
Technische Universität München

Ingenieurfakultät Bau Geo Umwelt

Lehrstuhl für Computation in Engineering

Efficient Parallel Simulations of Flood Propagation Including
Wet-Dry Problems

Bobby Minola Ginting

Vollständiger Abdruck der von der Ingenieurfakultät Bau Geo Umwelt der
Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender:

Prof. Dr.-Ing. Michael Manhart

Prüfer der Dissertation:

1. Prof. Dr. rer. nat. Ernst Rank

2. Prof. Dr.-Ing. Reinhard Hinkelmann

3. Priv.-Doz. Dr. rer. nat. habil. Ralf-Peter Mundani

Die Dissertation wurde am 30.07.2019 bei der Technischen Universität München
eingereicht und durch die Ingenieurfakultät Bau Geo Umwelt am 07.10.2019

angenommen.





Acknowledgment

This work would not have been possible without the financial support of the German Aca-

demic Exchange Service (DAAD) in the scope of Research Grants – Doctoral Programmes

in Germany 2015/16 (57129429).

I am especially indebted to Prof. Rank who has provided me the opportunity to pursue my

doctoral study at his chair. As my supervisor, he guided me to become an independent

researcher in my field. Without his help, patience, and encouragement, this work would never

be finished. I would like also to express my gratitude to Dr. Mundani who has been supportive

of my study. As my teacher and mentor, he always provided me a professional guidance and

helped me understand the field of informatics.

I am very grateful to Prof. Hinkelmann (Technical University of Berlin) for his comprehensive

review for my work. I met him first in June 2017 at a hydroinformatics conference in Nice

(France). His works have shown me the importance of informatics in hydrosystems modeling.

I would like to thank Prof. Manhart as the chairman of my doctoral defense. Also, fruitful

discussions with him in turbulence modeling are highly appreciated.
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Abstract

Over the past decades, shallow water models have extensively been used to simulate flood

propagations in many applications ranging from small to large domains such as drainage

flows, urban areas, river flows, the rainfall-runoff process in a catchment area, dam-break,

tsunamis, etc. The main focus of the development of these models was on accuracy so that

the results can be used comprehensively to understand the complex flow properties, e.g.

depth and velocity propagation, of the cases studied. Although these shallow water models

were based on quite simple schemes/formulas and lots of simplifications were made, the

simulation processes still took days or weeks due to the limitation of computing resources—

even for a relatively small domain.

Nowadays, one can speak of a new era of shallow water models. This is indicated by rapid

technological developments in the field of computing hardware, such as clusters and super-

computers, all the way to petascale supercomputing systems, enabling researchers to carry

out numerical simulations even for very large domains in quite a short time. In tsunami mod-

eling, for example, such modern computing resources allow one to significantly reduce the

computational time from weeks to hours by utilizing parallel computations. Considering to-

day’s situation and even conditions in the future, it is obvious that in addition to accuracy,

computational efficiency has to be addressed within the development of numerical models.

The aim of this work is to develop a shallow water model that utilizes advanced strategies

specifically designed for a parallel computing framework on modern multi- and many-core

architectures. The framework allows one to efficiently exploit the potential of the modern

computing hardware in order to significantly reduce the computational time, which is not only

beneficial for researchers and engineers when solving complex flow problems, but also for

decision makers aiming to develop a well-integrated early warning system that is able to

provide results more or less in real time. The numerical model was developed with modern

finite volume schemes that employ both Riemann and non-Riemann solvers, which have

been proven to be quite robust in simulating the most complex phenomena in the scope of

shallow flow modeling, such as transcritical flows, shock waves, and moving wet-dry fronts.

Specifically, a cell-centered finite volume method was employed in which the computations

were performed in an edge-based manner instead of a cell-based one.

This research was started by investigating the efficiency of the employed solvers with regard

to their ability in utilizing the vectorization support of modern hardware. Uniform rectangular

grids were used to ease the implementation, and a novel cell-edge reordering strategy was

thus proposed to enable vectorization as supported by modern chipsets. Furthermore, load

imbalances due to wet-dry phenomena — which exist in most real-world applications of flood

propagation and typically hinder efficient parallelization — were taken into account. Under the

circumstances — despite the fact that methods have become more advanced in the course
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of time — efficient parallel codes have not been widely investigated yet. Essentially, wet cells

lead to more computational effort than the dry ones; due to the unpredictable emergence or

disappearance of these cells during runtime, load imbalances concerning an initial mapping of

cells to computational cores/nodes is to be expected, thus a suitable load balancing technique

is inevitable. To this end, a novel strategy weighted-dynamic load balancing was proposed.

Further, within the same parallelization framework, a novel approach — namely a combination

of the hydrostatic and topography reconstruction with scalable wall functions — was also

developed to include a turbulence model for wet-dry simulations, in particular, where cases

of flow-past-structure are considered. This manner gives flexibility to users when generating

meshes in order to increase the accuracy without deteriorating the computational results due

to stability limitations of the standard wall functions.

As all the aforementioned steps were conducted with structured meshes, applications using

unstructured meshes — due to the flexibility of such meshes in dealing with the shape of

complex domains that may not be achieved by (high-resolution) structured meshes — are

taken into consideration in this work. Also, this step is intended to allow for a wider range of

implementations. Therefore, another data structure type has to be considered in the code,

where cells and edges were indexed according to an ordering given by space-filling curves.

To this regard, two options are available; the first one is to reorder the cells with space-filling

curves, followed by the consecutive determination of the corresponding edges according to

the renumbered cells, or vice versa, as the second option.

Five main findings are pointed out in this work. Firstly, the cell-edge reordering strategy en-

ables with respect to the node-level performance an efficient vectorization of the computation

kernel of the Riemann and non-Riemann solvers, thus achieving a better performance on

the aforementioned architectures. Secondly, the results indicate that the proposed load bal-

ancing strategy is suitable to efficiently tackle load imbalances due to the wet-dry problems,

thus allowing for better parallel efficiency. Thirdly, it is shown that high-resolution meshes can

be used to increase the accuracy in capturing turbulent flow properties when dealing with

wet-dry phenomena, without having to consider the classical formulation of the standard wall

functions. Fourthly, one can see that the proposed model serves to accurately simulate re-

circulating turbulent flows for flow-past-structure cases. Finally, the second data structure —

that is devised for unstructured meshes in conjunction with space filling curves reordering —

is shown to be highly flexible with regard to parallelization, and it turns out to be promisingly

efficient. All the strategies proposed are conceptually simple and can be extended into a

framework for massive parallel computations on supercomputers in the future.
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Zusammenfassung

Während der letzten Jahrzehnte wurden Flachwassermodelle für vielseitige Problemstel-

lungen auf verschiedenen räumlichen Skalen verwendet, z.B. zur Untersuchung von Ent-

wässerungssystemen, Niederschlagsabfluss in urbanen und natürlichen Einzugsgebieten,

Dammbruchereignissen, Tsunamis, etc. Der Schwerpunkt der Entwicklung dieser Modelle

lag auf Genauigkeit, damit die Ergebnisse umfassend verwendet werden konnten, um die

komplexen Fließeigenschaften der untersuchten Fälle, z.B. durch Angabe der Wassertiefen

und Geschwindigkeiten, verstehen zu können. Obwohl diese Flachwassermodelle anhand

einfacher Schemata/Formeln entwickelt und viele Vereinfachungen vorgenommen wurden,

dauerten die Simulationsprozesse aufgrund begrenzter Rechenkapazitäten auch für relativ

kleine Modellgebiete Tage oder Wochen.

Heutzutage kann man von einer neuen Ära der Flachwassermodelle sprechen, bedingt durch

die schnelle technologische Entwicklung von Clustersytemen und Supercomputern bis hin zu

Petascale-Architekturen, die es ermöglichen, numerische Simulationen in kurzer Zeit auch

für sehr große Rechengebiete durchzuführen. Für die Tsunamimodellierung sind beispiel-

weise solche modernen Maschinen in der Lage, die Rechenzeit durch Parallelisierung von

Wochen auf Stunden zu verkürzen. Angesichts der heutigen und zukünftigen Situation ist es

offensichtlich, dass bei der Entwicklung numerischer Modelle neben der Genauigkeit auch

die Recheneffizienz berücksichtigt werden muss.

Im Rahmen dieser Arbeit wurde ein Flachwassermodell mit fortschrittlichen Strategien ent-

wickelt, die gezielt für moderne Mehr- und Multikernarchitekturen entworfen wurden. Dieses

Framework ermöglicht, die Rechenzeit erheblich zu verkürzen, was nicht nur für Forscher

und Ingenieure von erheblichem Vorteil ist, um komplexe Strömungsprobleme zu lösen, son-

dern auch für Entscheidungsträger, um ein gut integriertes Frühwarnsystem zu entwickeln,

welches in der Lage ist, Ergebnisse mehr oder weniger in Echtzeit zu liefern. Das numerische

Modell wurde mit modernen Finite-Volume-Schemata entwickelt, die sowohl Riemann- als

auch Nicht-Riemann-Löser verwenden und die sich im Rahmen der Flachwassermodellierung

für die komplexesten Phänomene, wie transkritische Strömungen, Stoßwellen und Nass-

Trocken-Fronten, als sehr robust erwiesen haben. Im Speziellen wurde eine zellzentrierte

Finite-Volume-Methode verwendet, bei der die Berechnungen kanten- statt zellbasiert durch-

geführt wurden.

Diese Arbeit beginnt mit der Untersuchung der Effizienz der verwendeten Löser in Bezug

auf ihre Fähigkeit, die Vektorisierung moderner Hardware auszunutzen. Um die Implemen-

tierung zu vereinfachen, wurden uniforme, rechteckige Zellen verwendet. Weiterhin wurde

eine neue Strategie zur Zell-Kanten-Umordnung angewendet, um die Vektorisierung, die von

modernen Chipsätzen unterstützt wird, zu ermöglichen. Es wurde spezielles Augenmerk auf

die entstehenden Lastungleichgewichte aufgrund der Nass-Trocken-Phänomene gelegt, die
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in den meisten realen Anwendungen der Überflutungssimulation existieren und die typischer-

weise eine effiziente Parallelisierung verhindern. Trotz der Tatsache, dass sich die Methoden

im Laufe der Zeit weiterentwickelt haben, wurden effiziente, parallele Codes noch nicht um-

fassend unter diesem Gesichtspunkt untersucht. Grundsätzlich führen nasse Zellen zu mehr

Rechenaufwand als trockene Zellen. Aufgrund der unvorhersehbaren Entstehung oder des

Verschwindens dieser Zellen während der Laufzeit, sind Lastungleichgewichte hinsichtlich

einer anfänglichen Zuordnung von Zellen zu Rechenkernen/-knoten zu erwarten. Folglich ist

eine geeignete Strategie zur Lastbalanzierung unabdingbar. Hierzu wurde eine neue Strate-

gie entwickelt: Die gewichtete-dynamische Lastbalanzierung. Weiterhin wurde ein neuarti-

ger Ansatz entwickelt, bei dem eine Kombination von hydrostatischer und topographischer

Rekonstruktion mit skalierbaren Wandfunktionen implementiert wurde. Dies erlaubt die Inte-

gration eines Turbulenzmodells in die Nass-Trocken-Simulationen, insbesondere wenn Fälle

mit Strukturumströmung berücksichtigt werden. Auf diese Weise wird eine hohe Flexibilität bei

der Netzgenerierung erreicht, um die Genauigkeit zu erhöhen, ohne die Ergebnisse aufgrund

der Stabilitätsbeschränkung der Standardwandfunktionen zu verschlechtern.

Alle oben genannten Schritte wurden anhand strukturierter Netze durchgeführt. Aufgrund

ihrer Flexibilität für komplexe Rechengebiete, für die hochaufgelöste, strukturierte Gitter nicht

möglich wären, werden in dieser Arbeit auch Anwendungen mit unstrukturierten Gittern be-

rücksichtigt. Damit wird ein breiteres Spektrum von Implementierungen möglich. Dafür muss

im Code eine andere Datenstruktur berücksichtigt werden, wobei die Zellen und Kanten

mit Hilfe von raumfüllenden Kurven indiziert wurden. Dafür stehen zwei Optionen zur Ver-

fügung. Entweder werden die Zellen anhand einer raumfüllenden Kurve umgeordnet bevor

die entsprechenden Kanten nacheinander nach den neunummerierten Zellen geordnet wer-

den oder umgekehrt.

In dieser Arbeit werden fünf Hauptergebnisse aufgezeigt. Erstens ermöglicht die Zell-Kanten-

Umordnung im Hinblick auf die Leistung auf Knotenebene eine effiziente Vektorisierung des

Rechenkernels, d.h. der Riemann- und Nicht-Riemann-Löser und somit eine bessere Leis-

tung für die oben genannten Architekturen. Zweitens ist die vorgeschlagene Lastbalanzierung

für eine effiziente Lösung der Lastungleichgewichte bei Nass-Trocken-Problemen geeignet

und ermöglicht somit eine bessere, parallele Effizienz. Drittens wird gezeigt, dass hochauf-

lösende Netze verwendet werden können, um die Genauigkeit der Eigenschaften von turbu-

lenten Strömungen bei Simulationen mit Nass-Trocken-Phänomenen zu erhöhen, ohne die

klassische Formulierung der Standardwandfunktionen berücksichtigen zu müssen. Viertens

ist das Modell in der Lage, turbulente Umwälzströmungen bei Fällen mit Strukturumströmung

akkurat zu simulieren. Schließlich erweist sich die zweite Datenstruktur, die für unstrukturierte

Netze entwickelt wurde, in Verbindung mit einer Umordnung durch raumfüllende Kurven als

sehr geeignet für die Parallelisierung und stellt sich als effizient heraus. Alle vorgeschlage-

nen Strategien sind konzeptuell einfach und können zur Nutzung in Frameworks für massiv

parallele Berechnungen auf Supercomputern weiterentwickelt werden.
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1. Introduction

Flood events are not only dangerous to human life, but can also cause great losses of prop-

erty. According to [12], a flood is defined as a situation in which water temporarily covers

a stretch of land that is usually not covered by water. Generally, there are several possible

causes of flood events, for example, heavy rainfall in urban areas, dam-breaks, tsunamis in

coastal areas, etc. These phenomena are strongly related to natural hazards, the character-

istics of which are very complex—not only regarding spatial aspects, but also temporal ones.

Due to their complexity, it is not possible to predict such hazards precisely, even with the most

advanced pieces of technological equipment. However, some preventative measures may be

taken, one of which is to study flow characteristics with the help of numerical tools to deter-

mine the negative impacts of a possible flood within the scope of disaster management.

Solving the shallow water equations (SWEs) is probably the most common approach con-

ducted by many researchers and engineers when developing a numerical model for flood

simulations. The SWEs can be obtained by depth-integrating the Navier-Stokes equations

(NSEs), assuming that the horizontal length scale of the flood waves is much larger than the

vertical one. It is generally impossible to obtain an analytical solution of the SWEs, so it is nec-

essary to solve the SWEs numerically. Over the past 20 years, several different approaches

to the solution of the SWEs have been proposed—involving finite difference, finite element,

and finite volume methods, see [15; 73; 47; 39; 10; 37; 41; 11; 29; 57; 14; 52; 17; 71; 67; 72],

among others. Over the past decades, finite volume methods have been widely used for

free-surface water simulations. These methods rely on the application of so-called “solvers”,

which can generally be categorized into two groups: Riemann solvers, such as Roe [59],

Harten-Lax-van Leer (HLL) [27], and Harten-Lax-van Leer Contact (HLLC) [62]; and non-

Riemann solvers, such as central-upwind (CU) [39] and artificial viscosity (AV) [17]. Note that

the terminology of solver here is different from that in most of the fields in computational me-

chanics, e.g. a “p-FEM-solver” that refers to a solution algorithm for a complete problem—or

from a solver that is used for a linear equation system, e.g. direct solver, iterative solver, etc.

Here, the solver refers to a small part of the overall program, e.g. the one that computes the

convective fluxes of the SWEs.

Both Riemann and non-Riemann solvers have become very popular due to their simplicity,

robustness, and built-in conservation properties. Nevertheless, among the Riemann solvers

themselves, one can see differences in the computational complexity of each scheme. The

HLLC solver, for instance, was decomposed for a Riemann problem by dividing its final so-

lution into four regions: left, left-contact, right-contact, and right states. This translates to an

implementation that makes vast use of branch statements (if-then-else), which are com-

putationally expensive. In contrast, the CU method, as a Riemann-solver-free scheme, is free

of any branch statement, which leads to less computational overhead.
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According to [1], in terms of high-performance computing (HPC), parallel computations can

be considered as a way to enable the simultaneous use of thousands of processors for the

problems under consideration. Currently, parallel computations are becoming more and more

common in free-surface water modeling. The reason is obvious, as this allows one to carry out

simulations that were hardly possible due to their huge computational cost. Some examples

shall be explained. In [55], a parallel shallow flow model called LISFLOOD-FP was devel-

oped with open multiprocessing (OpenMP). A robust and accurate model called ParBrezo

was developed in [60] for free-surface water simulations with a message passing interface

(MPI). A parallel code of coupled shallow flow and transport equations was developed in [46]

employing OpenMP on a multi-core architecture. A real dam-break case was comprehen-

sively investigated in [69] by means of an OpenMP parallel shallow water model. Simulating

the SWEs without any source term, [43] utilized an OpenMP-AVX based model to benefit not

only from parallelization but also from vectorization. In [40], simulations with OpenMP were

carried out to model rainfall-runoff events. A highly-efficient model parallelized with hybrid

OpenMP-MPI called sam(oa)2 was presented in [49] to solve the SWEs for tsunami flow ap-

plications. An efficient MPI model called FullSWOF2D was developed in [65] and used for

overland flow type simulations.

The first investigation in this work deals with a thorough study, see [21] (Paper 5), to profile

the computational complexity with respect to a solver’s node-level performance on a desktop

computer (single-core) with a Haswell architecture (Intel Xeon E3-1200 v3). The in-house

code used in this work will be referred to as NUFSAW2D, which stands for Numerical sim-

Ulation of Free-surface ShAllow Water 2D. During this study, the main focus was primarily

put on vectorization in order to exploit instruction level parallelism, which is supported by

most compilers’ optimization techniques [5; 56]. Also, vectorization is regarded the “easiest”

way to increase computational efficiency, as the code requires less (or even no) modification.

Nevertheless, the choice of proper data structures is inevitable, as not all structures support

vectorization. It was shown in [21] that the HLLC method failed to utilize vectorization due to

its branching formula, thus being more expensive than the AV and CU methods. The AV tech-

nique was found to be able to utilize vectorization almost as efficiently as the CU method, but

in some particular cases turned out to be more accurate than the CU and HLLC schemes.

Encouraged by these node-level results, the efficiency of three solvers (Roe, HLLC, and CU)

was further investigated on the level of shared-memory systems in [22] (Paper 3). The main

focus was on utilizing vectorization for the solvers more efficiently, in particular, to enable

vectorization for the HLLC method, which was not possible in the previous attempt. Three

different systems with a modern hardware architecture — Intel Xeon E5-2690/Sandy-Bridge-

E (Advanced Vector Extension/AVX), Intel Xeon E5-2697 v3/Haswell (AVX2), and Intel Xeon

Phi/Knights Landing (AVX-512) — were employed to perform several dam-break and tsunami

simulations. Both single-core and multi-core computations were carried out. The cell-edge

reordering strategy proposed in [23] was employed in this paper in order to maintain contigu-

ous memory access patterns, even in case of parallel (OpenMP) computations. It was found

2 Efficient Parallel Simulations of Flood Propagation Including Wet-Dry Problems



in [22] that the cell-edge reordering strategy enabled vectorization for all solvers investigated,

where the CU and HLLC schemes became the most efficient and the most inefficient one,

respectively. This strongly indicates that the branching condition as the natural formulation of

the HLLC solver will still be the main obstacle to achieve an efficient performance, even for

simulations using the next generation of modern hardware.

The next investigation in this work deals with wet-dry simulations that belong to the most dif-

ficult phenomena in shallow flow modeling. When encountering wet-dry problems, a parallel

shallow water code must not only be accurate but also efficient. Here, in order to produce

accurate results, two important criteria should be fulfilled: the well-balance property and the

positivity-preserving property. During the past decades, these two criteria have gotten a lot of

attention in connection with both Riemann and non-Riemann solvers, see the non-exhaustive

list of references [3; 34; 16; 6; 30; 31; 9; 51; 8], and the methods are still becoming more and

more advanced. However, efficient parallel codes for wet-dry phenomena were often of mi-

nor interest only, although such phenomena can cause load imbalances among cores/nodes,

thus decreasing the parallel efficiency. This is due to a special treatment of cells in case of

wet-dry problems, where wet cells cause more computational effort than the dry ones. Note

that due to the unpredictable emergence or disappearance of wet or dry cells during runtime,

a load imbalance problem is very likely to occur without a proper load balancing strategy,

even when considering wet-dry cells during an initial load distribution.

Some works that investigated the effect of wet-dry problems on the efficiency of a parallel

shallow water code are described here. ParBrezo in [60] was introduced with a justification to

distinguish wet cells from the dry ones, so that a relatively balanced load proportion could be

assigned to each node. The idea was to find a proper ratio value of wet and dry cells by run-

ning a preliminary simulation with a specific domain decomposition. Once it finished, it was

possible to roughly estimate the ratio of such wet and dry cells (e.g. 1:1, 2:1, 3:2, 3:1, or 5:1)

before the output was used to correct the previous domain decomposition. Because such a

ratio value is only applied once at the beginning of the simulations, this strategy is similar to

the concept of a static domain decomposition. Recently, FullSWOF2D in [65] tackled the inef-

ficient vectorization due to the branching condition of wet-dry problems by changing the code

structure into a branch-free vectorized version. This technique, however, requires profound

knowledge about intrinsic programming — by which a compiler directly implements a function

given in code rather than linking to a library-based application of the function — and remains

challenging for branching solvers such as the HLL and HLLC methods. In [24], NUFSAW2D

employed dynamic load balancing (with OpenMP directive) to tackle load imbalances among

cores for wet-dry simulations. Nevertheless, a significant performance decrease was still

shown and it is therefore important to develop a new strategy that can tackle load imbalances

due to wet-dry problems more efficiently.

To this end, a novel weighted-dynamic load balancing (WDLB) technique was proposed for

NUFSAW2D in [23] (Paper 1), which requires no preliminary run as done in [60]. This tech-
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nique was integrated into an edge-based cell-centered finite volume (CCFV) method, where

two main computation levels were considered: edge-driven and cell-driven calculations. At

the edge-driven level, computations were carried out separately between internal and bound-

ary edges, as the latter ones require less computational time. The CU method was chosen in

this paper due to its efficiency according to the two previous investigations. All these imple-

mentations were eased by means of the cell-edge reordering strategy.

Having successfully balanced load distributions due to wet-dry problems in [23] for up to 6.4

million cells (12.8 million edges), two turbulence models were included into NUFSAW2D:

κ-ε model and algebraic stress model (ASM). This was motivated by a fact that the SWEs

neglect the diffusive terms, thus taking only the frictional effects from the bed into account—

but not the shear stresses, which originate from the fluid itself. In flow-past-structure cases

(especially in turbulent regimes) all the mass, momentum, and heat transfers in water exist

and fluctuate with respect to time. Such a momentum transfer will physically affect the shear

stresses, and these stresses must therefore be accounted for. Although a number of (two-

equation) turbulence models for the SWEs is available, see [58; 66; 7; 68], the integration of

such models into the shallow water models still remains challenging when wet-dry problems

exist. This is (partly) due to the implementation of the standard wall functions (StWF) for

moving boundary geometries, which exist in the presence of wet-dry phenomena.

With the StWF, one needs to keep the near-wall mesh spacing in the range of y+
p ≥ 11.067,

where y+
p is a dimensionless wall distance, namely by placing the center of the first boundary

cells in the logarithmic region. To determine a proper near-wall mesh size that satisfies this

condition, it is in most cases necessary to perform a grid-independent study first. In [35], an-

other method, namely the enhanced wall treatment, was compared with the StWF. The former

requires y+
p to be as low as possible, hence the meshes near the walls need to be adaptively

refined. If this adaptive technique is employed for inviscid shallow flow simulations, however,

problems with respect to simultaneously preserving the C-property and the mass conser-

vation may occur. Although a solution was presented in [42], the extension for turbulence

simulations may become very complex. For the use of high-resolution meshes to increase

accuracy, the suggestions of the grid study in [35] are difficult to be realized for practical pur-

poses in wet-dry simulations, see Section 4.2.4 for detail. Therefore, a new approach was

proposed in [18] (Paper 2), combining the hydrostatic and topography reconstructions and

the scalable wall functions (ScWF). Here, the wet-dry phenomena near the interfaces are

captured accurately, and the turbulence values near such wet-dry interfaces and the other

wall boundaries are calculated properly. The ASM was employed, which is a non-linear ex-

tension of the κ-ε model. The proposed approach resolved the limitations of the StWF, thus

giving users flexibility in generating meshes.

In some particular cases, it can be noticed that the CU scheme, despite its efficiency, is not

able to capture recirculating turbulent shallow flows properly, unless very fine meshes are

used. A similar phenomenon was investigated previously in [53], where the CU method cap-
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tured the inviscid recirculating shallow flows less accurately than the Roe and HLLC solvers.

This led to the idea of combining the AV technique and the CU scheme in order to simu-

late recirculating turbulent flows, see [19] (Paper 4). The hybrid AV-CU scheme was able to

resolve the inability/inaccuracy of the CU scheme in simulating recirculating turbulent flows,

and turned out to be more accurate and cheaper than the HLLC solver.

All the aforementioned results were obtained using rectangular meshes. Although the shape

of complex domains can be approximated using high-resolution rectangular cells, unstruc-

tured meshes are in many applications preferable due to their flexibility. Also, with a data

structure that not only supports applications for structured meshes but also the unstructured

ones, a parallel shallow water code can allow for a wider range of implementations. To this

regard, a second data structure type was introduced in NUFSAW2D in [25] (Paper 6) for un-

structured meshes (hybrid quadrilateral and triangular cells) supporting hybrid OpenMP-MPI

computations. Three main objectives were considered: (1) contiguous edge and cell num-

bers, thus easing parallelization, (2) consecutive communication patterns among nodes, and

(3) contiguous memory access patterns inside each node. The first objective was addressed

by means of a block-distribution, and the other objectives were achieved by employing space-

filling curves (SFCs) to reorder the meshes. The data structure devised served to implement

the WDLB technique for the unstructured meshes of up to 3.4 million cells (5.1 million edges)

when simulating real river flood and tsunami cases.

In summary, having modern hardware and small to moderate compute clusters available in

academia and industry, shallow water simulations even for huge/complex problems become

possible due to advanced parallelization strategies that could hardly be performed in earlier

times. In addition to being accurate, a parallel code should also be efficient and able to

comprehensively exploit the capability of such computing resources on all scales from the

instruction level to the block and process level of parallelization. In particular, it is therefore of

uttermost importance to carefully investigate wet-dry phenomena as the main factor regarding

a performance decrease within the parallel code.
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2. Mathematical and Computational Framework

2.1. Mathematical Formulation

2.1.1. Shallow Water Equations (with Turbulence Model)
The SWEs with turbulence model, which are also known as the (depth-averaged) Reynolds-

averaged Navier-Stokes (RANS) equations, can be written, closely following the notation of

[58; 66; 7; 68], as

∂Q

∂t
+
∂Cx
∂x

+
∂Cy
∂y

=
∂Dx

∂x
+
∂Dy

∂y
+ Sbx + Sby + Sf + So , (2.1)

where Q denotes the conservative variables, Cx and Cy are the convective fluxes (or the

convective terms), Dx and Dy denote the diffusive fluxes (or the viscous terms), which are

obtained based on the Boussinesq’s assumption, Sbx and Sby denote the bed-slope terms,

Sf defines the bed friction term, and So denotes the rainfall/infiltration term. These variables

are expressed in matrix notation as

Q =


h

hu

hv

 , Cx =


hu

huu+
gh2

2

hvu

 , Cy =


hv

huv

hvv +
gh2

2

 ,

Dx =



0

2h(νe + νt)
∂u

∂x
− 2

3
hκ

h(νe + νt)

(
∂u

∂y
+
∂v

∂x

)


, Dy =



0

h(νe + νt)

(
∂u

∂y
+
∂v

∂x

)

2h(νe + νt)
∂v

∂y
− 2

3
hκ


,

Sbx =



0

−gh∂zb
∂x

0


, Sby =


0

0

−gh∂zb
∂y


, Sf =


0

−cfu
√
u2 + v2

−cfv
√
u2 + v2


, So =


R− I

0

0


.

(2.2)

The variables h (m), u (m/s), and v (m/s) are the depth and velocities in x and y directions,

respectively, g (m/s2) is the gravity acceleration, νe (m2/s) and νt (m2/s) are the kinematic

viscosity and the eddy viscosity, respectively, κ (m2/s2) is the turbulence kinetic energy, zb
(m) is the bed contour, nm (s/m1/3) is the Manning coefficient, where cf = gn2

mh
− 1

3 , and R

(m/s) and I (m/s) are the rainfall and infiltration, respectively. Note that for the inviscid SWEs,

the values of Dx and Dy are zero, thus requiring no turbulence model.
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2.1.2. Algebraic Stress Model
A turbulence model is required to compute κ and νt in Eq. (2.2). According to [7], the algebraic

stress model (ASM) can be interpreted as a non-linear extension of eddy viscosity models

and is, here, correlated with the κ-ε model. Therefore, the κ-ε model is first presented and

expressed as
∂Φ

∂t
+
∂CΦ,x

∂x
+
∂CΦ,y

∂y
=
∂DΦ,x

∂x
+
∂DΦ,y

∂y
+ Sκ-ε . (2.3)

In matrix notation, these variables are denoted as

Φ =

hκ
hε

 , CΦ,x =

hκu
hεu

 , CΦ,y =

hκv
hεv

 ,

DΦ,x =


σ−1
κ hνt

∂κ

∂x

σ−1
ε hνt

∂ε

∂x

 , DΦ,y =


σ−1
κ hνt

∂κ

∂y

σ−1
ε hνt

∂ε

∂y

 , Sκ-ε =

 Ph + Pκb − hε

cε1
ε

κ
Ph + Pεb − cε2h

ε2

κ

 ,

(2.4)

where ε (m2/s3) denotes the dissipation rate of the turbulence kinetic energy. The terms Ph,

Pκb, and Pεb are defined as

Ph = hνt

(
2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+

(
∂u

∂y
+
∂v

∂x

)2
)
,

Pκb = c−0.5
f U3

∗ , Pεb =
cεΓ cε2 c

0.5
µ c−0.75

f

h
,

(2.5)

where U∗ =
√
cf
(
u2 + v2

)
denotes the bed friction velocity. The eddy viscosity νt is calcu-

lated as

νt = cµ

(
κ2

ε

)
. (2.6)

All coefficients in Eqs. (2.4)–(2.6) are given in [58; 64] by numerous iterations of data-fitting

as

cµ = 0.09 , cε1 = 1.44 , cε2 = 1.92 , σκ = 1.0 , σε = 1.3 , cεΓ =
[
1.8, 3.6

]
. (2.7)

Closely following [7], the ASM is now employed to recalculate Ph (later denoted by P ∗h ) by

considering three components of the Reynolds stresses that appear in shallow water flows:

u′2, u′v′, and v′2. To account for the production of turbulent energy due to the horizontal

velocity gradient, a formula P ∗h is employed, namely

P ∗h = h

[
− u′2

(
∂u

∂x

)
− v′2

(
∂v

∂y

)
− u′v′

(
∂u

∂y
+
∂v

∂x

)]
+

[
Puu,b + Pvv,b

2

]
, (2.8)

where Puu,b and Pvv,b are taken into account for the vertical production of turbulent energy
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due to bed shear. First, the stresses u′2, u′v′, and v′2 are calculated. Assuming a constant

value of c1 = 1.8, in tensorial form these stresses are computed as

mijrj = c11bi , (2.9)

where i, j ∈
[
1, 3
]
, rj =

[
u′2, v′2, u′v′

]T, and c11 = c1 +
Ph
ε
− 1. The matrix mij is expressed

as

mij = c11δij − (1− c2)
κ

ε
aij , (2.10)

where c2 = 0.6 and δij is Kronecker delta. The matrix aij and the vector bi are defined by

−4

3

∂u

∂x

2

3

∂v

∂y
−4

3

∂u

∂y
+

2

3

∂v

∂x

−2

3

∂u

∂x
−4

3

∂v

∂y
−4

3

∂v

∂x
+

2

3

∂u

∂y

−∂v
∂x

−∂u
∂y

−
(
∂u

∂x
+
∂v

∂y

)


,



2

3
κ+

κ

ε

(1− c2)

c11

(
2

3
Puu,b −

1

3
Pvv,b

)
2

3
κ+

κ

ε

(1− c2)

c11

(
2

3
Pvv,b −

1

3
Puu,b

)
κ

ε

(1− c2)

c11
Puv,b


, (2.11)

respectively. The values of Puu,b, Pvv,b, and Puv,b are calculated by

Puu,b = 2
cfu

2|U|
h

, Pvv,b = 2
cfv

2|U|
h

, Puv,b = 2
cfuv|U|

h
, (2.12)

where |U| can be computed by Keulegan’s law. For the sake of simplicity, |U| is assumed to

be similar to the depth-averaged velocity.

2.2. Numerical Model

2.2.1. Spatial Discretization
The first step in the derivation of the CCFV method is the generation of a set of sub-domains.

Therefore, as an example, the computational domain Ω — which is bounded by the closed

polygon ABCD — will be divided into four non-overlapping sub-domains Ω1, Ω2, Ω3, and Ω4,

see Fig. 1. Both Eqs. (2.1) and (2.3) can be integrated, for example over the sub-domain Ω1,

by applying the Gauss divergence theorem, thus∫∫
Ω1

∂Q

∂t
dΩ1 +

∮
ΓAEGH

(
Cx+Cy−Dx−Dy−Sbx−Sby

)
·~n dΓAEGH =

∫∫
Ω1

(
Sf +So

)
dΩ1 ,

(2.13)

∫∫
Ω1

∂Φ

∂t
dΩ1 +

∮
ΓAEGH

(
CΦ,x + CΦ,y −DΦ,x −DΦ,y

)
· ~n dΓAEGH =

∫∫
Ω1

Sκ-ε dΩ1 , (2.14)

where Γ denotes the line boundary of a sub-domain and ~n =
[
nx, ny

]T is the unit normal

vector pointing outward of the boundary. Letting N be the total number of edges surrounding

a sub-domain, the sub-domain Ω1 in Fig. 1 has four edges (AE, EG, GH, and HA) denoted by
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D C

Ω2 Ω4

Computational domain  : Ω

Sub-domains : Ω1 , Ω2 , Ω3 , Ω4

Ω1 Ω3 line integral in counter-clockwise

direction

A BE

FH

I

G

Figure 1 : Generation of sub-domains from a computational domain Ω

i ∈
[
1, 4
]
, and thus N = 4.

The line integrals in Eqs. (2.13) and (2.14) are approximated as∮
ΓAEGH

(
Cx + Cy−Dx −Dy − Sbx − Sby

)
· ~n dΓAEGH =

N∑
i=1

((
Cx −Dx − Sbx

)
nx +

(
Cy −Dy − Sby

)
ny

)
i

∆Li ,

(2.15)

∮
ΓAEGH

(
CΦ,x + CΦ,y−DΦ,x −DΦ,y

)
· ~n dΓAEGH =

N∑
i=1

((
CΦ,x −DΦ,x

)
nx +

(
CΦ,y −DΦ,y

)
ny

)
i

∆Li ,

(2.16)

where ∆L is the edge length. With the CCFV method, the integral of vector Q for the sub-

domain Ω1 is defined as

QΩ1 =
1

AΩ1

∫∫
Ω1

Q dΩ1 , (2.17)

where AΩ1 is the area of sub-domain Ω1. Note that the integrals of vectors Sf , So, Φ, and

Sκ-ε can be defined in a similar way. From now on, a sub-domain refers to a cell denoted by

Ωe with a line boundary Γe, for which N may vary depending on the shape of the cell used.

By definition of Eqs. (2.15)–(2.17), both Eqs. (2.13) and (2.14) for a cell can be rewritten as

AΩe

∂QΩe

∂t
+

N∑
i=1

((
Cx −Dx − Sbx

)
nx +

(
Cy −Dy − Sby

)
ny

)
i

∆Li = AΩe

(
SfΩe

+ SoΩe

)
,

(2.18a)

AΩe

∂ΦΩe

∂t
+

N∑
i=1

((
CΦ,x −DΦ,x

)
nx +

(
CΦ,y −DΦ,y

)
ny

)
i

∆Li = AΩeSκ-εΩe
. (2.18b)
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Note that the values of h, u, v, zb, nm, R, I, κ, and ε are defined at the center of each cell.

For the sake of completeness, the water elevation η (m) is written here as η = h + zb.

A solver such as Roe, HLLC, CU, or AV scheme is required to calculate the convective fluxes

in Eqs. (2.18a) and (2.18b). Prior to applying such a solver, the Monotonic Upwind Scheme

for Conservation Laws (MUSCL) method is employed to reconstruct the left (L) and right (R)

states of an edge so that a second-order spatial accuracy can be achieved. Note that both

conservative and primitive variable reconstructions are employed in this work. The former is

used for inviscid simulations and the latter is employed for turbulence simulations, where the

gradient values required for the computation of the MUSCL method can be used directly to

calculate the diffusive fluxes. Such fluxes are computed with the centered method simply by

averaging the values of the two corresponding cells for the value stored at an edge. Note

that as one of the objectives of this work is to compare the efficiency of several solvers, the

computation of the bed-slope term must be performed independently from the convective

fluxes so that a fair comparison can be obtained. Therefore, a non-Riemann technique is

applied to discretize the bed-slope term, which is applicable to all implemented solvers. A

semi-implicit treatment is utilized for the bed friction and the turbulence source terms.

2.2.2. Temporal Discretization
In this work, two temporal discretization schemes were employed: the Runge-Kutta second-

order (RKSO) and the Runge-Kutta fourth-order (RKFO) method. The former was used in

[23; 18; 19; 25] and the latter in [21; 22]. For the sake of brevity, only the RKSO method is

explained here. The procedures of the RKSO method can be expressed as

KtΩe
= − ∆t

AΩe

[
N∑
i=1

((
Cx −Dx − Sbx

)
nx +

(
Cy −Dy − Sby

)
ny

)t
i

∆Li

]
+ ∆t StoΩe

,

Qt∗Ωe
= QtΩe

+ KtΩe
, Qt∗Ωe

← Π−1
Ωe
Qt∗Ωe

, Qt+1
Ωe

=
1

2

(
QtΩe

+Qt∗Ωe
+ Kt∗Ωe

)
,

(2.19a)

KΦ
t
Ωe

= − ∆t

AΩe

[
N∑
i=1

(
CΦ,x nx + CΦ,y ny

)t
i

∆Li

]
,

Φt∗
Ωe

= Φt
Ωe

+ KΦ
t
Ωe
, Φt∗

Ωe
← Φt∗

Ωe
+ ∆t HtΩe

, Φt+1
Ωe

=
1

2

(
Φt

Ωe
+ Φt∗

Ωe
+ KΦ

t∗
Ωe

)
,

(2.19b)

where t (s) and t∗ (s) denote the discrete time steps and ∆t (s) is the time step size. The

variable Π relates to the friction term SfΩe
and is calculated in a semi-implicit manner as

ΠΩe = 1 + g ∆t

[
(1− θ)

(n2
m

√
u2 + v2

h
4
3

)t∗
Ωe

+ θ

(n2
m

√
u2 + v2

h
4
3

)(t∗−1)

Ωe

]
, (2.20)
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where θ is an implicitness coefficient (0 < θ < 1). The variable H denotes the turbulence

source term, which is computed semi-implicitly as

H(t∗−1)
Ωe

=

[
max

(
H(t∗−1)

1

AΩe

, 0

)
+H(t∗−1)

2 +H(t∗−1)
3

]
+Φt∗

Ωe

[
min

(
H(t∗−1)

1(
AΩeΦ

(t∗−1)
Ωe

) , 0)+H(t∗−1)
4

]
.

(2.21)

The variable H1 relates to the convective fluxes of the turbulence model, while H2, H3, and

H4 correspond to the turbulence source term. These variables are expressed as

H1 =


∮

Γe

[
σ−1
κ hνt

(
∂κ

∂x
+
∂κ

∂y

)]
· ~n dΓe

∮
Γe

[
σ−1
ε hνt

(
∂ε

∂x
+
∂ε

∂y

)]
· ~n dΓe

 , H2 =

 PhΩe(
cε1

ε

κ
Ph

)
Ωe

 ,

H3 =

PκbΩe

PεbΩe

 , H4 =

 −
( ε
κ

)
Ωe

−
(
cε2

ε

κ

)
Ωe

 .

(2.22)

Without the friction term, one can start the computations by explicitly calculating ht∗Ωe
, hut∗Ωe

,

and hvt∗Ωe
in vector Qt∗Ωe

. Afterwards, both ut∗Ωe
and vt∗Ωe

are calculated by dividing hut∗Ωe
and

hvt∗Ωe
with ht∗Ωe

—up to here, no friction term was taken into account. From now on, the friction

term must be included in order to update the values of hut∗Ωe
and hvt∗Ωe

. In wet-dry cases,

since ht∗Ωe
can be advanced without any source term, its value is used to determine whether

hut∗Ωe
, hvt∗Ωe

, hκt∗Ωe
, and hεt∗Ωe

should be computed or not. For instance, if 10−6 ≤ ht∗Ωe
≤

10−10 m, cell Ωe is categorized as dry cell, thus the values of hut∗Ωe
, hvt∗Ωe

, ut∗Ωe
, vt∗Ωe

, κt∗Ωe
,

and εt∗Ωe
are simply set to a very small value (e.g. 10−15); otherwise, all corresponding values

are computed normally. Note that the mass conservation with the threshold parameter were

monitored in all simulations. For both inviscid and turbulence simulations in this work, the

variable ∆t is limited by the Courant-Friedrichs-Lewy (CFL) number, while the Peclet (Pe)

number that satisfies Pe ≤ 2/CFL is considered for the latter, see [28]. All details for both

spatial and temporal discretization can be found in [17; 18; 19].

2.3. Integration of Numerical Scheme into Parallelization
Framework

With respect to Eqs. (2.18a) and (2.18b), the variables Q, Sf , So, Φ, and Sκ-ε are located at

cell-centers, whereas the variables Cx, Cy, Dx, Dy, Sbx, Sby, CΦ,x, CΦ,y, DΦ,x, and DΦ,y

belong to edges. As an initial condition, the values in vector Q (i.e. h, u, and v), the values

in vector Φ (i.e. κ and ε), and the values of zb and nm are given and saved at all cell-centers,

whereas no initial values at edges are given. The values of R and I are known (or set to

zero) for each simulation in this work. It is therefore not required to save the values of these
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Figure 2 : Concept of computation in cell-based CCFV. In this approach, the values located at edges are not saved in arrays
and computed with the unit normal vectors pointing outward of the boundaries. Therefore, computations of an edge that
corresponds to two adjacent cells occur twice with the same value but different algebraic signs.
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Figure 3 : Concept of computation in edge-based CCFV. In this approach, the values located at edges are saved in arrays.
Computations for all edges (edge-driven level) must be finished prior to the ones for cells (cell-driven level). For this, all edge
values are first assumed to have a positive sign. Once the computations for the edge-driven level are finished, the
computations of the cell-driven level can be performed by accessing the edge values but with the corresponding (actual) signs
of the unit normal vectors.
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variables at cell-centers. In subsequent time steps, vectors Q and Φ will be advanced using

all the aforementioned values from the previous time step, whereas the values of zb and

nm remain constant during simulation time as a fixed-bed model is employed in this work.

Note that in subsequent time steps, values located at edges will always be computed but do

not have to be saved, depending on the chosen approach. This has the following reasons

explained in the next paragraph.

Using a CCFV model, the solution advancement can be performed in two ways: cell-based

and edge-based, see Figs. 2 and 3 for an illustration according to the domain discretization

introduced in Fig. 1. In the cell-based approach (Fig. 2), all values are given at cell-centers,

hence, one does not redundantly have to save the values at edges. In other words, the values

of Q and Φ for any subsequent time step can be advanced using variables at cell-centers

and edges in one single loop. Because computations for all edges can be performed in a

straight-forward manner by accessing the values from their corresponding cell-centers, there

is no need to save such edge values in an array. This approach thus requires less memory.

However, the computation of an edge corresponding to two adjacent cells — see, for example,

edge GH in Fig. 1 that corresponds to cells Ω1 and Ω2 — occurs twice with the same value

but different algebraic sign, hence, the values of the convective and diffusive fluxes become

redundant. Note that as calculations of the convective fluxes deal with computations of a

solver (the most expensive part of the SWEs component, see [22]), the central-processing

unit (CPU) time will significantly increase.

In contrast, for the edge-based approach (Fig. 3), one first needs to compute and then save

the values at all edges entirely (edge-driven level) prior to advancing the solution at cells

(cell-driven level). This means that the advancement process at cells is conducted later by

accessing the computed edge values. For this, the value of each edge is only computed once

(in one direction), see Fig. 3, where all edge values for the computations of the edge-driven

level are assumed to have a positive sign and saved in an array. Later, these edge values

are accessed for the computations of the cell-driven level but use the corresponding (actual)

signs of the unit normal vectors. On the one hand, this approach requires more memory but,

on the other hand, it avoids redundant computations of an edge for its two corresponding

cells.

For parallelization, the cell-based approach becomes more advantageous. It is easy to be

parallelized because no cell dependency occurs. Although the edge-based approach may

also not be difficult to be parallelized, an advanced strategy must be considered to provide

an index relationship between edges and cells, unless a poor memory access pattern is

obtained, leading to significantly worse performance. In order to give a brief overview of

these two approaches, a 3×3 computational domain is given.

Following the cell-based approach, the parallelization can easily be carried out by directly

mapping cells to cores (OpenMP) or distributing cells to different nodes (MPI), see Fig. 4. With
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several different decompositions may also be obtained depending on how the user decides. With MPI, an equally- and
consecutively-distributed amount of cells is achieved among nodes as well. However, communication between nodes is
required.
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Figure 5 : Concept of parallelization in edge-based CCFV. For the sake of simplicity, instead of 24 edges, only 12 edges of the
computational domain are included here as an example. Within MPI, after a manual cell distribution is chosen by the user,
cells are equally and consecutively distributed among nodes. However, it is not possible to equally and consecutively distribute
edges to nodes, because the (manual) distribution has been targeted previously on the cell distribution. In the edge-based
approach, more communication is required than in the cell-based approach. With OpenMP, automatic cell and edge allocations
are shown, where both cells and edges are equally and consecutively allocated into cores. Note that a barrier is required to
ensure that the computations at the edge-driven level are finished before the computations at the cell-driven levels are started.

OpenMP, the cell allocation is conducted automatically, e.g. using the directive !$omp do,

while the cell distribution within MPI is performed based on the domain decomposition as

intended by the user. It is shown in Fig. 4 that cells are equally and consecutively allo-

cated/distributed to cores/nodes with OpenMP/MPI. However, communication among nodes

is required for MPI.

In the edge-based approach, one has to consider not only the cell allocation/distribution but

also the edge one. Again, cells and edges can be mapped to cores automatically using
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OpenMP, see Fig. 5. However, with MPI, the edge distribution to nodes may turn out to be

imbalanced because the (manual) decomposition has been targeted previously (by the user)

on the cell distribution. From Fig. 5 (MPI), it follows that cells can be consecutively distributed

among nodes, where each node receives the same amount of cells. However, each node

does not obtain the same amount of edges, thus causing load imbalance. Note that more

communication is required in the edge-based approach than in the cell-based one. With

OpenMP, both edges and cells can be allocated consecutively to cores in a simple fashion.

This approach also allows each core to have the same amount of edges and cells.

Even though the edge-based approach entails a larger memory footprint, it was chosen for

this work, because the higher computational cost of the cell-based approach (with all its ad-

vantages) deteriorates the computational efficiency/performance as the primary optimization

objective. The challenging task is to design a parallelization strategy that can satisfy the three

aforementioned main objectives within the framework of hybrid OpenMP-MPI. Note that even

for a perfect allocation/distribution strategy, load imbalances can still occur due to the emer-

gence or disappearance of wet-dry edges/cells dynamically during runtime. This issue will be

investigated thoroughly in Chapter 4.
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3. Problem Statements and Objectives

As high-performance hardware becomes increasingly available both in academia and indus-

try, parallelization can be considered as a way to obtain the solution of shallow flow simula-

tions faster than performing sequentially. There are numerous references regarding parallel

programming, allowing researchers and engineers to develop their own parallel shallow wa-

ter codes. However, there is still a lack of deep understanding of what is possible in order

to make codes more efficient. Here, the term “efficiency” is to be understood with respect to

the number of operations or the time necessary for the execution of a program on a single-

core architecture in comparison to a parallel approach, which allows for the distribution of

tasks among the cores/nodes of a compute cluster for parallel execution including advanced

strategies, e.g. to tackle load imbalances.

The main objective of this work is to develop a parallel shallow water code as well as com-

putational strategies, thus enabling simulations with a large domain or with a large amount

of high-resolution meshes, which cannot be treated with a sequential approach due to high

computational cost. This objective is achieved through the following steps:

• Profiling of different solvers with regard to their node-level performance

This point is the first important step towards the development of a parallel code due to

the fact that the computations of the convective fluxes of the SWEs are the ones with the

largest computational cost or time. Therefore, two common shallow water solvers (HLLC

and CU) were investigated, in particular, to study their behavior with regard to vectorization

supported by modern hardware, which can be considered the finest (and non-trivial) level

of parallelism. Additionally, an alternative scheme (AV technique) was proposed.

• Design of a flexible data structure to facilitate parallelization

At this step, a novel cell-edge reordering strategy was devised in order to facilitate the

parallelization by computing internal edges (edges that belong to two cells) separately from

the boundary ones (edges that belong only to one cell) because the former are generally

more expensive than the latter ones. This separate-way-parallelization was intended to

support a balanced load distribution among cores. In addition to parallelization, the cell-

edge reordering strategy was also devised to enable vectorization for all solvers more

efficiently, including the HLLC method, for which vectorization was not possible in the

previous step.

• Development of a load balancing strategy for wet-dry phenomena

In the existence of wet-dry problems, despite the proposed separate-way-parallelization,

load imbalances among cores can still occur. This phenomenon is thus taken into careful

consideration and a novel weighted-dynamic load balancing strategy is proposed. This

technique was applied by reallocating the total number of edges and cells dynamically to

cores during runtime so that the task distributions among cores exist periodically despite

using static meshes. Since some procedures of this technique can only be performed
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sequentially, it may not be efficient to apply the WDLB technique in every single time step.

• Integration of a turbulence model for wet-dry problems

This step is considered because in reality flow-past-structure cases may appear together

with wet-dry problems. For such cases — when the flow is turbulent — the mass, momen-

tum, and heat transfers in water exist and fluctuate, which is the reason that the effects of

the shear stresses become significant. An inviscid shallow water model is not able to cap-

ture the shear stresses, and a turbulence model has to be included. To this end, a novel

approach was developed that combines the hydrostatic and topography reconstructions

with scalable wall functions, enabling users to employ high-resolution meshes for wet-dry

phenomena without having to estimate the wall friction velocity prior to a simulation.

• Investigation of a solver’s behavior for simulating recirculating turbulent flows

This issue is further addressed because not all solvers can model recirculating turbulent

flows properly, while such flows often exist in flow-past-structure cases. A novel approach

was developed for this reason, combining the AV technique with the CU scheme in order

to simulate recirculating turbulent flows. The former was employed to solve the convective

fluxes of the SWEs, while the latter one served to calculate the convective fluxes of the

turbulence model. A comparison between the hybrid AV-CU, HLLC, and CU schemes

highlights the advantages of the proposed approach.

• Integration of space-filling curves for reordering unstructured meshes

While all implementations in the aforementioned steps utilize structured meshes, another

data structure type was designed for the use of unstructured meshes with hybrid quadri-

lateral and triangular cells so that NUFSAW2D can allow for a wider range of implemen-

tations for shallow water flows. In order to support a flexible decomposition for unstruc-

tured meshes within the framework of hybrid OpenMP-MPI, edges and cells were always

indexed sequentially, thus enabling a partition with a block-distribution. To provide the

consecutive communication patterns among nodes and the contiguous memory access

patterns inside each node, cells or edges were renumbered by means of SFCs. The block-

distribution served to improve the implementation of the WDLB technique in the existence

of wet-dry problems.
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4. Summary of Results

4.1. Research Questions and Hypotheses

The research questions to be addressed in this work are formulated as:

1. How important is an investigation of the computational complexity of a solver’s algo-

rithm to support efficient vectorization on single-core architectures as a basic consid-

eration prior to the development of a parallel code?

2. How can a data structure in an edge-based CCFV model be devised in a simple manner

to enable efficient vectorization without any intrinsic function?

3. How necessary is a separate-way parallelization — which categorizes the task distri-

bution based on the computational complexity of each component of a shallow water

model — to ensure that a balanced load proportion is assigned to each core?

4. How significant are wet-dry phenomena in causing load imbalances among cores/nodes

in a framework of a parallel shallow water model, and how would a load balancing strat-

egy have to be designed to tackle such imbalances?

5. How can a two-equation turbulence model be robustly incorporated into a shallow wa-

ter model to simulate flow-past-structure cases with wet-dry problems so that users

can flexibly employ high-resolution meshes to increase the accuracy without having to

estimate the wall friction velocity prior to running a simulation?

6. How would (common) shallow water solvers behave in terms of accuracy and efficiency

in simulations of recirculating turbulent flows as one of the most common phenomena

in flow-past-structure cases? Would, in addition to such common solvers, a more ac-

curate but cheaper scheme be possible to model such flows?

7. What tactics should be used to automatically parallelize a domain with unstructured

meshes?

Henceforth, it is important to point out that an efficient optimized executable of a shallow

water code may strongly depend on the capabilities of the compiler. With regard to the com-

pilers — especially for Fortran, e.g. GNU, NAG, Intel, Cray, IBM — it is well-known that each

compiler has its specific advantages or disadvantages concerning different purposes such

as debugging, compiling, generating executable files, etc. Secondly, it is also understood

that applications based on the same code but created with different compilers on the same

machine can result in different efficiency rates. Applications created using the same compiler

on different machines can produce quite different efficiency rates as well. Considering these

findings — although all executions in this work were compiled using Intel Fortran on Intel ma-

chines — the computational strategies proposed do not rule out the possibility to be applied

widely by developers of shallow water codes to increase the efficiency of their models.
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According to the aforementioned research questions, the following hypotheses were put for-

ward and tested:

1. Before developing a parallel model, it is necessary to thoroughly investigate a solver’s

behavior regarding its efficiency on a single-core setup (Paper 5).

2. Vectorization is non-trivial in attempts to increase performance, and can be achieved

without having to perform any intrinsic function. To this regard, a reordering strategy —

that can provide contiguous array patterns for the data structure of edges and cells —

has to be developed (Paper 3).

3. A separate-way-parallelization based on the computational complexity of the SWEs’

components can support a balanced load distribution among cores. A contiguous in-

dexing system between edges and cells is thus of great importance (Paper 3).

4. The existence of wet-dry phenomena in a parallel model causes remarkable load im-

balances among cores, hence a proper load balancing strategy is inevitable (Paper 1).

5. A two-equation turbulence model can be robustly integrated into a shallow water model

for wet-dry simulations by developing a strategy near wet-dry interfaces as well as near

wall boundaries, thus avoiding the difficulty of the conventional method of estimating

the wall friction velocity prior to a simulation (Paper 2).

6. Not all common solvers — despite their robustness in modeling the most complex flow

phenomena such as transcritical flows, shock waves, and moving wet-dry fronts — are

capable of simulating all flow-past-structure cases properly, e.g. recirculating turbulent

flows. Therefore, a new hybrid solver should be considered (Paper 4).

7. For the use of unstructured meshes, regardless of the domain shape, a strategy can

be applied to enable a parallelization by simply storing edges and cells (independent

of one another) in 1D configuration, thus avoiding the difficult task of considering the

domain decomposition prior to starting a simulation. Since edges and cells are stored

independently, the index relationships between them must be determined and SFCs

can thus be utilized (Paper 6).

4.2. Research Accomplishments

This section provides a brief summary of the findings obtained in the six aforementioned

papers, which are included in the Appendix. The results of the six papers are introduced

chronologically based on the aforementioned hypotheses.

4.2.1. Artificial Viscosity Technique: A Riemann-Solver-Free Method for 2D Urban
Flood Modelling on Complex Topography (Paper 5)

The objective of this paper was firstly to investigate the behavior of the common shallow

water solvers (HLLC and CU) regarding their efficiency for the vectorization support of a

desktop computer with a Haswell architecture (Intel Xeon E3-1200 v3). All simulations were

performed using a single-core setup. As there was no special technique applied to the code
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(e.g. intrinsic functions, restructuration of data layout, etc.), the main optimization feature was

expected to come from the vectorization. Note that all implementations in this paper relied

on auto vectorization (the one that utilizes the ability of the compiler to automatically detect

loops, which have potential to be vectorized).

Three benchmark cases were presented including dam-break cases and urban flood simula-

tion for the use of up to 0.1 million cells (0.2 million edges). In terms of accuracy, both HLLC

and CU solvers showed accurate results with only non-significant differences, and the strong

gradients of the very complex wave-wave interactions in the dam-break cases were captured

accurately, see cases 1 and 2 in Paper 5. Furthermore, the two schemes also showed similar

results in the urban flood case, and the moving wet-dry fronts were stably simulated without

any issue, see case 3 in Paper 5, for which NUFSAW2D was also compared with other shal-

low water models, e.g. ISIS 2D, MIKE FLOOD, SOBEK, TUFLOW, and XPSTORM, and the

results of the HLLC and CU solvers were within the range of the results of these models.

In terms of efficiency, however, the HLLC scheme was on average 30% more expensive than

the CU solver. This was because the algorithm of the HLLC scheme is quite complex: it

consists of several branch statements (if-then-else), of which the pattern of true-or-false

condition cannot be predicted in advance by the branch prediction logic of the processor. In

contrast, the CU scheme is free of any branching, thus making vectorization feasible.

In addition to investigating the above solvers, another scheme based on an AV technique,

drawing on the previous work of [17] — that would be more accurate, but with acceptably low

cost — was developed. The AV technique was devised from a combination of a Laplacian and

a biharmonic operator, for which the scaling factor variable was constructed using the spectral

radius of the Jacobian matrix. This combination does not need any eigen-decomposition of

the Jacobian matrix as required by Riemann solvers, which brings the AV technique to a class

of Riemann-solver-free schemes. The AV technique itself is still rarely used for shallow water

flow applications. Extensive applications were presented within the scope of aeronautics, see

[33; 32; 48; 63; 61] for some pioneer works.

As expected, the AV technique was in some particular cases more accurate than the HLLC

and CU solvers. For example, in the simulation of the L-shaped dam-break, the AV technique

was able to produce less diffusive results, despite using a first-order spatial scheme. This

shows that the AV technique was more accurate to capture the strong gradients of the com-

plex wave-wave interactions. In terms of efficiency, a comparison between the three schemes

revealed that the AV technique was on average 22% cheaper than the HLLC method, while

being almost as efficient as the CU scheme. The results in Paper 5 have shown that the

computational complexity of a solver’s algorithm is worth being investigated as a manda-

tory step in order to optimize node-level efficiency before the next step (parallelization at the

block/process-level) is addressed. Therefore, the first hypothesis can be confirmed.
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4.2.2. Comparison of Shallow Water Solvers: Applications for Dam-Break and
Tsunami Cases with Reordering Strategy for Efficient Vectorization on
Modern Hardware (Paper 3)

The main objective of this paper was to utilize the vectorization support at the level of shared-

memory systems for three solvers (Roe, HLLC, and CU) more efficiently, in particular, to en-

able vectorization for the HLLC method that was not possible in the previous implementation.

Additionally, this paper pointed out an advantage of an edge-based CCFV parallelization with

a classification between internal and boundary edges in supporting a balanced load distri-

bution among cores. Both single-core and multi-core computations were performed on three

clusters with modern hardware architecture: Intel Xeon E5-2690/Sandy-Bridge-E (AVX), Intel

Xeon E5-2697 v3/Haswell (AVX2), and Intel Xeon Phi/Knights Landing (AVX-512), each with

16 cores, 28 cores, and 64 cores inside a node, respectively.

In order to investigate the efficiency, a performance metric for the edge-driven level was in-

troduced, namely Medge/s/core (million edges per second per core), representing a com-

parison between the total number of simulated edges that can be achieved per unit of time

using one core. The implementation was restricted to single-precision arithmetic for the pur-

pose of emphasizing the effect of vector width. For single-core computations, this means

that the theoretical speed-ups of the AVX/AVX2 and AVX-512 machines should be 8× and

16×, respectively. Meanwhile, for multi-core computations, the theoretical speed-ups of the

AVX, AVX2, and AVX-512 machines are a total value obtained from a multiplication of the

vector width for one core by the total number of cores, thus being 128×, 192×, and 1024×,

respectively.

In order to achieve the main objective above as well as to facilitate the parallelization on the

aforementioned hardware, the cell-edge reordering strategy proposed in [23] was employed.

The core idea of the cell-edge reordering strategy is to determine the relationship patterns

between edges and cells (for the edge-driven loop) and between cells and edges (for the

cell-driven loop) so that loops with a similar computational procedure can be collected and

then vectorized. This strategy allows for separate-way-parallelization by distinguishing the

computations of internal edges from those of boundary edges. This classification is highly

beneficial to maintaining the efficiency of the code, as internal edges require more expensive

computations (e.g. the calculation of a solver), while boundary edges do not need such a

solver computation (if they act as a wall boundary). Therefore, the performance decrease of

the parallelization — due to the high ratio of the total number between internal edges and the

boundary ones, whenever the loop is carried out directly from one boundary edge to another

boundary edge — can be avoided with this classification. The cell-edge reordering strategy

provides contiguous array patterns between edges and cells (edge-driven level) as well as

between cells and edges (cell-driven level)—and was employed in 1D array configuration,

thus yielding straightforward memory access patterns, easing unit stride, and conserving

cache entries. Unlike the implementation in Paper 5 that relied on auto vectorization, all

applications in this paper employed guided vectorization (the one that utilizes some compiler
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hints/pragmas and array notations).

Four benchmark cases were tested including dam-break and tsunami flows for the use of up

to 0.4 million cells (0.8 million edges). In terms of accuracy, the three solvers investigated

were able to simulate all cases accurately, showing only non-significant differences. In terms

of efficiency, however, the solvers exhibited quite significant differences in performance, see

Tables 1 and 2, in which the speed-up factors of all solvers are summarized. One can see that

by means of the cell-edge reordering strategy, vectorization is possible for all solvers, even for

the HLLC scheme that previously could not be vectorized but now experiences tremendous

speed-ups. It is also observed in Paper 3 that the CU scheme was the most efficient solver,

whereas the HLLC scheme still became the most inefficient one among the others. This

strongly indicates that the HLLC solver suffers from additional overhead due to the natural

formulation of its branching condition.

AVX AVX2 AVX-512

HLLC 5.5 (75.7) 4.5 (108.4) 16.68 (928.9)

Roe 6.5 (89.4) 4.8 (115.6) 16.04 (892.9)

CU 6 (83.52) 5 (121.8) 16.42 (924.7)

Table 1 : Relative speed-up of the HLLC, Roe, and CU schemes with vectorization on different machines; multi-core relative
speed-up is shown inside the bracket [22]. Note that each speed-up factor is calculated based on a comparison with the
non-vectorized single-core performance of each solver. Therefore, the higher speed-up factors achieved by the HLLC method
do not mean that it is more efficient than the CU scheme. See Paper 3 for example, the HLLC scheme with AVX-512 achieved
1.01 Medge/s/core (non-vectorized on one core), 16.83 Medge/s/core (vectorized on one core), 0.81 Medge/s/core
(non-vectorized on 64 cores), and 14.64 Medge/s/core (vectorized on 64 cores). Meanwhile, the CU method with AVX-512
achieved 1.38 Medge/s/core (non-vectorized on one core), 22.70 Medge/s/core (vectorized on one core), 1.12 Medge/s/core
(non-vectorized on 64 cores), and 19.98 Medge/s/core (vectorized on 64 cores).

AVX AVX2 AVX-512

HLLC 0.69 (9.5) 0.73 (17.48) 0.74 (41.28)

Roe 0.83 (11.42) 0.79 (19.01) 0.78 (43.31)

CU 1 (13.92) 1 (24.36) 1 (56.33)

Table 2 : Absolute speed-up of the HLLC, Roe, and CU schemes with vectorization on different machines; multi-core absolute
speed-up is shown inside the bracket [22]. Note that speed-up factor is calculated based on a comparison with the vectorized
single-core performance of the CU scheme as the best sequential algorithm among the others.

In this paper, it was concluded that the branching condition of the HLLC solver will be the main

issue when trying to achieve an efficient performance, where the CU solver as a Riemann-

solver-free scheme would generally be able to outperform the Riemann solvers (HLLC and

Roe schemes) even for simulations on the next generation of modern hardware. This paper

has shown that the vectorization was non-trivial for boosting the performance of all solvers

and could be achieved without any intrinsic function, as performed in [4], or the restructuration

of data layout from arrays of structs (AoS) to structs of arrays (SoA), as conducted in [13].

It can also be seen in Paper 3 that the separate-way-parallelization — which classifies the

SWEs’ components based on their computational complexity — led NUFSAW2D to an aver-

age efficiency of up to 90%. Therefore, the second and third hypotheses are confirmed.
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4.2.3. Parallel Flood Simulations for Wet-Dry Problems Using Dynamic Load
Balancing Concept (Paper 1)

Although the separate-way-parallelization in the previous implementation was able to allow for

a balanced load distribution among cores, load imbalances can still occur in the existence of

wet-dry phenomena. This is caused by a special treatment of edges and cells in case of wet-

dry problems, where wet edges/cells essentially lead to more computational effort than the dry

ones, see Algorithms 1 and 3 in Paper 1. For example, at the edge-driven level, if a wet-dry or

a dry-dry interface is detected, the model turns to a first-order spatial scheme, thus requiring

no MUSCL technique, which is cheaper than a second-order spatial scheme. In contrast,

when a wet-wet interface appears, the model may have either second-order spatial accuracy

(no discontinuity) or first-order spatial accuracy (with discontinuity). A similar problem also

occurs at the cell-driven level. Due to the semi-implicit treatment of the friction term, unit

discharges must be transformed back to velocities with a division by a depth. If a wet cell is

detected, no problem needs to be considered. However, if a dry cell is detected, a division

by a very low (almost zero) depth may produce oscillations. During runtime the total number

of wet and dry edges/cells is always uncertain, making a simulation with wet-dry phenomena

more difficult to achieve a balanced load distribution among cores. For this reason, Paper

1 focused on developing a simple strategy, namely the WDLB technique, which can balance

the load among cores dynamically during runtime for the use of static meshes. Further, this

technique must be integrated into the data structure designed within the framework of the

cell-edge reordering strategy.

The first step in this paper is to find a ratio of CPU time between the computations of wet

and dry edges as well as those of wet and dry cells. For edges, it is quite simple where

NUFSAW2D was tested to simulate cases (using one core without a wet–dry problem) for

hydraulic jump, flow over transition channel, and dam-break flows, e.g. cases 1–5 in [17].

It was observed that using solely a first-order spatial scheme was typically 2× faster than

using the second-order one. Further, for cells, NUFSAW2D was tested (using one core with a

second-order spatial scheme) against cases with wet-dry phenomena, e.g. cases 1 and 2 in

Paper 5 as well as the two cases in Paper 1. Note that knowing the CPU time ratio between

wet and dry cells is more difficult because the ratio of the total number between wet and dry

cells always changes during runtime, thus showing a nonlinear relationship. Nevertheless, it

could be observed that the CPU time for dry cells was typically 2× faster than that for wet

cells.

The WDLB technique is sketched in Fig. 6 and its procedure is briefly explained as follows.

At a certain time step, it is assumed that cells 1–3 and 10–14 are wet and then weighted by

a factor of 2, whereas the others by a factor of 1. Using static load balancing, all cells can be

distributed equally to the four cores employed so that each core receives four cells. Despite

receiving the same amount of cells, cores 0 and 2 in fact suffer from more overhead because

they contain more wet cells; the load imbalance therefore exists. To overcome this issue, the

WDLB is employed firstly by detecting the total load of each core, collecting and summing all
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Figure 6 : Concept of the WDLB technique for wet-dry problems based on [23]

the load from the other cores, and then redistributing back the total amount of load equally

to each core. The total amount of load is 24 units and, thus, each core must now receive 6

units. This translates to a condition where cores 0–3 obtain cells 1–3, 4–9, 10–12, and 13–

16, respectively, and the load among cores turns out balanced. Note that only a sequential

approach can be applied to redistribute the total amount of load back to each core. Therefore,

it may not be efficient to apply the WDLB technique in every single time step. For this reason,

the WDLB was applied to every 50th total time step.

In this paper, the AVX and AVX-512 machines were employed to perform simulations with up

to 6.4 million cells (12.8 million edges). It was observed that some cores still suffered from

significant load imbalances using static load balancing, whereas the load was sufficiently

balanced among cores using the WDLB technique, see Figures 14 and 15 in Paper 1. It was

also found that the WDLB strategy was able to reduce the overhead of static load balancing

by ratios of 19–20%, and led NUFSAW2D to parallel efficiencies of 88–97%. According to

these results, the fourth hypothesis can be confirmed because in the existence of wet-dry

phenomena, remarkable load imbalances occurred, which were successfully tackled by the

WDLB strategy.

4.2.4. Central-Upwind Scheme for 2D Turbulent Shallow Flows using
High-Resolution Meshes with Scalable Wall Functions (Paper 2)

The objective of this paper was to include a two-equation turbulence model (ASM) into NUF-

SAW2D. This was because flow-past-structure phenomena together with moving wet-dry

fronts often occur in a turbulent regime. Such phenomena cause mass, momentum, and

heat transfers to exist and fluctuate with respect to time, which cannot be modeled properly

by an inviscid shallow water model due to the neglect of the diffusive fluxes. Simulations

in this paper were first motivated by a case (flow past a conical island in a surface-piercing

condition) conducted both experimentally and numerically in [44], which concluded that the

accuracy of the numerical model was not affected very much by reducing the mesh size.

However, this statement should be argued and further investigated.

A presumption (of why such a statement was concluded) would be due to the impact of the

wet–dry phenomena around the conical island on the wakes flows, for which, as this was
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not of particular interest, no special treatment was explained in detail. Thus, a knowledge-

gap — between wet-dry phenomena around boundary geometries (such as the ones that

existed around the conical island) and the use of high-resolution meshes — must be found. In

Paper 2 it was argued that using high-resolution meshes can capture the wet-dry phenomena

around the conical island better, and the flow properties, e.g. vortexes behind the island, will

be modeled more accurately. Now, the problem concerns the task of determining the near-

wall mesh size, which relates to the criterion of the dimensionless wall distance (y+
p ).

(a)

(b)

Figure 7 : Near-wall mesh and near-wall scaling of turbulent boundary layer (a) and wet-dry problems around a conical island
from top view (b) [18]

In the conventional StWF, the criterion of y+
p ≥ 11.067 indicates that the center of the first

boundary cells must be placed in the logarithmic region, see Fig. 7a, to ensure the stability of

the numerical model. This criterion may be contravened when using high-resolution meshes,

unless a grid-independent study, such as performed in [35] has to be conducted in order

to estimate the wall friction velocity before starting the simulation. However, such a study

revolves situations of contradicting requirements to the discretization, in particular, if wet-dry

problems appear. See Fig. 7b, for instance, at time step t, cell (i, j+2) must be considered as

a wall boundary cell, because its adjacent cell (i+1, j+2) is computed as a dry cell. A proper

function thus has to be employed to calculate the turbulent properties correctly. However, cell

(i, j + 2) at time step t + 1 cannot be treated as a wall boundary cell because its adjacent

cell (i+ 1, j + 2) becomes a wet cell. Consequently, cell (i+ 1, j + 2) must be computed as

a wall boundary cell. This shows that the moving boundary geometries appear with respect

to time due to the existence of wet-dry problems. Here, a grid-independent study may not

work as it is essentially employed for a condition of which the water level is relatively constant

during runtime; in the presence of wet-dry phenomena, it is almost impossible to achieve a
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constant water level for the whole simulation time. Note that even if the criterion of the StWF

can somehow be fulfilled, the results will deteriorate as the meshes become finer and finer.

To remedy this problem, a novel approach was proposed by combining the hydrostatic and

topography reconstructions [3] with the ScWF [50] so that the moving boundary geometries

of the wet-dry phenomena can be captured robustly. At the same time, the turbulence values

at the wet-dry interfaces (e.g. around the conical island) and at other wall boundaries can be

computed properly. For moving boundary geometries like this, the ScWF are highly beneficial,

allowing users to use high-resolution meshes without imposing the lower limit of the StWF. To

prove the robustness of the proposed approach, four cases were tested against the model

with amounts of up to 3.4 million cells (6.8 million edges). The simulations were performed

on the AVX2 machine with OpenMP for parallelization.

It was observed that for the surface-piercing case investigated, wet-dry phenomena existed

around the conical island, and simulations with cells from coarse (15 mm) to fine (2.5 mm)

size could be performed stably without any grid-independent study or having to estimate the

wall friction velocity in advance, where the results became better as the meshes turned finer

and finer, see case 3 in Paper 1. The proposed strategy was also proven quite robust and

accurate for the other cases, e.g. the turbulent dam-break cases with fluctuating wet-dry

interfaces at the channel bank, see case 4 in Paper 1. Based on these results, the fifth

hypothesis can be confirmed because the proposed approach served to robustly integrate a

turbulence model into a shallow water model for wet-dry simulations, and it was possible to

flexibly use high-resolution meshes without having to estimate the wall friction velocity before

starting a simulation.

4.2.5. Hybrid Artificial Viscosity–Central-Upwind Scheme for Recirculating
Turbulent Shallow Water Flows (Paper 4)

Despite its efficiency in the previous implementations, it was noticed that the CU scheme was

not accurate enough for recirculating turbulent flows, unless high-resolution meshes were

used. Albeit more accurate than the CU scheme, the HLLC solver sometimes failed to capture

recirculating turbulent flows adequately. Therefore, Paper 4 focused on the development of

a new hybrid solver that can capture recirculating turbulent flows better than the common

solvers—and several different approaches were thus investigated.

A first attempt was to employ the AV technique entirely for turbulence flows, namely both

the convective fluxes of the SWEs and the turbulence model (κ-ε) were computed using this

technique. However, the previously available expressions of the AV technique in [17] are not

suitable for turbulence applications. Hypothetically, this is due to the fact that the AV technique

only computes the spectral radius of the 3×3 system Jacobian matrix of the 2D SWEs and

a dimensionless depth-discontinuity sensor in order to fit the non-linearity of the SWEs, see,

for instance, the forms of hu, huu, hvv, and huv in Eq. (2.2). Therefore, this technique does

not match the non-linearity of the κ-ε model such as hκu, hεu, hκv, and hεv in Eq. (2.4).
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One possibility to solve this issue would be to consider the spectral radius of the 5×5 system

Jacobian matrix simultaneously from the 2D SWEs and the κ-ε model. Even if this approach

works, the overhead will increase significantly, thus losing the fundamental advantage of the

AV technique itself in maintaining efficiency. To this end, a novel approach was proposed,

based on computing the convective fluxes of the SWEs and the κ-ε model using the AV

technique and the CU scheme, respectively. This new approach benefits from two points:

(1) it resolves the inability/inaccuracy of the CU scheme in modeling recirculating turbulent

flows and (2) it is still able to exploit compilers’ optimizations on modern hardware, thus

being efficient. Note that although in this approach the CU scheme has to be employed with

the computation of the 5×5 system Jacobian matrix, the CPU time remains acceptably low

because it is only used to calculate the convective fluxes of the κ-ε model.

Similar to Paper 2, the ScWF were employed to avoid the limitation of the StWF, thus no

grid study prior to a simulation was required such as the one performed with StarCCM+ in

[26]. Three benchmark cases were included to compare the hybrid AV-CU scheme with the

HLLC and CU solvers as well as with the other models in terms of accuracy and efficiency.

OpenMP was used for parallelization on the AVX2 machine. In terms of accuracy, it was

observed that the proposed hybrid AV-CU scheme could resolve the inaccuracy/inability of the

CU scheme for simulations of recirculating turbulent shallow flows, and was remarkably more

accurate than the HLLC scheme. The proposed scheme was able to significantly improve the

results of the CU solver because the AV technique includes a biharmonic operator that is of

third-order accuracy, activated in smooth flow-field regions. NUFSAW2D was also compared

with two models (Lloyd & Stansby [45] and SCHISM-2D [70]), and became remarkably more

accurate.

Regarding the efficiency, it was found that the hybrid AV-CU scheme remained as efficient

as the CU scheme but could outperform the HLLC scheme by an average factor of 1.52.

Thus, the proposed scheme is very promising for practical engineering purposes, especially

when modeling recirculating turbulent flows. Based on these results, the sixth hypothesis can

be confirmed because this paper showed that the common solvers were not always able to

capture the recirculation in a turbulent regime, hence, a new hybrid solver was proposed.

4.2.6. Hybrid-Parallel Simulations and Visualisations of Real Flood and Tsunami
Events using Unstructured Meshes on High-Performance Cluster Systems
(Paper 6)

The objective of this paper was to extend the data structure in NUFSAW2D for applications

with unstructured meshes (hybrid quadrilateral and triangular meshes) within the framework

of hybrid OpenMP-MPI. This was motivated by the flexibility of unstructured meshes in han-

dling the shape of complex domains that may not be achieved by (high-resolution) structured

meshes. Also, this extension aimed to allow for a wider range of implementations with NUF-

SAW2D in shallow water flow modeling. The challenge was to design a strategy to parallelize

domains with unstructured meshes without having to think of how the domain is decomposed
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before starting a simulation. For this purpose, however, two important features of the existing

format in NUFSAW2D — that have already been achieved for structured meshes — must be

preserved: (1) the data structure of parallelizing a domain in two levels (edge-driven and cell-

driven computations) according to the amount of cores/nodes used and (2) the applications

of the WDLB technique for wet-dry problems.

(a) (b)

Figure 8 : Domain decomposition with the Lebesgue SFC: cell-reordering (a) and edge-reordering (b)

In order to achieve these two features, domains were decomposed employing SFCs, for which

the goal is to provide a contiguous cell partition, thus giving contiguous communication pat-

terns among the nodes. In this paper, the Lebesgue (Z-order) curve [54] was employed, the

process of which is sketched in Fig. 8 for a domain with hybrid quadrilateral and triangular

meshes that is supposed to be distributed into four nodes (denoted by four different colors).

Two options are available: cell-reordering and edge-reordering. In the former approach, the

process is started by renumbering the cells after the outermost boundary lines of the domain

(bounding box) are detected. A similar quadtree-based voxelization process is also applied to

the latter approach, but in order to capture a center of an edge before the Lebesgue curve can

be formed. Note that the suitability of different reordering strategies for unstructured meshes

depends on the particular problem, which is why one cannot rely merely on one strategy for

domain decompositions, as this could lead to many different scenarios. Instead, a flexible

data structure in NUFSAW2D was devised for the use of unstructured meshes in order to

take various future applications into account.

In order to explain such a data structure, a domain with four cells, three internal edges, and

eight boundary edges is given. Regardless of the domain shape and of the domain decom-

position, the arrays for internal edges, boundary edges, and cells are always defined as 1D

configuration, see STAGE 1 in Fig. 9a. In the next step, the user specifies the total number

of nodes and threads intended, e.g. four nodes and two threads per node are used. Now,

NUFSAW2D (by means of block-distribution) allocates the amount of arrays of internal edges,

boundary edges, and cells into each node, see STAGE 2 in Fig. 9a. At this stage, the com-

munication patterns among nodes and the memory access patterns inside each node still
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Figure 9 : Processes of design of data structure for (block-distribution) parallelization, communication patterns, and memory
access patterns [25]

remain unknown. After this point, one can utilize SFCs or even any other suitable method

(e.g. by using METIS [36]) to perform either cell-reordering or edge-reordering so that the

actual indexing for the domain can be obtained, see for example Fig. 9b. Now, the communi-

cation patterns and memory access patterns can be determined, see Figure 5 in Paper 6 for

detail.

Due to the contiguous numbering, the WDLB technique in Fig. 6 can directly be extended

to the data structure shown in Fig. 9a for the use of hybrid OpenMP-MPI. The procedure is

similar. However, since the hybrid OpenMP-MPI is employed, each node must communicate

with the others to compute the total load unit of the entire domain, once each node knows its

load amount collected from all the corresponding threads. Afterwards, the reverse procedures

must be carried out, namely the total load unit of the entire domain must be distributed back

to each node and then to each thread. This process cannot be parallelized, which is why the

WDLB technique is applied to every 50th total time step for OpenMP similar to Paper 1, and

every 100th total time step for MPI.

Two cases of real river flood and tsunami simulations were carried out with up to 3.4 million

cells (5.1 million edges). The AVX2 machine was employed. Here, NUFSAW2D has suc-

cessfully maintained a good parallel speed-up of up to 305 for the use of 336 cores. This

shows that the seventh hypothesis can be confirmed, as the proposed strategy led to a data

structure that was flexible enough to support an independent and automatic parallelization

between edges and cells.
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5. Conclusions

In this work, the outcomes of the six papers have been briefly summarized. In the first in-

vestigation, one can see that it is quite important to profile the computational complexity with

respect to a solver’s node-level performance as a basic consideration prior to developing a

parallel model. This statement is strongly supported by the fact that the investigated solvers

showed differences in performance, especially with respect to the vectorization support from

the compiler. It was observed that without any special technique (e.g. intrinsic functions,

restructuration of data layout, etc.), auto vectorization was not possible for the HLLC method

due to its branching formulas, thus making this method more expensive than the AV and CU

schemes, for which auto vectorization was possible.

It was observed in the second investigation that the HLLC solver, for which vectorization was

not possible in the previous implementation, could be vectorized by means of the cell-edge

reordering strategy. This strategy plays an important role for the data structure to provide a

contiguous memory access alignment and to exploit instruction pipelining, thus boosting the

performance. Although the HLLC scheme has experienced a tremendous speed-up due to

vectorization, its performance was still lower than the CU and Roe methods, indicating that

the branching condition of the HLLC scheme will be the main issue when trying to achieve

an efficient vectorization. In contrast, the CU scheme was observed to be able to outperform

the HLLC and Roe methods even for simulations on the next generation of modern hardware.

The cell-edge reordering strategy is one of the easiest approaches to exploit vectorization on

modern hardware that can be applied to any CCFV shallow water model instead of explicitly

using vector intrinsics for a low-level vectorization, which might be time-consuming and error-

prone.

A separate-way-parallelization between internal and boundary edges — that distinguishes the

former from the latter ones based on their computational complexity — was shown to be highly

important to ensure that a balanced load proportion is assigned to each core. Because an

internal edge typically requires more expensive computations than a boundary one, the high

ratio between internal and boundary edges has a great influence on the parallel efficiency,

thus parallelizing internal edges separately from the boundary ones is beneficial with regard to

avoiding waiting time for one or more cores. The execution of the separate-way-parallelization

on the shared-memory systems used was supported and eased by the cell-edge reordering

strategy, which provides a contiguous indexing system between edges and cells. This led

NUFSAW2D to a parallel efficiency of up to 90%.

In the third investigation, it was shown that wet-dry phenomena caused load imbalances

among cores, in particular, at the edge-driven level among internal edges and at the cell-

driven level for computing the friction terms. Such phenomena occur dynamically during

runtime, which is why they cannot be predicted at the beginning of a simulation. According to
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the numerical experiments, computations for dry edges at the edge-driven level were shown

to be typically 2× cheaper than those for the wet ones. Similarly, at the cell-driven level,

computations for wet cells were observed to be typically 2× more expensive than those for

the dry ones. Using this ratio value, the WDLB was proposed and has been shown effective

in tackling the load imbalances due to wet-dry problems by reducing up to 20% the overhead

of static load balancing and by leading NUFSAW2D to an efficiency of up to 88%.

One can observe in the fourth investigation that an integration of a two-equation turbulence

model into a shallow water model can be performed robustly in the scope of wet-dry modeling

with high-resolution meshes if two main issues can be tackled, namely the dynamical-tracking

of moving boundary geometries and the limitation of near-wall mesh spacing. The first issue

relates to the dynamic wet-dry fronts due to which the positions of the wall boundary inter-

faces are not constant throughout simulations, while the second one corresponds to the crite-

rion of the dimensionless wall distance in the StWF. As both issues in wet-dry modeling must

be handled simultaneously — where using high-resolution meshes may destroy the second

issue — a new approach was therefore proposed, based on combining the hydrostatic and

topography reconstructions with the ScWF. With this approach, it was shown that the moving

boundary geometries can be captured accurately, while the turbulence values both at wet-dry

interfaces and at other wall boundaries can be properly estimated, even if high-resolution

meshes are used, giving users flexibility in generating the meshes.

As one of the most common phenomena in flow-past-structure cases, recirculating turbulent

flows are obviously of great importance, so a comprehensive investigation has to be con-

ducted. In the fifth investigation, the numerical experiments have shown that — although

common solvers were quite accurate in modeling the most complex and common phenom-

ena in shallow flow modeling, such as transcritical flows, shock waves, and moving wet-dry

fronts — such solvers were unable to properly simulate recirculating turbulent flows in all

conditions. The CU scheme, despite its efficiency, was shown to be too diffusive. Albeit

better than the CU scheme, it was observed that the HLLC method sometimes failed to cap-

ture the strong turbulent recirculation. A new approach (hybrid AV-CU scheme) was thus

proposed and shown to be able to accurately capture recirculating turbulent flows in all sim-

ulations. The hybrid AV-CU scheme could resolve the inability/inaccuracy of the CU scheme

because the AV technique includes a biharmonic operator that is of third-order accuracy, ac-

tivated in smooth flow-field regions—and was more accurate than the HLLC solver. In terms

of accuracy, this hybrid technique remained almost as efficient as the CU scheme but was

approximately 1.52× cheaper than the HLLC solver.

In order to avoid, prior to a simulation, a massive effort of decomposing a domain with un-

structured meshes (for a hybrid OpenMP-MPI or an MPI parallelization), an according strat-

egy was developed in the last investigation, based on storing edges and cells (independent of

one another) in 1D configuration. Because edges and cells are stored in a consecutive man-

ner, they can easily be parallelized by means of a block-distribution followed by a distribution
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into cores/nodes. This tactic implies that regardless of the domain shape and of the domain

decomposition, it is sufficient, prior to a simulation, only to know the total number of (internal

and boundary) edges and cells for parallelization. Later on, after the distribution pattern of

the parallelization has been identified, the communication patterns among nodes as well as

the memory access patterns inside each node can be determined by means of SFCs. All

strategies proposed have enabled a speed-up factor of up to 305 for the use of 336 cores.

Finally, one can draw a key conclusion that an “efficient” parallel simulation can intuitively be

defined as a part of a modeling process that takes the efficiency issue into careful consider-

ation at different levels of parallelization and performance optimization. The former can be

ensured by tackling load imbalance problems, while the latter can be achieved by vectoriza-

tion as the “finest” level of parallelism.

32 Efficient Parallel Simulations of Flood Propagation Including Wet-Dry Problems



6. Outlook for Future Works

An obvious extension of the present work is a generalization to parallel non-hydrostatic com-

putations of shallow water flows including wet-dry simulations. In [20], the applications of the

AV technique were presented to simulate non-hydrostatic inviscid shallow flows by extending

Eq. (2.1) (without the diffusive fluxes and the rainfall/infiltration term) to

∂Q

∂t
+
∂Cx
∂x

+
∂Cy
∂y

= Sbx + Sby + Sf + Sp , (6.1)

where Sp is the pressure term, and all the matrices are now defined by

Q =


h

hu

hv

hw


, Cx =


hu

huu+
gh2

2
hvu

hwu


, Cy =


hv

huv

hvv +
gh2

2
hwv


, Sbx =



0

−gh∂zb
∂x

0

0


,

Sby =



0

0

−gh∂zb
∂y

0


, Sf =



0

−cfu
√
u2 + v2

−cfv
√
u2 + v2

0


, Sp =



0

−1

2

∂hPb
∂x

− Pb
∂zb
∂x

−1

2

∂hPb
∂y
− Pb

∂zb
∂y

Pb


,

(6.2)

where w is the velocity in z direction and Pb is the non-hydrostatic pressure at bottom. The

value of Pb must be computed iteratively by solving

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 . (6.3)

For Eq. (6.1), the computations in the x and y directions can first be carried out in the usual

manner, similar to those of Eq. (2.1), so that the values of h, hu, and hv can be advanced.

Thereafter, these values are corrected by the non-hydrostatic computations. The computa-

tions in z direction can be performed based on the Keller-box scheme [38] either in a 1-layer

or a multi-layer way. In the case of 1-layer computation, as employed in [20], the convective

fluxes on the fourth line of Eq. (6.2) vanished, thus letting the variable hw only be a function

of Pb. For the sake of brevity, the entire formulations are not given here. Following a few

mathematical operations, a system of linear equations is obtained, see [20], which can —

for the use of rectangular meshes with the length in x and y directions ∆x and ∆y — be

expressed as

K1
i,jPb

t+1
i,j +K2

i,jPb
t+1
i+1,j +K3

i,jPb
t+1
i−1,j +K4

i,jPb
t+1
i,j+1 +K5

i,jPb
t+1
i,j−1 = K6

i,j , (6.4)

Efficient Parallel Simulations of Flood Propagation Including Wet-Dry Problems 33



where K denotes the coefficients and follows K = f(η, zb, 1/h, hu, hv, w,∆x,∆y,∆t). Here,

the indices (i, j) are used to denote the coordinates of cell-centers in a 2D array system,

where i stands for the column index (left to right) and j for the row index (bottom to top).

2 3 4 1 1
1 5 2 6 3 7 2 2

4 8 12 16 1 2 3 3
3 7 11 15 10 4
2 6 10 14 11 12 11 5
1 5 9 13 6 10 14 7 11 15 8 12 16 12 6

9 10 11 13 7
wet cell 14 8
ghost cell 14 15 4 9

9 13 10 14 5 10
13 6 11

7 12
8 13
9 14

15 15
16 16

1 1 2 3 9
2 2 1 10 2 11 3 12
3 3 1 2

10 4
11 5 5 6
12 6 11 4 8 12 5 15 13 6 16
13 7 14 4 5
14 8

8 15
14 7 4 8

7
mapping back

collecting wet cells and the neighbors

any routine
e.g. PETSc

transfering wet cells to the routine

transforming and processing with the routine

Figure 10 : Process of integrating an interface for a routine in non-hydrostatic computations

Considering a 4×4 domain in Fig. 10 (by assuming all wet cells), Eq. (6.4) shows a five-point

stencil system that can be rewritten in matrix form as

K1
1 K4

1 0 0 K2
1 0 0 0 0 0 ......

K5
2 K1

2 K4
2 0 0 K2

2 0 0 0 0 ......

0 K5
3 K1

3 K4
3 0 0 K2

3 0 0 0 ......

0 0 K5
4 K1

4 0 0 0 K2
4 0 0 ......

K3
5 0 0 0 K1

5 K4
5 0 0 K2

5 0 ......

0 K3
6 0 0 K5

6 K1
6 K4

6 0 0 K2
6 ......

...
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

Pb1

Pb2

Pb3

Pb4

Pb5

Pb6

...



=



K6
1

K6
2

K6
3

K6
4

K6
5

K6
6

...



. (6.5)

With all wet cells, Eq. (6.5) shows a 16×16 sparse matrix with a non-zero (main) diagonal

and four sub-diagonals. In the scope of parallelization, it is necessary to not only consider the

aspect of fast convergence but also simplicity for the solution of Eq. (6.5). There are several

routines for highly-scalable parallelization available, e.g. PETSc [2], which, in addition to
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scalable solvers, also provides scalable parallel preconditioners, and can easily be integrated

into NUFSAW2D.

In cases with wet-dry problems, as K1
Ωe

= f(1/hΩe) in the main diagonal of Eq. (6.5), this

linear equation system may have no solution, unless a proper strategy is considered such

as restructuring the existing matrix to a new sparse matrix form. This is the new challenge,

sketched in Fig. 10. In order to be able to fully exploit the high scalability provided by the

routine PETSc, it is necessary to develop an interface that can translate the restructuration

process of the existing matrix to the routine. Such an interface can be formed in two ways:

the first one is to collect all wet cells within the domain and then transfer them into the routine,

and the second one is to transform the results produced by the routine and then map them

back to the actual domain. With regard to the wet-dry problems in Fig. 10, the 16×16 matrix

system is reduced to a 8×8 system. In the course of this process, there is another challenging

task to be considered, namely a trade-off between accuracy, CPU time, and computational

stability, which relates to the first way when detecting and collecting all wet cells. The wet

cells in this regard may be different from those computed in the edge-driven and cell-driven

levels. For the computations in both of these levels, the wet cells are distinguished in the

usual way by the limiter value of depth ranging from 10−6 to 10−10 m. However, employing

this usual limiter value for non-hydrostatic computations can still lead to failures when trying

to achieve convergence, hence a larger value has to be used. On the other hand, using a

limiter value that is too large might reduce the accuracy significantly, despite reducing the

CPU time. Therefore, this is another important aspect to be investigated.

Note that the non-hydrostatic computations have now become the most expensive part, sig-

nificantly more expensive than the solver computations for the convective fluxes. Therefore, if

the interface is not scalable enough, the efficient parallelization (which was already achieved

using the WDLB technique) and the use of the highly-scalable routine will be useless. In

summary, two topics are pointed out that would be very interesting for future works: (1) to

investigate the proper value range for transferring wet cells to the routine that can satisfy

the three aspects of accuracy, CPU time, and computational stability; and (2) to develop a

scalable interface that can fully support and exploit the capability of the routine. Further, it

could be of interest for future works to investigate these two aspects with a specific focus on

turbulence simulations.

Efficient Parallel Simulations of Flood Propagation Including Wet-Dry Problems 35



Bibliography

[1] https://ec.europa.eu/digital-single-market/en/policies/

high-performance-computing. Accessed: May 2019.

[2] https://www.mcs.anl.gov/petsc. Accessed: May 2019.

[3] E. Audusse, F. Bouchut, M. Bristeau, R. Klein, and B. Perthame. A Fast and Stable

Well-Balanced Scheme with Hydrostatic Reconstruction for Shallow Water Flows. SIAM

Journal on Scientific Computing, 25(6):2050–2065, 2004. https://dx.doi.org/10.

1137/S1064827503431090.

[4] M. Bader, A. Breuer, W. Hölzl, and S. Rettenberger. Vectorization of an Augmented

Riemann Solver for the Shallow Water Equations. In 2014 International Conference on

High Performance Computing Simulation (HPCS), pages 193–201. IEEE, 2014. https:

//dx.doi.org/10.1109/HPCSim.2014.6903686.

[5] A. Bik, M. Girkar, P.M. Grey, and X. Tian. Automatic Intra-Register Vectorization for

the Intel Architecture. International Journal of Parallel Programming, 2:65–98, 2002.

https://dx.doi.org/10.1023/A:1014230429447.

[6] A. Bollermann, G. Chen, A. Kurganov, and S. Noelle. A Well-Balanced Reconstruction

of Wet/Dry Fronts for the Shallow Water Equations. Journal of Scientific Computing, 56

(2):267–290, 2013. https://dx.doi.org/10.1007/s10915-012-9677-5.

[7] L. Cea, J. Puertas, and M.-E. Vázquez-Cendón. Depth Averaged Modelling of Turbulent

Shallow Water Flow with Wet-Dry Fronts. Archives of Computational Methods in Engi-

neering, 14(3):303–341, 2007. https://dx.doi.org/10.1007/s11831-007-9009-3.

[8] Y. Cheng, A. Chertock, M. Herty, A. Kurganov, and T. Wu. A New Approach for Designing

Moving-Water Equilibria Preserving Schemes for the Shallow Water Equations. Jour-

nal of Scientific Computing, 80(1):538–554, 2019. https://dx.doi.org/10.1007/

s10915-019-00947-w.

[9] A. Chertock, S. Cui, A. Kurganov, and T. Wu. Well-balanced Positivity Preserving

Central-upwind Scheme for the Shallow Water System with Friction Terms. International

Journal for Numerical Methods in Fluids, 78(6):355–383, 2015. https://dx.doi.org/

10.1002/fld.4023.

[10] R. Comblen, S. Legrand, E. Deleersnijder, and V. Legat. A Finite Element Method for

Solving the Shallow Water Equations on the Sphere. Ocean Modelling, 28(1):12–23,

2009. https://dx.doi.org/10.1016/j.ocemod.2008.05.004.

[11] A.I. Delis and I.K. Nikolos. A Novel Multidimensional Solution Reconstruction and Edge-

based Limiting Procedure for Unstructured Cell-centered Finite Volumes with Application

to Shallow Water Dynamics. International Journal for Numerical Methods in Fluids, 71

(5):584–633, 2013. https://dx.doi.org/10.1002/fld.3674.

36 Efficient Parallel Simulations of Flood Propagation Including Wet-Dry Problems

https://ec.europa.eu/digital-single-market/en/policies/high-performance-computing
https://ec.europa.eu/digital-single-market/en/policies/high-performance-computing
https://www.mcs.anl.gov/petsc
https://dx.doi.org/10.1137/S1064827503431090
https://dx.doi.org/10.1137/S1064827503431090
https://dx.doi.org/10.1109/HPCSim.2014.6903686
https://dx.doi.org/10.1109/HPCSim.2014.6903686
https://dx.doi.org/10.1023/A:1014230429447
https://dx.doi.org/10.1007/s10915-012-9677-5
https://dx.doi.org/10.1007/s11831-007-9009-3
https://dx.doi.org/10.1007/s10915-019-00947-w
https://dx.doi.org/10.1007/s10915-019-00947-w
https://dx.doi.org/10.1002/fld.4023
https://dx.doi.org/10.1002/fld.4023
https://dx.doi.org/10.1016/j.ocemod.2008.05.004
https://dx.doi.org/10.1002/fld.3674


[12] European Parliament and Council. Directive 2007/60/EC of the European Parliament

and of the Council of 23 October 2007 on the Assessment and Management of Flood

Risks. 2007.

[13] C. Ferreira, K. Mandli, and M. Bader. Vectorization of Riemann Solvers for the Single-

and Multi-layer Shallow Water Equations. In 2018 International Conference on High

Performance Computing Simulation (HPCS), pages 415–422. IEEE, 2018. https://

dx.doi.org/10.1109/HPCS.2018.00073.

[14] M. Fišer, I. Özgen, R. Hinkelmann, and J. Vimmr. A Mass Conservative Well-balanced

Reconstruction at Wet/Dry Interfaces for the Godunov-type Shallow Water Model. Inter-

national Journal for Numerical Methods in Fluids, 82:893–908, 2016. https://dx.doi.

org/10.1002/fld.4246.

[15] M. Fujihara and A.G.L. Borthwick. Godunov-Type Solution of Curvilinear Shallow-Water

Equations. Journal of Hydraulic Engineering (ASCE), 126(11):827–836, 2000. https:

//dx.doi.org/10.1061/(ASCE)0733-9429(2000)126:11(827).

[16] J.M. Gallardo, C. Parés, and M. Castro. On a Well-balanced High-order Finite Vol-

ume Scheme for Shallow Water Equations with Topography and Dry Areas. Journal

of Computational Physics, 227(1):574–601, 2007. https://dx.doi.org/10.1016/j.

jcp.2007.08.007.

[17] B.M. Ginting. A Two-dimensional Artificial Viscosity Technique for Modelling Discon-

tinuity in Shallow Water Flows. Applied Mathematical Modelling, 45:653–683, 2017.

https://dx.doi.org/10.1016/j.apm.2017.01.013.

[18] B.M. Ginting. Central-Upwind Scheme for 2D Turbulent Shallow Flows using High-

Resolution Meshes with Scalable Wall Functions. Computers & Fluids, 179:394–421,

2019. https://dx.doi.org/10.1016/j.compfluid.2018.11.014.

[19] B.M. Ginting and H. Ginting. Hybrid Artificial Viscosity–Central-Upwind Scheme

for Recirculating Turbulent Shallow Water Flows. Journal of Hydraulic Engineer-

ing (ASCE), 145(12):04019041, 2019. https://dx.doi.org/10.1061/(ASCE)HY.

1943-7900.0001639.

[20] B.M. Ginting and H. Ginting. Extension of Artificial Viscosity Technique for Solving 2D

Non-Hydrostatic Shallow Water Equations. European Journal of Mechanics B/Fluids,

under review, 2019.

[21] B.M. Ginting and R.-P. Mundani. Artificial Viscosity Technique: A Riemann-Solver-Free

Method for 2D Urban Flood Modelling on Complex Topography. In P. Gourbesville,

J. Cunge, and G. Caignaert, editors, Advances in Hydroinformatics, chapter 4, pages

51–74. Springer Water, Springer, Singapore, 2018. https://dx.doi.org/10.1007/

978-981-10-7218-5_4.

Efficient Parallel Simulations of Flood Propagation Including Wet-Dry Problems 37

https://dx.doi.org/10.1109/HPCS.2018.00073
https://dx.doi.org/10.1109/HPCS.2018.00073
https://dx.doi.org/10.1002/fld.4246
https://dx.doi.org/10.1002/fld.4246
https://dx.doi.org/10.1061/(ASCE)0733-9429(2000)126:11(827)
https://dx.doi.org/10.1061/(ASCE)0733-9429(2000)126:11(827)
https://dx.doi.org/10.1016/j.jcp.2007.08.007
https://dx.doi.org/10.1016/j.jcp.2007.08.007
https://dx.doi.org/10.1016/j.apm.2017.01.013
https://dx.doi.org/10.1016/j.compfluid.2018.11.014
https://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0001639
https://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0001639
https://dx.doi.org/10.1007/978-981-10-7218-5_4
https://dx.doi.org/10.1007/978-981-10-7218-5_4


[22] B.M. Ginting and R.-P. Mundani. Comparison of Shallow Water Solvers: Applications

for Dam-break and Tsunami Cases with Reordering Strategy for Efficient Vectoriza-

tion on Modern Hardware. Water, 11(4):639, 2019. https://dx.doi.org/10.3390/

w11040639.

[23] B.M Ginting and R.-P. Mundani. Parallel Flood Simulations for Wet-Dry Problems

Using Dynamic Load Balancing Concept. Journal of Computing in Civil Engi-

neering (ASCE), 33(3):04019013, 2019. https://dx.doi.org/10.1061/(ASCE)CP.

1943-5487.0000823.

[24] B.M. Ginting, R.-P. Mundani, and E. Rank. Parallel Simulations of Shallow Water Solvers

for Modelling Overland Flows. In G. La Loggia, G. Freni, V. Puleo, and M. De Marchis,

editors, 13th International Conference on Hydroinformatics, volume 3 of EPiC Series

in Engineering, pages 788–799. EasyChair, 2018. https://dx.doi.org/10.29007/

wdn8.

[25] B.M. Ginting, P.K. Bhola, C. Ertl, R.-P. Mundani, M. Disse, and E. Rank. Hybrid-

Parallel Simulations and Visualisations of Real Flood and Tsunami Events using Un-

structured Meshes on High-Performance Cluster Systems. In Advances in Hydroinfor-

matics. Springer, accepted, 2019.

[26] L. Han, E. Mignot, and N. Riviere. Shallow Mixing Layer Downstream from a Sudden

Expansion. Journal of Hydraulic Engineering (ASCE), 143(5):04016105, 2017. https:

//dx.doi.org/10.1061/(ASCE)HY.1943-7900.0001274.

[27] A. Harten, P. Lax, and B. Leer. On Upstream Differencing and Godunov-Type Schemes

for Hyperbolic Conservation Laws. SIAM Review, 25(1):35–61, 1983. https://dx.doi.

org/10.1137/1025002.

[28] C. Hirsch. Numerical Computation of Internal and External Flows. Elsevier, 2007.

[29] Z. Horváth, J. Waser, R.A.P. Perdigão, A. Konev, and G. Blöschl. A Two-dimensional

Numerical Scheme of Dry/Wet Fronts for the Saint-Venant System of Shallow Water

Equations. International Journal for Numerical Methods in Fluids, 77(3):159–182, 2015.

https://dx.doi.org/10.1002/fld.3983.

[30] J. Hou, Q. Liang, F. Simons, and R. Hinkelmann. A 2D Well-balanced Shallow Flow

Model for Unstructured Grids with Novel Slope Source Term Treatment. Advances in

Water Resources, 52:107–131, 2013. https://dx.doi.org/10.1016/j.advwatres.

2012.08.003.

[31] J. Hou, F. Simons, M. Mahgoub, and R. Hinkelmann. A Robust Well-balanced Model

on Unstructured Grids for Shallow Water Flows with Wetting and Drying over Complex

Topography. Computer Methods in Applied Mechanics and Engineering, 257:126–149,

2013. https://dx.doi.org/10.1016/j.cma.2013.01.015.

38 Efficient Parallel Simulations of Flood Propagation Including Wet-Dry Problems

https://dx.doi.org/10.3390/w11040639
https://dx.doi.org/10.3390/w11040639
https://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000823
https://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000823
https://dx.doi.org/10.29007/wdn8
https://dx.doi.org/10.29007/wdn8
https://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0001274
https://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0001274
https://dx.doi.org/10.1137/1025002
https://dx.doi.org/10.1137/1025002
https://dx.doi.org/10.1002/fld.3983
https://dx.doi.org/10.1016/j.advwatres.2012.08.003
https://dx.doi.org/10.1016/j.advwatres.2012.08.003
https://dx.doi.org/10.1016/j.cma.2013.01.015


[32] A. Jameson and D. Mavriplis. Finite Volume Solution of the Two-dimensional Eu-

ler Equations on a Regular Triangular Mesh. AIAA Journal, 24(4):611–618, 1986.

https://dx.doi.org/10.2514/3.9315.

[33] A. Jameson, W. Schmidt, and E. Turkel. Numerical Solution of the Euler Equations by

Finite Volume Methods using Runge Kutta Time Stepping Schemes. In 14th Fluid and

Plasma Dynamics Conference. 1981. https://dx.doi.org/10.2514/6.1981-1259.

[34] S. Jin and X. Wen. Two Interface-Type Numerical Methods for Computing Hyper-

bolic Systems with Geometrical Source Terms Having Concentrations. SIAM Jour-

nal on Scientific Computing, 26(6):2079–2101, 2005. https://dx.doi.org/10.1137/

040605825.

[35] M. Karimi, G. Akdogan, and S.M. Bradshaw. Effects of Different Mesh Schemes and Tur-

bulence Models in CFD Modelling of Stirred Tanks. Physicochemical Problems of Min-

eral Processing, 48(2):513–531, 2012. https://dx.doi.org/10.5277/ppmp120216.

[36] G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for Partitioning

Irregular Graphs. SIAM Journal on Scientific Computing, 20(1):359–392, 1998. https:

//dx.doi.org/10.1137/S1064827595287997.

[37] G. Kasserwani and Q. Liang. Well-balanced RKDG2 Solutions to the Shallow Water

Equations over Irregular Domains with Wetting and Drying. Computers & Fluids, 39(10):

2040–2050, 2010. https://dx.doi.org/10.1016/j.compfluid.2010.07.008.

[38] H.B. Keller. A New Difference Scheme for Parabolic Problems. In B. HUbbard, edi-

tor, Numerical Solutions of Partial Differential Equations II, pages 327–350. Academic

Press, New York, USA, 1971. https://dx.doi.org/10.1016/B978-0-12-358502-8.

50014-1.

[39] A. Kurganov and G. Petrova. A Second-Order Well-Balanced Positivity Preserving

Central-Upwind Scheme for the Saint-Venant System. Communications in Mathemat-

ical Sciences, 5(1):133–160, 2007. https://projecteuclid.org:443/euclid.cms/

1175797625.

[40] A. Lacasta, M. Morales-Hernández, J. Murillo, and P. García-Navarro. GPU Implemen-

tation of the 2D Shallow Water Equations for the Simulation of Rainfall/Runoff Events.

Environmental Earth Sciences, 74(11):7295–7305, 2015. https://dx.doi.org/10.

1007/s12665-015-4215-z.

[41] Q. Liang. A Simplified Adaptive Cartesian Grid System for Solving the 2D Shallow Water

Equations. International Journal for Numerical Methods in Fluids, 69(2):442–458, 2012.

https://dx.doi.org/10.1002/fld.2568.

[42] Q. Liang, J. Hou, and X. Xia. Contradiction between the C-property and Mass Conser-

vation in Adaptive Grid Based Shallow Flow Models: Cause and Solution. International

Journal for Numerical Methods in Fluids, 78(1):17–36, 2015. https://dx.doi.org/

10.1002/fld.4005.

Efficient Parallel Simulations of Flood Propagation Including Wet-Dry Problems 39

https://dx.doi.org/10.2514/3.9315
https://dx.doi.org/10.2514/6.1981-1259
https://dx.doi.org/10.1137/040605825
https://dx.doi.org/10.1137/040605825
https://dx.doi.org/10.5277/ppmp120216
https://dx.doi.org/10.1137/S1064827595287997
https://dx.doi.org/10.1137/S1064827595287997
https://dx.doi.org/10.1016/j.compfluid.2010.07.008
https://dx.doi.org/10.1016/B978-0-12-358502-8.50014-1
https://dx.doi.org/10.1016/B978-0-12-358502-8.50014-1
https://projecteuclid.org:443/euclid.cms/1175797625
https://projecteuclid.org:443/euclid.cms/1175797625
https://dx.doi.org/10.1007/s12665-015-4215-z
https://dx.doi.org/10.1007/s12665-015-4215-z
https://dx.doi.org/10.1002/fld.2568
https://dx.doi.org/10.1002/fld.4005
https://dx.doi.org/10.1002/fld.4005


[43] J.-Y. Liu, M.R. Smith, F.-A. Kuo, and J.-S. Wu. Hybrid OpenMP/AVX Acceleration of

a Split HLL Finite Volume Method for the Shallow Water and Euler Equations. Com-

puters & Fluids, 110:181–188, 2015. https://dx.doi.org/10.1016/j.compfluid.

2014.11.011.

[44] P.M. Lloyd and P.K. Stansby. Shallow-Water Flow around Model Conical Islands of

Small Side Slope. I: Surface Piercing. Journal of Hydraulic Engineering (ASCE),

123(12):1057–1067, 1997. https://dx.doi.org/10.1061/(ASCE)0733-9429(1997)

123:12(1057).

[45] P.M. Lloyd and P.K. Stansby. Shallow-Water Flow around Model Conical Islands of Small

Side Slope. II: Submerged. Journal of Hydraulic Engineering (ASCE), 123(12):1068–

1077, 1997. https://dx.doi.org/10.1061/(ASCE)0733-9429(1997)123:12(1068).

[46] J. Lobeiras, M. Viñas, M. Amor, B.B. Fraguela, M. Arenaz, J.A. García, and M.J. Castro.

Parallelization of Shallow Water Simulations on Current Multi-threaded Systems. The In-

ternational Journal of High Performance Computing Applications, 27(4):493–512, 2013.

https://dx.doi.org/10.1177/1094342012464800.

[47] P.A. Madsen, H.J. Simonsen, and C.-H. Pan. Numerical Simulation of Tidal Bores and

Hydraulic Jumps. Coastal Engineering, 52(5):409–433, 2005. https://dx.doi.org/

10.1016/j.coastaleng.2004.12.007.

[48] D. Mavriplis. Multigrid Solution of the Two-dimensional Euler Equations on Unstructured

Triangular Meshes. AIAA Journal, 26(7):824–831. https://dx.doi.org/10.2514/3.

9975.

[49] O. Meister, K. Rahnema, and M. Bader. Parallel Memory-Efficient Adaptive Mesh Re-

finement on Structured Triangular Meshes with Billions of Grid Cells. ACM Transactions

on Mathematical Software, 43(3):19:1–19:27, 2016. https://dx.doi.org/10.1145/

2947668.

[50] F. Menter and T. Esch. Elements of Industrial Heat Transfers Predictions. In 16th Brazilian

Congress of Mechanical Engineering, 2001.

[51] V. Michel-Dansac, C. Berthon, S. Clain, and F. Foucher. A Well-balanced Scheme for the

Shallow-water Equations with Topography. Computers & Mathematics with Applications,

72(3):568–593, 2016. https://dx.doi.org/10.1016/j.camwa.2016.05.015.

[52] F. Mintgen and M. Manhart. A Bi-directional Coupling of 2D Shallow Water and 3D

Reynolds-averaged Navier–Stokes Models. Journal of Hydraulic Research, 56(6):771–

785, 2016. https://dx.doi.org/10.1080/00221686.2017.1419989.

[53] A. Mohamadian, D.Y. Le Roux, M. Tajrishi, and K. Mazaheri. A Mass Conservative

Scheme for Simulating Shallow Flows over Variable Topographies using Unstructured

Grid. Advances in Water Resources, 28(5):523–539, 2005. https://dx.doi.org/10.

1016/j.advwatres.2004.10.006.

40 Efficient Parallel Simulations of Flood Propagation Including Wet-Dry Problems

https://dx.doi.org/10.1016/j.compfluid.2014.11.011
https://dx.doi.org/10.1016/j.compfluid.2014.11.011
https://dx.doi.org/10.1061/(ASCE)0733-9429(1997)123:12(1057)
https://dx.doi.org/10.1061/(ASCE)0733-9429(1997)123:12(1057)
https://dx.doi.org/10.1061/(ASCE)0733-9429(1997)123:12(1068)
https://dx.doi.org/10.1177/1094342012464800
https://dx.doi.org/10.1016/j.coastaleng.2004.12.007
https://dx.doi.org/10.1016/j.coastaleng.2004.12.007
https://dx.doi.org/10.2514/3.9975
https://dx.doi.org/10.2514/3.9975
https://dx.doi.org/10.1145/2947668
https://dx.doi.org/10.1145/2947668
https://dx.doi.org/10.1016/j.camwa.2016.05.015
https://dx.doi.org/10.1080/00221686.2017.1419989
https://dx.doi.org/10.1016/j.advwatres.2004.10.006
https://dx.doi.org/10.1016/j.advwatres.2004.10.006


[54] G.M. Morton. A computer Oriented Geodetic Data Base; and a New Technique in File

Sequencing. In Technical Report. IBM Ltd, Ottawa, Canada, 1966.

[55] J. Neal, T. Fewtrell, and M. Trigg. Parallelisation of Storage Cell Flood Models using

OpenMP. Environmental Modelling & Software, 24(7):872–877, 2009. https://dx.

doi.org/10.1016/j.envsoft.2008.12.004.

[56] D. Nuzman, I. Rosen, and A. Zaks. Auto-vectorization of Interleaved Data for SIMD. In

Proceedings of the 13th ACM SIGPLAN Conference on Programming Language Design

and Implementation, pages 132–143. ACM, 2006. https://dx.doi.org/10.1145/

1133981.1133997.

[57] I. Özgen, J. Zhao, D. Liang, and R. Hinkelmann. Urban Flood Modeling using Shallow

Water Equations with Depth-dependent Anisotropic Porosity. Journal of Hydrology, 541:

1165–1184, 2016. https://dx.doi.org/10.1016/j.jhydrol.2016.08.025.

[58] W. Rodi. Turbulence Models and Their Application in Hydraulics: A State-of-the Art

Review. A.A. Balkema, 1993.

[59] P.L. Roe. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes.

Journal of Computational Physics, 135(2):250–258, 1997. https://dx.doi.org/10.

1006/jcph.1997.5705.

[60] B.F. Sanders, J.E. Schubert, and R.L. Detwiler. Parbrezo: A Parallel, Unstructured Grid,

Godunov-type, Shallow-water Code for High-resolution Flood Inundation Modeling at

the Regional Scale. Advances in Water Resources, 33(12):1456–1467, 2010. https:

//dx.doi.org/10.1016/j.advwatres.2010.07.007.

[61] R.C. Swanson, R. Radespiel, and E. Turkel. On Some Numerical Dissipation Schemes.

Journal of Computational Physics, 147(2):518–544, 1998. https://dx.doi.org/10.

1006/jcph.1998.6100.

[62] E. Toro. Shock-Capturing Methods for Free-Surface Shallow Flow. John Wiley: Chich-

ester, UK, 2001.

[63] J.W. Van Der Burg, J.G.M. Kuerten, and P.J. Zandbergen. Improved Shock-capturing of

Jameson’s Scheme for the Euler Equations. International Journal for Numerical Methods

in Fluids, 15(6):649–671, 1992. https://dx.doi.org/10.1002/fld.1650150603.

[64] H.K Versteeg and W. Malalasekera. An Introduction to Computational Fluid Dynamics:

The Finite Volume Method (second edition). Pearson Education Limited: Harlow, UK,

2007.

[65] R. Wittmann, H.-J. Bungartz, and P. Neumann. High Performance Shallow Water Kernels

for Parallel Overland Flow Simulations based on FullSWOF2D. Computers & Mathemat-

ics with Applications, 74(1):110–125, 2017. https://dx.doi.org/10.1016/j.camwa.

2017.01.005.

Efficient Parallel Simulations of Flood Propagation Including Wet-Dry Problems 41

https://dx.doi.org/10.1016/j.envsoft.2008.12.004
https://dx.doi.org/10.1016/j.envsoft.2008.12.004
https://dx.doi.org/10.1145/1133981.1133997
https://dx.doi.org/10.1145/1133981.1133997
https://dx.doi.org/10.1016/j.jhydrol.2016.08.025
https://dx.doi.org/10.1006/jcph.1997.5705
https://dx.doi.org/10.1006/jcph.1997.5705
https://dx.doi.org/10.1016/j.advwatres.2010.07.007
https://dx.doi.org/10.1016/j.advwatres.2010.07.007
https://dx.doi.org/10.1006/jcph.1998.6100
https://dx.doi.org/10.1006/jcph.1998.6100
https://dx.doi.org/10.1002/fld.1650150603
https://dx.doi.org/10.1016/j.camwa.2017.01.005
https://dx.doi.org/10.1016/j.camwa.2017.01.005


[66] W. Wu. Depth-Averaged Two-Dimensional Numerical Modeling of Unsteady Flow

and Nonuniform Sediment Transport in Open Channels. Journal of Hydraulic Engi-

neering (ASCE), 130(10):1013–1024, 2004. https://dx.doi.org/10.1061/(ASCE)

0733-9429(2004)130:10(1013).

[67] X. Xia and Q. Liang. A New Efficient Implicit Scheme for Discretising the Stiff Friction

Terms in the Shallow Water Equations. Advances in Water Resources, 117:87–97, 2018.

https://dx.doi.org/10.1016/j.advwatres.2018.05.004.

[68] C. Yu and J. Duan. Two-dimensional Depth-averaged Finite Volume Model for Unsteady

Turbulent Flow. Journal of Hydraulic Research, 50(6):599–611, 2012. https://dx.

doi.org/10.1080/00221686.2012.730556.

[69] S. Zhang, Z. Xia, R. Yuan, and X. Jiang. Parallel Computation of a Dam-break Flow

Model using OpenMP on a Multi-core Computer. Journal of Hydrology, 512:126–133,

2014. https://dx.doi.org/10.1016/j.jhydrol.2014.02.035.

[70] Y.J. Zhang, G. Priest, J. Allan, and L. Stimely. Benchmarking An Unstructured-grid

Model for Tsunami Current Modeling. Pure and Applied Geophysics, 173(12):4075–

4087, 2016. https://dx.doi.org/10.1007/s00024-016-1328-6.

[71] J. Zhao, I. Özgen, D. Liang, and R. Hinkelmann. Improved Multislope MUSCL Recon-

struction on Unstructured Grid for Shallow Water Equations. International Journal for

Numerical Methods in Fluids, 87:401–436, 2018. https://dx.doi.org/10.1002/fld.

4499.

[72] J. Zhao, I. Özgen-Xian, D. Liang, T. Wang, and R. Hinkelmann. An Improved Multislope

MUSCL Scheme for Solving Shallow Water Equations on Unstructured Grids. Comput-

ers and Mathematics with Applications, 77:576–596, 2019. https://dx.doi.org/10.

1016/j.camwa.2018.09.059.

[73] J.G. Zhou, D.M. Causon, D.M. Ingram, and C.G. Mingham. Numerical Solutions of The

Shallow Water Equations with Discontinuous Bed Topography. International Journal for

Numerical Methods in Fluids, 38(8):769–788, 2002. https://dx.doi.org/10.1002/

fld.243.

42 Efficient Parallel Simulations of Flood Propagation Including Wet-Dry Problems

https://dx.doi.org/10.1061/(ASCE)0733-9429(2004)130:10(1013)
https://dx.doi.org/10.1061/(ASCE)0733-9429(2004)130:10(1013)
https://dx.doi.org/10.1016/j.advwatres.2018.05.004
https://dx.doi.org/10.1080/00221686.2012.730556
https://dx.doi.org/10.1080/00221686.2012.730556
https://dx.doi.org/10.1016/j.jhydrol.2014.02.035
https://dx.doi.org/10.1007/s00024-016-1328-6
https://dx.doi.org/10.1002/fld.4499
https://dx.doi.org/10.1002/fld.4499
https://dx.doi.org/10.1016/j.camwa.2018.09.059
https://dx.doi.org/10.1016/j.camwa.2018.09.059
https://dx.doi.org/10.1002/fld.243
https://dx.doi.org/10.1002/fld.243


 
 
 
 
 
 
 
 

 
APPENDIX 

(Permission) 



 







Title: Central-upwind scheme for 2D

turbulent shallow flows using

high-resolution meshes with
scalable wall functions

Author: Bobby Minola Ginting

Publication: Computers & Fluids

Publisher: Elsevier

Date: 30 January 2019

© 2018 Elsevier Ltd. All rights reserved.

  Logged in as:

  Bobby Minola Ginting
  Lehrstuhl für Computation in
Engineering (Technical
University of Munich)

  Account #:
  3001485265

 

Please note that, as the author of this Elsevier article, you retain the right to include it in a thesis or

dissertation, provided it is not published commercially.  Permission is not required, but please ensure

that you reference the journal as the original source.  For more information on this and on your other

retained rights, please visit: https://www.elsevier.com/about/our-business/policies/copyright#Author-
rights

    

 
Copyright © 2019 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions. 
Comments? We would like to hear from you. E-mail us at customercare@copyright.com 







Title: Artificial Viscosity Technique: A

Riemann-Solver-Free Method for

2D Urban Flood Modelling on
Complex Topography

Author: Bobby Minola Ginting, Ralf-Peter

Mundani

Publication: Springer eBook

Publisher: Springer Nature

Date: Jan 1, 2018

Copyright © 2018, Springer Nature Singapore Pte Ltd.

  Logged in as:

  Bobby Minola Ginting
  Lehrstuhl für Computation in
Engineering (Technical
University of Munich)

  Account #:
  3001485265

 

Order Completed

Thank you for your order.

This Agreement between Lehrstuhl für Computation in Engineering (Technical University of Munich) --

Bobby Minola Ginting ("You") and Springer Nature ("Springer Nature") consists of your license details
and the terms and conditions provided by Springer Nature and Copyright Clearance Center.

Your confirmation email will contain your order number for future reference.

printable details

License Number 4637090896321   

License date Jul 27, 2019   

Licensed Content
Publisher

Springer Nature   

Licensed Content
Publication

Springer eBook   

Licensed Content Title Artificial Viscosity Technique: A Riemann-Solver-Free Method for 2D Urban Flood Modelling on
Complex Topography

  

Licensed Content
Author

Bobby Minola Ginting, Ralf-Peter Mundani   

Licensed Content Date Jan 1, 2018   

Type of Use Thesis/Dissertation   

Requestor type academic/university or research institute   

Format print and electronic   

Portion full article/chapter   

Will you be translating? no   

Circulation/distribution >50,000   

Author of this Springer
Nature content

yes   

Title Efficient Parallel Simulations of Flood Propagation including Wet-Dry Problems   

Institution name Chair for Computation in Engineering (Technical University of Munich)   

Expected presentation
date

Oct 2019   

Requestor Location Lehrstuhl für Computation in Engineering (Technical University of Munich)
Arcisstr. 21

Munich, 80333
Germany
Attn: Lehrstuhl für Computation in Engineering (Technical University of Munich)

  

Total 0.00 EUR   

 
ORDER MOREORDER MORE CLOSE WINDOWCLOSE WINDOW

 
Copyright © 2019 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions. 
Comments? We would like to hear from you. E-mail us at customercare@copyright.com 



 
 
 
 
 
 
 
 

 
APPENDIX 

(Papers 1 – 6) 



 



 
 
 
 
 
 

 
Paper 1 

 
B.M. Ginting and R.-P. Mundani. Parallel Flood Simulations 
for Wet-Dry Problems Using Dynamic Load Balancing 
Concept. Journal of Computing in Civil Engineering (ASCE), 
33(3): 04019013, 2019. 
https://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000823 

https://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000823


Parallel Flood Simulations for Wet–Dry Problems Using
Dynamic Load Balancing Concept

Bobby Minola Ginting1 and Ralf-Peter Mundani2

Abstract: In this paper, a shared-memory parallel simulation of flood modeling is presented. The model used has second-order spatial and
temporal accuracy, where the Monotonic Upwind Scheme for Conservation Laws (MUSCL) method is applied for spatial discretization and
the Runge-Kutta second-order method is employed for temporal discretization. A cell-centered finite-volume model is used and solved in an
edge-based data structure. The model is well-balanced and able to efficiently simulate flood cases on complex topography with wet–dry
problems. A cell–edge reordering strategy is designed to ease vectorization and parallelization of the code. To tackle load imbalances among
threads due to wet–dry problems, a novel weighted-dynamic load balancing is proposed. The model shows accurate results, and the strategy
proposed shows very good parallel efficiencies for problems of different sizes (up to 6.4 million cells=12.8 million edges) on varying numbers
of cores (up to 64 cores). As such, this load balancing technique could become a promising strategy for efficient parallel simulations of real
flood cases. DOI: 10.1061/(ASCE)CP.1943-5487.0000823. © 2019 American Society of Civil Engineers.

Introduction

Research topics in the field of computational hydraulics have
become more and more complex. As a consequence, the computa-
tional requirements, particularly for computing very large domains,
have been increasing rapidly. To deal with these problems, parallel
computing can be an option. In general, there are two key standards
used for parallelization: open multiprocessing (OpenMP) and mes-
sage passing interface (MPI). MPI is a parallelization technique
based on a distributed-memory platform in which a main domain
should be manually divided into several subdomains, which are then
allocated to several different processors. The communications at the
interface between neighboring subdomains are, therefore, very im-
portant for this technique. OpenMP is a parallelization technique
based on a shared-memory platform, in which a (simple) domain
will automatically be divided into chunks and assigned to different
threads for parallel processing. Therefore, no communication costs
exist, but there may be additional synchronization costs. However,
problems related to memory bottlenecks—e.g., for domains with
billions of cells—are a typical disadvantage of this parallelization
method. Also, parallelization only takes place inside one node con-
sisting of several cores, thus hindering large-scale parallelization.

In real flood simulations, one has to deal with wet–dry problems,
which have a significant impact on parallel efficiency because wet
cells require more computational effort than dry cells. Therefore, a
proper load balancing technique is required. However, comprehen-
sive studies for such wet–dry load balancing are still quite rare.
A few works for parallel simulations of the two-dimensional (2D)
shallow-water equations (SWEs) have been conducted. Lobeiras
et al. (2013) performed a parallelization of shallow flows coupled

with pollutant transport on multicore central processing units
(CPUs) using OpenMP. A speed-up of up to 4.6 on eight threads
was obtained with hyperthreading (four cores with two threads
per core). It was, however, not stated how the load balancing worked
for wet–dry problems. Zhang et al. (2014) simulated a dam-break
flow using less than 0.1 million quadrilateral meshes and achieved a
speed-up of up to 8.64 on 16 threads using OpenMP. In the authors’
opinion, even for a shared-memory platform, this total number of
cells is still very small for a parallelization study considering the
number of threads used (16 threads). The advantage of using parallel
instructions cannot be exploited completely when using a small
number of cells because revoking threads in OpenMP suffers from
a computational overhead. The load balancing was not reported.

Using hybrid OpenMP/AVX parallelization, Liu et al. (2015)
solved the SWEs by neglecting all source terms and did not present
any load balancing strategy. Lacasta et al. (2015) implemented a
code on graphics processing unit (GPU)s and a parallel code using
OpenMP to solve the 2D SWEs for rainfall-runoff events. No load
balancing was discussed where speed-up factors of 2.27–2.66 were
achieved with four threads. These speed-up factors were still not
promising enough for a (shared-memory) parallelization consider-
ing the small number of threads used. Neal et al. (2009) parallelized
a LISFLOOD-FP model and obtained a parallel efficiency of up to
75%with OpenMP on four cores. It was stated that load balancing is
required for further efficiency improvement.

Some works in the last decade focusing on load-balancing for
parallelization of the SWEs were also conducted. Sanders et al.
(2010) presented a ParBreZo model for parallelizing the SWEs
and considered factors for even load balancing due to wet–dry
problems. ParBreZo used static domain decomposition with a strat-
egy to justify the distribution of wet–dry cells to each core. For this,
one must first do a preliminary run to identify such a distribution,
and the output is used later for correcting the previous decompo-
sition. Some ratios were applied for wet:dry cells, e.g., 1∶1, 2∶1, 3∶2,
3∶1, and 5∶1. No clear explanation was given for these ratios; they
were probably only estimation and thus may not be sufficiently ac-
curate. Meister et al. (2017) applied dynamic load balancing due to
the adaptive mesh refinement (AMR), which caused the total num-
ber of cells assigned to each core to change during simulation time,
leading to load imbalances. However, the technique proposed did not
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tackle the load imbalances due to wet–dry problems and was not
aimed for static domain decomposition. Recently, Wittmann et al.
(2017) designed a mechanism for a full shallow water overland flow
2D (FullSWOF2D) model to tackle load imbalance from vectoriza-
tion due to different algorithms of dry cells. The original code
was changed into a branch-free vectorized version entirely with vec-
tor intrinsics. Vector permutations were employed for loading two
neighboring vectors required for the computation. This technique
is, however, too complex and still becomes very challenging for
many branches condition, e.g., when using the Harten-Lax-van
Leer-Contact (HLLC) solver.

In this paper, a new parallelization approach based on an edge-
based type is presented that distributes the tasks based on the com-
plexity level. For this, a cell–edge reordering strategy is designed
easing the vectorization inside one core as well as the separate-way
parallelization among the cores between the internal and boundary
edges due to their different complexity levels. To tackle the load
imbalance in all computational levels due to wet–dry problems,
a novel weighted-dynamic load balancing is proposed (WDLB).
This technique is very simple and balances the load distribution
based on the complexity level, which requires no preliminary
run. The authors will show that the WDLB proposed can efficiently
distribute the loads among cores. The model is spatially second-
order accurate to avoid diffusive results of a first-order scheme. In-
stead of using an implicit scheme, a second-order temporal scheme
is employed to tackle instabilities for modeling very shallow depths
on very rough beds and to ease the parallel implementation. An in-
house code developed by the first author, Numerical Simulation of
Free Surface Shallow Water 2D (NUFSAW2D) (Ginting et al.
2018; Ginting 2019) is used.

Governing Equations and Numerical Methods

The 2D SWEs are derived from the Navier-Stokes equations and
are written in a conservative vector form as follows (Ginting and
Mundani 2018; Ginting 2017):

∂W
∂t þ ∂F

∂x þ ∂G
∂y ¼ Sw þ Sb þ Sf ð1Þ

where W, F, G, Sw, Sb, and Sf are vectors given by

W ¼

2
64

h

hu

hv

3
75; F¼

2
664

hu

huuþ gh2

2

hvu

3
775; G¼

2
6664

hv

huv

hvvþ gh2

2

3
7775;

Sw ¼

2
64
R− I

0

0

3
75; Sb ¼

2
66664

0

−gh ∂z∂x
−gh ∂z∂y

3
77775; Sf ¼

2
664

0

−cfu
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p

−cfv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p

3
775

ð2Þ
where h, u, v, g, R, and I = water depth, velocity in x- and
y-directions, acceleration due to gravity, rainfall, and infiltration,
respectively; z = bed elevation; and cf ¼ gn2mh−1=3, where nm is
the Manning coefficient. The cell-centered finite-volume (CCFV)
method used to discretize Eq. (1) is given in Eq. (3)

∂
∂t
ZZ

Ω
WdΩþ

XN
i¼1

ðFnx þGnyÞiΔLi ¼
ZZ

Ω
ðSw þ Sb þ SfÞdΩ

ð3Þ

where all values of h, u, v, R, I, z, and nm are defined at the center
of each cell; N = total number of edges for a cell; and ΔL = length
of edge. In this paper, rectangular grids are used; thus N ¼ 4.

The numerical method used in this paper is in general similar to
that of Ginting andMundani (2018). To solve the Riemann problem
in Eq. (3), the central-upwind scheme similar to that of Kurganov
and Petrova (2007), Chertock et al. (2014), and Shirkhani et al.
(2016) is used. The well-balanced property especially for wet–
dry problems can be preserved using this scheme together with
a method originally proposed by Mohammadian and Le Roux
(2006) for the bed-slope terms, which is neither an extra upwinding
scheme nor a Riemann solution. Based on the works of Hou et al.
(2013), Audusse et al. (2004), and Duran (2015), both the hydro-
static and topography reconstructions are performed to correct the
effect of the water depth h on the bed slopes ∂z=∂x and ∂z=∂y for all
wet–wet, wet–dry, and dry–dry interfaces. A semi-implicit technique
similar to that of Ginting and Mundani (2018) and Delis et al. (2011)
is used for the friction terms to reduce numerical oscillations and to
tackle problems with the Courant-Friedrichs-Lewy (CFL) condition,
in the case of very shallow water flows on very rough beds.

Prior to applying all these treatments, the Monotonic Upwind
Scheme for Conservation Laws (MUSCL) method pioneered by
van Leer (1979) and van Albada et al. (1982) and similar to that
of Hubbard (1999) is employed to achieve second-order spatial ac-
curacy. The depth h and the conservative variables hu and hv are
chosen to be reconstructed due to some advantages explained by
Tan (1992) and Begnudelli et al. (2008). To enforce the monotonic-
ity of the reconstructed variables, the novel edge-based limiter func-
tion presented by Delis and Nikolos (2013) is applied. As pointed
out by Buffard and Clain (2010) and Hou et al. (2013), despite re-
taining second-order accuracy, some new local extrema may arise in
the reconstruction process. This usually happens in simulating wet–
dry problems because both the velocities u and v may not be mono-
tone when transforming the unit discharges hu and hv back to the
velocities due to a division by very low depth. To tackle this prob-
lem, a simple and efficient procedure given by Buffard and Clain
(2010) is followed. The numerical model is not presented in detail
in this paper. Interested readers are thus referred to the aforemen-
tioned publications.

When simulating wet–dry problems, one or more edges corre-
sponding to a cell may become either wet–dry or dry–dry interface.
For both cases, the variables of vector W at such edges are not
reconstructed but simply defined according to the corresponding
center, turning into a first-order scheme. As a consequence, the
other edges that correspond to that center must not be reconstructed
to satisfy the continuity property, even though those edges are
wet–wet interfaces. This can be achieved, for example, by setting
the limiter function to zero for such a center, by which the values
at the edges turn into a first-order scheme although the MUSCL
method’s procedures are still calculated. For the sake of complete-
ness, a pseudocode to distinguish between wet–wet and wet–dry
interfaces is given in Algorithm 1.

Algorithm 1. Algorithm to distinguish between wet–wet and
wet–dry interfaces
1: if wet–dry or dry–dry interfaces at edges then
2: calculate first-order scheme
3: else
4: calculate second-order scheme
5: if velocities are not monotone then
6: calculate first-order scheme
7: end if
8: end if
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The Runge-Kutta second-order (RKSO) method is used for tem-
poral discretization, with which the convective fluxes, bed slope,
and friction terms are easily incorporated, as shown in Algorithm 2,
where Ap denotes the area of cell p, θ is the implicitness parameter,
and Δt is the time step. The values of θ ¼ 1 and θ ¼ 0 give an
implicit and an explicit scheme, respectively (θ ¼ 0.5 is used in
this paper). In Algorithm 2, the asterisk defines the calculation step
of the RKSO method. Thanks to the assumption of ðtþ 1Þ≈ �, the
asterisk now serves to incorporate the calculation of ðtþ 1Þ at every

calculation step of the RKSO method, thus allowing the semi-
implicit treatment of the friction source terms to work similarly
to an explicit method. When transforming the conservative values
back to the primitive values, division by a very low value of h� may
lead to a numerical error. This can be avoided by constructing a wet–
dry treatment with a very low water depth as a limiter value. This
treatment is written as Algorithm 3, where hmin ¼ 1 × 10−6 m.
For the treatments of boundary conditions, readers are referred to
Ginting (2017).

Algorithm 2. Concept of the calculation for temporal discretization
1: set the coefficients for the RKSO scheme

αa
ð�¼1Þ ¼ 1; αb

ð�¼1Þ ¼ 0; αa
ð�¼2Þ ¼ 0.5; αb

ð�¼2Þ ¼ 0.5

2: set the initial value of W for all cells at each time step
3: for ðp ¼ 1Þtoðp ¼ total number of cellsÞ do
4: Wð�¼0Þ

p ¼ Wt
p; W

ð�¼1Þ
p ¼ Wt

p

5: end for
6: for ð� ¼ 1Þtoð� ¼ 2Þ do
7: for ðp ¼ 1Þtoðp ¼ total number of cellsÞ do
8: W�

p ¼ αa�

"
W�

p þ
Δt
Ap

 
−
"XN¼4

i¼1

ðFnx þGnyÞiΔLi

#ð�−1Þ
p

þ
"ZZ

Ω
ðSbÞdΩ

#ð�−1Þ
p

!#
þ αb�W�

p

9: transforming back: conservative variables hu� and hv� → primitive variables u� and v�
10: updating W�

p← friction source terms are now taken into account
11: W�

p←W�
p −ΔtgW�

p½ð1 − θÞðn2mh−4
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
Þ�p þ θðn2mh−4

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
Þð�−1Þp �

12: saving the final values for the subsequent time step when � ¼ 2 as Wðtþ1Þ
p ¼ Wð�¼2Þ

p

13: end for
14: end for

Algorithm 3. Wet–dry treatment for a very low water depth less than hmin

1: if h� ≤ hmin then
2: hu�, hv�, u�, and v� are set to zero
3: else

4: u� ¼ hu�

h�
and v� ¼ hv�

h�
5: end if

Parallel Computing Implementation

Prior to explaining the cell–edge reordering strategy, a cell-based
CCFV method is considered to distinguish it from an edge-based
one. In the cell-based CCFV method, the loop is computed over the
total number of cells so that Eq. (3) is directly computed within a
single loop. This method can avoid synchronizations among the
threads because there is no data dependency between cells in the
same time step. Each thread computes all data associated with its
block of volumes independently. However, computational cost may
increase because the value of an edge shared between two cells is
computed twice. The contribution of two cells to an edge has a
similar scalar value but with a different algebraic sign. When the
loop over a total number of cells is computed, some computations
will be redundant.

In an edge-based CCFV method, the redundant computations
given in the cell-based CCFV method can be avoided because both
the convective fluxes and the bed-slope source terms are computed
first within a single loop over the total number of edges prior to
updating the values of the cells at the subsequent time step. Despite
being cheaper, the edge-based CCFV method has the major draw-
back that it requires synchronization among threads to compute the

values of the cells. The idea of the cell–edge reordering strategy
emerged from the aforementioned problem that not only the com-
putations to achieve an efficient thread concurrency are taken into
consideration, but also the aspect that the overheads for the parallel
code must be kept low. For the sake of completeness, both the cell-
based and edge-based CCFV methods are depicted in Fig. 1.

Cell–Edge Reordering Strategy

The calculations in NUFSAW2D are classified into two parts: edge-
driven and cell-driven computations. The edge-driven computations
consist of the calculations of the MUSCL linear reconstruction,
convective fluxes, and bed-slope source terms, whereas the cell-
driven computation consists of the calculation of vector W for the
subsequent time step together with the friction source terms. The
basic idea of this reordering strategy is to determine the relationship
patterns between edge and cell for the edge-driven loop and between
cell and edge for the cell-driven loop, so that a similar computational
procedure can be collected and then be successfully vectorized
within a single loop.

The cell–edge reordering strategy is explained in Fig. 2 by
giving a domain divided by 5 × 4 segments, creating 20 rectangular
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(a) (b)

Fig. 1. Concept of computation in (a) cell-based; and (b) edge-based CCFV.

Fig. 2. Cell–edge reordering strategy for the edge-driven and cell-driven levels computations in an edge-based CCFV.
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cells and 49 edges. First, the cell numbering is designed following
the Z-pattern. This numbering is addressed for the cell-driven com-
putations. The next step is to design the edge numbering for the
edge-driven computations, where loops are carried out to compute
the values of the edges by using the values of the cells as inputs.
For this, the two cells corresponding to each edge must be known.
Because the cells are rectangular, there are generally only two types
of computation in the edge-driven level: computation of edges in
x- and y-directions.

It is obvious that the relationship patterns between the edge and
cell can easily be obtained by computing the edges in the x-direction
and y-direction separately. However, because the computations of
internal and boundary edges differ from each other, starting the loop
from the boundary edge to another boundary edge may not be effi-
cient. The high aspect ratio of the total number between the boun-
dary edges to the internal edges has a great influence on the parallel
efficiency. For example, there is no need to apply the MUSCL
method to boundary edges or, in other words, all values at the boun-
dary edges have first-order accuracy, thus requiring less CPU time.
To solve this problem, the computations in every direction are clas-
sified again to be the calculations of internal and boundary edges.

As shown in Fig. 2, the first loop of the edge-driven computation
is conducted in the y-direction for Internal edges 1–16 and in the
x-direction for Internal edges 17–31. Now, every internal edge has
a specific pattern for its two corresponding cells, for which no
dependency exists between the edges, thus easing the parallel im-
plementation. The second loop of the edge-driven computation is
carried out in the x-direction for Boundary edges 32–41 and in the
y-direction for Boundary edges 42–49. These boundary edges can
either be wall boundaries or flow boundaries. In this edge-driven
level, it is not required to add additional cells for the boundary
edges.

With regard to Fig. 2, the convective fluxes for each edge i are
saved, corresponding to 49 edges. However, a different strategy
must be considered for the bed-slope terms. Because the bed-slope
fluxes may have two different values for each edge i, those fluxes
must be saved twice. For example, at Edge 6, the first flux of the
bed-slope source terms is saved corresponding to Cell 6, and the
second belongs to Cell 10. To accomplish this, in the similar loop to
that of the convective fluxes, two arrays are provided for saving the
bed-slope fluxes at each edge i. Let these two arrays be named as
Bed slope A and Bed slope B. Only the internal edges have two
corresponding cells. Thus, the first array of the bed-slope fluxes
(Bed slope A) is calculated corresponding to 49 edges (31 internal
edges and 18 boundary edges), whereas the second array of the
bed-slope fluxes (Bed slope B) only belongs to 31 edges (31 in-
ternal edges).

The next step is to perform the computations in the cell-driven
level after all computations in the edge-driven level are finished.
Synchronization is thus required. Compared with the edge-driven
level, the procedures in the cell-driven level are much simpler, only
requiring summing both the convective and bed-slope fluxes with
the proper signs from all the corresponding edges—and using
rainfall/infiltration and friction terms from the previous time level.
For example, for the convective fluxes computation, Cell 6 corre-
sponds to Edges 20, 6, 21, and 2 with the flux signs of −1,þ1,þ1,
and −1, respectively. For the bed-slope fluxes, Cell 6 corresponds
to the similar edges to those of convective fluxes, which belong to
Bed slope B, Bed slope A, Bed slope A, and Bed slope B, respec-
tively. Similarly, for the convective fluxes computation, Cell 3 cor-
responds to Edges 18, 3, 19, and 48 with the flux signs of −1, þ1,
þ1, and −1, respectively. For the bed-slope fluxes, Cell 3 corre-
sponds to the same edges to those of convective fluxes, which be-
long to Bed slope B, Bed slope A, Bed slope A, and Bed slope A,

respectively. In the proposed implementation, this classification is
very useful, and it helps ease the compiler to exploit instruction
pipelining and parallelization.

Causes of Load Imbalance Issues with Focus on
Wet–Dry Problems

Using an edge-based data structure, three typical load imbalance
issues faced by NUFSAW2D as well as common edge-based
CCFV models are presented. This is illustrated in Fig. 3, where it
is assumed to use four threads. The first reason is because the total
number of edges or cells may not match the total number of threads.
With a default static load balancing (SLB), each thread gets the
same amount of loads (five cells) in the cell-driven level. In the
edge-driven level, Threads 0–2 are, however, assigned the most
amount of loads (eight internal plus five boundary edges), whereas
Thread 3 receives, in contrast, the least amount of loads (seven
internal plus three boundary edges). This condition leads to an
unbalanced load distribution and decreases the parallel efficiency.
However, the effect of this problem becomes less and less signifi-
cant as the numbers of edges and cells increase, e.g., to millions of
cells. This problem can also be tackled using a dynamic load bal-
ancing (DLB) that allows, for example Thread 3 to steal the work of
Thread 0, 1, or 2 in the edge-driven level, so that a balanced load
distribution can be ensured. Although more overheads appear in
this dynamic way, the cost reduces as the problem size increases.

For wet–dry problems, the load imbalance issues become more
complex. As shown in Algorithm 1, in the edge-driven level, if
wet–dry or dry–dry interfaces at edges appear (which can only be
known during runtime), the model turns to a first-order scheme,
thus requiring no MUSCL technique and becoming cheaper than
a second-order scheme—in contrast with wet–wet interfaces, which
could either have second-order accuracy one (if no discontinuity
exists) or first-order one (when dealing with discontinuity). This
becomes the second reason of the load imbalance issue faced by
NUFSAW2D. The third reason emerges in the cell-driven level,
where due to the semi-implicit treatment of the friction terms, one
needs to transform unit discharges back to velocities, for which a
division by a very low depth (especially for dry/almost dry cells)
may produce oscillations. To this regard, the nested branch state-
ment (if-then-else) in Algorithm 3 becomes inevitable to anticipate
such oscillations. Because the total number of wet and dry cells is
uncertain during runtime, NUFSAW2D consequently suffers from
a load imbalance issue.

Load Balancing Strategy

Prior to explaining the load balancing strategy, the ratio of CPU
time required by the first-order (Line 2) and the second-order
schemes (Lines 4–7) in Algorithm 1 as well as the ratio of CPU
time between dry (Line 2) and wet cells (Line 4) in Algorithm 3
must be approximated. For the former, it is quite simple to do where
NUFSAW2D was tested for simulating several cases (using one
core without a wet–dry problem) including hydraulic jump, flow
over transition channel, and dam-break cases [e.g., Cases 1–5 in
Ginting (2017)]. It was found that for Algorithm 1, using solely
the first-order scheme was typically 1.7–2 times faster than using
the second-order scheme. For the latter, knowing the CPU time ra-
tio between wet and dry cells in Algorithm 3 is harder because the
ratio of the total number between wet and dry cells always changes
during runtime, showing a nonlinear relationship. To approximate
this, some cases dealing with wet–dry problems [e.g., Cases 1–2 of
Ginting and Mundani (2018) as well as the two cases presented in
this paper] were simulated using one core with the second-order
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scheme. It was found that the CPU time for dry cells in Algorithm 3
was typically 1.9–2.1 times faster than that for wet cells. Based on
these facts and for the sake of simplicity, a factor of 2 was chosen
for the load balancing purpose.

To explain the load balancing strategy, the domain in Fig. 2 is
now considered where only some areas are inundated by water, as
shown in Fig. 4. One can see that Cells 1–3, 6–7, 14–15, and 18–19
are wet cells and correspondingly, Internal edges 2–3, 14–15,
17–18, 21, 27, and 30 are classified as wet–wet interfaces. First, the
load balancing strategy is explained for the internal edges, where
four threads are used. A factor of 2 is assigned to the aforemen-
tioned edges, whereas the others are assigned 1. In the y-direction,
each thread receives the same total number of internal edges (four
edges) using the SLB. However, the loads assigned are not same
due to wet–dry problems. Thread 0 gets six loads (Edges 1–4 = 1, 2,
2, and 1 loads, respectively). Similarly, Thread 3 obtains six loads.
Meanwhile, Threads 1–2 only have four loads. This condition
causes a load imbalance issue.

Using the DLB with a proper chunk size (CS) will not signifi-
cantly help tackle the load imbalance issue. First, this is because the
DLB assigns the edges to the threads sequentially based on the given
CS, so that in the end, it is still possible that some threads must wait
for the others. Second, it is difficult to set the proper value for CS
because the total number of wet–dry cells changes during runtime.
This is how the idea of WDLB emerged. For the internal edges in
the y-direction, the total amount of load is summed up to be 20
loads. This can easily be done in parallel, e.g., using !$omp do re-
duction (+:value). These 20 loads must then be divided by the total
number of threads (four), thus each threads must have five loads, as
shown in Fig. 4; it is easy to do, e.g., Edges 1–3 contain 1þ 2þ
2 ¼ 5 loads. However, this procedure is difficult to be parallelized;
thus, only a sequential way is employed. After the WDLB, Threads

0–3 are now assigned the new edge indexes of 1–3, 4–8, 9–13, and
14–16, respectively. A similar way is also applied to the internal
edges in the x-direction.

For the x and y boundary edges, there is no need to employ the
WDLB because no MUSCL method is applied to these edges. The
cost of each boundary edge is almost similar, and the standard SLB
or DLB with a proper CS can thus be applied. There were no sig-
nificant differences found using the SLB and DLB for the boundary
edges. However, if one is not aware of assigning the CS value, one
or more threads may not be assigned a task at all, thus decreasing
the parallel efficiency. For example, if one uses the SLB with CS ¼
4 for the y boundary edges, Threads 0–3 will receive four, four,
two, and zero loads, respectively, because the round-robin way ap-
plies. To tackle this problem, a block-distribution type is used, so
that it is always ensured that each thread is assigned the loads. For
this, a small program of subroutine para_range from Aoyama and
Nakano (1999) was adopted.

The WDLB is also applied to cells in the cell-driven level.
A similar procedure to that of internal edges is thus employed
to check the total amount of loads, where 29 loads are obtained.
These 29 loads are distributed to four threads giving approximately
seven loads to each thread. A sequentially way is again employed
to determine the new cell indexes for Threads 0–3, which are 1–4,
5–9, 10–15, and 16–20, having seven, seven, eight, and seven
loads, respectively. In this case, the results before and after load
balancing are accidentally similar.

One can see that the cell–edge reordering strategy has helped
ease the WDLB procedures by providing a contiguous array struc-
ture. Because the procedures for all internal edges as well as for
cells are performed sequentially, it may not be efficient to apply
the WDLB in every single time level. For this reason, the WDLB
is applied after several time levels. In all the implementations, it

Fig. 3. Load distributions among threads with a static load balancing in NUFSAW2D for the domain in Fig. 2.
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was found that the most efficient step is about every 1=50 of total
time levels. For the sake of clarity, the structure of NUFSAW2D is
illustrated in Algorithm 4, where tot_threads is the total number of
threads, thread_ID is thread’s identity number, tot_num_t_s is the
total number of time steps, iedg_sta and iedg_end are internal
edges’ indexes, bedg_sta and bedg_end are boundary edges’ in-
dexes, and cell_sta and cell_end are cells’ indexes. The first parallel

region is given on Lines 1–3 to perform the cell–edge reordering
strategy and the second one is given on Lines 4–26. The CPU time
between the first and second parts are distinguished because the
authors focus on the efficiency of the second part without consid-
ering input/output files. CPU time of the first part is very small even
for millions of cells because the computation required in the
cell–edge reordering strategy is very simple.

Algorithm 4. Code structure of NUFSAW2D with OpenMP parallel technique
1: !$omp parallel
2: calculate cell–edge reordering strategy
3: !$omp end parallel
4: !$omp parallel
5: tot_threads = omp_get_max_threads(); thread_ID = omp_get_thread_num()
6: for ðt ¼ 1Þ to ðt ¼ tot num t sÞ do
7: if mod (t − 1, 1=50 * tot_num_t_s) = 0 then
8: perform weighted-dynamic load balancing for internal edges and cells
9: apply subroutine para_range for boundary edges

10: internal & boundary edges’ and cells’ indexes start – end (1: tot_threads) are obtained
11: end if
12: for ð� ¼ 1Þtoð� ¼ 2Þ do
13: for ði ¼ iedg staðthread IDþ 1ÞÞtoði ¼ iedg endðthread IDþ 1ÞÞ do
14: calculate Algorithm 1 for all internal edges
15: end for
16: for ði ¼ bedg staðthread IDþ 1ÞÞtoði ¼ bedg endðthread IDþ 1ÞÞ do
17: apply boundary condition treatments for all boundary edges
18: end for
19: !$omp barrier
20: for ði ¼ cell staðthread IDþ 1ÞÞtoði ¼ cell endðthread IDþ 1ÞÞ do
21: calculate values at cells based on Algorithms 2 and 3
22: end for
23: !$omp barrier
24: end for
25: end for
26: !$omp end parallel

Test Cases

Two cases dealing with complex wet–dry mechanisms, rough and
complex topography, and well-balanced property are considered
to verify the efficiency of NUFSAW2D. The first case is a dam-
break case propagating over an initially dry bed with three humps
and is proposed to check the model ability in modeling wave–bed
wall interactions and drying mechanism on the humps for the well-
balanced property. The second case is considered to simulate a real
flood case involving a very complex topography, very low water
depth on a very rough bed, and complex wet–dry mechanisms.
NUFSAW2D was executed on two Linux computing clusters:
Sandstorm operated at the Chair for Computation in Engineer-
ing, Technical University of Munich (CiE-Sandstorm 2018) and
CoolMUC-3 operated by Leibniz Supercomputing Center (LRZ
2018). Sandstorm contains nodes with Intel Xeon E5-2690 (Sandy-
Bridge-E) and CoolMUC-3 provides nodes with Intel Xeon-Phi
7210F (Knights-Landing). The Intel Fortran compiler 16 was used.
The parallel computation was implemented by compiling both
the sequential and parallel codes with –O2 optimization flag and
using double-precision arithmetic (64-bit). The weak and strong

scaling are performed using 16 cores (Sandstorm) and 64 cores
(CoolMUC-3) for 0.1–6.4 million cells or 0.2–12.8 million edges.
The CPU time for the cell–edge reordering strategy is not dis-
cussed here because it is not significant in all implementations
(it took less than 0.3 s to reorder 3.2=6.4 million cells using
16=64 cores and less than 0.012 s to reorder 200,000 cells using
a single core). For each case, the simulation was performed 10
times to obtain an average CPU time. A performance metric
is used and expressed in million cells per second per core
(Mcell=s=core), which is a comparison between the numbers of
cells for a total number of calculation steps that can be processed
per unit of time using one core. A metric of Gflop=s=core is also
presented and compared with the theoretical peak performance of
each hardware.

Case 1: Dam Break over Three Bumps

This case was first proposed by Kawahara and Umetsu (1986) and
also tested numerically in several papers, e.g., by Brufau et al.
(2002) and Liang and Borthwick (2009). This case deals with a
wave propagation due to a dam-break case flowing over an initially

© ASCE 04019013-7 J. Comput. Civ. Eng.
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dry bed with a size of 75 × 30 m. Three humps are formed on the
domain, the shape of which follows

zðx; yÞ ¼ max

�
0; 1 − 1

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − 30Þ2 þ ðy − 6Þ2

q
;

1 − 1

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − 30Þ2 þ ðy − 24Þ2

q
;

3 − 3

10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − 47.5Þ2 þ ðy − 15Þ2

q �
ð4Þ

The domain configurations tested are (1a) 707 × 283,
(1b) 1,000 × 400, (1c) 1,414 × 566, (1d) 2,000 × 800, (1e) 2,449×
980, and (1f) 2,830 × 1,131 for Sandstorm and (2a) 500 × 200,
(2b) 707 × 283, (2c) 1,000 × 400, (2d) 1,414 × 566, (2e) 2,000×
800, (2f) 2,830 × 1,131, (2g) 3,464 × 1,386, (2h) 3,741 × 1,497,
and (2i) 4,000 × 1,600 for CoolMUC-3. Along the domain from
x ¼ 0 to x ¼ 16 m, the initial water elevation is set to 1.875 m,
whereas the rest contains no water. A uniform Manning coefficient
of 0.0125 sm−1=3 is given for the whole domain. This case aims to
study the characteristics of wave–wave, wave–bed, and wave–wall
interactions as well as to investigate the capability of simulating the
drying mechanism on the humps until a steady-state condition is
achieved. The simulation time is set to 300 s. The constant Δt val-
ues of 0.002 and 0.001 s are used, thus giving 150,000 and 300,000
calculation steps for Sandstorm and CoolMUC-3, respectively. The
maximum CFL number of 0.68 is produced for the case with the
maximum number of cells.

The results are visualized in Figs. 5 and 6. NUFSAW2D has
shown a stable computation for simulating the complex wave–
bed–wall interactions. No problem was found to simulate the
highly discontinuous shock waves due to such interactions. Also,
NUFSAW2D is able to model the wet–dry mechanisms on the
humps properly until the steady-state condition. The results are
in accordance to those of Brufau et al. (2002) and Liang and
Borthwick (2009). The mass conservation has always been
guaranteed for this case.

For Sandstorm with 150,000 steps, NUFSAW2D requires
13,060 s (for 1a with one core) and 15,010 s (for 1f with 16 cores)
giving the performance metrics of 2.3 and 2 Mcell=s=core, respec-
tively. This allows NUFSAW2D to achieve 1.81 Gflop=s=core,
which translates to approximately 31% of the theoretical peak per-
formance (TPP) of 5.8 Gflop=s=core. Meanwhile, for CoolMUC-3
with 300,000 steps, NUFSAW2D requires 46,154 s (for 2a with
one core) and 52,632 s (for 2i with 64 cores), giving performance
metrics of 0.65 and 0.57 Mcell=s=core, respectively. This leads
NUFSAW2D to obtain 0.54 Gflop=s=core, which is about 21% of
the TPP of 2.6 Gflop=s=core. Fig. 7 shows the parallel efficiency of
the model for weak and strong scaling. For weak scaling, the mesh
configurations 1a–1f are tested using 1, 2, 4, 8, 12, and 16 cores,
respectively, and 2a–2i are tested using 1, 2, 4, 8, 16, 32, 48, 56, and
64 cores, respectively. For strong scaling, each 1c, 1d, and 1f are
tested using 1–16 cores, whereas each 2e, 2f, and 2i are tested using
1–64 cores. The results show NUFSAW2D scales very well on both
hardware configurations. On Sandstorm, it achieves efficiencies

Fig. 4. Proposed load balancing strategy: weighted-dynamic load balancing.
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more than 98% with eight cores and 87% with 16 cores. On Cool-
MUC-3, up to 97% of efficiency is obtained with 56 cores and 88%
with 64 cores. NUFSAW2D also achieves excellent speed-up fac-
tors, which are almost linear up to 56 cores (for 2i). These strong
scaling results show NUFSAW2D becomes more efficient for the
larger number of cells.

Case 2: Urban Flood in Glasgow, United Kingdom

In this case, a simulation dealing with very low water depth on very
rough beds is considered. The aim of this case is to simulate the real
flood case in Glasgow, United Kingdom, which was caused by
strong rainfall and an overloaded culvert. More information on the
event has been given by Neelz and Pender (2013), according to
whom, the domain was taken on August 13, 2009. and provided in
a digital elevation model (DEM) format with a size of 965×
401 m, as shown in Fig. 8. The ground elevations of the DEM vary
within the range of þ21 to þ37.61 m. Following Neelz and Pender
(2013), to simulate the bare earth of the DEM, the buildings at the
actual location are ignored.

There are no observation data provided for this case; instead,
several one-dimensional (1D), 2D, and three-dimensional (3D)
numerical models were used to simulate the event, and the results
were compared at nine points. For the sake of comparison in this
paper, the results of the 2D models are selected: ISIS 2D, MIKE
FLOOD, SOBEK, two-dimensional unsteady FLOW finite volume
(TUFLOW), and XPSTORM; the details of these 2D models are
given in the aforementioned publication.

The domain configurations tested are (1a) 695×288, (1b) 982×
408, (1c) 1,390 × 576, (1d) 1,966 × 814, (1e) 2,403 × 999, and
(1f) 2,779 × 1,152 for Sandstorm and (2a) 491 × 204, (2b) 695×
288, (2c) 982 × 408, (2d) 1,390 × 576, (2e) 1,966 × 814,
(2f) 2,779 × 1,152, (2g) 3,402 × 1,411, (2h) 3,674 × 1,525, and
(2i) 3,927 × 1,630 for CoolMUC-3. The initial boundary condition
is set as a dry bed at all cells, and all boundaries of the modeled area
are set as wall boundaries. The Manning coefficients are set to
0.02 sm−1=3 for roads and pavements and 0.05 sm−1=3 everywhere
else [Neelz and Pender (2013) have provided more details]. These
values show that this case deals with very rough beds, which may
produce excessive drag forces that can reverse the flow. With regard
to the sources of water, the rainfall event is uniformly spread across
all cell centers, and the surcharge flow of the culvert is located at
(919.75, 337.75) m, of which the values are given in Fig. 9. The
simulation time is set to 5 h. The constant Δt of 0.03 s and 0.015 s
are used, thus requiring 600,000 and 1.2 million calculation steps
for Sandstorm and CoolMUC-3, respectively. The maximum CFL
number of 0.48 is yielded for the case with the maximum number
of cells.

The results of NUFSAW2D using 695 × 288 and 2,779 × 1,152

cells are compared with those of the aforementioned 2D models of
Neelz and Pender (2013) (where approximately 98,000 cells were
used) at Point 2 (561.75, 255.75) m and Point 6 (595.75, 145.75) m,
as given in Figs. 10 and 11, respectively. As a general result,
NUFSAW2D produces a double-peaked shape hydrograph similar
to the aforementioned 2D models. As discussed by Neelz and
Pender (2013), this phenomenon is due to the very intense rainfall
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Fig. 5. Case 1: numerical results at 2, 6, 12, 30, and 300 s using 2,830 × 1,131 cells; side view (elevation).
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Fig. 6. Case 1: numerical results at 2, 6, 12, 30, and 300 s using 2,830 × 1,131 cells; top view (depth).

Fig. 7. Case 1: weak and strong scaling.
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during 1–4 min. At Point 2, for the first peak flow, both results of
NUFSAW2D exhibit a similar characteristic of the water level, with
a value of þ28.72 m at around t ¼ 11 min. The second peak flow
turns out to be almost identical as well, with the highest water level
being þ28.83 m at around t ¼ 43.5 min, and there are merely
nonsignificant differences after t ¼ 100 min.

At Point 6 around t ¼ 47 min, there is a 3-cm difference in
water level for the peak flow. The highest water level of þ27.08 m
is computed using 695 × 288 cells, whereas the use of 2,779 ×
1,152 cells leads to a highest water level of þ27.11 m. Meanwhile,
a significant difference is shown for the velocity. NUFSAW2D with
695 × 288 and 2,779 × 1,152 cells computes the highest velocities
of 1.27 and 0.96 m=s, respectively. This is due to the fact that in the
wet–dry mechanisms, more cells were captured and classified as a
wet cell when 2,779 × 1,152 cells are used. However, the authors
cannot determine which one is the more accurate result for this
case because no observed results were provided. Nevertheless, it
has been shown that NUFSAW2D is very stable and capable of sim-
ulating very shallow water on a very rough bed, which is in accor-
dance with the results of Neelz and Pender (2013). In Fig. 12, the
inundation area in 2D view is presented using 2,779 × 1,152 cells,
showing that the result is in line with the aforementioned publication.

For Sandstorm with 600,000 steps, NUFSAW2D needs 52,215 s
(for 1a with one core) and 59,988 s (for 1f with 16 cores) giving
performance metrics of 2.3 and 2 Mcell=s=core, respectively. For
CoolMUC-3 with 1,200,000 steps, NUFSAW2D requires 184,615 s
(for 2a with 1 core) and 210,526 s (for 2i with 64 cores) giving the

performance metrics of 0.65 and 0.57 Mcell=s=core, respectively.
Similar to Case 1, NUFSAW2D achieves 1.81 Gflop=s=core for
Sandstorm (31% of the TPP) and 0.54 Gflop=s=core for Cool-
MUC-3 (21% of the TPP). Fig. 13 shows the parallel efficiency
of the model for weak and strong scaling with the mesh configu-
rations similar to Case 1. Again, NUFSAW2D scales very well with
efficiencies more than 98% (eight cores) and 87% (16 cores) for
Sandstorm and up to 97% (56 cores) and 88% (64 cores) for Cool-
MUC-3. Excellent speed-up factors are achieved as well, being
almost linear up to 56 cores (for 2i).

Investigation of Efficiency for each Thread

It was shown from Cases 1–2 that NUFSAW2D can achieve a
sufficient average parallel efficiency of 87% (16 cores) and 88%
(64 cores). To investigate the performance losses of 12%–13%,
the CPU time for each thread is measured separately for each
edge-driven and cell-driven levels. For example, according to
Algorithm 4, for each single level of the asterisk, the CPU time
of Lines 13–18 and of Lines 20–22 are measured (both before
!$omp barrier). For this, Case 2 is selected, for which the first
1 h (120,000 calculation steps) is simulated using 1f (Sandstorm)
and 2i (CoolMUC-3).

The results of WDLB and SLB are presented in Table 1 only
for Sandstorm for simplicity. The dimensionless time is calculated
by dividing the CPU time of each thread by the minimum value for
each level; ideally, thevaluemust be 1.One can see in Figs. 14 and 15
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Fig. 8. Case 2: domain in Glasgow, United Kingdom.

Fig. 9. Case 2: rainfall event and surcharge flow of culvert.
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that each thread gives almost similar values using the WDLB for
both edge-driven and cell-driven levels. Meanwhile, some threads
suffer from load imbalances quite significantly using the SLB.
This shows that for a wet–dry-dominated case like this, the load dis-
tributions are not well-distributed due to the different complexity
levels of the algorithm, which always change during runtime. The
proposedWDLB is able to tackle such load imbalances, givingmore
efficient computations.

The efficiencies of 87% (16 cores) and 88% (64 cores) are the
comparative values obtained by a comparison with one core for an
unbiased measurement. Because Figs. 14–15 show relatively similar
load distributions among threads, the performance losses of 12%–
13% are thus not caused by an inefficient load distribution, but this
is probably due to the nonuniform memory access (NUMA) effects,
which depend on the memory location relative to the processor.
In NUMA, its own local memory can be accessed by a processor
faster than nonlocal memory shared between processors.

Fig. 16 shows a comparison between the WDLB and SLB for
weak and strong scaling. For Sandstorm, using SLB with more than

four cores starts producing lower performance metrics and speed-
up factors. Meanwhile, the performance metrics and speed-up for
CoolMUC-3 start decreasing using more than 12 cores with SLB.
This shows that the WDLB can increase the performance of the
SLB about 19%–20% for a high-load-imbalance case due wet–dry
problems like this.

Conclusion

A shallow-water code NUFSAW2D has been presented using an
edge-based CCFV method to solve the 2D SWEs with the OpenMP
parallelization technique. The model is spatially and temporally
second-order accurate, well-balanced, and able to efficiently sim-
ulate flood cases with wet–dry problems. Two main levels were
presented in the edge-based data structure: edge-driven and cell-
driven levels. The edge-driven level consists of the fluxes calcula-
tions for all edges including the convective and bed-slope fluxes.
Meanwhile, the cell-driven level consists of the calculations for

Fig. 10. Case 2: comparison between NUFSAW2D using 695 × 288 and 2,779 × 1,152 cells and the other models at Point 2.
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summing both the convective and bed-slope fluxes with the
proper signs from all the corresponding edges and using rainfall/
infiltration and friction terms from the previous time level.

A simple cell–edge reordering strategy was proposed that pro-
vides an index relationship between edge and cell so that better
memory access was achieved in both edge-driven and cell-driven
levels and random memory access could be avoided. This strategy
was highly beneficial to help the compiler to exploit the instruction
pipelining and parallelization of the model. No difficulty was found
in implementing this cell–edge reordering strategy because it took
less than 0.3 s to reorder 3.2=6.4 million cells using 16=64 cores
and less than 0.012 s to reorder 200,000 cells using a single core.
This cell–edge reordering strategy is essentially a preprocessing
strategy that can be applied to any CCFV scheme. Because such a
colocated scheme is very flexible, it is possible to apply this strat-
egy and the WDLB to unstructured meshes using indirect array in-
dexing. A good scalability can be ensured at the expense of (more)
CPU time than that of the structured meshes because knowing array
patterns for such meshes might not be a simple task.

In addition to better memory access, it has been shown that
the cell–edge reordering strategy proposed could help ease the im-
plementation of the WDLB for wet–dry problems. The proposed

WDLB was shown to be easily implemented and has been proven
able to sufficiently achieve good parallel efficiency as well. For
Sandstorm using up to 3.2 million cells (6.4 million edges), excel-
lent parallel efficiencies of more than 98% (eight cores) and 87%
(16 cores) for the weak scaling, and the speed-up factors of 7.8
(eight cores) and 13.95 (16 cores) for the strong scaling were
achieved. Meanwhile, for CoolMUC-3 with up to 6.4 million cells
(12.8 million edges), NUFSAW2D obtained efficiencies of 97%
(56 cores) and 88% (64 cores) for the weak scaling, and the
speed-up factors of 54 (56 cores) and 55.8 (64 cores) for the strong
scaling. NUFSAW2D was able to achieve 1.81 Gflop=s=core for
Sandstorm (31% of the TPP) and 0.54 Gflop=s=core for Cool-
MUC-3 (21% of the TPP). An investigation of the performance
losses of 12%–13% for 16=64 cores was performed, which showed
a relatively similar load distribution among threads. It could there-
fore be concluded such losses were not caused by an inefficient
load distribution but were probably due to the NUMA effects. It
was also investigated that the WDLB could gain the performance
of the SLB about 19%–20%.

With both the cell–edge reordering strategy and WDLB, quite
efficient performance metrics of 2–2.3 and 0.57–0.65 Mcell=s=core
could be achieved by NUFSAW2D considering the second-order

Fig. 11. Case 2: comparison between NUFSAW2D using 695 × 288 and 2,779 × 1,152 cells and the other models at Point 6.
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Fig. 12. Case 2: two-dimensional view of inundation area at 15, 45, 90, and 300 min using 2,779 × 1,152 cells.
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spatial and temporal accuracy employed as well as the double-
precision arithmetic (64-bit) used. Higher performance metrics
of 5.7–6 and 1.7–2 Mcell=s=core can be achieved if, for exam-
ple, NUFSAW2D is employed using a first-order spatial and tem-
poral model in the double-precision arithmetic. However, results of

Fig. 13. Case 2: weak and strong scaling.

Fig. 14. Case 2: load distributions for each thread (Sandstorm).

Table 1. Summary of average CPU time for edge-driven and cell-driven
levels (Sandstorm)

Thread
ID

CPU time (ms) Dimensionless time

Edge-driven
level

Cell-driven
level

Edge-driven
level

Cell-driven
level

(WDLB=SLB) (WDLB=SLB) (WDLB=SLB) (WDLB=SLB)

0 36.832=37.981 18.329=19.065 1.008=1.066 1.001=1.069
1 36.700=37.086 18.544=18.320 1.004=1.041 1.012=1.027
2 36.940=35.859 18.586=18.248 1.011=1.007 1.015=1.023
3 36.732=38.168 18.628=18.966 1.005=1.072 1.017=1.064
4 36.763=35.799 18.582=18.235 1.006=1.005 1.014=1.023
5 37.073=36.304 18.694=18.938 1.014=1.019 1.021=1.062
6 37.151=35.619 18.639=17.833 1.017=1.000 1.018=1.000
7 36.945=36.557 18.508=18.169 1.011=1.026 1.010=1.019
8 36.933=36.089 18.413=18.339 1.011=1.013 1.005=1.028
9 36.984=36.098 18.350=18.156 1.012=1.013 1.002=1.018
10 37.083=35.935 18.450=18.150 1.015=1.009 1.007=1.018
11 37.119=36.375 18.429=18.541 1.016=1.021 1.006=1.040
12 36.773=36.307 18.317=18.697 1.006=1.019 1.000=1.048
13 37.000=35.671 18.421=18.052 1.012=1.001 1.006=1.012
14 36.548=36.444 18.404=19.069 1.000=1.023 1.005=1.069
15 36.876=37.630 18.365=18.460 1.009=1.056 1.003=1.035
MIN 36.548=35.619 18.317=17.833 — —

Note: MIN = minimum.
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first-order spatial models may be too diffusive for general appli-
cations, and stability issues may occur using first-order temporal
models. If the single-precision arithmetic (32-bit) is preferred, up
to two times higher performance metrics can even be achieved by

NUFSAW2D. However, a problem in terms of a mass-balance error
may appear using the single-precision arithmetic. A similar phe-
nomenon was also investigated by Smith and Liang (2013), who
recommended the double-precision arithmetic for flood modeling.

Fig. 15. Case 2: load distributions for each thread (CoolMUC-3).

Fig. 16. Case 2: performance comparison between WDLB and SLB.
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The cases considered here were 2D problems. For more com-
plex applications, say 3D baroclinic/nonhydrostatic cases including
large-size problems, OpenMP may not be appropriate anymore for
large-scale parallelization; thus, MPI should be considered. For an
(extremely) large number of cores, using pure OpenMP will suffer
from NUMA effects. Here this phenomenon was visible in wet–dry
problems due to the data access by a processor, which is faster than
the nonlocal memory shared between processors, especially when
applying the WDLB. The authors assumed using pure MPI tends
to be imbalanced due to inhomogeneous kernel execution, and the
communication costs (for the WDLB) also become more signifi-
cant. For this, the first author is currently working for a hybrid
parallelization combining OpenMP and MPI where the cell–edge
reordering strategy and the WDLB can easily be applied together
with any space-filling-curve so that load imbalance issues for
simulations with thousand cores can be tackled more efficiently.
Simulations with AMR such as those of LeVeque et al. (2011) and
Berger et al. (2011) using a hybrid parallelization technique would
also be a challenging task to be investigated.
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Notation

The following symbols are used in this paper:
cf = friction factor;
F = vector of convective terms in x-direction;
G = vector of convective terms in y-direction;
g = gravity acceleration;
h = depth;
I = infiltration;
N = total number of edges for a cell;
nm = Manning coefficient;
R = rainfall;
Sb = vector of bed-slope terms;
Sf = vector of friction terms;
Sw = vector of rainfall/infiltration;
t = time;
u = velocity in x direction;
v = velocity in y direction;
W = vector of conservative variables;
z = bed elevation;

ΔL = length of edge;
Δt = time step;
θ = implicitness parameter; and
Ω = discretized domain.
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a b s t r a c t 

In this paper, the Reynolds-averaged Navier Stokes equations supplemented by the algebraic stress model 

are solved using the central-upwind scheme for simulating 2D turbulent shallow flows. The model is of 

spatially and temporally second-order accurate. To increase the accuracy, high-resolution meshes up to 

3.4 million cells (6.8 million edges) are used. Consequently, a strategy combining the hydrostatic and 

topography reconstructions and the scalable wall functions – is proposed to accurately simulate wet–dry 

phenomena near the interfaces (moving boundary geometries) thus ensuring a proper calculation for the 

turbulence properties. This strategy has been proven to be accurate and to not deteriorate the results for 

such very fine meshes thus giving flexibility to users in generating meshes. 
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1. Introduction 

In reality, almost all flows in the scope of hydraulics are turbu-

lent where the true flow conditions are highly irregular, fluctuat-

ing, and always exhibit a three-dimensional eddying motion [1] . It

remains a challenge to find a proper numerical model to compre-

hensively understand such turbulence effects on flows. For this, 3D

turbulence models, e.g. Reynolds-averaged Navier Stokes (RANS),

Large-Eddy Simulation (LES), or Direct Numerical Simulation (DNS)

models, may be the choice. Using such 3D models, the complex

turbulent characteristics may be better understood than if 2D mod-

els are employed. However, for some specific cases – which are of

(absolute) convective instabilities or where approximate flow pre-

dictions are quite insensitive to bed shear and secondary effects

thus the dispersive part plays a non-significant role – the 2D tur-

bulence models still become favorable as much less computational

time is required but they keep ensuring sufficiently accurate re-

sults. In [2,3] where the vertical mixing was instantaneous, it was

even shown that the 3D turbulence model gave poorer representa-

tions than did the 2D one. Some successful works employing the

2D turbulence models for weakly-dispersive flows are noted here

[4–11] . 

Due to their simplicity, RANS models are in general more pow-

erful than LES or DNS models considering the advent of computers

[1] and therefore become more popular for practical purposes in

environmental hydraulic modeling. A turbulence model is required
E-mail address: bobbyminola.ginting@tum.de 

t  

s  

i  
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0045-7930/© 2018 Elsevier Ltd. All rights reserved. 
n RANS models to calculate the eddy viscosity which is not a

eal fluid property but an artificially introduced one acting as new

tresses on the water in addition to the viscous stresses given by

he kinematic viscosity. For shallow flows, the simplest turbulence

odel might be the parabolic eddy viscosity (PEV) model, e.g. ap-

lied by Ding et al. [12] , or the mixing length (ML) model, e.g. used

y Stansby [13] , which assumes that the turbulent length scale de-

ends on the water depth. In the PEV model, the turbulence is

enerated by bed-friction, whereas the horizontal strain-rate pro-

uction of turbulence is taken into account in the ML model. A

ore advanced turbulence model is the κ − ε model, proposed by

odi [14] and then applied, e.g. in [4,6,7] . All the aforementioned

urbulence models are based on the Boussinesq’s approximation

15] which assumes an isotropic eddy viscosity for the Reynolds

tresses. This becomes the main weakness of these models [16] . As

n alternative, the algebraic stress model (ASM) is used here which

an be regarded as a non-linear extension of eddy viscosity models

6] . 

Especially with regard to finite volume models, Riemann solvers

.g. Roe, HLL, and HLLC schemes were commonly used in the past

ecade for turbulent shallow flow simulations, e.g. Roe scheme in

5,6] , HLL scheme in [8] and HLLC scheme in [7,9,17] . Meanwhile,

nother robust (Riemann-solver-free) scheme such as the central-

pwind (CU) scheme was mainly addressed for inviscid shallow

ow simulations, see [18–24] , among others – and to the best of

ur knowledge, this scheme was never used previously to model

urbulent shallow flows. Ginting and Mundani [25] showed the CU

cheme was averagely 1.3 × cheaper than the HLLC scheme us-

ng the first-order finite volume scheme – and in our recent work
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 unpublished ), it was noted that the CU scheme became aver-

gely 1.2 × cheaper than both the Roe and HLLC schemes using

he second-order finite volume scheme, where the Roe and HLLC

chemes required almost similar CPU time. 

In general, using sufficiently fine grid resolution for RANS mod-

ls can increase accuracy, since such a resolution may minimize

he effects of numerical uncertainties from the turbulence prop-

rties [26] . However, the results sensitivity to the grid resolution

hould be taken into careful consideration. We illustrate this by

 well-known example: recirculating wakes flow around a coni-

al island with a surface-piercing condition [2] . For this, two ma-

or problems appear when performing simulations using high-

esolution meshes. The first is the effects of the wet–dry problems

xisting around the conical island become significant on the nu-

erical results of the wakes characteristics behind the island. This

s because the wet–dry phenomena deal with the moving bound-

ry geometries around the island which obviously affect the turbu-

ence properties. For instance, when using a RANS model with the

− ε or the ASM model, one requires a special treatment near

he boundary geometries to calculate the turbulent kinetic energy.

his normally relates to the standard wall functions (StWF) that

mpose several limitations in terms of near-wall mesh resolution.

ypically, the near-wall mesh spacing must satisfy the criterion of

 

+ ≥ 11.067 – where y + is a dimensionless wall distance. Conse-

uently, the centers of the first boundary cells must be placed in

he logarithmic region. The second problem emerges from this sit-

ation. Such a criterion may be contravened by the use of very fine

ear-wall meshes – and particularly for wet–dry problems, this be-

omes even more complex since at the initial step one does not

now precisely the boundary geometry around the conical island. 

Karimi et al. [27] studied the effect of mesh size by comparing

he StWF and the enhanced wall treatments. The latter required y + 

s low as possible and the meshes near the wall were thus adap-

ively refined. This adaptive technique may become a main issue

n simultaneously preserving the C -property and the mass conser-

ation during runtime for inviscid shallow flow simulations [28] .

ven though a solution has been proposed and was successful, the

xtended application in turbulence modeling may turn out to be

omplex. Also, the grid independent study done in [27] is too com-

lex for practical purposes especially when dealing with wet–dry

roblems. 

We try to summarize some findings related to the afore-

entioned example according to the previous publications

2,3,10,13,29] . Firstly, it was stated that the accuracy of the numer-

cal model was not much affected by reducing the mesh size. Sec-

ndly, the impacts of the wet–dry phenomena around the conical

sland on the wakes flows were not of particular interest and the

pecial treatments for this problem were therefore never explained

n detail. However, we believe the mesh size plays a significant role

nd therefore the wet–dry phenomena effects around the conical

sland become significant on the accuracy. This becomes our main

ocus in this paper. To this end, a strategy – combining the hydro-

tatic and topography reconstructions and the scalable wall func-

ions (ScWF) to accurately simulate wet–dry phenomena at the in-

erfaces, e.g. near the conical island, and to simultaneously com-

ute the proper values of the turbulence properties around such

nterfaces and other wall boundaries – is proposed. With very fine

eshes, the ScWF become beneficial and more flexible for such

 moving boundary geometry due to wet–dry interfaces. We will

how that the proposed strategy can avoid the limitations of the

tWF thus allowing users to generate meshes without imposing a

ower limit from the StWF. 

For the sake of simplicity, we employ here high-resolution

tructured meshes to obtain accurate solutions. Indeed, structured

eshes have a shortcoming for representing real (complex) ge-

metries and unstructured meshes can thus be used to capture
uch complex geometries more properly. However, generating mil-

ions of unstructured cells might not be a simple task. Note that

one of these mesh types can always guarantee to accurately cap-

ure moving boundary geometries at wet–dry interfaces unless

ery fine meshes are used. Although we only present computations

ith structured meshes here, our proposed strategy can obviously

e employed for unstructured meshes. 

Previously, some notable works had dealt with wet–dry prob-

ems for turbulent shallow flows. Wu [4] used a threshold value

e.g. 0.02 m) to judge drying and wetting; when the depth is below

his value, the cell is dry and the StWF are applied at the wet–dry

dge. Yu and Duan [7] added an extra flux to the bed-slope terms

alculations to determine wet–dry interfaces and then applied the

tWF. Cea et al. [6] employed the upwind discretization for the

ed-slope terms to capture wet–dry interfaces, where the limit of

 

+ ≈ 100 was always kept. All these approaches still exhibit the

imitation of the wall functions and are thus still not suitable for

he use of high-resolution meshes. In [4] , only the wet–dry inter-

aces of the dry cells are treated with the StWF, whereas no wall

unctions are applied to the wet cells although such cells may have

et–dry interfaces. Also, the technique in [6] only works when us-

ng the Riemann solvers (the Roe scheme). The strategy proposed

ere is a Riemann-solver-free scheme computed separately from

he convective fluxes, thus is applicable to any solver. We consider

ere four test cases to show the ability of our proposed strategy

or simulating turbulent shallow flows with very fine meshes and

et–dry problems. Our in-house code NUFSAW2D (Numerical sim-

lation of Free surface ShAllow Water 2D) is used. 

. Governing equations 

.1. 2D RANS equations for shallow flows 

Assuming negligible dispersive terms, the 2D RANS equations

or shallow flows are expressed as 

∂Q 

∂t 
+ 

∂C x 

∂x 
+ 

∂C y 

∂y 
= 

∂D x 

∂x 
+ 

∂D y 

∂y 
+ S b + S f , (1)

here Q are the conservative variables, C x and C y are the con-

ective fluxes (or the convective terms), D x and D y are the diffu-

ive fluxes (or the viscous terms) obtained in connection with the

oussinesq’s assumption, S b are the bed-slope terms, and S f are the

ed friction terms. Here, U are denoted as the primitive variables.

ll the matrices are given by 

Q = 

[ 

h 

hu 

h v 

] 

, U = 

[ 

h 

u 

v 

] 

, C x = 

⎡ 

⎣ 

hu 

huu + 

gh 

2 

2 

h v u 

⎤ 

⎦ , 

C y = 

⎡ 

⎣ 

h v 
hu v 

h vv + 

gh 

2 

2 

⎤ 

⎦ , 

 x = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

0 

2 h (νe + νt ) 
∂u 

∂x 
− 2 

3 

hκ

h (νe + νt ) 
(
∂u 

∂y 
+ 

∂v 
∂x 

)
⎤ 

⎥ ⎥ ⎥ ⎦ 

, D y = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

0 

h (νe + νt ) 
(
∂u 

∂y 
+ 

∂v 
∂x 

)
2 h (νe + νt ) 

∂v 
∂y 

− 2 

3 

hκ

⎤ 

⎥ ⎥ ⎥ ⎦ 

,

S b = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

0 

−gh 

∂z 

∂x 

−gh 

∂z 

∂y 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, S f = 

⎡ 

⎣ 

0 

−c f u 

√ 

u 

2 + v 2 

−c f v 
√ 

u 

2 + v 2 

⎤ 

⎦ , 

(2) 
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where h, u , and v are the flow depth and velocities in x and y di-

rections, respectively, g is the gravity acceleration, νe and νt are

the kinematic viscosity and the eddy viscosity, respectively, κ is

the kinetic energy, z is the bed contour, n m 

is the Manning coeffi-

cient, and c f = gn 2 m 

h −
1 
3 . 

2.2. 2D ASM equations 

A turbulence model is required to compute νt and κ in Eq. (2) .

In this paper, the ASM is used being a non-linear extension of eddy

viscosity models and here is correlated with the κ − ε model.

First, the κ − ε model is expressed as 

∂�

∂t 
+ 

∂C �,x 

∂x 
+ 

∂C �,y 

∂y 
= 

∂D �,x 

∂x 
+ 

∂D �,y 

∂y 
+ S κ−ε . (3)

For the energy dissipation rate ε, the conservative variables �, the

primitive variables Y, the convective fluxes C �, x and C �, y , the dif-

fusive fluxes D �, x and D �, y , and the turbulence source terms S κ−ε ,

are expressed as 

� = 

[
hκ
hε

]
, ϒ = 

[
κ
ε

]
, C �,x = 

[
hκu 

hεu 

]
, 

 �,y = 

[
hκv 
hεv 

]
, 

D �,x = 

⎡ 

⎢ ⎣ 

σ−1 
κ hνt 

∂κ

∂x 

σ−1 
ε hνt 

∂ε

∂x 

⎤ 

⎥ ⎦ 

, D �,y = 

⎡ 

⎢ ⎣ 

σ−1 
κ hνt 

∂κ

∂y 

σ−1 
ε hνt 

∂ε

∂y 

⎤ 

⎥ ⎦ 

, 

S κ−ε = 

[ 

P h + P κb − hε

c ε1 
ε

κ
P h + P εb − c ε2 h 

ε2 

κ

] 

. 

(4)

The terms P h , P κb , and P εb are defined as 

P h = hνt 

(
2 

(
∂u 

∂x 

)
2 + 2 

(
∂v 
∂y 

)
2 + 

(
∂u 

∂y 
+ 

∂v 
∂x 

)
2 

)
, 

P κb = c −0 . 5 
f 

U 

3 
∗ , P εb = 

c ε	 c ε2 c 
0 . 5 
μ c −0 . 75 

f 

h 

, 

(5)

where U 

∗ = 

√ 

c f 
(
u 2 + v 2 

)
is the bed friction velocity. The eddy vis-

cosity is computed by 

νt = c μ

(
κ2 

ε

)
. (6)

All coefficients in Eqs. (4) –(6) are given by [14] 

c μ = 0 . 09 , c ε1 = 1 . 44 , c ε2 = 1 . 92 , σκ = 1 . 0 , σε = 1 . 3 , 

c ε	 = [1 . 8 , 3 . 6] . 

(7)

The ASM is now employed to recalculate P h . Here this model is

briefly presented; the complete explanation can be read in [5,6] .

Only three components of the Reynolds stresses appear in shal-

low water flows: u ′ 2 , u ′ v ′ , and v ′ 2 . A new formula P ∗
h 

is applied to

account for the production of turbulent energy due to horizontal

velocity gradient expressed as 

P ∗h = h 

[
− u 

′ 2 
(
∂u 

∂x 

)
− v ′ 2 

(
∂v 
∂y 

)
− u 

′ v ′ 
(
∂u 

∂y 
+ 

∂v 
∂x 

)]

+ 

[
P uu,b + P vv ,b 

2 

]
, (8)

where P uu,b and P vv, b account for the vertical production of turbu-

lent energy due to bed shear. 
All u ′ 2 , u ′ v ′ , and v ′ 2 are first calculated. Considering the con-

tant c 1 = 1.8, a tensorial form can be written to calculate these

tresses as 

 i j r j = c 11 b i , (9)

here i = 1–3, j = 1–3, r j = 

[
u ′ 2 , v ′ 2 , u ′ v ′ 

]
, c 11 = c 1 + 

P h 
ε

− 1 . 

The matrix m ij is defined as 

 i j = c 11 δi j − (1 − c 2 ) 
κ

ε
a i j , (10)

here c 2 = 0.6 and δij is Kronecker delta. The matrices a ij and b i 
re given respectively by ⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−4 

3 

∂u 

∂x 

2 

3 

∂v 
∂y 

−4 

3 

∂u 

∂y 
+ 

2 

3 

∂v 
∂x 

−2 

3 

∂u 

∂x 
−4 

3 

∂v 
∂y 

−4 

3 

∂v 
∂x 

+ 

2 

3 

∂u 

∂y 

−∂v 
∂x 

−∂u 

∂y 
−
(
∂u 

∂x 
+ 

∂v 
∂y 

)

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

2 

3 

κ + 

κ

ε

(1 − C 2 ) 

c 11 

(
2 

3 

P uu,b −
1 

3 

P vv ,b 

)
2 

3 

κ + 

κ

ε

(1 − C 2 ) 

c 11 

(
2 

3 

P vv ,b −
1 

3 

P uu,b 

)
κ

ε

(1 − C 2 ) 

c 11 

P u v ,b 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (11)

he values of P uu,b , P vv, b , and P uv, b are computed by 

 uu,b = 2 

c f u 

2 | U | 
h 

, P vv ,b = 2 

c f v 2 | U | 
h 

, P u v ,b = 2 

c f u v | U | 
h 

, (12)

here | U | can be computed by the Keulegan’s law. For the sake of

implicity, it is assumed here to be similar to the depth-averaged

elocity. 

. Numerical model 

.1. Spatial discretization 

Integrating over a control cell � and applying the Gauss diver-

ence theorem, both Eqs. (1) and (3) are now written, respectively,

s 

 ∫ 
�

∂Q 

∂t 
d� + 

∮ 
	

(
C x + C y − D x − D y 

)
· � n d	 = 

∫ ∫ 
�

(
S b + S f 

)
d�, 

(13)

∫ ∫ 
�

∂�

∂t 
d� + 

∮ 
	

(
C �,x + C �,y − D �,x − D �,y 

)
· � n d	

= 

∫ ∫ 
�

S κ−ε d�, (14)

here 	 denotes the line boundary of the control cell � and 

�
 n

s the unit normal vector pointing outward of the boundary. All

alues h, u, v, z, n m 

, κ , and ε are defined at the center of each cell

s a cell-centered finite volume (CCFV) method is used. Further,

he water elevation is defined as η = h + z . 

.1.1. MUSCL linear reconstruction 

First the spatial discretization is explained for the convective

uxes C x , C y , C �, x , and C �, y . For the sake of simplicity, F x =
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Fig. 1. Representation of the values of L and R states at midpoint M of edge i . 
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 C x , C �,x ] and F y = [ C y , C �,y ] . The line integrals in Eqs. (13) and

14) are estimated by 

 

	

(
F x + F y 

)
· � n d	 ≈

N ∑ 

i =1 

(
F x n x + F y n y 

)
i 
L i , (15)

here N is the total number of edges for a cell p and 
L i is the

ength of the edge. In this paper, rectangular grids are used, hence

 = 4. The approximation in Eq. (15) creates a local Riemann prob-

em: a proper solver is required to calculate the flux values at the

enter of each edge. Prior to applying such a solver, the values at

very edge are interpolated from its two corresponding cell cen-

er’s values using the MUSCL linear reconstruction technique pio-

eered by van Leer [30] . In the framework of the edge-based fi-

ite volume scheme, Delis and Nikolos [31] proposed a reconstruc-

ion technique limited by some novel edge-based limiter functions,

uch as the Van Albada, MinMod, and Superbee methods. NUF-

AW2D has an edge-based data structure and the edge-based Min-

od limiter function is chosen. In our implementations, no signif-

cant differences were shown for accuracy between these limiters.

n addition, the MinMod limiter is simpler to implement. The val-

es of the left ( L ) and the right ( R ) states at midpoint M of edge i

n Eq. (1 ) can be computed as 

 

L 
M 

= W p + 

‖ r pM 

‖ 

‖ r pq ‖ 

LIM 

[ 
∇ W 

upw 

p · r pq , ∇ W 

cent · r pq 

] 
, 

 

R 
M 

= W q −
‖ r Mq ‖ 

‖ r pq ‖ 

LIM 

[ 
∇ W 

upw 

q · r pq , ∇ W 

cent · r pq 

] 
, 

(16) 

here W = [ η, U, ϒ] . ‖ r pM 

‖ , ‖ r Mq ‖ , and ‖ r pq ‖ are the scalar

engths between the center points p and q and the midpoint M

t edge, given in Fig. 1 . 

The variables ∇W 

upw 

p , ∇W 

upw 

q , and ∇W 

cent are the delta gradi-

nts corresponding to the two adjacent cells p and q , computed as

 W 

upw 

p = 2 ∇ W p − ∇ W 

cent , ∇ W 

upw 

q = 2 ∇ W q − ∇ W 

cent , 

W 

cent · r pq = W q − W p . 

(17) 

he symbol LIM denotes the edge-based MinMod limiter function

sed in this paper to preserve the monotonicity of W 

L 
M 

and W 

R 
M 

,

xpressed as 

IM[ a, b] = b max 

[
0 , min 

(
a 

b 
, 1 

)]
, (18)

here a = ∇W 

upw 

p · r pq and b = ∇W 

cent · r pq , e.g. for computing

 

L 
M 

. The complete formulas can be found in [31] . 

As shown in Eq. (16) , the reconstructed values W are obtained

n this paper based on η and the primitive variables U and Y. There

s another option, probably being a more common approach, which

s to compute Eq. (16) using η and the conservative variables Q

nd �. Each approach has its own advantages and disadvantages.
sing the conservative variables, a relationship between conser-

ation laws, symmetric system, and hyperbolic system are well-

efined particularly when dealing with highly discontinuous flows

32] . However, if a wet–dry problem appears, this approach may

ause a serious problem, since it is required to transform both the

nit discharges hu and hv in the matrix Q back to the velocities u

nd v by a division of the small value of h . This results in very high

alues of u and v . If no wet–dry problem exists, both approaches

ield similar results. 

On the other side, using the primitive variables may suffer from

n energy loss problem in subcritical flows as investigated by Beg-

udelli et al. [33] . However, this technique is admittedly cheaper

s the calculations for transforming the unit discharges back to

he velocities are not required. It should be noted, Begnudelli et al.

33] also concluded that the primitive variable reconstructions may

e advantageous in some cases, as followed by Delis and Nikolos

31] by reconstructing the primitive variables to successfully simu-

ate complex shallow water flows. Obviously, some techniques had

een developed to tackle the problem using the conservative vari-

bles, see for example [19] , which has been proven to be accu-

ate. However, this technique requires more CPU time. Therefore,

he conservative variables are not reconstructed here. Another rea-

on is that the gradients used to compute the primitive variables

an be used directly to calculate the diffusive fluxes. 

.1.2. Hydrostatic and topography reconstructions 

The next step – prior to calculating the convective fluxes using

 proper solver – is to apply the hydrostatic and topography recon-

tructions at each edge (see point M in Fig. 1 ). Similar to [25,34] ,

he bed elevation at each edge is obtained by 

 M 

= max 
(
ηL 

M 

− h 

L 
M 

, ηR 
M 

− h 

R 
M 

)
. (19)

ow, the hydrostatic reconstruction is applied to correct the depth

t edge, thus 

 

L 
M 

= max 
(
ηL 

M 

− z M 

, 0 

)
, h 

R 
M 

= max 
(
ηR 

M 

− z M 

, 0 

)
. (20)

t is obvious that Eq. (20) will always ensure non-negative water

epth, despite facing wet–dry problems. To preserve the flux bal-

nce for the calculation of the bed-slope terms, z M 

must be remod-

fied by applying the bed topography reconstruction as [25] 

 M 

← z M 

− max 
(
0 , z M 

− ηL 
M 

, z M 

− ηR 
M 

)
. (21)

q. (21) will be explained later in Section 3.3.2 . 

.1.3. Convective fluxes calculation 

Using the reconstructed values in Eq. (16) and after the hy-

rostatic reconstruction in Eq. (20) , the convective fluxes in

q. (15) are computed for each edge i using the CU scheme by (
F x n x + F y n y 

)
i 
L i 

= 


L i (
a in + a out 

)
i 

⎡ 

⎢ ⎣ 

[
(a in F x (W 

R 
M 

) + a out F x (W 

L 
M 

)) n x + 

(a in F y (W 

R 
M 

) + a out F y (W 

L 
M 

)) n y −
a in a out (W 

R 
M 

− W 

L 
M 

) 
]

⎤ 

⎥ ⎦ 

i 

, (22) 

here a in and a out are the local one-sided propagation speeds

omputed by 

a in = − min ( �1 
L 
M 

, �1 
R 
M 

, 0) , 

 

out = max ( �5 
L 
M 

, �5 
R 
M 

, 0) . (23) 
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Fig. 2. Properties for calculating the gradient of W for rectangular grids. 
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�1 ≤ . . . ≤ �5 are the eigenvalues of the 5 × 5 global system

Jacobian matrix for Eqs. (1) and (3) . This matrix is expressed as 

⎡ 

⎢ ⎢ ⎢ ⎣ 

0 n x n y 0 0 

(−u 2 + gh ) n x − u v n y 2 un x + v n y un y 0 0 

−u v n x + (−v 2 + gh ) n y v n x un x + 2 v n y 0 0 

−(κun x + κv n y ) κn x κn y un x + v n y 0 

−(εun x + εv n y ) εn x εn y 0 un x + v n y 

⎤ 

⎥ ⎥ ⎥ ⎦ 

. 

(24)

3.1.4. Diffusive fluxes calculation 

For the diffusive fluxes, the discretization of the derivative form

of the primitive variables is fundamental. First, it is necessary to

calculate the derivations of those variables with respect to x and

y directions at cells. Second, these derivation values are used to

compute the derivations at the edges. For the calculations at the

cells, as previously explained in Section 3.1.1 , the gradients com-

puted for the MUSCL reconstruction technique in Eq. (16) with the

values of U and Y can be used directly. For rectangular grids, the

gradients of W at cell p are simply calculated as (see Fig. 2 ) (
∂W 

∂x 

)
p = 

W k =2 − W k =4 

2 
x 
, 

(
∂W 

∂y 

)
p = 

W k =3 − W k =1 

2 
y 
. (25)

For the sake of simplicity, G x = [ D x , D �,x ] and G y = [ D y , D �,y ] and

they are calculated as 

−
∮ 
	

(
G x + G y 

)
· � n d	 ≈ −

4 ∑ 

i =1 

(
G x n x + G y n y 

)
i 
L i . (26)

The centered method computed by averaging the values of two

cells corresponding to an edge (see points p and q in Fig. 1 ) – is

employed to calculate the gradient at edges. Sufficient accuracy can

be achieved at no extra effort, while comput ational time remains

acceptably low. This method is written as 

(G x n x + G y n y ) i 
L i 

= 


L i 

2 

[(G x (W p ) + G x (W q )) n x + (G y (W p ) + G y (W q )) n y ] i . 

(27)

Other discretization schemes are also possible for the diffusive

fluxes, see [35] . As one can see, Eq. (27) can easily be computed

after the gradient values at the cells are known. According to Cea

et al. [6] , a different formulation of the centered scheme may

be applied by averaging the eddy viscosity, water depth, and ve-

locity gradient at an edge of its two corresponding cells. It is

also possible to employ the upwind discretization for the diffusive

fluxes; however, this technique is more complex, since one needs
o know the eigenstructure of the Jacobian matrix – as given in

he Roe solver – which is not required in the CU scheme (as a

iemann-solver-free method) nor in the discretization of the bed-

lope terms presented in Section 3.1.5 . 

.1.5. Bed-slope terms calculation 

The bed-slope terms are discretized similar to [25,36] . This

ethod is a Riemann-solution-free technique which can be com-

uted separately from the convective fluxes. In [25] , it was proven

hat this technique was suitable to balance the fluxes for wet–dry

roblems. This technique for x direction ( S b x ) is expressed as 

 ∫ 
�

S b x d� = −
∫ ∫ 

�

(
gh 

∂z 

∂x 

)
d� ≈ − g 

2 

4 ∑ 

i =1 

[((
h 

L 
Mi 

+ h 

R 
Mi 

)
2 

+ h p 

)

z Mi −
(
h 

L 
Mi 

+ h 

R 
Mi 

)
2 

z p 

]
n x i 
L i . (28)

t should be noted that Eq. (28) is applied in this paper in an edge-

ased manner, where h L M 

and h R M 

are computed by Eq. (20) and

 M 

is obtained using Eq. (21) . Eq. (21) is valid to compute wet–

ry and dry-dry interfaces and evidently gives no change to wet-

et interfaces as investigated in [25] . This will also be explained

urther in Section 3.3.2 . A similar approach can also be applied to

 direction ( S b y ). 

.1.6. Friction terms calculation 

As pointed out in [25,31] , a fully explicit treatment of the fric-

ion source terms may give oscillations due to very low water

epths on rough beds. To tackle this problem, one may use vary-

ng time step so that a very small value is achieved ensuring a

roper limitation of the Courant–Friedrichs–Lewy (CFL) number or

ne can refine the computational grids during simulation time.

oth approaches require, however, high computational cost. An-

ther possibility is to apply a semi-implicit technique, so that the

riction source terms in x direction can be expressed as 

(hu ) t∗p ← �−1 (hu ) t∗p , � = 1 

+ g 
t 

[
(1 − θ ) 

(n 

2 
m 

√ 

u 

2 + v 2 

h 

4 

3 

)
t∗
p + θ

(n 

2 
m 

√ 

u 

2 + v 2 

h 

4 

3 

)
(t∗−1) 
p 

]
, 

(29)

here 
t defines the time step and the symbol p corresponds to

he values at the cell. θ is an implicitness coefficient, which is set

o 0.5 in this paper. t ∗ defines a calculation level for the Runge–

utta second-order (RKSO) method. A similar approach can also be

pplied to y direction. 

.1.7. Turbulence source terms calculation 

The technique presented in [6,37] is employed according to

hich the diffusive fluxes of the ASM in Eq. (27) are split into

wo parts – the orthogonal and the non-orthogonal terms. The for-

er was computed semi-implicitly and the latter was calculated

xplicitly. For rectangular grids, the latter is zero. Instead of be-

ng computed as the normal fluxes, like the convective fluxes of

he 2D RANS equations, the former is treated as a source term,

hich is computed together with the source term S κ−ε . According
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Algorithm 1 Concept of the calculation for temporal discretization. 

1: set the coefficients for the RKSO scheme 

αa 
(t∗=1) 

= 1; αb 
(t∗=1) 

= 0; αa 
(t∗=2) 

= 0.5; αb 
(t∗=2) 

= 0.5 

2: set the initial value of Q for all cells at each time step 

3: for (p = 1) to (p = total number of cells ) do 

4: Q 

(t∗=0) 
p = Q 

t 
p ; �(t∗=0) 

p = �t 
p 

5: end for 

6: for (t∗ = 1) to (t∗ = 2) do 

7: for (p = 1) to (p = total number of cells ) do 

8: Q 

t∗
p = αa 

t∗

[
Q 

(t∗=0) 
p - 


t 

A p 

( 4 ∑ 

i =1 

((
C x − D x − S b x 

)
n x + 

(
C y − D y − S b y 

)
n y 

)
i 
L i 

)
(t∗−1) 

]
+ αb 

t∗ Q 

(t∗−1) 
p 

9: transforming back : conservative variables hu t∗ and h v t∗ → primitive variables u t∗ and v t∗
10: updating Q 

t∗
p ← friction source terms are now taken into account, so that: Q 

t∗
p ← �−1 Q 

t∗
p 

11: �t∗
p = αa 

t∗

[
�(t∗=0) 

p − 
t 

A p 

( 4 ∑ 

i =1 

(
C �,x n x + C �,y n y 

)
i 
L i 

)
(t∗−1) 

]
+ αb 

t∗ �(t∗−1) 
p 

12: updating �t∗
p ← turbulent source terms are now taken into account, so that: �t∗

p ← �t∗
p + 
t H 

(t∗−1) 
p 

13: saving the final values for the subsequent time step when ∗ = 2 as : 

Q 

(t+1) 
p = Q 

(∗=2) 
p and �(t+1) 

p = �(∗=2) 
p 

14: end for 

15: end for 

t

T  

i

H

w

3

 

m  

c  

P  

T  

t

3

 

c  

t

, 

 

a  

v  

h  

t  

a  

c  

b  

A  

t

c  

u  

p

i  

c  
o Eqs. (4) and (5) , the new symbols are noted 

H 1 = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

∮ 
	

[
σ−1 

κ hνt 

(
∂κ

∂x 
+ 

∂κ

∂y 

)]
· � n d	

∮ 
	

[
σ−1 

ε hνt 

(
∂ε

∂x 
+ 

∂ε

∂y 

)]
· � n d	

⎤ 

⎥ ⎥ ⎥ ⎦ 

, 

H 2 = 

⎡ 

⎣ 

P h 

c ε1 
ε

κ
P h 

⎤ 

⎦ , H 3 = 

[ 

P κb 

P εb 

] 

, H 4 = 

⎡ 

⎢ ⎣ 

− ε

κ

−c ε2 
ε

κ

⎤ 

⎥ ⎦ 

. 

(30) 

he total of the diffusive fluxes and the source term S κ−ε at cell p

s now denoted by H p and is computed semi-implicitly by 

 

(t∗−1) 
p = 

[
max 

(
H 

(t∗−1) 
1 

A p 
, 0 

)
+ H 

(t∗−1) 
2 

+ H 

(t∗−1) 
3 

]

+ �t∗
[

min 

(
H 

(t∗−1) 
1 (

A p �(t∗−1) 
) , 0 

)
+ H 

(t∗−1) 
4 

]
, (31) 

here A p is the area of cell p . 

.1.8. Some limitations for turbulence properties 

To ensure computational stability, the turbulence properties

ust be limited, so that negative values of the Reynolds stresses

an be avoided. These limitations include limiter values for both

 h and P κb – and realizability conditions for νt , u ′ 2 , u ′ v ′ , and v ′ 2 .
he details are not given here; interested readers are thus referred

o [5,6,38] . 

.2. Temporal discretization 

Using the RKSO method, the procedure of the temporal dis-

retization is explained in Algorithm 1 and following [39] is writ-

en as 
K 

t 
p = −
t 

A p 

[
4 ∑ 

i =1 

((
C x − D x − S b x 

)
n x + 

(
C y − D y − S b y 

)
n y 

)
t 
i 
L i 

]

Q 

t∗
p = Q 

t 
p + K 

t 
p , Q 

t∗
p ← �−1 Q 

t∗
p , 

Q 

t+1 
p = 

1 

2 

(
Q 

t 
p + Q 

t∗
p + K 

t∗
p 

)
, 

(32a) 

K �
t 
p = −
t 

A p 

[
4 ∑ 

i =1 

(
C �,x n x + C �,y n y 

)
t 
i 
L i 

]
, 

�t∗
p = �t 

p + K �
t 
p , �t∗

p ← �t∗
p + 
t H 

t 
p , 

�t+1 
p = 

1 

2 

(
�t 

p + �t∗
p + K �

t∗
p 

)
. 

(32b) 

The calculations are started by explicitly calculating h t∗p , hu t∗p ,
nd h v t∗p in the matrix Q 

t∗
p without the friction terms. Both u t∗p and

 

t∗
p can also be calculated without the friction terms by dividing

u t∗p and h v t∗p with h t∗p . These velocities are then used to update

he values of hu t∗p and h v t∗p using Eq. (29) so that the friction terms

re now included. To reduce computational time, h t∗p is used as a

riterion to determine whether hu t∗p , h v t∗p , hκt∗
p , and hεt∗

p should

e computed or not, see Algorithm 2 . If h t∗p is calculated as a dry

lgorithm 2 Wet-dry treatment for a very low water depth less

han h min = 10 −10 m. 

1: if h ∗ ≤ h min then 

2: hu ∗, h v ∗, u ∗, v ∗, κ∗, and ε∗ are set to 10 −15 

3: else 

4: u ∗ = 
hu ∗

h ∗
, v ∗ = 

h v ∗

h ∗
, κ∗ = 

hκ∗

h ∗
, and ε∗ = 

hε∗

h ∗
5: end if 

ell 
(
h t∗p ≤ 10 −10 m 

)
, all the corresponding variables hu t∗p , h v t∗p ,

 

t∗
p , v t∗p , κt∗

p , and εt∗
p are simply set to a very small value (in this

aper 10 −15 ). If h t∗p is calculated as a wet cell, both hu t∗p and h v t∗p 
n the matrix Q 

t∗
p and both hκt∗

p and hεt∗
p in the matrix �t∗

p are

omputed. Note that we have monitored the mass conservation
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Fig. 3. Meshing system in a domain with a conical island. 

Fig. 4. Near-wall mesh and near-wall scaling of turbulent boundary layer: τ wall is the wall shear stress. 
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with the threshold parameter h min = 10 −10 m in all simulations

presented in this paper. Here the time step 
t is limited by the

Courant–Friedrichs–Lewy (CFL) number of 0.5 and by considering

the Peclet (Pe) number ≤ 2/CFL, see [40] . We also consider the

CFL limitation for the local one-sided propagation speeds of the

CU scheme in [19] . 

3.3. Boundary conditions 

3.3.1. Flow (open) boundary 

Following [41] , the characteristic method is applied for subcrit-

ical flow boundaries. When h R 
M 

is given, u R 
M 

is computed as 

u 

R 
M 

= u 

L 
M 

+ 2 

√ 

g h 

L 
M 

− 2 

√ 

g h 

R 
M 

. (33)
n a similar way when u R M 

is specified, h R M 

is calculated by 

 

R 
M 

= 

(
u 

L 
M 

− u 

R 
M 

+ 2 

√ 

g h 

L 
M 

)
2 

4 g 
. (34)

hen unit discharge hu R M 

is given as a boundary condition, the cor-

esponding h R M 

and u R M 

can be calculated by applying u R M 

= 

hu 
R 
M 

h R 
M 

,

o 

hu 

R 
M 

h 

R 
M 

= u 

L 
M 

+ 2 

√ 

g h 

L 
M 

− 2 

√ 

g h 

R 
M 

. (35)

ince a non-linear relationship appears, an iteration technique, e.g.

he Newton–Raphson method, is required to solve Eq. (35) . In the
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Fig. 5. Strategy of the hydrostatic and topography reconstructions. 

Fig. 6. Case 1: Domain of circular cylinders. 

c  

s

 

b  

o  

w  

b  

Fig. 7. Case 1: Visualization of wakes along the channel at 283.2 s. 
ase of supercritical flows, all the values h R 
M 

, hu R 
M 

, and h v R 
M 

are

imply set similar to h L 
M 

, hu L 
M 

, and h v L 
M 

, respectively. 

Regarding the turbulence model, the turbulent intensity could

e specified at flow boundary cells (see Fig. 3 ) within the range

f 1–10% for the low–high turbulent cases in order to compute κ ,

hereas the turbulent length scale could be set to 0.22 of the inlet

oundary layer thickness to compute ε. In general, it might, how-
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Fig. 8. Case 1: Visualization of wakes near the cylinder at 283.2 s, 286.4 s, 289.6 s, and 292.9 s. 
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Fig. 9. Case 1: Convergence histories at point P1. 

Fig. 10. Case 2: Domain of channel expansion. 

Fig. 11. Case 2: Convergence histories at point P1. 
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Fig. 12. Case 2: Comparisons along section 1-1. Fig. 13. Case 2: Comparisons and along x = 0.675 m. 

Fig. 14. Case 2: Visualization of the velocity magnitude near the recirculation zone at 400 s. 
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Fig. 15. Case 3: domain of conical island. 

Fig. 16. Case 3: Results of C-3-1 at the measurement point P1. 
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t
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f  

e

 

c  

s  
ver, be difficult to know such ranges accurately. Therefore, an al-

ernative way given in [6] is applied to approximate the turbulence

arameters at flow boundary cells as 

κ t+1 
p = 

[(
g n 

2 
m 

h p 
− 1 

3 

)
0 . 75 

(
u p 

2 + v p 2 
)

c μ c ε	

]
t+1 , 

εt+1 
p = 

[g n 

2 
m 

h p 
− 1 

3 

(
u p 

2 + v p 2 
)

1 . 5 

h p 

]
t+1 , 

νt 
t+1 
p = 

[
0 . 19 υ h p 

√ 

g n 

2 
m 

h p 
− 1 

3 

(
u p 

2 + v p 2 
)]

t+1 , 

(36) 

here υ is the von-Karman coefficient (0.41). At outlet boundaries,

here is no need to calculate the turbulence properties, where
t+1 
p , εt+1 

p , and νt 
t+1 
p can simply be set similar to the values of

he closest adjacent cell. 

.3.2. Wall boundary with the ScWF 

To explain Eqs. (21) and (28) as well as the meshing system in

UFSAW2D, a domain with a conical island is sketched in Fig. 3 .

he meshes are built with rectangular cells for the whole domain.

t all wall boundaries, the fluxes normal to the wall are set to zero,

hereas h R M 

= h L M 

is employed. It is now assumed that in the cer-

ain time levels t and t + 1 , the flow characteristics become simi-

ar to that shown in Fig. 3 . An example is taken for cell ( i, j + 2 ).

t time level t , cell ( i, j + 2 ) must be treated as a wall boundary

ell, since its adjacent cell ( i + 1 , j + 2 ) is calculated as a dry cell.

herefore, a proper wall function must be applied to give the cor-

ect values of the turbulence properties. At time level t + 1 , one

annot, however, treat cell ( i, j + 2 ) as a wall boundary cell, since
ts adjacent cell ( i + 1 , j + 2 ) becomes a wet cell and consequently,

ell ( i + 1 , j + 2 ) must now be calculated as a wall boundary cell. 

As previously mentioned in Section 1 , the cell center ( i, j + 2 )

t time level t must be placed in the logarithmic region to satisfy

he criteria y + ≥ 11.067, when the StWF are preferred (see Fig. 4 ).

ince y + is a function of the wall friction velocity that may change

uring simulation time, it is unfortunately not an easy task to do,

nless one can predict the wall friction velocity at the initial time

evel appropriately prior to starting the simulation and ensure such

 wall friction velocity to be relatively constant during simulation

ime. Even, for cases dealing with wet–dry problems – in which

ery high-resolution meshes are used thus the water fluctuations

ecome very sensitive to determine the wall boundary geometries

this task becomes more difficult. The extent of the logarithmic

egion in Fig. 4 is much larger for high Reynolds numbers (turbu-

ent cases) than for low Reynolds numbers (laminar cases) [42] .

herefore, for turbulent cases, one might still obtain proper results

espite still using the StWF for wall boundary cells. However, as

he meshes become finer and finer, results will deteriorate. 

To remedy the shortcoming of the StWF, Menter and Esch

42] proposed the ScWF for a cell p (as a wall boundary cell) writ-

en as 

 

tg 
p = 

w 

∗
p 

υ
ln 

(
y + p E 

)
, y + p = max 

(
11 . 067 , 

� y nor 
p w 

∗
p 

νe 

)
, (37)

here w 

tg 
p is the velocity component of cell p parallel to the wall

it can either be u p or v p ), w 

∗
p is the wall friction velocity, y + p de-

otes the dimensionless wall distance, � y nor 
p is the normal distance

rom cell center p to the wall, and E denotes the roughness param-

ter. 

In this paper, E is set to 8.432 as the material in all benchmark

ases are assumed to be smooth wall. Another formula is also pos-

ible to calculate E , e.g. see [43] . Eq. (37) prevents the values at
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Fig. 17. Case 3: Results of C-3-2, C-3-3, and C-3-4 at the measurement point P1. 
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wall boundary cell centers to slide into the linear profile area (vis-

cous sublayer) as y + p must always be ≥ 11.067, so that the defini-

tion of y + p is now separated from the mesh size. Physically, this

phenomenon is interpreted for very fine meshes as a limitation

that the cell p will be treated as a wall boundary cell, only if it acts

as a boundary edge of the viscous sublayer, thus giving a linear re-

lationship between w 

tg 
p and w 

∗
p . Obviously, this becomes a major

drawback, in which the results may not depend on the logarith-

mic profile assumption, so that the effect of the displacement of

the viscous sublayer is not taken into account anymore. However,

one should accept this shortcoming, as all wall functions formula-

tions never accurately resolve the sublayer [42] . To solve Eq. (37) ,

the Newton–Raphson iteration technique is employed, since a non-

linear relationship exists, expressed as Algorithm 3 . Normally, the

value of w 

∗
p 

trial 0 can be chosen freely and the iteration procedure

ends if the absolute error between the current and previous trials

becomes less than a specific value, e.g. 10 −4 . If this absolute error

value is used, the total number of trials becomes unpredictable and

the compiler can fail to vectorize the loop. In terms of the simula-
ion efficiency using millions of cells, this is, however, undesirable,

ince the computation time becomes extremely high. Therefore, if

he solution goes to line 4 in Algorithm 3 , it is suggested to set

he value of w 

∗
p 

trial 0 similar to the value of w 

∗
p given on line 2.

his gives a faster convergence, which is less than 20 trials for all

ases simulated. 

As also done in [5] , the turbulence properties κ and ε at the

enters of wall boundary cells for the subsequent time level are not

alculated by solving Eq. (3) , but their values are simply computed

y 

t+1 
p = 

( w 

∗
p 

2 

√ 

c μ

)
t+1 , εt+1 

p = 

( w 

∗
p 

3 

υ � y nor 
p 

)
t+1 . (38)

ince the surface piercing case is simulated, the total incoming and

utgoing fluxes for all dry cells – e.g. cell ( i + 1 , j + 2 ) at time level

 or cell ( i + 2 , j + 2 ) at the top of the island in Fig. 3 – must be en-

ured to be zero. This can be achieved by several approaches, e.g.

pplying a conditional statement to distinguish such dry cells us-

ng a limiter depth value of 10 −10 m at those wall boundary cells.
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Fig. 18. Case 3: Results of C-3-4 at points A1, A2, A3, and A4. 

Algorithm 3 Algorithm for calculating w 

∗
p . 

1: if 

[
w 

tg 
p ≤ 11 . 067 

ln 

(
11 . 067 E 

)
νe 

� y nor 
p υ

]
then 

2: w 

∗
p = 

υ w 

tg 
p 

ln 

(
11 . 067 E 

)
3: else 

4: solve the Newton–Raphson iteration as follows: 

5: w 

∗
p 

trial 1 = w 

∗
p 

trial 0 −
w 

∗
p 

trial 0 ln 

(� y nor 
p E 

νe 
w 

∗
p 

trial 0 
)

− υ w 

tg 
p 

ln 

(� y nor 
p E 

νe 
w 

∗
p 

trial 0 
)

− 1 

, 

6: w 

∗
p 

trial 2 = w 

∗
p 

trial 1 −
w 

∗
p 

trial 1 ln 

(� y nor 
p E 

νe 
w 

∗
p 

trial 1 
)

− υ w 

tg 
p 

ln 

(� y nor 
p E 

νe 
w 

∗
p 

trial 1 
)

− 1 

, 

7: w 

∗
p 

trial 3 = …

8: end if 
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t  
owever, this may end up with many complex i f − then − else

tatements in addition to that given in Algorithm 3 which destroy

ny possibility for vectorizing the loops due to repeated branch-

ngs. For this reason, the hydrostatic and topography reconstruc-

ions given in Eqs. (21) and (28) and sketched in Fig. 5 – are

tilized. For wet-wet interface, the hydrostatic reconstruction in

q. (20) must be applied to cell p , so that the conservativeness

f the convective and diffusive fluxes is achieved, where now h L 
M 

 h p and h p itself does not change. Consequently, z M 

must also

e recalculated to have a proper bed slope value according to h L M 

.

t should be noted z p is obviously not altered. The value given by
q. (19) will be similar to that given by Eq. (21) for this wet-wet

ase. Since wet-wet interface exists, cell p is not categorized as a

all boundary cell, thus no ScWF are applied. For wet–dry inter-

ace, it is clearly shown that no-flux-transfer condition between

ells p and q must be satisfied. This can be achieved by the hy-

rostatic reconstruction that now h L 
M 

= 0, whereas h p still does

ot change. In this case, the topography reconstruction must be

pplied to both cells p and q , where z M 

= ηL 
M 

. This can only be

one by Eq. (21) and not by Eq. (19) . Therefore, Eq. (21) must be

sed for all cases, which evidently gives no effect to wet-wet in-

erface as previously mentioned in Section 3.1.2 . It would easily be

nderstood that these hydrostatic and topography reconstructions

ill also give no incoming nor outgoing fluxes for dry-dry inter-

ace, so that a zero-flux condition can always be ensured for dry

ells, although these cells are included in all calculation levels. 

For the sake of completeness, the proposed strategy is written

s pseudo-code in Algorithm 4 , which is applied in each calcula-

ion step of the RKSO method. It is shown in Algorithm 4 that

ince h t∗p can be computed in a fully explicit way for the subse-

uent time level, this variable is used to decide whether the cor-

esponding unit discharges, velocities, and turbulence properties

re computed or not; the computational cost can thus be reduced

specially for cases dominated by wet–dry problems. For internal

ells (see Fig. 3 ), where the wall boundary geometries may change,

he value of h t p is used as benchmark whether to apply the ScWF

n Eq. (37) or to calculate the turbulence properties by solving the

orresponding fluxes in Algorithm 1 . It should be noted that the

riterion on line 14 in Algorithm 4 is done by the hydrostatic and

opography reconstructions. 

. Results 

NUFSAW2D is written in Fortran and was compiled using In-

el Fortran compiler 17.0.6. The target machine is a Linux com-
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Fig. 19. Case 3: Visualization of wakes flows along the channel using C-3-4 at 45 s. 
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puting cluster “CoolMUC-2” operated by the Leibniz Supercomput-

ing Centre [44] . Our simulations were performed with Open Multi-

Processing (OpenMP) parallelization technique on 28 cores, where

the optimization flag “–O3–xHost” was applied and double preci-

sion arithmetic (64-bit) was used. An overview of the data struc-

ture, parallel efficiency, and accuracy of our code can be found in

our recent works [45,46] . νe = 10 −6 m 

2 s −1 , ρ = 998.2 kg m 

− 1 
3 ,

and g = 9.81 m s −2 are applied. All the turbulence coefficients are

set similar to those given in Eq. (7) , where c ε	 = 3.6 is used. 

4.1. Case 1: Flow past circular cylinder 

We adopt this case from [47] , who experimentally investigated

turbulent wakes in a shallow water layer. This case is selected to

test the ability of our model to achieve convergence with the ScWF

for the use of very fine meshes. The experiment was performed on

a 7.8 × 6 m channel, where a circular cylinder with a diameter of

0.62 m was located as shown in Fig. 6 . A depth of 0.02 m and

a velocity of 0.295 m/s were set constant at upstream, while free

outflow condition was conducted at downstream. This produced

a fully developed turbulent condition with a Reynold number of

5900 for the free stream flow or 183,0 0 0 based on the cylinder
imension. The Manning coefficient was 0.01 s m 

− 1 
3 . No measure-

ent data at a specific point was presented; however, a Strouhal

umber of 0.215 was observed experimentally for indicating the

ortex-shedding frequency. We present our results at point P1 in

ig. 6 only to show the convergence rates of our model. 

For our simulation, we set 0.02 m depth with zero velocity

nitially. Four mesh configurations are tested: (1) 780 × 600, (2)

040 × 800, (3) 1560 × 1200, (4) 2080 × 1600 cells, which give

he square sizes of 0.01 m, 0.0075 m, 0.005 m, and 0.00375 m

enoted by C-1-1, C-1-2, C-1-3, and C-1-4, respectively. The sim-

lation is performed for 300 s (although NUFSAW2D can achieve

onvergence at about 200 s) to show the results do not deteriorate

or the whole simulation. The result of C-1-4 at 283.2 s is visu-

lized in Fig. 7 , which shows the establishment of a vortex-street

attern. In general, a fuzzy and streaky pattern is shown due to

mall-scale turbulent mixing created by bottom shear and lateral

nstabilities. 

To know the Strouhal number of the numerical results, the

ortex-shedding frequency must be estimated. In [47] , the oscilla-

ion periods of the vortex-street pattern were observed averagely

ver 10 cycles from the video record. For this, we observe the

isualizations of C-1-1, C-1-2, C-1-3, and C-1-4 for the last 20 s
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Algorithm 4 The proposed strategy in pseudo-code. 

1: define an index-relationship between cell and edge 

2: for total number of edges do 

3: calculate the convective, diffusive, and bed-slope fluxes using Eqs. (22), (27) and (28) in an edge-based manner 

F x i , F y i , G x i , G x i , S b x i , S b y i 
4: end for 

5: for total number of cells do 

6: calculate depth h t∗p using Algorithm 1 

7: using h t∗p to decide whether unit discharges must be calculated or not 

8: if h t∗p > 10 −10 m then 

9: calculate unit discharges without friction source term hu t∗p and h v t∗p using Algorithm 1 

10: transforming unit discharges hu t∗p and h v t∗p back to velocities u t∗p and v t∗p 
11: including the friction source terms to velocities using Eq. (29) and reupdating unit discharges using Algorithm 1 

12: calculating the turbulence properties based on the cell type (see Fig. 3) as follows: 

13: if internal cells then 

14: if h (t∗−1) 
p > 10 −10 m and (at least) one of the corresponding convective fluxes (normal to edge) is zero then 

15: calculate κt∗
p and εt∗

p using the ScWF in Algorithm 3 

16: else if h (t∗−1) 
p > 10 −10 m then 

17: calculate κt∗
p and εt∗

p by solving Eq. (3) 

18: else 

19: set κt∗
p and εt∗

p to 10 −15 

20: end if 

21: else if wall boundary cells then 

22: calculate κt∗
p and εt∗

p using the ScWF in Algorithm 3 

23: else if flow (open) boundary cells then 

24: calculate κt∗
p and εt∗

p without solving the ASM 

25: end if 

26: else 

27: set hu t∗p , h v t∗p , u t∗p , v t∗p , κt∗
p , and εt∗

p to 10 −15 

28: end if 

29: end for 
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f our simulations every 0.1 s. For the sake of brevity, only the

esults of C-1-4 are visualized here, see Fig. 8 . One can see the

ortex-shedding appears by the fuziness of the turbulent mixing.

he lateral instabilities keep continuing after 283.2 s until a similar

ortex-street pattern but with a different phase appears at about

92.9 s. To this end, the period is approximated to be 9.7 s. A

imilar way is observed for C-1-1, C-1-2, and C-1-3 as well giv-

ng the periods of 8.5 s, 8.9 s, and 9.3 s, respectively. C-1-1, C-1-

, C-1-3, and C-1-4 thus calculate the Strouhal numbers of 0.247,

.236, 0.226, and 0.217, respectively. C-1-4 becomes the most accu-

ate one for representing the Strouhal number in agreement with

he observation. This shows that the mesh size refinement plays

n important role for the accuracy. 

The convergence histories at point P1 are shown in Fig. 9 .

n general, all the configurations achieve a similar convergence
Fig. 21. Case 3: Convergence history fo
pproximately at 200 s. C-1-1 computes the lowest magnitudes,

here C-1-3 and C-1-4 exhibit similar magnitudes. One can also

ee that our results do not deteriorate using the very fine meshes

nd are always able to achieve convergence. 

.2. Case 2: Turbulent recirculating flow due to channel expansion 

This case is adopted from [4 8,4 9] , where both experiment and

umerical investigations (with StarCCM+) were performed to in-

estigate the recirculation zone length ( L circ ). Similar to case 1, we

elect this case to test our model’s ability to achieve convergence

or very fine meshes with the ScWF – and to show the accuracy

f our model in predicting L circ as well. The experiment was con-

ucted with a 8 × 0.8 m channel which has a symmetrical rectan-

ular section and a streamwise mean slope of 0.18%, see Fig. 10 .
r quasi-steady states at point P1. 
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Fig. 20. Case 3: Visualization of wakes flows near the conical island using C-3-4 at 45 s, 47 s, and 49 s. 
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The bed was PVC made with a smooth surface. To conduct an ex-

pansion in the channel, a PVC board was added to flexibly change

the channel width. A constant discharge of 20 l/s was given at

upstream, whereas outflow condition was applied at downstream.

The Reynolds number was 94,0 0 0 for the free stream flow. A bot-

tom roughness value of 3.4 ×10 −5 m was used; we thus convert

this value here using the Colebrook-White equation and the Darcy–

Weisbach coefficient and assume as a constant value resulting a

Manning coefficient of 0.0094 s m 

1 
3 . StarCCM+ was employed in

[48] for numerical simulations with a rigid-lid (constant water-

depth) assumption, thus the effect of free-surface fluctuations was

not taken into account. Instead of simulating with the original

channel condition in Fig. 10 , a 20 m long channel was modeled to

ensure that the inlet and outlet boundary conditions did not affect

the flow patterns at the expansion region. The StWF with a con-

dition of 30 < y + < 500 were chosen. For this, a grid study was

undertaken to know a proper mesh size, with which the 20 m long

channel was divided into three parts for one simulation: coarse

(0.0125 m), average (0.0 0625 m), and fine meshes (0.0 03125 m)

for achieving convergence. 

In this work, such a grid study is not required. To prove that

NUFASW2D can achieve convergence for all mesh sizes, we sim-
ly choose four mesh configurations: (1) 800 × 80, (2) 1600 × 160,

3) 20 0 0 × 200, (4) 2670 × 267 cells, which give the square sizes

f 0.01 m, 0.005 m, 0.004 m, and 0.003 m denoted by C-2-1,

-2-2, C-2-3, and C-2-4, respectively. In the experiment, the re-

irculating zone was always in an unsteady condition, thus L circ 

hanged with respect to time. Averagely, it was observed that L circ 

 1.29 m with the recirculation center at (0.735, 0.104) m – and

 depth of 0.156 m and a velocity of 0.23 m/s at point P1. First,

e must estimate a proper steady state condition for this sim-

lation: by observing the convergence history at P1 and by en-

uring a small difference between the inflow and outflow dis-

harges. For this, we perform our computations for 400 s and

resent in Fig. 11 the convergence histories at P1 for all mesh sizes.

t shows all configurations achieve similar convergence rates ap-

roximately at 150 s. Note for the velocity magnitude at P1, C-

-4 gives the smallest error amplitudes from the observed data

0.23 m/s) among the others. Fig. 11 shows stable period fluctu-

tions meaning the convergence is ensured and no chaotic oscil-

ation is exhibited. We also observe after 150 s small differences

f the inflow-outflow discharges in the order of 10 −4 m 

3 /s . Based

n these facts, comparing the recirculation zone at 400 s is thus

cceptable. 
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Fig. 22. Case 4: Domain of dam-break flows through obstacle(s) with its channel shape. 
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To compare L circ , we plot the x velocities along section 1-1 (at

he centers of the first boundary cells); when the sign of such ve-

ocities changes from negative to positive, the reattachment point

an be known. Fig. 12 shows all configurations almost give a sim-

lar result of L circ = 0.85 m; this value slightly differs from the

bserved one. To compare the y velocity distributions, we plot in

ig. 13 the velocities along x = 0.675 m showing that no signifi-

ant differences are exhibited where C-2-4 becomes slightly more

ccurate among the others at y > 0.2 m. The velocity magnitude

ear the recirculation zone at 400 s for C-2-4 are visualized in

ig. 14 . Along the separating streamlines, the mixing layers appear

hich ends approximately at (1 , 0) m. The recirculation center is

reated at (0.39 , 0.12) m. Although L circ computed by our model

till slightly differs from the observed data, we have shown that

ur computations can always ensure convergence using very fine

eshes. 

.3. Case 3: Recirculating wakes around a surface-piercing conical 

sland 

This case is selected based on [2] , who experimentally and nu-

erically investigated recirculating wakes behind a conical island.

ith this case we show the ability of our proposed strategy to ac-
urately simulate the wakes properties behind the island, to deal

ith wet–dry problems in the case of fluid-structure-interactions

ear the island, and to ensure that our results do not deteriorate

or the use of very fine meshes by achieving convergence. The ex-

eriment was conducted in a 9.75 × 1.52 m channel, see Fig. 15 .

ne measurement point – P1 (5.73, 1.02) m – was installed be-

ind the conical island. The Manning coefficient was 0.01 s m 

1 
3 .

he Reynolds number was 5865 for the free stream flow or 47,296

ased on the representative island dimension, showing that the

ow was in a fully developed turbulent condition. At upstream,

he depth and the velocity were set to 0.051 m and 0.115 m/s, con-

tantly. Meanwhile, the outflow boundary condition was applied at

ownstream. 

In [2] , the observation results were only given for a timeframe

f about 100 s. These results are supposed to be obtained during

00 s after a stable condition had been reached. To this regard,

 total simulation time of 500 s is settled here. The results ob-

ained during the last 100 s are thus compared with the obser-

ation results (after slightly shifting the time series due to differ-

nt transient phases). Actually, NUFSAW2D could achieve the sta-

le wakes patterns at the timeframe of 20 0–30 0 s. However, this

ase is still performed for 500 s, since we would like also to com-
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Fig. 23. Case 4: Comparison of depths between observation and numerical results for C-4-a. 
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pare the convergence rate and to show that the results do not

deteriorate using the four mesh configurations due to the ScWF,

instead of the StWF. Four mesh configurations are selected for

our simulations: (1) 650 × 102, (2) 1300 × 204, (3) 2600 × 408,

(4) 3900 × 612 cells, which give the square cell sizes of 0.015 m,

0.0 075 m, 0.0 0375 m, and 0.0 025 m, respectively denoted by C-

3-1, C-3-2, C-3-3, and C-3-4, respectively. The first configuration

was chosen to approximately follow the mesh size used for nu-

merical model in [2] (a square cell size of 0.0152 m). We compare

our result C-3-1 with both observation data and the 2D model of

[2] (Lloyd and Stansby) to give a fair comparison with the mesh

size used. Meanwhile, C-3-2, C-3-3, and C-3-4 are only compared

with the observation data. For all simulations, we set the depth to

0.051 m and the velocities to zero, initially. 

The results of C-3-1 are given in Fig. 16 showing that for C-3-1

NUFSAW2D detects a similar characteristic of wakes velocity peri-

ods to that computed by Lloyd and Stansby. Both C-3-1 and their

model produce a maximum deviation of approximately 10 s for the

wakes periods from the observed data. However, the wakes veloc-

ity amplitudes are underestimated by NUFSAW2D approximately

half of the observation results. The 2D model of Lloyd and Stansby

is more proper in predicting such amplitudes. These errors indi-

cate that the CU scheme has a quite deficient result for simulating

recirculating flows, which is in accordance with the fact investi-

gated in [50] . Up to here, we assume that the mesh resolution will

play a significant role in increasing the accuracy of the results in

contrast to that investigated by Lloyd and Stansby. To prove this

assumption, the meshes are refined and the results of C-3-2, C-

3-3, and C-3-4 are shown in Fig. 17 . One can clearly see that the

results especially C-3-4 now becomes better. Using the mesh size

36 × smaller than that of C-3-1, NUFSAW2D with C-3-4 can accu-

rately predict both the amplitudes and the periods of the wakes

velocity. The maximum magnitudes of the wakes velocity in every
hase are captured correctly. In general, a similar characteristic is

hown by C-3-3 for both the amplitudes and periods. Only some

on-significant differences exist particularly for the velocity ampli-

udes, e.g. in x direction, C-3-3 computes the amplitude slightly

etter than does C-3-4 during 14–18 s, but C-3-4 becomes more

ccurate to predict the amplitude during 74–78 s. Although C-3-

 still shows some errors for the wakes velocity periods (a max-

mum deviation of approximately 6 s), it has established a quite

ignificant improvement from C-3-1 in calculating the maximum

mplitudes of the wakes velocity. Using the mesh size 4 × smaller

han that of C-3-1, NUFSAW2D with C-3-2 can detect the maxi-

um wakes velocity amplitudes in y direction accurately. The ve-

ocity amplitudes in x direction are also calculated appropriately by

-3-2 and much better than the results of C-3-1. 

Based on these facts one can see that refining the mesh size

rom C-3-1 to C-3-2 (4 × smaller) results outstandingly in more

ccurate results for the amplitudes (more than 2 × ), in which the

aximum deviation of the period becomes 4 s smaller (from 10 s

o 6 s). The mesh size refinement from C-3-2 to C-3-3 does re-

olve the inaccuracy of detecting the wakes periods that now the

aximum deviation becomes only 1 s. Although the velocity mag-

itudes of C-3-3 are better than those of C-3-2, the accuracy ac-

retion for such magnitudes is, however, not as significant as that

rom C-3-1 to C-3-2. It is also shown that the refinement from C-

-3 to C-3-4 only gives slightly different results. To this regard, it is

greeable to say that the mesh size has a significant effect on the

ccuracy especially with the 16 × smaller cell. Indeed, no more sig-

ificant improvements are shown with the 36 × smaller cell. Nev-

rtheless, NUFSAW2D has shown its ability with the ScWF to not

eteriorate the results from C-3-3 to C-3-4. 

To show the wet–dry phenomena near the conical island, four

oints – A1 (4.91, 0.76) m, A2 (5, 0.67) m, A3 (5.091, 0.76) m, and

4 (5, 0.851) m – are selected to present the water surface fluctua-
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Fig. 24. Case 4: Comparison of velocities between observation and numerical results for C-4-a. 
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ions at those cell center locations. The results are given in Fig. 18 .

s expected, at point A1 (in front of the conical island), the wa-

er surface elevation is always greater than the bed elevation caus-

ng this cell to be a wet cell and no ScWF are required if none of

he corresponding convective fluxes (normal to edge) is zero. The

urbulence properties of this cell will be treated based on line 17

n Algorithm 4 . If (at least) one of such corresponding convective

uxes is zero, the ScWF must be applied to this cell, as this cell

ecomes a wall boundary cell, so that the turbulence properties

re calculated based on line 15 in Algorithm 4 . Different to point

1, at points A2, A3, and A4 (at the left side, behind, and right

ide of the conical island), the wet–dry phenomena occur period-

cally throughout the simulation. Therefore, when these cells be-

ome dry, all the turbulence properties must be computed accord-

ng to line 19 in Algorithm 4 – and as soon as these cells become

et and all the corresponding (normal) convective fluxes are non-

ero, the calculation on line 17 in Algorithm 4 must be performed.

imilarly, when these cells become wet but (at least) one of cor-
esponding (normal) convective fluxes is zero, the ScWF must be

pplied. Following this algorithm, NUFSAW2D has produced highly

ccurate results to model the recirculating wakes flows dealing

ith wet–dry problems. 

The wakes flows are visualized along the channel for x = 4.5–

.75 m in Fig. 19 for the water surface elevation and velocity mag-

itude – and the details around the conical island for x = 4.5–

.5 m are given in Fig. 20 for the water surface elevation, velocity

agnitude, and streamline pattern using C-3-4. In general, the re-

ults shows the recirculating flows characterized by vigorous and

eriodic vortex shedding. We denote here the first, second, third,

nd fourth quadrants in a cartesian plane in connection with the

enter of the conical island. As shown in Fig. 20 , at the second

uadrant, the water flows mostly parallel to the x axis, except close

o the flat island apex, the water tends to flow following the shape

f the island. At the first quadrant, water starts to separate from

he flow of the second quadrant and produces mixing close to the

ed. It is shown that a horizontal shear layer exists in this region.
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Fig. 25. Case 4: Comparison of depths between observation and numerical results for C-4-b. 
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At the fourth quadrant, the flow is affected by the water flowing

from the first quadrant, thus creating vortex, in which the wakes

flow is clearly shown. This leads to a condition where the veloc-

ity magnitude is relatively low behind the island (at the center). A

typical secondary flow close at the bed appears at this quadrant.

These results demonstrate a good qualitative agreement with the

experiment of [2] . 

Finally, the convergence history is presented in Fig. 21 . The x

velocities at point P1 are selected. Obviously, all the correspond-

ing y velocities show a similar characteristic. It is shown that both

C-3-1 and C-3-2 can achieve a faster convergence (approximately)

after 150 s. Meanwhile, both C-3-3 and C-3-4 reach the conver-

gence slightly later (approximately) after 200 s. Despite reaching a

faster convergence, both C-3-1 and C-3-2 are not better than C-3-

3 and C-3-4, since C-3-1 and C-3-2 cannot capture the maximum

wakes amplitudes appropriately. Also, the wakes periods are still

overestimated by both C-3-1 and C-3-2 as shown in Figs. 16 and

17 . The ScWF applied have ensured the convergence/stability for

such (extremely) mesh refinements, where no chaotic wakes pat-

tern is observed. 

4.4. Case 4: Dam-break flows through obstacle(s) 

We consider here two experimental test cases dealing with

dam-break flows: through one obstacle [51] and through 25 ob-

stacles [52] . These cases are selected to show the ability of our

proposed strategy in simulating discontinuous turbulent flow char-

acteristics using very fine meshes which interact with structure(s)

and are affected by wet–dry phenomena. The channel was 35.8 m

long and 3.6 m wide, with a trapezoidal cross section, sketched in

Fig. 22 . The water elevation was set to 0.4 m initially at the reser-

voir. Meanwhile, the initial water elevations of 0.02 m and 0.011 m

were set for the first and second cases, respectively giving a dry
ed initial condition at the sloping parts of the trapezoidal chan-

el. The Manning coefficient was set to 0.01 s m 

1 
3 for both cases. 

In this paper, we discretize the domains for both cases into

600 × 360 cells, which give a square size of 0.01 m. We denote

he first and second cases as C-4-a and C-4-b. The simulations are

erformed for 30 s and 10 s for the first and second cases, respec-

ively. 

We show in Fig. 23 the comparison of depths between obser-

ation and numerical results for C-4-a. At G1, our model detects

he maximum bore at 2 s accurately; however, at 2–5 s it pre-

icts the elevations slightly higher. After 5 s, sufficiently accurate

esults are shown by NUFSAW2D. At G2, our model calculates the

rst incoming wave properly at around 1.5 s and the second in-

oming wave approximately at 15 s is detected properly as well.

etween 15–20 s, NUFSAW2D exhibits slightly higher results but

fter 20 s it computes the elevations accurately. A similar char-

cteristic with G1 is shown at G4, where the first bore at 2 s is

ppropriately simulated and higher elevations are shown at 2–5 s

nd 7–12 s. However, our model exhibits accurate results after 12 s.

t G6, NUFSAW2D predicts accurate results showing the incoming

ischarge from the reservoir to the channel is accurately computed.

e present in Fig. 24 the comparison of velocities between obser-

ation and numerical results for C-4-a. At G2 and G4, again our

odel shows its ability to calculate velocities in x and y directions

ccurately. At G5, velocity fluctuations appear showing the turbu-

ent wakes occurs periodically behind the obstacle. Our model is

ble to detect such fluctuations although non-significant oscilla-

ions still appear. 

In Figs. 25 and 26 , we show the comparison of depths and ve-

ocities between observation and numerical results for C-4-b. At

–10 s NUFSAW2D predicts proper values for elevation along sec-

ion 1–1. Good agreements are shown between the numerical re-
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Fig. 26. Case 4: Comparison of velocities between observation and numerical results for C-4-b. 
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ults and the observed data for velocity as well. We have shown

hat our model is in general capable of simulating both cases

roperly. 

We visualize the wave propagations for both cases in Figs. 27–

0 . In Figs. 27 and 28 , the water propagates from the reservoir to

hannel at 1 s, where the channel banks are still dry. At this pe-

iod, the cells classified as wall boundary are still similar to those

n initial condition. Suddenly, after 1 s, the water starts to inundate

he channel banks showing this case deals with moving bound-

ry geometries; the cells classified as wall boundary thus (always)

hange during runtime. Especially with the fine meshes used, the

ransformations from internal to boundary cells (vice versa) be-

ome even more sensitive. Our model is able to detect such trans-

ormations and to compute the proper turbulence values, thus en-

uring stability. The interactions between water and the obstacle(s)

re depicted in detail in Figs. 29 and 30 . One can see the moving

oundary geometries, e.g. at x = 9 m for C-4-a or at x = 13 m for

-4-b, change during runtime. See also, e.g. at x = 14 m for C-4-

, the velocity magnitudes near the wall boundaries at the chan-

el bank fluctuate noticeably; it is still dry at 1 s, increases up

o 2.2 m/s at 4 s, and decreases to 0.5 m/s at 10 s. One can also

bserve that the vortexes periodically appear behind the obstacle

or C-4-a and the hydraulic jumps exist behind the obstacles for

-4-b. 

Finally, we present the streamline patters for both cases in

igs. 31 . For C-4-a, the recirculating flows appear behind the ob-

tacle at 6 s and become larger at 10 s. For C-4-b, the recirculating

ows exist in front of the obstacles at 6 s, whereas no recircu-

ation is detected behind. However, at 10 s the recirculation be-

omes smaller at upstream, where the small recirculation appears

t downstream. 
C  
.5. Performance comparison 

In each case, 
t may change during runtime for each time level

ue to the limitations previously mentioned in Section 3.2 and de-

ending on the mesh size; the total number of simulation steps is

ifferent thus giving non-linear relationships of CPU time for each

ase. For example, to reach 300 s in case 1, C-1-4 requires smaller

t than that for C-1-1; therefore, the ratio of CPU time between

oth of them depends not only on the proportion of the total num-

er of cells, but also on the proportion of the total number of

imulation steps. Prior to giving the CPU time for each case simu-

ated, it is important to note that we use Mcell/s/core (million cells

er second per core) being a comparison between the number of

ells for a total number of calculation steps that can be processed

er unit of time using one core – to express a comparable per-

ormance metric (PM) for our simulations as well as to show the

calability of our model. Our code NUFSAW2D has been tested on

everal machines, e.g. Sandstorm with Intel Xeon E5-2690 (Sandy-

ridge-E) [53] , CoolMUC-2 with Intel Xeon E5-2697 v3 (Haswell),

nd CoolMUC-3 with Intel Xeon Phi (Knights Landing) [44] . In our

ecent work [45] , we proposed a novel load balancing strategy for

arallelizing shallow flow simulations to ensure the scalability of

ur code, where we were able to obtain the efficiencies of 98% (8

ores) and 87% (16 cores) with Sandstorm – and of 97% (56 cores)

nd 88% (64 cores) with CoolMUC-3 showing NUFSAW2D scaled

ery well. This leads our model to achieve 1.81 Gflop/s/core and

.54 Gflop/s/core which are about 31% and 21% of the theoretical

eak performances of Sandstorm and CoolMUC-3, respectively. 

In this paper, we can achieve the average efficiencies of 98%

16 cores) and 89% (28 cores) using CoolMUC-2 for all simulations

eading to an average PM of 2.2 Mcell/s/core. So, we present the

PU time for each case simulated here according to this PM value.
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Fig. 27. Case 4: Visualization of depth propagation at 1 s, 4 s, 6 s, and 10 s for C-4-a. 
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Fig. 28. Case 4: Visualization of depth propagation at 1 s, 4 s, 6 s, and 10 s for C-4-b. 
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Fig. 29. Case 4: Visualization of velocity propagation at 1 s, 4 s, 6 s, and 10 s for C-4-a (top left, top right, bottom left, bottom right). 

Fig. 30. Case 4: Visualization of velocity propagation at 1 s, 4 s, 6 s, and 10 s for C-4-b (top left, top right, bottom left, bottom right). 
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Fig. 31. Case 4: Visualization of streamlines for C-4-a (top) and C-4-b (bottom) at 6 s and 10 s. 

Table 1 

Summary of CPU time and total number of simulation steps. 

Case Number of cells ( × 10 6 ) CPU time (s) Number of simulation steps 

C-1-1 0.468 2118 278,812 

C-1-2 0.832 6695 4 95,6 86 

C-1-3 1.872 33,892 1,115,348 

C-1-4 3.328 64,269 1,189,598 

C-2-1 0.064 1072 1,031,809 

C-2-2 0.256 17,152 4,128,236 

C-2-3 0.400 41,875 6,449,806 

C-2-4 0.713 79,831 6,896,998 

C-3-1 0.067 51 46,803 

C-3-2 0.266 792 183,830 

C-3-3 1.061 12,629 733,245 

C-3-4 2.387 38,354 989,777 

C-4-a 1.296 980 46,588 

C-4-b 1.296 319 15,184 
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n other words, each CPU time shown in Table 1 gives a similar PM

alue. 

. Conclusions 

Within the framework of our in-house code NUFSAW2D, a

D RANS and ASM equations based-model has been presented

o simulate the turbulent shallow water flows. Our model is an

dge-based CCFV model, which has second-order spatial accuracy,

chieved by employing the MUSCL method with the edge-based

inMod slope limiter function. We have shown that the CU

ethod, as a Riemann-solver-free scheme, was robust for calculat-

ng the convective fluxes of both the 2D RANS and ASM equations.

he bed-slope terms were solved using a Riemann-solution-free

ethod, which has been proven to be capable of balancing the

uxes after being combined with the hydrostatic and topography

econstructions. The diffusive fluxes of the 2D RANS equations

ere solved using the centered method, whereas the diffusive

uxes of the ASM equations were treated in a similar manner,
ut as a source term. This source term was later treated semi-

mplicitly together with the friction and the turbulence source

erms. No stability issue was found when dealing with the tur-

ulence model, since some limitations have been applied to the

urbulence properties, e.g. a realizability condition for νt , u ′ 2 , u ′ v ′ ,
nd v ′ 2 and the limiter values of P h and P kb . 

Using high-resolution meshes up to millions of cells, we have

erformed our simulations with the mesh sizes of up to 2.5 mm.

ighly accurate results were shown, for example in case 3, where

ur model resulted outstandingly in better results than those of

he previous publication. Using 4 × smaller cell, the wakes ampli-

udes became significantly more accurate and the maximum devi-

tion for the wakes periods was 4 s smaller. Refining the mesh to

e 16 × smaller yielded highly accurate results, which was demon-

trated by the fact that all the wakes characteristics (amplitudes

nd periods) were calculated correctly in every phase with this

ell size. Further refinement with the 36 × smaller cell produced,

owever, only non-significant differences. Since the increase of the

esh resolution – which could give not only the proper ampli-
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tudes, but also the accurate periods – was up to 16 × , it is agree-

able to say that the mesh size has a significant effect on the ac-

curacy of the results, especially for case 3. Sufficiently accurate re-

sults were also exhibited in case 4 which dealt with wet–dry prob-

lems on the channel banks. Our model simulated this case stably

and could capture the recirculation and the wakes properly near

the obstacle(s). 

The accurate results obtained using such finer meshes are in-

separable from a proper wall boundary treatment for the wet–dry

problems around the structures or channel banks. These problems

related to the calculation of the turbulence properties for mov-

ing boundary geometries. This was clearly shown by the results

at some points which experienced periodic wet–dry phenomena

throughout the simulation, e.g. in cases 3 and 4. To this regard,

our model required no grid study especially to know the proper

near-wall mesh size. Instead, we simply generated the very fine

meshes – and with the ScWF our model was always able to achieve

convergence. Our proposed strategy – a combination of the hydro-

static and topography reconstructions calculated in an edge-based

manner at edges and the ScWF – was proven quite robust and

accurate for calculating the turbulence properties at all cells, for

which three types of cells are considered: internal, wall boundary,

and flow boundary cells. This strategy was applied for simulating

such wet–dry problems; although the change of wall boundary ge-

ometries for wet–dry phenomena becomes more sensitive for the

use of very fine meshes, the proposed strategy was able to accu-

rately detect such moving boundary geometries, to properly com-

pute the turbulence values and to not deteriorate the results. The

reconstruction techniques employed in our strategy served to cor-

rect all the values of the convective, diffusive, and bed-slope fluxes

based on the values of depth. Thereafter, the ScWF were applied

at cells to calculate the turbulence properties, when those cells

were calculated as wet cell and (at least) one of the correspond-

ing convective fluxes (normal to the edge) was zero. Since no grid

study is needed, our approach gives flexibility to users in generat-

ing meshes for their simulations without requiring estimating the

wall friction velocity at the initial step (as if the StWF are used).

Obviously, the proposed algorithm can be extended for other types

of turbulence shallow water modeling, such as dealing with wet–

dry problems for real flood simulations on river banks, in which

the water fluctuates leading to non-constant wall boundary ge-

ometries. This algorithm can also be applied to any CCFV scheme

with other robust and well-balanced solvers, such as Roe, HLL, and

HLLC schemes. 
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Abstract: We investigate in this paper the behaviors of the Riemann solvers (Roe and Harten-Lax-van
Leer-Contact (HLLC) schemes) and the Riemann-solver-free method (central-upwind scheme)
regarding their accuracy and efficiency for solving the 2D shallow water equations. Our model
was devised to be spatially second-order accurate with the Monotonic Upwind Scheme for
Conservation Laws (MUSCL) reconstruction for a cell-centered finite volume scheme—and be
temporally fourth-order accurate using the Runge–Kutta fourth-order method. Four benchmark cases
of dam-break and tsunami events dealing with highly-discontinuous flows and wet–dry problems
were simulated. To this end, we applied a reordering strategy for the data structures in our code
supporting efficient vectorization and memory access alignment for boosting the performance.
Two main features are pointed out here. Firstly, the reordering strategy employed has enabled
highly-efficient vectorization for the three solvers investigated on three modern hardware (AVX,
AVX2, and AVX-512), where speed-ups of 4.5–6.5× were obtained on the AVX/AVX2 machines for
eight data per vector while on the AVX-512 machine we achieved a speed-up of up to 16.7× for
16 data per vector, all with singe-core computation; with parallel simulations, speed-ups of up to
75.7–121.8× and 928.9×were obtained on AVX/AVX2 and AVX-512 machines, respectively. Secondly,
we observed that the central-upwind scheme was able to outperform the HLLC and Roe schemes 1.4×
and 1.25×, respectively, by exhibiting similar accuracies. This study would be useful for modelers
who are interested in developing shallow water codes.

Keywords: central-upwind; efficiency; finite volume; HLLC; modern hardware; Roe; shallow water
equations; vectorization

1. Introduction

Dam-break or tsunami flows cause not only potential dangers to human life, but also great losses
of property. These phenomena can be triggered by some natural hazards, such as earthquakes or heavy
rainfall. When a dam breaks, a large amount of water is released instantaneously from the dam and
will propagate rapidly to the downstream area. Similarly, tsunami waves flowing rapidly from the
ocean bring a large volume of water to coastal areas, which endangers human life as well as damages
infrastructure. Since natural hazards have very complex characteristics, in terms of the spatial and
temporal scales, they are quite difficult to predict precisely. Therefore, it is highly important to study
the evolution of such flows as a part of a disaster management, which will be useful for the related
stakeholders in decision-making. Such study can be done by developing a mathematical model based
on the 2D shallow water equations (SWEs).
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Recent numerical models of the 2D SWEs rely, almost entirely, on the computations of
(approximate) Riemann solvers, particularly in the applications of the high-resolution Godunov-type
methods. The simplicity, robustness, and built-in conservation properties of the Riemann solvers,
such as the Roe and HLLC schemes, had led to many successful applications in shallow flow
simulations, see [1–5], among others. Highly discontinuous flows, including transcritical flows,
shock waves and moving wet–dry fronts were accurately simulated.

Generally speaking, a scheme can be regarded as a class of Riemann solvers if it is proposed based
on a Riemann problem. The Roe scheme was originally devised by [6] and was proposed to estimate
the interface convective fluxes between two adjacent cells on a spatially-and-temporally discretized
computational domain by linearizing the Jacobian matrix of the partial differential equations (PDEs)
with regard to its left and right eigenvectors. This linearized part contributes to the computation of
the convective fluxes of the PDEs, as a flux difference for the average value of the considered edge
taken from its two corresponding cells. Since the eigenstructure of the PDEs—which leads to an
approximation of the interface value in connection with the local Riemann problem—must be known
in the calculation of the flux difference, the Roe scheme is regarded as an approximate Riemann solver.

More than 20 years later, Toro [7] then developed a new approximate Riemann solver—HLLC
scheme—to simulate shallow water flows, which was an extended version of the Harten-Lax-van
Leer (HLL) scheme proposed in [8]. In the HLL scheme, the solution is approximated directly for
the interface fluxes by dividing the region into three parts: left, middle, and right. Both the left and
right regions correspond to the values of the two adjacent cells, whereas the middle region consists
of a single value separated by intermediate waves. One major flaw of the HLL scheme is related to
both contact discontinuities and shear waves leading to a missing contact (middle) wave. Therefore,
Toro [7] fixed this scheme in the HLLC scheme by including the computation of the middle wave
speed that now the solution is divided into four regions. There are several ways to calculate the
middle wave speed, see [9–11]. All the calculations deal with the eigenstructure of the PDEs, which is
related to the local Riemann problem, and obviously, this brings the HLLC scheme back to a class of
Riemann solvers.

Opposite to the Riemann solvers, Kurganov et al. [12] proposed the central-upwind (CU) method
as a Riemann-solver-free scheme, in which the eigenstructure of the PDEs is not required to calculate
the convective fluxes. Instead, the local one-sided speeds of propagation at every edge, which can
be computed in a straight-forward manner, are used. This scheme has been proven to be sufficiently
robust and at the same time can satisfy both the well-balanced and positivity preserving properties,
see [13–15].

To solve the time-dependent SWEs, all the aforementioned schemes must be temporally
discretized either by using an implicit or an explicit time stepping method. Despite its simplicity,
the latter may, however, suffer from a stability computational issue particularly when simulating a
very low water on a very rough bed [16,17]. The former is unconditionally stable and even is very
flexible to use a large time step. However, the computation is admittedly complex. Another way that
can be used to overcome the stability issue of the explicit method and to avoid the complexity of the
implicit method—is to perform a high-order explicit method, such as the Runge–Kutta high-order
scheme. This method is more stable than the explicit method, while the computation remains simple
and acceptably cheap as that of the explicit method.

As the high-order time stepping method is now considered, the selection of solvers included in
models must be taken into careful consideration, since such solvers—which are the most expensive
part in SWEs simulations—need to be computed several times in a single time step. For example,
the Runge–Kutta fourth-order (RKFO) method requires the updating of a solver four times to determine
the value at the subsequent time step. The more complex the algorithm of a solver is, the more CPU
time one obtains.

Nowadays, performing SWE simulations is becoming more and more common on modern
hardware/CPUs towards high-performance computing (HPC) using advanced features such as
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AVX, AVX2, and AVX-512, which support the algorithm vectorization for executing some operations
in a single instruction—known as single instruction multiple data (SIMD)—so that a significant
computation speed-up can be achieved. Vectorization on such modern hardware employs vector
instructions, which can dramatically outperform scalar instructions, thus being quite important for
having more efficient computations. Among the other compilers’ optimizations, vectorization can even
be regarded as the common ways for utilizing vector-level parallelism, see [18,19]. Such a speed-up,
however, can only exist if the algorithm formulation is suitable for vectorization instructions either
automatically (by compilers) or manually (by users) [20].

Typically, there are three classes of vectorization: auto vectorization, guided vectorization,
and low-level vectorization. The first type is the easiest one utilizing the ability of the compiler to
automatically detect loops, which have a potential to be vectorized. This can be done at compiling time,
e.g., using the optimization flag -O2 or higher. However, some typical problems, e.g., non-contiguous
memory access and data-dependency, make vectorization difficult. For this, the second type may be
a solution utilizing some compiler hints/pragmas and array notations. This type may successfully
vectorize the loops that cannot be auto-vectorized by the compiler. However, if not used carefully,
it gives no significant performance or even the results can be wrong. The last type is probably the
hardest one since it requires deep-knowledge about intrinsics/assembly programming and vector
classes, thus not so popular.

Especially in simulating complex phenomena such as dam-break or tsunami flows as part
of disaster planning, accurate results are obviously of particular interest for modelers. However,
focusing only on numerical accuracy but ignoring performance efficiency is no longer an option.
For instance, in addition to relatively large-sized domains, most of real dam-break and tsunami
simulations require performing long real-time computations, e.g., days or even up to weeks. Wasting
the performance either due to the complexity level of the solver selected or the code’s inability to utilize
the vectorization, is thus undesirable. This becomes our focus in this paper. We compare three common
shallow water solvers (HLLC, Roe, and CU schemes) here, where two main findings are pointed out.
Firstly, to enable highly-efficient vectorization for all solvers on all the aforementioned hardware,
we employ a reordering strategy that we have recently applied in [21]. This strategy supports guided
vectorization and memory access alignment for the array loops attempted in the SWEs’ computations,
thus boosting the performance. Secondly, we observe that the CU scheme is capable of outperforming
the performance of the HLLC and Roe schemes by exhibiting similar accuracies. These findings would
be useful for modelers as a reference to select the numerical solvers to be included in their models as
well as to optimize their codes for vectorization.

Some previous studies reporting about vectorization of shallow water solvers are noted here.
In [20], the augmented Riemann solver implemented in a source code Geo Conservation Laws
(GeoCLAW) was vectorized using a low-level vectorization with SSE4 and AVX intrinsics. The average
speed-up factors of 2.7× and 4.1× (both with single-precision arithmetic) were achieved with SSE4 and
AVX machines, respectively. Also using GeoCLAW, the augmented Riemann solver was vectorized
in [22] by changing the data layouts from arrays of structs (AoS) to structs of arrays (SoA), thus
requiring a considerably huge task for rewriting the code—and then applying a guided vectorization
with !$omp simd. The average speed-up factors of 1.7× and 4.4× (both with double-precision
arithmetic) were achieved with AVX2 and AVX-512 machines, respectively. In [23], the split HLL
Riemann solver was vectorized and parallelized for the flux computation and state computation
modules of the SWEs employing low-level vectorization with SSE4 and AVX intrinsics. To the best
of our knowledge, this is the first attempt to report the efficiency comparisons of common solvers
(both Riemann and non-Riemann solvers) regarding the vectorization on the three modern hardwares
without having to perform complex intrinsic functions or to require a lot of work for rewriting the code.
We use here an in-house code of the first-author—numerical simulation of free surface shallow water
2D (NUFSAW2D). Some successful applications were shown using NUFSAW2D for varying shallow
water-type simulations, e.g., dam-break cases, overland flows, and turbulent flows, see [17,21,24,25].
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This paper is organized as follows. The governing equations and the numerical model are briefly
explained in Section 2. An overview of data structures in our code is presented in Section 3. The model
verifications against the benchmark cases and its performance evaluations are given in Section 4.
Finally, conclusions are given in Section 5.

2. Governing Equations and Numerical Models

The 2D SWEs are written in conservative form according to [26] as

∂W
∂t

+
∂F
∂x

+
∂G
∂y

= Sb + S f , (1)

where the vectors W, F, G, Sb, and S f are expressed as

W =

 h
hu
hv

 , F =


hu

huu +
gh2

2
hvu

 , G =


hv

huv

hvv +
gh2

2

 ,

Sb =


0

−gh
∂zb
∂x

−gh
∂zb
∂y

 , S f =



0

−g h
n2

m u
√

u2 + v2

h4/3

−g h
n2

m v
√

u2 + v2

h4/3

 .

(2)

The water depth, velocities in x and y directions, gravity acceleration, bottom elevation,
and Manning coefficient are denoted by h, u, v, g, zb, and nm, respectively. Using a cell-centered
finite volume (CCFV) method, Equation (1) is spatially discretized over a domain Ω as

∂

∂t

∫∫
Ω

WdΩ +
∫∫

Ω

(
∂F
∂x

+
∂G
∂y

)
dΩ =

∫∫
Ω

(
Sb + S f

)
dΩ . (3)

Applying the Gauss divergence theorem, the convective fluxes of Equation (3) can be transformed
into a line-boundary integral Γ as

∂

∂t

∫∫
Ω

WdΩ +
∮

Γ

(
F nx + G ny

)
dΓ =

∫∫
Ω

(
Sb + S f

)
dΩ , (4)

leading to a flux summation for the convective fluxes by

∮
Γ

(
Fnx + Gny

)
dΓ ≈

N

∑
i=1

(
F nx + G ny

)
i ∆Li , (5)

where nx and ny are the normal vectors outward Γ, N is the total number of edges for a cell, and ∆L
is the edge length. We will investigate the accuracy and efficiency of the three solvers for solving
Equation (5). The in-house code NUFSAW2D used here implements the modern shock-capturing
Godunov-type model, which supports the structured as well as unstructured meshes by storing
the average values in each cell-center. Here we use structured rectangular meshes, hence N = 4.
The second-order spatial accuracy was achieved with the MUSCL method utilizing the MinMod
limiter function to enforce the monotonicity in multiple dimensions. The bed-slope terms were
computed using a Riemann-solution-free technique, with which the bed-slope fluxes can be computed
separately from the convective fluxes, thus giving a fair comparison for the three aforementioned
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solvers. The friction terms were treated semi-implicitly to ensure stability for wet–dry simulations.
The RKFO method is now applied to Equation (4) as

Wp=0 = Wt , for p = 1, ... , 4 then

Wp = Wp=0 + αp

[
− ∆t

A

4

∑
i=1

(
F nx + G ny

)
i ∆Li + ∆t

∫∫
Ω

(
Sb + S f

)
dΩ

]p−1

,

Wt+1 = Wp=4 ,

(6)

where A is the cell area, ∆t is the time step, αp is the coefficient being 1/4, 1/3 , 1/2, and 1 for p =
1–4, respectively. The numerical procedures for Equations (4) and (6) are given in detail in [17,25,26],
thus are not presented here.

3. Overview of Data Structures

3.1. General

Here we explain in detail how the data structures of our code are designed to advance the
solutions of Equation (6). Note this is a typical data structure used in many shallow water codes (with
implementations of modern finite volume schemes). As shown in Figure 1, a domain is discretized
into several sub-domains (rectangular cells). We call this step the pre-processing stage. Each cell now
consists of the values of zb and nm located at its center. Initially, the values of h, u, and v are given by
users at each cell-center.

Figure 1. Typical process in shallow flow modeling (with implementations of modern finite
volume schemes).

As our model employs a reconstruction process to spatially achieve second-order accuracy with
the MUSCL method, it requires the gradient values at cell-center. Therefore, these gradient values must
firstly be computed. This step is called the gradient level. Hereafter, one requires to calculate the values at
each edge using the values of its two corresponding cell-centers. This stage is then called the edge-driven
level. In this level, a solver, e.g., HLLC, Roe, or CU scheme, is required to compute the non-linear values
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of F and G at edges. Prior to performing such a solver, the aforementioned reconstruction process with
the MUSCL method was employed. Note the values of Sb are also computed at the edge-driven level.
After the values of all edges are known, the solution can be advanced for the subsequent time level by
also computing the values of S f . For example, the solutions of W at the subsequent time level for a
cell-center are updated using the F, G, and Sb values from its four corresponding edges—and using S f
values located at the cell-center itself. We call this stage the cell-driven level.

Note that the edge-driven level is the most expensive stage among the others; one should thus
pay extra attention to its computation. We also point out here that we apply the computation for the
edge-driven level in an edge-based manner rather than in a cell-based one, namely we compute the
edge values only once per single calculation level. Therefore, one does not need to save the values of[

∑N
i=1
(
F nx + G ny

)
i ∆Li

]
in arrays for each cell-center; only the values of

[(
F nx + G ny

)
i ∆Li

]
are

saved corresponding to the total number of edges, instead. The values of an edge are only valid for one
adjacent cell—and such values are simply multiplied by (−1) for another cell. It is now a challenging
task to design an array structure that can ease vectorization and exploit memory access alignment in
both the edge-driven and cell-driven levels.

3.2. Cell-Edge Reordering Strategy for Supporting Vectorization and Memory Access Alignment

We focus our reordering strategy here on tackling the two common problems for vectorization:
non-contiguous memory access and data-dependency. Regarding the former, a contiguous array
structure is required to provide contiguous memory access giving an efficient vectorization. Typically,
one finds this problem when dealing with an indirect array indexing, e.g., using x(y(i)) forces the
compiler to decode y(i) for finding the memory reference of x. This is also a typical problem for a
non-unit strided access to array, e.g., incrementing a loop by a scalar factor, where non-consecutive
memory locations must be accessed in the loop. The vectorization is sometimes still possible for this
problem type. However, the performance gain is often not significant. The second problem relates to
usage of arrays identical to the previous iteration of the loop, which often destroy any possibility for
vectorization, otherwise a special directive should be used.

See Figure 2, for advancing the solution of W in Equation (1) for k, one requires F, G, and Sb from
i, where i = index_function(j) and [j← 1-4]—and S f from k itself. Opting index_function as an
operator for defining i leads to a use of an indirect reference in a loop. This is not desired since it may
avoid the vectorization. This may be anticipated by directly declaring i into the same array to that of
k, e.g., W(k)← [W(k+m), W(k-m), W(k+n), W(k-n)], where m and n are scalar. This, however, leads to a
data-dependency problem that makes vectorization difficult.

Figure 2. Vectorization for advancing the solution in the cell-driven level.

To avoid these problems, we have designed a cell-edge reordering strategy, see Figure 3, where
the loops with similar computational procedures are collected to be vectorized. Note that this strategy
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is only applied once at the pre-processing stage in Figure 1. The core idea of this strategy is to build
contiguous array patterns between edges and cells for the edge-driven level as well as between cells
and edges for the cell-driven level. We point out here that we only employ 1D array configuration
in NUFSAW2D, so that the memory access patterns are straightforward, thus easing unit stride and
conserving cache entries. The first step is to devise the cell numbering following the Z-pattern, which
is intended for the cell-driven level. Secondly, we design the edge numbering for the edge-driven
level by classifying the edges into two types: internal and boundary edges in the most contiguous
way; the former is the edges that have two neighboring cells (e.g., edges 1–31), whereas the latter is
the edges with only one corresponding cell (e.g., edges 32–49). The reason for this classification is
the computational complexity between the internal and boundary edges differs from each other, e.g.,
(1) no reconstruction process is required for the latter, thus having less CPU time than the former—and
(2) due to corresponding to two neighboring cells, the former accesses more memories than does the
latter; declaring all edges only in one single loop-group therefore deteriorates the memory access
patterns, thus decreasing the performance.

Figure 3. Cell-edge reordering strategy [21] and an example of memory access patterns.

For the sake of clarity, we write in Algorithm 1 the pseudo-code of the model’s SUBROUTINE
employed in NUFSAW2D. Note that Algorithm 1 is a typical form applied in many common and
popular shallow water codes. First, we mention that seg_x = 5, seg_y = 4, and Ncells = 20
according to Figure 3, where seg_x, seg_y, and Ncells are the total number of domain segments in x
and y directions, and the total number of cells, respectively. We now explain the SUBROUTINE gradient.
The cells are now classified into two groups: internal and boundary cells. Internal cells, e.g., cells
6, 7, 10, 11, 14, and 15 are cells whose gradient computations require accessing two cell values in
each direction. For example, computing the x-gradient of W of cell 6 needs the values of W of cells 2
and 10; this is denoted by [∇Wx(6)← W(2),W(10)] and similarly [∇Wy(6)← W(5),W(7)]. Boundary
cells, e.g., cells 1–4, 5, 8, 9, 12, 13, 16, and 17–20, are cells affiliated with boundary edges. These cells
may not always require accessing two cell values in each direction for the gradient computation, e.g.,
[∇Wx(8)← W(4),W(12)] but [∇Wy(8)← W(7),W(8)] showing that a symmetric boundary condition is
applied to cell 8 in y direction. Considering the fact that the total number of internal cells is significantly
larger than that of boundary cells, we group the internal cells into a single loop and distinguish them
from the boundary cells, see Algorithm 2.
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Algorithm 1 Typical algorithm for shallow water code (within the Runge–Kutta fourth-order (RKFO)
method’s framework)

1: for t = 1← [total number of time step] do
2: ! within the RKFO method from [p=1] to [p=4]
3: for p = 1← 4 do
4: CALL gradient
5: → compute gradient
6: CALL edge-driven_level
7: → compute MUSCL_method
8: → compute bed_slope
9: → compute shallow_water_solver

10: CALL cell-driven_level
11: → compute friction_term
12: → compute update_variables
13: end for
14: end for

Algorithm 2 Pseudo-code for SUBROUTINE gradient

1: for k=1← [seg_x-2] do
2: l = (seg_y+2)+(k-1)*seg_y
3: !$omp simd simdlen(VL) aligned(∇Wx,∇Wy :Nbyte)
4: for i=l← [l+seg_y-3] do
5: .........
6: ∇Wx(i)← W(i-seg_y),W(i+seg_y) ; ∇Wy(i)← W(i-1),W(i+1)
7: end for
8: end for
9: !$omp simd simdlen(VL) aligned(∇Wx,∇Wy :Nbyte)

10: for i=1← [seg_y] do
11: j=Ncells-seg_y+i
12: i1=i-1 OR i1=i ; i2=i+1 OR i2=i
13: i3=j-1 OR i3=j ; i4=j+1 OR i4=j
14: .........
15: ∇Wx(i)← W(i),W(i+seg_y) ; ∇Wy(i)← W(i1),W(i2)
16: ∇Wx(j)← W(j-seg_y),W(j) ; ∇Wy(j)← W(i3),W(i4)
17: end for
18: !=== This loop is not vectorized due to non-unit strided access ===!
19: for i=1← [seg_x-2] do
20: j=i*seg_y+1 ; k=(i+1)*seg_y
21: i1=j-1 OR i1=j ; i2=j+1 OR i2=j
22: i3=k-1 OR i3=k ; i4=k+1 OR i4=k
23: .........
24: ∇Wx(j)← W(j-seg_y),W(j+seg_y) ; ∇Wy(j)← W(i1),W(i2)
25: ∇Wx(k)← W(k-seg_y),W(k+seg_y) ; ∇Wy(k)← W(i3),W(i4)
26: end for

Algorithm 2 shows three typical loops in the SUBROUTINE gradient. The first loop (lines 1–8)
is designed sequentially with a factor of seg_x-2 for its outer part to exclude all boundary cells.
For its inner part, this loop is constructed based on the outer loop in a contiguous way, thus
making vectorization efficient. Each element of array ∇Wx accesses two elements from array W with
the farthest alignment of seg_y, while each element of array ∇Wy also accesses two elements of
array W but only with the farthest alignment of 1. The second loop (lines 10–17) is also designed
similarly to the first one, but since this loop includes boundary cells, each element of arrays ∇Wx
and ∇Wy only accesses one array with the farthest alignment of seg_y and 1, respectively—whereas
the other elements from array W required are contiguously accessed by each element of both ∇Wx
and ∇Wy. Note in our implementation, none of these two loops can be auto-vectorized by the
compiler. Therefore, we apply a guided vectorization with OpenMP directive instead of the Intel one,
namely !$omp simd simdlen(VL) aligned(var1,var2,... :Nbyte); this will be explained later in
Section 4.5. The third loop (lines 19–26) is designed for the rest cells, which are not included in the
previous two loops. This loop is not devised in a contiguous manner, thus disabling auto vectorization
or, although a guided vectorization is possible, it still does not give any significant performance
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improvement due to non-unit strided access. Despite being unable to be vectorized, the third loop
does not significantly decrease the performance of our model for the entire simulation as it only has an
array dimension of 2*[seg_x-2] (quite small compared to the other two loops).

We now discuss the SUBROUTINE edge-driven_level and sketch it in Algorithm 3. Note for the
sake of brevity, only the pseudo-code for internal edges is represented in Algorithm 3; for boundary
edges, the pseudo-code is similar but computed without MUSCL_method. The first loop corresponds
to the edges 1–16 and the second one to the edges 17–31. In the first loop (lines 1–7), each flux
computation accesses the array with the farthest alignment of seg_y, whereas the arrays are designed
in the second loop (lines 8–17) to have contiguous patterns. Every edge has a certain pattern for its
two corresponding cells, where no data-dependency exists, thus enabling an efficient vectorization.
Note with this pattern, both loops can be auto-vectorized; however, we still implement a guided
vectorization as it gives a better performance.

Finally, we sketch the SUBROUTINE cell-driven_level in Algorithm 4. Again, for the sake
of brevity only the pseudo-code for internal cells is given. Similar to the internal cell in the
SUBROUTINE gradient, the loop is designed sequentially with a factor of seg_x-2 for the outer part.
In the inner part the arrays access patterns are, however, different to those of the gradient computation,
where W accesses F, G, and Sb from the corresponding edges—and Sf from the corresponding cell;
in other words, more array accesses are required in this loop. Nevertheless, the vectorization gives a
significant performance improvement since the array accesses patterns are contiguous. However, there
is a part that cannot be vectorized in this cell-driven level due to non-unit strided access, similar to
that shown in Algorithm 2. Again, since the dimension of this non-vectorizable loop is considerably
smaller than the others, there is no significant performance alleviation for the entire simulation.

Algorithm 3 Pseudo-code for SUBROUTINE edge-driven_level (only for internal edges)

1: !$omp simd simdlen(VL) aligned(∇Wx, W, zb, F, G, Sb :Nbyte)
2: for i=1← [seg_y*(seg_x-1)] do
3: j=i ; k=i+seg_y
4: .........
5: compute MUSCL_method + bed_slope + shallow_water_solver[

∇Wx(j),∇Wx(k),W(j),W(k),zb(j),zb(k),...,FxL, FxR, GxL, GxR, SbxL, SbxR
]

6: F+G(i)← FxL, FxR, GxL, GxR ; Sb(i)← SbxL, SbxR
7: end for
8: for l=1← [seg_x] do
9: m=seg_y*(seg_x-1)+1+(l-1)*(seg_y-1) ; n=m+seg_y-2 ; o=(l-1)*seg_y

10: !$omp simd simdlen(VL) aligned(∇Wy, W, zb, F, G, Sb :Nbyte)
11: for i=m← n do
12: j=(i-m+1)+o ; k=j+1
13: .........
14: compute MUSCL_method + bed_slope + shallow_water_solver[

∇Wy(j),∇Wy(k),W(j),W(k),zb(j),zb(k),...,FyL, FyR, GyL, GyR, SbyL, SbyR
]

15: F+G(i)← FyL, FyR, GyL, GyR ; Sb(i)← SbyL, SbyR
16: end for
17: end for

Algorithm 4 Pseudo-code for SUBROUTINE cell-driven level (only for internal cells)

1: for k=1← [seg_x-2] do
2: j = (seg_y+2)+(k-1)*seg_y ; l = (seg_y*(seg_x-1)+seg_y)+(k-1)*(seg_y-1)
3: !$omp simd simdlen(VL) aligned(W, F, G, nm, Sb, Sf :Nbyte)
4: for i=j← [j+seg_y-3] do
5: i1 = l+(i-j) ; i2 = i ; i3 = i1+1 ; i4=i-seg_y
6: .........
7: compute friction_term [W(i),nm(i),...,Sf(i)]
8: compute update_variables
9: W(i)← F+G(i1),F+G(i2),F+G(i3),F+G(i4),Sb(i1),Sb(i2),Sb(i3),Sb(i4),Sf(i)

10: end for
11: end for
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3.3. Avoiding Skipping Iteration for Vectorization of Wet–Dry Problems

In reality, almost all shallow flow simulations deal with wet–dry problems. To this end,
the computations of both solver and bed-slope terms in the SUBROUTINE edge-driven level must
satisfy the well-balanced and positivity-preserving properties as well, see [27,28], among others.
Similarly, the calculations of the friction terms in the SUBROUTINE cell-driven level must also
consider the wet–dry phenomena, otherwise errors are obtained. For example, in the edge-driven
level, a wet–dry or dry–dry interface of an edge may exist since one or two cell-centers consist of
no water; for both cases, the MUSCL method for achieving second-order accuracy is sometimes not
required or even if this method is still computed, it must be turned back to first-order accuracy to
ensure computational stability by simply defining the edge values according to the corresponding
centers. Another example is in the cell-driven level, where the transformation of the unit discharges
(hu and hv) back to the velocities (u and v) are required for computing the friction terms by a division
of a water depth (h); very low water depth may thus cause significant errors. To anticipate these
problems, one often employs some skipping iterations in the loops, see Algorithm 5.

Algorithm 5 Pseudo-code of some possible skipping iterations

1: !== This is a typical skipping iteration in the SUBROUTINE edge-driven level ==!
2: if [wet–dry or dry-dry interfaces at edges] then
3: NO MUSCL_method: calculate first-order scheme
4: else
5: compute MUSCL_method: calculate second-order scheme
6: if [velocities are not monotone] then
7: back to first-order scheme
8: end if
9: .........

10: end if
11: !== This is a typical skipping iteration in the SUBROUTINE cell-driven level ==!
12: if [depths at cell-centers > depth limiter] then
13: compute friction_term
14: else
15: unit discharges and velocities are set to very small values
16: .........
17: end if

Typically, the two skipping iterations in Algorithm 5 are important to ensure the correctness of
shallow water models. Unfortunately, such layouts may destroy auto vectorization—or although a
guided vectorization is possible, it does not give any significant improvement or may even decrease
the performance significantly. This is because the SIMD instructions simultaneously work only for sets
of arrays, which have contiguous positions. In our experiences, a guided vectorization was indeed
possible for both iterations; the speed-up factors, however, were not so significant. Borrowing the idea
of [22], we therefore change the layouts in Algorithm 5 to those in Algorithm 6, where the early exit
condition is moved to the end of the algorithm. Using the new layouts in Algorithm 6, we significantly
observed up to 48% more improvements of the vectorization from those given in Algorithm 5. Note
that the results given by Algorithms 5 and 6 should be similar because no computational procedure is
changed but only the layouts.
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Algorithm 6 Pseudo-code of the solutions of the skipping iterations in Algorithm 5

1: !== A solution for the skipping iteration in the SUBROUTINE edge-driven level ==!
2: compute MUSCL_method: calculate second-order scheme
3: .........
4: if [velocities are not monotone] then
5: back to first-order scheme
6: end if
7: .........
8: if [wet–dry or dry-dry interfaces at edges] then
9: NO MUSCL_method: calculate first-order scheme

10: end if
11: !== A solution for the skipping iteration in the SUBROUTINE cell-driven level ==!
12: compute friction_term
13: .........
14: if [depths at cell-centers ≤ depth limiter] then
15: unit discharges and velocities are set to very small values
16: .........
17: end if

3.4. Parallel Computation

We explain briefly here the parallel computing implementation of NUFSAW2D according
to [21]. Our idea is to decompose and parallelize the domain based on its complexity level.
NUFSAW2D employs hybrid MPI-OpenMP parallelization, thus is applicable to parallel simulations
with multi-nodes. However, as we focus here on the vectorization, which no longer influences the
scalability beyond one node [20], we limit our study on single-node implementations and thus only
employ OpenMP for parallelization. Further, we examine the memory bandwidth effect when using
only one core or 16 cores (AVX), 28 cores (AVX2), and 64 cores (AVX-512).

In Figure 4 we show an example of the decomposition of the domain in Figure 3 using four
threads; for the sake of brevity, the illustration is given only for the edge-driven level. The parallel
directive, e.g., !$omp do, can easily be added to each loop, thus according to Algorithm 2, in the
gradient level the domain is decomposed as: thread 0 (cells 6, 7, 1, 17, 5, 8), thread 1 (cells 10, 11, 2, 18,
9, 12), thread 2 (cells 14, 15, 3, 19, 13, 16), and thread 3 (cells 4, 20). Similarly, regarding Algorithm 3 it
gives in the edge-driven level: thread 0 (edges 1–4, 17–22, 32–33, 37–38, 42, 46), thread 1 (edges 5–8,
23–25, 34, 39, 43, 47), thread 2 (edges 9–12, 26–28, 35, 40, 44, 48), and thread 3 (edges 13–16, 29–31, 36,
41, 45, 49). Meanwhile, the cell-driven level applies a similar decomposition to that of the gradient
level. One can see, the largest loop components, e.g., internal edges 1–4, 5–8, etc., are decomposed in a
contiguous pattern easing the vectorization implementation, thus efficient. Note the decomposition in
Figure 4 is based on static load balancing that causes load imbalance due to the non-uniform amount
of loads assigned to each thread; this load imbalance will become less and less significant as the
domain size increases, e.g., to millions of cells. However, another load imbalance issue—which can
only be recognized during runtime—appears, namely the one caused by wet–dry problems, where
wet cells are computationally more expensive than dry cells. For this, we have developed in [21] a
novel weighted-dynamic load balancing (WDLB) technique that was proven effective to tackle load
imbalance due to wet–dry problems. All the parallel and load balancing implementations are described
in detail in [21], thus are not explained here. We also note that we have successfully applied this
cell-edge reordering strategy in [24,25] for parallelizing the 2D shallow flow simulations using the
CU scheme with good scalability. Yet, we will show in the next section that the cell-edge reordering
strategy proposed can help in easing all the vectorization implementations.
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Figure 4. Illustration of load distribution using static load balancing with vectorization support for the
edge-driven level based on Figure 3.

4. Results and Discussions

We validate our model against four benchmark tests: two dam-break cases and two tsunami
cases. Each case was simulated using a constant ∆t that satisfies the Courant-Friedrichs-Lewy (CFL)
condition, where CFL ≤ 0.5. Our model with the HLLC, Roe, or CU scheme satisfies the well-balanced
property; also, the HLLC and CU solvers employed are positivity-preserving. We note that the Roe
scheme may in some cases produce negative depths, see [29]; however, in all implementations tested
here, we did not find any negative depth with the Roe scheme. The ∆t used also fulfills the CFL
limitation required by the computations of the local one-sided propagation speeds of the CU scheme
for positivity-preserving purpose, see [13].

4.1. Case 1: Circular Dam-Break

This case is included to check the capability of our model for symmetry and shock resolution in
shallow water flow modeling. We refer to [16,30], among others. A 40 × 40 m, flat, and frictionless
domain is considered. A cylindrical wall with a radius of 2.5 m, which was centered at the domain,
separated two regions of still water; the first one inside the cylinder had a depth of 2.5 m and the second
one outside consisted of 0.5 m water. The water was assumed to be initially at rest and all boundaries
were set to wall boundary. The main features to be investigated in this case are the rarefaction wave and
the hydraulic jump (shock wave) including a transition condition from subcritical to supercritical flow.
The total simulation time was set to 4.7 s with ∆t = 0.005 s, thus requiring 940 time steps. The domain
was discretized into 160,000 rectangular cells (319,200 edges).

The evolutions of the simulated free surface elevation using the CU scheme are visualized in
Figure 5. Suddenly after 0.1 s, water started to move in all directions. At 0.4 s, the circular shock wave
propagated outwards, whereas the circular rarefaction wave traveled inwards showing that this wave
almost reaches the center of the domain. This phenomenon continued until the rarefaction wave has
fully plunged into the center of the domain at approximately 0.8 s and this wave was suddenly reflected
creating a sharp gradient of water surface elevation. At 1.6 s, the circular shock wave propagated
further outwards the from domain center, whereas the reflected rarefaction wave now caused the water
to fall below the initial depth of 0.5 m. This produced a secondary circular shock wave, the depth of
which was slightly less than 0.5 m. The primary circular shock wave kept propagating outwards the
center of the domain at 3.8 s and interestingly, the secondary circular shock wave that had recently
been created traveled towards that center. At 4.7 s, it is shown that the primary circular wave almost
reached the domain boundary and at this time a very sharp gradient of water surface elevation had
been created near that boundary.

We present the comparison between the analytical and numerical results at 4.7 s in Figure 6
showing that all schemes can simulate this highly discontinuous flow properly. To point out the
difference between the three schemes more clearly, we present in Figure 7 both the depth and velocity
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profiles near the two discontinuous areas: 20–22 m and 38–40 m, where only non-significant differences
are shown.
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Figure 5. Case 1: results of the central-upwind (CU) scheme at 0.1, 0.4, 0.8, 1.6, 3.8, and 4.7 s.
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Figure 7. Case 1: comparison between analytical and numerical results at 4.7 s (in detail).

4.2. Case 2: Dam-Break Flow against an Isolated Obstacle

This case was done experimentally in [31]. The channel was trapezoidal; 35.8 m long and 3.6 m wide.
A 1 m wide rectangular gate separated the upstream reservoir from the downstream channel, see Figure 8.
The Manning coefficient was 0.01 s m−1/3. A 0.8× 0.4 m obstacle was located on the downstream channel
with a position that formed an angle of 64o from the x-axis. The water was set initially to 0.4 m at the
reservoir and 0.02 m at the channel, thus the banks at downstream were dry. The upstream end of the
reservoir was a closed wall. In this paper, the domain was discretized into 143,280 rectangular cells
(285,246 edges). The simulation was set for 30 s with ∆t = 0.005 s, thus requiring 6000 time steps.

Figure 8. Case 2: sketch of domain and channel shape.
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We compared our model at four points: G1 (10.35, 2.95) m, G4 (11.7, 1.0) m, G5 (12.9, 2.1) m, and G6
(5.83, 2.9) m. Our numerical results are given in Figure 9 showing that our model is in general capable
of simulating this case properly. At G1, the maximum bore around 2 s was accurately simulated by
all schemes, where there were no significant differences shown until 9 s. However, after 9 s, the CU
scheme computed the results higher than do the other schemes, where both the HLLC and Roe schemes
show almost no different results. At G4, the first bore around 2 s was predicted with a later time of no
more than 1 s and a higher depth of no more than 2 cm, where all schemes kept producing the higher
values from 2 s to 4.5 s. At G5, no significant differences were again shown between the HLLC and
Roe schemes, but the CU scheme showed slightly different values. At G6, highly accurate results were
given by all schemes to simulate the water at the reservoir, showing that the schemes can predict the
correct incoming discharge from the upstream reservoir to the downstream channel.
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Figure 9. Case 2: comparison of depths between observation and numerical results.

Some errors computed by our model are probably due to the absence of the turbulence terms.
Yu and Duan [32] showed the turbulence model was highly important for simulating flow field around
the obstacle, where the reflection waves from the obstacle and side walls have superimposed several
oblique hydraulic jumps. In Figure 10, we visualize the flood propagation at 1, 3, and 10 s using the
CU scheme.

4.3. Case 3: Tsunami Run-Up on a Conical Island

This benchmark case was conducted in a laboratory by [33] to investigate the tsunami run-up on
a conical island, the center of which was located near the middle of a 30 × 25 m basin, see Figure 11.
To produce planar solitary waves with the specified crest and length, a directional wave maker was
used. The left boundary was set as a flow boundary, and the respective water elevation and velocities
were defined as

η(0, y, t) = Ae sech2

√
3 Ae

4 He

√
g
(

He + Ae
) (

t− Te
)

,

u(0, y, t) =
η
√

g
(

He + Ae
)

η + He
, v(0, y, t) = 0 ,

(7)
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where Ae, He, and Te are the amplitude of the incident wave, still water depth, and time, at which
the wave crest enters the domain—set to 0.032 m, 0.32 m, and 2.45 s, respectively. The other three
boundaries were closed boundaries. We compared our results with the values at five gauges located
on the domain: P-03, P-06, P-09, P-16, and P-22, whose coordinates were (6.82,13.05) m, (9.36, 13.80) m,
(10.36, 13.80) m, (12.96, 11.22) m, and (15.56, 13.80) m, respectively. The Manning coefficient was set to
zero as suggested by [34].
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Figure 10. Case 2: visualization of the flood propagation at 0, 1, 3, and 10 s using the CU scheme.

The domain was discretized into 200,704 rectangular cells (402,304 edges). The simulation time
was set to 20 s with ∆t = 0.002 s leading to 10,000 time steps. One can see in Figure 12, the incident
solitary waves in front of the island, which generate a high run-up at about t = 9 s, create wet–dry
mechanisms on the conical island. Within this period, the maximum magnitude was reached. After
t = 9 s, the waves started to run down the inundated area on the conical island. Some waves were
refracted and propagated toward the lee side of the island, where two waves were trapped at each
side of the island at around t = 11 s. At t = 13 s, the second wave run-up was generated after these two
waves collided. Afterwards, these waves continued to propagate around the island.
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Figure 11. Case 3: computational domain of solitary wave run-up.
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Figure 12. Case 3: numerical results using the CU scheme at 9, 11, and 13 s.
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Our numerical results are also compared with laboratory results during 20 s, see Figure 13.
Accurate results were produced by all schemes, where no significant differences between them were
shown. The arrival times of the highest waves were accurately detected at gauges P-03 and P-22.
All schemes rendered later times at gauges P-06, P-09, and P-16 but the differences were no more
than 1 s. At gauge P-16, our model computed the wave 1 cm higher than the one mentioned in the
laboratory data, and the wave at gauge P-22 was computed 1.3 cm higher. This was probably due to
the neglect of the dispersion effects. Note that such discrepancies were also reported in the numerical
model of [34].
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Figure 13. Case 3: comparison between observation and numerical results.

4.4. Case 4: 2011 Japan Tsunami Recorded in Hawaii

This benchmark test is a real tsunami case that occurred in 2011, Japan. The data set was recorded
in Hilo Harbor, Hawaii. The raw data can be found in [35]. To avoid the phase differences of the
incident wave, the original bathymetry data should be flattened at the depth of 30 m. Interested readers
are also referred to [36] for more information. In Figure 14, the sketch of the domain is given as well
as the incident wave forcing employed at the northern part as a boundary condition. The Manning
coefficient was assumed to be uniform 0.025 s m−1/3. The observation points were the Hilo tide station
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for elevation (3159, 3472) m, HAI1125/harbor entrance (4686, 2246) m, and HAI1126/inside harbor
(1906, 3875) m for velocities. The 1-minute de-tiding of raw data was done for the observed data.

The domain was discretized using 20 m resolution rectangular cells producing 94,600 rectangular
cells (189,200 edges). We set the simulation time to 13 h and used ∆t = 0.025 s giving 1,872,000 time
steps. The results are given in Figure 15 plotted per 150 s. At the Hilo tide Station, each scheme can
detect the first incoming wave quite accurately around t = 8.2 h. The lowest water elevation was also
predicted properly at approximately t = 8.4 h but with a non-significant difference of about 0.2 m. After
that, the water level fluctuations were also computed properly. At the harbor entrance, the velocities
were in general accurately computed. Each scheme was able to compute the first incoming wave for
the x velocity at t = 8.2 h. The y velocity magnitude at that time was, however, slightly overestimated.
Inside the harbor, accurate predictions for x and y velocities were shown, where the first incoming
wave was well predicted. After 10 h, each scheme kept exhibiting accurate results at the harbor
entrance as well as inside the harbor. One can see that the water current flowed predominantly in
North–South direction at the harbor entrance, whereas inside the harbor the water current flowed
predominantly in East–West direction. Our results agree with the observed data and those simulated
by [36] as well. Although some discrepancies—which are probably due to the neglect of the tidal
current effects—still exist, our model shows overall quite accurate results for this hazard event.
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Figure 14. Case 4: bathymetry for simulation and the boundary condition.
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Figure 15. Case 4: comparison between observation and numerical results.

In Figure 16, the visualizations of tsunami inundation are presented using the CU scheme.
It is shown at around 9.03 h, the water level reaches approximately 0.5–1 m at the harbor entrance.
Meanwhile, the water level is predicted to reach 1–1.5 m inside the harbor. At about 9.53 h, the water
level at the harbor entrance remains relatively constant for 0.5–1 m but outside the harbor (near the
breakwater) the water level becomes higher up to 2.5 m. After 14 h, the water level near the breakwater
(inside and outside the harbor) decreases to approximately −1.25 m. Complex wet–dry phenomena
near the coastline as well as the breakwater appear during the simulation time and our model has
shown to be robust for modeling such phenomena.

We show in Figure 17 a visualization of the maximum velocity magnitude captured by the HLLC,
Roe, and CU schemes during 13 h simulation time. In general, as one can see, no significant differences
are shown between all schemes. Along the outer side of the breakwater as well as near the harbor
entrance, the velocity magnitudes of more than 4.5 m/s appear. Meanwhile, considerably lower
magnitudes are shown inside the harbor. The main difference is only located near the harbor entrance,
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where the CU scheme computes the slightly lower magnitudes. The spatial distribution of the velocity
magnitude is shown to be extremely sensitive, in agreement with that studied in [36].
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Figure 16. Case 4: visualization of tsunami inundation using the CU scheme at 9.03, 9.53, and 11 h.
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Figure 17. Case 4: numerical result for the maximum velocity captured during the 13 h simulation time
using the Harten-Lax-van Leer-Contact (HLLC), Roe, and CU schemes (top left, top right, bottom).

4.5. Performance Comparison

We have shown in the previous sections that the HLLC, Roe, and CU schemes are quite
accurate for simulating the test cases, where only non-significant differences are shown between
them. In this section we analyze and compare the performance of each scheme. All schemes were
written and compiled in the same code NUFSAW2D on three machines—AVX (Intel Xeon E5-2690/
Sandy-Bridge-E), AVX2 (Intel Xeon E5-2697 v3/Haswell), and AVX-512 (Intel Xeon Phi/Knights
Landing)—for a Linux operating system using Intel Fortran 19. The first computing resource
“Sandstorm” was available at our chair [37] and the last two resources “CoolMUC-2” and “CoolMUC-3”
were provided by the Leibniz Supercomputing Centre (LRZ) [38]. Each node of the AVX, AVX2,
and AVX-512 machines has a total of eight physical cores (16 logical cores), 14 physical cores (28 logical
cores), and 64 physical cores, respectively. Note that AVX-512 is built on many-core architecture that
incorporates cores with low-frequency and small memory. Therefore, in order to achieve a notable
performance, this machine relies on the vector operations on 512 bit SIMD registers.

We did not use the vectorization directive provided by Intel, e.g., !dir$ simd, since we have
experienced that this directive was not always able to vectorize the loop. Instead, we implemented the
directive !$omp simd simdlen(VL) aligned(var1,var2,... :Nbyte) provided by the OpenMP 4.0.
The first component (simdlen) was aimed to test the benefit of vectorization on our code compared to
the theoretical speed-up based on the vector width, while the second one (aligned) was employed
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to know the benefit of the aligned memory accesses supported by the reordering strategy proposed.
Since we would like to emphasize the effect of vector width, we restricted our discussion here to
single-precision arithmetic. The variable VL was the vector length, set to eight for AVX/AVX2 and 16
for AVX-512—and Nbyte was the default alignment of the architecture, set to 32 for AVX/AVX2 and 64
for AVX-512.

Two metrics are used to denote the performance of our code: Medge/s/core (million edges per
second per core) and Mcell/s/core (million cells per second per core), which are the comparisons
between the total number of simulated edges or cells that can be achieved per unit of time using one
core. The former was used to denote the performance of the SUBROUTINE edge-driven level, whereas
the latter was used to denote the performance of the entire simulation. It is also important to note that
since the RKFO method is used, the latter is calculated after four times updating per time-level update,
not per calculation-level update. We compiled our code using the flag -O3 -qopenmp -align ’a’ ’b’
for the vectorized version, where ’a’ = array32byte for AVX/AVX2 and array64byte for
AVX-512—and ’b’ = -xAVX for AVX, -xCORE-AVX2 for AVX2, and -xCOMMON-AVX512 for AVX-512.
To only emphasize the performance increase by vectorization, we disable all possibilities for auto
vectorization by compiling with the flag -O3 -qopenmp -no-vec -align ’a’ ’b’ and by deleting all
the SIMD directives in the source code, thus giving a fair benchmark of the non-vectorized version of
our code.

As previously explained, we discuss our results using single-core and single-node computations.
We observed that for single-node computations, NUFSAW2D with OpenMP gives better performance
than MPI because the WDLB technique employed for wet–dry problems requires no communication
cost. We only performed strong scaling for all cases, where we achieved averagely 87% efficiency for
AVX/AVX2 with 16/28 cores and 88% efficiency for AVX-512 with 64 cores. When using 8/16 cores
with AVX/AVX2 or 56 cores with AVX-512, higher efficiency was even achieved by our code being
approximately 98%. Although this leads to a better performance, we still use the results with all cores
available to show the single-node performance. Note the performance degradation of 12–13% (when
using all cores) was not due to inefficient load distribution but probably because of the non-uniform
memory access (NUMA) effects, where a processor can access its memory faster than the shared
non-local memory, see [21].

4.5.1. Performance of Edge-Driven Level

Figure 18 shows the performance comparison between all solvers, in which we observe a
significant performance improvement for each solver. Note the results in Figure 18 represent the
average values from the four cases tested. We observed that there are no significant differences of the
performance (in the range of 4–5%) achieved in all cases. The worst performance was shown in case 2,
whereas the best one was achieved in case 1. This is because case 2 deals with more complex wet–dry
problems, for which the WDLB technique in this case works better than in the other cases—thus
causing more overheads—in order to balance the load units between wet and dry cells, see [21] for
detail. For the edge-driven level, each non-vectorized solver shows performance metrics with a range
of 3.42–4.54, 5.03–6.23, and 1.01–1.38 Medge/s/core for the AVX, AVX2, and AVX-512, respectively.
This shows the CU scheme was, without vectorization, averagely 1.31× and 1.26× faster than the
HLLC and Roe solvers, respectively.

As soon the guided vectorization was activated, the performances of each scheme in the
edge-driven level increased significantly. For the AVX machine (1 core), we observed significant
improvements being 5.5×, 6.5×, and 6× for the HLLC, Roe, and CU schemes, respectively; this shows
the Roe scheme experiences remarkably the benefit of the vectorization, for which the improvement
factor is larger than the others. For the AVX2 machine (1 core), the speed-up factors of 4.5×, 4.8×,
and 5×were obtained by the HLLC, Roe, and CU schemes, respectively showing that the improvement
factor of the CU scheme becomes the largest one among the others. Although significant performance
improvements have been shown, our model still cannot fully exploit the theoretical speed-up of 8×
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from the vector widths of both the AVX and AVX2 machines used. Nevertheless, we have shown
that the data structures of our code are suitable for SIMD instructions as we are able to achieve the
efficiency of up to 81.25%. Note in the aforementioned notable works, none of the models could
achieve the performance increase of more than 52% from the theoretical speed-up of the machine
used. In [20], the average speed-up of 4.1× was achieved on AVX machine (single-precision) for
the vectorized augmented Riemann solver; therefore, this leads to the efficiency of 51.25%. In [22],
the average speed-up of 1.7× was obtained on an AVX2 machine (double-precision) for the vectorized
Riemann solver; this thus gives the efficiency of 42.5%.
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Figure 18. Comparison of performance metrics in the edge-driven level.

For the AVX-512 machine (1 core), the vectorization has tremendously increased the performances
of the HLLC, Roe, and CU solvers by the factors of 16.68×, 16.04×, and 16.42×, respectively. This
shows that our model can comprehensively exploit the vectorization for the vector width provided,
of which the theoretical speed-up is 16×. Also, this represents that the data structures designed in
NUFSAW2D efficiently support the vector programming on this vector-computing architecture.

With parallel simulations, each non-vectorized solver exhibits the performance metrics within the
ranges of 2.84–3.78, 4.02–5.11, and 0.81–1.12 Medge/s/core for the AVX (16 cores), AVX2 (28 cores),
and AVX-512 (64 cores), respectively; compared to the non-vectorized values with 1 core, it gives about
83% efficiency. For the performance analysis of the parallelized-vectorized solvers, the values obtained
by the non-vectorized solvers with single-core are used as indicator. For the AVX machine (16 cores),
the parallelized-vectorized HLLC, Roe, and CU solvers reached 16.18, 19.45, and 23.71 Medge/s/core,
giving speed-ups of 75.7×, 89.4×, and 83.52×, respectively. Similarly, the parallelized-vectorized
HLLC, Roe, and CU solvers obtained 19.45, 21.15, and 27.11 Medge/s/core, respectively with the AVX2
machine (28 cores) leading to speed-ups of 108.4×, 115.6×, and 121.8×. The significant performance
increase was shown by the AVX-512 machine (64 cores), where the parallelized-vectorized HLLC, Roe,
and CU solvers reached 14.64, 15.36, and 19.98 Medge/s/core, respectively; this brings each scheme to
achieve speed-ups of 928.9×, 892.9×, and 924.7×.
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The results in Figure 18 show an interesting fact, especially for the single-node performance
analysis. Without vectorization, the parallelized results of the AVX2 machine can significantly
outperform the parallelized results of the AVX-512 machine. For example, see Figure 19, on the
AVX2 machine the CU scheme shows a metric of 143.1 Medge/s with 28 cores while on the AVX-512
machine with 64 cores this scheme exhibits a metric of 71.7 Medge/s; the difference is thus almost
two-fold. However, with vectorization, the parallelized results of the AVX2 machine (759.1 Medge/s)
are now outperformed by those of the AVX-512 machine (1278.6 Medge/s), being approximately 1.7×.
This shows the vectorization is non-trivial for increasing the performance.
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Figure 19. Single-node performance of the non-vectorized and vectorized CU scheme with
parallelization (edge-driven level).

Based on these results, one can see although the Roe scheme experiences the largest speed-up
on the AVX machine or the HLLC scheme achieves the largest improvement factor on the AVX-512
machine, both of these schemes are still significantly outperformed by the CU scheme with average
multiplication factors of 1.4× and 1.25×, respectively. This is not so surprising since the computational
procedures of both the HLLC and Roe solvers include complex branch statements (if-then-else), thus
should theoretically be much more expensive than the CU scheme, see [17]. The HLLC scheme requires
the nested branch statements; the first one is to compute the wave speeds, which are later required
in the second branch statement for calculating the final convective fluxes. The Roe scheme needs
branchings for the intermediate variables and entropy correction computations, the computations of
which are quite complex. Such branchings may force the uses of masked operations and assignments,
thus significantly decreasing the performance. In contrast to these two solvers, the CU scheme does
not experience any branch statement. This is the beauty of this scheme in addition to being quite
simple and having no complex procedure, thus can (even) be auto-vectorized by the compiler.

4.5.2. Performance of the Entire Simulation

Prior to investigating the performance of the entire simulation, we firstly show the cost estimation
of each level in Algorithm 1 by presenting in Figure 20 a list of cost percentages: initialization, gradient,
edge-driven level and cell-driven level. The last three components indicate the same levels to those
shown in Algorithm 1, while initialization is a part required for updating the initial value for the RKFO
method per time-level update, e.g., to perform Wp=0 = Wt, see Equation (1). Note for an unbiased
representative, the values in Figure 20 are the cost percentage of a vectorized solver relatively to its
non-vectorized version. Only the cost percentage of the simulations using single-core is presented
in Figure 20; the percentage for single-node is shown to be similar. As expected, we observe that
the edge-driven level is the most time-consuming part being 65–75% of the entire simulation for
the non-vectorized code. For both AVX and AVX2 machines, the vectorization can decrease the
computational cost of the edge-driven level approximately from 71% up to 15%. Meanwhile, for the
AVX-512 machine, the vectorization is shown more effective to reduce the cost of the edge-driven level
averagely from 72% up to 5%.
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Figure 20. Components of the entire simulations for all schemes.

The second most expensive part is the cell-driven level, which consumes around 16–22% of the
total simulation time with the non-vectorized solvers. After vectorization, the cost of the cell-driven
level decreases from approximately 17% up to 5% on both the AVX and AVX2 machines. Meanwhile,
on the AVX-512 machine, the vectorization has helped by decreasing the computational time of
the cell-driven level averagely from 19% up to 3%; this again shows the vectorization works more
effectively on this machine.

We now explain the performance of our model for updating the entire simulation. For the AVX,
AVX2, and AVX-512 machines with one core, we observed for the non-vectorized solvers the metrics
of 1.27–1.56, 1.78–2.06, and 0.38–0.47 Mcell/s/core, respectively—and for the vectorized solvers by
6.37–7.79, 7.12–9.28, and 5.23–6.23 Mcell/s/core, respectively. We achieved the improvements for the
AVX machine by 5×, 5.5×, and 5× for the HLLC, Roe, and CU schemes, respectively, while for the
AVX2 machine, the speed-up factors of 4×, 4.5×, and 4.5× were obtained by the HLLC, Roe, and CU
schemes, respectively. On the AVX-512 machine we observed the speed-up factors of 13.91×, 13.11×,
and 13.18× for the HLLC, Roe, and CU schemes, respectively showing that, on this machine, our code
can achieve a better performance than those on the other two machines. However, the AVX2 machine
still gives the highest metrics among the others.

For parallel simulations with the AVX, AVX2, and AVX-512 machines, the non-vectorized solvers
achieved the metrics of 1.05–1.28, 1.42–1.67, and 0.3–0.38 Mcell/s/core, respectively—and for the
parallelized-vectorized solvers by 5.48–6.78, 6.12–8.08, and 4.55–5.48 Mcell/s/core, respectively. Similar
to the previous analysis, the values obtained by the non-vectorized solvers with single-core are used
as indicator here. According to Figure 21, the vectorized HLLC, Roe, and CU solvers on the AVX
machine (16 cores) gave the metrics of 5.48, 6.1, and 6.78 Mcell/s/core reaching speed-ups of 68.8×,
75.68×, and 69.6×, respectively. On the AVX2 machine (28 cores) we observed speed-ups of 96.3×,



Water 2019, 11, 639 27 of 31

108.4×, and 109.6× for the vectorized HLLC, Roe, and CU solvers by obtaining the metrics of 6.12,
6.98, and 8.08 Mcell/s/core, respectively. The AVX-512 machine (64 cores) shows again the significant
performance increase by allowing the parallelized–vectorized HLLC, Roe, and CU solvers to achieve
the metrics of 4.55, 4.57, and 5.48 Mcell/s/core or similar to speed-ups of 774.6×, 729.9×, and 742.1×,
respectively. Based on this fact, a similar behavior is noticed for the single-node performance in
updating the entire simulation. We take the results of the CU scheme as an example, see Figure 22.
Without vectorization, the parallelized results of the AVX2 machine with 28 cores (46.80 Mcell/s)
are about 1.93× significantly faster than those of the AVX-512 machine with 64 cores (24.22 Mcell/s).
However, the parallelized–vectorized results of the AVX-512 machine (351 Mcell/s) now outperform
the parallelized–vectorized results of the AVX2 machine (226.2 Mcell/s) by a factor of 1.55. This
again shows the vectorization is highly-important for achieving better performance. For the entire
simulation, our code with the vectorized solvers can achieve approximately 31–35% of the theoretical
peak performance (TPP) of the AVX/AVX2 machines and 26% of the TPP of the AVX-512 machine.
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We also actually studied the effect of the cell-edge reordering strategy on conserving
the memory access patterns, where we compared the directive !$omp simd simdlen(VL)
aligned(var1,var2,... :Nbyte) with the directive !$omp simd simdlen(VL). Using the former,
we found on all machines that the HLLC, Roe, and CU schemes averagely benefited from 1.45×,
1.5×, 1.4×more speed-ups in the edge-driven level compared to the results compiled only with the
latter. Similarly, for updating the entire simulation, the HLLC, Roe, and CU solvers achieved on all
machines approximately 1.41×, 1.42×, and 1.32×more speed-ups, respectively. These results reveal
that the cell-edge reordering strategy proposed has helped in easing the aligned memory access pattern,
thus enabling a significant performance enhancement. For the sake of brevity, these findings are not
presented here.

5. Conclusions

A numerical investigation for studying the accuracy and efficiency of three common shallow
water solvers (the HLLC, Roe, and CU schemes) has been presented. Four cases dealing with
shock waves and wet–dry phenomenon were selected. All schemes were provided in an in-house
code NUFSAW2D, the model of which was of second-order accurate in space wherever the regimes
were smooth and robust when dealing with strong shock waves—and of fourth-order accurate in
time. To give a fair comparison, all source terms of the 2D SWEs were treated similarly for all
schemes, namely the bed-slope terms were computed separately from the convective fluxes using
a Riemann-solver-free scheme—and the friction terms were computed semi-implicitly within the
framework of the RKFO method.

Two important findings have been shown by our simulations. Firstly, highly-efficient vectorization
could be applied to the three solvers on all hardware used. This was achieved by guided vectorization,
where a cell-edge reordering strategy was employed to ease the vectorization implementations and
to support the aligned memory access patterns. Regarding single-core analysis, the vectorization
was shown to be able to speed-up the performance of the edge-driven level up to 4.5–6.5× on the
AVX/AVX2 machines for eight data per vector and 16.7× on the AVX-512 machine for 16 data per
vector—and to accelerate the entire simulation as well by up to 4–5.5× on the AVX/AVX2 machine
and 13.91× on the AVX-512 machine. The superlinear speed-up in the edge-driven level especially
using the AVX-512 machine could be achieved probably due to improved cache usage, thus less
expensive main memory accesses. Regarding single-node analysis, our code could reach in the
edge-driven level the improvements of 75.7–121.8× on the AVX/AVX2 machine while on the AVX-512
machine it achieved up to 928.9× speed-up. For updating the entire simulation, our code was able to
reach speed-ups of 68.8–109.6× and 774.6× on the AVX/AVX2 and AVX-512 machines, respectively.
We observed an interesting phenomenon, where without vectorization the parallelized results of
the AVX2 machine outperformed those of the AVX-512 machine in both the edge-driven level and
the entire simulation with a factor of up to 2×; the parallelized-vectorized results of the AVX-512
machine became, however, faster by achieving an average factor of 1.6×. This clearly shows that our
reordering strategy could efficiently exploit the vectorization support of such a vector-computing
machine. Supporting the aligned memory access patterns, the reordering strategy employed has
helped in gaining the performances of the “only” vectorized code by averagely 1.45× and 1.4× for the
edge-driven level and updating the entire simulation, respectively.

Secondly, we have shown that for the four cases simulated, strong agreements by all schemes
were obtained between the numerical results and observed data, where no significant differences were
shown for the accuracy. However, in the term of efficiency, the CU scheme was able to outperform
the HLLC and Roe schemes with average factors of 1.4× and 1.25×, respectively. Although the
vectorization was successful to significantly gain the performance of all solvers, the CU scheme still
became the most efficient one among the others. According to this fact, we could conclude that the CU
solver as a Riemann-solver-free scheme would in general be able to outperform the Riemann solvers
(HLLC and Roe schemes) even for simulations on the next generation of modern hardware. This is
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because the computational procedures of the CU scheme are acceptably simple especially containing
no complex branch statements (if-then-else) such as required by the HLLC and Roe schemes.

Since simulating shallow water flows—especially complex phenomena that require performing
long real-time computations as part of disaster planning such as dam-break or tsunami cases—on
modern hardware nowadays and even in the future becomes more and more common, focusing
simulations only on numerical accuracy but ignoring the performance efficiency is not an option
anymore. Wasting the performance is obviously undesirable due to wasting too much time for
such long real-time simulations. Modern hardware offers many features for gaining efficiency,
one of which is vectorization that can be regarded as the “easiest” way for benefiting from the
vector-level parallelism, is thus non-trivial. However, this is not obtained for free; one should at
least understand and support—due to the sophisticated memory access patterns—the vectorization
concept. The cell-edge reordering strategy employed here is one of the easiest strategies to utilize
the vectorization feature of modern hardware that could easily be applied to any CCFV scheme
for shallow flow simulations, together with guided vectorization instead of explicitly by low-level
vectorization, which might be error-prone and time-consuming. It is worth pointing out that this
strategy is also applicable to any compiler with vectorization support, e.g., Gfortran. We observed
that the performance obtained with Intel compiler was typically 2–3× higher than that obtained with
Gfortran, which we believe is due to the correspondence of Intel compiler and Intel hardware.

We have also shown that the edge-driven level, especially the reconstruction technique and solver
computations, were the most time-consuming part, which required 65–75% of the entire simulation
time. This shows that some more “aggressive” optimization techniques still become a hot topic for
future studies to make shallow water simulations more efficient, particularly in the edge-driven level.
Finally, we conclude that this study would be useful as a consideration for modelers who are interested
in developing shallow water codes.
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Hybrid Artificial Viscosity–Central-Upwind Scheme for
Recirculating Turbulent Shallow Water Flows

Bobby Minola Ginting1 and Herli Ginting2

Abstract: In this paper, a hybrid artificial viscosity–central-upwind (AV-CU) scheme is proposed for simulating recirculating turbulent
shallow water flows by combining the artificial viscosity (AV) technique with the central-upwind (CU) scheme. Two-dimensional (2D) depth-
averaged Reynolds-averaged Navier–Stokes (DA-RANS) equations are solved using the AV technique, whereas the CU scheme is employed
to compute the κ–ϵmodel. The model is spatially and temporally second-order accurate. Scalable wall functions (ScWFs) are employed, thus
becoming flexible in generating meshes without having to estimate the wall friction velocity at the initial time step as if the standard wall
functions (StWFs) were used. The results benefit strongly from this hybrid approach being more accurate than the CU and Harten-Lax-van
Leer-contact (HLLC) schemes—and 1.52× cheaper than the HLLC scheme for modeling recirculating turbulent flows. As such, the proposed
approach could become a promising method for practical engineering purposes to simulate turbulent shallow water flows more efficiently and
accurately. DOI: 10.1061/(ASCE)HY.1943-7900.0001639. © 2019 American Society of Civil Engineers.

Introduction

The importance of turbulence, especially in hydraulics, has been
investigated a long time ago, see Levi (1995) for a historical review.
In reality, almost all flows in hydraulics are turbulent (Rodi
2017). Both inviscid and viscous models based on shallow water
equations (SWEs) have been used extensively in hydraulics
(e.g., Mohammadian 2010; Kanayama and Dan 2013; Horvath
et al. 2015; Shirkhani et al. 2016). The former neglects viscous
terms, while the latter includes such terms using a constant kin-
ematic viscosity, which can only change following depths and
velocities. Both models, however, still cannot represent the mass,
momentum, and heat transfers existing in turbulent conditions,
e.g., flows past structures. To estimate such processes, Reynolds
stresses are introduced as the eddy viscosity to characterize the re-
lationships between mean velocity and turbulent fluctuations
(Boussinesq 1877) employed in RANS models. Despite assuming
an isotropic condition, RANS models are still competitive with
large-eddy simulation or direct numerical simulation models due
to their efficiency (Rodi 2017).

For two-dimensional (2D) depth-averaged Reynolds-averaged
Navier–Stokes (DA-RANS) models with finite-volume methods,
Riemann solvers are probably the most well-known scheme,
e.g., Roe in Cea et al. (2007) and Cea (2005), Harten-Lax-van Leer
(HLL) in Kim and Lynett (2011), and HLL-contact (HLLC) in Yu
and Duan (2012), Kim et al. (2009), and Cao et al. (2015). Another
solver (Riemann-solver-free scheme) is the central-upwind (CU)
method proposed by Kurganov et al. (2001) and Kurganov and
Petrova (2007). Recently, this scheme was employed for 2D hyper-
bolic systems in Kurganov et al. (2017) and coupled water–sediment

models in Liu and Beljadid (2017). No splitting approach was re-
quired for low-dissipation discontinuous solutions (Beljadid and
LeFloch 2017). The CU scheme satisfied both well-balanced and
positivity-preserving properties (Beljadid et al. 2016; Cheng and
Kurganov 2016). To simulate recirculating inviscid flows, the CU
scheme was, however, worse than the Roe and HLLC schemes
(Mohamadian et al. 2005). Therefore, the use of the CU scheme
alone to simulate recirculating turbulent flows will lead to inaccurate
results; otherwise, high-resolution meshes can be used, such as
those investigated by the first author in Ginting (2019). However,
the CU scheme in Ginting and Mundani (2018) could benefit from
compilers’ optimizations, e.g., vectorization, on modern hardware
that are 1.3× cheaper than the HLLC scheme for 2D SWEs.

Recently, an AV technique was proposed in Ginting (2017) and
Ginting and Mundani (2018) and proven to be competitive with the
HLLC and CU schemes for efficiency and accuracy. This technique
was originally proposed by Jameson et al. (1981)—the Jameson-
Schmidt-Turkel (JST) scheme—and extensively used in aeronautics
(Jameson and Mavriplis 1986; Mavriplis 1988; van Der Burg et al.
1992; Swanson et al. 1998; Jameson 2017, and references therein).
The AV technique in Ginting (2017) employed a spectral radius of
3 × 3 system Jacobian matrix of 2D SWEs, and the dimensionless
depth-discontinuity (DDD) sensor was devised based on depth val-
ues. Therefore, this configuration fits the nonlinearity of the con-
vective fluxes of 2D SWEs. However, in its current formula, the
AV technique is not suitable for turbulence applications, in this case
the κ–ϵ model; for instance, see Eqs. (22) and (23). Therefore, a
novel approach is proposed here, where the AV technique and the
CU scheme are used to solve the 2D DA-RANS and κ–ϵ models,
respectively. This approach benefits from two points: (1) the hybrid
AV-CU scheme resolves the inability/inaccuracy of the CU scheme
in simulating recirculating turbulent flows and (2) it can still take
advantage of compilers’ optimizations on modern hardware and is,
thus, efficient. Such lower computational costs are obviously ben-
eficial for practical engineering purposes. Both the AV and CU
schemes are free from complex branch conditions (if-then-else),
which are difficult to vectorize. Such conditions are required by
the HLLC scheme for the speed wave and convective flux compu-
tations or by the Roe solver for the entropy correction. To the best of
the authors’ knowledge, no work in the literature used just the AV
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technique with a second-order finite-volume model for shallow flow
applications. The AV technique developed here is different from that
of Chen et al. (2013) and Hernandez-Duenas and Beljadid (2016),
where an adaptive AV was applied to enforce the nonlinear stability
of the reconstruction process, whereas the convective fluxes were
still calculated using the CU scheme; in other words, the AV method
replaced the role of common limiters, e.g., MinMod and Superbee,
but not the role of solvers. Here the AV technique is tied specifically
to convective fluxes and so plays the role of solvers, where the Min-
Mod limiter is utilized for the reconstruction process. Also, the AV
formulas developed here differ from the aforementioned works. All
computations in this work were performed using the first author’s
in-house code NUFSAW2D (Numerical simUlation of Free surface
ShAllow Water 2D).

Governing Equations

2D DA-RANS Equations

The 2D DA-RANS equations are written

∂Q
∂t þ ∂Cx

∂x þ ∂Cy

∂y ¼ ∂Dx

∂x þ ∂Dy

∂y þ Sb þ Sf ð1Þ

where Q = conservative variables; Cx and Cy = convective fluxes
(convective terms); Dx and Dy = diffusive fluxes (viscous terms)
according to Boussinesq’s assumption; Sb = bed-slope terms; Sf =
bed friction terms; andU = primitive variables. All these vectors are
given as (Rodi 1993; Wu 2004)

Q¼

2
64

h

hu

hv

3
75; U¼

2
64
h

u

v

3
75;

Cx¼

2
664

hu

huuþgh2

2

hvu

3
775; Cy¼

2
664

hv

huv

hvvþgh2

2

3
775;

Dx¼

2
666664

0

2hðνeþνtÞ
∂u
∂x−

2

3
hκ

hðνeþνtÞ
�∂u
∂yþ

∂v
∂x
�

3
777775; Dy¼

2
666664

0

hðνeþνtÞ
�∂u
∂yþ

∂v
∂x
�

2hðνeþνtÞ
∂v
∂y−

2

3
hκ

3
777775;

Sb¼

2
666664

0

−gh∂z∂x
−gh∂z∂y

3
777775; Sf ¼

2
664

0

−cfu
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þv2

p

−cfv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þv2

p

3
775 ð2Þ

where h, u, and v = flow depth and velocities in x and y directions,
respectively; g = gravity acceleration; νe and νt = kinematic and
eddy viscosities, respectively; z = bed contour; κ = turbulent kinetic
energy; nm = Manning coefficient; and cf ¼ gn2mh−

1
3. The water

elevation is computed by η ¼ hþ z.

κ–ϵ Turbulence Equations

The turbulence model is solved to compute νt and κ in Eq. (2) and
expressed as

∂Φ
∂t þ

∂CΦ;x

∂x þ ∂CΦ;y

∂y ¼ ∂DΦ;x

∂x þ ∂DΦ;y

∂y þ Sκ–ϵ ð3Þ

where Φ = conservative variables; CΦ;x and CΦ;y = convective
fluxes; DΦ;x and DΦ;y = diffusive fluxes; Sκ–ϵ = turbulence source
terms; and ϒ = primitive variables. All these vectors are given by

Φ¼
�
hκ
hϵ

�
; ϒ¼

�
κ
ϵ

�
; CΦ;x ¼

�
hκu
hϵu

�
; CΦ;y ¼

�
hκv
hϵv

�

DΦ;x ¼

2
664σ

−1
κ hνt

∂κ
∂x

σ−1
ϵ hνt

∂ϵ
∂x

3
775; DΦ;y ¼

2
664
σ−1
κ hνt

∂κ
∂y

σ−1
ϵ hνt

∂ϵ
∂y

3
775;

Sκ−ϵ ¼
2
4 PhþPκb−hϵ

cϵ1
ϵ
κ
PhþPϵb− cϵ2h

ϵ2

κ

3
5

ð4Þ

ϵ is the energy dissipation rate, and Ph accounts for the turbulent
energy production due to the horizontal velocity gradient, whereas
Pκb and Pϵb include the turbulent energy production due to bed
friction. These terms are defined as

Ph ¼ hνt

�
2

�∂u
∂x
�

2

þ 2

�∂v
∂y
�

2

þ
�∂u
∂y þ

∂v
∂x
�

2
�

Pκb ¼ c−0.5f U3�; Pϵb ¼
cϵΓcϵ2c0.5μ c−0.75f

h
ð5Þ

where U� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cfðu2 þ v2Þ

q
= bed friction velocity. νt is com-

puted by

νt ¼ cμ

�
κ2

ϵ

�
ð6Þ

All coefficients in Eqs. (4)–(6) are given in Rodi (1993) as

cμ ¼ 0.09; cϵ1 ¼ 1.44; cϵ2 ¼ 1.92;

σκ ¼ 1.0; σϵ ¼ 1.3; cϵΓ ¼ ½1.8; 3.6� ð7Þ

Numerical Model

Spatial Discretization

Integrating over a control cell Ω and applying the Gauss divergence
theorem, both Eqs. (1) and (3) are respectively writtenZ Z

Ω

∂Q
∂t dΩþ

I
Γ
ðCx þ Cy −Dx −DyÞ · ~ndΓ

¼
Z Z

Ω
ðSb þ SfÞdΩ ð8Þ

Z Z
Ω

∂Φ
∂t dΩþ

I
Γ
ðCΦ;x þ CΦ;y −DΦ;x −DΦ;yÞ · ~ndΓ

¼
Z Z

Ω
Sκ−ϵdΩ ð9Þ

where Γ = line boundary of control cell Ω; and ~n = unit normal
vector pointing outward of boundary. Using the notation Fx ¼
½Cx;CΦ;x�T and Fy ¼ ½Cy;CΦ;y�T, the line integrals in Eqs. (8)
and (9) are estimated by

I
Γ
ðFx þ FyÞ · ~ndΓ≈XN

k¼1

ðFxnx þ FynyÞkΔLk ð10Þ
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where N = total number of edges for cell p (N ¼ 4 for rectangular
grids); and ΔLk = edge length.

Monotonic Upwind Scheme for Conservation Laws Linear
Reconstruction
The Monotonic Upwind Scheme for Conservation Laws (MUSCL)
linear reconstruction procedures in van Leer (1979) are employed
with the edge-based MinMod limiter (Venkatakrishnan 1993; van
Albada et al. 1997; Delis and Nikolos 2013) for preserving monot-
onicity. These approaches are briefly discussed here. The values of
the left (L) and right (R) states at the midpointM of edge i in Fig. 1
are computed as

WL
M ¼ Wp þ

krpMk
krpqk

LIM½∇Wupw
p · rpq;∇Wcent · rpq�

WR
M ¼ Wq − krMqk

krpqk
LIM½∇Wupw

q · rpq;∇Wcent · rpq� ð11Þ

where W ¼ ½η;U;ϒ�; krpMk, krMqk, and krpqk = scalar lengths
between center points p and q and the midpoint M at the edge,
shown in Fig. 1; ∇Wupw

p , ∇Wupw
q , and ∇Wcent = delta gradients

corresponding to the two adjacent cells p and q; LIM = edge-based
MinMod limiter function used to preserve the monotonicity ofWL

M
and WR

M.
The MUSCL reconstruction process is depicted in Fig. 2. The

real condition is shown by Fig. 2(a). Without reconstruction, the
values of W are piecewise constant with only first-order spatial ac-
curacy, shown in Fig. 2(b). For this, the values at the edges are
extrapolated from the cell centers, e.g., hLM ¼ hp. The bed elevation
is thus computed by zLM ¼ ηLM − hLM ¼ ηp − hp ¼ zp. As shown in
Fig. 2(c), using the MUSCLmethod with the limiter in Eq. (11), the
values of W achieve spatially second-order accuracy by guarantee-
ing the monotonicity as

minðWp;WqÞ ≤ WL
M ≤ maxðWp;WqÞ;

minðWp;WqÞ ≤ WR
M ≤ maxðWp;WqÞ ð12Þ

If the conservative variables are reconstructed, the velocities
may not be monotonic because the values are not reconstructed
directly from the MUSCL method but computed as, e.g., uRM ¼
huRM=h

R
M, so it may not satisfy minðup; uqÞ ≤ uRM ≤ maxðup; uqÞ.

Hou et al. (2013b) found this to be a typical problem for almost-
dry cell simulations, which may give local extreme values at edges
that can cause negative depths; a criterion was thus proposed to
detect such extreme values using a threshold, where the second-
order scheme turns to a first-order one when such values are de-
tected. Because the primitive variables are reconstructed here, no
local extreme values will appear due to such almost-dry cells.
To ensure the monotonicity of the conservative variables, it is
employed here:

minðhup; huqÞ ≤ huLM ≤ maxðhup; huqÞ;
minðhup; huqÞ ≤ huRM ≤ maxðhup; huqÞ
minðhvp; hvqÞ ≤ hvLM ≤ maxðhvp; hvqÞ;
minðhvp; hvqÞ ≤ hvRM ≤ maxðhvp; hvqÞ
minðΦp;ΦqÞ ≤ ΦL

M ≤ maxðΦp;ΦqÞ;
minðΦp;ΦqÞ ≤ ΦR

M ≤ maxðΦp;ΦqÞ ð13Þ

If one of the criteria in Eq. (13) is violated, the model turns to a
first-order scheme. This simple approach is able to maintain the
stability of all simulations here.

Nonnegative Depth Reconstruction
First, the bed elevation at each edge is calculated following
Audusse et al. (2004) and Audusse and Bristeau (2005) as

zM ¼ maxðzLM; zRMÞ ¼ maxðηLM − hLM; η
R
M − hRMÞ ð14Þ

To obtain nonnegative values, the depth of each edge is cor-
rected as

hLM ¼ maxðηLM − zM; 0Þ; hRM ¼ maxðηRM − zM; 0Þ ð15Þ

The values in Eq. (15) are then used for the convective flux
calculations.

Fig. 1. Representation of L and R Riemann states at midpoint M
of edge k.

(a)

(b)

(c)

Fig. 2. Concept of reconstruction process: (a) real condition; (b) with-
out reconstruction; and (c) with MUSCL reconstruction.

© ASCE 04019041-3 J. Hydraul. Eng.
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Convective Flux Calculations
Averaging the reconstructed L and R Riemann states minus the
artificial diffusive terms, Cx and Cy at Point M of each edge are
computed as (Ginting 2017; Jameson et al. 1981)

½CxðQMÞnx þ CyðQMÞny�kΔLk

¼ 1

2
½ðCxðQR

MÞ þ CxðQL
MÞÞnx þ ðCyðQR

MÞ þ CyðQL
MÞÞny�kΔLk

− DðQMÞk ð16Þ

D denotes the artificial diffusive terms, which are devised based
on a Laplacian and a biharmonic operator (Fig. 3), expressed
respectively as

∇2Qi;j ¼ ðQiþ1;j −Qi;jÞ þ ðQi;jþ1 −Qi;jÞ
þ ðQi−1;j −Qi;jÞ þ ðQi;j−1 −Qi;jÞ

¼ Qiþ1;j þQi;jþ1 þQi−1;j þQi;j−1 − 4Qi;j ð17Þ

∇4Qi;j ¼ ð∇2Qiþ1;j −∇2Qi;jÞ þ ð∇2Qi;jþ1 −∇2Qi;jÞ
þ ð∇2Qi−1;j −∇2Qi;jÞ þ ð∇2Qi;j−1 −∇2Qi;jÞ

¼ ∇2Qiþ1;j þ∇2Qi;jþ1 þ∇2Qi−1;j þ∇2Qi;j−1 − 4∇2Qi;j

ð18Þ
Eqs. (17) and (18) are manipulated in an edge-based way as

ΔQMiþ1
2

¼ Qiþ1;j −Qi;j ð19Þ

Δ4QMiþ1
2
;j
¼ ∇2Qiþ1;j − ∇2Qi;j

¼ ðQiþ1;j−1 −Qi;j−1Þ þ ðQiþ1;jþ1 −Qi;jþ1Þ
þ ðQiþ2;j −Qi−1;jÞ − 5ðQiþ1;j −Qi;jÞ ð20Þ

DðQMÞiþ1
2
;j are thus calculated by

DðQMÞiþ1
2
;j ¼ Λmax

iþ1
2
;j

�
εð2Þ
iþ1

2
;j
ΔQMiþ1

2
;j
− εð4Þ

iþ1
2
;j
Δ4QMiþ1

2
;j

�
ΔLiþ1

2
;j

ð21Þ

where εð2Þ
iþ1

2
;j
and εð4Þ

iþ1
2
;j
= Laplacian and biharmonic coefficients,

respectively; and Λmax
iþ1

2
;j
= spectral radius of Jacobian matrix for

Eq. (1)—see the first 3 × 3 system in Eq. (28)—computed by

Λmax
iþ1

2
;j
¼ 1

2

h
juiþ1;j þ ui;j

			nxiþ1
2
;j
þ jviþ1;j þ vi;j

			nyiþ1
2
;j

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðhiþ1;j þ hi;jÞ

q i
ð22Þ

Because Λmax does not need the eigen-decomposition of the
Jacobian matrix as required by Riemann solvers, the AV technique
is regarded as a Riemann-solver-free scheme.

To calculate εð2Þ and εð4Þ, a DDD sensor based on h is required.
Slightly changing the sensor in Ginting (2017) based on Jameson
(2017), a small value hlim¼ 10−15 m is added, and the sensor is
now expressed as

φi;j ¼
jhiþ1;j þ hi;jþ1 þ hi−1;j þ hi;j−1 − 4hi;jj

max½ð1− ωÞPi;j þωRi;j;hlim�
Pi;j ¼ jhiþ1;j − hi;jj þ jhi;jþ1 − hi;jj þ jhi−1;j − hi;jj þ jhi;j−1 − hi;jj
Ri;j ¼ hiþ1;j þ hi;jþ1 þ hi−1;j þ hi;j−1 þ 4hi;j ð23Þ

where 0 ≤ ω ≤ 1. hlim works as a tolerance when h is constant and
ω ¼ 0 is chosen. For each edge, φ is calculated as

φiþ1
2
;j ¼ maxðφiþ2;j;φiþ1;j;φi;j;φi−1;jÞ ð24Þ

The best forms of εð2Þ and εð4Þ for shallow flows were shown in
Ginting (2017) to be

εð2Þ
iþ1

2
;j
¼ κð2Þφiþ1

2
;j; εð4Þ

iþ1
2
;j
¼ max



0;κð4Þ − φiþ1

2
;j

�
ð25Þ

where κð2Þ and κð4Þ = problem-dependent coefficients. After data
fitting, 1.5 ≤ κð2Þ ≤ 5 and 1=250 ≤ κð4Þ ≤ 1=32 were found, where
κð2Þ ¼ 5, κð4Þ ¼ 1=32, and ω ¼ 0.5 are recommended (Ginting
2017).

It is clear that Λmax and φ in Eqs. (22) and (23) fit the nonli-
nearities of hu, huu, hvv, and huv in Cx and Cy. For the κ–ϵmodel,
hκu, hϵu, hκv, and hϵv appear in CΦ;x and CΦ;y, creating new non-
linear forms. Eqs. (22) and (23) are therefore no longer suitable,
hypothetically because Λmax and φ do not match such new nonli-
nearities. This may be anticipated by considering Eq. (22) based on
the full 5 × 5 global system in Eq. (28) and by adding two new
sensors similar to Eq. (23) but based on κ and ϵ or hκ and hϵ.
Although this works, CPU time will significantly increase due to
huge computational-memory requirements. This has motivated the
authors to employ the CU scheme for the κ–ϵ model.

Using the CU scheme, both CΦ;x and CΦ;y are computed as

½CΦ;xðΦMÞnx þ CΦ;yðΦMÞny�kΔLk

¼ ΔLk

ðain þ aoutÞk
½ðainCΦ;xðΦR

MÞ þ aoutCΦ;xðΦL
MÞÞnx

þ ðainCΦ;yðΦR
MÞ þ aoutCΦ;yðΦL

MÞÞny − ainaoutðΦR
M − ΦL

MÞ�k
ð26Þ

where ain and aout are the local one-sided propagation speeds cal-
culated by

ain ¼ −minðΛL
1M;Λ

R
1M; 0Þ

aout ¼ maxðΛL
5M;Λ

R
5M; 0Þ ð27Þ

Λ1 ≤ : : : ≤ Λ5 are the eigenvalues of the 5 × 5 system Jacobian
matrix for Eqs. (1) and (3). This matrix reads

Fig. 3. Representation of domain for AV technique.
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2
6666664

0 nx ny 0 0

ð−u2 þ ghÞnx − uvny 2unx þ vny uny 0 0

−uvnx þ ð−v2 þ ghÞny vnx unx þ 2vny 0 0

−ðκunx þ κvnyÞ κnx κny unx þ vny 0

−ðϵunx þ ϵvnyÞ ϵnx ϵny 0 unx þ vny

3
7777775

ð28Þ

Note that there is no direct correlation between the AV and CU
schemes. For instance, the coefficient for Eq. (16) is constant (1/2),
whereas Eq. (26) depends on ain and aout. If ain ¼ aout, Eqs. (16)
and (26) look similar. However, they are different even if εð4Þ ¼ 0,
since εð2Þ is not included in the last term of Eq. (26).

Diffusive Flux Calculations
The gradients ofW at cell p computed using the primitive variables
in Eq. (11) are used for the diffusive fluxes and expressed in the
x-direction using the compact stencil method:

�∂W
∂x
�

p
≈ 1

Aq←1−4

X4
q¼1

�
1

2
ðWq þWqþ1Þnxq−qþ1

�
ΔLq−qþ1 ð29Þ

where Aq←1−4 = area formed by surrounding cells q ¼ 1 − 4 shown
in Fig. 4. A similar method is applied to the y-direction. Using the
notation Gx ¼ ½Dx;DΦ;x�T and Gy ¼ ½Dy;DΦ;y�T, these vectors are
computed by

−
I
Γ
ðGx þ GyÞ · ~ndΓ≈−X4

k¼1

ðGxnx þGynyÞkΔLk ð30Þ

To calculate Gx and Gy at edges, the centered method is used:

ðGxnx þ GynyÞkΔLk

¼ ΔLk

2
½ðGxðWpÞ þGxðWqÞÞnx þ ðGyðWpÞ þ GyðWqÞÞny�k

ð31Þ

Other methods are also possible for Eq. (31) (Castanedo
et al. 2005).

Bed-Slope Term Calculations
Before computing the bed-slope terms, zM in Eq. (14) must be
reconstructed to ensure a flux balance, expressed as

zM←zM −maxð0; zM − ηLM; zM − ηRMÞ ð32Þ

The bed-slope terms in the x-direction (Sbx) for a cell p are dis-
cretized as (Mohammadian and Le Roux 2006; Ginting and
Mundani 2018)Z Z

Ω
SbxdΩ ¼ −

Z Z
Ω

�
gh

∂z
∂x
�
dΩ

≈ − g
2

X4
k¼1

��ðhLMk þ hRMkÞ
2

þ hp

�
zMk

− ðhLMk þ hRMkÞ
2

zp

�
nxkΔLk ð33Þ

A similar method is applied to Sby. To explain the procedures of
the nonnegative depth reconstruction and bed-slope calculation,
Figs. 5(a and d) are given for wet–wet and wet–dry interfaces, re-
spectively. For the former, Eqs. (14) and (15) are applied to cell p to
preserve the flux conservativeness, sketched in Fig. 5(b), yielding
hLM < hp; no change applies to hp. Consequently, to have a correct
bed slope for hLM, the value of zM must be recalculated, where zp
does not change [Fig. 5(c)]. For this wet–wet interface, Eq. (14)
gives the same value to that given by Eq. (32). For the wet–dry inter-
face in Fig. 5(d), no flux must be transferred between cells p and q.
To accomplish this, the hydrostatic reconstruction in Eq. (14) is em-
ployed, and Eq. (15) corrects the depth [Fig. 5(e)], so hLM ¼ 0;
again, hp does not change. Accordingly, the bed slope must be
corrected using Eq. (32), so zM ¼ ηLM, shown by Fig. 5(f). Thus,
Eq. (32) affects only wet–dry interfaces but plays no role in
wet–wet interfaces. Therefore, Eq. (32) is used for all interface
conditions; it also applies to dry–dry interfaces to ensure a no-flux-
transfer condition (Ginting 2019). Eq. (32) is used only for edges, so
the real topography at the centers never changes. Eq. (33) satisfies
the well-balanced property (Appendix) and is a Riemann-solver-free
technique computed separately from Eq. (16) and is thus also appli-
cable to schemes with Riemann solvers.

Friction Term Calculations
Semi-implicit treatments were developed to compute friction terms
(Brufau et al. 2004; Delis et al. 2011; Cea and Vazquez-Cendon
2012). Here the friction terms are treated semi-implicitly following
Xilin and Liang (2018), where in the x-direction for a cell p they
are expressed as

hut�p ¼ hutp þΔtMt
xp −ΔtgNt

xp ð34Þ
where t = current time level; t� = calculation level of Runge-Kutta
second-order (RKSO) method; and Δt = time step. Mt

xp and Nt
xp

are written

Mt
xp ¼ − 1

Ap

"X4
k¼1

ððCx −Dx − SbxÞtnxÞkΔLk

#

Nt
xp ¼

h
n2mðhtÞ−7=3hut�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhut�Þ2 þ ðhvt�Þ2

q i
p

ð35ÞFig. 4. Compact stencil method for gradient of W.
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where Ap = area of cell p. Similarly, Mt
yp and Nt

yp can easily be
computed. Both Nt

xp and Nt
yp are the nonlinear functions of hut�p

and hvt�p . The effective methods to find the roots of such functions
were described well in Xilin and Liang (2018) and so are not pre-
sented here.

Turbulence Source Term Calculations
The turbulent source terms are calculated much like in Cea et al.
(2007) and Davidson (1993). DΦ;x and DΦ;y are treated semi-
implicitly as source terms and computed together with Sκ–ϵ, which
is calculated explicitly. Here some new symbols are used according
to Eqs. (4) and (5):

H1 ¼

2
6664
H
Γ

�
σ−1
κ hνt

�∂κ
∂x þ ∂κ

∂y
��

· ~ndΓ

H
Γ

�
σ−1
ϵ hνt

�∂ϵ
∂xþ

∂ϵ
∂y
��

· ~ndΓ

3
7775; H2 ¼

" P�
h

cϵ1
ϵ
κ
P�
h

#

H3 ¼
�
Pκb

Pϵb

�
; H4 ¼

2
64 − ϵ

κ

−cϵ2 ϵκ

3
75 ð36Þ

The total of DΦ;x, DΦ;y, and Sκ–ϵ at cell p is now denoted byHp
and is computed semi-implicitly using

Ht
p ¼

�
max

�
Ht

1

Ap
; 0

�
þHt

2 þHt
3

�

þ Φt�
�
min

�
Ht

1

ðApΦtÞ ; 0
�
þHt

4

�
ð37Þ

Some Limitations for Turbulence Properties
To ensure computational stability, the turbulence properties must be
limited so that negative values of the Reynolds stresses can be
avoided. These limitations include the limiter values for both Ph
and Pκb—and a realizability condition for νt. For the details, see
Cea et al. (2007), Cea (2005), and Durbin (1996).

Temporal Discretization

Following Liang and Borthwick (2009), the RKSO method is
written for the 2D DA-RANS equations as

Qtþ1
p ¼ 1

2
ðQt

p þQt�
p þKðQt�

p ÞÞ ð38Þ
whereQt�

p ¼Qt
pþKðQt

pÞ andKðQt
pÞ¼ΔtMðQpÞt−ΔtgNðQpÞt,

with M ¼ ½Mx;My�T and N ¼ ½Nx;Ny�T. The κ–ϵ model is calcu-
lated as

Φtþ1
p ¼ 1

2
ðΦt

p þ Φt�
p þKΦðΦt�

p ÞÞ ð39Þ

where Φt�
p ¼ Φt

p þKΦðΦt
pÞ and KΦðΦt

pÞ ¼ − Δt
Ap
½P4

k¼1 ðCΦ;xnx þ
CΦ;ynyÞtkΔLk� þΔtHt

p. Since Ht
p includes Φt� in Eq. (37), one

must first calculate Φ by summing all corresponding fluxes (the
first term of KΦ) without including any turbulent source term.
Afterwards, Eq. (37) is used to recalculateH. Since the CU scheme
is used to solve Eq. (39), the hybrid AV-CU scheme follows the
Courant-Friedrichs-Lewy (CFL) criteria in Kurganov and Petrova
(2007). Also, the Peclet (Pe) number Pe ≤ 2=CFL is considered
(Hirsch 2007).

Boundary Conditions

Treatments similar to those of Ginting (2017) are employed for
inflow/outflow boundaries and the AV technique. For the turbu-
lence model, treatments similar to those in Cea (2005) are applied.

(a) (b) (c)

(d) (e) (f)

Fig. 5. Procedures of nonnegative depth reconstruction and bed-slope term calculation for wet–wet and wet–dry interfaces.

Fig. 6.Near-wall mesh and scaling of turbulent boundary layer: τwall is
wall shear stress.
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No flux through a wall is allowed, and the turbulence values at
the wall are computed using the scalable wall function (ScWF) as
(Menter and Esch 2001)

wtg
p ¼ w�

p

υ
lnðyþpEÞ; yþp ¼ max

�
11.067;

Δynorp w�
p

νe

�
ð40Þ

where υ = von Karman coefficient (0.41); wtg
p = velocity component

of cell p parallel to wall; w�
p = wall friction velocity; yþp = wall

distance unit; Δynorp = normal distance from cell center p to wall;
and E = roughness parameter [here E ¼ 8.432 for smooth wall; for
another formula see Duan (2004)]. The Newton-Raphson iteration
is used to solve Eq. (40) and expressed in Algorithm 1. w�

p is then
used to calculate κ and ϵ at wall boundary cells for the subsequent
time level without solving the κ–ϵ model.

Algorithm 1. Algorithm for calculating w�
p

1: if
�
wtg
p ≤ 11.067

lnð11.067EÞνe
Δynorp υ

�
then

2: w�
p ¼ υwtg

p

lnð11.067EÞ
3: else
4: solve the Newton-Raphson iteration as follows:

5: w�trial1
p ¼ w�trial0

p − w�trial0
p ln


Δynorp E

νe
w�trial0
p

�
−υwtg

p

ln

Δynorp E

νe
w�trial0
p

�
−1

,

6: w�trial2
p ¼ w�trial1

p − w�trial1
p ln


Δynorp E

νe
w�trial1
p

�
−υwtg

p

ln

Δynorp E

νe
w�trial1
p

�
−1

,

7: w�trial3
p ¼ : : :

8: end if

The difference between the ScWF and standard wall function
(StWF) lies in the computation of yþ. Typically, yþ ≥ 11.067 is
applied in the StWF for near-wall meshes (Wu 2004; Yu and Duan
2012), and one must consequently place the first boundary cells in
the logarithmic region (Fig. 6). Although using fine meshes in-
creases the accuracy of RANS models (Coroneo et al. 2011), such
meshes may contravene this criterion. A grid study and the en-
hanced wall treatments were performed in Karimi et al. (2012)
to determine the proper size of near-wall meshes. Using the ScWF,
such grid studies are not required even for high-resolution meshes,
giving users flexibility to generate meshes without imposing a

Fig. 7. Case 1: Domain of circular and square cylinders.

(a)

(b)

Fig. 8. Case 1: Convergence histories at P1 for (a) circular; and (b) square cylinders.
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lower limit from the StWF (Ginting 2019). Algorithm 1 shows that
the ScWF establish a linear relationship between wtg

p and w�
p. This

becomes a shortcoming, where the displacement effect of the
viscous sublayer may no longer be considered. Nevertheless, this
approach is still acceptable because no wall formulation can accu-
rately resolve the sublayer (Menter and Esch 2001).

Results and Discussion

NUFSAW2D, written in Fortran, was compiled using Intel Fortran
17 for Linux. The target machine is a Linux cluster “CoolMUC2”

provided by the Leibniz Supercomputing Centre (Garching bei
München, Germany). OpenMP was used for parallelization on
28 cores with “–O3–xHost” optimization and double-precision
arithmetic (64-bit). νe¼10−6m2s−1, ρ ¼ 998.2 kgm−1

3, and g ¼
9.81 ms−2 were applied. All the turbulence coefficients were set
similarly to those given in Eq. (7), where cϵΓ ¼ 3.6. κð2Þ ¼ 5,
κð4Þ ¼ 1=32, and ω ¼ 0.5 were used. A performance metric (PM)
of Mcell/s/core (million cells per second per core), being a com-
parison between the number of cells for a total number of calcu-
lation steps that can be processed per unit of time using one core, is
used for a performance comparison among all schemes.

Case 1: Flow Past Circular and Square Cylinders

This case is adopted from Chen and Jirka (1995) (Fig. 7). A depth
of 0.02 m and a velocity of 0.295 m=s were constant at upstream
for the circular cylinder, whereas 0.035 m and 0.157 m=s were
given for the square one. Free outflow was set downstream, where
nm ¼ 0.01 sm−1

3. The Reynolds numbers (R) were R ¼ 5,900 (cir-
cular) and R ¼ 5,500 (square). No measurement data were given at
a specific point. However, the Strouhal numbers (S) were presented
experimentally as an indicator for the vortex-shedding frequency:
S ¼ 0.215 (circular) and S ¼ 0.17 (square). Points P1 are used only
to compare the numerical results.

NUFSAW2D was run for 500 s with a mesh size of 0.01 m.
Fig. 8 shows that both the hybrid AV-CU and CU schemes achieve
a similar convergence rate at P1 for the circular case approximately
after 250 s; the latter, however, computes the lower magnitudes.
Interestingly, the HLLC scheme fails to capture the recirculating
flow, shown by the constant u while v ¼ 0. For the square case,
all schemes can detect the recirculating flows but with different
convergence rates. The CU, HLLC, and hybrid AV-CU schemes
achieve convergence after approximately 240, 270, and 180 s, re-
spectively, showing the proposed scheme becomes the fastest one.
To approximate S, the vortex-shedding frequency must be known.
This was done in Chen and Jirka (1995) by visualizing the oscil-
lation periods of the experimental data averaged over 10 cycles.
Therefore, the visualizations are observed here for 20 s. For brevity,
only the visualizations of the hybrid AV-CU scheme are presented
in Figs. 9 and 10. For the circular case, the hybrid AV-CU scheme
calculates a period of 9.3 s (488.5–497.8 s), whereas the CU
scheme computes 8.5 s, giving S ¼ 0.226 and 0.247, respectively.
This shows that the latter is less accurate. For the square case, the
hybrid AV-CU, CU, and HLLC schemes produce periods of 19.8
(479.4–499.2 s), 18.1, and 17.3 s, giving S ¼ 0.193, 0.211, and
0.221, respectively, showing that the proposed scheme is better than
the others. The CU, HLLC, and hybrid AV-CU schemes achieve
PMs of 2.5, 1.61, and 2.45 Mcell/s/core, respectively.

Case 2: Recirculating Wakes around a Submerged
Conical Island

This case (Fig. 11) was investigated experimentally and 2D/3D
numerically with 0.0152-m meshes in Lloyd and Stansby (1997)
(L–S). A depth of 0.054 m and a velocity of 0.115 m=s were con-
stant at the upstream and free outflow at the downstream, giving
R ¼ 6,210, where nm ¼ 0.01 sm−1

3. Some publications are also
noted: 2D Boussinesq model with 0.01-m meshes (Kim et al.
2009), several 2D/3D models, e.g., Funwave-TVD (fully nonlinear
Boussinesq wave–total variation diminishing), GeoClaw (Geo Con-
servation Laws), BOSZ (Boussinesq ocean and surf zone), with
0.01- to 0.03-m meshes (NTHMP 2018), and 2D/3D hydrostatic
RANS models, e.g., SCHISM-2D/3D (Semi-implicit Cross-scale
Hydroscience Integrated System Model-2D/3D), with 0.012-m
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Fig. 9. Case 1: Visualization of wake flows along channel at
(a) 488.5 s; and (b) 481 s.
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Fig. 10. Case 1: Visualization of wake flows near cylinders at (a) 488.5–497.8 s; and (b) 479.4–499.2 s.

© ASCE 04019041-9 J. Hydraul. Eng.

 J. Hydraul. Eng., 2019, 145(12): 04019041 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

T
ec

hn
is

ch
e 

U
ni

ve
rs

ita
t M

un
ch

en
 o

n 
09

/2
7/

19
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



meshes (Zhang et al. 2016). Since 2D simulation is of interest, only
2D models of L–S and SCHISM-2D are considered here for
comparison.

NUFSAW2D was run with a 0.015-m mesh size for 500 s
(although the convergence was achieved at around 100 s) to show
that the results are not chaotic and do not deteriorate using the
ScWF. The results obtained during the last 100 s are thus compared
(after slightly shifting the time series due to different transient
phases). Surprisingly, the CU scheme captures no recirculation

Fig. 11. Case 2: Domain of conical island.

Fig. 12. Case 2: Comparison at P1 and P2 between hybrid AV-CU and CU schemes.

Fig. 13. Case 2: Comparison at P1 and P2 between some models.
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(Fig. 12) by only detecting u ¼ 0.07 m=s at P1 and u ¼ 0.11 m=s
at P2, while v ¼ 0. The hybrid AV-CU scheme yields sufficiently
accurate results for both wakes’ magnitudes and periods; however,
u at P1 is underestimated. In the experiment, a strong vertical mix-
ing at P1 was observed, so 3D properties existed and 2D assump-
tions failed. Nevertheless, this hybrid approach successfully shows
the recirculation at P1 and P2, where the CU scheme cannot. Note
that no 2D model from the aforementioned publications could
properly simulate the magnitudes or the wakes’ periods at P1.

Fig. 13 shows comparisons only for 40 s to give a clear repre-
sentation. The HLLC scheme computes the wake periods properly
but still underestimates the magnitudes. Both L–S and SCHISM-
2D predict the magnitudes properly but significantly overestimate
the periods after 15 s. This shows that the hybrid AV-CU scheme
becomes the most accurate one. The HLLC and hybrid AV-CU
schemes achieve PMs of 1.62 and 2.46 Mcell/s/core, respectively.
Figs. 14 and 15 visualize the recirculating near-wake bubble flows
behind the conical island produced by the hybrid AV-CU scheme,
representing good qualitative agreement with the experimental
visualizations. Fig. 16 shows the stable wake patterns after 100 s
computed by the hybrid AV-CU and HLLC schemes, giving similar
convergence rates.

Case 3: Turbulent Recirculating Flows due to
Channel Expansion

The case in Fig. 17 is adopted from Han (2015) and Han et al.
(2017), who experimentally and numerically with Simulation of
Turbulent Flow in Arbitrary Regions–Computational Continuum
Mechanics+ (StarCCM+) investigated the recirculation zone length
(Lcirc) at a sudden expansion in a PVC-made channel with a
streamwise slope of 0.18%. A constant discharge of 20 L=s was

set at the upstream and free outflow at the downstream. A rough-
ness value of 3.4 × 10−5 m was given and converted using the
Colebrook–White equation and the Darcy–Weisbach coefficient
and assumed to be constant, resulting in nm ¼ 0.0094 sm−1

3. Dur-
ing the experiment, the recirculation zone was unsteady, so Lcirc
always changed with respect to time. On average, Lcirc ¼ 1.29 m
with the recirculation center at (0.735, 0.104) m, and h ¼ 0.156 m,
u ¼ 0.23 m=s, v ¼ 0 were observed at P1. A grid study was done
using StarCCM+ with 12.5-, 6.25-, and 3.125-mm mesh sizes.

To approximate a proper steady-state condition for the numeri-
cal simulation, two criteria are used here: (1) convergence history
for h and u at P1 and (2) the slight difference between the inflow
and outflow discharges. A 10-mm mesh size is employed for 400-s
simulation, and with the ScWF no grid study is required. The con-
vergence is achieved after 200 s (Fig. 18) (where the convergence
rates are almost similar), and an error on the order of 10−4 m3=s
at 400 s is obtained, so comparing Lcirc at 400 s is acceptable.
The results for u along Section 1-1 (at the centers of the first boun-
dary cells) are plotted; as u changes from positive to negative, the
reattachment point can be determined. Fig. 19 shows the CU,
HLLC, and hybrid AV-CU schemes calculate Lcirc ¼ 0.8, 0.81, and
1.28 m, respectively. This shows that the hybrid AV-CU scheme
yields sufficiently accurate results, whereas the others are more
diffusive. Along x ¼ 0.675 m and x ¼ 1.32 m, the hybrid AV-
CU scheme becomes again the most accurate one near the wall
(y ≤ 0.2 m). At y > 0.2 m, all schemes, however, exhibit some
errors, but they are not significant.

Fig. 20 shows that mixing layers exist along the separating
streamlines. The CU and HLLC schemes exhibit almost similar
characteristics, where the separating streamlines end approximately
at (0.85, 0) m, but the recirculation centers slightly differ, (0.41,
0.12) m and (0.3, 0.12) m, respectively. The separating streamline
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Fig. 14. Case 2: Visualization of wake flows along channel at 40 s.
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Fig. 15. Case 2: Visualization of wake flows near conical island at 35, 38, and 40 s.

Fig. 16. Case 2: Convergence histories at P1 and P2.
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of the hybrid AV-CU scheme ends approximately at (1.31, 0) m
with the recirculation center of (0.63, 0.11) m. This shows that
the hybrid AV-CU scheme is more accurate and in accordance with
the experimental data. The CU, HLLC, and hybrid AV-CU schemes
achieve PMs of 2.51, 1.61, and 2.46 Mcell/s/core, respectively.

Conclusion

Simulations of recirculating turbulent shallow flows were presented
using a hybrid AV-CU scheme for solving convective fluxes of 2D

circPVC

PVC

Fig. 17. Case 3: Domain of channel.

Fig. 18. Case 3: Convergence histories at P1.

(a)

(b) (c)

Fig. 19. Case 3: Comparisons along (a) Section 1-1; (b) x ¼ 0.675 m; and (c) x ¼ 1.32 m.
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DA-RANS and κ–ϵ models. Second-order spatial and temporal ac-
curacies were achieved using a MUSCL scheme with a MinMod
limiter and a RKSO scheme, respectively. ScWFs were employed,
so no grid study was required, and additionally this gave users flex-
ibility to generate meshes. The proposed scheme proved to be well
balanced.

Using similar mesh sizes, the hybrid AV-CU scheme was
significantly more accurate than the other models (CU, HLLC,
L–S, and SCHISM-2D). The proposed scheme could resolve the
inability of the CU scheme to simulate recirculating turbulent shal-
low flows. It can significantly improve results since the biharmonic
operator Δ4Q is third-order accurate and activated in smooth re-
gions of the flow field, as in Case 2. Note that the AV technique
combines the Laplacian operator (first-order accurate) to work for
discontinuities and the biharmonic operator to work for smooth
flows. These operators are switched on/off automatically by the
DDD sensor during runtime.

The hybrid AV-CU scheme remained as efficient as the CU
scheme but was 1.52× cheaper than the HLLC solver. Regarding
its accuracy and performance, the proposed scheme could be a
promising method for practical engineering purposes, especially
when it comes to simulating recirculating turbulent shallow flows.

Finally, a study of the new dimensionless discontinuity sensors
for the turbulence properties according to the authors’ hypothesis
would be worth exploring in the future.

Appendix. Proof of Well-Balanced Property

For simplicity, all analyses are given for one dimension here; a
similar approach can easily be extended to two dimensions. The
steady-state condition is in general expressed as

∂hu
∂x ¼ 0

∂
∂x
�ðhuÞ2

h
þ 1

2
gh2
�

¼ ∂Dx

∂x − gh
∂z
∂x − gn2mh−

1
3juju ð41Þ

whereDx ¼ 2hðνe þ νtÞ∂u=∂x − 2=3hκ. The first term in Eq. (41)
indicates hu ¼ hu0 ¼ constant, so

∂
∂x
�ðhu0Þ2

h
þ 1

2
gh2
�

¼ ∂Dx

∂x − gh
∂z
∂x − gn2mh−

1
3juju ð42Þ

Two conditions are considered: a lake-at-rest condition (Audusse
et al. 2004; Hou et al. 2013a), expressed as u ¼ 0 and hþ z ¼
constant, and a smooth steady-state solution (Chertock et al. 2015;
Michel-Dansac et al. 2016), which follows h ¼ h0 ¼ constant,
hu ¼ hu0 ¼ constant, and ∂z=∂x ¼ −z0 ¼ constant.

Lake-at-Rest Condition

Applying Eq. (11), η and h are reconstructed for the edge iþ 1
2
as

ηL
iþ1

2

¼ ηi þ
1

2
θηi ðηiþ1 − ηiÞ;

ηR
iþ1

2

¼ ηiþ1 − 1

2
θηiþ1ðηiþ1 − ηiÞ

hL
iþ1

2

¼ hi þ
1

2
θhi ðhiþ1 − hiÞ;

hR
iþ1

2

¼ hiþ1 − 1

2
θhiþ1ðhiþ1 − hiÞ ð43Þ

where θη and θh are the MinMod functions for η and h, respectively,
satisfying 0 ≤ θη ≤ 1 and 0 ≤ θh ≤ 1. Considering Fig. 21(a) gives

ηi−1 ¼ ηi ¼ ηiþ1 ¼ ηL
i−1

2

¼ ηR
i−1

2

¼ ηL
iþ1

2

¼ ηR
iþ1

2

¼ η

hL
iþ1

2

¼ hi; hRiþ1
2

¼ hiþ1; hi > hiþ1 ð44Þ

Applying Eq. (14) gives

zM
iþ1

2

¼ maxðηL
iþ1

2

− hL
iþ1

2

; ηR
iþ1

2

− hR
iþ1

2

Þ
¼ maxðη − hi; η − hiþ1Þ ¼ η − hiþ1 ¼ ziþ1 ð45Þ

Eq. (15) is used to compute the nonnegative depths as

hL
iþ1

2

¼ maxðηL
iþ1

2

− zM
iþ1

2

; 0Þ ¼ maxðη − ziþ1; 0Þ ¼ η − ziþ1 ¼ hiþ1

hR
iþ1

2

¼ maxðηR
iþ1

2

− zM
iþ1

2

; 0Þ ¼ maxðη − ziþ1; 0Þ ¼ η − ziþ1 ¼ hiþ1

ð46Þ

Since u ¼ 0, thus no velocity fluctuation (κ ¼ 0), the flux-
velocity in the convective fluxes, the diffusive fluxes, the friction
terms, and the artificial diffusive terms vanish, so

(a)

(b)

(c)

Fig. 20. Case 3: Visualization of velocity magnitude near recirculation
zone at 200 s of (a) CU; (b) HLLC; and (c) hybrid AV-CU schemes.
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½Cxnx�iþ1
2
¼ 1

2
½ðCxðQRÞ þ CxðQLÞÞnxÞ�iþ1

2

¼ g
2

�
1

2
ðhR

iþ1
2

þ hL
iþ1

2

Þ
�
2

¼ g
2
h2iþ1 ð47Þ

Eq. (32) corrects the bed elevation by

zM
iþ1

2

←zM
iþ1

2

−maxð0; zM
iþ1

2

− ηL
iþ1

2

; zM
iþ1

2

− ηRMÞ
¼ ziþ1 −maxð0; ziþ1 − η; ziþ1 − ηÞ
¼ ziþ1 −maxð0;−hiþ1;−hiþ1Þ ¼ ziþ1 ð48Þ

The bed-slope fluxes are now computed based on Eq. (33) as

½Sbxnx�iþ1
2
¼ − g

2

" 
hL
iþ1

2

þ hR
iþ1

2

2
þ hi

!
zM
iþ1

2

−
hL
iþ1

2

þ hR
iþ1

2

2
zi

#

¼ − g
2
½hiþ1ðziþ1 − ziÞ þ hiziþ1� ð49Þ

An approach similar to Eqs. (45)–(49) is applied to the edge
i − 1

2
; thus,

½Cxnx�i−1
2
¼ − g

2
h2i ; ½Sbxnx�i−1

2
¼ g

2
hizi ð50Þ

Now, showing that

hutþ1
i ¼ huti − Δt

Δx
½ððCxnxÞiþ1

2
þ ðCxnxÞi−1

2
Þ

− ððSbxnxÞiþ1
2
þ ðSbxnxÞi−1

2
Þ�

¼ huti − Δt
Δx

g
2
½ðh2iþ1 − h2i Þ

− ðhizi − hiþ1ziþ1 − hiziþ1 þ hiþ1ziÞ�

¼ huti − Δt
Δx

g
2
½ðhiþ1 þ hiÞðhiþ1 − hiÞ

− ðhiþ1 þ hiÞðzi − ziþ1Þ�
hutþ1

i ¼ huti ð51Þ
proves that the proposed scheme satisfies the well-balanced prop-
erty since ðhiþ1 − hiÞ ¼ ðzi − ziþ1Þ.

Smooth Steady State

See Fig. 21(b) fulfills, as such it fulfills ∂η=∂x ¼ −z0 and
∂hu=∂x ¼ 0, so there is no velocity fluctuation (κ ¼ 0) and again
the diffusive fluxes Dx vanish. Although the 2D problem is more
complex, its solution is similar when one assumes a quasi-1D

steady state, that is, h ¼ constant, hu ¼ constant, hv ¼ 0,
∂z=∂x ¼ constant, and ∂z=∂y ¼ 0—or h ¼ constant, hu ¼ 0,
hv ¼ constant, ∂z=∂x ¼ 0, and ∂z=∂y ¼ constant. A so-called
normal depth can thus be assumed as (Chertock et al. 2015)

h ¼ h0 ¼
�
n2mðhu0Þ2

z0

� 3
10

· ð52Þ

Since hi−1 ¼ hiþ1 ¼ hi ¼ h0 and hui−1 ¼ huiþ1 ¼ hui ¼ hu0,
the artificial diffusive termsD in Eq. (21) become zero and the con-
vective fluxes at edges in Eq. (42), e.g., ððhu0Þ2=hþ 0.5gh2Þiþ1

2
,

are obtained only by averaging the values of cells i and iþ 1;
the fluxes at edges iþ 1

2
and i − 1

2
thus cancel each other. Now there

remains

ð−gh∂z=∂x − gn2mh−
1
3jujuÞi ¼ 0 ð53Þ

Employing a method similar to Eqs. (44)–(49), it is easy to show
ð∂z=∂xÞi ¼ −z0; therefore, using this value together with Eq. (52)
for Eq. (53) one easily proves

ðgh0z0Þi ¼
�
gn2mh

−7
3

0 jhu0jhu0
�
i

ð54Þ

which can be substituted into Eq. (38), so htþ1
i ¼ hti ¼ h0 and

hutþ1
i ¼ huti ¼ hu0, which satisfy the well-balanced property.
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Artificial Viscosity Technique:
A Riemann-Solver-Free Method for 2D
Urban Flood Modelling on Complex
Topography

Bobby Minola Ginting and Ralf-Peter Mundani

1 Introduction

Using the two-dimensional (2D) shallow water equations (SWEs) for urban flood
modelling is a well-established approach in computational science and engineering.
These SWEs have been successfully used to describe free surface flows on complex
topography, in which the horizontal length scale of waves is much greater than the
vertical length scale. Since the SWEs can, in general, not be solved analytically, a
numerical approach is used instead. Many types of numerical approaches have been
developed such as finite differences, finite elements, finite volumes and lattice
Boltzmann methods. In this paper, we focus on the finite volume method (FVM),
which is probably the most popular scheme for solving the SWEs.

In the past two decades, Riemann solvers such as Roe, Harten-Lax-van Leer
(HLL) and Harten-Lax-van Leer-contact (HLLC) schemes for a cell-centred finite
volume (CCFV) scheme have been applied to solve the SWEs. These Riemann
solvers have been proven to be robust and can simulate complex mixed-flow
regimes by capturing sharp gradients with low-level oscillations. For details, we
refer to [1–11]. The HLLC scheme, which was developed by Toro [4], is very
suitable in modelling flow problems on complex topography that deals with both
very shallow water and wet–dry problems such as floods in urban and rural areas.
Hou et al. [9] applied the HLLC scheme for simulating some flow cases which
involved wet–dry interfaces. Dry beds could be taken directly into account to
compute the left and right wave speeds which are required in the HLLC scheme.
Delis and Nikolos [10] used the Roe approximate Riemann solver in order to
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compute the convective flux in a CCFV scheme, in which the conservation of the
flow at rest with dry regions was well satisfied.

Despite its robustness in capturing strong gradients, the use of Riemann solvers
may lead to a huge computational overhead particularly when using a high-order
temporal discretisation scheme such as the Runge–Kutta fourth-order (RKFO)
method. This is because the convective flux, which is computed based on a lin-
earisation consisting of eigenvalues and eigenvectors of the approximate Jacobian
matrix in the Roe scheme or based on the computation of the left, middle (contact)
and right wave speeds in the HLLC scheme, must be re-evaluated four times per
time step. Hence, the complex if-then-else statements in the HLLC scheme would
entail a computational overhead. In order to avoid this problem, we developed a
technique which is free from a computation of the Riemann solver. The main
concept of our technique is that we compute the convective flux only by averaging
the left and right states of every edge, thus simplifying computations compared to
the HLLC scheme or to a calculation of the entropy correction in the Roe scheme
and saving computational time. However, this averaging technique will not be
stable and produces significant oscillations without a stabilisation scheme, partic-
ularly when dealing with discontinuous flows. As a consequence, an artificial
viscosity (AV) technique was developed to work as a stabilisation scheme for
minimising unphysical oscillations. This AV technique is computed separately from
the convective flux. In other words, the convective flux can be re-evaluated only by
averaging the left and right states of every edge without depending on the result of
the AV technique. This AV technique is then computed in a hybrid manner which is
only computed once per time step before computing the RKFO method. We will
show in Sect. 2.5 that the computational time can be significantly reduced.

In addition to lower computational times, another aspect we want to emphasise is
the capability of the AV scheme in producing non-diffusive results for the use of a
first-order scheme. Based on our observation, most of the aforementioned publi-
cations used a second-order numerical scheme, in which the main variables of the
SWEs such as depth and fluxes are reconstructed using a limited-gradient function.
Liang and Marche [11], who also used a Riemann solver in their study, stated that
the first-order numerical scheme gives diffusive results that are generally not
acceptable in practice. However, in this paper, we will show that the proposed AV
technique does not give diffusive results in spite of using the first-order scheme;
shock waves and sharp gradients are well captured without an excess of diffusivity.

AV techniques are rarely used for solving the 2D SWEs. Most applications were
previously conducted in aeronautics to solve the Euler equations for simulating
inviscid transonic flows associated with shock waves (see, e.g. [13–17]). In sim-
ulating free surface discontinuous flows, Ginting [18] and Ginting et al. [19, 20]
used the AV technique for some flood and dam-break problems. The discontinuous
flows were accurately and stably simulated. Ginting [12] then improved the AV
technique to achieve higher accuracy and presented arguments why this AV scheme
could be much cheaper than a Riemann solver. In this paper, we prove the afore-
mentioned statement by giving a comparison of benchmark tests for the HLLC
scheme and the AV technique. Another scheme interestingly pointing out is the
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central-upwind (CU) scheme which was first introduced by Kurganov and Levy
[21] and then improved by Kurganov and Petrova [22]. The CU scheme is a
Riemann-solver-free method which is able to both preserve stationary steady states
(lake at rest) and to guarantee the positivity of the computed fluid depth. We also
compare our model with the CU scheme.

Other improvements based on Ginting [12] are a proper treatment of the friction
term in which a semi-implicit method is combined with a wet–dry technique, and an
advanced solely edge-based bed-slope discretisation. By combining these treat-
ments with the AV scheme, our model is able to simulate real flood phenomena on
complex topography in which discontinuities due to the rapid change of a flow
regime (caused by very shallow water) or due to wet–dry problems must be taken
into account. This paper is organised as follows. The governing equations and
numerical model are explained in Sect. 2. Some benchmark tests are given in
Sect. 3 in order to verify our model. Finally, conclusions are given in Sect. 4.

2 Mathematical Formulation

2.1 Governing Equations

The 2D SWEs in vector form are written as [12, 18–20]

@W
@t
þ @F

@x
þ @G

@y
¼ S; ð1Þ

where W, F, G and S are the vectors given by

W ¼
h

uh

vh

2
64

3
75; F ¼

uh

u2hþ 1
2gh

2

uvh

2
64

3
75;

G ¼
vh

uvh

v2hþ 1
2gh

2

2
64

3
75; S ¼

R� I

gh ðSx� SfxÞ
gh ðSy� SfyÞ

2
64

3
75:

ð2Þ

The variables h, u, v and g denote, respectively, the water depth, velocity in the
x and y directions and acceleration due to gravity. The variables R and I define,
respectively, rainfall intensity and infiltration. Terms Sx, Sy, Sfx and Sfy are the bed
slopes and friction source terms in the x and y directions and described in
Sects. 2.2.4 and 2.2.5. The full mathematical derivation of our model can be read in
[12].
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2.2 Numerical Model: Spatial Discretisation

By applying the Gauss divergence theorem over a polygonal control volume Xk, we
get an integration form of (1) as

@

@t

ZZ
Xk

Wel
k dXk þ

XN
i¼1

Fed
i nedx i þGed

i nedy i

� �
Ledi ¼

ZZ
Xk

Selk dXk; ð3Þ

where el and ed, respectively, define element and edge, Ledi defines the length of
edge i and N is the total number of edges that surround element k. The symbols nedx i

and nedy i
denote the unit outward vectors normal to edge i and are computed in

counter-clockwise direction. The second term on the left-hand side of (3) is the
convective flux, whose calculation is very important in order to ensure stability. In
this paper, we do not treat elements as representing computational cells; rather, we
calculate the value of every edge over the entire domain. The computation of the
convective flux at edge i is therefore only performed once. Furthermore, the result
can simply be multiplied by −1 when we are computing another element that also
belongs to edge i. Prior to explaining the difference between the HLLC, CU and AV
schemes, we present a 2D domain which is discretised into nine elements as shown
in Fig. 1.

As shown in Fig. 1, the domain has a total of 24 edges. Since our model is based
on an edge-based computation, we need to re-evaluate the convective flux 24 times
for those 24 edges per time step. In other words, the convective flux requires a
re-evaluation of 96 times (four times more) when we use the RKFO method. Using
the HLLC scheme, which has complex nested if-then-else statements, increases the
computational overhead significantly. This is because the pattern of true or false
condition cannot exactly be predicted by the branch prediction logic of a processor.
If the condition is always true or false, the processor can follow the pattern;

Fig. 1 A 2D domain
discretised by 9 elements
(denoted by k) with 24 edges
(denoted by i)
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however, if the pattern is unpredictable, the if-then-else statements will be more
expensive. Of course, one might get different results after compiling the same
if-then-else statements with different compilers, since the compilers might make
optimisations, such as loop-unrolling, that affects the performance. Also, since the
branch prediction logic is encoded in hardware, one might have different results on
different processors in spite of compiling the same if-then-else statements with the
same compiler. Instead of being confused by this problem and of giving extra
efforts to investigate it, we propose an AV scheme, which is very easy to be
programmed, in order to replace the role of the Riemann solver. Later, we will also
show that the AV scheme can produce more accurate results than those of HLLC
and CU schemes. Since our focus in this paper is mainly on showing the difference
between the HLLC, CU and AV schemes, we do not reconstruct the left and right
states of every edge; rather, we simply calculate these schemes using the first-order
scheme. In the following sections, we present in general the formulas of the HLLC,
CU and AV schemes.

2.2.1 HLLC Scheme

This scheme is an approximate Riemann solver which was developed by Toro [4].

Using this scheme, the calculation of Fed
i nedx iþGed

i nedy i

� �
in (3) is generally

expressed as (4), where SedL i, S
ed
M i and S

ed
R i are, respectively, the left, middle (contact)

and right wave speeds, which are proper to treat wet–dry bed conditions. The
variables Hed

L i and Hed
R i are the interface fluxes of the left and right states,

respectively. Hed
L � i and Hed

R � i denote the interface fluxes beside the contact wave. It
is clearly shown by (4) that in order to compute these four interface fluxes, all wave
speeds SedL i, S

ed
M i and SedR i must be known first.

Fed
i nedx iþGed

i nedy i

� �
¼

Hed
L i if 0� SedL i

Hed
L�i if SedL i\0� SedM i

Hed
R�i if SedM i\0� SedR i

Hed
R i if SedR i� 0

8>><
>>: ð4Þ

With regard to this, some expensive mathematical operations are required which
are basically the functions of the main variables h, u and v. For a more complete
version of the mathematical equations of this scheme, interested readers are referred
to [4, 9]. As shown in the aforementioned publications, in addition to (4), another
if-then-else statement based on the value of h should be performed again to obtain
the wave speeds, creating a more complex nested if-then-else statement. Therefore,
this scheme would suffer from a computational overhead and particularly for the use
of the RKFO method, this can even be worse since all if-then-else statements must
be performed four times more.
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2.2.2 Central-Upwind Scheme

This scheme is a Riemann-solver-free method and was developed by [21, 22]. The
concept of both the CU and HLLC schemes is similar; the convective flux should be
re-evaluated with regard to the wave speed of every edge. However, as we will
show later, the computation of the CU scheme is much simpler and cheaper than

that of the HLLC scheme. The calculation of Fed
i nedx iþGed

i nedy i

� �
in (3) is given

by

Fed
i nedx iþGed

i nedy i

� �
¼ 1

aedin iþ aedouti
aedin iF

ed
R iþ aedoutiF

ed
L i

� �
nedxi þ aedin iG

ed
R iþ aedoutiG

ed
L i

� �
nedyi

�aedin i a
ed
outi Wed

R i �Wed
L i

� �
" #

;

ð5Þ

where Fed
L i, F

ed
R i, G

ed
L i, G

ed
R i, W

ed
L i and Wed

R i indicate the variables in the vector of
(2) with regard to the left and right states of edge i. The variables aedin i and aedouti
define the local one-sided speeds of propagation, given by

aedin i ¼ �min Ued
L i �

ffiffiffiffiffiffiffiffiffiffi
ghedL i

q
;Ued

R i �
ffiffiffiffiffiffiffiffiffiffi
ghedR i

q
; 0

� �
and

aedouti ¼ max Ued
L iþ

ffiffiffiffiffiffiffiffiffiffi
ghedL i

q
;Ued

R iþ
ffiffiffiffiffiffiffiffiffiffi
ghedR i

q
; 0

� �
:

ð6Þ

The variables Ued
L i and Ued

R i are expressed as

Ued
L i ¼ uedL i n

ed
x iþ vedL i n

ed
y i

and Ued
R i ¼ uedR i n

ed
x iþ vedR i n

ed
y i
; ð7Þ

where uedL i, v
ed
L i, u

ed
R i and vedR i define the velocities in the x and y directions for the

left and right states of edge i. A more complete version of the above equations is
also given in Wu et al. [23].

2.2.3 Artificial Viscosity Scheme

In [18–20], the first author of this paper used the AV scheme for solving the 2D
SWEs and then improved this scheme in [12] based on the pioneering ideas of [13–
17]. A good performance of the AV scheme was shown that stable computations
and highly accurate results were always achieved, whereas the computational time
remained acceptably low. In order to compare this AV scheme with the two pre-

vious schemes, we now write the calculation of Fed
i nedx iþGed

i nedy i

� �
in (3) as
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Fed
i nedx iþGed

i nedy i

� �
¼ 1

2
Fed
R iþFed

L i

� �
nedx iþ Ged

R iþGed
L i

� �
nedy i

h i
: ð8Þ

Obviously, in comparison to (4), the computational effort is significantly reduced
in this model. The convective flux is re-evaluated only by averaging the left and
right states, even though this re-evaluating process must still be performed four
times per time step for the use of the RKFO method. Yet, the computation of (8) is
basically unstable without a proper treatment.

In order to minimise unphysical oscillations, an AV scheme is therefore
developed and (3) is now expressed as

@

@t

ZZ
Xk

Wel
k dXk þ

XN
i¼1

Fed
i nedx iþGed

i nedy i

� �
Ledi � Del

k ¼
ZZ
Xk

Selk dXk; ð9Þ

where Del
k denotes an artificial viscosity term, being a function of the vector W. It

should be noted that Del
k is not computed for edges, but for elements. According to

Fig. 1, Del
k is computed once for each element per time step before starting the

RKFO method. These values are then used in all four Runge–Kutta steps. This will
be discussed in detail in Sects. 2.3 and 2.5. By considering a rectangular cell with
four edges i = 1,…, 4 in the counter-clockwise direction as shown in Fig. 2, Del

k for
the element k = 0 is now expressed as

Del
k¼0 ¼ Ded

i¼2 � Ded
i¼4þDed

i¼3 � Ded
i¼1: ð10Þ

We present here only a general overview for (10); a complete mathematical
derivation can be read in [12]. By combining a Laplacian and a biharmonic
operator, we form an AV scheme, in which the variable scaling factor is constructed
using the spectral radius of the Jacobian matrix at every edge kedi . We now focus on
computing Ded

i¼2, which is expressed as

Fig. 2 Definition of the parameter for the AV scheme
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Ded
i¼2 ¼ Ledi¼2k

ed
i¼2 DWi¼2e

ð2Þ
i¼2 � D3Wi¼2e

ð4Þ
i¼2

� �
; ð11Þ

where DWi¼2 ¼Wel
k¼2 �Wel

k¼0 and D3Wi¼2 ¼Wel
k¼5 � 3Wel

k¼2þ 3Wel
k¼0 �Wel

k¼4.
The variable kedi¼2 is then computed as

kedi¼2 ¼
1
2

uelk¼0þ uelk¼2
� �

nedx i¼2þ
1
2

velk¼0þ velk¼2
� �

nedy i¼2

				
				

þ 1
2

celk¼0þ celk¼2
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nedx i¼2
� �2þ nedy i¼2

� �2
r

;

ð12Þ

where c is the wave speed and simply computed by c ¼ ffiffiffiffiffi
gh
p

. In order to control the
diffusivity of (11), we construct a dimensionless depth discontinuity sensor for
element k = 0 #el

k¼0 as

#el
k¼0 ¼

helk¼2 � 2 helk¼0þ helk¼4
		 		

ð1� xÞ helk¼2 � helk¼0
		 		þ helk¼0 � helk¼4

		 		� �þx helk¼2þ 2 helk¼0þ helk¼4
		 		� � :

ð13Þ

The value of the depth discontinuity sensor at the edge i = 2 #ed
i¼2 is now

computed as

#ed
i¼2 ¼ max #el

k¼5; #
el
k¼2; #

el
k¼0; #

el
k¼4

� �
: ð14Þ

The variables eð2Þi and eð4Þi in (11) define the adaptive Laplacian and biharmonic
coefficients for edge i which are computed by (15). The variables jð2Þ, jð4Þ and x
denote the coefficients that should be determined empirically. As stated in [12], the
values of these coefficients are problem-specific.

eð2Þi¼2 ¼ jð2Þ#ed
i¼2

eð4Þi¼2 ¼ max 0; jð4Þ � #ed
i¼2

� � : ð15Þ

In order to obtain the final value of Del
k¼0 in (10), the same procedure should be

applied for the other subscripts (i = 1, 3 and 4).

2.2.4 Hydrostatic and Topography Reconstructions

In general, before computing the convective flux using the three aforementioned
schemes and the bed-slope source term, a proper modification for the bed elevation
of the considered edge, in which wet–dry interfaces are taken into account, should
be made. This is important to ensure both non-negative water depths and the flux
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balance particularly for wet–dry interfaces. Following [9, 11], we modify the bed
elevation of edge i zedi as

zedi ¼ max gedL i � hedL i; g
ed
R i � hedR i

� �
; ð16Þ

where gedL i, g
ed
R i, h

ed
L i and hedR i are the water elevations and the depths of the left and

right states of edge i. We compute a hydrostatic reconstruction for the depths hedL i

and hedR i as

hedL i ¼ max 0; gedL i � zedi
� �

and hedR i ¼ max 0; gedR i � zedi
� �

: ð17Þ

These modified depths are then employed for the computation of the convective
flux using the aforementioned schemes. Prior to calculating both Sx and Sy, we
remodify zedi to be applied in an edge-based fashion by borrowing the idea of [11]
as

zedi  zedi �max 0; zedi � gedL i; z
ed
i � gedR i

� �
: ð18Þ

2.2.5 Bed-Slope Term Treatment

We now apply a partial derivative computation for the bed-slope source term, for
which the integral form of ðghSxÞelk is written as (19), where helk , z

el
k and Ael

k denote,
respectively, the depth, bed elevation and area of element k. This technique is
similar to that of Mohammdian and Le Roux [6], which is neither an extra
upwinding scheme nor a Riemann solution and has been proven to satisfy the
compatibility property. The structure of this technique is also applied in an
edge-based fashion; it is therefore suitable for our model. A similar manner can also
be applied to compute the integral form of ghSyð Þelk .

ZZ
Xk

ghSxð Þelk dXk¼ �g
ZZ
Xk

h
@z
@x

� �el

k
dXk

¼ � g
2

ZZ
Xk

@ hzð Þ
@x
þ h

@z
@x
� z

@h
@x

� �el

k
dXk

¼ � g
2Ael

k

XN
i¼1

hedL iþ hedR i

2
þ helk

� �
zedi �

hedL iþ hedR i

2

� �
zelk


 �
nedx iL

ed
i :

ð19Þ

Artificial Viscosity Technique: A Riemann-Solver-Free Method … 59



2.2.6 Friction Term Treatment

An explicit treatment of the friction term may produce significant oscillations when
the roughness coefficient is very high. In addition, some stability issues with the
Courant–Friedrichs–Lewy (CFL) condition would appear when facing wet–dry
conditions. This problem, of course, can be avoided either by using a varying time
step that is limited by the CFL number or by refining the computational grid.
However, both of these possibilities require an unavoidably high computational
cost. Therefore, a semi-implicit technique is more suitable for calculating the
friction term. Another advantage is that this semi-implicit technique can be inte-
grated in the RKFO method in a straightforward manner. According to [7, 24], we
calculate the flux of the x-momentum equation for element k as

ðhuÞelk
tþ 1 ¼ ðhuÞel�k � ðg h SfxÞel

tþ 1
k Dt; ð20Þ

where ðhuÞel�k defines the flux for which the friction force is not taken into account

yet. The value of ðg h SfxÞeltþ 1
k in (20) is now expressed as

ðg h SfxÞelk
tþ 1 ¼ ðghuÞelk

tþ 1

ð1� hÞ n2mh
�4=3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2þ v2
p� �el

k

tþ 1

þ h n2mh
�4=3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2þ v2
p� �el

k

t
" #

;

ð21Þ

where h is the implicitness parameter. When h ¼ 0 the scheme leads to a full
implicit scheme and with h ¼ 1 the scheme is computed in a full explicit manner. In
order to solve (21), the assumption of tþ 1 � � can be made, that means * is
incorporated at each step of the RKFO scheme. A similar way is also applied to
compute ðhvÞel tþ 1

k . Murillo et al. [24] and Delis et al. [7] proved that (21) does not
depend on the time step; therefore, a time step restriction is not required.

In this paper, we propose a wet–dry treatment that is incorporated in the com-
putation of the friction source term, for which the pseudocode (compute Wel p

k ) is
expressed as follows:

The variable Dmin is a limited value to prevent computational instability due to
very small water depth. In this case, the value of Dmin is set to 1 � 10−6 m. The
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coupling between the friction term and the wet–dry treatment as shown in the
pseudocode above has two advantages; the first is that this algorithm is capable of
both preserving stability for very shallow water on very rough beds and preventing
excessive drag forces of those rough beds that can reverse the flow; the second is

that this algorithm saves more computational time since the calculations of ðhuÞelpk
and ðhvÞelpk are only carried out for wet elements. The variable p denotes the
calculation step of the RKFO scheme which is explained in Sect. 2.3.

2.3 Numerical Model: Time Discretisation

The time discretisation with the RKFO method is expressed as (22a–e) and applied
in its hybrid formulation, in which the AV technique Del

k is only performed once
(denoted by p = 0). During the calculation of this RKFO scheme, the value of Del

k

is not reupdated from p = 1 to p = 4; hence, computational cost will be signifi-
cantly reduced. It should be noted that for both the HLLC and CU schemes, Del

k

does not exist. First, one must calculate hel
�
k , which is not affected by the friction

term. Also, ðhuÞel�k and ðhvÞel�k are computed, in which the effect of friction is not

taken into account yet. Second, both ðhuÞel�k and ðhvÞel�k must be converted into
velocities uel�

k and vel
�
k . Due to a very low water depth, some errors may exist when

converting the fluxes back to the velocities. Thus, the pseudocode compute Welp
k

must be applied, where the velocities are only computed for wet cells, whose depths
are greater than Dmin. The fluxes for those wet cells are recalculated by including
the friction term as given in (20) and (21). Finally, these calculations are repeated
until p = 4.
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2.4 Boundary Conditions

Following [9, 12, 18–20], the boundary conditions are applied based on a flux
computation, in which the characteristic method is used for subcritical flow
boundaries to determine the velocities in both the x and y directions when the water
elevation is specified or conversely. Meanwhile, for supercritical flow boundaries,
the depth and velocities in both the x and y directions of the right states are set equal
to those of the left states. At solid boundaries, since flow cannot physically emerge
through a wall, a ghost cell technique similar to [12, 18–20] is applied.

2.5 Comparison Between the HLLC, CU and AV Schemes

As we previously mentioned, Ginting [12] gave an overview why an AV scheme
could be much cheaper than a Riemann solver. In this section, we re-explain this by
giving three pseudocodes Algorithm 1, 2 and 3, respectively, for the HLLC,
CU and AV schemes.
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As shown in the above pseudocodes, the nested if-then-else statements required
in the HLLC scheme must be performed four times the number of edges
(num_of_edge) for the use of the RKFO method; the computational overhead
will therefore increase significantly. Meanwhile, there are no complex if-then-else
statements required in both the CU and AV schemes; the computations of these
schemes remain simple and acceptably cheap as shown by (5) and (8), respectively.
Despite requiring an additional computation of Del

k, the computational cost of the
AV scheme can be decreased since Del

k is only computed once before the com-
putation of the RKFO starts. Nevertheless, we would like to emphasise that we are
not claiming that the AV scheme is better than a Riemann solver, as also written in
[12].
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3 Test Cases

3.1 Case 1: Dam Break with a Triangular Bump
on a Straight Channel

Prior to validating with a complex topography, we take a dam-break case selected
from the CADAM studies to verify the capability of our scheme in dealing with
strong shock waves and discontinuous flows. We refer this case to [5, 25]. As
shown in Fig. 3, the channel was 38 m long and 0.75 m wide. A gate was located
15.5 m from the upstream part of the channel and the depth was 0.75 m initially
along this section. In order to conduct a dam-break flow, this gate was suddenly
opened. A triangular bump with a height of 0.4 m and a length of 6 m was located
13 m downstream of the gate. The value of the Manning coefficient was set to
0.0125 sm−1/3. In this study, we select the case from the aforementioned publica-
tions that both upstream and downstream boundaries are set as wall boundary. We
discretise the domain into 45,600 rectangular elements. The total simulation time is
set to 40 s and the time step is 0.005 s. For the AV scheme, we set jð2Þ, jð4Þ and x,
respectively, to 5.0, 0.03125 and 0.5. These coefficients were fitted iteratively.
Some suggestions concerning the ranges of these coefficients are given in Ginting
[12].

The results of the AV scheme around the bump are shown in Fig. 4. A bore
wave is generated suddenly after the gate opening and propagates along the
channel. Afterwards, it reaches the bump and starts to run up. When running up the
bump, a negative wave appears and flows back upstream since the bore is partially
reflected. After overtopping the bump, the bore flows downstream and accelerates
over the sloping part. The wave continues to flow until it is reflected when reaching
the end wall and then propagates upstream. We also present a comparison between
the three schemes and the experimental results in Fig. 5, which shows that all
schemes produce sufficiently accurate results. There are no significant differences
shown by these three schemes. The arrival time of the bores is accurately predicted.
At gauge G4, the water depth increases dramatically at 12 s due to an interaction
between the wave from the upstream part and the reflected wave from the bump. All
schemes predict the second bore properly at 27 s. However, the third bore is pre-
dicted earlier but of no more than 1 s. A similar characteristic to gauge G4 is also

Fig. 3 Case 1: Straight channel with a triangular bump on a straight channel
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shown by gauge G10. The proper results are given at gauges G13 and G20, that all
schemes simulate the local discontinuity in bed slope accurately, whereas that of [5]
cannot. Also, the result at gauge G13 shows that these schemes are highly stable
when simulating very shallow water.

3.2 Case 2: L-Shaped Dam Break

While the previous case was to show that our scheme is able to simulate complex
wave–wave interactions, we now consider the simulation of discontinuous flows on
a discontinuous bed topography, in which the waves propagate both in x and
y directions. A laboratory study was conducted by [26] and some numerical sim-
ulations of this case were performed by [12, 27–29]. This is a dam-break case,
whose domain consists of a square reservoir and an L-shaped channel as shown in
Fig. 6. In this case, a square reservoir is connected with an L-shaped channel by a
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Fig. 4 Case 1: Results of the AV scheme around the bump at 7 s (upper) and at 10 s (bottom)
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discontinuous topography, where the bed elevation of the reservoir is 0.33 m lower
than that of the channel. We select a dry bed case in this study that the water depth
in the channel is initially zero. In the reservoir, the initial water depth is 0.53 m. As
suggested by [28, 29], we set the Manning coefficient to 0.0095 sm−1/3, both for the
reservoir and the channel. The domain is discretised into 24,359 rectangular ele-
ments. The total simulation time is then set to 40 s with a time step of 0.0025 s.
Only the downstream boundary is set as free outflow, the rest of which are set as
wall boundaries.

The coefficients jð2Þ, jð4Þ and x are set similar to case 1. Figure 7 shows a
comparison of water surface elevation along the downstream channel at 7 s that the
AV scheme can capture the strong gradients more accurately than do the HLLC and
CU schemes. Neither oscillations nor diffusive results are produced by the AV
scheme in spite of using the first-order scheme. The HLLC and CU schemes
simulate the discontinuous flows stably; however, both of them are too diffusive
that the strong gradients are not well captured. As shown in Fig. 7, the water
surface elevations produced by the HLLC and CU schemes tend to be too smooth.
The wave–wave interactions that occur in both x and y directions cannot be properly
simulated. At 2.5 s, the water reaches the wall at the L-shaped part and the bore is
partially reflected. After 7 s, the wave continues to propagate upstream causing a
highly discontinuous flow. Meanwhile, some waves still propagate downstream.
Along this downstream part, the strong gradients of the very complex wave–wave
interactions are accurately captured by the AV scheme, whereas both the HLLC and
CU schemes cannot.
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Fig. 5 Case 1: Comparison between experimental and numerical results of all schemes
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In Fig. 8, we show a comparison between these three schemes at G2–G5. At
gauge G2, the AV scheme detects both the arrival time and the elevation of the first
and second bores accurately. Both the HLLC and CU schemes can detect the arrival
time of the first bore properly. The elevation of the first bore is, however, under-
estimated. The HLLC scheme detects both the arrival time and the elevation of the
second bore properly; however, the CU scheme computes a delay of 2 s with an
underestimated elevation. At gauge G3, all schemes detect both the arrival time and
the elevation of the first bore properly. However, only the AV scheme can detect
the arrival time of the second bore accurately. The HLLC scheme computes a delay
of 1 s and the CU scheme is even worse with a delay of 2 s. At gauge G4, both the
AV and HLLC schemes compute the first bore with a delay but of no more than 1 s.
The CU scheme gives an underestimated elevation for the first bore with a delay of
2 s. After 10 s, both the HLLC and CU schemes produce similar results, where the
elevations are underestimated compared with the observed results, whereas the AV
scheme computes more accurately. At gauge G5, all schemes compute the under-
estimated elevation of the first bore but of no more than 1 cm. However, after 10 s
both the HLLC and CU schemes keep producing the overestimated results.
Meanwhile, the AV scheme computes the elevation accurately. As shown in Fig. 8,

Fig. 6 Case 2: Domain of L-shaped dam break
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Fig. 7 Case 2: Results of the HLLC (upper), CU (middle) and AV (bottom) schemes at 7 s
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the results of both the HLLC and CU schemes are too diffusive that the strong
gradients are not well captured during the simulation time. The AV scheme shows a
better performance which can detect the shock waves accurately.

3.3 Case 3: Rainfall and Point Source Surface Flow
in Urban Areas

In this case, a flood propagation on a complex topography is simulated, of which
the flood arises from two sources, a uniformly distributed rainfall event and a point
source. The input data of this case are given in detail by [30]. The modelled area
was taken in Glasgow, UK on 13 August 2009 and approximately 0.4 km
0.96 km provided in a DEM format. The ground elevations are within the range of
+21 to +37 m. Any buildings at the real location are ignored in order to simulate the
bare earth of the DEM. The initial boundary condition is set as dry bed and all
boundaries of the modelled area are set as wall boundaries. As published in [30],
there were no observation data provided for this case; instead, several 1D, 2D and
3D numerical models were used to simulate this case and the results were compared
at nine points. In this paper, for a comparison purpose, we take the results of the 2D
models, such as ISIS 2D, MIKE FLOOD, SOBEK, TUFLOW and XPSTORM; the
details of these 2D models are also given in [30]. The grid resolution should be at
least 2 m or 97,000 nodes in the 0.388 km2 modelled area. The Manning
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Fig. 8 Case 2: Comparison between experimental and numerical results of all schemes
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coefficients are 0.02 sm−1/3 for the roads and pavements and 0.05 sm−1/3 every-
where else.

We discretise the domain into 96,600 rectangular elements (by a 2 m � 2 m
rectangular cell). The total simulation time is then set to 18,000 s with a time step of
0.20 s. For the AV scheme, we set the coefficients jð2Þ, jð4Þ and x to 1.0, 0.03125
and 0.5, respectively. Figure 9 shows a comparison between the results of the
HLLC, CU and AV schemes and the aforementioned 2D numerical models at
points 2 and 6. As published in [30], due to the very intense rainfall during 1–
4 min, almost all the aforementioned 2D numerical models produced a
double-peaked shaped. The similar results are also shown by the HLLC, CU and
AV schemes. At point 2 for the first peak flow, both the HLLC and CU schemes
exhibit a similar characteristic of the water level which is higher than that of the AV
scheme. The HLLC and CU schemes predict a water level of +28.747 m at 7.5 min
and of +24.744 m at 8 min, respectively, whereas the AV scheme computes a water
level of +28.702 m at 11.5 min. The second peak flow is predicted almost similarly
by both the HLLC and CU schemes with a water level of +28.811 m at 43 min.
The AV scheme computes, however, a lower depth with a water level of +28.802 m
at 44 min. A similar characteristic is also shown for the velocity at point 2 during
0–53 min. However, after 53 min, the CU scheme keeps producing the lower water
levels, showing a capability in computing the drying mechanism properly.

At point 6, the first peak flow is predicted almost similarly by the HLLC, CU and
AV schemes with a water level of +26.973 m at 4 min. The AV scheme computes
the second peak flow at 44.5 min with a water level of +27.029 m, whereas both the
HLLC and CU schemes produce a similar result at 46.5 min with a water level of
+27.008 m. The maximum velocity of 1.204 m/s is computed by the AV scheme at
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Fig. 9 Case 3: Comparison between numerical results of all schemes and those of [30]
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44.5 min. At 46.5 min, both the HLLC and CU schemes produce a similar velocity
of 1.033 m/s. We also present an inundation map computed with the AV scheme in
Fig. 10, which shows that the AV scheme is stable in simulating a wet–dry
mechanism on complex topography. The semi-implicit scheme of the friction term
is capable of preventing excessive drag forces of the very rough beds both on the
pavements and the bare earth that no negative water depth is produced. Since there
is no observed result provided in [30], we cannot determine which scheme is the
most proper one for this case. Nevertheless, we have shown that our results are in
accordance with those of [30].

3.4 Comparison of the CPU Time

In this section, we show a comparison of the CPU time for all schemes. All codes
were executed on a Haswell Dekstop Dell Precision T1700 (single core) and
compiled for the Ubuntu 16.4 operating system using an Intel Fortran compiler
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Fig. 10 Case 3: Flood inundation area at 2400 s (upper) and 9000 s (lower) computed using the
AV scheme
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16.0.3. For each case, we performed the simulation of every scheme ten times in
order to obtain an average CPU time. The CPU times required by all cases are given
in Table 1, which shows that the HLLC scheme requires more CPU time than does
the AV scheme by an average multiplicative factor of 1.216. Also, the HLLC is
more expensive than the CU scheme by an average factor of 1.293. The ratio of the
CPU time between the AV and CU schemes is 1.064 averagely, for which the AV
scheme suffers from a little higher CPU time. It should be noted that despite being
the cheapest one, the CU method is too diffusive when using the first-order scheme
and not accurate in capturing the strong gradients of the very complex wave–wave
interactions that occur in the x and y directions as shown in case 2. The AV scheme
produces more accurate results than do the other schemes.

4 Conclusions

An AV scheme as a Riemann-solver-free method for 2D urban flood modelling on
complex topography has been presented. A combination of a Laplacian and a
biharmonic operator, in which the variable scaling factor is formed by using the
spectral radius of the Jacobian matrix, has successfully minimised unphysical
oscillations. The strong gradients of the very complex wave–wave interactions were
captured accurately. The discretisation of the bed-slope source term, which is
neither an extra upwinding scheme nor a Riemann solution, has been applied in an
edge-based fashion and has been proven to give satisfying results. Also, we have
shown that the semi-implicit treatment of the friction term could reduce oscillations
significantly when we encountered a very small water depth with a very high
roughness coefficient. Our computation ran stably with a minimum limiter value of
1 � 10−6 m. With regard to the CPU time, we have proven that the AV scheme is
cheaper than the HLLC scheme, even though an extra computation should be made
by constructing Del

k in order to minimise unphysical oscillations. This could be
achieved since the computations of the Laplacian and the biharmonic operators are
simple and also since we required re-evaluating the convective flux of the SWEs
only by averaging the left and right states of every edge, instead of evaluating
complex if-then-else statements as required in the HLLC scheme. The AV scheme
requires more CPU time than does the CU scheme by an average multiplicative

Table 1 Comparison of the CPU time between the HLLC, CU and AV schemes

Number
of
elements

Number
of edges

Time
step
(s)

Number
of time
step

CPU time (s) Ratio of CPU time

HLLC CU AV HLLC/
CU

HLLC/
AV

AV/
CU

Case 1 45,600 92,750 0.005 8000 82 64 66 1.294 1.241 1.042

Case 2 24,359 49,373 0.0025 16,000 67 53 56 1.263 1.202 1.051

Case 3 96,600 193,883 0.20 90,000 2479 1874 2057 1.323 1.205 1.098

Average 1.293 1.216 1.064
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factor of 1.064. This is, however, not too significant. The AV scheme is still more
accurate in simulating complex discontinuous flows than the CU scheme. A main
drawback of the AV scheme is that this scheme requires an extra memory to save
both #el

k and Del
k. A parallelisation version of this AV scheme would be an

interesting topic for future study.
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ABSTRACT

We present simulations of real flood and tsunami events using a hybrid OpenMP-MPI model on
high-performance cluster systems. The two-dimensional shallow water equations were solved by
means of the in-house code NUFSAW2D, using an edge-based cell-centred finite volume method
with the central-upwind scheme for millions of unstructured cells, thus ensuring spatial accuracy,
especially near buildings or hydraulic structures. Each node of a cluster system performed simulations
using OpenMP and communicated with other nodes using MPI. We explain strategies on reordering
the meshes to support contiguous memory access patterns and to minimise communication cost; to
this end, a simple criterion was proposed to decide the strategy used. Despite employing static domain
decompositions for such unstructured meshes, the computation loads were distributed dynamically
based on the complexity level, to each core and node during runtime to ensure computational
efficiency. Our model was tested by simulating two real-life cases: the 2011 flood event in Kulmbach
(Germany) and the Japan 2011 tsunami recorded in Hilo Harbour, Hawaii (USA). The numerical
results show that our model is robust and accurate when simulating such complex flood phenomena,
while the hybrid parallelisation concept proposed proves to be quite efficient. We also provide an
outlook for an advanced visualisation method employing the Sliding Window technique with an
HDF5 data structure. With such a combination of high-performance computing and interactive
visualisation, users have a comprehensive predictive tool to take immediate measures and to support
decision makers in developing a well-integrated early warning system.

∗Corresponding author. This manuscript was accepted in Advances in Hydroinformatics (Springer) in June 2019.
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1 Introduction

Many researchers have been developing tools for fast computations of flood events in the past two
decades—either in the scope of empirical “black-box” models, e.g. genetic algorithms, neural
networks, etc., or physically-based models, e.g. 1D/2D numerical models. The empirical models
are quite popular, especially for river applications, see [1, 2, 3], due to a much shorter computational
time. For urban flood applications, however, physically-based models still play a more significant
role, see [4, 5, 6], because of their ability to predict some flood characteristics that cannot be
assessed using empirical models. Rapid technological developments in the field of computing
resources have recently ushered in a new era for such physically-based models, enabling flood
simulations even on large domains in quite short time.

The probably most common approach to simulate floods on such large domains is to use parallel
2D shallow water equations (SWEs)-based models. In finite volume frameworks, these models
have proven to be accurate and robust for modelling flood events, even when confronted with
highly-complex phenomena, e.g. transcritical flows, shock-waves, and wet-dry problems, see
[7, 8, 9], among others. In the past two decades, parallel 2D SWEs-based models have also become
more and more advanced, see TELEMAC-2D [10], LISFLOOD-FP [11], ParBrezo [12], ADCIRC
[13], GeoClaw [14], sam(oa)2 [15], FullSWOF2D [16], and [17], among others. These models
were developed based on OpenMP or MPI or a combination of the two running parallel on modern
clusters and supercomputers. The performances turned out to be quite promising with regard to
exploiting the capabilities of such clusters or supercomputers for reducing computation time, which
is beneficial for fast computations of flood events.

Due to their flexibility, unstructured meshes are preferable to the structured ones to simulate complex
domains. However, decomposing a domain with unstructured meshes into several processors for
a parallel processing is a challenging task. Such a decomposition is not a key issue in OpenMP,
because the domain can automatically be assigned to different threads. In MPI the domain decom-
position of unstructured meshes can yet be problematic as the domain must be decomposed and
allocated to different processors. For this, METIS library [18] can be employed as a domain decom-
poser. This library was developed based on graph-partitioning tools, with the aim of minimising
communication cost and optimising load balance. In [12, 13, 17], METIS was used to decompose
the domains with unstructured triangular meshes. Two options are provided by METIS: vertices or
cells partition. The first option processes the grid partition for vertices connected by edges, while
the latter creates the grid partition for cells linked to neighbouring cells. Typically, the latter is
better suited for cell-centred finite volume (CCFV) models, as employed in this work, since cells
represent the computational element. Another possibility is to apply space-filling curves (SFCs) for
decomposing the domain, see [15].

Two types of data structure commonly employed for CCFV models are cell-based and edge-based. In
the former, the solutions at a cell are directly advanced using all the corresponding cell values. When
using MPI, communication between cells takes place directly. However, one major drawback of this
approach is that values must be computed twice for an edge, thus requiring more computational time.
In the latter approach, the solver computations are first carried out for all edges (only once for an
edge), which is computationally cheaper. However, the solutions at cells cannot be advanced directly
because the cells must access the edges and vice-versa. As the edge-based CCFV model with hybrid
OpenMP-MPI is employed here, we consider this matter—which is why we set up the data structure
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in our code in such a way that it supports any domain decomposition type. Consequently, a simple
criterion is proposed as a quality indicator for inspecting the memory access patterns.

One of several aspects that affects the efficiency of parallel models is the load balancing strategy.
Typically, load balancing is required for SWEs simulations with adaptive mesh refinement (AMR),
see [15], where structured triangular meshes were used. Due to the use of the AMR, it is necessary
to dynamically reallocate the cells to several processors because the total number of such cells
changes adaptively with respect to time. For static mesh applications, the domain decomposition is
only performed once before the numerical computations, thus requiring no cell-reallocation during
runtime. However, as wet-dry phenomena mostly appear during runtime, there are load imbalances
among processors, because wet cells demonstrate more computational efforts than dry cells. We
thus follow the strategy in [19], which was specifically designed for anticipating the load imbalance
due to wet-dry problems on static decomposition with rectangular meshes—and we extend it to the
scope of static unstructured meshes, where the cells are dynamically reallocated to processors based
on the complexity level of the wet and dry cells. An in-house code of the first author is used here:
NUFSAW2D (Numerical Simulation of Free Surface Shallow Water 2D). Successful applications of
NUFSAW2D can be found in [6, 19, 20, 21, 22, 23].

Finally, we also present a framework of an advanced visualisation technique based on [24, 25],
which can be integrated in our code to visualise our numerical results. The Sliding Window
technique in [24] enables us to provide an interactive visualisation not only from coarse scales,
e.g. the representative water-levels of the entire domain, but also towards fine scales, e.g. the
solutions of depths and velocities at the finest resolution. Although the Sliding Window technique
is, even for trillions of cells, quite powerful, there can still be huge sets of sequentially-ordered data
that are difficult to be accessed efficiently with post-processing tools. To minimise this problem,
a Hierarchical Data Format version 5 (HDF5)-based kernel was developed in [25] that supports
parallel I/O for speeding-up write operations. Both techniques are quite promising for immediate
measures and to support decision makers within a framework of a well-integrated early warning
system. Thus, we will provide an outlook on that aspect in this paper.

2 Mathematical Formulations

We spatially integrate the 2D SWEs over a control cell Ω and apply the Gauss divergence theorem
to estimate the line integral, so that such equations can be written as

∂

∂t

∫∫
Ω

WdΩ +
N∑
i=1

(
F nx + G ny

)
i

∆Li =

∫∫
Ω

(
Sw + Sbx + Sby + Sf

)
dΩ , (1)

where N is the total number of edges for a cell (N = 3 for triangular cells and N = 4 for
quadrilateral cells), ∆L is the length of an edge, nx and ny define the normal vector outward from
the edge in x and y directions, respectively. The variables F, G, Sw, Sbx, Sby, and Sf are the vectors,
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defined as

W =

 hhu
hv

 , F =

 hu

huu+
gh2

2
hvu

 , G =

 hv
huv

hvv +
gh2

2

 , Sw =

R− I0

0

 ,

Sbx =


0

−gh∂zb
∂x

0

 , Sby =

 0
0

−gh∂zb
∂y

 , Sf =


0

−cf u
√
u2 + v2

−cf v
√
u2 + v2

 ,

(2)

where cf = gn2
mh

− 1
3 . The variables h, u, v, zb, and nm, R, and I define the depth, velocities in x and

y directions, bottom elevation, and Manning coefficient, rainfall, and infiltration, respectively—and
the constant g is the gravity acceleration. In order to calculate the convective fluxes F and G, we
employ the central-upwind (CU) scheme, which was originally developed in [26], because it is more
efficient on modern hardware compared to other solvers (HLLC and Roe) provided in NUFSAW2D,
see [23]. Note that our scheme is well-balanced and positivity-preserving. For simplicity, a first-
order-spatial CCFV is applied in this work, so that further reconstruction techniques such as the
MUSCL method are not required. For temporal discretisation, we use the Runge-Kutta second-order
method with a semi-implicit treatment for Sf , see [19, 22]. This procedure is briefly summarised as

Kt = −∆t

A

∑N
i=1

((
F− Sbx

)
nx +

(
G− Sby

)
ny

)t

i

∆Li + ∆t Sw
t , Wt∗ = Wt + Kt ,

Wt∗ ← Π−1 Wt∗ , Π = 1 + g ∆t

[
(1− θ)

(n2
m

√
u2 + v2

h
4
3

)t∗

p

+ θ

(n2
m

√
u2 + v2

h
4
3

)(t∗−1)

p

]
,

Wt+1 =
1

2

(
Wt + Wt∗ + Kt∗

)
,

(3)
where ∆t is the time step, t and t∗ denote the time level, and θ is an implicitness coefficient set
to 0.5. First, we explicitly calculate ht∗, hut∗, and hvt∗ without the friction terms. Dividing hut∗

and hvt∗ by ht∗, we then obtain ut∗ and vt∗. Using these two velocities, the variable Π−1 can be
computed so that the friction terms are now taken into account and later used to update ht∗, hut∗,
and hvt∗ until ht+1, hut+1, and hvt+1 are obtained. The detail procedures are provided in [6, 7, 21].

3 Overview of Data Structures

3.1 Mesh Generation

In this work, the meshes are generated in 2DM format using the Surface-water Modeling System
(SMS) software [27], containing both triangular and quadrilateral elements. First, the topography
or bathymetry data are obtained in Digital Elevation Model (DEM) format, which is converted to
shapefile (SHP) using the Geographic Information System (GIS) software. In this way, the domain
boundaries as well as the topography data are obtained. The former is transformed into the map data
in the SMS software, while the latter is converted to the scatter points. We then create polygons that
divide the main domain inside the map data into several sub-domains—for example according to
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Figure 1: Mesh generation using the SMS software 
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Figure 1: Mesh generation using the SMS software

land-use types such as rivers, lakes, etc.—while no polygon is assigned to buildings. Afterwards, we
redistribute the vertices along such polygons and create the meshes, see Fig. 1, where the buildings
are shown as voids in the domain representing the wall boundary conditions in our model. Now, the
meshes have been generated, but they do not contain any contour values of the topography data yet.
Therefore, the corresponding values are interpolated from the scatter points to the meshes using
the inverse distance weighted method provided in the SMS software, yielding the final 2DM file.
This file is later used as an input for NUFSAW2D. Note that the 2DM format was also used in other
works, e.g. by the Flood Forecast Centre of the Federal State of Bavaria with the hydrodynamic
model Hydro_AS-2D [28], to provide flood risk maps for 100-year return period and extreme events
[29].

3.2 Fundamentals and Concept of Parallelisation

3.2.1 Domain Decomposition with Reordering Strategy

Before explaining the data structure in our code, it is important to give a general overview of how
some reordering strategies employed in NUFSAW2D affect the communication patterns for the
parallelisation. NUFSAW2D does not employ METIS library for decomposing the domain. Instead,
it currently utilises two SFCs (Z-order and Hilbert) and a simple line-by-line (LBL) strategy to
renumber the cells. Note that the main objectives are the same—no matter whether METIS, SFCs,
or any other kind of reordering technique is used: to improve the data locality inside each node for
ensuring better memory access patterns and to minimise the communication cost between nodes.

As an example, we now assume that four nodes are used to simulate the domain in Fig. 2, where
the cells are allocated to the nodes using a block-distribution so that Nodes 0–3 receive 3, 3, 3,
and 2 cells, respectively. Regarding SFCs, the cells are renumbered before we start detecting the
outermost boundary lines of the domain, so that a bounding box is created. A quadtree-based
gridding is then applied to the bounding box, creating four smaller squares of the same size. This
gridding process continues until each smaller cell either captures a centre of a cell or leaves the
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Figure 2: Domain decomposition with the Z-order (top left), Hilbert (top right), and LBL curves (bottom)

smaller cell blank. As this process is finished, the Z-order or Hilbert curve can easily be formed
to the quadtrees. For the LBL curve, the idea is simply that the cells are reordered consecutively
line-by-line, starting from the first line (selected by user). In this case, for example, the lowest
boundary of the domain is selected (in such a way that the line covers three cells). After the first
three cells are renumbered, the process continues for all the adjacent cells. They are connected to
the same vertices to those of the first three cells, and so on until all cells have been indexed. Now,
it can be seen that the LBL strategy produces a contiguous cell partition yielding the contiguous
communication patterns among the nodes, whereas the Z-order and Hilbert curves do not. However,
this does not necessarily mean that SFCs will always show the worst performance. In some cases,
SFCs may give a better decomposition since it can provide the better data locality, thus supporting
the contiguous memory access patterns inside each node. We will describe this in detail in the next
section.

According to our observations, the suitability of the different strategies depends on the particular
problem, which is why we cannot rely only on one strategy for decomposing our domain. Therefore,
instead of investigating other reordering strategies that might lead to thousands of different scenarios,
we decided to develop a flexible data structure in our code to take various future applications into
account. This is how our idea emerged, to be explained in more detail in the next section.
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3.2.2 Design of Data Structure

Prior to explaining the data structure in our code, let us first explain the basic concept employed in
our parallel model. We employ the similar concept with [19], where a cell-edge reordering strategy
was developed for SWEs simulations on rectangular meshes with OpenMP. Our computation is
divided into two phases: edge-driven and cell-driven levels, where the former consists of the
hydrostatic reconstruction, the convective fluxes computation, and the bed-slope terms calculation—
and the latter covers the friction terms computation and the solution update for the next time level.
The next step is to categorise the domain (in both levels) based on its complexity level. In the
edge-driven level, for example, we distinguish boundary edges (edges corresponding only to one
cell) from internal edges (edges corresponding to two cells), see Fig. 3 (showing four cells, three
internal edges, and eight boundary edges), as the latter significantly requires more CPU time than
the former [19]. In the cell-driven level—as a first-order-spatial CCFV model is used here, thus
requiring no gradient computation as in [23]—one does not need to distinguish the internal cells
from the boundary one since all cells have similar computational complexities. For simplicity,
we consider Fig. 3 to have three types of computation: type A (internal edges), type B (boundary
edges), and type C (cells). Note that the vertex in Fig. 3 is never used for computation, only for
indexing the edges later on.
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Figure 3: A simple domain formed by triangular and quadrilateral meshes

Regardless of the domain shape and of the domain decomposition, the arrays for the types A, B, and
C (independent of one another) are always defined in our code as 1D configuration, see Stage 1 in
Fig. 4. This concept can be interpreted as an approach, in which it is sufficient to, before starting a
simulation, consider the total numbers of cells, internal edges, and boundary edges to be simulated—
without having to think of how the domain is decomposed. This is what NUFSAW2D always
assumes at the beginning of simulations. Note that our code will always number the boundary edges
consecutively after all the internal edges. Afterwards, users can start to consider how they want to
decompose such 1D-shaped arrays for the three types, e.g. by block-distribution, cyclic-distribution,
or block-cyclic distribution. In the scope of this work, our code only employs the block-distribution.
At this stage, NUFSAW2D requires information about the number of nodes and threads intended by
the users. Once the according values are known (say four nodes and two threads for each node, for
example), NUFSAW2D allocates (by means of block-distribution) the amount of arrays inside each
node for each type A, B, and C, see Stage 2 in Fig. 4. At this stage, the communication patterns
among the nodes and the memory access patterns inside each node—e.g. the relationship index
between edges and cells as well as cells and edges—are still unknown. Now, we will turn to the
challenging task of designing both patterns.

One can employ METIS, SFCs, or any other suitable tool to number the cells on the actual domain
so that the real partition shape can be obtained. Note that such tools may also be employed for
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Figure 4: Parallelisation with block-distribution
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Figure 5: Cell numbering (top left), edge numbering (top right), and summary of the patterns (bottom)

numbering the edges (instead of the cells) on the actual domain. In this work, we will only explain
the cell numbering. Let us now assume that applying a tool for the domain in Fig. 3 leads to a
cell partition as shown in Fig. 5 (top left). If this partition is applied to Stage 2 in Fig. 4, the
communication patterns are obviously contiguous, e.g. Node 1 communicates only with Nodes
0 and 2. To design the memory access patterns inside each node, two important things must be
considered: (1) the edges access the cells, and (2) the cells access the edges. To this end, we provide
a consecutive edge numbering, which must be associated to the numbered cells. This process is
depicted in Fig. 5 (top right). First, we carry out the loop over the cells consecutively. Each cell
records its vertices in counter-clockwise (CCW) direction—and once all corresponding vertices
are detected, the edges are created in the order of such vertices. If a boundary edge is detected, the
numbering process will be skipped to the next internal edge or to the next cell. For example, if the
loop is currently performed at Cell 1, only one edge can be recognised as having two corresponding
cells (this edge is then numbered as 1), while the other two edges will only correspond to one cell.
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In this manner, we obtain the numbers for all the internal edges. After this process, the boundary
edges are numbered through all cells consecutively.

For the sake of completeness, we will briefly summarise the communication and memory access
patterns in Fig. 5. In the edge-driven level, the communications occur three times: (a) Node 1 sends
Cell 2 to Node 0, (b) Node 2 sends Cell 3 to Node 1, and (c) Node 3 sends Cell 4 to Node 2. In the
cell-driven level, the communications exist four times: (a) Node 0 sends Edge 1 to Node 1, (b) Node
1 sends Edge 2 to Node 2, (c) Node 2 sends Edge 3 to Node 3, and again (d) Node 2 sends Edge 9 to
Node 3. This shows that the communication cost is not balanced, which becomes a major drawback.
Nevertheless, for the data locality inside each node, the contiguous memory access patterns are
obtained. In real applications with more complex meshes, the communication patterns may become
more irregular—and none of the strategies is generally best suited to obtain the exact contiguous
communication patterns. However, in the scope of memory access patterns, the contiguity level of
such patterns can still be ensured using our strategy for the 1D array configuration in Fig. 4 and
the edge numbering in Fig. 5. We also observed that the effects of the memory access patterns in
most of our implementations were more significant than the communication patterns of our results.
Therefore, as a practical guide to access the effectiveness of the reordering tools, we employed a
simple criterion that can be written as

QI =
J∑

j=1

|2 EID − C1ID − C2ID| , (4)

where QI is the quality indicator, EID is the edge ID, C1ID/C2ID are the IDs of two cells
corresponding to the edge, and J is the total number of internal edges. QI indicates the contiguity
level of the memory access patterns: the greater the value of QI , the worse the resulting pattern.
Here, we only consider QI for internal edges due to simplicity. In addition, the total number
of internal edges is relatively larger than that of boundary edges (for real applications). Lastly,
we would like to reiterate that Eq. 4 might not be valid for some specific cases—e.g. pure MPI
simulations due to more communication costs—which is why further investigations may be needed.

3.2.3 Load Balancing Strategy for Wet-Dry Problems

Even if an ideal domain decomposition—with which the numbers of edges/cells are uniformly
distributed into the nodes—would be obtained, this would not guarantee balanced load-distributions
among the processors when wet-dry problems appear, as wet edges/cells exhibit more computational
efforts than dry edges/cells. This is a typical load imbalance problem in SWEs simulations, and it
cannot be predicted exactly during runtime. To this end, a novel strategy, namely weighted-dynamic
load balancing (WDLB), was proposed in [19] for both edge and cell-driven levels. Using a second-
order scheme in the edge-driven level, the wet edges were typically found to be 1.7–2 × more
expensive than dry edges. In the cell-driven level, regardless of the first/second-order spatial scheme,
wet cells typically turned out to be 1.9–2.1 × more expensive than dry cells. In this work, we follow
the WDLB technique of [19], but only for the cell-driven level, because a first-order spatial scheme
is employed here—thus requiring no WDLB technique for the edge-driven level.

To give a clear but simple representation of our load balancing procedure, we consider a domain
formed by 24 rectangular cells (note that another cell shape is also applicable), where Cells 1–4,
9–11, and 15 at a certain time level contain water, thus being wet cells, see Fig. 6 (physical domain).
We assume to use four nodes (each node with two threads). Following [19], we select a factor of 2
for the weighting of the wet cells in comparison to the dry ones. Without the WDLB technique, the
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Cell-driven level
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T0 T1

N0 N1 N2 N3
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Figure 6: Load balancing procedure

block-distribution applies to the nodes (for MPI), and the common directive !$omp do can easily
be employed to distribute the loop among the threads (for OpenMP). However, this situation suffers
from imbalanced load distributions. For instance, Nodes 0–3 have the load units of 10, 9, 7, and 6,
respectively. Furthermore, there appear to be load imbalances among the threads: in Node 0, for
example, Thread 0 obtains 6 load units while Thread 1 receives 4 load units. To this end, the WDLB
procedures are applied. First, the load amounts among threads inside each node are detected and
summed up. This can be done quite simply using the directive !$omp do reduction(+:value).
Once each node knows its load amount, it must communicate with the others to determine the
total load of the entire domain, yielding 32 load units. This can also be achieved quite simply by
employing the directive MPI_Reduce(...,MPI_SUM,...).

Now, the reverse procedures are carried out: the 32 load units must be distributed to four nodes—and
after that, the loads assigned to each node are distributed to each thread. Both in MPI and OpenMP
levels, procedures like this must be performed consecutively by checking the load attributed to
each cell (wet/dry one) sequentially. Therefore, these ways cannot be parallelised, and it may
not be efficient to apply the WDLB in every single time level. Also, especially in the MPI level,
the dynamic array allocations for each node can lead to a significantly increased overhead if the
WDLB is applied in each time level. For this reason, we apply the WDLB for 1/50 step of the total
time levels for OpenMP (as also done in [19]) and only perform the WDLB for 1/100 step of the
total time levels for MPI. This combination turned out to be the most efficient one in all of our
implementations. It is important to point out that we do not, after the WDLB, use the directive
!$omp do to distribute the loop among threads in the OpenMP level.
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4 Test Cases

The domain configurations are summarised in Table 1. The quadrilateral elements are employed
along the river for Case 1 and at the northern part (as the boundary condition) for Case 2. Meanwhile,
the other parts are covered with triangular meshes.

Model
area

Tot. numb.
vertices

Tot. numb.
edges
(intern./
bound.)

Tot. numb.
cells
(quad./
triang.)

Average
cell area

Case 1 11.5 km2 1,677,120 4,911,114
(4,852,550/
58,564)

3,233,010
(64,634/
3,168,376)

3.56 m2

Case 2 37.84 km2 1,738,554 5,136,020
(5,131,069/
4,951)

3,397,467
(74,688/
3,322,779)

11.14 m2

Table 1: Domain configurations for Cases 1 and 2
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Figure 7: Land use map (Source: Bavarian Environment Agency and Water Management Authority, Hof)

4.1 Case 1: 2011 Flood Case in Kulmbach (Germany)

We aim to simulate a real flood case in Kulmbach (Germany), which occurred on 13–14 January
2011. Two rivers cross the city at the upstream part (White Main and Schorgast). At the downstream
part, the river Red Main merges with the White Main, forming the river Main—which is the longest
tributary of the river Rhine. An according sketch can be seen in the land use map in Fig. 7. In
general, the land use map covers 62% of agricultural land (floodplains and grassland), 7% of water
bodies (rivers and lakes), 26% of urban area, and 5% of forests. The topography contour was
obtained in DEM format from the Water Management Authority (Hof). The historical discharges
were collected by the Bavarian Hydrological Services for some flood events in 2005, 2006, 2011,
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and 2013—and we selected the data for 2011 as inputs for boundary conditions of our model,
representing the three aforementioned rivers and some flow point sources around the urban area.
All information about the discharges, roughness coefficient, etc. were presented in [5, 30, 31].

No information was given about the initial conditions along the river domain. Therefore, to achieve
a proper representation of the initial conditions, we first set the constant boundary conditions for the
three rivers to the lowest discharges recorded (as the base flows) and ran our simulations until a
steady state condition was reached. Then, we used the results as an initial condition for the actual
simulation, to obtain the results during the event on 13–14 January 2011. In the scope of this work,
the total simulation time investigated is 40 hours.

SimHydro 2019: Which models for extreme situations and crisis management? 12-14 June 2019, Sophia Antipolis – Ginting et al. 
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Our numerical results are shown in Fig. 8. Note that we plotted our results with a maximum colour
range of 2 m in order to provide a clear representation of the inundation depth near the urban area,
not the river depth. Thus, the river parts can be seen clearly. Our results show that the urban area
is inundated by water with depths of up to 1.6 m. This is in accordance with those investigated in
[5,30]. We also compared our results with eight sets of observed data. We are again able to show that
NUFSAW2D is quite accurate in predicting the inundation areas for the eight locations—with only
non-significant differences to the measurement data—thus proving our model is able to accurately
simulate wet-dry mechanisms on rough beds and complex topography.

4.2 Case 2: 2011 Tohoku Tsunami recorded in Hawaii (USA)

We consider the real case of the 2011 Tohoku tsunami event, which was recorded in Hawaii (USA).
The raw data including the bathymetry contour and the incident wave (as the boundary conditions)
are available from [32]. As done in [14], the original bathymetry data greater than 30 m were
flattened to avoid the phase different of the incident wave. The bathymetry map covers the hill
(western part), the coastal land area (southern part), the ocean, and the breakwater that indicates the
harbour part. Three measurement points were given: Hilo tide station, HAI1125 (harbour entrance),
and HAI1126 (inside the harbour), see Fig. 9. The uniform Manning coefficient of 0.025 sm−1/3

was used. In the scope of this work, the total simulation time investigated is 13 hours.
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Figure 9: Case 2: Bathymetry of domain

Fig. 10 shows the visualisations of our results. At around 9.33 h, the velocity outside the harbour
reaches 0.8 m/s, while it reaches 1 m/s at the harbour entrance. Inside the harbour, the velocity
becomes higher—up to 1.3 m/s. Up to now, the overall velocity distribution is still uniform. At
10.67 h, however, the velocity becomes non-uniformly distributed, reaching up to 3.5 m/s outside
the harbour and approximately 2.8 m/s inside the harbour. Meanwhile, the velocity at the harbour
entrance increases only slightly, to 1.3 m/s. After 13 h, the velocity decreases to 1 m/s inside
the harbour and 2 m/s outside the harbour. We also plot the maximum magnitudes for the entire
simulation, showing that the velocity reaches up to 5 m/s near the coastline (the eastern part), while
the maximum velocity inside the harbour only reaches approximately 2.8 m/s. This accounts for an
extremely sensitive spatial distribution of velocity magnitude, which is in line with that shown in
[14].
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Finally, Fig. 11 shows our results at the three measurement points. At the tide gage, our model can
accurately capture the first incoming wave at around 8.2 h. We are also able to capture the lowest
elevation approximately at 8.4 h. Afterwards, the fluctuations of water elevation are predicted
properly until 13 h. The velocity of the incoming wave is computed accurately inside the harbour and
slightly underestimated at the harbour entrance. After 10 h, however, our model becomes sufficiently
accurate at both locations. Fig. 11 shows that the current inside the harbour predominantly flows
in east-west direction, in contrast to the harbour entrance, where it mostly flows in north-south
direction. Overall, our model shows a good agreement with that provided in [32].

4.3 Performance Investigation

NUFSAW2D was written in Fortran and compiled using Intel Fortran 17, where the double-precision
arithmetic (64-bit) was used. We investigated the performance of NUFSAW2D on CoolMUC-2
cluster with AVX2 (Intel Xeon E5-2697 v3/Haswell), provided by the Leibniz Supercomputing
Centre (LRZ) [33]. In total, this cluster has 10,752 cores (384 nodes each with 28 cores and 64
GB RAM). However, the maximum access for a single job is limited to 60 nodes (1,680 cores). So
far, we have tested our code on up to 336 cores with three scenarios: (1) 1–12 nodes×28 threads,
(2) 1–24 nodes×14 threads, and (3) 1–48 nodes×7 threads. In this work, we only performed the
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Figure 11: Case 2: Simulation results at the three measurement points during 13 h

strong scaling and observed the speed-up, since only one mesh-configuration was provided for each
case (fixed size). The performance metric of our code is given in million cells per second per core
(Mcell/s/core), which is a comparison between the numbers of cells for a total number of calculation
steps that can be processed per unit of time using one core.
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Figure 12: Performance results: (1) 1–12 nodes×28 threads (2) 1–24 nodes×14 threads (3) 1–48 nodes×7 threads

Fig. 12 shows that the results of Cases 1 and 2 are quite similar, although Case 2 obtains slightly
higher efficiency. In Case 1, our model yields efficiencies of 74%, 81%, and 89% for the con-
figurations 1–3, respectively, whereas in Case 2 the performances turn out to be 76%, 83%, and
91%. These differences are due to fact that the effects of the wet-dry problems in Case 1 are
more dominant than in Case 2. For Case 1, we observed that before reaching the almost-stagnant
inundation (as shown in Fig. 8), the wet-dry problems appeared dominantly in the middle of the
domain (the urban area); this area, which was previously wet, grew smaller and smaller during
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the runtime. The WDLB applied led to more overheads in Case 1 than in Case 2, in which the
wet-dry problems exist only near the coastline. Despite these performance losses, we can affirm
that our model is still quite efficient in handling such wet-dry phenomena. We observed that the
configuration (1) suffers from the performance degradation of 24–26%, which is the least efficient
outcome. Meanwhile, the configuration (3) achieves the best performance with a performance
degradation of only 9–11%. Finally, we would like to point out that our code can achieve a metric of
approximately 5.5 Mcell/s/core (for a single-core computation) on this machine, which corresponds
to about 34% of the theoretical peak performance.

4.4 Current Visualisation and Outlook

In order to gain more insight from the occurring phenomena and to help decision makers understand
them, the simulation results have to be visualised. One of the suitable options from among the
masses of visualisation tools is the Visualisation Toolkit (VTK) format. In this work, NUFSAW2D
produces results in VTK files (with legacy format), which can simply be visualised using a front end,
e.g. Paraview. With increasing amounts of data, however, it gets more and more difficult to visualise
the results. To this end, the Chair for Computation in Engineering (CiE) developed a technique to
quickly and efficiently display large scale simulation data, namely the Sliding Window technique
[24]. The Sliding Window concept allows to view simulation data with varying granularity while
keeping the amount of data visualised constant. This is achieved by determining a subsection of
the simulation domain (a window). With a larger window, a view of a coarse representation of the
domain selected is obtained, while a smaller window displays the selection in more detail, allowing
users to observe local phenomena with better resolution.

This concept was initially employed for the CiE’s 3D massive parallel simulation code [24], for
which the Sliding Window technique fitted the hierarchical data structure of the code perfectly. The
domain is generated starting from a singular grid or mesh of the complete domain, then gradually
refined until the simulation domain reaches a suitable resolution. The coarser representations are
not discarded but are readily available for the visualisation. Since the amount of data visualised is
constant, the Sliding Window is used in an online fashion, i.e. during runtime of the code. For this,
users may demand a visualisation window through a front end, which connects to the management
instance of the code. This manager then selects the data that fit the window with their respective
granularity from the parallel processes, assembles them, and sends them back to the user’s front
end.

In an overhaul of the code’s I/O functionality, the result files in VTK format were replaced by one
single HDF5 file in [25]. This single file contained, in addition to the raw data, the hierarchical data
structure—and it allowed the Sliding Window technique to work in an offline fashion for all time
steps intended. Similar to the online procedure, the amount of data selected is limited, allowing
even the largest datasets to be visualised quickly. Currently, we are developing a tool that is able to
convert any kind of VTK outputs, even unstructured ones, into a compatible HDF5 file containing
representations of the domain in varying resolutions. The general workflow involves a resampling
of the raw data into a structured grid, followed by gradually building up coarser representations
to set up the hierarchy from the ground up, see the concept in Fig. 13. This makes the sliding
window technique easily available for codes with VTK outputs, by providing a standalone tool for
high-performance visualisation.
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Figure 13: As high-resolutions hinder interactive visual data exploration, the Sliding Window technique allows users to
move through and zoom in/out the computational domains, where the amount of details increases/decreases seamlessly
while the number of data points visualised stays constant; the first two figures were taken based on the works of [24, 25]
for thermal simulations—and the last figure shows an outlook of the current implementation with NUFSAW2D for
tsunami simulation (Case 2)

5 Conclusion

A hybrid OpenMP-MPI parallel simulation for solving the 2D SWEs was performed using NUF-
SAW2D. The code was tested against two benchmark cases dealing with wet-dry simulations on
complex topographies, and accurate results were obtained. We presented a general overview of
some reordering strategies supported by our code, such as Z-order curve, Hilbert curve, and the

17



Hybrid Parallel Simulations and Visualisations of Real Flood and Tsunami Events using Unstructured Meshes on
High-Performance Cluster Systems

LBL technique and we showed that such strategies may end up with numerous possibilities of
decomposing and assigning domains into nodes for a parallel simulation. Therefore, we designed
the data structure in our code in such a way that it flexibly supports any kind of reordering tool,
which is essentially required to be able to provide the communication patterns among the nodes and
the memory access patterns inside each node. Our data structure in both edge-driven and cell-driven
levels consisted of contiguous 1D arrays, where a block-distribution was utilised to decompose
such arrays at the beginning of simulations. Later, the decomposition changed during runtime based
on the WDLB technique implemented as soon as the wet-dry problems came into existence. Our
simple load balancing strategy was proven quite efficient in attempts to anticipate the load imbalance
issues due to wet-dry problems—with an efficiency of up to 91% with 336 cores. Currently, we are
working on ways to add more features of reordering strategies such as implementing Peano-SFC as
well as the result of METIS library, not only for cell numbering but also for edge numbering. We
are also investigating the application of the WDLB with both types of numbering strategies in the
edge-driven level for the second-order CCFV model.
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