0.008)	and 𝐶%5'	  (𝑝 < .001; 𝜂E = 0.006)	 including the 225	

filtered subset focusing on attacks of at least three passes. That means formation changes affects playing 226	

position involvement, measured by our individual metrics, differently.  227	

Table 1 insert here. 228	

 The results of the one-way ANOVA demonstrate significant effects between centrality levels of 229	

playing positions for each tactical formation with respect to all individual centrality measures. Table 1 230	

shows that the highest average values were found for the center position, C, followed by both back 231	

positions (LB and RB) with respect to all relevant centrality measures. Wings (LW and RW) and pivot(s) 232	

(P and P7 for 7vs.6) scored lowest for each tactical formation. Focusing on flow centrality, C is involved 233	

in at least 94% of all attacking interplays for each tactical formation and at least 92% when focusing 234	

solely on the final three passes before a shot on goal. No significant differences were found between the 235	

back positions here. The pivot, P, is significantly more involved in attack units than the wing positions, 236	

apart from the 6vs.5 formation in which the LW and RW are more prevalent. Between those two playing 237	
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positions we only find significant differences within the 6vs.6 formation. The additional pivot, P7, is 238	

only part of the interplay in about 2% of all attack units taking place in a 7vs.6 formation. 239	

The results of the multiple one-way ANOVA of 𝐶%&' , 𝐶%5'	, 𝐶67  and 𝐶67= per playing position 240	

for each tactical formation can also be taken from Table 1. For C and the other two back positions, LB 241	

and RB, absolute 𝐶%&'  and 𝐶%5'	values are significantly higher in a 5+1vs.6 and 7vs.6 formation than 242	

in 6vs.6 and 6vs.5, respectively. Figure 1 shows that for attacking plays with more than three passes, 243	

there are no significant differences between 5+1vs.6, 7vs.6 and 6vs.6 for the three back positions 244	

anymore. 𝐶%&'  and 𝐶%5'	values of wing players are lowest in the 7vs.6 formation, independent of the 245	

length of the attacking plays, though only partly significantly. They score highest in the 6vs.5 (RW) and 246	

5+1vs.6 formation (LW).  In general, 5.5 passes are played in a 6vs.6 formation per sub-attack, 6.9 passes 247	

(+25.5%) in a 5+1vs.6 setup, 6.5 passes (+18.2%) in the 7vs.6 constellation while there are only 4.6 248	

passes (-16.4%) on average in a 6vs.5 formation. 249	

Figure 1 insert here. 	250	

Focusing on the relative shares in 𝐶%&'  and 𝐶%5'	values across tactical formations, we only find 251	

few significant differences, as visualized in Figure 1. However, the center position has a significantly 252	

lower share in received passes in attack units played in a 6vs.5 formation, whereas the wing players show 253	

significantly higher values during these attack phases in comparison to the other formations. 254	

Our analysis also shows significant differences in the overall attack involvement (𝐶67  and 𝐶67= ) 255	

per playing position for each tactical formation. However, the ranking across tactical formations in terms 256	

of the individual metric values is mixed for playing positions. When focusing on the final three passes 257	

of an attack, we only find significantly higher flow centrality values for the LB in a 7vs.6 formation 258	

against 6vs.6 and 5+1vs.6 as well as the RW in a 6vs.5 formation against 6vs6. and 5+1vs.6.  259	

Team Parameters 260	

We find significant differences between tactical formations for 𝐶'	(𝑝 < .001;𝜂E =261	

0.024)	and	𝐶%'7	(𝑝 < .001;𝜂E = 0.013). On average, the density values (0.17) are significantly higher 262	

and centralization values (0.33) significantly lower in a 5+1vs.6 formation than in the all others, though 263	

with nearly no effect size. The average density value of 0.17 implies that 17% of possible connections 264	

between the attacking players are utilized for interplay which amounts to 2.4 of the 15 potential 265	

connections on average. The weighted degree centralization value is highest within the 7vs.6 formation, 266	

though not significantly different from the other formations. Table 2 visualizes the results of our analysis. 267	

Table 2 insert here. 268	

	 Network Visualization 269	
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The aggregated passing distribution between playing positions in Figure 2 confirms the relatively 270	

lower share in passing of the C and higher share for wing positions in the 6vs.5 formation. Moreover, it 271	

visualizes the increased prevalence of LB in attacking plays and low involvement of wing positions in 272	

the 7vs.6 formation compared to 6vs.6. 273	

Figure 2 insert here. 274	

Discussion 275	

The study reveals statistical significance with respect to differences of centrality measures, at 276	

both micro and macro level, between tactical formations and playing positions. Effect sizes found were  277	

small to moderate. 278	

Across the four most prevalent tactical formations in handball, the overall involvement of playing 279	

positions in attack units per match and their average passing involvement per attack unit varies differently. 280	

Our analysis shows that the effect is mostly moderated by differences between playing positions within 281	

each formation and less by substantially changing centrality levels of individual playing positions across 282	

different formations. Here, we also detect significant differences. However, effect sizes were small to 283	

negligible.  284	

We find that interplay is dominated by and structured around the three back positions C, LB and 285	

RB across all formations. This is in line with Srhoj et al. (2001) who finds that this is partly induced by 286	

the favorable position on court which is also prevalent in all tactical formations. The dominance is 287	

demonstrated in the explicitly high flow centrality values indicating an almost persistent involvement in 288	

each attack unit, while wing and pivot players are only involved in every third or fourth positional attack 289	

unit. One explanation for these findings is that the attack efficiency in handball was found to decrease 290	

with an increasing duration of positional attacks (Rogulj et al., 2011). Towards the beginning of an attack 291	

the opposing team might struggle to form an effective defense which offers back players an easier scoring 292	

opportunity. According to the authors players in back positions therefore attempt to finalize attacks as 293	

early as possible and, thus, often without the inclusion of wing or pivot players. The high 𝐶%&'  and 294	

𝐶%5'	values underline that the backcourt is not only more prevalent in attacks during the match but also 295	

structures them within. The average numbers of pass execution and reception are highest for C, who can 296	

be seen as the key player in structuring plays, followed by the back players. Wing and pivot players have 297	

similar passing numbers on average but are significantly less involved in structuring interplay. This is in 298	

line with Foretic et al. (2013) who, in their study on situational efficiency in men’s top-level handball, 299	

ascribe back players the task of organizing the game with the aim of creating a favorable position for 300	
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attack finalization. The resulting three hierarchy layers of centrality also reveal a symmetric level of 301	

involvement between left- and right-sided players, especially in regard to LB and RB. 302	

Although a mutual hierarchy is visible among playing positions in terms of interplay involvement 303	

across formations, a closer look at the results of the passing statistics and centrality metrics also shows 304	

differences in passing behavior and general interplay between tactical formations. First, they differ in 305	

their average number of passes per positional attack. Attack units with no goalkeeper such as 7vs.6 and 306	

5+1vs.6 are played significantly longer on average (+20%) than 6vs.6 and 6vs.5. One explanation for 307	

that finding could be that teams in a 5+1vs.6 formation intend to lapse time while playing in minority. 308	

As we find a similar result for the 7vs.6 formation, the missing goalkeeper could also be a factor. Teams 309	

might avoid sudden shot attempts as they fear an almost certain turnover goal and hence decide to rather 310	

pass on the ball. For the 6vs.5 formation, in contrast, it is most likely that attacking teams either want to 311	

efficiently exploit their majority play or are simply able to quicker find the necessary gaps in the 312	

decimated defense, both resulting in shorter passing sequences on average.  313	

Combining the passing statistics with the results from the team metrics offers a richer insight into 314	

understanding the style of interplay. The density values are significantly higher in the 5+1vs.6 than other 315	

formations meaning that more potential connections between players are exploited in this formation. 316	

However, the magnitude is quite small and does not even add up to a complete additional connection on 317	

average in comparison to the other formations. The centralization values are quite balanced and 318	

differences are low in magnitude and effect size implying that the concentration of interplay around 319	

certain focal points is balanced between formations. However, it is important to point out that by 320	

construction of the centralization metric the highest average value across formations, which is 321	

documented for the 7vs.6 formation, might underestimate the true level of concentration around crucial 322	

positions. The adjustment due to the higher number of attacking players naturally decreases its 323	

centralization value especially as passing involvement of the additional pivot, P7, is neglectingly low. 324	

This is a first hint, that, although interplay takes on average longer in the 7vs.6 formation, it is in fact 325	

more concentrated around the back positions in contrast to the other formations. 326	

To better understand the impact of playing positions on interplay, it is crucial to look at the 327	

differences in individual centrality metrics per playing position for each formation. The number of 328	

executed and received passes of the three back positions are significantly higher in 5+1vs.6 and 7vs.6 329	

than in the other two formations. As the relative degree values of the backs and C remain quite stable 330	

across formations, it is evident that the longer average passing is evenly structured around these three 331	

particular playing positions. What turns out to be different between interplay in the two formations that 332	
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replace their goalkeepers is their different levels of inclusion of wing and pivot positions. Wing players 333	

in the 5+1vs.6 formation show significantly higher passing values than in 7vs.6. This supports the 334	

argument that longer passing sequences and the higher level of cohesion in 5+1vs.6 is also used to spread 335	

interplay to wings. In contrast, wing positions face the lowest values in a 7vs.6. formation. Whereas the 336	

passing involvement of the (standard) pivot position is even between formations, the additional pivot 337	

from 7vs.6 is nearly never targeted for interplay. Instead, it appears that its role is that of a blocker to 338	

provide better shooting opportunities for the back positions. This assumption is also supported by the 339	

significantly higher involvement of the LB, which is often referred to as the key shooting position, in 340	

7vs.6 attack units (Karcher and Buchheit, 2014). This is especially true for the final three passes before 341	

a shot on goal.  342	

Turning to the basic 6vs.6 formation, one would expect that the interplay is quite similar to the 343	

5+1vs.6 formation given that the same numbers of attacking and defending players face each other. 344	

Indeed, the respective involvement of players in attacks and the relative share of involvement in interplay 345	

per attack unit is similar or nearly exact. The main difference lies in the significantly higher average 346	

number of executed and received passes of three backcourt players in 5+1vs.6. As the average increase 347	

in passing is mostly spread across three positions, and also wing and pivot players are stronger involved, 348	

the difference is not detectable in the relative shares of involvement and centralization values. Thus, the 349	

general interplay structure, especially with respect to balanceness, is similar. However, the significant 350	

differences in interplay involvement completely neutralize for backcourt players when filtering for attack 351	

units with at least three passes. It suggests that the lower average number of passes in the 6vs.6 formation 352	

is mostly due to its higher share of positional attack units with less than three passes. In fact, the share 353	

amounts to 30.7% in 6vs.6 while it is 16.6% in 5+1vs.6. Once longer offensive plays are initiated, there 354	

are no significant differences in general structure and interplay. 355	

The 6vs.5 formation stands out as the most different from the others in terms of interplay. In 356	

contrast to the majority interplay in 7vs.6, plays are structured shorter in 6vs.5, which can be seen by the 357	

low average passing number and 26.2% share of attacks that take less than three passes. It appears, that 358	

exploiting gaps in the decimated defense is easier. Moreover, wing positions are involved quite 359	

frequently as supported by two arguments. First, the involvement ratio in the last three passes before a 360	

shot on goal is highest in the 6vs.5 formation. Second, these playing positions show increased 361	

𝐶%&'	values, implying that wing positions are passed to more frequently, most likely to spread interplay 362	

and create open space on the wings as an alternative to breaking through in the backcourt. 363	

87



13 
 

The main limitation seen in this research study was related to the unbalanced prevalence of 364	

different attack formations in the European Championship with the 6vs.6 formation adding up to most 365	

of the attack units. A bigger sample size might increase the prevalence of other attack formations. Second, 366	

the different number of attacking players (P7 only present in 7vs.6 formation) had a slight effect on the 367	

computation of the team metrics which naturally increased the complexity of our comparison. This 368	

should be noted in future research on other team sports such as field hockey or water polo, which also 369	

have temporary suspensions that influence the number of active players on the pitch. Moreover, this 370	

study focuses on the passing interaction leading towards a favorable shooting position. As it does not 371	

include the attack outcome itself, it does not break down the actual shooting performance. In general, it 372	

is important to stress that neither the situational efficiency of playing positions is assessed nor a 373	

differentiation between specific attack models provided. Similarly, defense formations during positional 374	

attacks, which could potentially impact the ball passing dynamics, are not considered.  375	

 376	

Conclusion 377	

The aim of this study was to characterize the nature of interplay in handball through analyzing 378	

passing sequences of positional attacks in the most prevalent tactical formations. By applying centrality 379	

metrics from social network analysis, we can quantify the involvement of playing positions and assess 380	

the playing style within different formations. Thus, this is the first study that offers a profound analysis 381	

of interplay in handball especially under the consideration of the new constraint of goalkeeper 382	

replacement in attacking plays. Moreover, our analysis, for the first time in handball, breaks down the 383	

complexity of interplay to separate attack units and thus considers actual passing sequences instead of 384	

average connections.   385	

The main findings of this study were the significant differences in the attack involvement between 386	

playing positions across the most prevalent tactical formations. Attacking plays are predominantly 387	

structured by the C and back positions, regardless of the tactical lineup. Average passing sequences are 388	

longest in attack formations without a goalkeeper and shortest in the 6vs.5 majority formation. Whereas 389	

longer plays in 7vs.6 are mostly structured around back positions, interplay in 5+1vs.6 includes wing 390	

positions more frequently. The highest level of inclusion of wing players is found within the 6vs.5 391	

formation, most likely to exploits gaps in the decimated defense. 392	

Future studies should consider variations in the tactical behavior of defensive formations to more 393	

accurately account for the dynamic processes taking place between opposing teams in handball.  394	
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Ultimately, SNA turned out as a suitable method to govern and quantify the dynamics of ball 395	

passing in handball. In addition to traditional performance indicators, it provides an in-depth analysis of 396	

passing sequences leading to a better understanding of the nature of the sport and the role of its players. 397	

 398	
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Figures and Table 469	

	470	

Figure 1: Mean results of 𝑪𝑾𝑶𝑫	 / 𝑪𝑾𝑰𝑫  metrics including ≥ 3 passes and %-values  471	

	472	
Figure 2: Visualization of passing networks and relative differences between formations 473	
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Table 1: Descriptive statistics and post-hoc results for individual metrics 474	

  C LB LW P P7 RB RW 

𝑪𝑾𝑶𝑫 

6vs.6 2.39 (1.82) 
all / all 

1.25 (1.15) 
all / 516,76 

0.10 (0.34) 
C,Bs / 65,516 

0.17 (0.38) 
all / all - 1.49 (1.30) 

all / 65 
0.14 (0.38) 
C,Bs / 516 

6vs.5 1.90 (1.36) 
all / all 

1.07 (0.91) 
C,P,Ws / 516,76 

0.17 (0.42) 
C,Bs / all 

0.10 (0.30) 
C,Bs / all 

- 1.15 (1.01) 
C,P,Ws / all 

0.19 (0.46) 
C,Bs / - 

5+1vs.6 2.89 (1.73) 
all / 66,65 

1.45 (1.09) 
all / 66,65 

0.25 (0.48) 
C,Bs / 66,65 

0.29 (0.48) 
C,Bs / 66,65 - 1.77 (1.18) 

all / 65 

0.22 (0.46) 
C,Bs / 66,76 

7vs.6 2.85 (1.75) 
all / 66,65 

1.56 (1.05) 
C,Ps,Ws / 66,65 

0.06 (0.23) 
C,Bs / 65,516 

0.28 (0.49) 
C,Bs / 66,65 

0.01 (0.09) 
C,Bs 

1.66 (1.15) 
C,Ps,Ws / 65 

0.11 (0.31) 
C,Bs / 516 

𝑪𝑾𝑰𝑫 

6vs.6 2.21 (1.83) 
all / all 

1.27 (1.15) 
all / 516,76 

0.13 (0.38) 
C,Bs,P / 65,516 

0.28 (0.49) 
C,Bs / 65, 516 - 1.46 (1.28) 

all / 65,516 
0.18 (0.43) 
C,Bs,P / 65 

6vs.5 1.61 (1.27) 
all / all 

1.10 (0.94) 
C,P,Ws / 516,76 

0.23 (0.47) 
C,Bs / 66 

0.19 (0.42) 
C,Bs / all - 1.11 (0.99) 

C,P,Ws / all 
0.34 (0.60) 
C,Bs / all 

5+1vs.6 2.73 (1.71) 
all / 66,65 

1.53 (1.12) 
C,P,Ws / 66,65 

0.29 (0.50) 
C,Bs / 66,76 

0.39 (0.52) 
C,Bs / 66,65 

- 1.72 (1.17) 
C,P,Ws / 66,65 

0.23 (0.49) 
C,Bs / 65 

7vs.6 2.71 (1.70) 
all / 66,65 

1.57 (0.97) 
C,Ps,Ws / 66,65 

0.12 (0.33) 
C,Bs / 516 

0.36 (0.50) 
C,Bs / 65 

0.01 (0.09) 
C,Bs 

1.61 (1.24) 
C,Ps,Ws / 65 

0.14 (0.37) 
C,Bs / 65 

𝑪𝑭𝑪 

6vs.6 0.95 (0.03) 
all / - 

0.85 (0.06) 
C,P,Ws / 76 

0.15 (0.08) 
all / 516 

0.29 (0.09) 
all / - - 0.86 (0.07) 

C,P,Ws / - 

0.20 (0.09) 
all / 65 

6vs.5 0.94 (0.12) 
P,Ws / - 

0.89 (0.18) 
P,Ws / - 

0.24 (0.23) 
C,Bs / - 

0.24 (0.34) 
C,Bs / 516 - 0.83 (0.23) 

P.Ws / 516 
0.33 (0.25) 
C,Bs / 66 

5+1vs.6 0.97 (0.08) 
P,Ws / - 

0.88 (0.14) 
P,Ws / - 

0.28 (0.24) 
C,Bs,P / 66,76 

0.41 (0.26) 
all / 65 

- 0.92 (0.10) 
P,Ws / 65 

0.24 (0.21) 
C,Bs,P / - 

7vs.6 0.99 (0.03) 
Ps,Ws / - 

0.96 (0.07) 
Ps,Ws / 66 

0.12 (0.17) 
C,Bs,Ps / 516 

0.43 (0.39) 
C,Bs,P7,Ws / - 

0.02 (0.08) 
all 

0.92 (0.10) 
Ps,Ws / - 

0.21 (0.26) 
C,Bs,Ps / - 

𝑪𝑭𝑪𝟑 

6vs.6 0.94 (0.08) 
all / - 

0.72 (0.12) 
all / 76 

0.12 (0.10) 
all / - 

0.21 (0.11) 
C,Bs,LW / - - 0.77 (0.12) 

all / - 
0.18 (0.11) 
all-P / 65 

6vs.5 0.92 (0.20) 
RB, P, Ws / - 

0.82 (0.40) 
P,Ws / - 

0.23 (0.31) 
C,Bs / - 

0.20 (0.36) 
C,Bs / - - 0.72 (0.35) 

C,P,Ws / - 
0.33 (0.26) 
C,Bs / 66, 516 

5+1vs.6 0.96 (0.20) 
all / - 

0.76 (0.37) 
C,P,Ws / 76 

0.17 (0.20) 
C,Bs / - 

0.26 (0.17) 
C,Bs / - 

- 0.73 (0.35) 
C,P,Ws / - 

0.13 (0.26) 
C,Bs / 65 

7vs.6 0.97 (0.29) 
RB,Ps,Ws / - 

0.95 (0.32) 
RB,Ps,Ws / 66,516 

0.11 (0.29) 
C,Bs,P7 / - 

0.19 (0.30) 
C,Bs,P7 / - 

0.0 (0.00) 
all 

0.71 (0.38) 
all / - 

0.14 (0.30) 
C,Bs,P7 / - 

Subscripts indicate to which playing positions (part before /) or tactical formation (part after /) given value is statistically different for 𝒑 <
	. 𝟎𝟓, e.g. C: given value is statistically different to the value of the center; 66: given value is statistically different to the value in the 6vs.6 

formation; All: statistically different to all other playing positions / formations; Bs include LB and RB; Ws include LW and RW; Ps include P 
and P7 

 475	

Table 2: Descriptive statistics and post-hoc results for team metrics 476	

  6vs.6 6vs.5 5+1vs.6 7vs.6 

𝑪𝑫 0.17 (0.09) 
516 

0.17 (0.08) 
516 

0.22 (0.11) 
all 

0.19 (0.09) 
516 

𝑪𝑾𝑫𝑪 
0.34 (0.07) 
516 

0.33 (0.08) 
76 

0.32 (0.08) 
66,76 

0.35 (0.07) 
65,516 

Subscripts indicate to which tactical formation given value is statistically different for 𝒑 <	. 𝟎𝟓, e.g. 66: 
given value is statistically different to the value in the 6vs.6 formation; All: statistically different to all 

other tactical formations 

	477	
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Play-by-Play Network Analysis in
Football
Florian Korte* , Daniel Link, Johannes Groll and Martin Lames

Chair of Performance Analysis and Sports Informatics, Technical University of Munich, Munich, Germany

This study identifies dominant and intermediary players in football by applying a play-
by-play social network analysis (SNA) on 70 professional matches from the 1. and 2.
German Bundesliga during the 2017/2018 season. SNA provides a quantification of
the complex interaction patterns between players in team sports. So far, the individual
contributions and roles of players in football have only been studied at match-level
considering the overall passing of a team. In order to consider the real structure
of football, a play-by-play network analysis is needed that reflects actual interplay.
Moreover, a distinction between plays of certain characteristics is important to qualify
different interaction phases. As it is often impossible to calculate well known network
metrics such as betweenness on play-level, new adequate metrics are required.
Therefore, flow betweenness is introduced as a new playmaker indicator on play-
level and computed alongside flow centrality. The data on passing and the position
of players was provided by the Deutsche Fußball Liga (DFL) and gathered through a
semi-automatic multiple-camera tracking system. Central defenders are identified as
dominant and intermediary players, however, mostly in unsuccessful plays. Offensive
midfielders are most involved and defensive midfielders are the main intermediary
players in successful plays. Forward are frequently involved in successful plays but
show negligible playmaker status. Play-by-play network analysis facilitates a better
understanding of the role of players in football interaction.

Keywords: performance analysis, football, temporal networks, flow centrality, intermediary player

INTRODUCTION

Football teams are described as groups that interact in a dynamic and interdependent way to
achieve their common goal (Ribeiro et al., 2017). Understanding the individual role of each player
in that dynamic process is highly relevant to uncover how a team operates (Vilar et al., 2013).
Although collective behavior within teams is frequently linked to performance outcomes in sports,
the impact of individual players on team performance requires further research (Duch et al., 2010).
Therefore, identifying methods that offer a quantification of crucial players in the interaction of
teams contributes to performance analysis in football.

Social network analysis (SNA) has been identified as a suitable method as it addresses the
interdependencies in teams by modeling the interaction based on passes. Passos et al. (2011)
describe the potential of SNA by modeling intra-team coordination as the frequent passing
interaction taking place between players in team sports. Pena and Touchette (2012) and Grund
(2012) build on this idea by connecting network properties to performance outcomes in football.
Since then, there has been a growing body of research applying SNA by exploiting passing networks

Frontiers in Psychology | www.frontiersin.org 1 July 2019 | Volume 10 | Article 1738
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to understand the properties of team performance and the
underlying individual contribution of players (Sarmento et al.,
2018). The latter is of interest as each player has a specific
position to play and role to accomplish in order to contribute
to the common goal of winning (Bourbousson et al., 2010).
The majority of research in football follows a static analysis
on match-level by calculating centrality metrics based on the
aggregated passing data in a match. In these studies, the
contribution of players to the overall team performance is
often described by counting the total number of successfully
played and received passes through different degree measures
(Clemente et al., 2015; Gama et al., 2015; Trequattrini et al.,
2015). Moreover, the intermediary role of players to connect
their team mates as bridging players by distributing the ball
is frequently assessed by applying betweenness and closeness
measures to the overall passing interaction between players across
a match (Clemente et al., 2015, 2016a; Aquino et al., 2018;
Castellano and Echeazarra, 2019).

Based on these existing studies that apply SNA in football,
Ramos et al. (2018) demand a breakdown of the analysis to a play-
by-play level to consider the temporal character of football. This
implies that passing sequences should be evaluated separately
instead of examining the aggregated passing data across a
match. Moreover, they emphasize that an analysis on match-
level to detect intermediary players through the application of
betweenness and closeness measures assumes certain properties
about interplay in football that might not be adequate, e.g.,
the proposition that ball flow follows the shortest paths over
the graph which results from the aggregation of all passes in a
match. That means that the current approaches do not actually
consider the actual sequence of ball passing in order to detect
players that are in fact connecting their team members through
passing. Instead, the overall intensity of passing across a match
is used to approximate bridging players. Third, the authors also
suggest a distinction between plays of certain characteristics to
ensure a qualitative component to the analysis that bridges the
gap between SNA and performance outcomes and fosters the
practical impact of the approach.

Some studies already tackle certain aspects of the proposition.
Yamamoto and Yokoyama (2011) break down matches in time
intervals to meet the temporal character of football. Pina
et al. (2017) differentiate between successful and unsuccessful
interaction based on aggregated passing networks during certain
time intervals. Yet, these approaches do not reflect actual
interplay as the analysis is built on aggregated passing data across
a number of plays and hence does not consider actual interplay
as it unfolds. The reason why most studies conduct an analysis
on interval-level instead of play-level is due to the character of
plays in football and the current limitations of SNA in sports. In a
study by Tenga et al. (2010), 50% of all plays consist of two passes
or less and only 20% of all plays take more than four passes. Thus,
only a limited number of players are involved in individual plays
and it is often not possible to calculate well known individual
metrics such as betweenness or closeness on that level of analysis.
Moreover, until recently, the regular availability of action feeds in
professional football that enable a play-by-play network analysis
was limited. In a recent study, Mclean et al. (2018) compute SNA

metrics on play-level by analyzing the team interaction properties
of goal scoring networks and modeling zones on the playing
field as separate nodes to assess how attacks evolve across the
pitch. However, there is no differentiation between successful
and unsuccessful plays and no assessment of the contribution of
individual players.

To summarize, previous research in football has not identified
the individual contribution and especially the intermediary
role of players based on a separate evaluation of passing
sequences. Studies were only executed based on aggregated
passing data across time intervals or the entire match. Thus,
this study applies and proposes adequate metrics that quantify
individual performance on play-level while connecting the
results to performance variables. Moreover, a distinction between
dominant and intermediary players on play-level is provided.
Building on Clemente et al. (2016b), dominant players on match-
level are frequently involved in interplay while intermediary
players link other teammates during a match.

Following Fewell et al. (2012), flow centrality is calculated
to assess the individual dominance on play-level by focusing
on the overall involvement during all plays in a match. The
intermediary role of players is quantified by counting the share
of plays in which the players are actually in-between other
teammates. The metric which we call flow betweenness considers
the actual sequential pattern of passing and overcomes the
issue of short plays, in terms of number of passes, at the
same time. We draw a comparison of network metrics between
different playing positions as the applied metrics specify and
extend the characterization of roles and tasks of players in
football. There is also a differentiation between successful and
unsuccessful plays by using the entering of the finishing zone
as a proxy for goals scored to achieve a rigorous assessment of
individual contribution (Tenga et al., 2010). Additionally, the
study draws a comparison to the traditional playmaker indicator
of weighted betweenness which is computed at match-level.
Using a correlation analysis, we can investigate the degree of
similarity between flow-based and common match-level metrics
and the circumstances in which the results between flow-
based metrics differ.

The novelty about this study is twofold. First, it proposes the
breakdown of a football match in its sequential order of passing
within ball possessions in order to find actual bridging players
that are in-between plays. Therefore, our contribution does not
lie in the observation of changes in the pattern of interplay
across a match but in the consideration of the temporal order
of passes within plays to detect actual intermediate players. The
second novelty is a comparison between the network metrics
of different playing positions in successful and unsuccessful
plays to assess their contribution to the team. We focus on the
different outcomes of a play, instead of only assessing successful
play outcomes such as Mclean et al. (2018) did or relating
individual match-level metrics to match outcomes which accepts
potential noise in the analysis. Flow-based metrics quantify the
proportional prevalence or intermediary role of players in a
match. They appear most fitting in a football context as they
are robust to the short plays in football, allow a consideration
of the temporal order of passing as proposed through flow
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betweenness and offer a suitable connection to performance
outcomes on play-level.

MATERIALS AND METHODS

Samples
A total of 70 matches between 35 professional male football teams
from the 1. and 2. German Bundesliga were analyzed during the
2017/2018 season. Matches were randomly selected from a pool
and, on average, teams were present in four matches with no
repetition of any encounter. The final sample consists of 24,990
passes captured in 5409 plays.

Procedure
The focus of this study lies on an analysis at play-level. This means
that interplay in each ball possession is examined separately
instead of evaluating an aggregated passing matrix at match-
level. The data was provided by the Deutsche Fußball Liga (DFL).
It contains positional data for each player and the ball, which
was collected by the multiple-camera tracking system TRACAB R©

operating at 25 Hz. The validity and reliability of the system
was secured in an independent study (Linke et al., 2019). Action
feeds including information on passing were also provided and
their reliability secured by the DFL. Definitions and validation
procedures can be found in the DFL definitions catalog for official
match data (2014). Twenty-eight percent of the original data
is dropped in the cleaning process providing 8897 plays that
clearly identified each ball possession and player involved. In
order to conduct our analysis, we capture each play in a two-
dimensional passing array consisting of the players in possession
of the ball and an index reflecting the sequential order of the
ball passing during the play. We also build a corresponding
adjacency matrix for each play which are then aggregated across a
match to calculate the traditional playmaker indicator on match-
level. Figure 1 provides an example of a passing sequence with
its corresponding passing array and adjacency matrix. For the
purpose of our study, the final sample (61% of all plays) focuses
on plays of at least two completed passes (the minimum play size
for having an intermediate player).

We categorize a possession as successful when a team enters
the finishing zone, which is a common proxy for goals scored
(Tenga et al., 2010). This category includes all plays of at least
two passes that lead to entering the finishing zone and sequences
are captured until the moment of success (Pina et al., 2017).
A play is declared as unsuccessful if ball possession is lost by
any means before entering the zone. Neutral plays already start
in the finishing zone or consist of set-plays directly entering it.
The possession outcome was classified combining the positional
data provided for each player and the ball with the information
on the standardized pitch sizes in the German Bundesliga and
dimensions of the finishing zone as defined by Tenga et al.
(2010). The information jointly enabled an automatic evaluation
on whether the player in ball possession entered the finishing
zone or whether a successful pass was played to a teammate in
that designated area. That way, we could also detect whether a
possession starts in the finishing zone in order to declare it as

neutral. This leads to 21.5% successful plays, 74.5% are declared
unsuccessful and a remainder consisting of 4% in neutral plays.

Playing positions are tracked to facilitate an evaluation of the
individual contribution of players in our study. Multiple players
may be assigned to the same tactical position. Average metric
values are reported to evaluate the performance of the playing
positions in this case. The final classification is in line with
previous studies focusing on players in football (Clemente and
Martins, 2017; Korte and Lames, 2018). We codify the following
seven playing positions according to the definitions catalog for
official match data provided by the DFL (2014): (i) goalkeeper
(GK); (ii) central defender (CD); (iii) external defender (ED);
(iv) central defensive midfielder (CDM); (v) external midfielder
(EM); (vi) central offensive midfielder (COM); and (vii) forward
(F). Substitutions are handled through a reassignment of playing
positions according to the DFL data provided. By codifying
playing positions, in comparison to specific player tracking, there
is no need to standardize the obtained values according to time
on the field (Praça et al., 2019).

Network Metrics
The analysis was carried out using the Python package
NetworkX R© and the software libraries pandas and NumPy. A set
of individual metrics was computed to achieve a quantification
of the contribution of playing positions in a team’s interplay. By
calculating flow centrality, a concept first introduced in basketball
by Fewell et al. (2012), we capture the involvement of each playing
position in all plays across a match. Building on this metric and
random-walk betweenness by Newman (2005), we also compute
a new metric called flow betweenness. For comparison purposes,
we also calculate weighted betweenness scores for each playing
position based on the aggregated passing data across a match.
Whereas the two play-level metrics model pass interactions as
walks, the weighted betweenness computation is based on the
concept of shortest paths to evaluate the intermediary role of
players (Ramos et al., 2018).

Flow Centrality
For each player, flow centrality measures the fraction of plays
(or attack units) that it is involved in at least once relative to all
plays by its team. Thus, an indication on the overall involvement
of all playing positions across a match is provided. Following
Fewell et al. (2012), flow centrality index, CFC (ni), for player i
is calculated as,

CFC (ni) =

∑m
k=1 pk (ni)

M
(1)

where M denotes the total number of plays by a team in a
match and pk (ni) denotes the k-th play in which ni is part of at
least once. By construction, flow centrality values are bounded
between 0 and 1. The extreme value of 0 signals that a player
was not part of any play in terms of passing or receiving the ball.
A value of 1 means that a player was at least involved once in
every play of its team during the match. Any flow centrality value
in between can be interpreted as the proportion of plays that a
player was involved in relative to all plays by its team.
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FIGURE 1 | Example of a passing sequence with its corresponding passing array and adjacency matrix.

Flow Betweenness
For each player, flow betweenness measures the fraction of plays
in which it functions as an intermediary player relative to all
plays by its team. We define a player as intermediate in a play
if it actually functions as a bridging player in terms of passing
between any other two players. Flow betweenness index, CFB (ni),
for player i is calculated as,

CFB (ni) =

∑m
k=1 bk (ni)

M
(2)

where M denotes the total number of plays by a team in a match
and bk (ni) denotes the k-th play in which ni is functioning as
an intermediary player. In contrast to CFC, which only tracks
involvement, CFB considers the actual passing sequence of a play
to track whether a player is positioned in between a sequence
to function as a bridging unit. Flow betweenness values are also
bounded between 0 and 1. Values of 0 signal that a player did not
once receive the ball by a teammate and successfully passed it on
to another teammate in any play during a match. A value of 1
means that a player received and passed on the ball at least once
in every play of its team. Values in between the extreme values
are again the proportion of plays that a player functioned in as a
bridging unit relative to all plays by its team.

While being in-between always implies being involved in a
play, the reversal is not true. Initiating or being at the end of
a play implies that a player is involved but not in-between a
ball possession. Therefore, the flow centrality value of a player
in a match is always at least as high as its corresponding flow
betweenness value.

Weighted Betweenness
Weighted betweenness assesses how often a player is in-between
any other two players of its team measured by their strongest
passing connections across a match. Thus, its betweenness
character is built on aggregated match data and does not

necessarily imply that the player functioned as a bridging unit
within plays. It is often used as a playmaker indicator (Pena and
Touchette, 2012; Clemente and Martins, 2017). The weighted
betweenness index, CWB (ni), for player i is calculated as,

CWB (ni) =
∑

j 6=k6=i

gi
jk

gjk
(3)

where gi
jk is the number of strongest passing connections via

player i from players j to k and gjk the total number of strongest
passing connections between players j and k. The values of
weighted betweenness are bounded between 0 and 1 reflecting
the proportion of strongest passing connections between any two
players in the network that lead via a particular player.

Statistical Procedures
Data were analyzed for normality using Shapiro–Wilk tests.
Since only 40% of data was normally distributed, non-parametric
statistical analyses were used.

For both play-level metrics, multiple Kruskal–Wallis H test
are executed to test for statistical differences between playing
positions for the entire sample.

In order to differentiate between successful and unsuccessful
plays, we apply Kruskal–Wallis H tests on two separate samples,
filtering for successful and unsuccessful plays accordingly, to
detect differences in play-level metrics between playing positions.
Moreover, multiple Mann–Whitney U tests are conducted for
each playing position to investigate statistical differences in
metrics between the different play outcomes.

As the share of successful plays is severely higher in plays
starting from the opponent’s half than from the own half of a
team (28.3–16.8%), we suspect the starting half to be a moderator
variable that could partly influence differences in involvement
in successful against unsuccessful plays across playing positions.
Hence, the same procedure to differentiate between successful
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and unsuccessful plays is repeated focusing on plays starting from
a team’s own half. For each approach, Dunn-Bonferroni post-hoc
tests offer pairwise comparisons between groups, respectively.

Our statistical analysis is conducted at a 5% significance level.
Following Ferguson (2009) and Cohen (2008), non-parametric
estimates of η2 are reported to interpret the effect size according
to the following criteria: no effect (η2 < 0.04); small effect
(0.04 ≤ η2 < 0.25); moderate effect (0.25 ≤ η2 < 0.64); strong
effect (η2

≥ 0.64). Ninety percentage confidence intervals for η2

are calculated following Hopkins (2017).
To assess the relationship between the network metrics, a

correlation analysis is carried out across the sample. First, the
Pearson correlation coefficients between CFC (CFB) and CWB
are calculated, respectively to evaluate the association between
metrics conducted on play-level and match-level. Second, the
Pearson correlation coefficient between CFC and CFB is computed
to assess differences between the two metrics. By construction
of CFB, we expect the metric to be dependent on the number
of passes per play. Therefore, coefficients for three subsets are
calculated, following Tenga et al. (2010): (i) matches with on
average less than three passes per play; (ii) matches with three to
five passes per play; and (iii) matches with more than five passes
per play. The strength of the correlation is assessed according
to the following guide by Evans (1996): moderate (0.40 ≤ r <
0.60); strong (0.60 ≤ r < 0.80); very strong (0.80 ≤ r < 1.0).
Ninety-five percentage confidence intervals for r are calculated
following Hopkins (2017).

RESULTS

General Analysis
We find significant differences between playing positions
for

(
p < 0.001;η2

= 0.23, CI[0.12, 0.34], small effect
)

and
CFB(p < 0.001;η2

= 0.34, CI [0.17, 0.51], moderate effect).
Figure 2 shows that CDs are significantly more involved (47% of
all plays) and also function more often as intermediators (28%)
in a match than any other tactical position. Fs are least involved
in plays (28%) and take on an intermediary role in 13% of all
attack units. By definition of the metrics, the CFB value is lower
for each playing position than its corresponding CFC value. The
largest difference between both metrics is reported for the GK.

Success Analysis
Table 1 presents the results of the Kruskal–Wallis H tests for CFC
and CFB differentiating between successful and unsuccessful plays
of the overall sample and focusing on plays starting from a team’s
own half. All eight tests reveal statistically significant differences
between playing positions for the respective subsample with
varying effect sizes.

Table 2 presents the results of the Mann–Whitney U tests for
each flow-based metric, playing position and differentiating also
between the overall sample and focusing on plays starting from
a team’s own half. Apart from the ED position, the tests reveal
significant differences between successful and unsuccessful plays
in terms of CFC and CFB for all other playing positions. However,
some effect sizes are small to negligible.

In general, offensive positions (EMs, COMs, Fs) are
significantly more involved in successful than in unsuccessful
plays, whereas defensive positions (GK, CDs) are significantly
less involved in successful plays. The CFC and CFB values per
playing position for each play outcome and the results of the
post-hoc tests can be taken from Table 3. COMs have the highest
involvement in successful plays (50%) while GK take only part in
17% of all successful plays. CDs are not only most prevalent in
unsuccessful plays (51%), followed by GK and EDs, but are also
in-between most unsuccessful plays (37%). In contrast, CDMs
are the leading intermediary players (32% of all successful plays),
while GK and Fs have the lowest values in this category.

Figure 2 shows that the difference between both metric
scores is increasing as more offensive the playing position is
on the pitch for successful plays. Moreover, while defenders
and defensive midfielders are functioning as bridging players in
70–75% of all plays they are involved in, the shares for GK and Fs
are only 40–50%.

Focusing on plays starting in the own half of a team, the
difference of involvement and the intermediary role between
successful and unsuccessful plays is reported smaller for defensive
positions in comparison to the results of all plays. This indicates
that the significantly large gap is moderated by the starting half
of a play. In comparison to the analysis on all plays, EMs are
most involved in successful plays starting from its team’s own half
and come level with the intermediary player values of the other
midfield positions.

Correlation Analysis
The Pearson correlation coefficients between each flow-
based metric and the weighted betweenness scores on
match-level indicate a strong positive relationship for
CFC (r = 0.68;CI[0.64, 0.72]; p < 0.001) and for CFB
(r = 0.67;CI[0.63, 0.71]; p < 0.001). The correlation
coefficient between the involvement and intermediary metric
on play-level indicates a very strong positive relationship at
first sight (r = 0.89;CI[0.87, 0.90]; p < 0.001). However,
the correlation strength depends on the average number of
passes in plays during a match. Whereas we find a very strong
positive relationship in matches with more than five passes
on average per play (r = 0.95;CI[0.93, 0.96]; p < 0.001)
and also in matches with three to five passes per play
(r = 0.86;CI[0.84, 0.88]; p < 0.001), there is only a moderate
positive relationship in matches with less than three passes per
play (r = 0.56;CI[0.38, 0.70]; p < 0.001).

DISCUSSION

The study reveals statistical significance between playing
positions in successful and unsuccessful plays in football with
regard to flow centrality and the newly introduced flow
betweenness. Moreover, for the majority of playing positions
there are significant differences between play outcomes with
regard to both flow-based metrics. Effect sizes found were small
to moderate with regard to playing positions and mostly small in
terms of play outcomes.
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FIGURE 2 | Mean results of flow-based metrics by playing position.

TABLE 1 | Kruskal–Wallis H test results for playing position comparison per play outcome.

Successful plays Unsuccessful plays

H p η2 CI of η2 H p η2 CI of η2

CFC

All plays 172.77 <0.001 0.12 [0.06, 0.18] 509.25 <0.001 0.37 [0.19, 0.55]

Own half 35.3 <0.001 0.03 [0.02, 0.04] 455.77 <0.001 0.39 [0.20, 0.39]

CFB

All plays 164.83 <0.001 0.12 [0.06, 0.18] 571.58 <0.001 0.42 [0.21, 0.63]

Own half 63.34 <0.001 0.05 [0.03, 0.07] 422.16 <0.001 0.36 [0.18, 0.54]

Overall involvement and the frequency of being an
intermediary player is lower in successful than unsuccessful
plays for defensive playing positions and the other way around
for offensive positions. This turns out to be partly moderated by
the origin of play on the pitch, which is incident to differences
in success probability. Besides, the results offer first insights into
the differences between dominant and intermediary players in
football measured by the two play-level metrics.

While our analysis presents CDs as the most involved and
intermediary playing position, most studies traditionally ascribe
midfielders the most dominant and intermediary role in football
(Cotta et al., 2013; Clemente et al., 2015, 2016b). There is also
literature that positions forward (Clemente et al., 2016a) and EDs
(Gama et al., 2014) as intermediary players. There are multiple
reasons why our results differ from past studies aside from the
fact that a different sample was considered.

First, involvement (or dominance) in interplay in football
is often measured by the number of successfully played and
received passes in a match in form of weighted in-degree and
weighted out-degree (Clemente et al., 2016a). However, there
is no information on whether the passes occurred in a limited

amount of longer plays, in terms of number of passes, or
frequently across a match. This implies that players with high flow
centrality do not necessarily play and receive most passes during
a match but are most frequently part of plays across an entire
match. Therefore, the match-level metrics measure the share in
a team’s total passing while the play-level metric evaluates the
prevalence in plays across a match.

Second, intermediary players in football, often referred to
as playmakers, have formerly been determined by how often
they are on average the strongest connector between the other
players based on the aggregated passing data of a match
(Trequattrini et al., 2015; Arriaza-Ardiles et al., 2018). However,
that does not imply that the player frequently distributed
the ball between other players. In an extreme scenario, a
midfielder who frequently loses a ball received by defenders
and frequently wins balls from the opponent and passes it to
forward positions is identified as a bridging player without ever
actually connecting defense and offense during a play. Flow
betweenness detects how often a player is actually in-between
two other players during a play and is in fact acting as an
intermediary player.
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TABLE 2 | Mann–Whitney U test results for play outcome comparison per playing position.

Play outcome

GK CD ED CDM EM COM F

CFC

All plays

H 2516.5 30081 11691 31305 4070 2879 11747

p <0.001 <0.001 0.090 <0.001 <0.001 <0.001 <0.001

η2 0.41 0.12 0.01 0.02 0.18 0.2 0.24

CI of η2 [0.21, 0.61] [0.06, 0.18] [0.00, 0.02] [0.01, 0.03] [0.09, 0.27] [0.10, 0.30] [0.12, 0.36]

Own half

H 3522 29847.5 8710 21863.5 2844.5 3366.5 8455.5

p <0.001 <0.001 0.200 0.002 <0.001 0.002 <0.001

η2 0.17 0.02 0.01 0.02 0.21 0.04 0.23

CI of η2 [0.09, 0.25] [0.01, 0.03] [0.00, 0.02] [0.01, 0.03] [0.11, 0.31] [0.02, 0.06] [0.12, 0.34]

CFB

All plays

H 4129 35378.5 12186 32642.5 5275 3888.5 20974.5

p <0.001 <0.001 0.230 0.005 <0.001 <0.001 <0.001

η2 0.24 0.07 0.01 0.01 0.08 0.09 0.04

CI of η2 [0.12, 0.36] [0.04, 0.10] [0.00, 0.02] [0.00, 0.02] [0.04, 0.12] [0.05, 0.13] [0.02, 0.06]

Own half

H 3723.5 30416 8928 21868 4082.5 3685.5 16594.5

p <0.001 <0.001 0.310 0.002 <0.001 0.025 0.017

η2 0.15 0.02 0.01 0.02 0.08 0.02 0.01

CI of η2 [0.08, 0.22] [0.01, 0.03] [0.00, 0.03] [0.01, 0.03] [0.04, 0.12] [0.01, 0.03] [0.00, 0.02]

Following Fewell et al. (2012) and Ramos et al. (2018),
an evaluation based on the involvement in plays, however,
becomes considerably more useful when making a distinction
between plays with certain characteristics. While CDs appear
to be the dominant and intermediary players, the majority of
plays they are part of do not enter the finishing zone. In
contrast, COMs are most often part of successful plays and
CDM is the most intermediary position in these situations. In
general, defensive playing positions show a higher involvement
in unsuccessful than successful plays. Focusing solely on plays
that originate in the own half of a team offsets that difference
to a certain extent. Similar to previous studies (Tenga et al.,
2010; Mclean et al., 2018), the share of successful plays was
higher for plays starting in the opposite half and, thus, involved
more offensive playing positions. The analysis on plays starting
in the own half of a team partly neutralized this imbalance.
This is reflected in the small to negligible effect sizes obtained
when evaluating the differences in flow-based metrics between
playing positions focusing on successful plays starting from the
own half. Moreover, the effect sizes for differences between
successful and unsuccessful plays decreases for defensive playing
positions. Apart from that, the analysis provides an insight
into how attacks from a team’s own half are most frequently
structured. The increased metric values of the EM position
in contrast to the analysis on the total sample suggest that
plays were frequently build via wing positions. Therefore,
the approach of subdividing the sample into different types
of plays with different outcomes provides a certain quality

to the analysis that goes beyond pure prevalence in plays
by offering a richer insight into the structure of plays in
different contexts.

The distinction between being involved and acting as an
intermediary player is recognizable when focusing the analysis
on successful plays. From a pure descriptive perspective, the
more offensive the playing position is located on the pitch
the higher its difference between the two play-level metrics.
Offensive players such as forward are often involved in successful
plays, however, not in order to distribute the ball but rather
to take on the role of finishing attacks. While the absolute
difference between the flow-based metrics for GKs might be
small, the share of plays in which they function in-between
others measured against all plays they are involved in is quite
low. Their task is often that of an initiator of plays rather than
being a bridging player. Therefore, their intermediary status is
relatively low. In contrast, CDMs are similarly often involved
in successful plays as forward but have a substantially higher
share of incidences in which they function as a bridging player
at the same time.

The correlation analysis underlines the insights of our study,
especially that (i) different results on playmakers in football might
be obtained when substituting match-level with play-level metrics
and (ii) a distinction between play-level metrics is necessary as
they emphasize different tasks among playing positions. Ramos
et al. (2018) first suggested that flow centrality might be a suitable
playmaker indicator that highlights intermediary players on play-
level to replace the average-based analysis provided by weighted
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betweenness on match-level. However, the relationship between
both metrics does not suggest that the same matter is measured.

Differences between values of flow centrality and flow
betweenness for playing positions are also confirmed in
the correlation analysis. The overestimated intermediary role
of players when simply looking at involvement instead of
their in-between positioning in plays is connected with the
average number of passes in plays. Shorter plays offer less
situations for players to be in-between plays and, thus, a sole
involvement measure might exaggerate the intermediary task of
a player. Hence, flow betweenness might be a more adequate
playmaker indicator.

In general, the play-by-play network analysis approach allows
a more contextualized performance analysis as the role of players
in passing sequences of different characteristics can be evaluated
separately. Barreira et al. (2015) find that team dynamics are
influenced by situational variables such as match status and
halves of the match. Controlling for such variables can offer a
better understanding of the involvement and intermediary role
of players in specific play situations.

Our study also faces some limitations that should be
addressed. First, the sample only originates from two professional
football leagues and, therefore, the generalizability of our results
might be limited. The concern is partly offset by the findings of
Mclean et al. (2017) who do not detect significant differences
in passing networks between the 2016 European football
championships and COPA America football championships.

Second, the determination of playing positions might contrast
the less static interpretation of roles in modern football. As we
break down the analysis to individual plays, the fixed assignment
of positions across a match is even more challenging. We
acknowledge the occupation of different areas on the pitch and
fulfilling a variety of tasks as part of the role repertoire of playing
positions (Korte and Lames, 2018). Hence, the spread in metric
values of some playing positions might be ascribed to the mixed
role interpretation of players. However, we should stress that
playing positions might be interpreted differently not only across
matches but also during different phases of a match depending on
the specific constraints that players face. This was not considered
in the present study.

Third, this study only focuses on plays with at least two
completed passes to offer a calculation of flow betweenness
across all plays. A study including plays with only one pass
would increase the difference between flow centrality and flow
betweenness simply because it offers no in-between situations for
players. In fact, the correlation coefficient between both metrics
greatly decreases (r = 0.69) when adding plays with only one
pass to the analysis. However, the weakened relationship based
on plays of any length also validates the introduction of a new
playmaker indicator to reflect the real structure of football on a
play-by-play level.

Moreover, it should be stressed that the comparison between
successful and unsuccessful plays per playing position could
be partly confounded by the cutoff of the passing sequences
once the finishing zone is entered. Successful plays continued
on average for 0.5 passes after the outcome determination.
However, a separate analysis based on the entire passing
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sequences shows that a wider gap in play involvement between
successful and unsuccessful plays for COMs and Fs is the only
substantial change.

In addition, the opponent’s strength and especially defensive
actions were not considered in this study, which could potentially
have an impact on the involvement of certain playing positions.
Focusing on the attacking side, it should be mentioned that we
did not concentrate on identifying different game styles but rather
aimed at emphasizing the different roles and contributions of
playing positions.

CONCLUSION

This is the first study that performs a play-by-play network
analysis in football differentiating between plays of certain
characteristics. Moreover, a novel metric is introduced to assess
playmakers on play-level as an alternative or extension to flow
centrality. Only a limited connection with traditional playmaker
indicators on match-level can be detected. Hence, it offers new
insights and a better understanding of the roles of playing
positions during plays in football.

Central defenders are identified as dominant and intermediary
players, however, mostly in unsuccessful plays. COMs are most
involved and CDMs function mostly as intermediary players in
successful attacks. Fs are frequently involved in successful plays
but take on a minor intermediary role.

The practical impact of this study is twofold. First, a
playmaker indicator that focuses on actual passing sequences
rather than averages across a game was applied to adequately
reflect interplay in football. Second, the study provides a more
sophisticated understanding of the involvement and role of
players in different play situations. Apart from considering
play outcome, the play-by-play network analysis approach
allows the inclusion of additional situational variables that
are relevant to performance in football. The insights and
approach of this study could be used and applied in practical
performance analysis. By tracking specific players rather than
playing positions, clubs can gain a better understanding of the
involvement and intermediary role of their individual players in
the interplay of the team.

Future studies should continuously focus on developing new
SNA-metrics that reflect actual interplay and study the impact
of the opponent team on the interaction of the team in ball
possession. Moreover, position-specific performance indicators
could complement the current play-level approach that solely
focuses on whether the finishing zone was reached.
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