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1 Introduction 

1.1 Background 

Section 1.1 provides background information on climate change, climate policy, and clean 

technology, which are essential in order to locate the three essays of this thesis within the 

broader debate. 

1.1.1 Climate Context: Causes and Impacts of Climate Change 

The Earth’s climate has always been changing. Our planet has been receiving small variations 

in the irradiance from the sun, which has caused seven cycles of glacial advancement and 

retreat since 650,000 BC.1 Nonetheless, the variation in solar irradiation may explain not 

more than ten percent of global warming since the beginning of industrialization.2 Today, 

there is a consensus among scientists – more than 97% of publishing climate scientists agree 

– that anthropogenic greenhouse gas (GHG) emissions are causing climate change by 

trapping heat in the lower atmosphere.3 

However, greenhouse gases are not inherently bad. Without the greenhouse effect, the Earth 

would not be able to support such a variety and quantity of life, and the average temperature 

of the Earth would be at -18 degree Celsius (°C) instead of the actual +15 °C.4 Besides carbon 

dioxide (CO2), which accounts for three-quarters of the anthropogenic GHG effect,5 gases 

like methane (CH4), nitrous oxide (N2O), and Chlorofluorocarbons (CFCs) trap solar 

irradiation. Some GHGs like water vapor, which is the largest contributor to the natural 

greenhouse effect, react to changes in temperature physically or chemically.6 

                                                 
1 See (NASA, 2019a). 
2 See (Lean, 2010). 
3 See (Cook et al., 2016). 
4 See (Ma, 1998). 
5 See (Stern, 2008), p. 1. 
6 Note: The recognition of heat-trapping in the atmosphere goes back to (Fourier, 1827) and (Tyndall, 1861) 

who measured the heat absorption and radiation properties of several types of gases.  
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Anthropogenic greenhouse gases are stock pollutants, which remain in the atmosphere for 

long periods of time and continuously accumulate with reoccurring emissions. At the same 

time, the warming potential accumulates with rising GHG concentration in the atmosphere.7 

Researchers conclude from ice cores that the CO2 concentration in the atmosphere was below 

300 parts per million (ppm) from approximately 800,000 BC until 1950.8 Figure 1 displays 

the cumulative CO2 concentration in the atmosphere over time. At the time of writing in 

spring 2019, the atmospheric CO2 level has reached 410 ppm.9 Simulations going back to a 

previous period show that we have already reached unprecedented CO2 levels in the 

atmosphere, which the planet has never experienced during the Quaternary. 10 

 

Figure 1: Atmospheric carbon dioxide concentration.11 

In 2018, the anthropogenic GHG emissions have led the global mean surface temperature to 

increase by +0.9 °C, when compared to the base period between 1951 and 1980. It is also 

noteworthy that the land area heats up faster than the sea area. Therefore, the mean surface 

temperature increase of +0.9 °C signifies a +1.5 °C temperature increase over land and a +0.7 

°C temperature increase over sea as depicted in Figure 2.12 Moreover, anomalies of the mean 

temperature vary across geographic locations. As depicted in Figure 3, the temperature 

                                                 
7 Note: The Global Warming Potential (GWP) of different GHGs – usually over 20, 100, and 500 years – is 

used to compare the warming impact. For instance, CO2 has a GWP100 of 1, and Methane of 17-32; see 

(Houghton, Bruce, Lee, Callander, & Haites, 1995), p. 226. 
8 See (NASA, 2019a). 
9 See (NOAA, 2019a). 
10 See (Willeit, Ganopolski, Calov, & Brovkin, 2019). 
11 Source: (NASA, 2019a). 
12 See (Hansen, Ruedy, Sato, & Lo, 2010; NASA, 2019b). 
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anomalies in pole proximity and Eurasia that can be attributed to anthropogenic greenhouse 

gas emissions frequently reached +2 °C to +4 °C in 2018. 

 

Figure 2: Temperature anomalies on land surface and over ocean – 1880-2018.13 

 

Figure 3: Temperature anomalies vs 1951-80 during meteorological season 2018.14 

                                                 
13 Source: (NASA, 2019b). 
14 Source: (NASA, 2019c). 
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The increase in temperature impacts our planet in several ways and – from an economic 

perspective – imposes high costs. This includes unusual and costly weather events, such as 

hurricanes, which will most likely occur more frequently as temperatures continue to rise.15 

Over the last three decades, the number of significant natural disasters has more than 

doubled.16 A further costly consequence of global warming is the rising sea-level due to 

melting glaciers, as illustrated by the meltdown of the Arctic polar ice cap from 1984 to 2016 

in Figure 4.17 As of October 2018, the melting of polar ice caps increases the sea-level by 3.2 

millimeters per year.18 Although our planet has experienced sea-level amplitudes in a range 

between -200 meters and +600 meters compared to the current sea-level during the past 

several hundred million years,19 already small increases of the sea-level result in high costs 

as the rising sea-level necessitates relocations and catastrophic events such as floods occur 

more frequently. Researchers estimate that a sea-level increase of 0.86 meters results in 

additional annual costs of about $14 trillion.20 

  

Figure 4: Arctic polar ice cap 1984 (left picture) vs. 2016 (right picture).21 

2 °C warming is commonly used as the upper limit of temperature increase in order to avoid 

the worst consequences of climate change. The 2 °C limit was first mentioned by the Nobel 

economist William Nordhaus,22 and the reference point of the 2 °C target is the temperature 

in pre-industrial time, which is commonly defined as the average temperature between 1850 

and 1900.23 More than 2 °C warming increases the probability of events like the disruption 

                                                 
15 See e.g. U.S. Climate Extremes Index (NOAA, 2019b). 
16 See (Munich RE, 2019). 
17 See (Zemp et al., 2019) for an analysis of glacier mass changes and the impact on the sea-level 1961-2016. 
18 See (NASA, 2019d).  
19 See (Lambeck & Chappell, 2001). 
20 See (Jevrejeva, Jackson, Grinsted, Lincke, & Marzeion, 2018). 
21 Source: (NASA, 2016). 
22 See (William D Nordhaus, 1977). 
23 See (IPCC, 2018), p. 6. 
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of the Atlantic thermohaline circulation, or it may increase the amplitude of the El 

Niño/Southern Oscillation.24 The Atlantic thermohaline circulation is part of the global 

oceanic circulation, and a disruption could weaken other circulations, such as the Gulf 

Stream. Similar, the El Niño/Southern Oscillation refers to a circulation system between the 

ocean and the atmosphere in the tropical Pacific region. The amplitude of the phenomenon 

fluctuates on a yearly basis and causes either cold (La Niña) or warm (El Niño) climate 

conditions in the wider region. Depending on the amplitude, the phenomenon can cause 

extreme weather events such as catastrophic floods and droughts.25 

To maintain a 50% chance to stay below 2 °C global warming, the CO2 concentration in the 

atmosphere must not exceed 450 ppm.26 If emissions stay at the current level, we will reach 

this threshold within 17 years,27 and the timeframe might even be shorter as air pollution 

currently offsets the greenhouse effect by reflecting sunlight. The pollution umbrella, which 

consists of aerosol particles, blocks 0.5 °C of surface warming today, but aerosol particles 

likely diminish once decarbonization attempts gain momentum and combustion processes 

recede.28 

In order to stay on the politically agreed pathway of ideally below 1.5 °C warming,29 carbon 

neutrality by 2050 and negative emissions afterwards are essential.30 Figure 5 charts 

pathways of future carbon emissions that comply with the 1.5 °C target. Thereby, emissions 

have to peak and start declining within this decade to avoid scenarios with temperature 

overshoot, which requires more carbon removal from the atmosphere at a later point in time.31 

Figure 5 further charts the rise in annual global CO2 emissions from 1960 to 2018 to illustrate 

the historical development. Global emissions are projected to reach 37.1 billion metric tons 

of carbon dioxide (GtCO2) in 2018 up from below 10 GtCO2 sixty years ago.32  

                                                 
24 See (Lenton et al., 2008). 
25 See (Cai et al., 2015). 
26 See (Stern, 2007). 
27 Note: Threshold of 450 ppm and probability according to (Stern, 2007); calculation based on a 

concentration of 410 ppm (as of May 2019) and annual emissions of 2.48 ppm in 2018, see (NOAA, 2019a). 
28 See (Samset, 2018; Wigley, 1991); for co-benefits of cleaner air see (Rao et al., 2016). 
29 See (UNFCCC, 2015a). 
30 See (IPCC, 2018). 
31 Note: The potential CO2 removal through natural/biomass processes appears insufficient to remove 

accumulated CO2 from the atmosphere at scale. Therefore, technology to directly capture carbon from the air 

may be an alternative/additional option; see (National Academies of Sciences & Medicine, 2018); for 

geoengineering approaches, see Chapter 5.  
32 See (Global Carbon Project, 2018). 
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Figure 5: Historic CO2 emissions and required emissions under 1.5 °C warming scenarios.33 

1.1.2 Policy Context: Climate Protection on the International Level 

Substantial policy interventions are widely considered crucial in order to limit global 

warming. In 1988, NASA scientist James E. Hansen brought global warming to the political 

world.34 By claiming in front of the U.S.-Senate that the atmosphere was heating up with 

99% certainty due to anthropogenic carbon emissions, Hansen made the ‘greenhouse effect’ 

a common term.35 Three decades later, the political challenge remains as emissions continue 

to rise. 

In 1992, in response to climate change, negotiations started on an international level with the 

adoption of the United Nations Framework Convention on Climate Change (UNFCCC).36 

                                                 
33 Source: Own illustration. Historic emission chart from (Global Carbon Project, 2018); 1.5 °C warming 

scenarios from (IPCC, 2018). 
34 See (Hansen et al., 1988). 
35 See (The New York Times, 1988). 
36 See (UNFCCC, 1992). 
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Since 1995, the Conference of the Parties (COP) has been established as an annual 

negotiation and decision-making forum. In 1997, at the third Conference of the Parties 

(COP3), the first major agreement was adopted with the Kyoto Protocol, which committed 

participating countries to emission reduction targets.37 The Kyoto Protocol offered market-

based mechanisms complementary to national measures, in order to achieve the targets in a 

cost-effective way. These market-based mechanisms included international emission 

trading38, the Clean Development Mechanism (CDM)39, and Joint Implementation (JI)40. 

One of the more recent milestones in international climate negotiations was the adoption of 

the Paris Agreement in 2015. At COP21, the parties agreed to take actions to limit global 

warming well below 2 °C; ideally below 1.5 °C. Unlike the top-down targets under the Kyoto 

Protocol, all parties to the Paris Agreement have to announce Nationally Determined 

Contributions (NDCs) in five-year intervals.41  

As mentioned in the previous section, most scenarios to stay on the 1.5 °C warming pathway 

require not only emissions to peak within the next decade but also carbon neutrality by 2050. 

Figure 6 illustrates the compatibility of current NDCs with the 1.5 °C warming target 

globally. The displayed tracking method uses the national fair share efforts, which are 

required in order to achieve the 1.5 °C temperature goal on the international level as agreed 

in the Paris Agreement, and compares it to the current ambitions on the country level. As of 

April 2019, only Morocco and Gambia pledged contributions compatible with the 1.5 °C 

Paris target, while the ambitions of countries like the U.S. and Russia fell short.42 Although 

the ambitions of several countries such as India and the Philippines were in line with a 2 °C 

warming pathway, the ambitions of most countries were either insufficient or highly 

insufficient in order to limit global warming below the politically agreed threshold. 

                                                 
37 See (UNFCCC, 1998). 
38 Countries with emission-reduction/-limitation targets (Annex B Parties), which overachieve their emission 

reduction target can sell the excess emission capacity to other Annex B Parties; see (UNFCCC, 1998), Article 

17. 
39 The CDM allows countries with emission-reduction/-limitation targets (Annex B Parties) to invest in 

emission-reduction projects in developing countries. These projects earn saleable certified emission 

reduction (CER) credits, which can be used to meet Kyoto targets in Annex B countries; see (UNFCCC, 

1998), Article 12. 
40 The JI allows countries with emission-reduction/-limitation targets (Annex B Parties) to invest in emission-

reduction projects in Annex B countries. These projects earn emission reduction units (ERUs), which can be 

used to meet Kyoto targets in the country of the investor; see (UNFCCC, 1998), Article 6. 
41 See COP21 Paris Agreement (UNFCCC, 2015a), Article 4. 
42 See (Climate Action Tracker, 2019). 
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Figure 6: Committed NDC and compatibility with the 1.5 °C target as of April 2019.43 

1.1.3 Technology Context: Cleaner Energy for a Growing Demand 

Technology plays a key role in the climate puzzle. To limit climate change through deep 

decarbonization, all sectors must undergo a transformation of a radical extent. Currently, in 

order to decarbonize the energy sector, three low-carbon technologies for power generation 

appear suitable to be deployed at a sufficiently large scale. These are renewable energy 

                                                 
43 Own illustration; source: (Climate Action Tracker, 2019). 
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sources (RES) such as wind and solar photovoltaics (PV), nuclear generation resources, and 

fossil generation resources with carbon capture and storage (CCS).44  

Although the public discussions tend to use rhetoric that we must reach a 100% renewable 

energy supply, a cost-effective solution to decarbonize the energy sector would consist of a 

combination of clean resources, which are not necessarily categorized as renewable.45 The 

cost of RES, such as wind or solar, and storage technologies to handle volatile generation 

due to natural conditions continue to decline.46 At the same time, reactor designs of nuclear 

generation resources progress,47 while the economic feasibility of CCS remains uncertain.48 

Beyond power generation resources, a common approach to compare the potential of low-

carbon technologies can be found in marginal abatement cost curves (MACCs). MACCs 

chart technologies and their CO2 abatement potential, sorted by the technologies’ abatement 

cost per tonne of CO2.
49 Figure 7 displays such a MACC, which shows how much it will cost 

to abate a tonne of carbon dioxide in the year 2030. On the left side of the MACC, one can 

find the technologies with the lowest abatement costs, which are negative in many cases. This 

means that these technologies may not only reduce emissions but also save costs compared 

to the alternatives in use. The classic example of technology with negative abatement cost is 

Light-Emitting Diodes (LEDs) due to individual irrationality, which prevents the switch from 

inefficient light bulbs to LEDs.50 

                                                 
44 See (Jenkins & Thernstrom, 2017). 
45 See (Sepulveda, Jenkins, de Sisternes, & Lester, 2018). 
46 See (Lazard, 2018a, 2018b). 
47 See (MIT Energy Initiative, 2018). 
48 E.g. €424 million EU funding for six CCS projects during the past decade resulted in four project 

terminations after the grants ended, one further project was terminated uncompleted, and the remaining 

project was a non-commercial-sized demonstration plant, see (European Court of Auditors, 2018). 
49 See (Kesicki & Strachan, 2011). 
50 See (Allcott & Taubinsky, 2015). 
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Figure 7: Global GHG abatement cost curve beyond business as usual – 2030.51 

In order to realize the potential CO2 abatement, economic theory suggests specific policy 

tools. These suggestions depend on the characteristics of the low-carbon technology and there 

are constellations in which single tools outperform in delivering emission reductions. 

Thereby, three areas within the MACC can be distinguished, and respective theoretical 

foundations can be found in different fields of economics.52 First, behavioral economics 

provides the theoretical foundations of obstacles to energy efficiency, which can be solved 

with command-and-control policies like standards, bans, or phase-outs (i.e. at the left side of 

the MACC). Second, neoclassical and welfare economic theory suggests market-based tools, 

which may realize the potential abatement particularly efficient at the margin (i.e. in the 

middle of the MACC). For instance, an explicit carbon pricing, through a carbon tax or cap-

and-trade mechanism, can trigger fuel-switching in order to decarbonize the power sector. 

Third, the evolutionary economic toolkit suggests strategic investment to promote 

technologies, which require large investments and long-term horizons in order to facilitate 

innovation (i.e. at the right side of the MACC). 

                                                 
51 Source: (McKinsey, 2013), p. 7. 
52 See (Grubb, Hourcade, & Neuhoff, 2014). 
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This thesis covers one current topic within each of these three areas within the MACC. In 

particular, Essay I relates to the topical discussion on climate policy and focuses on market-

based policy tools. Essay II addresses the ongoing trend in energy policy of applying non-

market-based tools such as phase-out mandates in the power sector. Essay III discusses the 

externalities of the blockchain technology, which is discussed as a potential enabler to 

emission reductions, but which also appears particularly energy-intensive.53 

1.2 Literature Context 

Section 1.2 summarizes the relevant literature on climate, energy, and technology policy. 

An understanding of the theoretical foundations of market-based, non-market-based, and 

strategic policy tools, which may be applied to abate carbon emissions, facilitates 

subsuming the subsequent three essays. 

1.2.1 Climate Policy and the Role of Market-Based Instruments 

Climate change has been coined as the “greatest market failure the world has ever seen”.54 

The mainstream economic theory defines market failures as situations in which markets 

provide inefficient outcomes from a societal point of view, irrespective of the rational agents 

that pursuit exclusively their individual self-interest with their actions.55 The externalities 

resulting from greenhouse gas emissions, which cause global warming by trapping heat in 

the Earth’s atmosphere are not internalized in market prices of goods and services which emit 

greenhouse gases. Consequently, the results that the market yields are inefficient and call for 

policy intervention. Thereby, market failure can, for instance, be caused by information 

problems, market power, externalities and public goods, economies of scale, second-best 

problems, and free-riding.56  

                                                 
53 Note: For instance, a blockchain-based infrastructure has been suggested to facilitate international emissions 

trading, see (Blockchain for Climate Foundation, 2019). 
54 See (Stern, 2007), p. viii. 
55 See (Bator, 1958). 
56 See (Andrew, 2008) for a synthesis in the context of climate policy. 
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Limiting global warming is widely perceived to require policy intervention of a substantial 

extent. Today, leading economists suggests the use of ‘carbon pricing’57 as the most cost-

efficient policy tool to reduce greenhouse gas emissions.58 Carbon pricing denotes initiatives 

that explicitly price greenhouse gas emissions. As of April 2019, on the regional, national, 

or sub-national level, 44 jurisdictions implemented at least one carbon pricing initiative, 

covering 8 GtCO2, which equals 14.3% of the global greenhouse gas emissions.59 Taking 

the perspective of a welfare-maximizing central planner, carbon pricing, implemented 

through a carbon tax or a cap-and-trade mechanism, may reduce emissions at the lowest cost. 

Thus, carbon pricing can reduce emissions in an optimal manner.60 

Economists try to approximate future damage, which is caused by today’s GHG emissions. 

This future damage then helps to determine the social cost of today’s emissions. 

Implementing a price on carbon emissions at the level of the calculated social cost of carbon 

(SCC) would result in an optimal level of carbon emissions. This optimal level of carbon 

emissions would still enable activities with the most beneficial emissions, while at the same 

time targeting those emitting activities, which are characterized by the lowest abatement 

cost.61  

The social cost of carbon varies among countries depending on the current climatic 

circumstances. At the current temperature level, some countries would benefit from higher 

temperatures compared to the current level. In these cases, the current level of temperature 

anomaly is still more than offset by social benefits as illustrated by the current social cost of 

carbon on country-level (CSCC) in Figure 8. Especially in the northern hemisphere, countries 

like Canada or Russia would experience welfare gains if temperatures increase further. On 

the other extreme, some countries already today suffer high social costs from every additional 

ton of carbon that is emitted. For instance, CSCC of $86/tCO2 has been suggested for India.62 

                                                 
57 Definition: “carbon pricing refers to initiatives that put an explicit price on greenhouse gas emissions, i.e. 

a price expressed as a value per ton of carbon dioxide equivalent”, see (Worldbank, 2017). 
58 See (J. Stiglitz, Stern, & Duan, 2017). 
59 See (Worldbank, 2019); note: (Métivier, Postic, Alberola, & Vinnakota, 2017) report that of the covered 

emissions, 75% were priced below $10/tCO2 as of September 2017. 
60 See (Goulder & Schein, 2013). 
61 See (Stern, 2007). 
62 See (Ricke, Drouet, Caldeira, & Tavoni, 2018). 
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Figure 8: Country-level social cost of carbon.63 

Besides carbon pricing, which targets the demand-side as a restrictive measure, the climate 

policy toolkit contains further market-based as well as non-market-based levers. Table 1 

clusters climate policy instruments according to their target area and direction: These tools 

target the energy supply or the energy demand-side, and are either of a restrictive or 

supportive nature. As already mentioned in the context of the marginal abatement cost curve 

in the previous section, there are certain constellations in which single policy instruments 

outperform alternative policy tools in achieving emission reductions. Therefore, a tailored 

policy mix may be the optimal approach to achieve deep decarbonization.64 

 

 

 

 

                                                 
63 Source: (Ricke et al., 2018). 
64 See (Mehling & Tvinnereim, 2018). 
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Supply-side  Demand-side 

Restrictive  Ban/moratorium/phase-out 

 Production quotas 

 Subsidy reduction 

 Supply tax 

 Emissions standards 

 Cap-and-trade 

 Carbon tax 

Supportive 
 Feed-in-tariffs 

 Government provision of 

infrastructure 

 Research and development 

(R&D) subsidies 

 Government procurement 

policies 

 Consumer subsidies (e.g. for 

energy-efficient or low- 

emitting substitutes) 

Table 1: Types of climate policies.65 

1.2.2 Energy Policy and the Role of Non-Market-Based Instruments 

Energy policy is an area where a broad variety of policy instruments are applied. Besides 

market-based approaches such as carbon pricing66, economic theory suggests the use of 

command-and-control policies in order to overcome obstacles of improving energy 

efficiency, which arise from organizational and behavioral failure. The poster example for 

such a non-market-based instrument command-and-control policy is the ban of inefficient 

light bulbs as implemented in many countries to increase the energy efficiency in the 

residential sector.67 Likewise, in the transportation sector, bans of cars from inner cities are 

increasingly under discussion,68 and the number of announced coal phase-outs in the power 

sector continues to grow.69 

Research has suggested that bans or phase-out mandates are more feasible from a political 

perspective than carbon pricing at a sufficiently high price level to achieve the same results.70 

                                                 
65 Source: Own illustration based on (Green & Denniss, 2018). 
66 Definition: “carbon pricing refers to initiatives that put an explicit price on greenhouse gas emissions, i.e. 

a price expressed as a value per ton of carbon dioxide equivalent”, (Worldbank, 2017). 
67 See (Tonzani, 2009). 
68 See (Möhner, 2018). 
69 The number of announced coal phase-outs in the power sector is growing: e.g. France (by 2022), Sweden 

(by 2022), Italy (by 2025), UK (by 2025), Austria (by 2025), Finland (by 2030), Netherlands (by 2030) and 

Portugal (by 2030), see (Powering Past Coal Alliance, 2018). 
70 See (Bertram, Luderer, et al., 2015). 
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Moreover, research has highlighted the ability of phase-out mandates to destroy existing 

structures while creating space for innovation.71 Furthermore, phase-out mandates are 

suggested as a transparent, simple, and powerful tool to create anti-fossil norms.72 One recent 

example to support these findings can be found in the German nuclear phase-out. The 

political decision to phase-out nuclear power in Germany has been identified as the trigger 

of R&D spending on renewable resources beyond the level of R&D spending that the 

Germany Renewable Energy Act (EEG) has triggered.73 

1.2.3 Technology Policy and the Role of Strategic Instruments 

In order to facilitate innovation, strategic investments are the option of choice in the 

evolutionary economic theory. Evolutionary and institutional economics explore the 

development of economic systems and how they depend on institutional circumstances in the 

long run. These disciplines combine technological innovation and system development in 

order to explore the effect of institutional guidance on economic growth. In the context of 

deep decarbonization, evolutionary and institutional economics may help policy-makers in 

gaining an understanding of the factors that shape the development of the energy or 

transportation systems in the long term.74 

The case of solar photovoltaic illustrates that strategic investment may be an effective tool to 

promote innovation in the long term. In particular, the German government extensively 

promoted the expansion of solar PV through feed-in tariffs. On one hand, this approach 

appears particularly costly if one compares feed-in subsidies to achieved emission reductions: 

Between 2006 and 2010, the feed-in incentive corresponded to an average abatement cost of 

€537 per ton of CO2 abated.75 On the other hand, without the strategic investments in the 

context of the German energy transition and similar public investments in other jurisdictions, 

it appears unlikely that renewable generation technologies would have moved down the 

                                                 
71 See (Geels, Sovacool, Schwanen, & Sorrell, 2017). 
72 See (Green, 2018). 
73 See (Rogge & Johnstone, 2017). 
74 See (Grubb et al., 2014). 
75 See (Marcantonini & Ellerman, 2015). 
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learning curve as quickly,76 and solar PV might not have become as cost-competitive as it is 

today.77 

1.3 Motivation and Research Gaps 

As explained in Section 1.1.3, the three essays in this thesis address one current topic within 

one of the three policy areas along the marginal abatement cost curve. The first essay shall 

contribute to the current debate on carbon pricing as a lever to realize CO2 abatement in a 

particularly efficient and equitable way. The second essay shall contribute to the current 

political debate on achieving CO2 reductions in the power sector through a non-market-based 

instrument; namely phase-out mandates. The third essay shall provide empirical insights into 

the recent discussion on the externalities of blockchain technology and the potential need for 

regulation. In the following, Section 1.3 motivates the three essays and discusses how 

relevant the single aspects are, in the context of the overarching goal to abate CO2 emissions. 

1.3.1 Essay I 

The current political discussion and climate activists’ demand increasingly focus on carbon 

pricing as a potential lever to reduce carbon emissions. Two recent examples are the political 

debate in Germany and the “Fridays For Future” movement. The German political debate 

deals with carbon pricing as a tool to achieve the emission reduction target as committed for 

the year 2030.78 The “Fridays For Future” movement demands a carbon tax in the range of 

€160/tCO2 that covers all GHG emissions.79 

In practice, carbon pricing is typically implemented via an emission tax and tradable emission 

permits. As of April 2019, 44 jurisdictions have implemented one or more carbon pricing 

initiatives on regional, national, or sub-national level. Of the 54 implemented carbon pricing 

initiatives, 27 initiatives are implemented via carbon taxes, and the same number of initiatives 

                                                 
76 For the theoretical foundation of the learning curve, see (Arrow, 1962); for an analysis of global learning 

curves of renewable generation resources in the context of the German Renewable Energy Act (EEG), see 

(Buchholz, Dippl, & Eichenseer, 2019). 
77 See (Lazard, 2018a). 
78 See (Clean Energy Wire, 2019). 
79 See (Fridays For Future, 2019). 
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are implemented via emission trading systems (ETSs). Globally, the 54 implemented carbon 

pricing initiatives in total cover activities with emission in the order of 8.0 GtCO2. Thereof, 

2.7 GtCO2 are taxed and 5.3 GtCO2 are subject to ETS. In total, the covered emissions 

represent a share of 14.3% of global GHG emissions. The price that these initiatives put on 

every ton of carbon emitted sits in a range between $0.08/tCO2 (in case of the Polish carbon 

tax) and $126.78/tCO2 (in case of the Swedish carbon tax), with an average carbon price of 

$20.7/tCO2.
80 

However, in practice, there is limited empirical evidence that carbon pricing delivers 

emission reductions as anticipated. For instance, Sweden implemented a relatively high 

carbon tax in 1991, and although Sweden remains the country with the highest carbon tax 

globally, emissions in the road transportation sector only declined by 4% between 1990 and 

2015.81  

The limited empirical evidence of carbon pricing delivering observable emission reductions 

results in policy-makers increasingly resorting to alternative policy tools that promise greater 

transformational potential.82 For instance, to increase the diffusion of electric vehicles (EV) 

governments widely grant subsidies.83 Subsidies are also chosen to promote the deployment 

of renewable energy sources in many countries.84  

Oppositely, carbon pricing advocates recommend this policy instrument as the foundation of 

climate policy. The majority of economists agree and recommend an explicit price on GHG 

emissions.85 In theory, carbon pricing reduces GHG emissions in the most cost-effective 

manner by internalizing the externalities caused by those GHG emissions.86 Therefore, 

carbon pricing may reduce emissions at a lower cost from a welfare perspective than direct 

regulation such as technology mandates or performance standards.87 

The literature on carbon pricing is fragmented, and many arguments have been made against 

and in favor of carbon pricing. Given the considerable body of existing literature on the 

                                                 
80 See (Worldbank, 2019). 
81 See (Tvinnereim & Mehling, 2018). 
82 See (Mehling & Tvinnereim, 2018). 
83 See (Edelenbosch, Hof, Nykvist, Girod, & van Vuuren, 2018; Jin, Searle, & Lutsey, 2014). 
84 IEA’s World Energy Outlook 2017 estimates that global subsidies for renewables tripled to $140 billion 

from 2007 to 2016, and predicts a further rise to $200 billion in 2040, see (IEA, 2017), p. 273. 
85 See (Stern, 2007; J. Stiglitz et al., 2017). 
86 See (J. Stiglitz et al., 2017). 
87 See (Goulder & Schein, 2013). 
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benefits of carbon pricing,88 and a recent surge in more critical literature analyzing the actual 

track record of pricing efforts,89 a review that acknowledges both strands in the literature may 

add valuable insights by identifying the valid arguments on both sides. 

Cases such as the one of the Swedish carbon tax mentioned earlier in this section, contradict 

the rational agent (homo economicus) that the standard economic model uses. Nonetheless, 

behavioral economics and political science may provide theoretical foundations, which may 

explain the observed deviation between theory and practice. The conceptual framework that 

we think is needed to synthesize this fragmented literature is based on the observation that 

the standard economic model alone may not explain why carbon pricing fails to deliver 

emission reductions. 

First, behavioral failure caused by irrational human behavior may result in undesirable 

market outcomes, even if measures are implemented, which guide a rational agent to the 

desired behavior. In order to account for the irrational behavior of over seven billion homo 

sapiens on this planet, behavioral economic theory provides explanations on how humans 

cause market inefficiency with their individual preferences and cognitive limitations.  

Second, government failure caused by (rational or irrational) human behavior of policy-

makers (homo politicus) may result in bad political decisions and consequently undesirable 

market outcomes. Due to the human nature of homo politicus, findings from the behavioral 

economic theory apply here as well. In addition, political scientists provide supplementary 

explanations of how organizational flaws limit governments in regulating in a way that 

maximizes social welfare. 

1.3.2 Essay II 

In order to achieve committed emission reductions – instead of relying on market-based 

instruments like carbon pricing – policy-makers increasingly resort to phase-out mandates. 

In particular, in the power sector, the number of announced coal phase-outs has increased. 

Countries such as France, Italy, UK, Finland, the Netherlands, and Portugal announced 

respective initiatives. Furthermore, in Sweden and Austria, utilities announced final 

                                                 
88 See e.g. (Baranzini et al., 2017; William D Nordhaus, 1977). 
89 See (Ball, 2018b; Patt & Lilliestam, 2018). 
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shutdown years for their coal power plants. Figure 9 depicts these coal phase-out 

announcements, clustered by the year of the final shutdown.90 The coal exit data of Germany 

in 2038 is based on a proposal of the German coal exit commission, which was mandated 

by the government to evaluate the subject.91 

 

Figure 9: Announced coal phase-outs.92 

The deviation between the theoretical effectiveness of market-based instruments and the 

practical trend to announce phase-out mandates underlines the need for more research into 

such non-market-based climate policy tools. The research on climate policy largely focuses 

                                                 
90 See (Powering Past Coal Alliance, 2018). 
91 See (Kommission Wachstum, 2019). 
92 Source: Own illustration; announcements retrieved from (Powering Past Coal Alliance, 2018); German 

coal phase-out date based on the proposal of Germany’s coal exit commission; see (Kommission Wachstum, 

2019). 
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on the effects and design of carbon pricing, while research on non-market-based tools such 

as phase-out mandates has lagged behind.  

In the public debate, there is a strong opinion on the disadvantages of coal-fired power 

generation compared to gas-fired power generation. Coal-fired power generation is 

commonly perceived as particularly dirty, and promotors of gas-fired power plants 

highlight the lower carbon intensity of gas-fueled power generation compared to coal-

fueled power generation. Switching from coal-fueled to gas-fueled power generation is 

therefore expected to contribute to the decarbonization efforts by lowering carbon 

emissions of every unit of electricity generated. 

As the committed climate targets translate into a definite carbon emission budget , a 

maximum amount of CO2 that can still be emitted into the atmosphere without causing 

warming that is incompatible with the definite warming target – switching from coal-fueled 

to gas-fueled power generation can extend the duration before this carbon budget is 

depleted. Primarily due to chemical properties, gas-fired power generation emits less than 

half the amount of CO2 per unit of electricity compared to coal-fired power generation.93 

Extending the duration until the carbon budget is depleted would give additional time to 

improve existing or develop new zero-emission technologies that can produce electricity at 

low cost and are suited for deployment at a sufficiently large scale.94 

Nevertheless, focusing exclusively on coal-fired and gas-fired power generation ignores 

the overarching challenge of decarbonizing the power sector. The key question should not 

be how to reduce the share of coal-fired power generation or how to trigger fuel-switching 

from coal to gas generation resources. In the context of the politically agreed 

decarbonization pathway, the key question is which fuel-switching strategy is cost-optimal. 

Answering this question requires not only including further generation technologies but 

also includes considering the effects of existing generation capacity.  On the one hand, 

existing fossil-fired power plants and the associated generation infrastructure carries a risk 

of a lock-in in these high-carbon technologies.95 Due to economic reasons, power plants 

continue to operate irrespective of premature write-downs.96 One the other hand, existing 

                                                 
93 See (Wilson & Staffell, 2018). 
94 See (Kerr, 2010; Levi, 2013; X. Zhang, Myhrvold, Hausfather, & Caldeira, 2016). 
95 See (Bertram, Johnson, et al., 2015; Seto et al., 2016; Unruh, 2000). 
96 See (Caldecott, Tilbury, & Carey, 2014), p. 2. for a definition of this so-called ‘asset stranding’. 
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fossil-fired power plants, and the associated generation infrastructure may also be an essential 

part of the solution to achieve deep decarbonization at least-cost.  

1.3.3 Essay III 

On the decarbonization pathway, technological innovation will play a key role and the current 

debate largely focuses on expected efficiency improvements in the future and potential 

radical innovations in the context of climate change mitigation. Far less attention has been 

given to the energy demand that some innovative technologies might bring. In the third essay, 

we use Bitcoin as an example of such an innovative technology with high disruptive potential; 

the underlying blockchain technology promises significant efficiency gains in various use-

cases. Nevertheless, blockchain technology also appears particularly energy-hungry and 

carbon-intense.  

The blockchain technology has its roots in Bitcoin. Bitcoin is a virtual currency and was the 

first successful attempt to validate transactions via a decentralized data protocol. This 

validation process requires vast amounts of electricity, which may translate into a significant 

level of carbon emissions if the used electricity originates from carbon-emitting power 

generation resources. 

In Bitcoin’s blockchain, the duration between the additions of two blocks is fixed at about 

ten minutes. To safeguard this frequency of block additions, the difficulty to solve the next 

block adjusts regularly in order to account for the connected computing power in the network. 

That means that if more computing power is added to the network, it becomes more difficult 

to solve such a Bitcoin puzzle. Between January and November 2018, the connected 

computing power in the Bitcoin network increased more than fourfold.97  

According to academic studies, the increase of computing power in the Bitcoin network 

elevated the required electricity demand accordingly in 2018.98 However, previous attempts 

to estimate Bitcoin’s electricity consumption largely rely on simplistic estimates and rough 

assumptions due to missing empirical insights or technical misunderstanding of the 

blockchain protocol. Furthermore, to translate the estimated power demand into carbon 

                                                 
97 See (Blockchain.com, 2018). 
98 See (De Vries, 2018). 
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emissions, previous estimates lack the empirical foundations and technical understandings of 

the global power market, which are key to produce accurate estimates.99 

1.4 Contributions and Findings 

Each of the three essays in this thesis contributes to one current topic along the marginal 

abatement cost curve as described in Section 1.1.3. In particular, the first essay identifies 

valid arguments in favor of and against carbon pricing. Furthermore, Essay I offers a 

theoretical framework for the rising option in the broader community that carbon pricing is 

a necessary but insufficient element of any policy portfolio that aims for deep 

decarbonization. The second essay contributes to the current debate on achieving CO2 

reductions in the power sector that are in line with politically committed targets. A case study 

for Germany reveals counterintuitive results, which underline the necessity to consider the 

effect of stranded assets when designing a fuel-switching strategy. The third essay provides 

empirical insights to the discussion of Bitcoin’s power consumption and carbon emissions 

where previous academic studies rely on simplistic assumptions. The total carbon emissions 

of Bitcoin – comparable to the emission level of Kansas City – underlines the necessity to 

consider environmental externalities of the blockchain technology. 

1.4.1 Essay I 

Essay I provides a meta-analysis, summarizing the imperfections of markets, behavior, and 

government that hinder carbon pricing’s theoretical economic efficiency. Thereby, Essay I 

highlights the opportunity space where carbon pricing may conduce to deep decarbonization 

at least cost. Additionally, Essay I assesses the challenge of distributional effects caused by 

carbon pricing, which would occur if policy-makers take committed emission reductions 

seriously. 

Essay I synthesizes the literature on carbon pricing and suggests a conceptual framework by 

distinguishing constellations in which the application of carbon pricing may fail to attain the 

anticipated emission reductions. The conceptual framework is structured along three types of 

                                                 
99 See e.g. (Krause & Tolaymat, 2018; Mora et al., 2018). 
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agents: the first type of agents, the homo economicus, are characterized by a fully rational 

pursuit of pure self-interest; the second type of agents, the homo sapiens, embody irrational 

human behavior; and the third type of agents, the homo politicus, reflects rational and 

irrational decision-making in politics.  

An understanding of the three types of imperfections as represented by the three agents is 

crucial to avoid that high expectations of carbon pricing yield deep disappointment. The 

summarized imperfections can explain inefficient results under carbon pricing policies  and 

help to dissect assessments of carbon pricing. 

Additionally, with our review, we bridge discussions of economic efficiency, distributional 

impacts of climate policies, and how to address such impacts. Unlike subsidy programs and 

phase-out mandates, carbon pricing generates fiscal revenues. Efficiency is only one side of 

the coin, and if policy-makers take respective actions to achieve deep decarbonization, the 

redistribution of wealth within the population will become increasingly important.100 Carbon 

pricing offers the opportunity to tackle distributional effects and inequitable market 

outcomes.101 The fiscal revenue generated by carbon pricing may be returned in the form of 

so-called carbon dividends in order to mitigate the distributional effects caused by climate 

policy.102  

Essay I contributes to the controversial debate on carbon pricing by offering a conceptual 

framework for the growing sense that carbon pricing is a necessary, but not sufficient, 

element of any deep decarbonization policy portfolio. The unique angle of this typology of 

imperfections may offer a holistic perspective on required policy approaches to synthesize 

the triad of barriers to efficient carbon pricing operations. 

1.4.2 Essay II 

Essay II presents a simple model with the objective to find the least-cost power generation 

resource mix, which is consistent with the committed climate targets at a distinct future point 

in time. This includes the provision of an accessible explanation of the intuition and logic 

                                                 
100 See (Büchs, Bardsley, & Duwe, 2011; Fullerton, 2011; Hirth & Ueckerdt, 2013). 
101 See (Boyce, 2018). 
102 Note: Carbon dividends are defined as the redistribution of revenues that were generated by a carbon 

pricing initiative, see (Climate Leadership Council, 2018). 
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behind capacity expansion modeling. This further includes establishing a link between 

capacity planning models and committed climate targets. The model I present can be used to 

determine the generation resource capacity by technology that covers a given load demand 

at least-cost while being in line with committed climate targets. Therefore, climate targets 

are reflected in the model as a carbon constraint. 

Using the described model, calibrated with parameters of the German electricity sector and 

climate commitments, reveals thought-provoking results. The results of the case study of 

Germany contradict the common opinion that coal power plants should be phased out rather 

sooner than later. The key assumption that causes this unexpected result can be found in the 

treatment of existing generation resources. I assume that power plants operate as long as it is 

economically beneficial to do so from the owners’ point of view. That implies that power 

plants continue to operate even if annualized investment costs are no longer covered; owners 

will write-down their assets prior to mothballing them.  

To consider this economic rationale, and as fixed costs of power plant operations almost 

exclusively consist of annualized investment costs, I assume zero fixed costs for existing 

power plants in the model. Under this assumption, a decarbonization pathway includes a 

gradual decline in coal-fired generation capacity and respective rise in clean generation 

resources proves to be advantageous in terms of total system cost compared to a forced coal 

phase-out. 

The cost implications of politically forced phase-out policy against a market-driven gradual 

reduction in coal usage have been studied in many sophisticated integrated models. The 

significant conceptual advance in scientific understanding that Essay II provides is to 

highlight the effect of stranded assets. The effects of asset stranding may play a central role 

in a cost-effective decarbonization pathway but have been largely ignored in previous 

modeling work. 

1.4.3 Essay III 

Essay III presents a techno-economic model, which can be used to determine the electricity 

consumption and associated carbon emissions of the Bitcoin network. This includes 

methodologies for estimating the geographic locations of network participants. Essay III 

further provides empirical insights, which enable higher accuracy in estimating Bitcoin’s 
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emissions compared to previous work. In particular, Essay III provides empirical insights on 

the hardware that miners use, the way mining facilities operate, and the locations where 

miners operate.  

Based on recent IPO filings of the three largest hardware manufacturers, we conclude that 

hardware sold by those three hardware manufacturers provides nearly the entire computing 

power in the Bitcoin network. The largest market share can be allocated to Bitmain hardware 

that provides 78% of the network’s computing power, followed by Ebang hardware with 

13%, Canaan hardware with 8%. Based on the hardware in use and the specific energy 

efficiency on a model basis, we can calculate the electricity demand of the Bitcoin network. 

After adding auxiliary losses from mining operations such as cooling and IT-equipment, we 

conclude that Bitcoin caused a load of 5,232 megawatt in November 2018. 

Based on the localization of IP addresses within the Bitcoin network, we estimate the 

locations where miners are based and where electricity is consumed accordingly. Based on 

two scenarios, we translate the local power demand into carbon emissions. As of November 

2018, we show that the Bitcoin network causes carbon emissions in a range between 22.0 and 

22.9 Megatons of carbon dioxide (MtCO2). This ratio sits between the carbon emission levels 

produced by the nations of Jordan and Sri Lanka,103 which is comparable the carbon emission 

level produced by Kansa City.104 

The amount of carbon emissions caused by the Bitcoin network, in combination with the risk 

of collusion of network participants, and considerations about the value of sovereign control 

over the monetary system should not be ignored. In particular, in terms of carbon emissions, 

our findings point to a need for direct regulation in certain regions as long as the externalities 

of carbon emissions during power generation are not fully internalized. Regulatory 

intervention on the regional level may prevent the additional load from cryptocurrency 

mining that causes vast amounts of carbon emissions (either directly by utilizing dirty power 

resources, or indirectly by consuming clean energy that has to be replaced by dirty power 

resources in the surrounding grid area).  

What is more important: Blockchain solutions are increasingly discussed for a broad variety 

of use-cases beyond cryptocurrencies. This debate is largely focusing on anticipated benefits, 

                                                 
103 See (Global Carbon Project, 2017). 
104 See (Moran et al., 2018). 



26 

 

such as efficiency gains. Although not all blockchain protocols are as energy-intensive as 

Bitcoin’s protocol, environmental aspects, the risk of collusion, and concerns about control 

must not be ignored in the debate on anticipated benefits. Environmental costs from the 

energy consumption and required infrastructure (also in case of less energy-intense protocols) 

have been largely ignored in many cases.  

1.5 Structure 

This thesis is organized as follows: Section 2 provides Essay I: Climate Change and Carbon 

Pricing: Overcoming Three Dimensions of Failure. Section 3 presents Essay II: Fuel-

switching and Deep Decarbonization. Essay III: The Carbon footprint of Bitcoin can be found 

in Section 4. Section 5 concludes. As illustrated in Figure 10, each essay contributes to one 

dedicated policy aspect under the umbrella of climate economics. 

 

 

Figure 10: Essay I-III thematic overview.105 

 

                                                 
105 Source: Own illustration. 
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2 Essay I – Climate Change and Carbon Pricing: 

Overcoming Three Dimensions of Failure 

by Christian Stoll and Michael A. Mehling106 

Abstract 

Climate change has been called the “greatest market failure the world has ever seen”. Beyond 

the standard economic model, seven billion individuals cause market inefficiency with their 

behavioral preferences and limitations. Market failure justifies policy intervention, and many 

economists recommend carbon pricing as the optimal policy to address climate change. 

Recent literature has leveled criticism against carbon pricing, however, based on its empirical 

performance and conceptual limitations. Given the two strands in literature which offer 

arguments in favor and against carbon pricing, a review that identifies the valid arguments 

of both strands in the literature can provide valuable conclusions. With our meta-analysis, 

we dissect such research and suggest a conceptual framework to summarize the failure of 

markets, human behavior, and governments which interfere with the efficient operation of 

carbon pricing. We also discuss distributional effects, which are set to become a major 

challenge once policy-makers take deep decarbonization commitments seriously. Our 

findings suggest that carbon pricing remains a vital component of an effective policy mix to 

limit climate change, and, indeed, to prevent it from becoming the greatest government 

failure the world has ever seen. 
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2.1 Introduction 

Climate change has been described as the “greatest market failure the world has ever seen”.107 

Mainstream economists define market failures as situations in which the rational pursuit of 

self-interest yields results that are inefficient from a societal point of view.108 Greenhouse 

gas (GHG) emissions cause climate change as they trap heat in the Earth’s atmosphere. 

Because the resulting externalities of global warming are not reflected in market prices of 

goods and services that emit GHGs, market results are inefficient in the absence of policy 

intervention.109 

Even if measures are in place to correct market failure of the standard economic model, 

behavioral failure can still cause undesirable market outcomes, as human behavior deviates 

from that of a rational homo economicus. Behavioral economists aim to account for over 

seven billion homo sapiens causing market inefficiency with their individual preferences and 

limitations. Such behavioral failure justifies policy intervention to enhance welfare, either by 

protecting individuals from themselves, or others from externalities that arise from their 

actions.110 

Unfortunately, governments can also fail by regulating inadequately, due to cognitive, 

organizational, and political limitations and shortfalls.111 Ever since Aristotle’s conception 

of a zōon politikon, the notion of a homo politicus has existed as a predecessor or counterpart 

to that of homo economicus, with specific social preferences,112 contingent perceptions of 

justice,113 and idiosyncratic self-interests.114 Many insights from the study of human behavior 

also apply to politics: Since governments are formed by, recruited from, and serve individuals 

relying on cognitive heuristics,115 behavioral economists attempt to understand decision-

making in politics, and identify, for instance, individual biases as sources of bad policies.116 

                                                 
107 See (Stern, 2007), p. viii. 
108 See (Bator, 1958). 
109 Causes of market failure are for instance information problems, market power, externalities and public 

goods, economies of scale, second best problems and free-riding; see (Andrew, 2008) for an overview in the 

context of climate policy. 
110 E.g. people who are saving too little for retirement, driving too fast, or emitting GHG.  
111 See (J. E. Stiglitz, 2009), p. 35-37; for general government failure theory including more granular causes 

comparable to market failure theory, see (Le Grand, 1991; Vining & Weimer, 1990; Wolf Jr, 1979). 
112 See (Nyborg, 2000). 
113 See (Faber, Petersen, & Schiller, 2002). 
114 See (Brown, 2015), p. 86. 
115 See (Max H Bazerman & Watkins, 2004). 
116 See (Sunstein, 2013a, 2013b; Tullock, Seldon, & Brady, 2002). 
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The failure to address climate change is, in part, also a result of government failure. 

Economists have therefore routinely recommended carbon pricing as the centerpiece of 

climate policy.117 In economic theory, carbon pricing – typically implemented via an 

emission tax118 or tradable emission permits119 – internalizes some or all of the externalities 

caused by GHG emissions, and reduces GHG emissions in the most cost-efficient manner.120 

Economists can estimate the future damage caused by today’s GHG emissions to determine 

the social cost of today’s emissions. Theoretically, a price on carbon emissions that 

corresponds to this social cost will result in the optimal level of emissions; that is, a level that 

still allows the most beneficial emitting activities, while focusing mitigation on activities 

with the lowest abatement cost.121 

Such attempts to estimate the social cost of carbon are highly dependent on the chosen input 

assumptions, however, and relevant calculations tend to therefore deliver a wide range of 

results.122 In addition, catastrophic outcomes which defy easy quantification quickly bring 

this approach to its conceptual limits. Uncertainty about the benefits of climate action,123 

coupled with the Gordian knot of how to quantify risk124 and factor in space and time,125 have 

prompted governments to base their climate policies on politically agreed mitigation targets 

rather than cost/benefit calculations. 

Already implemented at the domestic level in various countries,126 this approach also found 

its international application in the Paris Agreement, adopted in 2015. When they concluded 

that binding treaty, 195 countries agreed to limit global warming below 2 °C.127 This strict 

                                                 
117 Definition: “Carbon pricing refers to initiatives that put an explicit price on greenhouse gas emissions, 

i.e. a price expressed as a value per ton of carbon dioxide equivalent (tCO2e)”, (Worldbank, 2017). 
118 For the underlying theoretical justification, see (Pigou, 1920). 
119 For the underlying theoretical justification, see (Coase, 1960); first applied to tradable emission permit 

systems by (Crocker, 1966; Dales, 1968). 
120 See, for instance, ‘Economists’ Statement on Carbon Dividends’, Wall Street Journal, Jan. 17, 2019 

(https://www.clcouncil.org/media/EconomistsStatement.pdf); (J. Stiglitz et al., 2017). 
121 See (Stern, 2007). 
122 See (William D Nordhaus, 2017; Pizer et al., 2014). 
123 See (Jacoby, 2004). 
124 See (William D. Nordhaus, 2011; Pindyck, 2011; Weitzman, 2009) on how to account for so-called tail 

events, which are characterized as highly unlikely, yet with infinite expected loss.  
125 See, e.g. (Stern, 2007) on prescriptive vs descriptive discount rates to account for effect with cross-

generational consequences; similarly, the social cost of carbon is not uniform across different geographies, 

see e.g. (Ricke et al., 2018). 
126 See, e.g., for the United Kingdom: (DECC, 2009). 
127 See Paris Agreement (UNFCCC, 2015a); first mentioned by (William D Nordhaus, 1977), the 2 °C bound 

is commonly used as upper bound to limit cost and risk of climate change and the 2 °C bound is commonly 

referenced as a threshold to avoid the worst consequences of climate change. 
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warming limit translates to a maximum GHG concentration in the atmosphere and a 

remaining (cumulative) carbon budget, respectively. For climate policy, the objective 

function then no longer is welfare-maximization based on a cost/benefit calculation, but 

rather cost-minimization in the achievement of a decarbonization pathway that limits 

warming to 2 °C or less. 

In practice, due to limited empirical evidence with carbon pricing delivering the expected 

emission reductions,128 policy-makers are increasingly resorting to alternative instruments 

with greater transformational potential to achieve decarbonization commitments. Subsidies 

are widely used, for instance, to increase the diffusion of electric vehicles (EV) and the 

deployment of renewable energy sources (RES).129 An increasing number of jurisdictions is 

also resorting to phase-out mandates to reduce emissions from specific sectors or activities.130 

While these policies can correct some of the market failures associated with climate change, 

they are not a cost-effective tool to address its main cause: the externality of GHG emissions. 

Meanwhile, carbon pricing – the policy of choice to internalize this externality – has 

witnessed a more mixed trajectory. Ambiguous causality of carbon pricing for observed 

emission reductions, along with a delayed market reaction compared to blunter command-

and-control regulation, has recently prompted some criticism in the policy literature.131 

Despite years of steady geographic and sectoral expansion,132 this contributes to the barriers 

carbon pricing faces in the political realm. For instance, Australia introduced a carbon tax in 

2012 and repealed it two years later in the next legislative period.133 Although emissions 

dropped during the carbon pricing period in Australia by about 2%, the causal link to carbon 

pricing remained uncertain. As depicted in Figure 11, the weak correlation of total emissions 

and electricity consumption since 2015 exemplify that further variables (such as LNG 

projects or mining activity) complicate attribution of emission reductions to carbon 

                                                 
128 See (Mehling & Tvinnereim, 2018). 
129 IEA’s World Energy Outlook 2017 estimates that global subsidies for renewables tripled to $140 billion 

from 2007 to 2016, and predicts a further rise to $200 billion in 2040, see (IEA, 2017), p. 273. 
130 Bans of inefficient light bulbs are a poster example, see (Tonzani, 2009). Banning cars from inner cities 

is also being discussed in a number of cities, see (Möhner, 2018), and the number of announced coal phase-

outs in the power sector is rising, see (Powering Past Coal Alliance, 2018). 
131 See, e.g., (Ball, 2018a, 2018b; Patt & Lilliestam, 2018). 
132 As of 2018, 45 national and 25 subnational jurisdictions were putting a price on carbon, see (Worldbank 

& Ecofys, 2018), p. 17. 
133 See (Crowley, 2017) for a detailed review of Australian climate policy 2013-2016; (The Guardian, 2013) 

describes the motivation of Prime Minister Abbott to abolish the carbon tax due to disbelief in ne ed for 

action and consideration of donors’ vested interest. 
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pricing.134 Unable to point to a clear mitigation effect, supporters of carbon pricing had to 

resort to theoretical calculations and forecasts, whereas opponents could cite the present cost 

facing the Australian economy. 

 

Figure 11: Australian total greenhouse gas emissions 2004-2017.135 

The objective of this paper is to dissect this rise in critical evaluations of carbon pricing.136 

In some cases, the criticism may be justified; in other cases, the expectations placed on carbon 

pricing may have been exaggerated, and its role in the climate policy portfolio 

misunderstood.137 To ensure that growing disenchantment with carbon pricing does not deter 

its use even where it is a superior policy option, this paper traces conceptual strengths and 

weaknesses to identify the appropriate role for carbon pricing on the pathway to 

decarbonization.  

                                                 
134 See (O'Gorman & Jotzo, 2014) for difficulties to assess the impact of Australia’s carbon tax on emissions.  
135 Own illustration; data sources: (Australian Energy Regulator, 2018; Department of the Environment and 

Energy, 2018). 
136 See, e.g., the references in footnote 131. 
137 E.g. the European Union Emissions Trading System (EU ETS) has been highlighted as unable to trigger 

corporate innovation, while its actual core function is to lower the cost of a politically agreed emission 

reduction, see (Schmidt, Schneider, Rogge, Schuetz, & Hoffmann, 2012). 
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To that end, we summarize the existing literature in a conceptual framework that captures the 

imperfections of markets, behavior, and government that interfere with the economic 

efficiency of carbon pricing. Moreover, we highlight the opportunity space for carbon pricing 

to contribute to deep decarbonization at least cost. Additionally, we assess the distributional 

effects of carbon pricing if policy-makers take deep decarbonization seriously. 

The efficiency of carbon pricing to achieve emission reductions at the margin has been amply 

demonstrated.138 Our review of market, behavioral, and government failures underlines the 

need for complementary policies to limit global climate change. As we find, however, it is 

also important to distinguish areas which actually require complementary policies from areas 

where such policies incur the risk of favoring dead-end technologies while precluding 

valuable alternatives that are either unknown to policy-makers, or underappreciated in their 

mitigation potential.139  

Going forward, the key challenge will be to overcome political constraints in order to 

approach efficient carbon pricing levels. To solve this challenge, we highlight alliances, 

stepwise actions, reduced complexity, and the right framing as potential levers. Furthermore, 

we highlight the opportunity to mitigate distributional effects with carbon dividends, that is, 

redistribution of revenues generated by carbon pricing.140 

The paper is organized as follows: Section 2 highlights inefficient market outcomes despite 

carbon pricing. Section 3 describes inequitable market outcomes caused by carbon pricing, 

as well as potential solutions. Section 4, finally, summarizes policy recommendations and 

issues requiring further research. 

 

 

 

                                                 
138 See (Grubb et al., 2014) for a detailed summary that carbon pricing should be used at the profitability 

threshold of the marginal abatement cost curve. Marginal abatement cost curves present options for emission 

reduction and their respective potential, sorted by abatement cost, see (McKinsey, 2013). 
139 See (Acemoğlu, Akcigit, Hanley, & Kerr, 2016; Fried, 2018) for how pricing can trigger innovation. 
140 See (Climate Leadership Council, 2018). 
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2.2 Carbon Pricing: Between Market and Government Failure 

To identify inefficient market outcomes despite carbon pricing, Section 2 distinguishes 

constellations in which carbon pricing can fail to deliver expected emission reductions. We 

differentiate three types of imperfections: first, where the rational pursuit of pure self-interest 

by an ideal-typical homo economicus nonetheless leads to inefficient results; second, 

situations where an irrationally behaving homo sapiens generates results that are inefficient; 

and third, situations where the rational or irrational decisions of homo politicus cause 

inefficiency. 

2.2.1 Market Failure: The Case of Homo Economicus 

Even if we assume that all economic agents are perfectly rational, as in the standard economic 

model of homo economicus, there are still situations where carbon pricing can fail to reduce 

emissions. This section focuses on the two main categories of market failure that interfere 

with the theoretical efficiency of carbon pricing: public goods141 and principal-agent 

constellations.142 

The first-mentioned category of market failure originates from the non-excludability of 

public goods. Private actors cannot exclude nonpayers from enjoying the benefits of a public 

good. Consequently, private actors face sub-optimal incentives to provide a public good at 

Pareto-efficient levels.143 The following cases illustrate this challenge by drawing on three 

public goods that are necessary for deep decarbonization. These are innovation, knowledge, 

and infrastructure. 

First, in the case of innovation, private actors might not be able to capture all the benefits of 

technological advances they achieve.144 In the absence of perfect initial property protection 

– that would turn the public into a private good – others co-benefit from innovation through 

                                                 
141 Definition: Public goods are defined as goods that are non-excludable and non-rival in use; e.g. national 

security, public health, and clean air, see (Ostrom, 2005), p. 24. 
142 Different objectives and asymmetrical information may cause so-called principle-agent problems, see 

(Jensen & Meckling, 1976) for agency cost and the issue of separating ownership and control. 
143 See (P. A. Samuelson, 1954). 
144 See (Fischer & Newell, 2008; Fischer, Preonas, & Newell, 2017; Adam B Jaffe, Newell, & Stavins, 2005). 
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knowledge and adoption spillover. As innovators cannot capture the full benefits, they face 

sub-optimal incentives to invest in R&D.  

Second, in the case of knowledge accumulated through learning-by-doing, experience 

diffusion and leakage cap the incentives to improve processes and products. For instance, 

when knowledgeable employees leave a company, they are likely to benefit from earlier trial 

and error attempts of their employer.145  

Third, in the case of infrastructure, an investment can help to reduce existing negative 

externalities, like GHG emissions, and create positive externalities on primary markets from 

which the demand for infrastructure is derived.146 Aside from the inability to capture some 

or all of these benefits, as we also observed with the foregoing innovation and knowledge 

spillovers, the required upfront investment frequently surpasses the financial capabilities of 

private actors.147 Risk aversion, capital market imperfection and regulatory restrictions 

further amplify the underspending (or even misspending).148 

The second category of market failure originates from principal-agent constellations. If one 

party (agent) acts on behalf of another party (principal), problems may arise from divergent  

objectives and asymmetrical information.149 Agents may have private information that is 

ignored by the principal (cases of hidden knowledge or adverse selection) or, agents may take 

actions that are unobservable for the principal (cases of hidden action or moral hazard).150 

Especially adverse selection in cases of split incentives and moral hazard in cases of 

divergent time preferences illustrate principal-agent constellations that limit carbon pricing 

in delivering its full efficiency potential. 

First, in the case of split incentives, costs and benefits accrue to different parties, and 

therefore difficulties can arise from divergent levels of information. In such constellations, 

investment in measures to improve energy efficiency tends to fall short.151 The classic 

example of split incentives due to the separation of ownership and use is the landlord-tenant 

problem. Landlords have little incentive to enhance energy efficiency if tenants pay for 

                                                 
145 See (Acs, Audretsch, & Lehmann, 2013; Braunerhjelm, Ding, & Thulin, 2018). 
146 See (Blum, 1998): e.g. labor markets create the demand for transport, which creates the demand for 

infrastructure. 
147 E.g. annual investment in infrastructure of $6.3 trillion has been suggested for 2016-2030 to facilitate a 

decarbonization pathway which is compatible with the 2 °C goal, see (OECD, 2017).  
148 See (Lehmann & Söderholm, 2018). 
149 See, e.g. (Jensen & Meckling, 1976; Ross, 1973). 
150 See, e.g. (Laffont & Martimort, 2001), p. 3. 
151 See (IEA, 2007) for quantification of principal-agent problems as obstacles to energy efficiency. 
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electricity and heat.152 A similar situation can be found in the relationship of a ship-owner 

and charterer, where price sensitivity to charter rates prevents the implementation of measures 

in order to improve fuel efficiency.153 A third example, where rational behavior on individual 

level results in collective inefficiency, can be found between a rental car company and the 

renter. Ex-ante, the rental car company cannot anticipate the renter’s driving style and 

oppositely, the renter has limited knowledge of the car’s fuel efficiency.154 

Second, moral hazard can arise from divergent time horizons. The principal’s time horizon 

is typically longer than the agent’s. Public and private decision-makers are typically 

motivated more by short- than by long-term incentives. For instance, employees tend to 

maximize their personal utility instead of the shareholders’ long-term interest.155 Analogous, 

business and political cycles do not align well with the time horizon of climate change.156 

Therefore, it is rational for decision-makers to underspend on R&D, which promises potential 

benefits far in the future. Likewise, self-optimizing agents could misprice long-term risk in 

order to increase short-term profits. In the case of high carbon assets, the mispricing of risk 

may result in large-scale asset stranding – with devastating wealth loss and distributional 

impacts157 – and potentially destabilize the global financial system.158 

2.2.2 Behavioral Failure: The Case of Homo Sapiens 

Assuming agents deviate from the perfectly rational homo economicus, there are further 

situations where the irrational homo sapiens creates inefficiencies. In this section, we apply 

the approach of (Mullainathan & Thaler, 2000) to climate change, identifying where human 

behavior differs from that of perfectly rational agents due to bounded rationality, bounded 

willpower, and bounded self-interest. 

                                                 
152 See (Davis, 2011; Adam B. Jaffe & Stavins, 1994). 
153 See (Rehmatulla & Smith, 2015). E.g. (Agnolucci, Smith, & Rehmatulla, 2014) find that ship-owners 

have limited incentive to improve the fuel efficiency of their vessels as they can only capture 40% of the 

financial savings via higher charter rates. 
154 Note: A related example can be found in the relationship between local governments and international 

society. Local governments have an incentive to free-ride on (and benefit from) global climate protection, 

see (W. Nordhaus, 2015). E.g. (Kremen et al., 2000) describe the local benefits of logging vs. global benefits 

of rain forest conservation.  
155 See (Clarke & Darrough, 1983). 
156 See (Carney, 2015). 
157 See (Mercure et al., 2018). 
158 See (ESRB, 2016). 
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Bounded rationality describes the cause of irrationality in human decision-making.159 Due to 

limited ability, information, or time, humans rely on rules of thumb and heuristics in decision-

making. Several leading economists have described mistakes in human decision-making, 

identifying cognitive biases, predicting failures in choice, and recommending that policy-

makers nudge decisions by modifying choice architectures.160  

The bounded rationality of individuals can lead to strong non-financial preferences. As in the 

case of alternative fuel vehicles, the individuals’ choice depends on the perceived utility 

derived from factors such as novelty, limited variety, refueling stations, and range. Aside 

from aspects like location and usage profile, cultural aspects further shape consumer 

preferences. The price inelasticity of gasoline demand underlines the non-financial 

preferences of consumers,161 and SUV sales numbers in recent years have dispelled any 

remaining doubt.162  

Given their bounded rationality, individuals can also have preferences regarding the design 

of financial incentives; it matters if these are designed as subsidies, or as penalties. The 

example of the transport sector illustrates that subsidies may sometimes be more effective 

than taxes.163 Modeling work has shown that a carbon price of $100/tCO2 (equal to $1 per 

gallon of fuel) would likely increase the global share of electric vehicles (EVs) from 0.3% 

(in 2017) to 15-34% by 2050;164 that uptake is far too low to comply with the 2 °C goal, 

which requires at least 20% alternative-fueled vehicles already by 2030.165 By contrast, 

Norway used a subsidy program and achieved its transport emissions target three years early 

in 2017, with 52% of new car sales being electric, gas, or hybrid vehicles.166 

How individuals process new information can also be rationally bounded. Investors both 

overreacting167 and under-reacting168 to new information is evident in the stock market. The 

Volkswagen emissions scandal demonstrates how consumers react to new information and 

                                                 
159 See (Simon, 1957) arguing that most decisions are fully rational and aligned with individual goals. 

According to Simon, individuals very rarely take irrational decisions – decisions counterproductive to self-

selected goals. However, perceived rational decisions can be irrational from a knowledgeable point of view.  
160 See (Kahneman & Tversky, 1979; Thaler & Sunstein, 2008). 
161 See (Huse, 2018; Klier & Linn, 2010). 
162 See (JATO, 2018) global market share of SUV up from 22.4% in 2014 to 34.0% in 2017. 
163 See (Edelenbosch et al., 2018; Jin et al., 2014) in the context of EV sales incentives. 
164 See (McCollum et al., 2018). 
165 See (UNFCCC, 2015b). 
166 See (OFV, 2018); note: The trend continues: sales of electric, gas, or hybrid vehicles accounted for 60% 

in 2018. 
167 See (De Bondt & Thaler, 1985). 
168 See (Shleifer, 2000). 



37 

 

change their preferences accordingly: diesel cars have become unpopular across brands.169 

Case studies of this emissions scandal highlight the amplifying effects of media coverage170 

and brand perception spillovers as potential causes.171 

Bounded willpower, the second category of human deviation from perfectly rational agents, 

is another behavioral factor affecting how individuals will respond to carbon prices. Even if 

individuals have the cognitive ability, perfect information, and sufficient time to reach 

rational decisions, humans tend to be myopic,172 and self-control issues trigger choices 

against long-term interest.173 Humans further favor procrastination174 and prefer to retain the 

status quo rather than changing it.175 In the context of energy efficiency, for instance, people 

tend to discount future savings with irrationally high rates, and therefore adhere to their 

current, inefficient energy use patterns. For energy-efficient appliances, implicit discount 

rates (estimated to be up to 300% for refrigerators176 and 825% for electric water heaters177) 

underline the challenge.178 

The third dimension of bounded behavior is selflessness, that is, the willingness to help others 

at the cost of one’s own welfare.179 Such selfless – or pro-social – behavior can be observed 

in the intrinsic motivation to make unpaid contributions to society. Once monetary incentives 

are introduced, individuals tend to lose this intrinsic motivation, crowding out the perceived 

need for action. This phenomenon of crowding-out has been observed, for instance, in the 

context of waste recycling and community work.180  

Crowding-out also occurs when individuals pay for certain types of behavior, such as 

environmental pollution; such a payment – whether voluntary or mandatory – makes them 

feel entitled to pollute, diminishing the motivation to change their polluting behavior.181 The 

                                                 
169 E.g. car sales in Germany 03/2018 month-to-month: diesel (-25.4%); electric (+73.1%); hybrid (+45.4%); 

see (Kraftfahrtbundesamt, 2018). 
170 See (Dewenter, Heimeshoff, & Thomas, 2016) for an empirical analysis of how general media coverage 

influences customer behavior to buy a new car. 
171 See (Trump & Newman, 2017). 
172 See (Loewenstein & Thaler, 1989). 
173 See (Mullainathan & Thaler, 2000). 
174 See (Mullainathan & Thaler, 2000). 
175 See (W. Samuelson & Zeckhauser, 1988). 
176 See (Gately, 1980). 
177 See (Ruderman, Levine, & McMahon, 1987). 
178 See (Frederick, Loewenstein, & O'donoghue, 2002) for a review of studies assessing individual discount 

rate; results ranging from -6% to infinity. 
179 See (Rabin, 1993). 
180 See (Brekke, Kverndokk, & Nyborg, 2003). 
181 See (Bazin, Ballet, & Touahri, 2004). 
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example of a daycare center, where the number of delayed pickups increased after the 

introduction of a late fee, illustrates that effect.182  

Monetary incentives and disincentives are not the only factors leading to motivational 

crowding-out. Humans have also been shown to crowd out pro-environmental behavior once 

the government intervenes. The motivation of households to act in a pro-environmental way, 

such as energy-saving actions, has been found to decline once the government intervenes.183 

2.2.3 Government Failure: The Case of Homo Politicus 

Irrespective of the agents’ rationality or irrationality, standard market failure and behavioral 

failure both call for government intervention. Unfortunately, homo politicus can also fail by 

regulating inadequately due to a variety of factors summarily described by cognitive, 

organizational, and political constraints.184 As we show in this section, information is key to 

all these constraints. 

Governments are formed by and act through individuals, whose cognitive limitations can 

result in flawed policies due to a failure to respond adequately to the available information.185 

This failure to see, seek, use, or share relevant data has been coined ‘bounded awareness’.186 

Individuals focused on a specific task have been shown to miss important developments 

outside their immediate focus.187 Due to its complexity, climate change incurs a significant 

risk of policy-makers missing relevant data, ignoring signs, and taking insufficient action.188 

Firms try to take advantage of this bounded awareness of policy-makers by lobbying for their 

vested interests, for instance by selectively providing information that supports these 

interests. From 2000 to 2016, lobbying expenditure on climate-related legislation in the U.S. 

                                                 
182 See (Gneezy & Rustichini, 2000). 
183 See (Werfel, 2017). 
184 See (J. E. Stiglitz, 2009), p. 35-37; examples of proposed inability e.g. (Max H Bazerman & Watkins, 

2004) arguing that the terrorist attacks of 09/11 could have only happened due to a bounded response of the 

government to available information. 
185 See (Sunstein, 2013a, 2013b; Tullock et al., 2002). 
186 See (Max H. Bazerman, 2006; Max H Bazerman & Chugh, 2006; Max H Bazerman & Sezer, 2016). 
187 The best-known demonstration of this constraint is an experiment in which an audience  is asked to count 

the number of passes in a basketball game. After the game, most participants are shown to have missed a 

person with a gorilla costume walking through the scene, as they were so focused on counting passes, see 

(Simons & Chabris, 1999). 
188 See (Max H. Bazerman, 2006). 
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added up to over $2 billion, or 3.9% of the total spending on lobbying.189 It is noteworthy 

that lobbying on behalf of fossil fuels outpaced renewable lobbying 10:1 in terms of 

spending.190 

Lobbying also relates to the second dimension of government failure, termed regulatory 

capture. This failure has a bearing on the question of why efficient carbon prices are 

politically unacceptable, while the corresponding mitigation targets are acceptable. As seen 

during the design phase of the European Union Emissions Trading System (EU ETS), a 

significant share of emitting installations succeeded in receiving more emission allowances 

than they needed, undermining the environmental stringency of the entire system.191 The 

phenomenon of polluters shaping climate policy is evident across a majority of 

jurisdictions.192 That the limited number of large emitters facing major and immediate 

regulatory costs will rally more effectively than the population at large, which can only 

expect minor benefits over the long term, might explain this phenomenon.193 

Besides these cognitive and political constraints, organizational flaws further limit welfare-

optimal policy-making.194 Governments have internal hierarchies that generate contractual 

hazards between layers. As a result, rational behavior on an individual level does not 

necessarily eventuate in collective rationality,195 as pork-barrel politics in the context of 

climate change shows.196 And finally, governments may simply lack the human and financial 

capacity needed to implement first-best policy options.197 Faced with investments or staffing 

needs that exceed available budgets, policy-makers may opt for less efficient policy 

alternatives instead. 

                                                 
189 See (Brulle, 2018). 
190 See also (Delmas, Lim, & Nairn-Birch, 2016) for an analysis of corporate lobbying on climate change 

between 2006-2009. 
191 See (Hepburn, 2010). 
192 See (Hughes & Urpelainen, 2015). 
193 See (Olson, 1965). 
194 See (Williamson, 2000).  
195 See (Heckman, 2001; Kirman, 1992). 
196 See (Helm, 2010). 
197 For a discussion of such capacity constraints in the context of carbon pricing, see (Bell, 2003). 
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2.3 Carbon Pricing: From Efficiency to Equity 

In addition to economic efficiency, distributional effects matter.198 If policy-makers drive the 

implementation of climate change mitigation to achieve deep decarbonization, redistribution 

of wealth will become a major challenge.199 This section describes inequitable market 

outcomes, caused by climate policy, and a potential abatement of such outcomes through 

carbon pricing with carbon dividends.200 

Subsidies for electric vehicles are an example of how climate policies can be equal and 

inequitable at the same time. Governments around the globe grant incentives such as tax 

credits to all buyers of EVs to lower upfront costs. Still, the ability to take advantage of these 

subsidies is conditional on the financial capacity to purchase an EV in the first place. 

Considering a base price of $50k+ for a Tesla Model 3 in the U.S., the financial hurdle 

immediately excludes a significant part of the population, resulting in an inequitable 

outcome. In other words, tax revenue from lower-income populations is effectively 

subsidizing the ability of households in a wealthier tax bracket to afford electric vehicles with 

only a very modest effect – at the margin between both taxpayer groups – of enabling lower-

income households to afford EVs.201 

As with subsidies, carbon pricing may also foster distributional effects and inequity. A 

sufficiently high price on carbon emissions is essential to act efficiently. Unfortunately, 

carbon pricing on its own tends to act regressively: Low-income households are hit relatively 

harder than high-income households, as they spend a relatively larger portion of income on 

products with a high carbon footprint.202 However, unlike alternative policy options, pricing 

carbon has the advantage that it generates government income, through tax payments or 

auction proceeds of emission certificates. These revenues can be used to reduce fiscal 

deficits, spent for dedicated purposes like R&D subsidies, or used to mitigate distributional 

effects on affected households.203  

                                                 
198 Under certain conditions, the problem of efficiency and distribution can be separated in welfare 

economics, see (Varian, 1987). 
199 See (Büchs et al., 2011; Fullerton, 2011; Hirth & Ueckerdt, 2013). 
200 Definition: Carbon dividends are the redistribution of revenues generated by the carbon pricing, see 

(Climate Leadership Council, 2018). 
201 See (Borenstein & Davis, 2016 ). 
202 See (Kosonen, 2012). 
203 See  (Jenkins & Karplus, 2017; Klenert et al., 2018). 
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The option to mitigate distributional effects by redistributing carbon pricing revenues has 

been finding increasing support in the current debate. An equally distributed carbon dividend 

might reduce the regressive effect of carbon pricing and even act as a progressive policy in 

the short run, as rich people face higher payments than poor people.204 

Estimates for the U.S. show that a carbon price of $50/tCO2 could yield a carbon dividend of 

$413 per capita and year. Subtracting the cost increase from the consumption of carbon-

containing goods, this dividend payment increases the expendable income of the average 

person in the lowest income decile by 1.77%. In the decile with the highest income, 

expendable income would decline by 0.91%. Overall, 84% of people in the bottom half of 

the income distribution would be better off.205 

The ability of carbon pricing with dividends to reduce social inequity would grow with higher 

carbon prices. Using the same model, and assuming a uniform price response of al l 

households, a carbon price of $230/tCO2 would yield dividends worth $2,237 per capita and 

year. In the bottom income decile, the dividend would offset the cost rise in consumption of 

$866, and increase expendable income by 14%. The average person in the top income decile 

would face a cost increase of $4,738 and lose 9% of expendable income. Overall, for the 

bottom six deciles, the dividend would offset the burden of the carbon price with an increase 

in welfare.206 

 

 

 

 

                                                 
204 See (Climate Leadership Council, 2018). 
205 See (Fremstad & Paul, 2017b). 
206 See (Fremstad & Paul, 2017a). 
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2.4 Policy Recommendations  

The ability of carbon pricing to achieve sufficient emission reductions at the margin has been 

sufficiently established.207 Our review of three failures – conventional market failure, failure 

of human behavior, and government failure – underlines the need for complementary policies 

to limit global climate change. These complementary policies include supportive policies 

with greater transformational effectiveness, as well as restrictive policies with a greater target 

effectiveness. 

However, as the current debate moves in the direction of focusing on such complementary 

policies, carbon pricing is at risk of being prematurely relegated to a very limited role in the 

policy mix. Therefore, it is important to distinguish areas that actually require complementary 

policies from areas where complementary policies incur serious risk of static or dynamic 

inefficiencies, including, in particular, the promotion of dead-end technologies. In addition 

to picking wrong winners, such a focus on directed policies would also sacrifice the 

availability of those technology options which are not favored by support policies, whereas 

carbon pricing would create a technology-neutral incentive for all mitigation options.208 

Going forward, the key challenge will be to overcome political and other constraints that 

currently prevent the introduction of efficient carbon pricing levels. Therefore, future 

research should support a shift to carbon pricing at the required level through (1) 

collaboration, (2) stepwise actions, (3) reduced complexity, and (4) the right framing. 

1) Collaborative. The consequences of climate change create a powerful incentive for 

sectors such as finance, insurances, and agriculture to engage in mitigation.209 

Recent coal divestments of insurance companies and pension funds underline that 

potential.210  

2) Incremental. Although researchers highlight the necessity to tackle the challenge 

rather sooner than later to avoid high costs in the long run,211 humans stick to habits 

                                                 
207 See (Grubb et al., 2014) for a detailed summary that carbon pricing should be used at the profitability 

threshold of the marginal abatement cost curve. Marginal abatement cost curves present options for emission 

reduction and their respective potential, sorted by abatement cost.  
208 See (Acemoğlu et al., 2016; Fried, 2018) for how pricing can trigger innovation. 
209 See (Newell & Paterson, 1998). 
210 See (Carrington, 2018). 
211 See (Bertram, Luderer, et al., 2015; Johnson et al., 2015). 
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and dislike rapid change.212 Therefore, realistic long-term strategies with stepwise 

action to decarbonize our society are needed, instead of aspirations for radical 

change.213 Important, however, such incremental action has to be started quickly; 

otherwise, we lock ourselves into a future need for radical or risky strategies, such 

as climate engineering.214 

3) Simple. Policy-makers are no climate scientists. A timeline to reach net-zero 

emissions is much easier to understand than arguments based on remaining 

cumulative emission budgets, along scenarios such as the four representative 

concentration pathways of the Intergovernmental Panel on Climate Change 

(IPCC).215 

4) Attractive. Policies will not stop people from certain types of conduct.216 

Nonetheless, the boundedness of human rationality is not only a challenge but also 

an opportunity for crowding in people. Since most people care about the climate,217 

a different framing could lower efficient price levels. Economists have 

demonstrated the power of nudging.218 In practice, efforts to lever this tool have just 

begun.219 

Besides these four principles to overcome political constraints and approach efficient carbon 

pricing levels, policy-makers should recognize the opportunity to mitigate distributional 

effects through carbon pricing plus carbon dividends as highlighted in Section 3. Yet, it 

appears questionable whether the progressive effect will persist in the long run. Low-income 

households have far fewer options to reduce their carbon footprint compared to high-income 

households. Low-income households are more likely tenants, and the upfront cost of energy-

efficient devices or vehicles can be a major obstacle for them to reduce their carbon footprint. 

In addition, only high-income households are able to benefit from some incentives to reduce 

their carbon footprint, for instance, support for installing rooftop PV, improving thermal 

                                                 
212 E.g. resistance to the introduction of a speed limit of 100km/h on country roads in Germany (Spiegel, 

1971). 
213 See (Jordan & Matt, 2014; Meckling, Kelsey, Biber, & Zysman, 2015; Pahle et al., 2018). 
214 Note: In past extreme situations, societies were able to undergo very radical transformation processes  – 

indeed even demanded them. However, revolutions are typically accompanied by massive risk and sacrifice, 

see e.g. China during the 20th century, (Rummel, 1991). 
215 See (Sunstein, 2013a) on the importance of simplicity in policy-making. 
216 E.g. people continued to consume alcohol at scale during Prohibition, see (Miron & Zwiebel, 1991). 
217 See (Steg, 2018; Van der Linden, Maibach, & Leiserowitz, 2015).  
218 See (Dean, 2018), (Houde & Aldy, 2017) assess the effect of energy efficiency labels, (Sunstein & Reisch, 

2014) assess the effectiveness of green default rules.  
219 See  (Lanz, Wurlod, Panzone, & Swanson, 2018) information about product embodied carbon emissions 

to trigger voluntary substitution; see (Times, 2018) for the proposed initiative in Denmark. 
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insulation, or acquiring an EV. Therefore, more research is needed to understand the long-

term implications of carbon pricing on the carbon footprint by income level.  

Throughout history, taxation has been the cause of popular rebellions (e.g. the Protestant 

Reformation, and the Boston Tea Party).220 And yet, the protests of the “Yellow Vests” in 

France in late 2018 and early 2019, which were directed, inter alia, against rate hikes for fuel 

taxes, underline that policy-makers still struggle to understand (and prevent) unintended 

reactions due to perceived social injustices.221 As argued in this paper, a well-understood mix 

of policies is needed, rather sooner than later, to prevent climate change – the greatest market 

failure ever – from also becoming the greatest human and government failure. 

                                                 
220 See (Burg, 2004) for a chronology of tax caused riots through history. 
221 See (J. E. Stiglitz, 2019). 
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3 Essay II – Fuel-switching and Deep Decarbonization 

by Christian Stoll 

Abstract 

Fuel-switching is inevitable to achieve deep decarbonization. Humanity has used 

approximately two-thirds of the carbon budget compatible with the goal to limit global 

warming to 2 °C. This has, inter alia, contributed to growing opposition against the use of 

coal, prompting an increasing number of countries to announce coal phase-out mandates in 

the power sector. Advocates of coal phase-outs highlight the expected climate benefits of 

fuel-switching from coal to gas. However, a narrow focus on coal and gas generation 

resources ignores advancements in low-carbon technologies. I present a simple model to find 

the least-cost approach to achieve committed climate targets, through fuel-switching in the 

power sector. A case-study, drawing on the example of Germany, reveals counter-intuitive 

results that go against conventional assumptions about the role of coal. The findings suggest 

that, when accounting for stranded assets, a decarbonization pathway that is based on a 

gradual transition to renewable energy and initially retains coal generating assets turns out to 

be less expensive than a strict coal phase-out. 
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3.1 Introduction 

Humanity has used up two-thirds of the carbon emission budget compatible with the goal of 

limiting global warming to 2 °C.222 The global mean temperature has increased by 0.9 °C, 

and out of the last twenty years, eighteen were among the warmest since 1880.223 As 

emissions continue to rise, limiting global warming below 2 °C is widely considered to 

require substantial policy intervention. As a result, 195 countries agreed to take respective 

actions in 2015 in Paris.224 

To reduce carbon emissions, economic theory suggests the use of carbon pricing225 as the 

most cost-efficient policy instrument.226 From a welfare perspective, carbon pricing, in the 

form of a carbon tax or cap-and-trade mechanism, reduces emissions at the lowest cost.227 

However, in practice, policy-makers increasingly resort to phase-out mandates to accomplish 

committed emission reductions.228 As climate policy research focuses on carbon pricing as 

the first-best option, research into the effects and design of phase-out mandates has lagged 

behind. 

To decarbonize the power sector, the public debate has increasingly focused on phasing out 

coal power plants. Promoters of coal phase-outs highlight the expected climate benefits of 

fuel-switching from coal to gas. For every year of coal displacement, fuel-switching to gas 

adds 1.4 to 2.4 years until depletion to the carbon budget, as gas combustion emits less than 

half the CO2 of coal.229 Therefore, gas may act as a bridge-fuel until zero-emission 

technologies are available at scale.230 

                                                 
222 We have used up 1,890 GtCO2-eq of 2,900 GtCO2-eq that preserve a 66% probability to limit global 

warming to 2 °C above pre-industrial time, which refers to the average temperature between 1850 and 1900, 

see (IPCC, 2013), p. 27; see (William D Nordhaus, 1977) on the 2 °C bound, which is commonly used as the 

upper limit in order to avoid the worst consequences of climate change.  
223 See (GISTEMP, 2018; Hansen et al., 2010). 
224 See COP21 Paris Agreement (UNFCCC, 2015a). 
225 Definition: “carbon pricing refers to initiatives that put an explicit price on greenhouse gas emissions, i.e. 

a price expressed as a value per ton of carbon dioxide equivalent (tCO2e)”, see (Worldbank, 2017). 
226 See (J. Stiglitz et al., 2017). 
227 See (Goulder & Schein, 2013). 
228 The poster example is the ban of inefficient light bulbs in the residential sector, see (Tonzani, 2009). In 

the transport sector, banning cars from inner cities has been under discussion, see (Möhner, 2018), and there 

is a growing number of coal phase-out announcements in the power sector: e.g. France (by 2022), Sweden 

(by 2022), Italy (by 2025), UK (by 2025), Austria (by 2025), Finland (by 2030), Netherlands (by 2030) and 

Portugal (by 2030), see (Powering Past Coal Alliance, 2018). 
229 See (Wilson & Staffell, 2018). 
230 See (Kerr, 2010; Levi, 2013; X. Zhang et al., 2016). 
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Research has suggested that phase-outs are politically more feasible than carbon pricing at 

sufficiently high levels,231 and highlighted their ability to destroy existing structures while 

creating space for innovation.232 Phase-out policies are touted as transparent, simple, and 

influential in creating anti-fossil norms.233 An example is the nuclear phase-out in Germany, 

which has been credited with triggering more R&D spending on renewable resources than 

the Renewable Energy Act (EEG).234 

And yet, a view that focuses on coal and gas appears too narrow-minded, as it ignores central 

factors required for answering the question of which fuel-switching strategy is cost-optimal 

in order to remain on a politically agreed decarbonization pathway. In particular, zero-carbon 

resources inevitably become necessary at a certain point to remain on the decarbonization 

pathway, yet existing infrastructure carries the risk of long-term lock-in of high-carbon 

technologies.235 This potential lock-in has its roots in power plants that continue operations 

as they become stranded.236 

Previous academic studies highlight the importance to consider a portfolio of low-carbon 

generation technologies to decarbonize the energy sector in a cost-effective manner,237 and 

many sophisticated modeling studies have simulated future power system compositions. 

However, these simulations typically target single aspects instead of capturing the wider 

context of deep decarbonization,238 and to my knowledge, none of the previous studies that 

capture the overarching decarbonization challenge has highlighted the effects of asset 

stranding.239 

I present a simple model to find the least-cost resource mix, which is consistent with the 

committed climate targets. Firstly, I explain the intuition and logic of the model. This 

includes an explanation of how a capacity planner can determine the resource mix in order 

                                                 
231 See (Bertram, Luderer, et al., 2015). 
232 See (Geels et al., 2017). 
233 See (Green, 2018). 
234 See (Rogge & Johnstone, 2017). 
235 See (Bertram, Johnson, et al., 2015; Seto et al., 2016; Unruh, 2000). 
236 This ‘asset stranding’ would be accompanied by devastating wealth loss, distributional impacts, see 

(Mercure et al., 2018), and potential destabilized the financial system, see (ESRB, 2016). ‘Stranded assets’ 

are defined as “assets that have suffered from unanticipated or premature write-downs, devaluations or 

conversion to liabilities”, see (Caldecott et al., 2014), p. 2. 
237 See (Sepulveda et al., 2018). 
238 E.g. assessments of the future development of coal-fired power generation, see (Aurora Energy Research, 

2018). 
239 See (Samadi, Fischedick, & Lechtenböhmer, 2018) for a comparison of recent studies on decarbonization 

scenarios in Germany. 
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to cover load demand at least-cost, how climate targets constrain the task, and how carbon 

constraints switch the roles of fuel types. Secondly, I mathematically formulate the problem 

so as to numerically determine the least-cost resource mixes which satisfy distinct targets 

along the decarbonization pathway. Lastly, I solve the model, drawing on the example of 

Germany. 

The model I present has numerous limitations in comparison to complex integrated modeling 

work, which is typically used to analyze such scenarios. Nevertheless, the results that my 

model provides can offer thought-provoking impulse on the impact of stranded assets and 

how those can be part of a cost-effective decarbonization pathway. These impulses may 

nudge policy-makers to consider alternative options and may help them to see the 

challenges in the broader context. Such an expanded mental horizon can be particularly 

valuable in jurisdictions, which still debate publicly the narrow question of how to reduce 

power generation from coal generation resources instead of targeting the overarching 

challenge. 

Still, phasing out coal will more than likely trigger the deployment of additional gas 

resources. In practice, a gas power plant commissioned today would not be in operation prior 

to 2025, and by 2050, the last emitting resource already has to leave the market if the carbon 

budget is to be met. Given their useful economic life of 35 years, additional gas resources 

would therefore inevitably become stranded. 

What is more, there is considerable uncertainty about the life-cycle emission factors of gas. 

Combustion is only the tip of the iceberg, and GHG emissions along the supply chain vary, 

depending on fuel type, origin, and destination.240 Novel insights on pipeline leakage241 and 

flaring at shale production sites242 suggest much higher carbon emissions from gas than 

commonly assumed; climate benefits of gas over coal diminish, or may even reverse in some 

cases. This aspect has to be clarified prior to assessing the technical feasibility of coal phase-

outs,243 and prior to building new LNG infrastructure.244 

                                                 
240 For instance, the carbon intensity of gas depends on extraction (conventional vs fracking), processing 

(LNG vs w/o liquefaction), storage, transmission (pipeline vs ship vs distance) and distribution; similar of 

coal (e.g. underground vs surface extraction), and oil as shown by (Masnadi et al., 2018). 
241 E.g. (Alvarez et al., 2018) find for the U.S. that CH4 leakage along the gas supply chain causes comparable 

warming as the emissions from combustion. 
242 See (Elvidge et al., 2018). 
243 See, e.g., (Aurora Energy Research, 2018). 
244 E.g. Subsidized construction of LNG terminals in Europe, see (Bloomberg, 2018). 
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The case-study, based on the example of Germany, reveals counter-intuitive results that go 

against conventional opinions on the role of coal. The findings suggest that, when considering 

stranded assets, a decarbonization pathway that involves the expansion of renewables and 

includes a continued, but gradually declining role for coal, turns out to be less expensive than 

a strict coal phase-out. Committed decarbonization targets can still be achieved by adding 

only minimal new gas capacity. It is more cost-effective to initially keep existing coal 

resources in the market, and expand zero-carbon technologies. The costs in a scenario with a 

politically forced coal phase-out are significantly higher, as additional gas resources have to 

fill the supply gap. 

The paper is organized as follows: Section 3.2 provides the intuition and logic of the model. 

Section 3.3 presents the model. Section 3.4 quantifies the effects, drawing on the example of 

Germany. Section 3.5 concludes. 

3.2 Intuition and Logic of the Model 

Fuel-switching in the power sector is inevitable to achieve deep decarbonization. Section 3.2 

introduces the impact of decarbonization on capacity expansion modeling. In the first sub-

section, I explain the objective of capacity expansion modeling. In the second sub-section, I 

explain the implications of climate targets for capacity expansion modeling. In the last part, 

I explain the effects of decarbonization on the roles of fuel types. 

3.2.1 Capacity Expansion Modeling 

The classic objective of capacity expansion modeling in the power sector is to minimize the 

total cost of power generation. The total costs of power generation can be divided into fixed 

costs and variable costs. Fixed costs are largely determined by the initial investment cost, 

while variable costs are largely determined by the fuel costs of the respective generation 

technology. The initial investment costs, which are the sum of all costs to build a power plant 

can be annualized based on the plant life-time and a respective interest rate. By adding the 
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annual variable costs of power generation, one derives the total annual cost of power 

generation.245 

For comparability reasons, the annualized fixed costs can be divided by the generation 

capacity to determine an amount per unit of generation capacity (e.g., in U.S. dollar per 

megawatt ($/MW)). The annual variable costs of power generation depend on the degree of 

capacity utilization. The capacity utilization is measured by a so-called capacity factor (CF), 

which ranges from zero to one. Zero represents no operation, while one denotes full-load 

operations over 8,760 hours throughout the year. By multiplying the duration of operations 

(in hours (h)) with the variable costs per unit of generated electricity (e.g. in U.S. dollar per 

megawatt-hour ($/MWh)), one derives the total variable costs per unit at a certain capacity 

utilization. Adding the annualized fixed costs per unit reveals the total cost per unit of 

generated electricity at the respective capacity utilization (e.g. in $/MW). 

Based on the technology-specific cost functions, a central planner seeks to find the least-cost 

resource mix to meet given load demand. The load demand to be covered can be displayed 

as a load duration curve (LDC), that is, the annual demand sorted by size, starting with the 

hour of the highest load.  

If the planner knows the LDC and the CF-dependent costs by technology, he or she can find 

the least-cost capacity by resource technology that is required to cover the load demand. The 

least-cost capacity mix typically consists of resource technologies with different cost 

functions. For instance, resource technologies with low fixed but high variable cost may be 

best suited to cover load peaks, while resource technologies with high fixed and low variable 

are superior to cover based load at high capacity utilization. The capacity planner can find 

the least-cost resource mix by mapping the cheapest resource technology for each CF to the 

LDC. 

To illustrate the solution process, for now, assume there are only two resource technologies 

available. The first one is characterized by high fixed and low variable costs of power 

generation, while the second technology is characterized by low fixed and high variable cost 

of power generation. An example of two generation technologies with such a relative cost 

relationship can be found in coal and gas generation resources. Typically, the fixed costs of 

coal power plants surpass the fixed costs of gas power plants on a per-unit basis. Furthermore, 

                                                 
245 See (Stoft, 2002). 
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the variable costs of gas-fired power generation typically surpass the variable costs of coal-

fired power generation. Consequently, gas-fired power plants may provide cheaper electricity 

at low capacity utilization. Yet, at a certain CF, the lower variable costs of coal may offset 

the fixed costs. A respective constellation is charted in the upper chart of Figure 12. The 

interception point reveals the capacity utilization, where the annualized total cost per unit of 

generated electricity of both technologies are equal.  

The lower chart in Figure 12 illustrates a load duration curve. The load duration curve 

represents the hourly load demand during one year, starting with the hour of the highest load 

and sorted in descending order. If one transfers the interception point of the cost functions in 

the upper chart down to the load duration curve, one finds the cost-optimal total capacity 

level of both technologies. Deploying coal resources over this capacity and gas resources 

over maximum load minus optimal coal capacity results in the least-cost resource mix to 

cover the respective load. As illustrated in the lower chart of Figure 12 by the dashed 

horizontal line, the least-cost resource capacity by technology can be read off the y-axis of 

the LDC.246 

 

                                                 
246 Note: In the case of more than two technologies only the intersection points of the cost curves at the upper 

limit of the trapezoid among x-axis, y-axis and cost curves are relevant. 
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Figure 12: Stylized power system with two technologies.247 

The illustrated capacity planning model is known as the ‘Screening curve method’ in energy 

economics research.248 The Screening curve method is used to find first-order estimates of 

the least-cost resource mix to service a given load, as it ignores factors like operational 

constraints249 and existing capacity.250 

3.2.2 Capacity Expansion Modeling with Carbon Constraints 

Keeping global warming below 2 °C requires reducing emissions in the power sector. The 

required emission reductions define an annual carbon budget, which represents the upper 

                                                 
247 Own illustration. 
248 The method was originally proposed by (Phillips, Jenkin, Pritchard, & Rybicki, 1969). 
249 See (Batlle & Rodilla, 2013; De Sisternes, 2013). 
250 See (Güner, 2018; T. Zhang & Baldick, 2017). 
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limit of cumulative emissions over a defined time period. This sub-section explains how a 

carbon budget constrains the central planner when determining the least-cost resource mix. 

Economic theory suggests carbon pricing251 as the most cost-effective policy instrument to 

reduce carbon emissions.252 Putting a price on carbon emissions, for instance through a 

carbon tax or cap-and-trade mechanism, is found to reduce emissions at a lower cost to 

society, that is, from an aggregate welfare perspective, than direct regulation such as 

performance standards or technology mandates.253 In theory, taxes254 and tradable permits255 

can achieve equal results, and the preference for one or the other policy instrument ultimately 

depends on the curving of the functions of the marginal damage and benefit of emissions 

around the optimal quantity level.256 

In the optimization model, a shrinking carbon budget becomes binding at one point in time 

and restricts the potential combinations of resource technologies. When solving the model, a 

binding constraint correlates with a positive shadow price, that is, the marginal cost per unit 

of carbon in the optimal solution. This shadow price has the exact same effect as a carbon 

tax at a price level to meet exactly the carbon budget constraint. Consequently, the carbon 

constraint alters the cost of power generation, in line with the carbon intensity of each 

resource technology.257 As a result, low-carbon technologies become increasingly 

competitive. 

3.2.3 Fuel-switching Under Carbon Constraints 

The challenge to limit global warming appears to be more than a capacity expansion problem. 

The challenge also includes capacity dispatch and replacement, as limiting global warming 

below 2 °C requires achieving carbon neutrality during the second half of the century.258 

Thereby, a rising carbon price can switch the cost-sequence among resource technologies 

                                                 
251 Definition: “carbon pricing refers to initiatives that put an explicit price on greenhouse gas emissions, i.e. 

a price expressed as a value per ton of carbon dioxide equivalent (tCO2e)” (Worldbank, 2017). 
252 See (J. Stiglitz et al., 2017). 
253 See (Goulder & Schein, 2013). 
254 See (Pigou, 1920). 
255 See (Coase, 1960). 
256 Based on (Weitzman, 1974), a large body of literature discusses criteria to rank taxes over cap and trade, 

see e.g. (Karp & Traeger, 2018). 
257 An analysis of regional differences (USA, China, and Germany) can be found in Appendix 1. 
258 See (UNFCCC, 2015a). 
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with dissimilar carbon intensity. This fuel-switching can refer to a complete switch of the 

cost sequence (i.e. across the entire LDC) or a partial switch for certain CFs. 

Firstly, assume a greenfield decision, as is the case in a capacity expansion problem. In this 

case, which involves a long-term perspective, investment cost matters. The introduction of a 

price on carbon alters the variable cost of generation, and a rising carbon price will make 

low-carbon technologies increasingly competitive. For instance, coal power plants require an 

increasing number of full-load hours to offset the lower fixed cost of gas resources. At a 

certain carbon price, gas resources become cheaper than coal at any capacity utilization. The 

upper left chart of Figure 13 depicts the constellation when gas resources become cheaper at 

any CF. 

Secondly, assume a brownfield decision with existing capacity, as is the case in a short-run 

dispatch decision. In this case, only the marginal cost of power generation matters. The sorted 

marginal cost of resource technologies – called merit order – determines which resources are 

utilized to cover load demand. The upper right chart of Figure 13 depicts the constellation 

where coal and gas resources break-even for any capacity utilization. In this case, the fuel-

switching potential is limited by the idle capacity of low carbon resources and the current 

amount of power generated by high carbon resources.259  

Thirdly, assume a combination of the two previous cases, as is the case in a capacity 

replacement decision. As existing units fully depreciate prior to leaving the market, 

investment cost only matters for candidate units.260 Still, new gas resources become 

competitive to existing coal resources at a certain carbon price, once the lower carbon 

intensity of gas (and the relative advantage under a carbon price) offsets higher investment 

costs. The lower left chart of Figure 13 depicts a constellation where new gas resources break 

even with existing coal at full capacity utilization. With further rise in the carbon price, it 

becomes increasingly attractive to replace existing high-carbon coal resources with low-

carbon gas resources. The lower right chart of Figure 13 depicts an intersection point at 10% 

capacity utilization. 

                                                 
259 In many countries, the current power generation from coal surpasses the idle gas capacity. Therefore,  the 

idle gas capacity can be seen as an upper limit of coal-to-gas switching in the short run, as it assumes ideal 

storage and transmission capacity. See Appendix 2 for an estimate of regional differences ( USA, China, and 

Germany). 
260 As fixed O&M costs are minor (~1% of the capital cost), I assume zero fixed cost for existing resources 

that are fully written-off, see (Güner, 2018; T. Zhang & Baldick, 2017); The term “candidate units” refers 

to potential new plants. 
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Figure 13: Coal-to-gas fuel-switching under carbon constraints.261 

 

                                                 
261 Own illustration; The cost functions and carbon intensities are based on German parameters in order to 

illustrate the relative scale; data sources: carbon emission factors from (UBA, 2017b); cost data from (IEA 

& NEA, 2015); calculation of annualized fixed cost based on overnight cost assuming 7% interest rate and 

a plant life-time of 30 years for gas and 40 years for coal-fired power plants in line with (IEA & NEA, 2015); 

equal split of natural gas in CCGT (Combined Cycle Gas Turbines) and OCGT (Open Cycle Gas Turbines) 

for Germany as argued in (Schill, Pahle, & Gambardella, 2017). 
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3.3 Model: Least-cost Power Generation with Carbon 

Constraints 

Section 3.3 provides the mathematical formulation of the model explained in Section 3.2.262 

The aim is to quantify the cost, timing, and scope of fuel-switching under carbon constraints. 

As explained in Section 2, the objective is to minimize the average cost of electricity, which 

is equal to minimizing total system cost (TC) for a given load demand. Thereby, TC consists 

of annualized investment cost (FC) and variable generation cost (VC). In mathematical 

formulation, the objective function can be expressed as: 

min 𝑇𝐶𝑎 =  ∑ 𝐹𝐶𝑖 𝑎 ∗ 𝑘𝑖 𝑎
𝑛
𝑖=1 + ∑ ∑ 𝑉𝐶𝑖 𝑎 ∗ 𝑒𝑖 𝑗 𝑎

𝑚
𝑗=1

𝑛
𝑖=1 , (1) 

where the two decision variables ki a denotes resource capacity and ei j a produced energy by 

technology i, in the hour j of the year a: 

i = 1, …, n (2) 

a = {2020; 2030; 2040; 2050} (3) 

j = 1, …, 8760. (4) 

To incorporate the effect of existing infrastructure, I assume zero fixed cost for existing 

resources (i ∈ old).263 The cost sequence of resource technologies can be summarized as: 

VCi a < VC(i+1) a ∀ i, a  (5) 

FCi a > FC(i+1) a ∀ i ∉ old, a (6) 

FCi a > 0  ∀ i ∉ old, a (7) 

FCi a= 0  ∀ i ∈ old, a. (8) 

The total annual energy produced by technology i is determined by: 

                                                 
262 The mathematical formulation of the static cost optimization, considering existing units, is derived from 

formulations in previous studies, see (Levin & Zahavi, 1984; Murphy & Weiss, 1990). 
263 Fixed operation and maintenance costs are minor (~1% of capital costs), see (Güner, 2018; T. Zhang & 

Baldick, 2017). 
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∑ 𝑒𝑖 𝑗 𝑎𝑗 = ∫ 𝐿𝑎
−1 (𝑧) 𝑑𝑧

𝐷(𝑖+1) a

𝐷𝑖 𝑎
 ∀ i, a (9) 

with 𝐿𝑎
−1 (𝑧) being the inverse of the load duration curve in the year a , and Di a being the 

loading point. The loading point of a resource technology is determined by the sum of utilized 

capacities that come prior in the merit order:  

𝐷1 a = 0 ∀ i = 1, a  (10) 

𝐷𝑖 𝑎 = ∑ 𝑘𝑙 𝑎
𝑖−1
𝑙=1  ∀ i = 1, …, n + 1, a  (11) 

𝐷𝑛+1 𝑎 = 𝐿𝑎
𝑚, ∀ a  (12) 

where 𝐿𝑎
𝑚 represents peak load during the year a.  

The first constraint of the model is full coverage of price-inelastic demand at all times, which 

implies a respective capacity: 

∑ 𝑘𝑖 𝑎𝑖 ≥ 𝐿𝑎
𝑚 ∀ a. (13) 

To illustrate graphically how the first constraint limits the solution space, I again draw on the 

example of coal and gas resources. As illustrated in Figure 14, all combinations of coal and 

gas generation equal to or greater than demand fulfill the constraint. As the objective is to 

minimize cost, the optimal combination can be found on the demand constraint line. 
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Figure 14: Impact of the demand constraint on the solution space.264 

I expand the basic formulation of the model by adding a constraint that reflects an annual 

carbon emissions budget (Ba): 

∑ ∑ 𝑒𝑖 𝑗 𝑎 ∗ 𝐶𝑖 𝑎 ≤ 𝐵𝑎𝑗𝑖  ∀ a (14) 

where the total emissions are the product of generated energy eij multiplied by the 

technology-specific emission factor Ci a.  

Figure 15 illustrates the effect of a binding carbon constraint in two distinct cases: firstly, a 

carbon budget below the current emissions level, but achievable with a combination of coal 

and gas resources (Case I). Second, a carbon budget below the current emissions level that 

cannot be satisfied with any gas-coal-mix (Case II). 

                                                 
264 Source: Own illustration. 
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Figure 15: Impact of a tightening budget constraint on the solution space.265 

To obtain a permissible solution in Case II, a less carbon-intense technology is required. 

Hence, I introduce ‘clean power’ as a carbon-neutral technology. Examples for carbon-

neutral266 resources are nuclear, renewables like wind and solar, and fossils plus carbon 

capture and storage (CCS). By deploying such clean power resources, the residual load to be 

covered by coal and gas diminishes, as illustrated in Figure 16 by shifting the demand 

constraint down. 

                                                 
265 Source: Own illustration; note: The slope of the carbon budget constraint illustrates the carbon intensity 

of both fuel types. 
266 Note: “Carbon neutral” refers here to the emissions from power generation. This does not include life 

cycle emissions, which would include for instance emissions during construction or along the fuel supply 

chain. 
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Figure 16: Impact of clean power deployment on the demand constraint and solution space.267 

The third constraint captures that the installed capacity limits the maximum hourly load: 

𝑒𝑖 𝑗 𝑎 ≤ 𝑘𝑖 𝑎 ∗ 1 h, ∀ i, j, a (15) 

and a non-negativity constraint complements the model: 

𝑒𝑖 𝑗 𝑎 ≥ 0 ∀ i, j, a. (16) 

 

 

 

 

                                                 
267 Source: Own illustration. 
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3.4 Case-study: Fuel-switching and Deep Decarbonization in 

Germany 

To solve the model introduced in Section 3.3, I draw on the example of Germany. Germany 

is an example of a country with comparatively ambitious climate targets, as it is committed 

to a 40% reduction of GHG emissions by 2020, 55 % by 2030, 70 % by 2040, and 80-95 % 

by 2050, all compared to 1990 levels. Figure 17 charts this decarbonization pathway. 

 

Figure 17: Emissions by sector and German decarbonization targets.268 

3.4.1 Model Calibration 

This sub-section describes the data used to calibrate the model. This includes cost, load, and 

carbon emission data. 

Table 2 depicts annualized fixed and variable costs of lignite, hard coal and gas, based on 

official statistical data obtained from (IEA & NEA, 2015). Annualized fixed costs are based 

on overnight costs, which are the sum of all costs to build a respective power plant. These 

                                                 
268 Own illustration; data source: (BUMB, 2017; UBA, 2017b). 
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costs can be annualized based on the plant life-time and the respective interest rate. Table 2 

further depicts the actual capacity of existing resources. 

 

Table 2: Cost data for generation resources in Germany.269 

To configure the representative zero-carbon technology clean power, three low-carbon 

technologies appear suitable for deployment at scale: nuclear, renewables plus storage,270 

fossil resources with CCS, or any combination of those.271 Due to high uncertainty about the 

future costs and technological feasibility of each resource technology, combined with the 

unpredictability of innovation, I use four cost scenarios: First, I assess the effects of coal-to-

gas fuel-switching, assuming no competitive clean power alternative is available. Second, 

clean power generation is not competitive with existing coal and gas resources in the near-

term, but available. Third, clean power generation is close to becoming competitive in the 

near-term.272 Finally, I consider a politically forced coal phase-out in 2030.  

The cost of clean power in Scenario 2-3 are charted in Figure 18. Figure 18 also charts 

screening curves of wind and solar to underline the appropriateness of the two levels of cost 

of clean power. Candidate wind and solar resources are already competitive with existing 

fossil technologies today. However, their generation patterns follow intermittent natural 

conditions and provide power within a limited capacity factor range.273 Previous modeling 

work shows a cost-optimal ratio of the storage capacity to generation capacity of 2.61 in a 

                                                 
269 Own illustration; data sources: (IEA & NEA, 2015); cost of natural gas as weighted cost of CCGT 

(Combined Cycle Gas Turbines) and OCGT (Open Cycle Gas Turbines) assuming equal capacity shares in 

line with (Schill et al., 2017) due to missing data granularity in (UBA, 2017c); calculation of annualized 

fixed cost based on overnight cost assuming 7% interest rate for fossils and a plant life -time of 30 years for 

gas and 40 years for coal respectively, in line with (IEA & NEA, 2015). 
270 The increasing number of PPAs for renewables-plus-storage in several U.S. States manifest the 

assumption to consider these complements as one technology; see (Miller & Carriveau, 2018) for solar-plus-

storage PPAs. 
271 See (Jenkins & Thernstrom, 2017). 
272 Note: Lower costs are not considered, as the model targets the residual fossil load share and competitive 

clean power resources would have been deployed already. 
273 CF of solar PV: minimum 0.13 (residential), maximum 0.34 (utility scale); CF of wind: minimum 0.38 

onshore, maximum 0.55 offshore; see (Lazard, 2018a). 

Technology
Overnight cost 

[USD/kW]

Annualized fixed 

costs [USD/kWa]

Variable costs

[USD/MWh]

Actual capacity 

[GW]

Lignite 2,054 154 43 21.2

Hard coal 1,643 123 48 25.0

CCGT 974 78 84 14.8

OCGT 548 44 126 14.8
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system with 100% renewable power supply from intermitting resources.274 In 2018, adding 

the respective cost of storage to the cost functions of wind and solar results in clean 

dispatchable resources, with costs in between the high and low-cost scenarios of clean 

power.275 

 

Figure 18: Screening curves of existing fossil and candidate low-carbon technologies.276 

The hourly load data originate from (ENTSO-E, 2017). As scenario forecasts of electricity 

consumption in 2050 vary in a narrow range and show no clear direction compared to current 

consumption, I assume the load duration curve to remain constant.277 Assuming that existing 

zero-carbon resources stay in the market, I focus on the residual load demand, which has to 

                                                 
274 See (Jacobson, Delucchi, Cameron, & Frew, 2015). 
275 Utility-scale lithium batteries start at $251/kWy, see (Lazard, 2018b). 
276 Own illustration; data source: (IEA & NEA, 2015); cost of natural gas as weighted cost of CCGT 

(Combined Cycle Gas Turbines) and OCGT (Open Cycle Gas Turbines) assuming equal capacity shares in 

line with (Schill et al., 2017) due to missing data granularity in (UBA, 2017c); calculation of annualized 

fixed cost based on overnight cost assuming 7% interest rate for fossils and 5% for renewables, as well as a 

plant life-time of 30 years for gas and 40 years for coal, and 25 years for renewables, in line with (IEA & 

NEA, 2015). 
277 See (BMWi, 2014; Frauenhofer ISE, 2013; ÖkoInstitut, 2014). 
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be covered by fossil resources, as it is the part that needs to be decarbonized.278 To determine 

the residual load, I deduct all non-fossil generation from the load data. This includes the share 

of net power generation from renewable resources of 38.3 % in 2017.279 The resulting residual 

load duration curve is depicted in Figure 19. 

 

Figure 19: German residual fossil load duration curve.280 

In the power sector, climate targets require a 61-62% reduction of CO2 emissions by 2030. 

By 2050, the German Climate Protection Plan aims for almost complete decarbonization of 

the power system.281 Figure 20 illustrates the specific decarbonization pathway of the power 

sector.  

                                                 
278 Note: I further assume that existing fossil resources remain available over the period under review, due 

to parts of the existing fossil generation resources, which have been commissioned recent ly, German fossil 

power plant fleet installations by capacity and commissioning year  in Appendix 6. 
279 See (ENTSO-E, 2017). 
280 Source: Own illustration; data source: (ENTSO-E, 2017); the load duration curve can be found in 

Appendix 3.  
281 See (BUMB, 2017); I use the lower limit of 95% in the case study. 
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Figure 20: German decarbonization targets in the power sector.282 

To calculate the carbon emissions of each resource technology, I use the emission factors of 

lignite, coal, and gas as stated by the German Federal Environmental Agency. The respective 

carbon emission factors are 1,151 g/kWh for lignite, 863 g/kWh for coal, and 391 g/kWh for 

gas.283 

3.4.2 Model Results 

Section 3.4.2 provides the numerical results of the model introduced in Section 3.3, using 

German parameters as described in the previous section.284 Section 3.4.2 is structured along 

the four scenarios introduced in Section 3.4.1. 

In the scenario without a clean power alternative, to achieve the 2020 target of 40% CO2 

emission reduction, a carbon price of $82/tCO2 is needed. Lignite-to-coal fuel-switching 

occurs at a carbon price of $18/tCO2 and $82/tCO2 is the threshold, where the cost sequence 

of existing lignite and gas generation resources switches. At $121/tCO2 the cost sequence of 

existing coal and gas switches, which is required to meet the 2030 target. For the 2040 target, 

                                                 
282 Own illustration; data sources: (BUMB, 2017; UBA, 2017a); note: The resulting carbon budgets to 

achieve the targets are 220 MtCO2 (2020), 143 MtCO2 (2030), 110 MtCO2 (2040) and 18 MtCO2 (2050). 
283 See (UBA, 2017b). 
284 The model is written in GAMS, using a Cplex solver; the model characteristics are summarized in 

Appendix 4; the source code is depicted in Appendix 5. 
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additional gas resources have to replace existing coal. At a carbon price of $165/tCO2, new 

gas replaces coal in a CF range of 0.33 to 1.00. However, the 2050 target cannot be achieved 

with 100% gas power generation. Figure 21 illustrates which resource technology serves 

residual fossil load between 2020 and 2050 at least cost. 

 

 

Figure 21: Least-cost decarbonization pathway (w/o a clean power alternative).285 

In a scenario with a low cost of clean power, a carbon price of $67/tCO2 is needed to achieve 

the 2020 target of 40% CO2 emission reduction. Lignite-to-coal fuel-switching occurs again 

at a carbon price of $18/tCO2, and at $67/tCO2, 1.8 GW of clean power resources become 

cost-effective. Achieving the 2030 target requires a carbon price of $73/tCO2 to expand clean 

power to 10.8 GW in order to push the remaining gas and parts of the lignite power generation 

out of the market. To meet the 2040 target, further lignite capacity has to exit. Expansion of 

clean power at a carbon price of $212/tCO2, after a lignite-to-gas switch at $82/tCO2 and a 

                                                 
285 Source: Own illustration. 

2020

-40%

2030

-61%

2040

-70%

2050

-95%

$82/tCO2

$121/tCO2

$165/tCO2

N/A
coal lignite gas

Capacity [GW] Generation [TWh] Cost [USD]

Clean Gas Coal Lignite Clean Gas Coal Lignite Total [bn] Total [per kWh]

2020 x 29.2 25.0 21.3 x 21.8 203.8 30.6 13.4 0.05

2030 x 29.5 25.0 0.8 x 166.0 90.2 0.0 21.8 0.08

2040 x 32.5 22.8 - x 235.8 20.4 - 25.9 0.10

2050 x N/A
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coal-to-gas at $121/tCO2, ensures achievement of the 2050 target. Figure 22 illustrates which 

resource technology serves residual fossil load between 2020 and 2050 at least cost. It is 

noteworthy that no additional gas capacity is required to meet the targets. 

 

 

 

Figure 22: Least-cost decarbonization pathway (low cost of clean power).286 

In the scenario with a high cost of clean power, lignite-to-coal and lignite-to-gas at $82/tCO2 

are needed. An emissions reduction of 61% occurs at 121/tCO2 through coal-to-gas fuel-

switching, and a carbon price of $153/tCO2 triggers an expansion of new gas by 0.3 GW. 

95% emission reduction can be achieved at a carbon price of $453/tCO2, with gas resources 

covering CF = [0.04-0.58] and clean power resources covering CF = [0.58-1.00]. Figure 23 

illustrates which resource technology serves residual fossil load between 2020 and 2050. 

Again, it is noteworthy that only minor additional gas capacity is required to meet the targets. 

                                                 
286 Source: Own illustration. 

$67/tCO2

2020

-40%

2030

-61%

2040

-70%

2050

-95%

$73/tCO2

$212/tCO2

$80/tCO2

lignite coal gas clean

Capacity [GW] Generation [TWh] Cost [USD]

Clean (l) Gas Coal Lignite Clean (l) Gas Coal Lignite Total Total [per kWh]

2020 1.8 7.2 25.0 21.3 15.6 0.5 197.8 42.3 13.1 0.05

2030 10.8 - 25.0 19.4 94.8 - 149.2 12.2 18.5 0.07

2040 15.0 - 25.0 15.2 130.8 - 119.8 5.6 21.0 0.08

2050 26.0 29.3 - - 209.4 46.8 - - 31.0 0.12
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Figure 23: Least-cost decarbonization pathway (high cost of clean power).287 

In the scenario with a politically forced coal phase-out in 2030, the results for 2020 and 2050 

do not change as depicted in Figure 24. However, in the interim, additional gas capacity is 

needed to fill the supply gap. Compared to a phase-out strategy, in a scenario with the 

availability of low-cost clean power resources, the phase-out increases annual system cost by 

$10 billion in 2040; by 2050, the annual additional costs total $7.5 billion. In a scenario with 

a high cost of clean power, the additional costs of a coal phase-out are $6.7 billion (by 2040) 

and $2.6 billion (by 2050). 

                                                 
287 Source: Own illustration. 
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-40%
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-70%
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-95%
$453/tCO2
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coal lignite gas clean

$82/tCO2

$121/tCO2

Capacity [GW] Generation [TWh] Cost [USD]

Clean (h) Gas Coal Lignite Clean (h) Gas Coal Lignite Total Total [per kWh]

2020 - 29.2 25.0 21.3 - 21.8 203.8 30.6 13.4 0.05

2030 - 29.5 25.0 0.8 - 166.0 90.2 0.0 21.8 0.08

2040 0.9 29.5 24.9 - 8.2 220.7 27.2 - 25.9 0.10

2050 26.0 29.3 - - 209.4 46.8 - - 44.0 0.17
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Figure 24: Least-cost decarbonization pathway (coal phase-out in 2030).288 

3.5 Conclusions 

This paper highlights the need for a broader focus on available technology options when 

decarbonizing the power sector, as opposed to narrow reliance on a coal phase-out mandate. 

The case study of Germany illustrates that a gradually declining operation of existing fossil 

resources can play an important role in achieving deep decarbonization at least-cost because 

it avoids new investment in lower-carbon, but still emitting gas generation.  

The model I present in order to find the least-cost fuel-switching sequence has numerous 

limitations compared to sophisticated integrated models, which are typically used to study 

such scenarios. My method ignores fixed unit expansion size, economies of scale in supply, 

the market power of generators, imports and exports, sector coupling, and cycling 

constraints. The method further omits transmission constraints and specific factors on a 

single power plant level. 

Nonetheless, the model results may provide thought-provoking impulse on the impact of 

stranded assets and how those can be part of a cost-effective decarbonization pathway. 

These impulses – supported by a coherent and comprehensible model – may nudge policy-

makers to think in the broader context. Such broader thinking can be particularly valuable 

in Germany and other countries, which currently debate the narrow question of how to reduce 

power generation from coal resources instead of grasping the wider context. 

                                                 
288 Source: Own illustration. 

Capacity [GW] Generation [TWh] Cost [USDbn]

Clean (l) Gas Coal Lignite Clean (l) Gas Coal Lignite Total

2020 1.8 7.2 25.0 21.3 15.6 0.5 197.8 42.3 13.1 0.05

2030 - 55.3 x x - 256.2 x x 28.5 0.11

2040 - 55.3 x x - 256.2 x x 28.5 0.11

2050 26.0 29.3 x x 209.4 46.8 x x 31.0 0.12

Capacity [GW] Generation [TWh] Cost [USDbn]

Clean (h) Gas Coal Lignite Clean (h) Gas Coal Lignite Total

2020 - 29.2 25.0 21.3 - 21.8 203.8 30.6 13.4 0.05

2030 - 55.3 x x - 256.2 x x 28.5 0.11

2040 - 55.3 x x - 256.2 x x 28.5 0.11

2050 26.0 29.3 x x 209.4 46.8 x x 44.0 0.17
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Still, phasing out coal will very likely trigger the deployment of additional gas-fired 

generation resources. In practice, a gas power plant, which is commissioned today will not 

be operational prior to 2025, and by the year 2050, the last emitting generation resource 

definitely has to stop operations and leave the market if the carbon budget is to be met. Given 

their useful economic life of 35 years, additional gas resources would therefore inevitably 

become stranded assets. 

What is more, there is considerable uncertainty about the life-cycle emission factors of gas. 

Fuel combustion is only the tip of the iceberg, and GHG emissions along the supply chain 

vary, depending on fuel type, origin, and destination.289 Novel insights on pipeline leakage290 

and flaring at shale production sites291 suggest much higher carbon emissions from gas than 

commonly assumed. In consequence, climate benefits of gas over coal diminish or may even 

reverse in some cases. This aspect has to be clarified prior to assessing the technical 

feasibility of coal phase-outs,292 and prior to building new LNG infrastructure.293 

Not following the coal phase-out trend may generate welfare savings, which could be 

reallocated, for instance, to subsidize clean power resources. The estimated incremental cost 

of a strict coal phase-out of up to $10 billion annually is considerable and rivals the annual 

financial support for renewable energy sources under German feed-in tariff legislation.294 

 

 

 

 

                                                 
289 For instance, the carbon intensity of gas depends on extraction (conventional vs fracking) , processing 

(LNG vs w/o liquefaction), storage, transmission (pipeline vs ship vs distance) and distribution; similar of 

coal (e.g. underground vs surface extraction), and oil as shown by (Masnadi et al., 2018). 
290 E.g. (Alvarez et al., 2018) find for the U.S. that CH4 leakage along the gas supply chain causes comparable 

warming as the emissions from combustion. 
291 See (Elvidge et al., 2018). 
292 See, e.g., (Aurora Energy Research, 2018). 
293 E.g. Subsidized construction of LNG terminals in Europe, see (Bloomberg, 2018). 
294 Note: EEG subsidies, which have triggered a large scale expansion of renewables, totalled €30 .4 billion 

in 2017, see (BMWi, 2018). 
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3.6 Appendix  

Appendix 1: Regional differences - Screening curves for coal and gas in the USA, China, and Germany. 
Own illustration; data sources: cost data from (IEA & NEA, 2015); calculation of annualized fixed cost 

based on overnight cost assuming 7% interest rate and a plant life-time of 30 years for gas and 40 years for 

coal-fired power plants in line with (IEA & NEA, 2015); equal split of natural gas in CCGT (Combined 

Cycle Gas Turbines) and OCGT (Open Cycle Gas Turbines) for Germany in line with (Schill et al., 2017); 

note: Global carbon emission factors lie in a narrow ranges for both coal and gas-fired electricity generation 

[in gCO2/kWh] (gas in brackets): USA: 0.928 (0.401), China: 0.919 (0.432), and Germany: 0.900 (0.332), 

see (IEA, 2017). 

 

 

  

USA China Germany

Gas Coal
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Appendix 2: Resource capacity and actual generation by fuel type. Assuming a theoretical maximum of 

8,760 hours of operation without interruption; data from (Global Energy Observatory, Google, KTH Royal 

Institute of Technology in Stockholm, Enipedia, & Institute, 2018); note: The idle gas capacity varies from 

78 % in China, to 54 % in the USA, and 71 % in Germany, as depicted in the right column of the table. 

 

  

Capacity [GW] Generation [TWh] CF = 1 [TWh] Current CF

USA

Coal 327 1,713 2,864 0.60

Gas 291 1,166 2,546 0.46

China

Coal 829 4,115 7,259 0.57

Gas 60 115 528 0.22

Germany

Coal 47 285 412 0.69

Gas 24 62 214 0.29
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Appendix 3: Actual production by resource type Germany 2017. Data from (ENTSO-E, 2017). 
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Appendix 4: Model characteristics 

Item Detailing 

Objective function  Minimize total system costs 

Variables  Capacity investment 

 Hourly dispatch 

Constraints  Demand coverage 

 Capacity limit 

 Carbon budget 

 Non-negativity 

Resolution  Hourly granularity  

 Four resource technologies 

Input data  Hourly demand (ENTSO-E, 2017) 

 Existing capacity (UBA, 2017c) 

 Technology specific cost (IEA & NEA, 2010, 2015) 

 Technology specific emissions (UBA, 2017b) 

 Decarbonization targets (BUMB, 2017) 

Assumptions  Price-inelastic demand 

 Existing capacity available until 2050 

 Resource capacity can be adjusted annually 

Equilibrium  Short-term (hourly/production) 

 Mid-term (yearly/investment) 

 Long-term (2020-2050/decarbonization) 

Limitations  No fixed unit expansion size 

 No economies of scale in supply 

 No market power of generators 

 No detailed power plant fleet 

 No imports/exports 

 No sector coupling 

 No transmission cost/constraints 

 No system service provisions 

 No cycling cost/ramping constraints 

 No location-based assessment 

Implementation  Program type: Linear program 

 Model language: GAMS 

 Solver: Cplex  
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Appendix 5: GAMS source code 
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Appendix 6: German fossil power plant fleet installations by capacity and commissioning year. Data from (UBA, 2017c); note: In case of modification or 

expansion, the chart shows the date of the latest change as commissioning-year. 
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4 Essay III – The Carbon Footprint of Bitcoin 

by Christian Stoll, Lena Klaaßen,295 Ulrich Gallersdörfer296 

Abstract 

Participation in the Bitcoin blockchain validation process requires specialized hardware and 

vast amounts of electricity, which translates into a significant carbon footprint. Here we 

demonstrate a methodology for estimating the power consumption associated with Bitcoin’s 

blockchain based on IPO filings of major hardware manufacturers, insights on mining facility 

operations, and mining pool compositions. We then translate our power consumption 

estimate into carbon emissions, using the localization of IP-addresses. We determine the 

annual electricity consumption of Bitcoin, as of November 2018, to be 45.8 TWh, and 

estimate that annual carbon emissions range from 22.0 to 22.9 MtCO2. This means that the 

emissions produced by Bitcoin sit between the levels produced by the nations of Jordan and 

Sri Lanka, which is comparable to the level of Kansas City. With this article, we aim to gauge 

the external costs of Bitcoin, and inform the broader debate on the costs and benefits of 

cryptocurrencies. 
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4.1 Introduction 

In 2008, Satoshi, the pseudonymous founder of Bitcoin, published a vision of a digital 

currency which,297 only a decade later, reached a peak market capitalization of over $800 

billion.298 The revolutionary element of Bitcoin was not the idea of a digital currency in itself, 

but the underlying blockchain technology. Instead of a trusted third party, incentivized 

network participants validate transactions and ensure the integrity of the network via the 

decentralized administration of a data protocol. The distributed ledger protocol created by 

Satoshi has since been referred to as the ‘first blockchain’.299  

Bitcoin’s blockchain uses a Proof-of-Work consensus mechanism to avoid double-spending 

and manipulation. The validation of ownership and transactions is based on search puzzles 

of hash-functions. These search puzzles have to be solved by network participants in order 

to add valid blocks to the chain. The difficulty of these puzzles adjusts regularly in order to 

account for changes in connected computing power and to maintain approximately ten 

minutes between the addition of each block.300  

During 2018, the computing power required to solve a Bitcoin puzzle increased until October 

more than fourfold,301 and heightened electricity consumption accordingly.302 Speculations 

about the Bitcoin network’s source of fuel have suggested, among other things, Chinese coal, 

Icelandic geothermal power, and Venezuelan subsidies.303 In order to keep global warming 

below 2 °C – as internationally agreed in Paris COP21 – net-zero carbon emissions during 

the second half of the century are crucial.304 To take the right measures, policy-makers need 

to understand the carbon footprint of cryptocurrencies. 

We present a techno-economic model for determining the electricity consumption of the 

Bitcoin network in order to provide an accurate estimate of its carbon footprint. Firstly, we 

narrow down the power consumption, based on mining hardware, facilities, and pools. 

Secondly, we develop three scenarios representing the geographic footprint of Bitcoin 

                                                 
297 See (Nakamoto, 2008). 
298 See (CoinMarketCap, 2018). 
299 See (Yaga, Mell, Roby, & Scarfone, 2018). 
300 See (Narayanan, Bonneau, Felten, Miller, & Goldfeder, 2016). 
301 See (Blockchain.com, 2018). 
302 See (De Vries, 2018). 
303 See (The Economist, 2018b). 
304 See (UNFCCC, 2015a). 
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mining, based on pool server IP, node IP, and device IP-addresses. Thirdly, we calculate the 

carbon footprint, based on the regional carbon intensity of power generation. 

In comparison to previous work, our analysis is based on empirical insights. We use hardware 

data derived from recent IPO filings, which are key to a reliable estimate of power 

consumption as the efficiency of the hardware in use is an essential parameter in this 

calculation. Furthermore, we include assumptions about auxiliary factors which determine 

the power usage effectiveness (PUE). Losses from cooling and IT-equipment have a 

significant impact, but have been largely neglected in prior studies. Besides estimating the 

total power consumption, we determine the geographical footprint of mining activity based 

on IP-addresses. This geographical footprint allows for more accurate estimation of carbon 

emissions compared to earlier work. 

Previous academic studies, such as predictions of future carbon emissions,305 or comparisons 

of cryptocurrency and metal mining,306 are based on simplistic estimates of power 

consumption, and lack empirical foundations. Consequently, the estimates produced vary 

significantly among studies, as depicted in Figure 25. For instance, De Vries published in 

Joule an estimate of 2.55 to 7.67 gigawatts as of 03/2018 while his Digiconomist site 

suggested a number at the very upper end of this range at that time.307  

 

                                                 
305 See (Mora et al., 2018). 
306 See (Krause & Tolaymat, 2018). 
307 See (De Vries, 2018; Digiconomist, 2018a). 
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Figure 25: Power consumption and carbon emission estimates in previous studies.308  

We show that, as of November 2018, the annual electricity consumption of Bitcoin had a 

magnitude of 45.8 TWh. We further calculate that the resulting annual carbon emissions 

range between 22.0 and 22.9 MtCO2; a ratio which sits between the levels produced by Jordan 

and Sri Lanka,309 which is comparable to the level of Kansas City.310 The magnitude of these 

                                                 
308 Note: The data reflect the power consumption at a specific date. Thus, the data are presented in power 

(W) rather than energy (J). a. 100-500 MW power consumption as of 1/1/2017, see (Vranken, 2017); b. 470-

540 MW as of 2/2017; 816-944 MW as of 7/2017; 1,620-3,136 MW with a best guess of 2,100 MW as of 

11/1/2018, see (Bevand, 2018); c. 2,550-7,670 MW as of 3/2018; calculated by assuming miners spent 40% 

of all revenues on hardware and 60% on electricity, see (De Vries, 2018); d. 948 MW as 2017 average; 3,441 

MW as first six months 2018 average, see (Krause & Tolaymat, 2018); e. 12,080 MW as of 7/2018; only 

figure that includes the power spent on manufacturing of the mining hardware, which represents 57% of this 

total power (and emissions) estimate; PUE of 1.25 considered, see (McCook, 2018); f. 7,687 MW average 

of daily estimates in 11/2018; daily estimates range from 5,983 MW to 8,347 MW in 11/2018; estimates 

calculated by assuming 60% of revenues are spent on operational costs incl. electricity, hardware, and 

cooling costs, see (Digiconomist, 2018a); g. 345 MW as of 12/2016; 1,637 MW as of 12/2017; 5,232 MW 

as of 11/2018; PUE of 1.05 considered, h. 69 MtCO2 emissions as of 2017 calculation based on the flawed 

assumption that the number of transactions drives power consumption, see (Mora et al., 2018); i. 43.9 MtCO2 

emissions as of 02/2018; including Ethereum, see (Foteinis, 2018); j. 2.9-13.5 MtCO2 emissions range 

calculated using the median daily power consumption from 01/2016 to 06/2018 multiplied by CO 2 emission 

factors of seven countries, assuming all miners would be based in one of these countries, see (Krause & 

Tolaymat, 2018); k. 61 MtCO2 emissions as of 07/2018; using a global average CO2 emission factor, see 

(McCook, 2018); l. 25.8 MtCO2 emissions as of 11/2018; using an emission factor of 0.7 kg CO2 per kWh 

for 70% of the power consumption (based on China’s average emission factor), and assuming clean energy 

for the remaining 30%, see (Digiconomist, 2018a); m. 22.4-27.4 MtCO2 emissions as of 11/2018; range 

reflects three footprint scenarios with respective local carbon intensity of power generation, n. Indexed hash 

rate (required computing power) since 1/1/2017; data retrieved from Blockchain.com 

(https://www.blockchain.com/charts), see (Blockchain.com, 2018); see also Figure 26 for absolute values. 
309 See (Global Carbon Project, 2017). 
310 See (Moran et al., 2018). 
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carbon emissions, combined with the risk of collusion and concerns about control over the 

monetary system, might justify regulatory intervention to protect individuals from 

themselves and others from their actions. 

4.2 Mining Hardware 

Bitcoin prices for 2017 chart a curve shaped like an upturned hockey stick, and boosted the 

investment made by network participants in mining hardware. First-generation miners used 

central processing units (CPU) in conventional personal computers with computing power of 

less than 0.01 gigahashes per second (GH/s) and an efficiency of 9,000 joule per gigahash 

(J/GH). Over time, miners switched to graphic processing units (GPU), with 0.2-2 GH/s and 

1,500-400 J/GH in 2010 and, starting in 2011, moved to field-programmable gate arrays 

(FPGA) with 0.1-25 GH/s and 100-45 J/GH.311 Since 2013, application-specific integrated 

circuit (ASIC) based mining systems, with up to 44,000 GH/s and less than 0.05 J/GH have 

prevailed.312 Figure 26 charts the market price (in US dollar per Bitcoin (USD/BTC)), 

network hash rate (in petahashes per second (PH/s)), and resulting profitability threshold (in 

J/GH), where miners’ income equals cost. Comparing this profitability threshold to the 

efficiencies of mining hardware shows that only ASIC-based mining systems operate 

profitably nowadays. 

                                                 
311 See (Bhaskar & Chuen, 2015). 
312 See (Taylor, 2017). 
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Figure 26: Bitcoin market price, network hash rate, profitable efficiency, and hardware efficiencies 

of ASIC-based mining systems released by major mining hardware producers.313 

 

From IPO filings disclosed in 2018, we determine the distribution of market share held by 

the three major mining hardware producers; Bitmain, Canaan, and Ebang. The hardware in 

use and its efficiency are key to a reliable estimate of power consumption. Based on the IPO 

filings, we conclude that, as of November 2018, Bitmain’s hardware provides 78% of the 

network’s computing power, while the hardware of Ebang provides 13% and of Canaan 8% 

(see Supplementary Notes Sheet 3.2; the IPO filings and the calculation of the distribution 

are embedded in Sheet 3.4). 

 

 

                                                 
313 Note: Values in Figure 26 are charted at monthly intervals; hash rate and market price were retrieved 

from Blockchain.com (www.blockchain.com/charts), see (Blockchain.com, 2018); calculations of the 

profitable hardware efficiency are reported in Supplementary Notes Sheet 3.6; we assume an average 

electricity price of USD 0.05/kWh as argued in previous estimates, see (Bevand, 2017; Digiconomist, 

2018a); a detailed overview of ASIC-based mining systems releases can be found in Supplementary Notes 

Sheet 4.1. 
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4.3 Mining Facilities 

There is no typical size of cryptocurrency mining operations, but a wide scale ranging from 

students who do not pay for their electricity (some of whom applied to support this 

research),314 to gamers who leverage their graphics cards whenever they are not playing (as 

reflected in Nvidia’s volatile sales allocated to crypto),315 all the way up to dedicated, large-

scale crypto-mining farms (for instance, in abandoned olivine mines in Norway).316  

Depending on the scale of mining operation, auxiliary efficiency losses may occur in addition 

to losses caused by mining hardware. The two main categories of auxiliary losses are cooling 

and IT-equipment. We classify miners into three groups according to the scale of their 

operation: small (S) miners consume less than 0.1 MW of electricity (comparable to 

providing less than 0.9 PH/s or twenty of the most efficient ASIC-based mining systems), 

medium (M) miners consume 1 MW or less (and provide less than 9 PH/s), and large (L) 

miners consume more than 1 MW. This classification is based on personal communications 

with medium and large-scale miners. 

For large-scale miners, we use the power usage effectiveness (PUE) of 1.05. For medium-

scale miners, we use a PUE of 1.10 due to less optimized cooling systems. For small-scale 

miners, we assume a PUE of 1.00, as there is no need for cooling systems, AC/DC converters, 

load transformers, and adapters (see Supplementary Notes Sheet 2 for a sensitivity analysis 

of these assumptions and Sheet 3.7 for interview notes with a mining company).  

We determine the distribution among these three categories using Slushpool data, displayed 

in Figure 27. Slushpool is a public mining pool, which provides live statistics on the 

computing power of connected users. By assuming that distribution is the same for all public 

pools in the rest of the network, we determine that 15% are small, 19% are medium, and 65% 

are large-scale miners for these pools. Regarding private pools, we classify them as 100% 

large-scale miners since they are usually run by big institutions. This results in an overall 

PUE of 1.05. 

 

                                                 
314 See, e.g. (Schlesinger & Day, 2018). 
315 See (Huang, 2018). 
316 See (Harper, 2018). 
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Figure 27: Hash rate distribution of Slushpool grouped by individual miners’ hash rate.317  

4.4 Mining Pools 

Miners combine their computing power and share the block rewards and transaction fees in 

order to reduce the time and variance of finding a new block. Back in January 2011, a miner 

with an up-to-date GPU (2 GH/s) could expect to find more than two blocks a day. In 

November 2018, due to the increasing difficulty of the search puzzle, the same miner could 

expect to find a block every 472,339 years. Even today’s most powerful ASIC-based mining 

system (44,000 GH/s) yields an expected discovery rate of one block every 21 years (the 

calculations can be found in Supplementary Notes Sheet 4.3). 

The average time it takes to find a new block depends on the network’s current level of 

difficulty and computing power of the hardware in use. The average number of hashes to be 

computed in order to solve a block, is given by the difficulty multiplied by the number of 

hashes per block (each block has 248/65,535 hashes). The difficulty adjusts every 2016 blocks 

to account for changes in connected computing power in order to maintain approximately ten 

minutes between the addition of each block.318  

Solving a block is rewarded with new Bitcoins and the fees of all newly-included 

transactions. The reward per block in new Bitcoins started at 50 for the first blocks and halves 

every 210,000 blocks. At the current number of blocks in November 2018 (552,100), the 

block reward equals 12.5 Bitcoins per block and as a result, 1,800 (=12.5 x 24h x 6/h) new 

                                                 
317 Note: Data generated in web scrawling of Slushpool pool statistics (https://slushpool.com/stats/?c=btc ), 

see (Slushpool, 2018), which differentiates 27 size groups that we group in S, M, and L; data reported in 

Supplementary Notes Sheet 3.7; source code available under https://github.com/UliGall/cfootprint_bitcoin.  
318 See (Narayanan et al., 2016). 
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Bitcoins are currently mined every day. As the time to solve one block remains constant and 

the reward continues to halve, the last of about 21 million Bitcoins will be mined in 121 years 

from now. 

Nowadays, nearly all network participants are organized in public pools or self-organized private 

pools. Thereby, more than two-thirds of the current computing power is grouped by Chinese 

pools, followed by the 11% of pools registered in the EU, as depicted in the chart in Figure 28. 

We consider “Unknown pools” (with unknown origin of the hash rate) as private, as it only makes 

sense to mine without joining a pool if one has enough hash power to expect finding a block 

within a reasonable period of time in order to prefer income variance over pool fees. 

 

 

Figure 28: Hash rate distribution among mining pools as of November 2018.319  

 

 

 

                                                 
319 Note: Data pulled from btc.com (https://btc.com/stats/pool?percent_mode=latest#pool-history), see 

(BTC.com, 2018a), and reported in Supplementary Notes Sheet 4.2. 
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4.5 Power Consumption 

Prior to estimating a realistic level of electricity consumption by Bitcoin, we narrow down 

the solution range by calculating a lower and an upper limit. The lower limit is defined by a 

scenario in which all miners use the most efficient hardware. The upper limit is defined as 

the break-even point of mining revenues and electricity costs. Figure 29 charts the range 

including our best-guess estimate, which follows the approach of the lower limit, but includes 

the anticipated energy efficiency of the network, based on hardware sales and auxiliary losses 

(see 4.11 Methods for details). 

 

Figure 29: Power consumption corridor.320  

Figure 29 shows that the upper limit of power consumption is more volatile as it follows the 

market price of Bitcoin. The lower limit is more stable as it is defined by hardware efficiency 

and hash rate. We estimate a power consumption of 345 MW at the end of 2016, 1,637 MW 

at the end of 2017, and 5,232 MW in November 2018, based on auxiliary losses and ASIC-

                                                 
320 Note: Values are charted at daily intervals. Data are reported in Supplementary Notes Sheet 3.2 -3.3. 

Sensitivities are shown in Supplementary Notes Sheet 2. 
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based mining system sales. By multiplying the power consumption as of November 2018 

with 8,760 hours, we get an annual power consumption of 45.8 TWh. 

4.6 Mining Locations 

Below, we develop three scenarios examining the regional footprint of Bitcoin, which are 

based on the localization of pool server IP, device IP, and node IP-addresses. First, the pool 

server IP method localizes IP address of pool servers where participants connect to the pool. 

Second, the device IP method localizes ASIC-based mining systems via an IoT-search 

engine. Third, the node IP method resorts to peer-to-peer nodes first seen relaying a block. 

Some miners may use services like TOR or Virtual Private Networks (VPN) to disguise their 

locations, for instance, for legal reasons. However, as a good overall network connection 

increases the probability of having a new block accepted in the network, it is generally 

advantageous to propagate blocks through the fastest connection. 

Based on pool regional statistics on BTC.com and Slushpool that localize IP-addresses of 

pool servers, we find evidence that miners tend to allocate their computing power to local 

pools. BTC.com and Slushpool are the largest mining pools administrated in China and 

Europe, and in both pools, regional miners comprise the vast majority of participants. U.S-

based miners tend to join the European pool. Combining these insights from pool server IP-

addresses with pool shares and assuming that those pools are representative for other pools 

within the region, we determine that there is 68% Asian, 17% European, and 15% North 

American computing power in the network. This approximation includes the assumption that 

the weighted distribution in terms of their regional origin within Chinese and European pools 

is representative for the remaining 21% of computing power that cannot be localized (see 

Supplementary Notes Sheet 3.1, 4.2 and 4.5). The downside of this first scenario is that it 

might overestimate the share of Chinese miners. The location of some participants might be 

misreported as Chinese due to default settings of the recommended mining software. 

Based on device IPs, we find a stronger U.S. concentration compared to the pool server IP 

method. We identify the location of ASIC-based mining systems via the IoT-search engine 

Shodan. By searching for connected mining hardware, we can view the distribution on a 

national level. We are able to localize 2,260 devices of Bitmain, and the query results show 

a significant concentration in the U.S. (19%). Venezuela (16%), Russia (11%), Korea (7%), 
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Ukraine (5%), and China (4%) appear next on the list, and Figure 30 charts all the locations 

of internet nodes with connected Antminers. The methodology reveals locations that we 

could not detect with the pool server IP methodology that resorts to a higher aggregation 

level within the Bitcoin network. 

 

Figure 30: Local footprint of device IP-addresses.321  

With the third method, we derive IP-addresses from peer-to-peer nodes first seen relaying a 

block. The full nodes and miners in the network communicate via a peer-to-peer network. 

Information (such as new transactions or blocks) are sent to connected peers via a gossip-

protocol, in order to reach all nodes in a timely manner. Therefore, we monitor the IP-

addresses relaying new blocks recorded by Blockcypher.322 We record that 93% of all blocks 

are relayed on U.S. soil. Hence, we conclude from the data that Blockcypher has too few 

connections within the network as it receives blocks from better-connected relayers’ nodes, 

and not only from miners’ nodes. Obtaining valid IP-addresses in future research would 

require a large set of well-connected nodes throughout the network. (The source code is 

                                                 
321 Note: Map and data from IoT-search engine Shodan (https://www.shodan.io), see (Shodan, 2018), as 

reported in Supplementary Notes Sheet 4.7. 
322 See (Blockcypher, 2018). 
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available under https://github.com/UliGall/cfootprint_bitcoin; node IP-addresses are 

localized with ipinfo.io and reported in Supplementary Notes Sheet 4.6.) 

4.7 Carbon Footprint 

We calculate Bitcoin’s carbon footprint based on its total power consumption and geographic 

footprint. To determine the amount of carbon emitted in each country, we multiply the power 

consumption of Bitcoin mining by average and marginal emission factors of power 

generation. Our best guess is based on average emission factors, which represent the carbon 

intensity of the power generation resource mix, while marginal emission factors account for 

the carbon intensity of incremental load change. 

We find that the annual global carbon emissions of Bitcoin range between 22.0 and 22.9 

MtCO2; a ratio which sits between the levels produced by Jordan and Sri Lanka,323
 and which 

is comparable to the level of Kansas City.324 22.0 MtCO2 is based on the footprint of the 

device IP method, and 22.9 MtCO2 assumes the footprint of the pool server IP method. (We 

apply emission factors from the IEA;325 the calculation can be found in Supplementary Notes 

Sheet 3.1.) Compared to the global annual energy demand of approximately 13,760 Mtoe 

(~160 PWh), or the global energy-related CO2 emissions of more than 30 GtCO2 in 2016,326 

this might seem small. Still, Bitcoin’s CO2 equivalent ranks between number 82 and 83 on 

the list of biggest emitting countries.327  

Many have argued that clean surplus energy fuels Bitcoin to a significant degree. In the short 

run, which is relevant for our snapshot, curtailment rates of clean resources may be large in 

certain areas with Bitcoin mining activity. Especially in southwestern China, hydropower 

accounts for around 80% of the generated electricity in the provinces of Yunnan and 

Sichuan.328 Yunnan curtailed 31.2 TWh of hydropower in 2016, which equaled 11.6% of the 

total electricity generation in the province.329 However, mining activities can also be found 

                                                 
323 See (Global Carbon Project, 2017). 
324 See (Moran et al., 2018). 
325 See (IEA, 2017). 
326 See (IEA, 2017). 
327 See (Global Carbon Project, 2017). 
328 See (Li, Chalvatzis, & Pappas, 2018). 
329 See (Liu, Liao, Cheng, Chen, & Li, 2018). 
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in regions with coal-heavy power generation, like in the province of Inner Mongolia.330 Pool 

regional statistics of BTC.com suggest a 58% versus 42% split between hydro-rich and coal-

heavy regions in China. The ratio represents the computing power reported from Shenzhen 

(server location closer to hydro-rich regions) versus Beijing (server location closer to coal-

heavy regions).331 If we weight the emission factors of Sichuan (265 g/kWh) and Inner 

Mongolia (947 g/kWh) accordingly,332 we obtain an adjusted emission factor of 550 g/kWh, 

which we use in our calculations to account for the special case of China.  

If we assume fossil fuels cover the additional load entirely, we find that annual emissions 

caused by Bitcoin mining could be as high as 51.0 MtCO2 (in a footprint scenario of device 

IP-addresses and marginal emission factors of coal; all remaining combinations of footprint 

scenarios and marginal emission factors of gas and coal are depicted in Supplementary Notes 

Sheet 1). On the contrary, assuming a higher share of clean power consumption decreases 

CO2 emissions. 

Some have argued that miners do not operate continuously. We assume that miners run their 

hardware continuously throughout the year. A comparison of break-even electricity prices 

for ASIC-based mining systems shows that this assumption is valid for most fixed-rate retail 

tariffs, and especially for regions with high mining activity (see Supplementary Notes Sheet 

3.5). The steadiness of the hash rate distribution in Figure 27 supports this assumption. That 

is also the reason for ignoring potential additional sources of revenue from price volatility in 

the wholesale market or from the provision of load-balancing services as these would not 

change the duration of mining operations. 

In the long run, we can envision Bitcoin miners to increasingly establish their operations 

nearby large sources of renewable energy, which also triggers further development of 

renewable generation resources at the respective sites.333 Therefore, long run emissions 

factors of the Bitcoin network might be lower than the current grid average. 

                                                 
330 See (Hileman & Rauchs, 2017). 
331 See (BTC.com, 2018b). 
332 See (Qu, Liang, & Xu, 2017). 
333 See (Fridgen, Keller, Thimmel, & Wederhake, 2017). 
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4.8 Social Cost and Benefit  

Our approximation of Bitcoin’s carbon footprint underlines the need to tackle the 

environmental externalities that result from cryptocurrencies,334 and highlights the necessity 

of cost/benefit trade-offs for blockchain applications in general. We do not question the 

efficiency gains that blockchain technology could, in certain cases, provide. However, the 

current debate is focused on anticipated benefits, and more attention needs to be given to 

costs. Policy-makers should not ignore the following aspects: 

Carbon. As global electricity prices do not reflect the future damage caused by today’s 

emissions, economic theory calls for government intervention to correct this market failure 

in order to enhance social welfare. The issue of the social cost of carbon is of course not 

specific to cryptocurrency and as mentioned in the previous section, cryptocurrencies cause 

a relatively small fraction of global emissions. Still, regulating this largely gambling-driven 

source of carbon emissions appears to be a simple means to contribute to decarbonizing the 

economy.335  

Concentration. The case of Bitcoin shows that the risk of concentration must not be ignored. 

Irrespective of the decentralized nature of Bitcoin’s blockchain, the four largest Chinese 

pools now provide almost 50% of the total hash rate, and Bitmain operates three of these four 

pools. If one player controls the majority of computing power, it could start reversing new 

transactions, double-spend coins, and systematically destroy trust in the cryptocurrency. In 

case of Bitcoin pool operators, continuous fee income has so far discouraged from colluding 

to attack, and it appears unlikely to happen in the future as miners would instantaneously 

reallocate their hash rate. Nonetheless, the risk of concentrations must not be ignored in other 

blockchain use-cases. 

Control. With their idea, Satoshi intended for Bitcoin to increase privacy and reduce 

dependency on trusted third parties.336 However, protecting individuals from themselves and 

others from their actions might justify the downsides of central control, as the potential 

benefit of anonymity spurs illegal conduct such as buying drugs, weapons, or child 

pornography. Therefore, a use-case specific degree of central governance is essential. Today, 

                                                 
334 See (Foteinis, 2018). 
335 See (The Economist, 2018a). 
336 See (Nakamoto, 2008). 
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most intermediate parties serve useful functions, and a decentralized socio-economic 

construct like blockchain should only replace them if it can ensure the same functionality, or 

if efficiency gains outweigh their value. Therefore, cryptocurrency systems are unlikely to 

replace fully the existing financial systems. Nonetheless, they may be superior for specific 

applications.337  

4.9 Beyond Bitcoin 

Bitcoin’s power consumption may only be the tip of the iceberg. Including estimates for three 

other cryptocurrencies adds 30 TWh to our annual estimate for Bitcoin alone.338 If we assume 

correlation to market capitalization, and only consider mineable currencies (unlike second 

layer tokens or coins with other consensus mechanisms), the remaining 618 currencies could 

potentially add a power demand over 40 TWh.339 This then more than doubles the power 

consumption we estimate for Bitcoin. 

While other blockchain platforms (e.g., the second largest cryptocurrency, Ethereum) 

develop on switching protocols from Proof-of-Work to other, less energy-consuming 

consensus mechanisms, such as Proof-of-Stake, it is likely that Bitcoin will continue to use 

the established algorithm. Miners, who have a large influence on the development of Bitcoin, 

are not interested in removing the algorithm, which is central to their own business. 

Therefore, it is likely that Bitcoin will remain the largest energy consumer among public 

blockchain systems, and will continue to consume a considerable amount of energy. 

Besides cryptocurrencies, there are other uses for blockchain. Bitcoin has managed to 

establish a global, decentralized monetary system, but fails as a general-purpose blockchain 

platform. For instance, Smart Contracts are seen to disrupt traditional business models in 

finance, trade, and logistics. Like many earlier disruptive technologies, blockchain is merely 

the foundation and enabler of novel applications.340 Alternative protocols will help to reduce 

the power requirements of future blockchain applications, and many blockchain-based 

systems will certainly be private, permissioned blockchains, which do not need a Proof-of-

                                                 
337 See (Giungato, Rana, Tarabella, & Tricase, 2017). 
338 See (Digiconomist, 2018b; Swanson, 2018). 
339 See (CoinMarketCap, 2018). 
340 See (Iansiti & Lakhani, 2017). 
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Work like Bitcoin. Notwithstanding, our findings for the first stage of blockchain diffusion 

underline the need for further research on externalities, in order to support policy-makers in 

setting the right rules for the adoption of these technologies. 

4.10  Validity of Results 

As of November 2018, Bitcoin’s annual power consumption sits between 35.0 and 72.7 TWh 

as argued in the Section “Power consumption”. Estimating a more precise number requires 

assumptions on mining hardware and operations. Our results show that the efficiency of the 

hardware in use is an essential parameter in this calculation. Our estimated hardware 

efficiency of 0.11 J/GH is based on IPO filings of major hardware manufacturers, which we 

consider to be the most reliable reference point at present. Nonetheless, the IPO filings we 

used have a cutoff date, and sales per model are not always explicitly stated. At the extremes, 

if we assume that only the least or most efficient systems are sold in all cases where the 

numbers are not explicitly stated, we obtain a power consumption of 37.0 and 56.2 TWh. 

Regarding operations, we determine a power usage effectiveness of 1.05, based on pool 

statistics and industry insights. If we vary this assumption and use ideal operations (PUE of 

1.0) or least-efficient mining operations that appear realistic (PUE of 1.1), the estimated 

power consumption of 45.8 TWh differs by plus/minus 5%. Varying the size distribution of 

miners changes the resulting PUE within these two extremes: If we assume that all public 

pools beside Slushpool consist of only small, medium, or large miners, we obtain PUEs of 

1.015, 1.083, and 1.049. 

Our best guess power consumption of 45.8 TWh may result in carbon emissions between 

zero and 51.0 MtCO2 (100% clean surplus electricity vs. 100% coal-fired power generation). 

The extreme cases illustrate that the assumed carbon intensity of power consumption has a 

major effect on results. Estimating a more precise number requires assumptions on locations 

of mining activities and regional carbon intensities of electricity. Our best guess is based on 

average emission factors to account for the carbon intensity of incremental load change as 

well as for clean energy in the power generation resource mix. Assuming a less balanced 

share between fossil-fueled and clean Bitcoin mining, or a different power consumption in 

the first place, may change the results accordingly. Here we demonstrate three methods to 

develop scenarios representing the geographic footprint of Bitcoin mining. Although these 
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methods are associated with high uncertainty, the results of the carbon footprint of Bitcoin 

vary within a relatively narrow range from 22.0 to 22.9 MtCO2. 

4.11  Methods 

This section provides the methodology for calculating the range of power consumption, and 

the approach to derive a best-guess estimate: 

(1) Lower limit 

The lower limit is defined by a scenario in which all miners use the most efficient hardware. 

We calculate the lower limit of the range by multiplying the required computing power – 

indicated by the hash rate – by the energy efficiency of the most efficient hardware: 

𝑃𝐿𝐿 = 𝐻 ∗ 𝑒𝑒𝑓, (1) 

with: 

- 𝑃𝐿𝐿 = 𝑝𝑜𝑤𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡) [𝑊] 

- 𝐻 = ℎ𝑎𝑠ℎ 𝑟𝑎𝑡𝑒 [𝐻/𝑠] 

- 𝑒𝑒𝑓 = energy efficiency of most efficient hardware [𝐽/𝐻]. 

 

(2) Upper limit 

The upper limit is defined by the break-even point of revenues and electricity cost. Rational 

behavior would lead miners to disconnect their hardware from the network as soon as their 

costs exceed their revenues from mining and validation: 

𝑃𝑈𝐿 =
(𝑅𝐵+𝑅𝑇)∗𝑀

𝑝𝑁
∗

1

𝑡
 , (2) 

with: 

- 𝑃𝑈𝐿 = 𝑝𝑜𝑤𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡) [𝑊] 

- 𝑅𝐵 = 𝑏𝑙𝑜𝑐𝑘 𝑟𝑒𝑤𝑎𝑟𝑑 [𝐵𝑇𝐶] 

- 𝑅𝑇 = 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑓𝑒𝑒𝑠 [𝐵𝑇𝐶] 

- 𝑀 = 𝑚𝑎𝑟𝑘𝑒𝑡 𝑝𝑟𝑖𝑐𝑒 [𝑈𝑆𝐷/𝐵𝑇𝐶] 

- 𝑝𝑁 = 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑝𝑟𝑖𝑐𝑒 [𝑈𝑆𝐷/𝑘𝑊ℎ] 

- 𝑡 = 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 [ℎ]. 
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(3) Best-guess 

The best-guess estimate follows the approach of the lower limit, but includes the anticipated 

energy efficiency of the network, as well as further losses from cooling and IT components: 

𝑃𝐵𝐺 = 𝐻 ∗ 𝑒𝑁 ∗ 𝑃𝑈𝐸𝑁,  (3) 

with 

- 𝑃𝐵𝐺 = 𝑝𝑜𝑤𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝑏𝑒𝑠𝑡 𝑔𝑢𝑒𝑠𝑠) [𝑊] 

- 𝑒𝑁 = realistic energy efficiency of hardware [𝐽/𝐻] 

- 𝑃𝑈𝐸𝑁 = 𝑙𝑜𝑠𝑠𝑒𝑠 𝑓𝑟𝑜𝑚 𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑎𝑛𝑑 𝐼𝑇 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 [%]. 

The realistic energy efficiency of the network can be determined using the market shares of 

mining hardware producers and the energy efficiency of the hardware in operation: 

𝑒𝑁 = [∑ 𝑆𝐴𝑃𝑖 ∗ 𝑒𝐴𝑃𝑖
 𝑛
𝑖=1 ] + [1 − (∑ 𝑆𝐴𝑃𝑖

𝑛
𝑖=1 )] ∗ 𝑒𝑃, (4) 

with 

- i = mining hardware producer (1, ..., n) 

- 𝑒𝑁 = realistic energy efficiency of hardware [𝐽/𝐻] 

- 𝑆𝐴𝑃𝑖 = 𝑠ℎ𝑎𝑟𝑒 𝑜𝑓 𝐴𝑆𝐼𝐶 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑟 𝑖 [%]  

- 𝑒𝐴𝑃𝑖 = energy efficiency of 𝐴𝑆𝐼𝐶 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑟 𝑖 [𝐽/𝐻] 

- 𝑒𝑃 = energy efficiency 𝑓𝑜𝑟 𝑧𝑒𝑟𝑜 𝑝𝑟𝑜𝑓𝑖𝑡 [𝐽/𝐻]. 

If some of the computing power cannot be assigned to one of the major mining hardware 

producers, we assume this computing power originates from hardware, which generates zero 

profit. By equalizing PLL and PBG, we derive: 

𝑒𝑃 =
(𝑅𝐵+𝑅𝑇)∗𝑀

𝑝𝑁∗𝐻∗𝑃𝑈𝐸𝑁
∗

1

𝑡
 . (5) 

In terms of the average losses from cooling and equipment, we differentiate between three 

types of mining facilities according to size, and weight them by their share in terms of 

computing power: 

𝑃𝑈𝐸𝑁 = 𝑆𝑆 ∗ 𝑃𝑈𝐸𝑆 + 𝑆𝑀 ∗ 𝑃𝑈𝐸𝑀 + 𝑆𝐿 ∗ 𝑃𝑈𝐸𝐿 ,  (6) 
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with 

- 𝑗 = 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑡𝑦𝑝𝑒 (𝑆𝑚𝑎𝑙𝑙,  𝑀𝑒𝑑𝑖𝑢𝑚,  𝐿𝑎𝑟𝑔𝑒)  

- 𝑆𝑗 = 𝑠ℎ𝑎𝑟𝑒 𝑜𝑓 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑡𝑦𝑝𝑒 𝑗 [%] 

- 𝑃𝑈𝐸𝑗 = 𝑙𝑜𝑠𝑠𝑒𝑠 𝑓𝑟𝑜𝑚 𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑎𝑛𝑑 𝐼𝑇 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝑜𝑓 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑡𝑦𝑝𝑒 𝑗 [%]. 

We derive the energy consumption by multiplying the power consumption by a respective 

time period: 

𝐸 = 𝑃 ∗ 𝑡, (7) 

with 

- 𝐸 = 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 [𝑊ℎ] 

- 𝑃 = 𝑝𝑜𝑤𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 [𝑊]. 

The resulting carbon footprint of the Bitcoin network depends on the carbon intensity 𝐼𝑁 of 

the power mix: 

𝐶 = 𝐸 ∗ 𝐼𝑁, (8) 

with 

- 𝐶 = 𝑐𝑎𝑟𝑏𝑜𝑛 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 [𝑔 𝐶𝑂2] 

- 𝐼𝑁 = 𝑐𝑎𝑟𝑏𝑜𝑛 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑝𝑜𝑤𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 [𝑔 𝐶𝑂2/𝑊ℎ]. 

In order to incorporate local differences in the carbon intensity of the power mix, we 

differentiate among regions and weight them by computing power share: 

𝐼𝑁 = ∑ 𝑆𝑅𝑒𝑔 1 ∗ 𝐼𝑅𝑒𝑔 1 + ⋯ + 𝑆𝑅𝑒𝑔 𝑛 ∗ 𝐼𝑅𝑒𝑔 𝑛
𝑛
𝑘=𝑅𝑒𝑔 1 ,  (9) 

with 

- 𝑘 = 𝑟𝑒𝑔𝑖𝑜𝑛 (1, ..., n) 

- 𝑆𝑘 = 𝑠ℎ𝑎𝑟𝑒 𝑜𝑓 𝑟𝑒𝑔𝑖𝑜𝑛 𝑘 [%]. 

 

In the scenario with pool IP-addresses, we determine the share of each region based on the 

geographical distribution of BTC.com (representing the Chinese pools), and of Slushpool 

(representing the European pools). For the hash rate of the remaining network with unknown 

origin, we assume the distribution to be in line with the weighted average of BTC.com and 

Slushpool: 
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𝑆𝑘 =
𝑆𝑅𝑒𝑔 𝑘,   𝐵𝑇𝐶.𝑐𝑜𝑚∗𝑅𝐶ℎ𝑖𝑛𝑒𝑠𝑒 𝑃𝑜𝑜𝑙𝑠+ 𝑆𝑅𝑒𝑔 𝑘,   𝑆𝑙𝑢𝑠ℎ𝑝𝑜𝑜𝑙∗𝑅𝐸𝑢𝑟𝑜𝑝𝑒𝑎𝑛 𝑃𝑜𝑜𝑙𝑠 

𝑅𝐶ℎ𝑖𝑛𝑒𝑠𝑒 𝑃𝑜𝑜𝑙𝑠+ 𝑅𝐸𝑢𝑟𝑜𝑝𝑒𝑎𝑛 𝑃𝑜𝑜𝑙𝑠
 ,  (10) 

with 

- 𝑙 =  pool type (𝐶ℎ𝑖𝑛𝑒𝑠𝑒 𝑝𝑜𝑜𝑙, 𝐸𝑢𝑟𝑜𝑝𝑒𝑎𝑛 𝑝𝑜𝑜𝑙, 𝑂𝑡ℎ𝑒𝑟 𝑝𝑜𝑜𝑙) 

- 𝑆𝑘,𝑙 = 𝑠ℎ𝑎𝑟𝑒 𝑜𝑓 𝑝𝑜𝑜𝑙 𝑡𝑦𝑝𝑒 𝑙 𝑖𝑛 𝑟𝑒𝑔𝑖𝑜𝑛 𝑘 [%] 

- 𝑅𝑙 = 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑝𝑜𝑜𝑙 𝑡𝑦𝑝𝑒 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑒𝑛𝑡𝑖𝑟𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 [%]. 
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5 Conclusion 

“All political lives, unless they are cut off in midstream at a happy juncture, end in failure, 

because that is the nature of politics and of human affairs.”341 To refute the quote, this thesis 

may help policy-makers to better understand the reasons for failure in order to make the right 

regulatory decisions. Section 5 concludes this thesis by first summarizing the key findings 

and highlighting the associated contributions, second, disclosing the caveats of the performed 

work and pointing to future research needs, and last providing an outlook on the overarching 

topic. 

5.1 Contributions and Findings 

This thesis addresses the current discussion on climate policy, which is concerned with 

market-based tools and highlights opportunity spaces for carbon pricing to contribute to deep 

decarbonization. Furthermore, this thesis addresses the current trend in energy policy of 

applying non-market-based tools such as phase-out mandates and demonstrates that phase-

out policies in the energy sector may be sub-optimal. Last but not least, this thesis discusses 

the externalities of the blockchain technology and emphasizes that more attention must be 

paid to the carbon footprint of digital innovations. Section 5.1 summarizes the key findings 

and major contributions of the three Essays and demonstrates the connections between the 

three essays. 

The first essay contributes to the public debate, which increasingly focuses on carbon pricing 

to reduce emissions across sectors.342 The findings recommend that carbon pricing should 

remain a central element of an effective climate policy portfolio mix, and indeed, to prevent 

climate change from becoming the greatest government failure the world has ever seen. The 

conceptual framework that we suggest may help policy-makers in understanding the 

limitations of carbon pricing and thereby support the implementation of more effective policy 

designs.  

                                                 
341 See (Powell, 1977), p. 151. 
342 Note: The recent public debate in Germany on carbon pricing to achieve committed 2030 emission 

reduction targets of -55% compared to the 1990 level underlines the trend, see (Clean Energy Wire, 2019). 
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The insights that Essay I provides can be applied to the challenges that are addressed in Essay 

II and Essay III. Thereby, carbon pricing represents one potential option to solve the 

challenge covered in Essay II and Essay III. In particular, in the context of Essay II, an 

understanding of carbon pricing’s strengths and weaknesses may help to design a cost-

efficient decarbonization strategy in the power sector. Personal communication with a 

member of Germany’s coal exit commission revealed the challenges in the political decision 

process. The challenge to find a compromise among vested interests of policy-makers, 

industry organizations, and environmental organizations bears the risk of deprioritizing cost-

effectiveness and taking decisions, which result in sub-optimal solutions from a social 

welfare perspective. The conceptual framework of Essay I can explain such challenges and 

consequently help to improve such decision processes. 

The second essay emphasizes that an increasing number of jurisdictions are resorting to 

phase-out mandates in order to reduce emissions from specific sectors or activities. In Essay 

II, I present a simple model to demonstrate that phase-out policies may not be as cost-

effective as market-based instruments in achieving emission reductions. Furthermore, the 

case-study drawing on the example of Germany reveals counter-intuitive results that go 

against conventional assumptions about the role of coal. The results show that a gradual 

transition from coal to clean generation resources may be cheaper than a strict coal phase-out 

from a societal point of view. The results of Essay II contribute to the current political debate 

through transparent and simple explanations of fuel-switching effects in the energy sector. 

Especially pointing out the effects of stranded assets and how they can be part of a cost-

effective decarbonization strategy may help policy-makers in their decision process. 

As discussed in Essay I, the implementation of a global carbon pricing initiative,  which 

covers all emitting activities and imposes a price at the optimal level represents a mammoth 

task. Such an optimal price on carbon emissions would also solve the challenge of Bitcoins 

carbon emissions in the welfare optimal way. In the absence of such an ideal-theoretic carbon 

pricing initiative, alternative regulatory options might be required. To assess the necessity of 

regulatory intervention, the first step is an understanding of the respective challenge. 

Therefore, the third essay in this thesis underlines the need to tackle the environmental 

externalities that result from innovative technologies or digital concepts by quantifying 

emissions associated with cryptocurrencies.  
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We find that the annual electricity consumption of the Bitcoin network, as of November 

2018, summed up to 45.8 TWh. We further estimate that annual carbon emissions range 

from 22.0 to 22.9 MtCO2. Therefore, the carbon emissions caused by the Bitcoin network 

sit between the emission levels produced by the nations of Jordan and Sri Lanka. This level 

of emissions emphasizes the necessity of cost/benefit trade-offs for blockchain applications 

beyond cryptocurrencies and for innovative technologies in general.343  

These findings for the first phase of blockchain diffusion, and the externalities we discuss 

may help policy-makers in setting the right rules as the adoption journey of blockchain 

technology has just started. The challenge of carbon emissions is of course not 

cryptocurrency specific, and from an economic perspective – as highlighted in Essay I – the 

most-efficient solution would be a regulatory intervention in form of a carbon pricing 

initiative. Such a welfare-maximizing solution would induce a price on every ton of carbon 

emitted, and the price would reflect the future climate damage caused by today’s emissions. 

All three essays demonstrate that there are options to tackle the challenges of climate change 

within the three areas of policy by establishing an appropriate framework. Going forward, 

the key question will be whether societies can agree to take strong action on the national and 

international level, which will affect our society’s habits today but also brings benefits far in 

the future. This thesis shall provide thought-provoking impulses on three current topics from 

policy and technology, and in the wake of this contribute to the larger climate puzzle. “There 

is still time to avoid the worst impacts of climate change, if we take strong action now.”344 

5.2 Caveats and Further Research 

The three essays in this thesis cover one specific aspect of the extensive climate puzzle. To 

provide answers to the respective questions, several assumptions have to be made and 

thematic boundaries have to the set. Section 5.2 summarizes the caveats of the three essays 

and points to areas for future research. 

                                                 
343 Note: For instance, negative-emission technologies may play an important role in the decarbonization 

pathway, and as the potential from biomass appears insufficient to remove CO2 from the atmosphere at scale, 

direct carbon capture from the air may be the option of choice; see (National Academies of Sciences & 

Medicine, 2018). However, carbon capture from the air requires vast amounts of energy; see (Creutzig et al., 

2019). 
344 See (Stern, 2007), p. vi. 
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Essay I highlights the importance to understand the implications of climate policy tools. A 

recent example that illustrates the relevance of such an understanding can be found in France. 

Policy-makers in France dropped the idea of a fuel-tax rise after the plan triggered violent 

protests.345 The so-called ‘yellow vest’ protests highlight the importance of public support in 

policy-making.346 More importantly, the protests underline the importance to understand the 

strengths, weaknesses, and implications of climate policy instruments prior to 

implementation. This applies in particular to the distributional effects and the potential 

mitigations, which we mention from a theoretical perspective but whose public acceptance 

and practicality remain to be seen.  

The model I present in Essay II has numerous limitations compared to detailed power system 

models. The model I present ignores factors such as fixed unit expansion size, economies 

of scale in supply, market power of generators, imports and exports,  sector coupling, and 

cycling constraints. Furthermore, the chosen method omits transmission constraints and 

specific factors on a single power plant level. However, the simple model provides 

transparent and comprehensible first-order estimates that reveal valuable insights into basic 

economic effects. These highlighted effects of stranded assets must not be ignored on the 

decarbonization pathway and should be included in sophisticated modeling work.  

Essay III formalizes several novel methodologies in the comparably young research field on 

cryptocurrencies and blockchain applications in general. Nevertheless, the absolute results of 

Essay III only provide a snapshot in time. Due to the interplay of connected computing power, 

the difficulty of the Bitcoin puzzles, monetary incentives to mine, hardware efficiency, 

protocol configurations, and many other factors, our results may provide a reference point 

but may not be used to forecast future developments. Some have predicted future emissions 

based on market penetration rates,347 which appears technically flawed,348 but the attempt 

addresses an important issue. Blockchain applications are envisioned for all types of use-

cases beyond cryptocurrencies. In many of these use-cases, a less decentralized validation 

process can be used, for instance, if a lower degree of anonymity or decentralized control is 

                                                 
345 See (The New York Times, 2018). 
346 See (Carattini, Kallbekken, & Orlov, 2019). 
347 See (Mora et al., 2018) for a calculation of Bitcoin’s future emissions and how these emissions cause 

warming incompatible with the 2° C warming target.  
348 Note: The power requirements do not automatically scale with the number of transactions; the difficulty 

to solve a Bitcoin puzzle does not change with the number of transactions that are included in the block.  
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acceptable or desired.349 Such alternative blockchain protocols may be far less energy-

intensive than Bitcoin’s protocol but raise other questions about the regulatory oversight and 

implications on monetary policy. Beyond cryptocurrencies, the debate on potential use-cases 

is strongly driven by anticipated benefits. Even if efficient protocols are in place, or if clean 

energy supply can be guaranteed, the required infrastructure components have to be produced 

and recycled. There have been first attempts to quantify the environmental impact of 

electronic waste in the case of Bitcoin mining hardware.350 A better understanding of 

lifecycle emissions of such infrastructure components could provide valuable insights into 

the debate.  

5.3 Outlook 

“Intelligence is the ability to adapt to change.”351 The example of the dodo bird who lived for 

centuries on Mauritius illustrates the challenge the introducing quote refers to. The first 

recorded mentioning of the dodo was by Dutch sailors in 1598. The last sighting was 64 years 

later in 1662.352 Due to no natural enemy, he was completely fearless. When humans arrived 

on Mauritius and introduced other animals to the ecosystem, the fearless dodo fell victim to 

the other species within a few years. Charles Darwin found the explanation for the 

phenomenon two hundred years later: The dodo was perfectly adjusted to its surrounding, 

but unable to adapt to quickly changing conditions.353 This thesis covers one current topic 

within each of the three areas of climate policy along the marginal abatement cost curve as 

described in Section 1.1.3. The results may help policy-makers to adapt to one of the biggest 

challenges of time. 

The current willingness to adapt by limiting greenhouse gas emissions is still low on the 

global level. The current level of temperature anomaly is still more than offset by economic 

benefit in certain regions.354 The global climate protection efforts are accordingly low.355 

                                                 
349 See e.g. (Libra Association Members, 2019) for the design of Facebook’s Libra coin. In the LibraBFT 

consensus protocol, all parties that validate transactions know each other.  
350 See (De Vries, 2019). 
351 This quote has been attributed to Stephen Hawking. 
352 See (Parish, 2013). 
353 See (Darwin, 1859). 
354 See (Ricke et al., 2018) and Section 1.1.1. 
355 E.g. the sum of national pledges is insufficiently low to achieve the targets of the Paris Agreement, see 

(Climate Action Tracker, 2019). 
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However, in the absence of strong and timely actions, the temperature may rise by more than 

4 °C until the end of the century. Even if we achieve net zero emissions by mid-century, 

temperature may still rise by 2-3 °C until the end of the century.356 Remembering the local 

variance of the global rise in surface temperature as depicted in Section 1, local as well as 

global climate change adaption strategies will become increasingly important.  

In 2050, I will be 59 years old. Carbon pricing will likely be a central element of climate 

politics, with carbon prices much higher than today and closer to the true social cost of 

carbon. Our power supply will be much cleaner than today (coal-fired power generation will 

have been phased-out or become uneconomical in most places), and blockchain solutions 

might have achieved efficiency gains and enabled a broad variety of use-cases. Likely, 

coastlines will look different than today, billions of people will have migrated, and 

temperatures will still be rising. 

Unlike the dodo bird, humans have demonstrated adaption skills in the past. Homo sapiens 

have survived two ice ages during the past 200,000 years,357 with average temperatures more 

than 8 °C below the current level.358 In a future scenario with high and comparably fast 

increasing temperatures, adaption strategies will become more and more important. Research 

on climate adoption strategies has lagged behind as the current research debate focuses on 

climate change mitigation. 

At a certain level of warming, in order to avoid catastrophic climate change, removing CO2 

from the atmosphere, or blocking solar irradiation through injecting dust in the stratosphere 

(or an innovation unknown to us today), will increasingly move into focus. These approaches 

are at the moment either too expensive or associated with high uncertainty and risk.359 

Nonetheless, more research is needed to gain an understanding of such options of last resort. 

The famous example of a turkey that lives a happy life, fully unaware that Thanksgiving is 

approaching, illustrates the challenge of inductive reasoning and heuristic decision-making 

in cases of high uncertainty but a huge impact.360 Action towards a cleaner future is urgently 

needed today, and it should include more research on options of last resort. 

                                                 
356 See (Sokolov et al., 2017), p. 10. 
357 See, (Bräuer et al., 2003); note: A more recent example of adjustment skills can be found in progressing 

technology, e.g. the reserves-to-consumption ratio of crude oil remained very stable at around 50 years since 

1980, see (Covert, Greenstone, & Knittel, 2016). 
358 See (Petit et al., 1999). 
359 See (Vaughan & Lenton, 2011). 
360 See (Taleb, 2007) for so-called ‘Black swan’ events. 
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