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Dissertation in Informatik

A Framework for Failure Diagnosis

Mojdeh Golagha
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Zusammenfassung

Einer der teuersten und herausforderndsten Abschnitte im Softwareentwicklungszyklus
ist das Debbuging. Vor allem die Zeit, die während des Debugging-Prozesses benötigt wird,
um einen Failure zu analysieren und den zugrunde liegenden Fault zu finden, ist ein wich-
tiger Kostenfaktor. Zwei beispielhafte Verfahrensweisen, die es den Testern ermöglichen
können, diese Zeit für die Fehleranalyse zu verkürzen, sind das Failure Clustering und
die automatische Fault Lokalisierung. Obwohl in der Literatur eine Vielzahl von Varianten
dieser Techniken beschrieben wird, wird ihre Anwendung in realen Umgebungen immer
noch von Problemen verhindert. Die Tester werden zudem bei der Auswahl einer geeigne-
ten Methode für ihre Domäne durch diese Vielzahl an verschiedenen Techniken zusätzlich
verwirrt.

Normalerweise wird, ungeachtet der Domäne, im Zuge von Regressionen regelmäßig
eine große Anzahl von Tests durchgeführt. Kommt es dabei zum Fehlschlagen vieler
Tests, ist üblicherweise nur eine geringe Anzahl von zugrundeliegenden Faults dafür
verantwortlich. Berücksichtigt man jedoch die extrem lange Ausführungsdauer der Tests,
ist es nicht immer möglich, den ursächlichen Fault zu finden und ihn zu entfernen, um
dann alle Tests erneut ausführen zu lassen. Da meist im Vorfeld ein enges Zeitfenster für das
Finden und Entfernen der Faults festgelegt wurde, stehen die Entwickler zusätzlich unter
einem enormen Zeitdruck. Daher braucht es ein Assistenzsystem, welches die Produktivität
der Entwickler erhöht und die Zeit für die Failure-Analyse verringert.

Um die eben beschriebenen Diskrepanzen zu überbrücken und den aktuellen Forschungs-
stand in die Praxis zu integrieren, haben wir ein Framework für Fehlerdiagnose entwickelt.
Dieses Framework fungiert dabei als Assistenzsystem für Entwickler, um es diesen zu
ermöglichen, schnelle und zuverlässige Failure Diagnosen durchzuführen.

Durch die Benutzung des Frameworks wissen die Entwickler, welche Daten sie benötigen,
um weitere Analysen durchzuführen. Sie sind außerdem in der Lage, Failure hinsichtlich
ihres Ursprungs zu kategorisieren und können dann in einem weiteren Schritt mehr Infor-
mationen über die Ursprünge einer jeden Failure Gruppe erlangen. Ursprünglich wurde
unser Framework auf Basis von aktuellen Failure-Diagnosetechniken entwickelt. Dabei
implementierten und evaluierten wir die existierenden Techniken und Verfahren. Wo die Er-
gebnisse vielversprechend waren, knüpften wir an diese an, verbesserten sie und schlugen,
wo erforderlich, neue Lösungen vor. Mit unseren Evaluationsproben konnten wir zeigen,
dass unser Framework in der Reduzierung der Failure-Analysezeit effektiver ist, als die
aktuell in der Forschung zu findenden Methoden es sind.
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Abstract

Debugging is one of the most expensive and challenging phases in the software develop-
ment life-cycle. One important cost factor in the debugging process is the time required to
analyze failures and find underlying faults. Two types of techniques that can help testers
to reduce this analysis time are Failure Clustering and Automated Fault Localization. Al-
though there is a plethora of these techniques in the literature, there are still some gaps that
prevent their operationalization in real-world contexts. Besides, the abundance of these
techniques confuses the testers in selecting a suitable method for their specific domain.

Regardless of the domain, there is usually a large number of tests that are frequently
executed as regressions happen. In case of large numbers of failing tests, there are usually
only a few underlying faults that cause a large number of tests to fail. Considering the
significantly high execution time of the tests, it is not always possible to find the first fault,
resolve it, and re-run all the tests. In addition, due to having a limited pre-determined time
to find and repair faults, developers are usually under a lot of pressure. Therefore, there is
a need for an assisting tool to improve developers’ productivity and reduce failure analysis
time.

To fill the gaps and bring state-of-art closer to practice, we developed a framework
for failure diagnosis. This framework would serve as an assisting tool for developers to
empower them for fast and reliable failure diagnosis. Utilizing this framework, developers
know which data they need for further analysis, are able to group failures based on their
root causes, and are able to find more information about the root causes of each failing
group.

Our framework was initially developed based on state-of-the-art failure diagnosis tech-
niques. We implemented and evaluated existing techniques. We built on and improved
them where the results were promising and proposed new solutions where needed. With
our evaluation experiments, we show that our framework is more effective in reducing
failure analysis time than state-of-the-art techniques.
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Outline of the Thesis

CHAPTER 1: INTRODUCTION

This chapter presents an introduction to the topic and the fundamental issues addressed by
this thesis. It discusses ideas, goals, and limitations of this work.

CHAPTER 2: BACKGROUND

This chapter presents an introduction to the failure clustering and fault localization tech-
niques and their advantages in failure diagnosis. Parts of this chapter have previously
appeared in publications [55, 58, 54, 56, 150], co-authored by the author of this thesis.

CHAPTER 3: CASE STUDIES

This chapter presents an overview of the case studies used in the evaluations. Parts of this
chapter have previously appeared in peer-reviewed publications [150, 54], co-authored by
the author of this thesis.

CHAPTER 4: FAILURE CLUSTERING WITH COVERAGE

This chapter presents a clustering approach to group failures based on their root-causes. In
addition, it presents a methodology to apply failure clustering in a real-world context. Parts
of this chapter have previously appeared in a publication [58], co-authored by the author of
this thesis.

CHAPTER 5: FAILURE CLUSTERING WITHOUT COVERAGE

This chapter presents a failure clustering approach that does not need coverage data. Parts
of this chapter have previously appeared in a publication [57], co-authored by the author of
this thesis.

CHAPTER 6: IMPROVING SBFL THROUGH USING SYNTACTIC BLOCK GRANULARITY

This chapter presents a new granularity level that helps in boosting spectrum-based fault
localization effectiveness.

CHAPTER 7: IMPROVING SBFL THROUGH TACKLING CONFOUNDING BIAS

This chapter presents a new ranking technique to improve the effectiveness of spectrum-
based fault localization.

CHAPTER 8: PREDICTING THE QUALITY OF SBFL

This chapter presents a model to predict the quality of spectrum-based fault localization.
Considering the prediction, developers can decide whether to use the fault localization tool
or not.

CHAPTER 9: RELATED WORK

xi



This chapter presents related work in the sub-fields of fault localization and failure cluster-
ing. Parts of this chapter have been published in peer-reviewed publications [55, 58, 54, 56,
150] co-authored by the author of this thesis.

CHAPTER 10: CONCLUSIONS

This chapter first presents a summary of what has been done throughout the chapters of
this thesis. Subsequently, we state the results of the thesis and the lessons learned during
the development of this work. Afterward, we discuss limitations and avenues for future
work.

N.B.: Multiple chapters of this dissertation are based on different publications authored or co-
authored by the author of this dissertation. Such publications are mentioned in the short descriptions
above. Due to the obvious content overlapping, quotes from such publications within the respective
chapters are not marked explicitly.
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1. Introduction

This chapter presents an introduction to the topic and the fundamental issues
addressed by this thesis. It discusses ideas, goals, and limitations of this work.

Software debugging has been recognized to be time-consuming, tiresome and expensive.
Software failures cost billions for economies every year [173]. Even when the existence
of faults in software is discovered due to failures, finding the causes to repair them is an
entirely different matter. In our terminology, a failure is the deviation of actual run-time
behavior from intended behavior, and a fault is the reason for the deviation [175] 1. In other
words, a fault is the program element that needs to be changed in order to remove the
failure.

The essence of failure diagnosis is to trace back from a failure to the fault or faults [65].
Automated diagnosis can reduce the effort spent on manual debugging, which shortens the
test-diagnose-repair cycle, and can therefore be expected to lead to more reliable systems,
and a shorter time-to-market. In this thesis, we focus on automated diagnosis techniques
and explain our endeavor in improving them to make them applicable in practice.

We recognized two general categories of techniques for addressing reducing failure
diagnosis time: failure clustering and automated fault localization.

Failure clustering methods attempt to group failing tests with respect to the faults that
caused them [147]. If there are several failing test cases (TC) as the result of test execution,
these failing TCs may be clustered such that tests which are in the same cluster would have
failed due to the same hypothesized fault. Then, in an ideal world, testers investigate only
one representative TC from each cluster to discover all the underlying faults. This process
eliminates the need for analyzing each failing TC individually. Thus, there would be a
significant reduction in analysis time[58].

Automated fault localization techniques aim to “identify some program event(s) or
state(s) or element(s) that cause or correlate with the failure to provide the developer with a
report that will aid fault repair” [119]. The debugging process is usually predicated on the
developer’s ability to find and repair faults. While both steps in the debugging process (fault
localization and fault repair) are time-consuming in their own right, fault localization is
considered more critical, as it is a prerequisite for fault repair [119]. Furthermore, Kochhar et
al. have found that there is a large demand for fault localization solutions among developers
[93]. Therefore, over the past ten years, a lot of research has gone into developing automated
techniques for fault localization in order to help speed up the process [182].

1In this thesis, we use “fault”, “root cause”, and “bug” terms interchangeably.
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1. Introduction

1.1. Failure Diagnosis: Benefits, Early Works, and Shortcomings

There is a plethora of failure clustering and automated fault localization techniques in
the literature (see Chapter 9). Although developers find these methods worthwhile and
essential [94], these techniques are not adopted in practice yet. There are gaps in need of
filling to make these methods applicable. In the following, we introduce these techniques
and their shortcomings.

1.1.1. Failure Clustering

Clustering failures is effective in reducing failure analysis time [58]. Its advantages are
threefold:

1. It eliminates the need to analyze each failing test individually. To achieve this goal, it
is enough to select one representative for each cluster and analyze only the represen-
tatives to find all the underlying faults in case of multiple faults [58].

In an industrial environment for embedded systems, usually several dozens of TCs
are executed each night as regressions happen, and several hundred every weekend,
which together usually lead to large numbers of failures. Developers must analyze
the failing tests and find all the root causes in the short time they have before the
software release. The complexity of the analysis process makes the failure diagnosis
process tough and time-consuming. Since in practice, a single fault usually leads to
the failure of multiple TCs, analyzing only the representative TCs help developers to
find more faults in a shorter time.

2. It provides the opportunity for debugging in parallel [77].

3. It gives an estimation of the number of faults causing the failures. Fault localization
while there are several faults in the code, is more challenging than when there is
only one fault in the code. When a program fails, the number of faults is, in general,
unknown; and certain faults may mask or obfuscate other faults [77].

Jones et al. [77] introduced a parallel debugging process as an alternative to sequential
debugging. They suggest that in the presence of multiple faults in a program, clustering
failing tests based on their underlying faults, and assigning clusters to different developers
for simultaneous debugging, reduce the total debugging cost and time. They propose two
clustering techniques. Using the first technique, they cluster failures based on execution
profiles and fault localization results. They start the clustering process by using execution
profile similarities and complete it using fault localization results. Their second technique
suggests to only use the results of fault localization.

Hoegerle et al. [68] introduced another parallel debugging method which is based on
integer linear programming [134]. They applied the above-mentioned second clustering
technique of Jones et al. to compare it with their own debugging approach. Their results
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show that this clustering technique of Jones et al. is not so effective. But, the first technique
is effective if it is adapted to the context.

Parallel debugging reduces the analysis time. However, it does not remove the need for
analyzing all the failing tests one by one. It provides segregation between faults to make
them more localizable. But, it does not provide segregation between failing tests.

Another shortcoming in this area of research is the lack of a methodology for adapting
this idea to different industrial domains.

Moreover, the other similar existing approaches in the literature (see Chapter 9) are either
based on coverage data or use context-specific data [153]. Therefore, there is a need for
other sources of non-coverage data for the cases that the source code or execution profile is
not available.

1.1.2. Fault Localization

Finding and fixing faults requires developers to put in a significant amount of time and
effort. Fault Localization (FL) is a process to find the location of faults in a program. To
reduce the developers workload and debugging cost, researchers have studied different
approaches to automate this process [182]. Due to high demand, there have been many
attempts to develop useful FL tools in recent years.

One of the most popular subsets of automated FL techniques is spectrum-based fault
localization, known as SBFL [182]. In order to correlate program elements with failing TCs,
these techniques are built upon abstractions of program execution traces, also known as
program spectra, executable statement hit spectra, or code coverage [182]. These program
spectra can be defined as a set of program elements covered during test execution. The
initial goal of SBFL techniques is therefore to identify program elements that are highly
correlated with failing tests [119]. In order to determine the correlation between program
elements and TC results, SBFL techniques utilize ranking metrics to pair a suspiciousness
score with each program element, indicating how likely it is to be faulty. The rationale
behind these metrics is that program elements frequently executed in failing TCs are more
likely to be faulty. Thus, the suspiciousness score considers the frequency at which elements
are executed in passing and failing TCs. Some of the more popular ranking metrics have
been specifically created for the use in FL, such as Tarantula [78] and DStar [180], whereas
others have been adapted from areas such as molecular biology, which is the case for Ochiai
[130].

A study on developers’ expectations on automated FL [94] shows that most of the studied
developers view FL process as successful only if it:

• can localize faults in the Top-10 positions

• is able to process programs of size 100,000 LOC

• completes its processing in less than a minute
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• provides rationales of why program elements are marked as potentially faulty

Considering these expectations, real-world evaluations [141] show that SBFL techniques
are not yet applicable in practice. They are able to process large-size programs, but are
not always able to locate the faults in top positions. This might be the consequence of
considering the correlation, not causation. Although the goal of any FL technique is “to
identify the code that caused the failure and not just any code that correlated with it”
[118], SBFL techniques measure the correlation between program elements and test failures
to compute suspiciousness scores. Thus, they do not control potential confounding bias
[138]. Confounding bias is a distortion that modifies an association between an exposure
(execution of a program element) and an outcome (program failure) because a factor is
independently associated with the exposure and the outcome.

public void F1(int i) {
if (i < 0) {
... // Faulty
F2(x);

} else {
...
F3(x);

}
}

Figure 1.1.: A Hypothetical Faulty Method with Two Branches

Using Figure 1.1, we exhibit an example of confounding bias in SBFL results. The
code snippet indicates a hypothetical faulty program. Assume that a fault in method F1
propagates only through the left branch where method F2 is triggered, while the right
branch where method F3 is called, executes correctly. Put differently, although F1 contains
a fault, only those tests taking the left branch are failing. In this case, an SBFL technique
gives the highest suspiciousness score to the method F2, since it’s executed more frequently
in failing executions and less frequently in passing executions (F1: 1 failing, 1 passing, F2: 1
failing, and F3: 1 passing). However, method F1 is the faulty element.

In addition, for SBFL techniques, the granularity of the program elements in the program
spectra is important, not only to the effectiveness of the system but also to the preferences of
developers [93]. Kochhar et al. found that among surveyed developers, method, followed
by statement and basic block were the most preferred granularities. But when it comes to
the effectiveness of the system, the method and statement granularities may be too coarse-
or fine-grained, respectively, to properly locate the faulty program elements [119, 135].
Unfortunately, there is no golden rule to say which granularity is the best for all contexts.

Despite ongoing research and improvements, the real world evaluations show that
FL techniques are not always effective. Moreover, it is not clear why and under which
circumstances they are effective. Thus, there is a need to raise this question and find
influencing factors on the effectiveness of FL. Knowing these factors can help developers in
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deciding whether to use FL techniques in their own domain or not.

1.2. Goal

The overarching goal of this thesis is to provide a framework for failure diagnosis which
can be used as an assisting tool by developers to reduce failure analysis time, and therefore
cost.

This framework will aid the decision making process of a debugging party regarding
which data type and granularity to choose, and which clustering method and metric to
employ for different domains. Moreover, it provides the opportunity for its users to predict
the effectiveness of localization before adopting it. Also, it assigns a confidence factor to
the results in each debugging session. Thus, users can better decide whether to use the
framework or not and whether to consider the results or not.

1.3. Problem Statement and Research Questions

In this thesis, we tackle a problem, namely reducing failure analysis time, which was
identified while conducting industry-oriented research. Together with the test engineers,
we defined the problem statement:

Regardless of the domain, there are usually large numbers of tests that are frequently
executed as regressions happen. In case of large numbers of failures, there are usually
only a few underlying faults that cause a large number of tests to fail. Considering the
significantly high execution time of the tests, it is not always possible to find the first fault,
resolve it, and re-run all the tests.

Developers usually get quick and yet preliminary test results from the test runs, and
use such information to resolve problems such as locating faults. Such a quick feedback
approach may lower the development cost, but puts a lot of pressure on developers. In
practice, the time resource allocated for each debugging session is usually limited and
predetermined. Therefore, developers need an assisting tool to improve their productivity
and reduce failure analysis time.

As described earlier, a lot of related work has been created in this direction (see Chapter
9). However, there are still some gaps that need to be addressed, summarized here:

• Gap 1: In case of large numbers of failing tests, there is a need for analyzing all the
failing tests one by one since it is not clear how many of them should be inspected
to find all the faults. Since large numbers of failures usually happen due to a few
underlying faults, inspecting all the failing tests is redundant and time-consuming.
Thus, there is a need for a technique that selects a proper representative subset of
all failing tests which inspecting them could be enough to find and repair all the
faults. This problem has been already addressed for black-box testing of database
applications [153]. Nevertheless, there is a need for a different failure clustering
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technique to apply in other domains where white box testing is being used. Moreover,
there is no methodology to guide developers in applying failure clustering in their
own domain.

• Gap 2: Existing failure clustering techniques work based on coverage data or domain-
specific data [153]. There is a need for non-coverage data that is useful in failure
clustering and is achievable when source code is not accessible.

• Gap 3: Existing granularity levels suggested for SBFL are either too fine- or coarse-
grained [119]. There is a need for a new granularity that can cover more bug types.

• Gap 4: There is no way to predict whether SBFL is effective in a specific domain or on
a specific program or not.

• Gap 5: There is no guideline for developers to help them in improving their code to
facilitate fault localization.

• Gap 6: There are no indicators that shows how accurate the SBFL results are in each
debugging session.

To address this problem statement, to bridge the gaps, and to achieve the goal of this
thesis, the following research questions must be answered:

1. How effective are state-of-the-art techniques in reducing failure diagnosis time?
(answered in Chapters 4, 6, 7, and 9)

2. Which clustering method and metric should one use to accurately group failing tests
with respect to the faults that caused them? (answered in Chapter 4)

3. What kind of data can one use to accurately cluster failing tests with respect to the
faults that caused them? (answered in Chapter 5)

4. How much reduction of failure diagnosis time is achievable using failure clustering?
(answered in Chapters 4 and 5)

5. How to improve and make SBFL applicable in practice considering the above-mentioned
developers’ needs (regarding data availability, granularity level, trustworthiness (reli-
ability), efficiency, and ability to provide rationale) [94]? (answered in Chapters 6, 7, 8,
and 10)

6. Can we predict the effectiveness of SBFL? (answered in Chapter 8)

7. How can developers change their code to facilitate fault localization? (answered in
Chapters 7 and 8)

8. How to use the results of failure clustering in fault localization? What are the benefits?
(answered in Chapter 10)
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9. Can we assign a confidence factor to the results of SBFL techniques? (answered in
Chapter 10)

1.4. Solution

We introduce Aletheia, a framework for failure diagnosis. This framework would serve
as an assisting tool for developers to empower them for fast and reliable failure diagnosis.
Utilizing this framework, developers: (1) know which data (type and granularity) they need
for further analysis, (2) are able to group failures based on their root causes, (3) are able to
find more information about the root causes of each failing group. To this end, Aletheia has
three main components: data generation, failure clustering, and fault localization.

Our framework is initially developed based on state-of-the-art failure diagnosis tech-
niques. We implemented and evaluated diagnosis techniques for which we did not find
a freely available implementation. The results led to an intuition that existing techniques
might not satisfy developers’ needs to apply them in practice.

To bridge the gap between theory and practice, firstly, we investigate the possibility of
finding clustering method(s) that could be suitable for different domains and introduce
a methodology for adapting this method(s) to different industrial domains with proper
a priori parameter setting. Also, we add a representative selection mechanism to the
clustering technique to eliminate the need for inspecting all the failing tests.

The failure clustering technique can be helpful in the following way. Assume 100 failing
tests failed because of 6 distinct underlying faults. An ideal clustering finds 6 clusters from
the failing tests, each cluster pointing to one fault. Selecting one representative test for each
cluster means developers need to investigate only 6 failures rather than 100 failures to find
all the faults.

Secondly, to improve the effectiveness of SBFL, we introduce a new granularity level,
namely syntactic blocks. A syntactic block can be defined as a block of statements that
syntactically belong together to form a program element, such as a method declaration, or a
while loop. By considering different types of syntactic components in the program’s source
code, we are able to capture a wide range of faults, while providing a better insight into the
possible location of the fault within the program element.

Besides, we augment SBFL with call and data-dependency graphs of failing tests to
propose a re-ranking approach. This approach produces more accurate results augmented
with the graphical representation of suspicious elements which can enhance users’ under-
standing of the program’s faulty behavior. Utilizing this technique, programmers find out
the direction they should search for the fault. Moreover, we propose a confidence factor
which demonstrates the probability of the fault being in the Top-10 ranks.

Finally and more importantly, we identify the influencing factors on the effectiveness
of fault localization. We leverage these factors to predict the quality of fault localization.
Thus, developers can decide whether to use the framework for fault localization or not.
In addition, developers can use the model generated on these factors to facilitate fault
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localization in their code.
The flowchart in Figure 1.2 depicts the process of using our failure diagnosis framework.

All the needed inputs and provided outputs are shown in the flowchart. Based on different
needs and conditions, users can utilize different components, failure clustering or fault
localization, of the framework.

1.5. Contributions

The thesis makes the following contributions:

• A failure clustering methodology. To fill gap 1, with a methodological change w.r.t
Jones’ parallel debugging [77], we propose a failure clustering technique. We propose
a methodology for adapting the idea of debugging in parallel to a real context, in-
cluding an approach to choosing adequate parameter values and a tailored approach
for measuring the quality of clustering. We augment it with adding a method for
selecting representative tests in clusters as a final step to the clustering. Our approach
is technically different from [153].

• A collection of data sources for failure clustering. To fill gap 2, we introduce a list
of coverage and non-coverage data that are useful in the clustering of failing tests.

• A new data granularity for failure diagnosis. To fill gap 3, we propose a new granu-
larity for program spectra called the syntactic block granularity which considers 18
different types of program elements.

• A new ranking strategy. We propose a ranking approach for SBFL techniques which
leverages dynamic call and data-dependency graphs of failing executions.

• A model to predict the effectiveness of SBFL. To fill gaps 4 and 5, we propose a set
of metrics which influence the effectiveness of SBFL. Using these metrics, we build a
model to predict the effectiveness of SBFL. This model can be helpful in facilitating
fault localization as well.

• A framework for failure diagnosis. We introduce a framework for failure diagnosis
which puts failure clustering and fault localization in a pipeline.

Figure 1.3 highlights the contributions of this thesis in the failure clustering and fault
localization areas. Parts of the contributions of this thesis have previously appeared in the
following peer-reviewed publications, co-authored by the author of this thesis:

1. M. Golagha, A. Pretschner, D. Fisch, and R. Nagy, “Reducing Failure Analysis Time:
an Industrial Evaluation,” 2017 IEEE/ACM 39th International Conference on Software
Engineering: Software Engineering in Practice Track (ICSE-SEIP), 2017.
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2. M. Golagha, “A Framework for Failure Diagnosis,” 2017 IEEE International Confer-
ence on Software Testing, Verification and Validation (ICST), 2017.

3. M. Golagha and A. Pretschner, “Challenges of Operationalizing Spectrum-Based
Fault Localization from a Data-Centric Perspective,” 2017 IEEE International Confer-
ence on Software Testing, Verification and Validation Workshops (ICSTW), 2017.

4. M. Golagha, A. M. Raisuddin, L. Mittag, D. Hellhake, and A. Pretschner, “Aletheia:
A Failure Diagnosis Toolchain,” 2018 ACM 40th International Conference on Software
Engineering: Companion Proceedings (ICSE), 2018.

5. Md. R. Rahman, M. Golagha, and A. Pretschner, “Pairika: A Failure Diagnosis
Benchmark for C++ Programs,” 2018 ACM 40th International Conference on Software
Engineering: Companion Proceedings (ICSE), 2018.
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6. M. Golagha, C. Lehnhoff, A. Pretschner, and H. Ilmberger, “Failure Clustering With-
out Coverage”, 2019 28th ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA), 2019.

7. M. Golagha, A. Pretschner, and L. C. Briand, “Can We Predict the Quality of Spectrum-
based Fault Localization?”, 2020 IEEE International Conference on Software Testing,
Verification and Validation (ICST), 2020.

1.6. Summary of Results

Our evaluation results show that utilizing our failure clustering approach, we are able
to reduce more than 80% (using coverage data) or 60 % (using non-coverage data) of the
analysis time.

Our re-ranking strategy which leverages dynamic call and data-dependency graphs of
failing executions outperforms the traditional SBFL techniques and also causal inference-
based techniques. Our experiments show that to localize a bug, a programmer should first
look for the most suspicious method on the call graph then look upward and inspect its
parent and grandparents instead of inspecting the ranking list in a linear fashion.

We found that the syntactic block granularity exhibits best-case absolute ranking behavior
similar to the method granularity while having a wasted effort (estimated effort for a
developer to find the origin of a fault) equivalent to, if not better than, the statement
granularity. Furthermore, it covers more types of faults than both existing granularities.
Finally, when compared to the method granularity, it exhibits up to a 92.48% improvement
when it comes to the locality of the program elements to the fault, a characteristic that
provides the user with a better insight into the possible location of the faults.

Our analysis on the effectiveness of SBFL show that a combination of 4 Static, 4 Dynamic,
and 2 Test metrics, gives us a model with excellent discrimination power (AUC=0.86) which
can be used in 2 ways: as a prediction model for the effectiveness of fault localization, and
as a confidence factor for the results of fault localization. These 10 metrics are the most
influential metrics on the effectiveness of fault localization. Thus, they can be used as a
guide to improve the code quality for more effective fault localization.

1.7. Structure

Chapter 2 provides an overview of existing failure diagnosis techniques and their short-
comings. Chapter 3 introduces the benchmarks used in the evaluations. Chapters 4 and 5
describe failure clustering techniques using coverage and non-coverage data respectively.
Chapter 6 describes the new granularity level to improve SBFL. Chapter 7 describes a
new ranking strategy to improve SBFL results. Chapter 8 introduces a model to predict
the quality of fault localization. Chapter 9 presents related work. Chapter 10 presents
conclusions, insights and future work.
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This chapter presents an introduction to the failure clustering and fault localiza-
tion techniques and their advantages in failure diagnosis. Parts of this chapter
have previously appeared in publications [55, 58, 54, 56, 150], co-authored by
the author of this thesis.

2.1. Failure Clustering Background

As discussed in Chapter 1, Jones et al. [77] introduced two clustering approaches. Using
the first technique, they cluster failures based on execution profiles and fault localization
results. Their second technique suggests to only use the results of fault localization. The
further evaluations [68, 58] showed that the first technique is effective if it is adapted to the
context and if it is used for clustering failures rather than debugging and localizing faults.
Therefore, in our thesis, we utilize Jones’ first clustering approach as the base of our work
and build on it (see Chapters 4 and 5).

2.1.1. Agglomerative Hierarchical Clustering

Based on Jones et al. work, we use the Hierarchical Clustering (HC) algorithm to cluster
failing tests. HC is an unsupervised machine learning [116] algorithm which measures
the distance between data objects to find their similarity. The goal of HC is to compute a
dendrogram, a tree structure of data objects. The number of clusters can vary from one to the
number of individual data objects (m).

Agglomerative clustering is a ‘bottom-up’ Hierarchical Clustering approach. The algo-
rithm starts with m clusters that each includes only one data object. Iteratively, clusters
with the smallest inter-cluster distance are merged until only one cluster remains.

In our work, each data object is a failing test. Thus, each single failure at first is in its
own cluster. Using some distance metrics, the similarity between clusters is measured, and
the two most similar clusters are merged to build a new cluster. Figure 2.1 shows a cluster
tree for hypothetical failing tests T2, T4, T5, and T6. In the first iteration, the T5 and T6 are
merged and formed cluster C3, then T2 and T4 are merged into cluster C2. In the third
iteration, C2 and C3 are merged forming a new cluster C1.

Hierarchical clustering does not need a predefined number of clusters, k. However, since
we want a partition of (by definition: disjoint) clusters, the hierarchy needs to be cut at
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Figure 2.1.: Hierarchical Clustering of 4 Failing Tests

some point (if there is more than one underlying fault). There are a number of criteria in
the literature to determine the cutting point [116]. Cutting the tree at a given height will
partition the tree at a selected precision. For instance, in Figure 2.1 example, cutting after
the first row (n=2) of the tree will yield two clusters, C2 and C3, and cutting after the second
row (n=4) will yield four clusters, T2, T4, T5, and T6. The second cutting distance leads to
more fine-grained clusters.

Clustering Methods

Clustering method defines how given a distance metric, the distance between clusters is
calculated. In our experiments, we used the following methods [116] (considering clusters
C2 and C3 in Figure 2.1 as an example):

• Single: The distance between two clusters C2 and C3 is defined as the minimum
distance between any two objects of C2 and C3.

• Complete: The distance between C2 and C3 clusters is defined as the maximum
distance between any two objects of these clusters.

• Average: The distance between C2 and C3 clusters is defined as the average distance
between objects of these two clusters.

• Weighted: The distance between two clusters C2 and C3 is defined as the mean of the
distances between T2, T4, T5, and T6, since cluster C2 was formed by T2 and T4 and
C3 was formed by T5 and T6 in the previous iterations.

• Centroid: The distance between C2 and C3 clusters is defined as the distance between
the two centroids of these clusters.
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Distance Metrics

Distance metric defines how to calculate the distance between any two objects represented
as numerical feature vectors [116]. The distance between two vectors u and v is defined as:

• Euclidean: Ã
n∑
i=1

(ui − vi)2 (2.1)

• Squared Euclidean:
n∑
i=1

(ui − vi)2 (2.2)

• Cityblock:
n∑
i=1

|ui − vi| (2.3)

• Cosine:
n∑
i=1

ui · vi 
n∑
i=1

u2i

 
n∑
i=1

v2i

(2.4)

• Correlation:

1− (u− ū) · (v − v̄) 
n∑
i=1

(ui − ū)2
 

n∑
i=1

(vi − v̄)2
, (2.5)

whereū represents the mean value of the elements of u.

• Hamming:
n∑
i=1

[ui 6= vi] (2.6)

• Jaccard:
U ∩ V
U ∪ V

(2.7)

• Chebyshev:
max
i

(|ui − vi|) (2.8)

• Canberra:
n∑
i=1

|ui − vi|
|ui|+ |vi|

(2.9)

17



2. Background

• Braycurtis:
n∑
i=1
|ui − vi|

n∑
i=1
|ui + vi|

(2.10)

• Yule:
2× cTF × cFT

n
, (2.11)

where cTF is the sum of occurrences where x[i] == True and y[i] == False for two
binary feature vectors x and y of length i.

2.1.2. Evaluation Metrics

To evaluate the performance of the clustering, we considered two groups of metrics, one
group to measure the effectiveness from the scientific point of view and one group to
measure the effectiveness from the practical point of view.

Practice Oriented Metrics

From the perspective of a tester, three questions should be answered:

1. How many of the existing faults do we find analyzing only the cluster representatives?

2. How many tests are assigned to the correct faults if we analyze the representative
failures and assign the found fault to all of the cluster members?

3. How much reduction is achievable using the clustering tool?

To answer these questions, we measure the following metrics respectively:
FoundCauses: shows the ratio of the faults found analyzing only the representatives.

FoundCauses =
|Ffound|
|Ftotal|

, (2.12)

where Ffound is the set of unique faults found through analyzing the representative tests
and Ftotal is the set of unique underlying faults that are found manually by developers and
stored in the database. Score “1” means all the faults have been found.

Purity: Purity shows how many failures are assigned to the correct faults if analyzing
only the representative tests and assigning the same fault to all the cluster members. To
compute Purity, each cluster is assigned to the class which is most frequent in the cluster
[117]. A class is a fault in our case. The accuracy of this assignment is measured by counting
the number of correctly assigned objects dividing by the total number of failures.

Purity(Ω,C) =
1

N

∑
k

max
j
|ωk ∩ cj |, (2.13)
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where N is the total number of failures, Ω = {ω1, ω2, .., ωk} is the set of K clusters and
C = {c1, c2, .., cj} is the set of J classes. Purity score “1” means all the members in the
cluster failed because of the same reason and all of the them have been assigned to the same
fault.

Achieved Reduction (ARed): We introduce a Reduction (Red) metric which measures
the avoided effort as complement of the ratio of the number of clusters to the number of
test cases:

Red = (1− K

# of TCs
)× 100. (2.14)

Note that Red alone is not sufficient for judging the effectiveness. To realize how success-
ful we are in the reduction of analysis time, it is also necessary to know the ideal reduction
in each case. As examples, first consider a test suite with 8 failing tests and 6 faults. In
an ideal clustering, there should be 6 clusters each one pointing to 1 fault which means
investigating 6 tests rather than 8 tests. Thus, the maximum possible reduction is 25%. As
a second example, consider a test suite with 20 failing tests and 2 faults. In this case, the
maximum possible reduction with an ideal clustering is 90%. Just considering the absolute
effective reduction Red does not tell us how good we could have been.

Therefore, we measure how much of the ideal reduction (IRed) has been achieved, and
name it Achieved Reduction (ARed):

ARed =
Red

IRed
× 100 (2.15)

where IRed is:

IRed = (1− J

# of TCs
)× 100 (2.16)

In addition, since more clusters mean more representative tests and thus less reduction
in analysis time, ARed can also serve as an easily interpretable measure that shows how
much finding extra clusters affects the effectiveness of our approach.

We, finally, combine these three evaluation metrics to a single metric. A single perfor-
mance metric facilitates the evaluations of different parameter combinations when fitting
the clustering model. Thus, we define the Performance metric as:

Performance = wfc × FoundCauses+ wp × Purity + war ×ARed , (2.17)

where wfc, war, and wp are the weights that can be defined by the developers based on
their needs. After discussion with industry experts and training with different values, we
found the best combination as wfc = 0.4, war = 0.4, and wp = 0.2. An important fact to
consider when choosing the performance weights is that both the FoundCauses and the
Purity metrics (unlike ARed) favor the larger number of clusters and a few members in
each cluster. For instance, having each failing test in a separate cluster leads to Purity score
“1” and subsequently FoundCauses score “1” but ARed score “0”.
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Science Oriented Metrics

Typical objectives in clustering are high intra-cluster similarity and low inter-cluster simi-
larity. However, good scores on these criteria do not necessarily mean good effectiveness
in our application. To do a proper evaluation, we need to consider both scientific and
industrial objectives.

We chose purity, F-measure and entropy from the literature as our science oriented eval-
uation metrics. To compute purity, each cluster is assigned to the class which is most
frequent in the cluster. A class is an underlying fault in our case. Then, the accuracy of this
assignment is measured by counting the number of correctly assigned objects dividing by
N [117] where N is the number of objects. Let Ω = {ω1, ω2, ..., ωK} be the set of K clusters
and C = {c1, c2, ..., cJ} the set of J classes. Then purity is:

Purity(Ω,C) =
1

N

∑
k

max
j
|ωk ∩ cj | (2.18)

If the number of clusters is large, achieving high purity is easier. If each object is in its own
cluster, purity is 100%. Purity is the most important factor from a practical point of view
since it means all the failures in one cluster failed because of the same reason. However,
there is a trade-off between the quality of clustering and the number of clusters. Since fewer
clusters mean more reduction in analysis time, which is our objective, we need a measure
for this trade-off.

In the clustering literature, the F-measure [117] is proposed to this end:

F1 = 2× precision× recall
precision+ recall

, (2.19)

where precision = TP/(TP + FP ) and recall = TP/(TP + FN).
In our case, a true positive (TP ) means assigning two failures grounded in the same

fault to the same cluster; a true negative (TN ) means assigning two failures grounded
in different faults to different clusters; a false positive (FP ) means assigning two failures
grounded in different faults to the same cluster; and a false negative (FN ) means assigning
two failures grounded in the same fault to different clusters. We also use the entropy metric
proposed by Rogstad and Briand [153] to capture the trade-off: For each of the K clusters in
Ω, they compute the number of failures of type i (failing because of underlying fault i) that
belongs to cluster cj (fij) divided by the total number of failures of type i (|fi|):

EF (fi, C) = −
K∑
j=1

(
fij
|fi|

)log(
fij
|fi|

), (2.20)

and total deviation entropy is:

EF−TOT (F,C) = −
J∑
i=1

EF (fi, C). (2.21)

We provide these values chiefly for comparison purposes with existing work.
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2.2. Fault Localization Background

One of the most popular subsets of techniques for automated fault localization (FL) is
spectrum-based fault localization, known as SBFL [182].

2.2.1. Spectrum-based Fault localization

SBFL techniques analyze the hit spectrum of a program to find the fault. By measuring the
similarity between the spectrum and the verdict vector, one can identify program elements
which correlate with test failures. An example of a hit spectrum is shown in Table 2.1. Each
• in the table means that the respective element “e” (e. g., statement, method, basic block
etc) was hit in the respective test run “t”.

Table 2.1.: A Hypothetical Hit Spectrum
Test Cases

Element t1 t2 t3 t4 t5 t6

e1 • • • • • •
e2 • • • •
e3 • • • •
e4 • • • •
e5 •

Verdict F P P P P F

There are several metrics in the literature to measure the similarity[182]. DStar, Ochiai,
and Tarantula are three of the most popular and best-performing metrics in recent studies
[141].

DStar =
(NCF )∗

NUF +NCS
,

Tarantula =

NCF
Nf

NCF
NF

+ NCS
NS

,

Ochiai =
NCF»

NF ∗ (NCF +NCS)
,

where NF is the number of failing tests, NS is the number of passing tests, NCF is the
number of failing tests that cover the element, NCS is the number of passing tests that cover
the element, NUF is the number of failing tests that do not cover the element. DStar metric
takes a parameter *. The nominator is then taken to the power of *. There is no significant
difference between these metrics [141]. Table 2.2 shows the suspiciousness scores and ranks
of program elements in Table 2.1 using Ochiai metric. As the ranks indicate, element e4 is
the most suspicious element.
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Table 2.2.: Ochiai Suspiciousness Scores
Suspiciousness

Element Score Rank
e1 0.577 2
e2 0 3
e3 0 3
e4 0.707 1
e5 0 3

2.2.2. Method-Level Fault Localization with Causal Inference

Causal inference FL techniques intend to improve SBFL effectiveness by considering the
call and data-dependency graphs of test runs. This subset of techniques considers the
causal relationship between method coverage and test results [118]. The first causal-based
technique was proposed by Baah et al. in [7]. Later, Shu et al. extended it to a method-level
approach [162] named MFL. We describe MFL briefly in the following.

MFL starts with constructing a causal graph. A causal graph models the dependencies
between random variables. Nodes denote random variables. A directed edge between node
X and Y means that X may cause Y. For an FL problem, the causal graph is constructed
by combining the dynamic call and data-dependency graphs of a program (P). In MFL,
each node is representing a method (M) triggered in a test run. Every call from one method
to another is reflected by adding an edge from caller to callee. Also, for any explicit data-
dependency between two methods, one edge is added. Finally, an outcome node (Y), and
an edge from each method to the outcome is added to the graph. Y is equal to 0 if the test is
failing, and 1 if it is passing. In the next step, utilizing Pearl’s Backdoor Criterion [139] the
potential confounders are listed for each method.

The final step is estimating a causation-based suspiciousness score for all the methods
covered in at least one failing TC. Put it differently, the aim is to obtain a causal-effect
estimate of M on the outcome of P that is not subject to severe confounding bias. To this
end, MFL uses the following regression model for an experiment with S tests:

Y = α+ τMTM + βMXM + ε,

where TM is the treatment variable which is 1 when the method is executed in the test
and 0 otherwise, XM is a S × 1 vector with an entry for each method on the confounders
list (1 if the confounding method is executed in the test, 0 otherwise). Linear regression
is then used to estimate other variables. τM describes how significant the influence of the
treatment variable TM is on the test failure (Y = 0). Therefore, it is used as suspiciousness
score for method M. The model is fit separately for each method.

We implemented MFL based on the pseudocode given in [162]. When applying it, we
noticed that the confounder selection part was costly. Thus, it was not always possible to cal-
culate the suspiciousness for all the methods in a failing test. To mitigate this issue, instead
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of linear regression, we utilized Random-Forest-Regressor to estimate the failure-causing
effect of M (τM ). We used the implementation of Random-Forest-Regressor provided by the
Akelleh Causality tool 1. This estimator uses the average value of training multiple decision
trees. The training data is extracted randomly from the whole data set.

Furthermore, we changed the expensive confounder selection part. We improved it
by parallelizing computations of the weak-positivity table and calling it only on-demand.
These changes improved the performance and made it possible to run this approach on
large projects. We call the improved version Improved-MFL in the rest of this thesis.

2.2.3. Evaluation Metrics

When evaluating our contributions in improving SBFL, we make the simplifying assump-
tion of perfect bug detection, in that, if given a program element contains a fault, the user
will be able to localize the fault 100% of the time [182]. This allows us to evaluate the
effectiveness of each FL technique, without having to worry about the complexity of the
faults themselves.

Furthermore, due to the fact that many of the faults in practice spread across multiple
lines, there will often be multiple program elements that localize the fault. To deal with
this, all of our metrics are relative to the most suspicious (highest scoring), fault-localizing
element, which we will denote as e*.

When evaluating the results, we consider the following metrics extracted from [182, 135,
142, 115].

EXAM Scores

EXAM score or wasted effort is defined by Wong and Debroy as “the percentage of exe-
cutable statements that have to be examined until the first statement containing the bug
is reached” [179]. Current studies assume that developers have a perfect understanding
of fault and can recognize the fault as quickly as they find the location of bug while going
through the ranking list. With this premise, developers have to inspect all the elements that
are ranked higher than the faulty element. The number of inspected non-faulty elements
is defined as the wasted effort for the developer [85]. Current research commonly puts
the wasted effort in relation to the total number of ranked elements. In the case of ties, a
distinction has to be made. Therefore we use three variants called O-EXAM, P-EXAM, and
∆-EXAM [115].

O-EXAM, or Optimistic EXAM score, takes a best-case approach to tie breaking, where it
is assumed that the faulty program element e* is chosen first from the list of tied elements.
Therefore, it only considers the wasted effort from all elements with a suspiciousness score
strictly higher than the fault containing element e*.

O-EXAM =
best-case wasted effort

total elements
× 100 (2.22)

1https://github.com/akelleh/causality
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P-EXAM, or Pessimistic EXAM score, takes a worst-case approach to tie breaking, where
it is assumed that the program element e* is the last element chosen from the list of tied
elements. It considers the wasted effort from the optimistic version, plus the wasted effort
from all other tied program elements. However, in the case of a tie containing multiple
faulty elements, the wasted effort from all other non-faulty elements is instead calculated.

P-EXAM =
worst-case wasted effort

total elements
× 100 (2.23)

∆-EXAM is defined as follows:

∆-EXAM = P-EXAM−O-EXAM (2.24)

For all three EXAM scores, we provide the average and median values.

Best and Worst Absolute Rank

To account for interest drop-off in programmers’ investigation and support scalability to
larger programs, Parnin et al. suggest the usage of absolute rank [135]. Absolute rank
considers the position of the program element e* in the ranked list of suspicious program
elements.

However, like the EXAM scores, we need a distinction in the case of ties. Therefore, to get
a better understanding of the best- and worst-case effectiveness of the evaluated techniques,
we calculate the average and median of the best absolute rank and, worst absolute rank.
Best absolute rank assumes that the faulty element e* is the first to be examined among
the elements of the same suspiciousness, whereas worst absolute rank, like P-EXAM score,
assumes the faulty element e* is examined after all other tied, non-faulty elements.

Top-N Counts

To get a better idea of the best and worst absolute ranks, we count the number of bugs
whose absolute rank of the program element e* is in the top N ranks. More specifically, we
consider Top-1, Top-5, and Top-10 counts for both the best and worst absolute rank.
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3. Case Studies

This chapter presents an overview of the case studies used in the evaluations.
Parts of this chapter have previously appeared in peer-reviewed publications [150,
54], co-authored by the author of this thesis.
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In this chapter, we describe the case studies and benchmarks we utilized to evaluate our
solution ideas. Each chapter’s solution idea is evaluated using only one of the following case
studies. However, we used a combination of these case studies to evaluate our framework
in Chapter 10. All of these case studies are real.

3.1. Large Car Manufacturer (LCM)

Testing and debugging automotive Cyber Physical Systems (CPS) are becoming more chal-
lenging due to rapid innovation. These innovations are applied with the aid of applications
and software features added to cars. These applications execute on dozens of programmable
electronic control units (ECU) that communicate through various communication buses
such as CAN, FlexRay, LIN and automotive Ethernet. To test ECUs, developers perform
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multiple levels of testing, ranging from unit tests to acceptance tests. In practice, there are
always limited time and resources available to analyze failures and find underlying faults.

SiL (software-in-the-loop) and HiL (hardware-in-the-loop) are two levels of testing that
encompass huge numbers of tests with high execution times. Testing an ECU on the SiL
level means that its software components are tested within a simulated environment model but
without any actual hardware [17]. HiL testing aims at testing the integration of hardware
and software of an ECU in a simulated environment. At the HiL level, the software hence
runs on the final ECU, again within a simulated environment [17]. TCs in these two levels
are frequently re-run as regression tests. Due to large number of TCs at the SiL and HiL
levels, their execution time is significant. Therefore, in the process of analyzing failures,
it would be too expensive to execute tests immediately after correcting a single fault. In
practice, to remove all the underlying faults, testers dig into failing tests one by one to make
sure they have found and resolved all the faults before re-running the tests. This process
takes a significant amount of time to be finished.

In the following, we review the basics in automotive software test and integration.

Body Domain Controller

Usually, each ECU is responsible for regulating a separate sub-set of car features. To
enable ECUs to exchange data about their states, multiple communication buses (e.g.
CAN, FlexRay, Automotive Ethernet) are used. The communication buses create a boardnet
together with the ECUs.

In the boardnet of each car, the Body Domain Controller (BDC) is one of the fundamental
ECUs that links all major buses to allow board-wide interactions and regulates the body
features that define several fundamental functions that each car provides. Each body
function is part of a component (e.g. air conditioning, seat features, sunblinds). BDC consists
of 7 domains and over 100 components.

Automated Software Integration and Analysis

To ensure quality and safety, ECU software should be tested in several stages during its
development. Following a continuous integration approach, automotive companies need to
continuously select, compile, and execute a large number of TCs. Tests are either executed
in a SiL or HiL environment.

TCF - Test Case Framework

LCM uses a black-box testing method to verify the correctness of ECU software during its
development. Boardnet messages are used for this purpose to stimulate the ECU from the
external environment. Then, responses of the ECUs are compared to the expected values.
An abstract domain-specific language called TCF (Test Case Framework) facilitates coding
and running TCs for the BDC [124]. In TCF, Actors encapsulate communications with ECUs.
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As shown in Figure 3.1, each Actor offers a number of actions to regulate a particular ECU
function, e.g. to alter the audio module volume. In the HiL level of testing, these actions are
converted into bus messages using a Mappings tool. A mapping scenario for Figure 3.2 is
shown in Figure 3.1. Mapping is used to translate the behavior of an Actor to an I/O signal
by specifying the type of bus(e.g. ’ LIN ’), the particular bus (e.g. ’KLIN8’), the messages
(e.g. ’ 0x2A ’), and the name of the bus.

Audio_Volume {
VolumeUp(steps)
VolumeDown(steps)
VolumeNoDirection(steps)
NoAction
Invalid

}

Figure 3.1.: TCF Actor

HiLMappings {
Set Audio_Volume.VolumeDown(steps) {
LIN.KLIN8.0x2A.ST_DIRRT_AUDCU_LIN = steps
}
Check Audio_Volume.VolumeDown(steps){
LIN.KLIN8.0x2A.ST_DIRRT_AUDCU_LIN = steps
}
}

Figure 3.2.: TCF HiL Mapping

The other two important concepts used in the TCF language are Codings and Alternatives,
as shown in Figure 3.3. Codings are needed to define which peripheral hardware is
connected (e.g., the audio module is connected and controlled via LIN bus). Alternatives
enable developers to define different situations for TC execution (e.g. car condition ‘parking’
vs. ‘driving’). For each Alternative, a distinct test is generated at compile time. For instance,
the ‘Audio Example.tcf’ file, illustrated in Figure 3.3, leads to the generation of two tests:
‘Audio Example a1’ and ‘Audio Example a2’.

Data sets

In this thesis, we evaluate our ideas in reducing failure analysis time for both BDC SiL and
HiL regression testing and debugging.

To generate the study data sets, we used the current as well as some old versions of the
code and reported bugs available in the repositories of LCM. Table 3.1 shows information of
the software components under test along with their SiL tests. We have changed the names
of the components for confidentiality reasons. We performed our approaches in parallel
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TestCase Audio_Example {
HiLCoding {
BE_AUDIO_VERB = 01 // connecting audio module
BE_AUDIO_LIN_VAR = 01 // connecting LIN bus
}
Execute {
Alternatives {
PWF = ST_CON_VEH_PARK_IO // parking
PWF = ST_CON_VEH_DRIV // driving
}
Audio_Volume = VolumeDown(15)
Run($ShortMainTaskCycle)
Audio_Volume == VolumeDown(15)
}
}

Figure 3.3.: TCF File

Table 3.1.: Software Components of the Case Study
Lines of Code Number of TCs

SWC1-OV1 ' 145,952 1103
SWC1-OV2 ' 145,952 1103
SWC1* 145,952 1103
SWC2* 113,470 1303
SWC3 14,434 23
SWC4 59,349 890
SWC5 42,308 793
SWC6 87,984 687
SWC7 7,164 424
SWC8 29,930 234
SWC9 59,349 163

Table 3.2.: SiL Builds
Build Related Component # of Failing Tests # of Faults

1 SWC1-OV1 24 2
2 SWC1-OV2 240 3
3 SWC1 32 8
4 SWC2 25 4
5 SWC3 7 1
6 SWC4 39 5
7 SWC5 30 3
8 SWC6 19 4
9 SWC7 66 1
10 SWC8 9 4
11 SWC9 8 1
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with the partner’s current process of failure analysis. This allows us to use the developers’
analysis reports as ground truth.

All in all, we had access to 11 SiL and 86 HiL builds (test runs). Considering SiL builds, we
had access to 499 failing tests and 46 faults (see Table 3.2). Considering HiL builds, we had
access to 8743 failing tests and 1531 faults. Due to large amount of HiL data, we reserved
10% of the data for test purposes and used the remaining 90% to train the algorithms. As
the result, the training set consists of 77 builds, more than 15000 passing tests, 7837 failing
tests and 1360 faults as shown in Table 3.3.

Table 3.3.: HiL Builds [102]
Build # of Failing Tests # of Faults Phase Build # of Failing Tests # of Faults Phase

3 131 17 Train 113 60 27 Train
10 38 9 Train 114 37 20 Test
12 33 7 Train 115 41 18 Train
18 38 10 Train 116 147 13 Train
21 55 11 Train 117 9 2 Train
24 159 15 Train 118 261 10 Train
26 167 15 Train 119 195 17 Train
29 127 16 Train 121 178 16 Train
31 142 9 Test 122 107 17 Train
34 53 19 Train 123 125 12 Train
37 50 6 Train 124 185 10 Test
39 74 9 Train 125 161 29 Train
42 43 24 Train 127 206 27 Train
46 101 15 Train 128 120 22 Train
47 8 7 Train 129 99 17 Train
48 69 15 Train 130 149 21 Train
53 42 6 Train 131 164 22 Train
54 77 27 Test 132 118 32 Train
55 58 17 Train 133 222 18 Train
56 55 12 Train 134 84 23 Test
63 103 13 Train 135 71 24 Train
68 56 15 Train 136 117 18 Train
69 48 8 Train 138 66 19 Train
70 77 20 Train 139 107 27 Train
73 21 9 Train 140 90 13 Train
74 30 15 Train 141 57 24 Train
75 86 12 Test 142 90 37 Train
84 99 1 Train 143 52 25 Train
85 171 26 Train 144 121 33 Test
89 181 23 Train 145 63 16 Train
91 38 8 Train 146 89 26 Train
92 173 29 Train 147 89 20 Train
95 95 29 Train 149 166 22 Train
97 79 22 Train 150 90 18 Train
99 119 25 Train 151 183 14 Train
102 96 25 Test 152 191 26 Train

Continued on next page
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Table 3.3 Continued from previous page

Build # of Failing Tests # of Faults Phase Build # of Failing Tests # of Faults Phase

103 82 25 Train 153 90 10 Train
107 164 35 Train 154 78 13 Test
108 83 30 Train 155 59 8 Train
109 59 30 Train 156 118 27 Train
110 101 17 Train 158 70 17 Train
111 56 26 Train 162 264 5 Train
112 7 2 Train 163 210 5 Train

3.2. Defects4J

Defects4J [82] is the most popular benchmark of real Java bugs in recent studies to evaluate
new ideas in failure diagnosis. Table 3.4 summarizes some characteristics of Defects4J’s
projects.

Table 3.4.: Defects4J Projects [82] [31]
Project Code LoC Test LoC # of Test # of Faults
Closure 90K 83K 7,927 133
Lang 22K 6K 2,245 65
Math 85K 19K 3,602 106
Time 28K 53K 4,130 27
Chart 96K 50K 2,205 26
Mockito 12K 11K 1,854 38

Defects4J consists of 395 real faults from 6 open source Java projects: JFreeChart (26
bugs), Closure Compiler (133 bugs), Apache Commons Lang (65 bugs), Apache Commons
Math (106 bugs), Mockito Testing Framework (38 bugs), and Joda Time (27 bugs). In
each buggy version, there is exactly one bug per program under consideration. For each
bug, Defects4J provides the buggy program version and its corresponding fixed version.
Furthermore, Defects4J bugs are 1) related to source code (i.e., fixes within configuration
files, documentation, or tests are not included), 2) reproducible (each bug contains at least
one test that exposes the bug), and 3) isolated (patches do not include unrelated changes to
the bugs such as refactoring or feature additions). In this thesis, when referring to different
buggy versions, we use the notation of [project name]-[bug id], for instance, Chart-22 or
Lang-27.

We chose Defects4J due to it being the largest available database of real bugs for Java, as
well as the fact that it has been used in many other recent studies [195, 142, 165, 6, 95, 145].
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3.3. Pairika

Pairika is the first publicly accessible benchmark for C++ programs. It contains 40 bugs
extracted from 7 modules of OpenCV project with more than 490 KLoC and 11129 tests.
Each bug is accompanied by at least one failing test.

OpenCV is a library of programming functions aimed at real-time computer vision
written in C and C++. The library runs under Linux, Windows and Mac OS X. It has
52 modules [131]. Table 3.5 demonstrates the related modules. For reporting issues and
requesting features, OpenCV has an issue tracking system 1. To build Pairika, we reviewed
247 “Closed” issues that were labeled as “Bug” or “Feature”. Among the reviewed issues,
we could extract 40 reproducible bugs that each yields at least one failing test. The extracted
bugs are isolated, reproducible, and are related to the source code.

Pairika is publicly available at: https://github.com/tum-i22/Pairika

Table 3.5.: OpenCV Modules
Module LoC # of Files # of Tests # of Faults

Core functionality (core) 196550 345 10528 15
Machine learning (ml) 19398 34 39 5
Calibration and 3D reconstruct (calib3D) 44647 84 87 2
2D features (features 2D) 60557 101 119 1
Deep neural network (dnn) 147671 162 122 13
Video analysis (video) 13895 48 68 1
Computational photography (photo) 10880 47 166 3

1https://github.com/opencv/opencv/issues
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4. Failure Clustering with Coverage

This chapter presents a clustering approach to group failures based on their
root-causes. In addition, it presents a methodology to apply failure clustering
in a real-world context. Parts of this chapter have previously appeared in a
publication [58], co-authored by the author of this thesis.
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In this chapter, we explain our first clustering approach which uses coverage data. Thus,
for evaluation, we used LCM SiL data set where test execution time is high and the source
code is accessible. We devise a methodology for adapting Jones’ debugging in parallel
technique [77] as a clustering technique (see Chapter 2) to a real context. We augment this
approach by a method for selecting representative tests. To analyze failures, rather than
investigating all failing tests one by one, developers inspect only these representatives. Our
evaluation results show that utilizing our clustering tool, developers can reduce failure
analysis time by more than 80%.
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4.1. Introduction

In this chapter, we tackle a problem which was identified while conducting industry-
oriented research with LCM for testing software releases of car ECUs. The problem is the
following. There are many TCs at the SiL level of testing. These tests are frequently executed
as regressions happen. In case of failures, there are usually only a few underlying faults
that cause a large number of failures. Considering the significantly high execution time of
the tests, it is not always possible to find the first fault, resolve it and re-run all the tests.
One current process in practice is investigating all failing tests to find the faults, removing
the faults and re-running the tests. This approach makes debugging a very time-consuming
process. How can we reduce failure analysis time?

One solution is to cluster failing TCs with respect to the fault that caused them, select
one representative for each cluster, investigate only the representatives, find the underlying
faults and resolve them, then re-run the tests.

Thus, in this chapter, we:

• propose a methodology for adapting the idea of debugging in parallel [77] to a real
context, including an approach to choosing adequate parameter values and a tailored
approach for measuring the quality of clustering. Our approach is methodologically
different from [77] in the way that we propose an approach for segregating between
failing tests rather than locating faults.

• propose a method for selecting representative tests to start the debugging process.
Analyzing only the representative tests removes the need for analyzing all the failing
tests one by one.

• investigate the effectiveness of our proposed approach in LCM SiL data set with ca.
850 KLOC. We also show how available software-related information at the SiL level
can be used to analyze failures at the HiL level. Finally, we suggest new metrics for
the effectiveness of TC clustering.

The above-mentioned contributions are the main differences between our work and [77].

4.2. Methodology

In the following, we describe our methodology. We first explain the first clustering technique
introduced by Jones et al. [77] that we use as part of our approach, while completing it with
our two additions that are selecting representative tests and utilizing SiL information for
analyzing HiL failures. Then, we explain our strategy for gathering different methods and
metrics and identifying the best ones.
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4.2.1. Approach

First, we run a test suite and extract an execution profile for each TC. Second, utilizing
agglomerative hierarchical clustering [154], we build a tree of failing tests based on the
similarity of execution traces. In order to cut this tree into clusters we need to know the
best number of clusters. In the third step, we hence utilize fault localization techniques
to decide on the best number of clusters. Then, we cut the tree into the found number of
clusters. Finally, in the fourth step, we calculate the centers of the clusters and choose the
failures which are closest to the centers as representative tests. The tool we implemented
is meant to be used as an assisting tool for developers. Therefore, they receive the list of
representatives to investigate them. Steps one, two and three are taken from [77]. However,
we have improved these steps to make them applicable in real contexts. In the following,
we describe the steps and our improvements in detail.

Step 1: Running Tests and Profiling Executions

The first step is to run the tests and profile executions. To profile TC executions, we
instrument the code using an open source tool for measuring code coverage for C++ and C.1

Executing a program using this tool results in a report about which lines of code have been
executed. The main advantage of this tool in our case is its compatibility with the Visual
C++ compiler used in Microsoft Visual Studio, which, in the context of our case study, is
the development tool used by our industry partner.

We developed a tool called Aletheia (see Chapter 10). The Data Generation functionality of
Aletheia consists of three stages. The first stage is to prepare test execution according to the
startup parameters and the system under test to be analyzed. The next stage involves the
execution of the tests while recording the coverage information and the test results using
the coverage tool. The third stage is optional and depends on the level of abstraction at
which the analysis should happen. Since the tool we use provides statement-level coverage
only, for function-level coverage analysis the third step is needed to partially parse the
source files to aggregate the statement-level information to function-level coverage. The
coverage information is the execution profile and is fed to the next step as input. In our case
study, since controlling the hardware is in the form of functions to read/write signals, it is
important to use function-level profiles.

Step 2: Generating Failure Tree

As described in Chapter 2, we utilize hierarchical clustering to generate a dendrogram of
failing tests. We use execution profiles generated in the previous step, as our feature sets
for clustering.

1OpenCppCoverage, available at https://opencppcoverage.codeplex.com/, licensed under the GNU General
Public License version 3 (GPLv3).
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Step 3: Cutting the Failure Tree by Fault Localization

We use Spectrum-Based Fault Localization (SBFL) (explained in Chapter 2) to find the best
number of clusters k, or the cutting point, of the dendrogram. Considering Figure 2.1, the
question is which of the dashed horizontal lines 1 to 4 is the best cutting point. Liu and
Han [109] as well as Jones et al. [77] suggest that if the failures in two clusters identify the
same entities as faulty entities, they most likely failed due to the same reason and should
be merged into one cluster.

This process can also be considered in a top-down manner. This technique computes the
fault localization rank for the children of a parent to decide whether the parent is a better
cluster or it should be divided into its two children. The result of fault localization result is
a ranked list of entities from the most to the least suspicious. To check similarity between
ranked lists, we used the Jaccard [133] set similarity as suggested by [77], defined on two
sets A and B as follows.

Similarity(A,B) =
|A ∩B|
|A ∪B|

(4.1)

If the similarity of the fault localization rank of two children is smaller than a predefined
threshold, they are (likely) pointing to different faults. They are dissimilar and should not
be merged. Thus, the parent cluster is not a good stopping point and should be divided
into its children. Otherwise, the parent is a better cluster and this is the stopping point for
clustering. According to Figure 2.1, the first step is to decide whether dashed line 1 is a
better cutting point or dashed line 2. To answer this question, the fault localization rank
at cluster c2 is compared to fault localization rank at cluster c3. If the similarity between
these two sets is larger than the predefined threshold, they are similar and the parent c1 is
a better clustering than dividing it into two clusters c2 and c3. As the result, line 1 is the
cutting point. If line 1 is not the cutting point, the process continues to the point that no
more division is needed. We somewhat arbitrarily selected 0.85 as the similarity threshold
in our evaluation tests, and because of the good results, did not see a need to question this
choice.

Step 4: Selecting Representative TCs

We have already grouped TCs based on their hypothesized root causes by generating the
failure tree and cutting it into clusters. Now, we need to suggest a representative for each
cluster. Developers investigate only the representatives to find all the faults. Since it is
likely that clustering is imperfect, the selection of representatives for a cluster has a great
importance: We are aware that clusters are unlikely to be 100 percent pure [38].

We require our solution to make the representatives reliable. To avoid selecting an outlier
(a failure which does not belong to the fault class that has the majority in the cluster) as
a representative in clustering, we hence calculate the center of the cluster and find the
k-nearest neighbors (KNN) [25] to the center. These KNNs are selected as representatives of
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the respective cluster. KNN search finds the nearest neighbors in a set of data for each data
point. Based on discussion with test engineers, we considered k=1 in our experiment.

Step 5: Utilizing SiL Execution Profiles for HiL Analysis

For analyzing failures at the HiL level, we need to perform an extra step. Developers
typically generate SiL and HiL tests from the same source. With SiL simulation, the
software component is tested independently from the target hardware.

However, in our context, the information used for SiL can be re-used for the subsequent
HiL tests. At the HiL level, real hardware components are integrated in a simulated
environment for testing. Thus, there is a common system model between SiL and HiL. The
difference is the use of mocked values instead of real hardware on SiL testing. Based on this
information, it seems intuitive that if we do not have access to the whole execution profile of
the HiL tests (containing both software and hardware parts), we are able to analyze failures
at this level utilizing execution profiles from the SiL executions. Note that in those cases
where some tests pass on the SiL level but fail on the HiL level, failure analysis is more
difficult and time consuming.

Consider a TC used both at the SiL and HiL levels. First, we generate its execution profile
by instrumenting the code at the SiL level. Second, we run the test at the HiL-level and
get the verdict (failing/passing) information. Then, we combine these two to generate the
feature set for hierarchical clustering and hit spectrum for fault localization as described in
step 1. The rest of the steps will be the same. Therefore, we are able to analyze SiL and HiL
failures using essentially the same information.

Table 4.1.: List of Mutations Applied [68, 129, 4]
Mutations

Negate condition in “for” or “while” statement
Replace integer constant by another integer
Delete a statement
Replace an operator by another operator
Assign null in assignment statements
Replace return expression with null

Table 4.2.: Average Values of Cophenet Correlation Coefficient on Training Data
Average Centroid Single Weighted Complete

Euclidean 0.94 0.93 0.93 0.94 0.88
CityBlock 0.89 0.89 0.88 0.89 0.80
Minkowski 0.94 0.93 0.93 0.93 0.94
Cosine 0.90 0.89 0.87 0.89 0.87
Correlation 0.90 0.89 0.89 0.89 0.87
Jaccard 0.90 0.90 0.89 0.90 0.88
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4.2.2. Parameter Setting

We mentioned in Chapter 2 that there is a plethora of similarity metrics and methods
available in hierarchical clustering and SBFL. We need to select metrics with the highest
performance in our context. We set up a training phase that helps us select the right metrics
and parameters for this reason. We had access to 25 software components for different ECUs
of a car. These software components have several sub-projects. We somewhat arbitrarily
selected 100 sub-projects, 4 sub-projects from each software component, and injected faults
in their source codes. Table 4.1 shows the list of mutations applied. We generated 100
first-order mutated versions and used these 100 faulty versions for our training data set.
Although the external validity of using mutants in assessing the testing techniques has
raised concerns, Andrews et al. [5] as well as Namin and Kakarla [129] suggest that
under specific circumstances, replacing real faults with mutants has no significant impact
on results. However, any analysis or generalization should be justified according to the
influential factors including mutation operators, test suite size and programming languages.
We applied the mutation operators previously used in the literature for fault localization
[68, 129, 4]. To mitigate external threats, we then evaluated our approach using real faults.

Clustering Metric and Method Selection

We utilized the Cophenetic correlation [158] to compare the performance of different combi-
nations of the selected methods and metrics explained in Chapter 2. Cophenetic correlation
is a measure of “how faithfully a hierarchical tree preserves the pairwise distances between
the original unmodeled data points or objects” [158].

Table 4.2 shows the average Cophenet value for clustering on 100 programs. In this
experiment we clustered all the TCs (no matter if their verdict is passing or failing) based on
their execution profiles’ similarity. The goal was to find the best metric and method for our
context. Therefore, it was sufficient to measure how precisely the clustering tree represents
the distance between TCs at this point. By looking at any clustering tree, it is possible to
measure the distance between data objects. In a good clustering tree, these distances should
be similar or close to the original distances between unclustered data objects. The results
show that there is not a huge difference between different combinations of methods and
metrics. Thus, we chose to utilize Average and Euclidean distance that are showing slightly
better results for our context. Higher coefficients mean more accurate hierarchical trees.

Fault Localization Metric Selection

There are many different approaches for fault localization in the literature. We focused
on surveys that compare and evaluate different metrics for SBFL. Lucia et al. [113] did
a comprehensive study of association measures for SBFL. Wong et al. [185] introduced
a new metric named DStar (D∗) and investigated the effectiveness of it in comparison
with 31 other similarity metrics for locating bugs. The results of different evaluations
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Table 4.3.: List of Implemented Spectrum-Based Fault Localization Metrics [185, 113]
Metric Metric Metric

Braun-Banquest Odd Ratio Two Way Support
(M1) (M25) (M49)
Dennis Yule’s Q Two Way Support
(M2) (M26) Variation(M50)
Mountford Yule’s Y Loevinger
(M3) (M27) (M51)
Fossum Kappa Sebag-Schoenauer
(M4) (M28) (M52)
Pearson J-Measure Least Contradiction
(M5) (M29) (M53)
Gower Support Odd Multiplier
(M6) (M30) (M54)
Micheal Confidence Example and counter-
(M7) (M31) example Rate(M55)
Pierce Laplace Zhang
(M8) (M32) (M56)
Baroni-Urbani Conviction Sorensen-Dice
(M9) (M33) (M57)
Tarwid Interest Anderberg
(M10) (M34) (M58)
Ample Piatesky-Shapiro’s Gini Index
(M11) (M35) (M59)
Phi Certainty Factor Rogers and Tanimoto
(M12) (M36) (M60)
Arithmetic Mean Added Value Ochiai II
(M13) (M37) (M61)
Cohen Collective Strength Rogot2
(M14) (M38) (M62)
Fleiss Klosgen Hamann
(M15) (M39) (M63)
zoltar Information Gain Sokal
(M16) (M40) (M64)
Harmonic Mean Coverage Rogot1
(M17) (M41) (M65)
Simple-Matching Accuracy Kulczynski
(M18) (M42) (M66)
Hamming Leverage Goodman
(M19) (M43) (M67)
Scott Relative Risk DSatr
(M20) (M44) (M68)
Dice Interestingness Weighting DStar2
(M21) Dependency(M45) (M69)
Jaccard Goodman and DStar3
(M22) Kruskal(M46) (M70)
Tarantula Normalized Mutual DStar4
(M23) Information(M47) (M71)
Ochiai One way support DStar5
(M24) (M48) (M72)
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show that there is not a single metric that has the best performance for every program. It
depends on the context, programming language [185] and also the fault density [38]. For
our experiment, we picked 72 metrics from these papers to find the most effective one for
our context. Table 4.3 shows the list of implemented metrics.

To evaluate the effectiveness of different metrics, we measure the average percentage of
code needed to be investigated to locate faults. This evaluation approach has been used in
many works such as [185] and [113]. As the result of fault localization, developers receive a
ranked list of entities based on their suspiciousness score. Thus, first, they check the entity
with rank 1. If that is a false positive, they continue with rank 2, 3 etc. to find the faulty
entity. Therefore, the percentage of the code examined to locate the fault is one indicator for
the effectiveness of the metric.

To reach our goal in this step, we used 72 metrics to locate faults in our 100 faulty
programs. We measured the code examined for the best and worst cases and then calculated
the median for each metric. Since we had 100 programs, to make comparison of results
more straightforward, we calculated the average for each metric over all programs. In
Figure 4.1, the x-axis shows the metrics (using their numbers presented in Table 4.3) and
the y-axis shows the average percentage of the code examined.

Our results indicate huge differences between the effectiveness of different metrics. As
the graph illustrates, the minimum value belongs to metrics number 71 and 72 which are
DStar4 and DStar5. These metrics have the same base formula (see Chapter 2). The only
difference is that in DStar5, the numerator is raised to the power of 5 rather than 4. DStar4
has fewer calculations. Therefore, we chose DStar4 as the fault localization metric.

Note that using the D4 metric, a developer would be required to check about 40% of
the code in average to locate the fault. This number is not a convincing result. Thus this
technique cannot be used as an effective fault localization technique in our case. However, it
is worthwhile to notice that we are using this technique as a similarity measure rather than a
debugging technique. Thus, we will not get a penalty if the similarity metric that we use is
unable to pinpoint the exact fault location in the first rank in some cases. Nevertheless, it
is important to use a good similarity metric for this reason since a bad metric may show
similar rank for a great percentage of entities of the code and this makes distinguishing
between different failing executions difficult.

4.3. Experiment

We can now refine the research questions and describe evaluation results and threats to
validity.

4.3.1. Research Questions

We aim to reduce failure analysis time. To this end, we cluster failures. We need to answer
the following questions to evaluate how successful our solution is in reducing analysis
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Figure 4.1.: Evaluation Results of Implemented Fault Localization Metrics

time:
RQ1: Can our clustering tool effectively serve as an assisting tool for developers to reduce

the analysis time?
RQ2: How much reduction in time is achievable using clustering?
RQ3: Which metrics and clustering methods are most effective in our context?
Technically speaking, these questions boil down to determining how “well” our clustering

schema works. We start by defining what “well” means.

4.3.2. Results

To evaluate the effectiveness of our approach in reducing failure analysis time, we conducted
a study on LCM SiL builds introduced in Chapter 3. The results of the clustering evaluation
are shown in Table VII. We are able to achieve high scores of purity and accuracy. In an ideal
solution the number of clusters equals the number of underlying faults. The low scores of
recall and thus F-measure and high scores of entropy show that the number of clusters are
usually larger than the number of faults. Nevertheless, the numbers in the two last columns
show that even though we do not always find the ideal number of clusters, we are able to
achieve a huge reduction in analysis time anyway.
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F-measure and entropy are measured and included for comparison purposes with existing
work. However, we believe these numbers need to be interpreted with care. For example,
0.26 F-measure in SWC1-OldVersion2 does not sound convincing but it corresponds to a
reduction of 95.41% (in the number of test cases, which we tacitly assume to be proportional
to the time needed to debug). Also, in the same case, we were able to achieve 96.61% of
the maximum possible reduction. This means that having to investigate 11 representatives
instead of the ideal 3, we have lost only 3.39% (100-96.61) more reduction in time. The
reason is the large number of TCs (1103) in this case. We would also conjecture that from a
practical perspective, ARed may be easier to interpret than F-measure and Entropy.

When testing SWC1 and SWC2, some tests failed at the HiL but passed at the SiL level.
This is not uncommon in practice. We generated the execution profiles based on SiL
execution and attached the HiL verdicts to them. Then, we added these failures to the rest
of the failures at the SiL level and clustered all the failures. 100% resp. 88% purity and 87%
resp. 100% as achieved reductions in analysis time for these two cases show that the idea of
matching SiL executions with respective HiL verdicts is successful and promising.

Based on the above results, we answer the research questions as follows:
RQ1: Considering purity and ARed scores, we believe that our clustering tool can serve as

an effective assisting tool for developers. Utilizing this tool, they do not need to investigate
all the failing tests one by one. Instead, they check the representative tests to find the
underlying faults. In all the evaluation tests, the representative selection was successful
in the sense that selected representatives were always failing due to the fault that had the
majority in the cluster.

We believe that the observed high scores of purity and the proper representative selection
method make our tool a reliable assistant.

Table 4.5 shows the number of failures per fault in each test suite. These numbers show
that although in some cases we had highly imbalanced data, our clustering approach
yielded high accuracy and was able to distinguish between all the distinct faults.

RQ2: Compared to the current process of debugging, utilizing our clustering tool can
help in saving more than 80% of the failure analyzing time (where, once again, we equate
the number of test cases with the time needed to analyze them).

RQ3: In our context, we found that the combination of “D4 as fault localization metric”
and “Euclidean distance as distance metric and Average as clustering method” yielded
the best performance for the chosen granularity of “functions” as entitites for execution
profiling.

To answer this question, we set up the training phase, which we argue can be reproduced
for a different class of systems on the grounds of existing software components. One
important point in our case is that we cannot use any clustering method that needs a
predefined number of clusters or an upper threshold for the number of clusters. The
number of clusters means the number of underlying faults which is unknown a-priori.
Depending on the software component, development stage, level of testing, granularity of
the execution profile, we may get different results.
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4.3.3. Threats to Validity

Our results show that we could achieve a great reduction in failure analysis time by
clustering the failing tests. Nevertheless, we do not claim that our experiment setup and
results will be valid for all other contexts. We offered a methodology for adapting this idea
to different industrial contexts.

Test suite quality has a great impact on fault localization [11] and therefore clustering.
If all the test cases in a test suite cover the same parts (or most parts) of the code, it will
be a difficult task to distinguish different failing (in the sense of different underlying
causes) executions. There are results that show the threats to validity of spectrum-based
fault localization [167] and its shortcomings [119]. However, we are not employing this
technique for debugging and localizing faults, but rather as a similarity measure to better
understand which failures happened due to the same reasons.

Table 4.5.: Number of Failures per Fault for Each Test Suite
Number of failures per fault(F)

SWC1-OV1 F1:21 F2:3
SWC1-OV2 F1:26 F2:202 F3:12
SWC1* F1:14 F2:3 F3:1 F4:3 F5:1 F6:8 F7:1 F8:1
SWC2* F1:4 F2:14 F3:6 F4:1
SWC3 F1:7
SWC4 F1:1 F2:17 F3:14 F4:1 F:6
SWC5 F1:2 F2:27 F3:1
SWC6 F1:16 F2:1 F3:1 F4:1
SWC7 F1:66
SWC8 F1:2 F2:5 F3:1 F4:1
SWC9 F1:8

Another important factor is the granularity of profiling elements. We chose function-
based coverage information both as object features in hierarchical clustering and for gen-
erating hit spectrum in fault localization based on the nature of our context. Using more
fine-grained or coarse-grained entities may impact the performance.

Our first assumption was that each failure has only one reason behind it. Even though
this assumption might not always hold true, we did not encounter any other case in our
experiment. This may be because of the quality of the test suites as well. We are aware that
there may be some cases where two or more faults cause the same failure.

The similarity threshold used in comparing fault localization ranks may also affect the
results. Selecting a smaller number may result in a fewer number of clusters and selecting
a larger number may result in a greater number of clusters. Therefore, this value can also
impact the trade-off between purity and the number of clusters. We arbitrarily chose 0.85.
The results show that it is a suitable threshold.

Focusing on one specific domain and one specific kind of ECUs is a potential threat to
our external validity. It is unlikely that a general solution can be found for grouping failures
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in different contexts. We performed the training phase on real industrial data. We used all
available software components of car ECUs. Nevertheless, we cannot claim the external
validity of our results. Applying the same technique, parameters, and values in different
contexts might produce different results.

As mentioned earlier, fault injection gives rise to threats to external validity. Recent works
[68, 83] suggest that real faults are replaceable with mutations if mutations are used with
caution and if they are representative of real faults. In our work, we used some of the
mutation operators previously applied in the literature to learn the best metric and distance
measure. For the evaluation, we used real world systems and real-world faults.

4.4. Conclusion

One challenge in testing automotive CPSs is reducing failure analysis time. We built on
the idea to cluster failing tests to reduce the effort needed by developers and investigated
its effectiveness in LCM SiL data set with ca. 850 KLOC. Results show that we can group
failures based on their underlying faults with very high purity. The clustering tool can
effectively reduce the effort needed by developers. Utilizing this tool, developers save more
than 80% in failure analysis time, at least in our study.

We believe that our results add to the growing body of evidence about the potential
usefulness of fault localization techniques if multiple faults are present. Complementing
earlier work, our study indicates that these techniques may be more useful for organizing
the debugging process than for actually locating faults. To the best of our knowledge,
we are the first to provide this evidence with a large industrial case study for embedded
automotive systems.

Our methodology is meant to be instantiated to a specific domain or class of applications.
We have shown how to learn the relevant parameters (e.g., clustering method, distance
measure) as a significant part of the initialization process. While we cannot report on a
second study in a different domain here and clearly see the threats to external validity, we
ourselves are sufficiently confident to repeat our own study in a different context.
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This chapter presents a failure clustering approach that does not need coverage
data. Parts of this chapter have previously appeared in a publication [57], co-
authored by the author of this thesis.
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We saw in the previous chapter that to effectively reduce the analysis effort, the clustering
tool selects a representative test for each cluster. Instead of analyzing all failing tests,
developers only inspect the representative tests to find the underlying faults. In this
chapter, we propose a clustering technique to group failing tests based on non-coverage
data, retrieved from three different sources. We evaluated the effectiveness and efficiency
of our solution using LCM HiL data set where source code is not accessible. The results
show that utilizing our clustering tool, developers can reduce the analysis time more than
60% and find more than 80% of the faults only by inspecting the representative tests.

5.1. Introduction

According to Chapter 4, one remedy to the challenge of excessive analysis effort is using a
pre-analysis method that clusters failures with regards to their underlying root causes. The
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results of the test execution can be passed on to the clustering tool, which generates and
returns a set of clusters and one representative for each cluster. Each cluster would contain
only one root cause in an ideal clustering, and all the root causes would be covered by the
chosen representative TCs. The reduction of the analysis effort can then be achieved by
analyzing only the representative tests rather than all the failing tests.

However, in Chapter 4, we focused on clustering failing tests at the SiL level, where soft-
ware components are tested within a simulated environment without any actual hardware.
We used the coverage profile of tests as the input for their clustering tool. It is not always
possible to use this kind of data in practice due to three reasons. First, the source code is
not always accessible (e.g., in the case of HiL tests). Second, in this approach, collecting
coverage information when running passing tests is also needed. This requirement is un-
necessary and imposes extra work on the system. Third, instrumenting very large projects
when running integration tests can be very expensive and time-consuming.

The other similar existing approaches in the literature (see Chapter 9) are either coverage
based or use context-specific data. To bridge this gap, we propose a clustering tool which
groups failing tests based on different code independent data. This tool can be used in
different levels of testing, e.g., HiL, SiL, etc.

Thus, in this chapter, we solve a problem similar to the problem explained in Chapter 4.
As another solution, we propose to cluster failing TCs with respect to their root causes but
without coverage data. We select one representative for each cluster. Investigating only the
representatives, lead us to find all the root causes without having to inspect all the failing
tests.

Thus, in this paper, we:

• Propose a new set of non-code-based data to cluster failing tests. These new data
make the clustering tool applicable in different levels of testing and different contexts.

• A clustering tool that can also be used a priori for test selection and prioritization.
Since for each test run, due to time and resource constraints, only a subset of tests can
be executed, a clustering tool can help in grouping tests based on their similarities
and introducing the cluster representatives for the next test run. This can raise the
diversity in each test run.

• Propose a methodology for adapting the clustering idea to a real context. We inves-
tigate the effectiveness of the adapted approach in LCM HiL data set with ca. 1.3
million LoC and 13000 tests.

5.2. Approach

In the following, we describe our methodology. We use the clustering approach explained
in Chapter 4 as the base of our work. Then, we suggest the data sources that make this
clustering approach applicable in different stages of testing and other purposes such as test
prioritization.
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First, we collect the data from different non-code-based sources, e.g., Jira tickets to make
a feature vector for each test case. We binarize all of them to prepare them for hierarchical
clustering. Second, utilizing agglomerative clustering, we build a tree of failing tests based
on the similarity of their feature vectors. Third, using a regression model on the number of
failing tests in previous test runs, we predict the number of clusters. Finally, in the fourth
step, we calculate the centers of the clusters and choose the failing tests which are closest
to the centers as the representative tests. The developers receive the list of representatives
to investigate them. If the suggested number of clusters appears to the developers to be
inaccurate, they can immediately adjust the number of clusters on the user interface and
get new representatives. Steps two and four are taken from Chapter 4. In the following, we
describe all the steps in detail.

5.2.1. Generating the Input Data

Two main input data sources are: the database of test results that includes several thousand
test results from the previous test runs, and the repository of the TCF test cases, providing
the source files for the tests. We could extract five sets of features (variables in a data set)
using these two data sources. Since the primary objective of this paper is to cluster failing
tests, these data are extracted only for failing tests. In case of test selection or prioritization,
they can be extracted for all tests. Typically, multiple projects (e.g., weekly, daily, nightly)
are used to test a single ECU. Each test run is called a build. All the feature values are
extracted individually for each build. We explain each set of features in the following.

General Features. We extracted the following features from the database [102]:

• T Id: specifies the test identifier.

• Agent: specifies the name of hardware which is executing the tests.

• Component: specifies the component of the BDC the test belongs to.

• Domain: specifies to which domain of the BDC the test belongs to.

• File: specifies from which underlying TCF file the test was generated. A single TCF
source file may be used to generate multiple test cases.

Table 5.1 shows an example of data values for these features. As all these features are
of categorical nature and do not follow an ordinal scale, we transformed them into binary
data.

Failed/Passed History. To exploit the knowledge of historical test executions, we gener-
ated Failed/Passed history matrices. The general idea of this feature set is to express the
similarity between two test cases based on the times they shared the same execution result.
Naturally, a test result can either have the status Fail (F) or Pass (P). However, in practice
due to the resource constraints, it is not guaranteed that every test case is executed in every
build. Thus, we added another value as Not executed (N) [102].
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Table 5.1.: General Features [102]
Test Agent Domain Component File

TC 1 Agent-1 Comfort SWC1 Audio.tcf
TC 2 Agent-2 Body SWC2 FesModes.tcf
TC 3 Agent-1 Body SWC2 FesModes.tcf

Table 5.2.: Fail/Pass History [102]
Test Build 1 Build 2 Build 3 Build 4 Build 5

TC 1 P P F P F
TC 2 P N N F N
TC 3 P N F P P

Table 5.2 demonstrates an example. Again, we need to transform it to a binary table; thus
we generate two tables, one to represent the similarity based on co-occurrences of Failed
statuses and one to represent the similarity based on co-occurrences of Passed statuses. As
an example, Table 5.2 has been transformed to the Tables 5.3 and 5.4 [102].

Table 5.3.: Binary Failed History
Test Build 1 Build 2 Build 3 Build 4 Build 5

TC 1 0 0 1 0 1
TC 2 0 0 0 1 0
TC 3 0 0 1 0 0

The Failed/Passed distance dfp between two tests x and y can therefore be defined as
[102]

dfp(x, y) = 0.5 ∗ df (x, y) + 0.5 ∗ dp(x, y) , (5.1)

where df (x, y) denotes the distance between two tests based on failing history and dp(x, y)
denotes the distance between two tests based on passing history using any specified distance
metric (see Section 2.1.1).

Broken/Repaired History. Similar to the Failed/Passed History, the Broken/Repaired
History aims at exploiting historical execution knowledge, with a small difference. In the
Broken/Repaired History the focus lies on the transition of test statuses. A transition from
status Failed to status Passed is defined as a Repaired event (R), whereas a transition from
status Passed to status Failed is defined as a Broken event (B) [102]. Following this definition,
an arbitrary Failed/Passed History can be transformed into a Broken/Repaired History. If
no transition takes place, e.g., if a test case failed in two successive builds, a No Event (N)
label is used to fill the gap. Table 5.5 shows an example.

Following the approach described for the Failed/Passed History, again two binary tables
should be generated, one to represent the similarity based on co-occurrences of Broken
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Table 5.4.: Binary Passed History
Test Build 1 Build 2 Build 3 Build 4 Build 5

TC 1 1 1 0 1 0
TC 2 1 0 0 0 0
TC 3 1 0 0 1 1

Table 5.5.: Broken/Repaired History [102]
Test Build 1 Build 2 Build 3 Build 4 Build 5

TC 1 N N B R B
TC 2 N N N N N
TC 3 N N B R N

events and one to represent the similarity based on co-occurrences of Repaired events.
The computation of distances for two failing tests is similar to the Failed/Passed History
calculations.

Jira History. We used the Jira tickets to extract the next feature set which is based on
the faults assigned to the previously analyzed failed tests. The idea is that tests which
frequently shared the same cause in the past are also likely to fail due to the same cause
in the future [102]. Table 5.6 shows an example. Each “cause” is a Jira ticket ID that has
been assigned to the failing test. One ticket may be assigned to several failing tests if the
manual analysis shows that these tests are failing because of the same reason. Similar to the
previous feature sets, this table should change to a binary form as shown in Table 5.7.

Table 5.6.: Jira History [102]
Test Project Build Cause

TC 1 project 1 build 1 cause x
TC 2 project 1 build 1 cause x
TC 3 project 1 build 1 cause y
TC 1 project 1 build 2 cause z

TCF Test Case Similarity. TCF files used to generate TCs as described in Chapter 3 are
maintained in SVN repositories. These repositories are referenced to define the source
files needed to generate the desired test series. Our hypothesis is that the likelihood that
two tests failed due to the same cause increases with the similarity of their underlying
TCF source files [102]. To facilitate the calculation of similarity between two TCF files, we
translate TCF files into a standard machine-readable format (JSON). Figure 5.1 shows an
example JSON output for the Audio Example.tcf file, introduced in Chapter 3, Figure 3.3.

Using this JSON representation, the similarity between source files of any two test cases
can be calculated using a combination of the following features [102]:
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Table 5.7.: Binary Jira History
Test Build1CauseX Build1CauseY Build2CauseZ

TC 1 1 0 1
TC 2 1 0 0
TC 3 0 1 0

{
"tcName": "Audio_Example",
"codingSteps": [
{"codingStepName": "BE_AUDIO_VERB",
"codignStepValue": "01"},
{"codingStepName": "BE_AUDIO_LIN_VAR",
"codignStepValue": "01"}
],

"executionSteps": [
{"executionStepActor": "PWF",
"executionStepType": "SET",
"executionStepBusType": "LIN",
"executionStepBus": "KLIN22",
"executionStepBusMessage": "0xA",
"executionStepSignal": "ST_CON_VEH_CSG_LIN",
"executionStepValue": 2},

{"executionStepActor": "Audio_Volume",
"executionStepType": "SET",
"executionStepBusType": "LIN",
"executionStepBus": "KLIN8",
"executionStepBusMessage": "0x2A",
"executionStepSignal": "ST_TURN_AUDCU_LIN",
"executionStepValue": 15}
]

}

Figure 5.1.: JSON Representation of Audio Example 1.tcf [102]

• CODING: Each Coding step in a test is mapped to a binary feature. For each test case,
it is checked whether the test case contains the Coding step or not (true = 1, false = 0).
Two Coding steps are regarded as equal if they share the same name and the same
value.

• ACTOR: Each Actor in a test is mapped to a binary feature. For each test case it is
checked whether the test case uses the given actor to perform an arbitrary action in
any of its test steps or not (true = 1, false = 0).

• ACTOR TYPE: Each Actor/Type combination in a test is mapped to a binary feature.
For each test case it is checked whether the given Actor is used to perform an action
of the given Type (e.g., set or check) in any of the test’s steps (true = 1, false = 0).
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• ACTOR VALUE: Each Actor/Value combination in a test is mapped to a binary
feature. For each test case it is checked whether the given Actor is used to set or check
the given Value in any of the test’s steps (true = 1, false = 0).

• ACTOR TYPE VALUE: Each Actor/Type/Value combination in a test is mapped to
a binary feature. For each test case it is checked whether the given Actor is used to
perform an action of the given Type for the given Value in any of the test’s steps (true
= 1, false = 0).

• BUS TYPE: Each Bus Type in a test is mapped to a binary feature. For each test case
it is checked whether the test case performs an arbitrary action on a Bus of the given
Type in any of its steps (true = 1, false = 0).

• BUS: Each Bus in a test is mapped to a binary feature. For each test case it is checked
whether the test case performs an arbitrary action on the given Bus in any of its steps
(true = 1, false = 0).

• BUS MESSAGE: Each Bus Message in a test is mapped to a binary feature. For each
test case it is checked whether the test case uses the given Bus Message to perform an
arbitrary action in any of its steps (true = 1, false = 0).

As an example, Table 5.8 shows the binary values for two examples in Figures 5.1 (TC1)
and 5.2 (TC2) considering only ACTOR and ACTOR TYPE features.

{
"tcName": "Audio_Other_Example",
"codingSteps": [
{"codingStepName": "BE_AUDIO_VERBAUT",
"codignStepValue": "01"},
],

"executionSteps": [
{"executionStepActor": "Audio_Volume",
"executionStepType": "SET",
"executionStepBusType": "LIN",
"executionStepBus": "KLIN8",
"executionStepBusMessage": "0x2A",
"executionStepSignal": "ST_TURN_AUDCU_LIN",
"executionStepValue": 99}
]

}

Figure 5.2.: JSON Representation of Audio Example 2.tcf [102]

5.2.2. Clustering Failing Tests

As explained in Chapter 2, we use Hierarchical clustering since it enables users to retrieve
an arbitrary number of clusters without the need to re-execute the clustering algorithm.
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Table 5.8.: Binary TCF Similarity Features
Test PWF AudioVolume PWFSet AudioVolumeSet

TC 1 1 1 1 1
TC 2 0 1 0 1

This is especially useful in practice since in a real-world scenario, it will not limit the users
to a single suggested number of clusters. Users will be able to explore multiple alternatives
without the need to wait for the re-execution of the clustering tool.

Predicting the Number of Clusters

The number of predicted clusters relates to the number of underlying faults, therefore an
accurate prediction is important for developers. We considered two regression models,
Linear regression [86] and Polynomial regression [86], to examine the relationship between
the number of failing tests and the cutting distance on the Hierarchical tree.

In our experiment, we extracted the real number of faults in the previous analyzed builds
from the database. Then, we calculated the cutting distances of the respective trees. Finally,
we fitted the regression models to predict the cutting distance based on the number of
failing tests.

5.2.3. Selecting the Representatives

As mentioned earlier, the main goal of this paper is to reduce the analysis effort by selecting
some representatives for failing tests, so that only the representatives should be analyzed
instead of all the failing tests. To this end, we selected the clusters’ medoids as representa-
tives. A medoid is the object which is closest to the geometric center of the cluster [168].
Since we want the developers to be able to change the number of the cluster in real-time, we
precompute the representatives for all the clusters considering all possible cutting distances.

5.3. Experiment

To evaluate how successful our clustering without coverage approach is in achieving its
primary objective, reducing failure analysis time, we need to answer the following research
questions:

RQ1. How effective are non-code-based data in clustering failing tests? How much
reduction in analysis time is achievable? How many of the underlying faults are detectable?

RQ2. How efficient is the clustering tool?
RQ3. Which set of input features are the most important and useful in clustering failing

tests?
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Table 5.9.: Performance Values Using Centroid Method [102]
Feature Set Dist. Metric PerformanceAvg

General Features Hamming 0.82
Failed/Passed History Hamming 0.76
Broken/Repaired History Hamming 0.75
Jira History Hamming 0.81
TCF Similarity Euclidean 0.83

RQ4. Which distance metrics and clustering methods are the most effective in the given
context?

Since there are several parameters in our approach that we need to set before applying
it, we set up a training phase that helps us select the right metrics and parameters for this
context. Thus, first, in the following, we explain the available data, evaluation metrics, and
the training phase. Then, we explain the evaluation results in the next section.

5.3.1. Parameter Setting

We developed our clustering tool as a standalone Python application using SciPy 1, NumPy
2, and Pandas 3. Fitting our clustering model involves setting the following parameters:

1. the optimal clustering method

2. the optimal distance metric for each of five groups of features

3. the optimal weights for each of five groups of features

4. the optimal way of predicting the number of clusters

to find the best parameter for each item in the training phase, we used the Performance
metric.

Clustering Method and Distance Metric

The Performance values of different method and distance metric combinations do not show
a significant difference. Comparing all the Performance values, we chose “Centroid” as
the clustering Method, and “Hamming” as the distance metric for General, Failed/Passed,
Broken/Repair, and Jira features sets, and “Euclidean” as the distance metric for TCF
Similarity feature set. Table 5.9 shows the average Performance values on the training data
set.

1https://www.scipy.org/
2http://www.numpy.org/
3https://pandas.pydata.org/
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Table 5.10.: Best Performing Weights for Input Feature Sets [102]
Feature Set Symbol Value
General Features wgeneral 0.29
Failed/Passed History wfp 0.01
Broken/Repaired History wbr 0.09
Jira History wjira 0.31
TCF Similarity wtcf 0.30

Input Feature Weights

As described in Section 5.2.1, we extracted five set of features as input for our clustering.
These five sets, lead to the generation of five different data sets. Since it is not clear
which sets of features are more useful in clustering, we generated 1000 random weight
combinations. To measure the similarity between two tests, first, we measure the similarity
based on all the five feature sets. Then, assigning the weights to each group, we sum
up the similarity values to find the combined similarity value. Table 5.10 shows the best
combination of the weights. The results show that General Features and the Jira History,
and TCF Similarity sets are the most important features, while Broken/Repaired History
and Failed/Passed History are not so useful.

Predicting the Number of Clusters

We used Linear and Polynomial regressions to investigate the correlation between the
number of failing tests and the cutting distance in the Hierarchical tree of failing tests (see
Chapter 2).

The results show that applying Polynomial regression leads to a better performance than
Linear regression, Ppolynomial=0.80 and Plinear=0.76. Figure 5.3 depicts the fitted Polynomial
regression model, where x is the number of failing tests, and the f(x) shows the predicted
distance to cut the tree.

5.4. Evaluation

We can now answer the research questions, describe evaluation results, and explain threats
to validity.

5.4.1. Summary of Results

The results of the clustering evaluation are shown in Table 5.11. As the results show, we
are able to achieve high scores of Purity, FoundCauses and also ARed. Since the number of
predicted clusters is usually larger than the number of underlying faults, Recall, F-measure
and Entropy metrics do not show high scores. However, we are able to achieve a huge

58



5. Failure Clustering without Coverage

Ta
bl

e
5.

11
.:

Ev
al

ua
ti

on
R

es
ul

ts
-P

er
fo

rm
an

ce
=

0.
4

*
Fo

un
dC

au
se

s
+

0.
2

*
Pu

ri
ty

+
0.

4
*

A
R

ed
[1

02
]

B
ui

ld
#

Fa
il

ur
es

#
Fa

ul
ts

#
C

lu
st

er
s

Pr
ec

is
io

n
R

ec
al

l
F-

m
ea

su
re

En
tr

op
y

Fo
un

dC
au

se
s

Pu
ri

ty
A

R
ed

Pe
rf

or
m

an
ce

3
1

1
4
2

9
4
4

0
.9
9

0
.1
4

0
.2
5

0
.0
4

0
.8
9

0
.9
8

0
.7
4

0
.8
5

5
4

7
7

2
6

2
9

0
.8
7

0
.6
8

0
.7
6

0
.1
5

0
.8
8

0
.9
5

0
.9
4

0
.9
2

7
5

8
6

1
2

1
3

1
.0
0

0
.7
9

0
.8
8

0
.0
5

0
.9
2

0
.9
4

0
.9
9

0
.9
5

1
0
2

9
6

2
5

3
5

0
.9
6

0
.6
3

0
.7
6

0
.0
5

0
.9
6

0
.9
9

0
.8
6

0
.9
3

1
1
4

3
7

2
0

2
0

0
.9
4

0
.7
1

0
.8
1

0
.0
5

0
.9
5

0
.9
8

1
.0
0

0
.9
8

1
2
4

1
8
5

1
0

6
5

0
.9
7

0
.0
3

0
.0
7

0
.0
3

0
.9
0

1
.0
0

0
.6
9

0
.8
3

1
3
4

8
4

2
3

2
6

0
.8
9

0
.8
4

0
.8
6

0
.1
4

0
.8
3

0
.9
5

0
.9
5

0
.9
0

1
4
4

1
2
1

3
3

6
3

0
.3
9

0
.2
0

0
.2
6

0
.4
0

0
.8
2

0
.9
4

0
.6
6

0
.7
8

1
5
4

7
8

1
3

3
5

0
.9
3

0
.1
2

0
.2
1

0
.0
5

1
.0
0

0
.9
9

0
.6
6

0
.8
6

59



5. Failure Clustering without Coverage

0 100 200 300 400 500 600 700 800
0

2

4

6

# Failing Tests

C
ut

ti
ng

D
is

ta
nc

e
(o

pt
)

f(x) = 0.0000322× x2 − 0.006752× x+ 2.2044

Figure 5.3.: Polynomial Regression Model for Cutting Distance [102]

Table 5.12.: Average Scores of Performance Metrics Using Different Weights [102]
Metric Initial Setup Alternative 1 Alternative 2

Purity 0.9674 0.9740 0.8989
ARed 0.8312 0.7990 0.9520
FoundCauses 0.9049 0.9151 0.6566
Performance 0.8879 0.8686 0.8338

reduction in analysis time anyway and find more than 80% of the causes by investigating
only the representatives. For instance, in Build 154 with 78 failing tests, the ground truth
says there are 13 underlying faults. We predicted 35 clusters that are 99% pure. These 22
extra clusters (35-13) lead to poor Recall (0.13) and consequently F-measure (0.22) scores.
Nevertheless, with selecting one representative for each of these 35 clusters, and analyzing
only them, we reduced the analysis time 66% ((1-(35/78))/(1-(13/78))) and found all the
underlying faults (FoundCauses=1.0).

Based on the industry partner’s needs and experts’ advice, we assigned higher weights
to the combination of FoundCauses and Purity (0.6) rather than the ARed (0.4). Due to this
reason, the results tend to a larger number of clusters which are almost pure. Nevertheless,
we have always achieved more than 60% reduction in the analysis time. Assigning higher
weights to ARed in the training phase leads to different parameter setting and consequently
different results. To compare the results considering different weights, we considered two
alternatives: 1. wfc = 0.6, war = 0.4, andwp = 0.0 and 2. wfc = 0.4, war = 0.6, andwp = 0.0.
Table 5.12 shows the average scores of performance metrics.

Based on the above results, we answer the research questions as follows:
RQ1. Considering the Performance metric which is a combination of FoundCauses,

Purity, and ARed metrics, our idea in using non-code-based data for clustering failing test
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is quite effective. In the evaluation, on average 90.4% of the faults are found when only
analyzing the representative tests. Furthermore, an average Purity of 96.7% is achieved,
which means that only 3.3% of the failing tests would be assigned to a wrong fault when
assigning the root cause of the cluster’s representative to all members of the cluster. The
results show an average of 83.1% reduction in analysis time.

RQ2. Clustering based on non-code-based data is more efficient than clustering based on
code-based execution profile (if the source code is available). In our approach, we need to
compute the data for similarity comparisons one time a priori; then we can use them several
times. Code-based techniques such as the one presented in Chapter 4 need to instrument
the code which can be expensive in case of integration testing. Considering the without
coverage approach, data collection and pre-processing took 5 hours while running the
clustering itself took 3 minutes in the largest case. Collected data can be updated at longer
intervals such as every two months.

RQ3. We set up a training phase to answer this question. We randomly generated 1000
weight coefficients for our five groups of feature sets. As shown in Table 5.10, General
Features, Jira History, and TCF Similarity are the most important groups. There is not any
significant difference between these groups.

RQ4. Like RQ3, we found the answer to this question in the training phase. Our
experiment show that the impact of the clustering method and distance metric on the
clustering performance is negligible. However, choosing a suitable strategy to determine
the number of clusters is highly important.

Cross-validation. To test our model’s ability to predict new data and to give an insight
on how the model will generalize, in addition to the previous setting, we did 10-fold
cross-validation. In our cross-validation setting, we used the training part to select the best
weights for feature combination and to fit the Polynomial regression model. However, we
preserved the distance metric and the clustering method unchanged since they do not have
a significant impact on the results. The average scores are:

Foundcauses=0.8813, Purity=0.9700, and ARed=0.8813.
Considering wfc = 0.4, war = 0.4, and wp = 0.2, these scores yield Performance=0.8813.

For obvious reasons, we could not just report the cross-validation results. Since we could
not report the average scores of metrics such as “# of Faults”, “# of Failures”, and “# of
Clusters”, we selected a snap of data as the test data set to be able to show and discuss the
results in Table 5.11.

5.4.2. Threats to Validity

We evaluated our approach in a large scale industrial case. For both training and evaluation,
we used real-world systems, failures, and faults. Nevertheless, we do not claim that our
experimental setup and results will be valid for all other contexts.

Proper data recording has a great impact on our clustering approach. We offered five
feature types to measure the semantic similarity between test cases. However, if failure
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analysis results, root causes information, patches and changes are not stored frequently in
database, SVN, and Jira systems, the clustering results will not be accurate.

To find the best solution for our case, we set up a training phase. To set the parameters
and assign the weights, we considered industry needs and experts’ advice. Changing the
parameters based on different needs could affect the final results. Nevertheless, we tried to
propose a methodology for applying this idea in different environments.

5.5. Conclusion

Analyzing failing tests in the scope of automotive hardware-in-the-loop regression testing
is a time-consuming task and requires a significant amount of manual work. To reduce
the excessive analysis effort, we developed a clustering tool that groups failing tests with
respect to their underlying faults and does not use coverage information. The analysis time
is then reduced by proposing a single representative test for each cluster so that developers
only have to analyze the representative tests instead of all failing tests. We suggested five
different non-code-based data source to measure the similarity between failing tests. We
evaluated the effectiveness and efficiency of our proposed idea in an automotive context
with 86 regression test runs containing 8743 failing tests and 1531 faults.

The results show that out of the five suggested data feature sets, Jira History, General
Features, and TCF Similarity are the most useful features in this context. While clustering
method and distance metric do not have a significant impact on the results, the technique
used for predicting the number of clusters has high importance. We fitted a Polynomial
regression model based on the number of failing tests to predict the number of clusters.
With this approach, we are able to achieve more than 60% reduction in analysis time (an
average of 83.1% in our experiments).
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Fault localization
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6. Improving SBFL Through Using Syntactic
Block Granularity

This chapter presents a new granularity level that helps in boosting spectrum-
based fault localization effectiveness.
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We saw in Chapter 2 that existing SBFL approaches are not applicable in practice yet.
One problem is that these techniques rely on program spectra data that is either too fine- or
coarse-grained [119]. In this chapter, we propose a new granularity of program spectra data,
which takes into account the syntactic blocks present in the source code of the program.
By evaluating our new syntactic block granularity on the bugs in Defects4J, we found
that the syntactic block granularity exhibits best-case absolute ranking behavior similar to
the method granularity (better than statement granularity), while having a wasted effort
equivalent to, if not better than, the statement granularity (better than method granularity).
Furthermore, it covers more types of faults than both existing granularities. Finally, when
compared to the method granularity, it exhibits up to a 92.48% improvement when it comes
to the locality of the program elements to the fault, a characteristic that provides the user
with a better insight into the possible location of the faults.
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6.1. Introduction

For SBFL techniques, the granularity of the program elements in the program spectra is
important, not only to the effectiveness of the system, but also to the preferences of practi-
tioners [94]. Kochhar et al. found that among surveyed practitioners, method, followed by
statement and basic block were the most preferred granularities. But when it comes to the
effectiveness of the system, the problem is that the method and statement granularities may
be too coarse- or fine-grained, respectively, to properly locate the faulty program elements
[119, 136]. Unfortunately, there is no golden rule to say which granularity is the best for
all contexts. However, in an effort to combat these issues, as a solution, we propose a new
syntactic block granularity which takes into account both coarse- and fine-grained program
elements. A syntactic block can be defined as a block of statements that syntactically belong
together to form a program element, such as a method declaration, or a while loop. By
considering different types of syntactic components in the program’s source code, we are
able to capture a wide spread of faults, while providing a better insight into the possible
location of the fault within the program element.

For the evaluation of our proposed syntactic block granularity, we used the Defects4J data
set. Our results show that our proposed syntactic block granularity exhibits the advantage
of method granularity over statement granularity, meaning a best-case absolute ranking
behavior similar to the method granularity, while having the same advantage of statement
granularity over method granularity, meaning a wasted effort equivalent to, if not better
than, the statement granularity. Furthermore, it covers more types of faults than both
existing granularities. Finally, when compared to the method granularity, it exhibits up to a
92.48% improvement when it comes to the locality of the most suspicious element e* to the
fault, a characteristic that provides the user with a better insight into the possible location
of the fault within the given program element.

In this chapter:

• We propose a new granularity for program spectra called the syntactic block granu-
larity which considers 18 different types of program elements.

• We evaluate our contribution using Defects4J. In doing so, we show that our syntactic
block granularity covers more faults than both statement and method granularities,
while having better wasted effort performance. Furthermore, it provides the user
with a better insight into the possible location of the fault when searching through
program elements.

6.2. Motivation

As mentioned previously, the two main program spectra granularities used by practitioners
are statement and method [93]. Unfortunately, neither of these options are perfect, as they
both have their limitations.
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Due to its fine-grained nature, the statement granularity has a number of drawbacks. First,
simple profile elements like statements cannot properly characterize and reveal nontrivial
faults. Statements might be too simple to describe some complex faults, such as those that
are induced by a particular sequence of statements [119]. In the Defects4J data set, the
median size of a fault is four lines, with 244 bugs having faults spread across multiple
locations in the program [164]. Furthermore, due to the nature of the statement granularity,
it is incapable of locating bugs due to missing code, known as a fault of omission [182]. For
example, of the 395 bugs in the Defects4J data set, only 228 can be localized by the statement
granularity.

Unfortunately, it is unclear whether developers can actually determine the faulty nature
of a statement by simply looking at it, without any additional information [182, 135]. As a
possible solution to the drawbacks of the statement granularity, Masri suggests the usage
of more-complex profiling types with higher granularity [119]. Previous empirical studies
have shown that the effectiveness of SBFL techniques improves when the granularity of
the program elements is increased [120]. For that reason, among others, many practitioners
prefer to use the method granularity.

However, due to its coarse-grained nature, the method granularity has a handful of
drawbacks when used for calculating SBFL scores. Sohn and Yoo suggest two drawbacks
to the method granularity due to the nature of methods themselves [166]. First, methods
on a single call chain can share the same spectrum values, resulting in tied SBFL scores.
Second, if there are test cases that only execute non-faulty parts of a faulty method, they
will decrease the overall suspiciousness score of the given method. Furthermore, when
given a list of methods ranked by their suspiciousness, a programmer would still have to
walk through all the statements in each method while looking for the bug, which can result
in a lot of wasted effort, especially if the methods are large. Finally, the method granularity
also lacks any sort of context and may not provide any further information to the developer.
For instance, if there are failing test cases that focus on testing one specific method, such as
a unit test, the developer will already know that the fault is contained within the failing
method, so the method granularity results are of no additional help.

As both the statement and method granularities exhibit drawbacks, there is a clear need
for a new granularity level that has a higher granularity than statements, without the added
wasted effort and lack of context of methods. As a possible solution, we propose the usage
of the syntactic block granularity. Based on different syntactic components found in the
program’s source code (see Table 6.4 for syntactic blocks in Java), it considers a wide range
of program elements in an effort to provide more context to the developer with minimal
added cost.

To illustrate the drawbacks of the statement and method granularities, as well as highlight
the benefits of the syntactic block granularity, consider the sample program in Figure 6.1.
The method mid() takes as input three integers and outputs the median value. The method
contains a fault of omission, where the proper implementation should include the else-if
block from lines 8-10. Tables 6.1, 6.2, and 6.3 contain the coverage information from a test
suite containing six different test cases for each of the three different granularities. In each
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Figure 6.1.: Faulty mid() Method. Each Syntactic Block is Enclosed by a Box

table, each TC corresponds to a column, with the top of the column corresponding to the
inputs, the black dots corresponding to coverage, and the status of the test at the bottom of
the column. To the right of the test case columns are the Ochiai score (as defined in chapter
2) and the corresponding rank for each element. Furthermore, if an element localizes the
fault, the corresponding row is highlighted.

As mentioned previously, it is not possible to localize a fault of omission using the
statement granularity. Therefore, no SBFL technique using the statement granularity will
be able to localize the fault in the mid() method.
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Table 6.1.: mid() Statement Granularity Ochiai Calculations
Test Cases

Line # 3,
3,

5

1,
2,

3

3,
2,

1

5,
5,

5

5,
3,

4

2,
1,

3

Ochiai Rank

1 • • • • • • 0.577 2
2 • • • • • • 0.577 2
3 • • • • • • 0.577 2
4 • • • • 0.707 1
5 • 0 6
13 • • 0 6
14 • • 0 6
15 • 0 6
17 • 0 6
18 0 6
21 • • • • • • 0.577 2

Verdict F P P P P F

Table 6.2.: mid() Method Granularity Ochiai Calculations
Test Cases

Line #’s 3,
3,

5

1,
2,

3

3,
2,

1

5,
5,

5

5,
3,

4

2,
1,

3

Ochiai Rank

1-22 • • • • • • 0.577 1

Status F P P P P F

To localize the fault using the method granularity, the only information provided to the
developer is that the fault is contained in the mid() method (see Table 6.2). However, due
to the unit test nature of the test cases, this fact is obvious. A developer would still have to
go through all the statements in the method to find the fault.

As seen in Table 6.3, when using the syntactic block granularity, the fault is localized
to the then block of the if statement (ITB block) from lines 3-12 with a rank of 1. As an
improvement over the method granularity result, the developer would only have to look
through one portion of the method to find the fault. Furthermore, the developer would
have a further intuition as to the location/type of fault that exists. Due to the average depth
of faults within the program elements of the syntactic block granularity, the developer
would expect the fault to likely be an issue with the direct children elements of the block, or
the block itself. In this case, the faulty missing element would in fact be a direct child of the
top ranked ITB block from lines 3-12. Furthermore, due to the 0 suspiciousness score of the
ITB block from lines 4-6, the developer can infer that the fault is either with the if statement
conditional at line 4, or is a fault of omission.

This added information provided by the syntactic block granularity, as well as the reduced
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Table 6.3.: mid() Syntactic Block Granularity Ochiai Calculations
Test Cases

Block Type Line #’s 3,
3,

5

1,
2,

3

3,
2,

1

5,
5,

5

5,
3,

4

2,
1,

3

Ochiai Rank

MD 1-22 • • • • • • 0.577 3
ICS 3 • • • • • • 0.577 3
ITB 3-12 • • • • 0.707 1
ICS 4 • • • • 0.707 1
ITB 4-6 • 0 5
IEB 13-20 • • 0 5
ICS 14 • • 0 5
ITB 14-16 • 0 5
ICS 17 • 0 5
ITB 17-19 0 5

Verdict F P P P P F

number of statements required to search through to localize the fault, helps illustrate the
benefits of the syntactic block granularity over the other two granularities.

6.3. Syntactic Block Granularity

Each syntactic block consists of a set of statements that syntactically belong together to form
a program element. For instance, every statement in a method declaration belongs together,
as whenever the method is called, the contained statements may be run. Furthermore, each
element may further be broken into multiple sub-elements. For example, an if statement
has three components: the condition statement, the then block, and the else block. Each of these
sub-elements may be run separately from each other. For instance, the condition statement
will always be executed, but depending on the boolean value of the conditional, either the
then block or the else block will be executed. As a result, for Java programs, the syntactic
block granularity consists of the 18 different types of program elements found in Table 6.4.
For ease of use, each syntactic block type has an ID associated with it. An example of each
type of syntactic block can be found in bold in the last column in Table 6.4.

Like the method granularity, for each syntactic block, if any of the contained statements
are executed, the syntactic block is also marked as executed. Originally, Class, Interface,
and Enum declarations were also considered as types of syntactic blocks. However, due to
their average size compared to all other types of blocks, the added benefit of encompassing
class level faults (such as missing method declarations or incorrect class variables) was
outweighed by the overall added wasted effort associated with inspecting whole classes for
a fault.

Due to the hierarchical nature of syntactic blocks, it is possible for one block to completely
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Table 6.4.: Java Syntactic Block Types
Base Program Element Syntactic Block Type Type ID Example

- Constructor declaration CND class X { X() { ... } }

- Method declaration MD public int foo() { ... }

- Initializer declaration IND static { a = 3; }

- Do statement DS do { ... } while (a == 0);

Foreach
statement

Condition statement FECS for (Object o : objects)

{ foo(); }

Body block FEBB for (Object o : objects)

{ foo(); }

For
statement

Condition statement FCS for (int a = 3; a <10; a++)

{ foo(); }

Body block FBB for (int a = 3; a <10; a++)

{ foo(); }

If statement
Condition statement ICS if (a == 5) foo() else bar();

Then block ITB if (a == 5) foo() else bar();

Else block IEB if (a == 5) foo() else bar();

Switch
statement

Statement SS switch(a) { ... }

Entry statement SES case 1: foo(); break;

Try-Catch
statement

Try block TCTB
try { foo(); }
catch (Exception e) { bar(); }

finally { x = 0; }

Catch block TCCB
try { foo(); }
catch (Exception e) { bar(); }

finally { x = 0; }

Finally block TCFB
try { foo(); }
catch (Exception e) { bar(); }

finally { x = 0; }

While
statement

Condition statement WCS while (a > 0) { bar(); }

Body block WBB while (a > 0) { bar(); }

encapsulate another. For example, in Figure 6.1 the ITB block from lines 3-12 encapsulates
the ICS block at line 4 and the ITB block from lines 4-6. Because of this, sections of code will
appear multiple times as a programmer walks through the ranked list of elements. In order
to prevent unnecessary work, any block completely encapsulated by another block with a
higher suspiciousness score can be ignored and removed from the final ranking.

While our work focused on faults in Java programs, the concept would be similar for
other programming languages with similar syntax, e.g., C, C++, C#, Go, PHP, and Swift.

6.4. Experiments

In the following section, we will define implementation details and research questions.
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6.4.1. Data set

As mentioned earlier, due to the nature of the faults in the Defects4J data set, not all bugs can
be localized by each granularity. For instance, the statement granularity can only localize
228 bugs, the method granularity 386 bugs, and the syntactic block granularity 388. There
are 225 bugs that overlap across all three granularities1. For the sake of comparison, all
three granularities will be compared on these 225 bugs. This data set does not contain any
faults of omission and will be referred to as the no-omission data set. Furthermore, the
method and syntactic block granularities will be compared on the 386 bugs that can be
localized by the method granularity, which includes the faults of omission, and will be
referred to as the full data set. Due to them being class level faults, the following bugs
are unable to be localized by any of the three granularities: Chart-23, Closure-28, Lang-23,
Lang-56, Math-12, and Math-104. They will be ignored for this evaluation.

6.4.2. Implementation

The following outlines our implementation details and is broken down into three parts:
spectra generation, preprocessing, and SBFL ranking metrics.

Spectra Generation

GZoltar Statement Spectra Generation. The process for generating the method and syn-
tactic block granularity spectra files relies on having access to the statement granularity
spectra. By running the GZoltar command-line tool (v1.6.2) [151] on all 395 bugs in the
Defects4J database, we constructed the statement granularity spectra using the same data
generation process as utilized by Pearson et al. for generating GZoltar statement spectra
in Defects4J [142]. This process results in matrix and spectra files, where each line in the
matrix file corresponds to a test case, with each line consisting of columns of 1s and 0s
corresponding to whether a program element is executed (1) or not (0) in the given test
case, as well as an indicator if the test is passing (+) or failing (-). Each line in the produced
spectra file is the label of a program element and corresponds to a given column in the
matrix file.

Method and Syntactic Block Spectra Generation. After constructing all statement gran-
ularity GZoltar files, we utilize the JavaParser library2 to walk through the abstract syntax
tree of the source code files which are loaded during the execution of the failing tests3. We
then construct new program elements based on the 18 types of syntactic blocks found in

1The three bugs that cannot be localized by every granularity are Lang-25, Mockito-26, and Time-11. Lang-25
is a fault in a static class variable, which only the statement granularity can localize. The other two are
faults in a static initializer declaration, which can be localized by both the statement and syntactic block
granularities, but not the method.

2http://javaparser.org/
3provided by Defects4J framework under defects4j/framework/projects/[project]/loaded_
classes/[bug].src
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Table 6.4. The corresponding GZoltar matrix file is then constructed by walking through
the statement granularity GZoltar matrix file. For each syntactic block element that encap-
sulates an executed statement for a given test, the corresponding matrix cell is set to 1. All
syntactic block elements that do not encapsulate an executed statement are otherwise set to
0.

The same process is repeated for constructing the method granularity files, except it only
considers CND and MD blocks.

Preprocessing

Spectra Update using Dynamic Call Graph. During the development of our system, it was
discovered that the GZoltar matrix files would sometimes be missing the execution infor-
mation for the faulty program element, even if it was executed during the failing test. This
was discovered by inspecting the dynamic call graphs generated by the TestCaseCallGraph
tool4. In some bugs, for example Chart-16, the faulty element was contained in a method
that appeared in the dynamic call graph for the failing test cases, but the corresponding
statements were set to 0 in the GZoltar matrix file. Through inspecting the stack traces for
the failing test cases by hand, we determined that this was likely due to an exception being
raised in the first executed statement of a given method. As a result, we verified that the
method’s presence in the dynamic call graph was correct, whereas the missing execution of
the statement in the GZoltar spectra files was not.

In order to make up for this missing execution data, the GZoltar matrix file was updated
by setting the elements corresponding to methods appearing in the dynamic call graph
for a given failing test to 1, even if it was set to 0 in the original matrix. In all, 5 bugs in
Defects4J were updated in this manner5. While this is not a perfect solution, as we were
only able to update MD and CND blocks, it did help improve the overall results.

Spectra Dimensionality Reduction. The final data preparation step consists of reducing
the dimensionality of the GZoltar matrix file. For this step, we make the assumption that a
faulty program element needs to be executed in order to manifest as a failure. Based on this
assumption, all program elements which were never executed in any tests (i.e. all columns
containing only 0s) were removed from the GZoltar matrix and spectra files. Furthermore,
after reducing the number of considered program elements, all tests which do not contain
any executed program element (i.e. all rows containing only 0s) were also removed from
the GZoltar matrix file.

The reasoning behind these actions were twofold. First, it is assumed that the fault local-
ization performance would improve when considering fewer program elements and tests,
as the presence of non-executed program elements would only add to the wasted effort, and
tests covering none of the considered program elements do not add any extra information.
Second, the reduced dimensionality leads to better time and memory performance for the
SBFL ranking step.

4https://github.com/dkarv/jdcallgraph
5Chart-16, Closure-99, -100 and -103, and Math-89
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SBFL Suspiciousness Metrics

For evaluation, we consider the performance on three of the more popular SBFL metrics
mentioned in Chapter 2 namely DStar2, Ochiai, and Tarantula.

6.4.3. Research Questions

In order to evaluate our contribution, we define the following research questions.

• RQ1: How does the syntactic block granularity compare to other granularities? In
order to determine the effectiveness of our proposed syntactic block granularity, we
look to compare it with the commonly used statement and method granularities.
To ensure similarity with the syntactic block data, both the statement and method
granularity spectra files undergo the same preprocessing steps as the syntactic block
granularity files. Namely, we run the spectra update step for the method granularity,
and the dimensionality reduction step for both the method and statement granularities.
We evaluate each granularity using the standard SBFL ranking metrics of DStar2,
Ochiai, and Tarantula . Furthermore, all three granularities are compared using the
no-omission data set, whereas just the method and syntactic block granularities are
compared using the full data set.

• RQ2: How does the locality of program elements to the faults compare among
the three granularities? When inspecting program elements containing multiple
statements, it is important to be able to have some insight as to which statements are
more suspicious than others. For example, when inspecting a method for a fault, it
would be helpful for the user to know where to start looking for the fault, instead of
having to walk through each statement one-by-one. By knowing certain characteristics
of the program elements in each granularity, a user may be able to localize the fault
easier. One possible characteristic to consider would be the proximity of the most
suspicious faulty program element e* to the fault itself. We hypothesize that if the
average depth of the fault in the abstract syntax tree of the program element e* is
low, it will be easier to find the fault, as the user could work their way down the AST,
giving higher priority to the shallower elements.

To evaluate the proximity of the e* to the fault itself, we introduce a new metric,
called fault locality depth, or FLD, which calculates the depth of the fault within
the abstract syntax tree of the program element e*. For example, consider the fault-
localizing syntactic blocks in Figure 6.1. The depth of the fault in the AST of the MD
block would be 1, as there is one program element that is closer to the fault’s location,
whereas the depth of the faulty element in the AST of the ITB block from lines 3-12
would be 0, as it is the faulty element itself.

FLD refers to how “deep” a fault is within a given element. The depth is calculated
with respect to the given element’s AST. What we convey with FLD is that it gives
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developers a better idea as to which lines to check first. Going back to the example,
when a developer looks into ITB 3-12, thanks to this FLD characteristic, she intuitively
knows that lines 4 and 5 are less likely to contain the fault, because both of those lines
correspond to a “child” program element of ITB 3-12. So she has more intuition as
to where the fault has likely occurred (i.e., she may look for the missing code block
before looking into lines 4-6 for a fault).

Due to the nature of the statement granularity, it is obvious that the fault locality
depth of every fault-localizing program element would be 0, as the statement is the
faulty element itself. Therefore, for this evaluation, we only consider the method and
syntactic block granularities. To stay true to the other evaluation, we evaluate the two
granularities on both the no-omission and full data sets.

6.5. Results

In the following section, we will describe the evaluation results and discuss threats to
validity. Note on syntactic block evaluation: As mentioned earlier, it is possible for one
block to completely encapsulate another. Therefore, to prevent double-counting when
calculating the absolute rank and EXAM scores, we ignore any blocks that have already
been covered by blocks of a strictly higher suspiciousness score. Furthermore, when
counting the wasted effort, we only count the first time a statement shows up in the ranking,
regardless of it being first in the super-block or sub-block.

6.5.1. Evaluation Results

RQ1:The results from running the three considered SBFL metrics for each of the three
granularities on the no-omission and full data sets are displayed in Tables 6.5 and 6.6
respectively. Furthermore, additional metrics for this specific evaluation can be found in
Tables 6.7 and 6.8 respectively. The top performing value for each granularity for each
evaluation metric is in bold, with the top performing value overall highlighted in gray.

When considering the no-omission data set results in Table 6.5, the statement and syntactic
block granularities have very similar EXAM scores, with syntactic block having slightly
better scores overall, except for the case of average O-EXAM. This means that the syntactic
block granularity exhibits a similar, if not better, proportional wasted effort to the statement
granularity. As expected, the method granularity EXAM scores are noticeably worse than
the other two, with the one exception being ∆-EXAM. This is due to the larger average size
of the elements examined with the method granularity. Furthermore, the smaller ∆-EXAM
score can be attributed to the smaller number of ties seen with the method granularity due
to the reduced number of elements being considered.

When comparing the best and worst absolute rankings, the statement granularity does
the worst overall, exhibiting the worst values over all granularities in all but the best
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Table 6.7.: RQ1 - No-omission Data Set Additional Metrics
Granularity Metric Average Size Median Size

Method
DStar2 27.151 14
Ochiai 27.151 14

Tarantula 26.858 14

Syntactic
Block

DStar2 5.831 2
Ochiai 5.831 2

Tarantula 5.622 2

Table 6.8.: RQ1 - Full Data Set Additional Metrics
Granularity Metric Average Size Median Size

Method
DStar2 25.443 14
Ochiai 25.443 14

Tarantula 25.295 14

Syntactic
Block

DStar2 7.236 3
Ochiai 7.236 3

Tarantula 7.168 2.5

absolute rank Top-1 count. This means that for the statement granularity, the program
element e* will often be further down the list of suspicious elements when compared to the
other two granularities. This can partially be attributed to the larger amount of ties and
overall number of elements considered with the statement granularity. When comparing
the other two granularities, method and syntactic block perform similarly in the best-case,
with syntactic block having the edge in best absolute rank Top-1 and Top-5 counts, but
method having the edge in the average best absolute rank. The difference in averages can
again be attributed to the difference in element counts, as the method granularity has to
consider less elements overall. However, when considering the median best absolute rank,
the syntactic block granularity actually has the edge. That being said, when considering the
worst-case absolute rank metrics, the method granularity performs the best in all categories,
which again can be attributed to the number of elements considered.

The results from the full data set found in Table 6.6 are very similar to those from the
no-omission data set. The syntactic block granularity exhibits a clear advantage over the
method granularity in the EXAM scores, whereas both have a similar performance in the
best-case absolute rank values. Finally, the method granularity performs better in the
worst-case absolute rank values.

While the method granularity shows an obvious advantage over the other two granu-
larities when it comes to the absolute rank metrics, especially in the worst-case, this may
be due to the overall bias of the absolute rank metrics towards granularities with fewer
elements to examine. Since there are fewer elements to examine, there are likely fewer ties,
and the probability that an element will be in the Top-N elements is higher. Furthermore,
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Table 6.9.: RQ2 - No-omission Data Set Depth Metrics
# Elements with FLD

Granularity Metric Average FLD 0 1 2 3 4+

Method
DStar2 0.929 116 49 36 14 10
Ochiai 0.929 116 49 36 14 10

Tarantula 0.920 117 49 35 14 10

Syntactic
Block

DStar2 0.098 205 19 0 1 0
Ochiai 0.098 205 19 0 1 0

Tarantula 0.093 206 18 0 1 0

the absolute rank metrics ignore the fact that the size of the elements are different. The
effort of examining two methods is clearly not better than examining four statements or
possibly even four syntactic blocks.

This issue can be further illustrated by the average and median size metrics found in
Tables 6.7 and 6.8. These values are based on the number of statements contained in the
program element e* for each bug in the data sets. Since it is obvious that the statement
granularity would have the best size metrics (1 for both average and median), only the
method and syntactic block granularities were included in these tables. For the no-omission
data set (as seen in Table 6.7) the syntactic block granularity is not far behind the statement
granularity, with an average size of 5.622 statements and median of just 2. On the other
hand, the method granularity has an average size of 26.858 statements and median of 14.
This points to the syntactic block granularity being a lot closer to the statement granularity
in terms of effort to examine each element. Again, for the full data set (as seen in Table 6.8),
the values follow a similar pattern, with the syntactic block granularity exhibiting a 7.168
average and 2.5 median versus method’s 25.295 and 14 respectively.

The final difference between the three granularities can be seen in the number of bugs in
the Defects4J data set that they can localize. Due to its fine-grained nature, the statement
granularity can only localize 228 bugs, or only 57.72% of the 395 bugs in the data set. Due
to its more coarse-grained nature, the method granularity can localize all but 9 bugs, or
97.72% of the bugs in the data set. Finally, the syntactic block granularity can localize all
386 bugs that method can localize, as well as 2 additional bugs which contain faults within
a static initializer declaration. This gives the syntactic block granularity a 98.23% coverage
of the bugs in the Defects4J data set.

As a recap, the syntactic block granularity exhibits EXAM scores that are similar, if
not better than those of the statement granularity (an improvement over the method
granularity), while having best absolute rank values similar to the method granularity (an
improvement over the statement granularity). Furthermore, it is able to localize more faults
(388) than both the statement (228) and method (386) granularities.

RQ2: The fault locality depth metrics for the no-omission and full data sets can be found
in Tables 6.9 and 6.10 respectively. As in RQ1, the top-performing value for each granularity

78



6. Improving SBFL Through Using Syntactic Block Granularity

Table 6.10.: RQ2 - Full Data Set Depth Metrics
# Elements with FLD

Granularity Metric Average FLD 0 1 2 3 4+

Method
DStar2 0.902 199 91 55 25 16
Ochiai 0.902 199 91 55 25 16

Tarantula 0.891 201 91 53 25 16

Syntactic
Block

DStar2 0.070 361 24 0 1 0
Ochiai 0.070 361 24 0 1 0

Tarantula 0.067 362 23 0 1 0

for each evaluation metric is in bold, with the top-performing value overall highlighted in
gray.

As mentioned previously, for the statement granularity, it is obvious that the fault locality
depth of every fault-localizing program element would be 0, as the statement is always
the faulty element itself. So for this evaluation, we only consider the method and syntactic
block granularities.

When comparing the results of the method and syntactic block granularities on the
no-omission data set (as seen in Table 6.9), we found that the best average FLD was 0.92
for the method granularity, and 0.093 for the syntactic block granularity. Similarly, the
results on the full data set (as seen in Table 6.10) were 0.891 for the method granularity and
0.067 for the syntactic block granularity, resulting in up to a 92.48% improvement (percent
decrease) in average FLD. For the syntactic block granularity, this means that on average,
the faulty program element e* was more often than not, the fault itself. In fact, when looking
at the FLD values for the Tarantula ranking metric on the full data set, only 24 e* elements
were not the closest block to the faulty element, with 23 of them being the second closest,
and 1 (Math-81) being the fourth closest. In comparison, 185 of the e* elements for the
method granularity were not the closest block, with 91, 53, and 25 of them being the second,
third, and fourth closest respectively. This difference exhibits one of the key benefits of
the syntactic block granularity. Due to the locality of the most suspicious, fault localizing
blocks to the faults themselves, a user often has a hint as to the location of the fault.

For example, consider the faulty version of the mid() method in Figure 6.2, where the
fault is now on line 19. Thanks to the average fault locality depth of the syntactic block
granularity, when inspecting the MD block from lines 1-20, a developer would have some
intuition as to which lines to focus on first. Instead of giving every statement in mid() the
same priority, as would be the case when using the method granularity, a developer could
first focus on lines 1, 2, and 19, as they all have a depth of 0 in the AST of the MD block.
Using this intuition, the developer would be able to skip over 75% of the statements when
first looking for the location of the fault. In this case, this would allow the user to localize
the fault much faster than normal. Therefore, this characteristic provides the user with
additional information as to where to start looking for the fault inside a program element.
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Figure 6.2.: Faulty mid() Method, with Fault on Line 19. Each Syntactic Block is Enclosed
by a Box

While we made the assumption in our experiments of perfect bug detection, this is
often not the case in practice [182, 135, 142]. The normal user will not be able to perfectly
locate bugs every time if just given an element containing a fault, but if given the right
information and insights, their chances will increase. Therefore, we would argue that this
added information helps differentiate the syntactic block granularity from the method
granularity, due to the insight each block gives as to the possible location of a contained
fault.

As a recap, while the statement granularity is still the best, the syntactic block granularity
has a definite advantage over the method granularity in its locality to the faulty statements,
exhibiting up to a 92.48% improvement in average fault locality depth. This characteristic
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helps provide insight into the possible location of the contained fault, an advantage that the
method granularity does not exhibit.

6.5.2. Threats to Validity

Our results showed the syntactic block granularity to be an improvement over other
granularities in our context. Nevertheless, we do not claim that our experiment setup and
results will be valid for all other contexts.

We ran our evaluations on the bugs in the Defects4J library, and while we do not claim
that our results can be generalized to bugs in the field, Defects4J is the largest available
database of real bugs for Java and it includes bugs from 6 different open-source projects.
However, due to the data set still being relatively small in size, it is possible that our
findings may be restricted to Defects4J. Additionally, the quality and coverage of the test
suites considered in our evaluations may not reflect the quality of those in the real world.
Defects4J includes projects with relatively good test coverage, so when considering another
data set with a different quality of tests, the results using our technique may not be similar
to what we have produced. Furthermore, one drawback to using the bugs in Defects4J
is that each program version only contains a single isolated bug. While a majority of the
research into fault localization focuses on programs with a single bug, this is not always the
case for real-life software [182].

Additionally, during evaluation, we made the simplifying assumption of perfect bug
detection. As mentioned previously, this is often not the case in practice [182, 135, 142].
However, it allows for collecting some objective information on the effectiveness of a given
granularity and provides a common ground for comparing all three granularities [135].

Finally, a few steps in our implementation were predicated on the assumption that a
faulty element must be executed in order to be marked as suspicious. In other words, we
did not consider program elements which were not executed in at least one failing test case
as possible locations for a fault. While this is one of the main underlying assumptions of
spectrum-based techniques in general, it is still possible for elements to be faulty, even if
they are not executed in a failing test case. Mockito-9 is the one instance of such a fault in
Defects4J. However, this fault is an issue of incorrect dependencies, rather than faulty logic
or implementations, and is not a good use case for any SBFL technique.

6.6. Conclusion

In this chapter, we introduced the syntactic block granularity, a new program spectra
granularity for the use in SBFL techniques. It considers a wider range of program elements
than any other program spectra granularity, while providing additional insight into the
possible location of the fault within the given program element.

Considering a set of commonly used evaluation metrics, we evaluate our new syntactic
block granularity on Defects4J. We found that our proposed syntactic block granularity
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exhibits best-case absolute ranking behavior similar to the method granularity, while having
a wasted effort equivalent to, if not better than, the statement granularity. Furthermore, it
covers more types of faults than both existing granularities. Finally, when compared to the
method granularity, it exhibits up to a 92.48% improvement when it comes to the locality
of the program elements to the fault, a characteristic that provides the user with a better
insight into the possible location of the faults.

While the improvement of the syntactic block granularity is a step towards addressing
the issues of SBFL, it is still uncertain if it makes SBFL usable in the real world. For instance,
an O-EXAM score of even 0.48 may still be too high, especially when considering very large,
real-world programs. Our contribution is an improvement of the state-of-the-art, however
it is likely not the final solution to making SBFL applicable in practice.
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This chapter presents a new ranking technique to improve the effectiveness of
spectrum-based fault localization.
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In another attempt to improve the effectiveness of SBFL techniques, we propose a new
re-ranking approach that takes into account dynamic call and explicit data-dependency
graphs of failing tests. By evaluating our technique on Defects4J bugs, we show that our
re-ranking approach outperforms the popular SBFL techniques, namely DStar, Ochiai,
Tarantula, and causal inference-based techniques, namely MFL.

7.1. Introduction

As previously described in Chapter 2, SBFL techniques measure the correlation between
program elements and test failures to compute suspiciousness scores. However, one
problem is that these techniques do not control potential confounding bias.
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public void F1(int i) {
if (i < 0) {
... // Faulty
F2(x);

} else {
...
F3(x);

}

Figure 7.1.: A Hypothetical Faulty Method with Two Branches

Figure 7.1 exhibits an example of confounding bias in SBFL results. Assume that a fault
in method F1 propagates only through the first branch where method F2 is triggered, while
the second branch where methods F3 is called, executes correctly. Put differently, although
F1 contains a fault, only those tests taking the left branch are failing. In this case, an SBFL
technique gives the highest suspiciousness score to the method F2, since it’s executed more
frequently in failing executions and less frequently in passing executions (F1: 1 failing, 1
passing, F2: 1 failing, and F3: 1 passing). However, method F1 is the faulty element.

“Confounding bias happens when a seeming causal impact of an event on a failure may
be in fact due to another unknown confounding variable, which causes both the event and
the failure” [119]. Given a program and a test suite, assume that, all failing TCs induce de-
pendence chain (chain of executed program elements in our case) e1→ e2→ ebug→ e3→ e4
→ efail and all passing TCs induce e1→ e2 only, where ebug indicates the execution of faulty
element and efail indicates a failure. A correlation-based approach such as SBFL would
assign the same suspiciousness score to any of ebug, e3, or e4, thus resulting in two false
positives, whereas a causation-based approach that considers dependencies to have causal
effect would assign e4 the lowest suspiciousness score and ebug the highest suspiciousness
score. This means, when computing the suspiciousness scores, the confounding bias to
consider for e4 would involve e3 and ebug, for e3 it would involve ebug, and no confounding
is involved when computing the suspiciousness score of ebug [119].

Shu et al. [162] introduced MFL, a method-level FL technique based on causal inference
to tackle this issue (see Chapter 2). Since we could not find any implementation of this ap-
proach or any evaluation of it in survey papers, we implemented, improved, and evaluated
it on Defects4J data set. Our results show that some SBFL techniques such as DStar [185]
outperform MFL.

To the best of our knowledge, MFL and its ancestors [8] are the only works attempting to
reduce confounding bias in FL. In our further analysis of SBFL results, we observed that
often if the most suspicious element s* does not contain a fault, one of its Markov blanket
[137] members, namely its parents, its children, and its children’s other parents, contains a
fault, as shown in Figure 7.1. Method F2 is the most suspicious element, while its parent F1
contains a fault. To improve SBFL effectiveness, we propose a re-ranking strategy based on
this observation.
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As a solution, we augment SBFL with a combined dynamic call and data-dependency
graphs of failing tests. Since DStar is shown to be one of the best performing SBFL tech-
niques in different studies such as [182], and method-level to be the mostly used granularity
level [94], we use method-level DStar as the base in our approach 1. First, using DStar, we
find the most suspicious method s* of the program. It has rank 1 on the suspiciousness
ranking list. We locate it on the combined dynamic call graph of the failing tests and inspect
it. If it is faulty, the process ends. If it is not faulty, we list all of its parents and grandparents.
Instead of inspecting the method that is given rank 2 on the DStar suspiciousness ranking
list, we inject parents and grandparents of s* between rank 1 and rank 2 and re-rank all
methods accordingly. The re-ranking approach gives the second rank to the parents of s*
and the third to its grandparents. We continue inspecting based on the new ranking until
we find the fault. Visual representation of call graph while highlighting the most suspicious
elements on it aids users in better understanding the problem.

Our results show that with our re-ranking approach, we are able to improve the effec-
tiveness of SBFL, however slightly. The results raise a question, whether just improving
the SBFL effectiveness is enough to bridge the gap between research and industry? The
honest answer to this question is no. Although we are able to improve the effectiveness and
provide a visual guide via highlighting the suspicious parts of the method call structure,
there is no guarantee that the SBFL results are always helpful. In fact, no matter what is
being used as the FL tool, it is not clear whether the results are helpful or not. To help users
in better deciding whether to consider the SBFL ranking list or not, we need a Confidence
Factor (see Chapter 10). This factor informs users about the probability of the fault being in
the Top-10 positions.

In addition, we believe that it is time to shift the focus from merely improving the
automated FL techniques to the quality of the code to facilitate fault localization. As
the starting point, we looked deeper into the source code of some of the studied buggy
versions where automated FL is not so effective. Using some examples, we show that
some programming styles can have a negative impact on the effectiveness of FL. Chapter 8
provides a deeper look into this issue.

In this chapter:

• We propose a re-ranking approach for SBFL techniques which leverages dynamic call
and data-dependency graphs of failing executions. This approach produces more
accurate results augmented with the graphical representation of suspicious elements
which can enhance users’ understanding of the program’s faulty behavior. Utilizing
this technique, programmers find out the direction they should search for the fault.

• We propose some practical suggestions on how to improve the code to facilitate fault
localization.

1We introduce syntactic block granularity in Chapter 6 as a better option than method granularity. However,
for the sake of comparison with other studies especially the MFL technique, we use method granularity in
this experiment.

85



7. Improving SBFL Through Tackling Confounding Bias

7.2. Methodology

In the following, we outline our approach. We use a real bug, Lang-26, from Defects4J as
our motivating example. This bug is a wrong method reference that causes one test to fail
[163].

Figure 7.2.: Human Patch to Fix Lang-26

7.2.1. Approach

Step 1: Finding the most suspicious method(s) using SBFL

As mentioned earlier, we utilize DStar2 to find the most suspicious method in the first step.
DStar2 calculations on Lang-26 spectrum places “lang3.time.FastDateFormat-TextField-
1171” and “lang3.time.FastDateFormat-StringLiteral-1130” methods at rank 1, as the most
suspicious methods. Method “lang3.time.FastDateFormat-820” which is the faulty method
gets rank 17.

Step2: Locating the most suspicious method(s) on the dynamic call and/or
data-dependency graph

In the second step, we generate a graph which includes dynamic method calls and/or
explicit data-dependencies of all failing tests.

A dynamic call graph is generated at runtime by monitoring the program execution. The
graph contains nodes that indicate the executed methods and edges between methods that
represent method calls. We consider dynamic call graph to inspect real, not potential (as is
the case in static call graphs) dependencies.

An explicit data-dependency graph indicates dependencies between program elements
introduced by a common variable used in multiple program elements. A data-dependency
exists when two program elements exchange data using a variable. This happens when one
program element writes to a field, and another element reads that field later. The result is a
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data-dependency between the first and second elements. Figure 7.3 shows an example of
data-dependency between methods.

void compute(int x) {
this.result = x * 10;

}
int getResult() {

return this.result;
}
int f() {

compute(5);
return getResult();

}

Figure 7.3.: An Example of Data-dependency Between Methods

Considering Figure 7.4, a call graph contains only the solid lines. A data-dependency
graph contains only the dashed line. A combined graph can be helpful in FL. If method
compute is faulty, method getResult will also return a wrong result. Thus, it will be labeled
as a suspect. Looking into the combined graph, one can improve the labeling by adjusting
for the confounder.

f

compute

getResult

Figure 7.4.: Combined Call/Data-dependency Graph of Figure 7.3

Figure 7.5 shows the call graph of Lang-26 failing test. Due to space constraints, it is only
depicting the left branch. Thick red boundaries highlight the most suspicious methods. All
nodes are annotated with their ranks. In this example, we use the best ranks in case of ties.
At this step, the user receives the graph and inspects these two methods. Since the fault is
not there, the user continues the process through step 3.

Step3: Re-ranking program methods

In step 3, we find the parents and grandparents of the DStar’s most suspicious methods.
Then, we inject them between rank 1 and rank 2 and change all the ranks accordingly. Par-
ents get rank 2 and grandparents get rank 3. In our example, “lang3.time.FastDateFormat-
888” is the parent and “lang3.time.FastDateFormat-820” is the grandparent. Thus, in
our new list, we place them right after ranked 1 methods and change their ranks to
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Figure 7.5.: Left Branch of Lang-26 Call Graph. Numbers in the Nodes Indicate the Line
Numbers of Methods in the Source Code.

2 and 3 respectively. As annotations on Figure 7.5 show, the rank of faulty method
“lang3.time.FastDateFormat-820” changes from 17 to 3.

Additional considerations: Basic blocks and data-dependency graphs

Our re-ranking approach is based on integrating dynamic call and explicit data-dependency
graphs. However, it is possible to consider only one of the call or data-dependencies. In
the case of considering both, call and data-dependency relations have the same priority
when inserting (see Section 7.2.2). This setting may change the number of parents and
grandparents. Depending on the bug type, considering data-dependency in addition to the
call graph might improve or harm the results. An example of improvement is Lang-9 (see
Figures 7.6 and 7.7) where data-dependency links the most suspicious and faulty methods.
On the other hand, adding more connections may increase the number of parents that are
considered in re-ranking, therefore negatively impact the results, as it happens in Chart-7
(see Figures 7.8 and 7.9).

Besides, there is another option which is considering basic blocks. Two methods that
are called from within one basic block have necessarily the same coverage profile. There-
fore, it is not possible to discriminate between them. We can assign them the same rank
or assign the parent a higher rank than the child. Assigning ranks to basic blocks will
improve the results. In our basic setting, we just inform users which methods are in
the same basic block utilizing a thicker arrow between them. The thick arrow between
“lang3.time.FastDateFormat-TwoDigitNumberField-1355” and “lang3.time.FastDateFormat-
TwoDigitNumberField-1348” means that they are in the same basic block.
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Figure 7.6.: Human Patch to Fix Lang-9

7.2.2. Parameter setting

Our idea on re-ranking is based on our observation that SBFL techniques might not always
be accurate in localizing the fault in Top-10 ranks, but the most suspicious method s* may be
a hint that the fault is nearby. Parnin and Orso [136] performed an experiment to investigate
how automated debugging can help programmers. They reported that programmers might
use the FL tool just to identify the starting point for their investigations, some of which
may be near the fault. Based on their data, programmers do not visit each element in the
ranking list in a linear fashion. In addition, they reported that giving the ranking list to the
programmers is not enough. They need more context, such as the structure information of
the program.

Thus, one goal in our technique is helping the developers by pointing to the direction they
need to traverse between methods. To find the right direction, we should look for the most
prevalent patterns of the locality of s* to the method that contains the fault e*. Figure 7.10
shows some of these patterns. To translate these patterns into search strategies, we defined
two parameters: Range and Mode. If we consider a call graph (or a data-dependency graph)
where nodes are methods and edges are method calls, then:

Range shows the number of nodes between s* and e*. Three values for Range are shown
in Figure 7.11. Regardless of direction, Range 1 includes all the direct neighbors of s*,
meaning its parents and its children. Range 2 includes direct neighbors and the neighbors
of direct neighbors and so on. Mode shows the path direction to reach e* stating from s*.
We defined four values for Mode. Figure 7.12 shows four Modes in Range 2.

• Ancestor: Going upward. Consider only parents, grandparents, etc.

• Descendant: Going downward. Consider only children, grandchildren, etc.

• Chain: Going both upward and downward. Include Ancestors and Descendants.

• All: Consider all directions in the defined Range. Include Chain and Siblings.
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Figure 7.8.: Human Patch to Fix Chart-7

7.3. Experiment

We can now refine our research questions.

7.3.1. Research Questions

We need to answer the following questions to evaluate how successful our solution is in
improving SBFL:

• RQ1: Which combination of Range and Mode parameters is the most effective in this
setting? Since we considered multiple approaches for the search around the most
suspicious method, it is necessary to determine which combination of parameters
works the best. The best setting points in the best direction to start looking for the
faulty element.

• RQ2: How much improvement is achievable using the re-ranking? How does the
re-ranking approach compare to the traditional SBFL and causal inference-based
techniques?

7.4. Results

In this section, we describe the evaluation results, practical implications, and the threats to
validity.

7.4.1. Evaluation Results

RQ1: Considering 4 values for Mode and 6 values for Range, we ended up constructing 24
re-ranking approaches. Our previous experiences in Chapters 6 and 4 and other studies
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Parent Grandparent Grandchild Sibling

Most Suspicious

Faulty

Figure 7.10.: Prevalent Patterns of Locality of Suspicious Method s* to the Method that
Contains a Fault e*

Range 1

Most Suspicious

Range 1
Neighbours

Range 2 Range 3

Range 2
Neighbours

Range 3
Neighbours

Figure 7.11.: Different Ranges; Steps Between the Most Suspicious and the Faulty Elements

such as [185] showed that DStar results are slightly better than other traditional metrics.
Thus, we apply re-ranking on DStar2 results.

We considered 183 Defects4J bugs from projects Chart, Closure, and Time as our training
data. The results from running top-6 combinations on the training data can be found in
Table 7.1. As the table shows, the differences between top-6 combinations are not huge.
Across all combinations, Ancestor-Range2, followed by Chains-Range2, are the two best
performing approaches. It means that for most of the buggy versions in Defects4J, if Dstar2
s* does not contain a fault, usually one of its parents or grandparents contains a fault. In
other words, a developer checking the code to find the fault should first inspect the most
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Ancestor

Most Suspicious

Nodes to Inspect 

ChainDescendant All

Figure 7.12.: Different Modes; Direction of the Path Between the Most Suspicious and the
Faulty Elements

suspicious method then should search upward on the call graph to find and inspect its
ancestors. This is more effective than linearly inspecting the ranking list. We consider the
Ancestor-Range2 combination to be our best result since it shows the best overall results.
The top-performing value for each evaluation metric is highlighted in gray.

RQ2: As was the case in RQ1, Ancestor-Range2 is the best performing combination for
our re-ranking approach. When compared to the raw DStar2 results, it exhibits better EXAM
and Top-10 scores as shown in Table 7.2. The results show an improvement in Top-10 scores
by 8 and 3 percentage points in Chart and Closure respectively. Overall, all scores have
improved, however slightly.

In comparing all existing metrics and the best combination from RQ1, Ancestor-Range2
exhibits better EXAM and Top-10 scores. It consistently outperformed all other combina-
tions across Median and Top-10 metrics. Only in Chart and Time, Ochiai has slightly better
Mean scores. Due to this, we consider Ancestor-Range2 as a more effective technique when
compared to the popular SBFL techniques and also casual inference-based techniques.

As seen in RQ1, our Ancestor-Range2 re-ranking approach is more effective than other
techniques. To measure its effectiveness on unseen test data, we apply it on 63 bugs from
Lang project. The results are shown in Table 7.3. Re-ranking strategy Chain-Rang3 shows
better results than Ancestor-Range2. In general, re-ranking strategies show better results
than SBFL and causality-based techniques, however slightly.

Our experiment results show slight improvements. There are several works in the
literature suggesting improving FL via either a new technique such as [196] and [141] or
optimizing the test suite such as [143] and [187]. Based on the results of our experiment
and these other studies, it seems that improving the effectiveness of FL is limited and the
improvement ratio varies from one project to another. Thus, in order to further improve it,
we need to understand the reasons why it is sometimes ineffective. To this goal, we conduct
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another experiment in Chapter 8.

Table 7.1.: RQ1 - Re-ranking Results Using Different Modes and Ranges. µ: mean EXAm,
M: median EXAM, Top-10 (%)

Chart Time Closure
µ M Top-10 µ M Top-10 µ M Top-10

Chains-Range1 10.2 2.00 84 19.19 6.00 63 115.54 21.00 37
Chains-Range2 10.10 2.00 88 19.98 5.00 56 118.92 24.00 34
Chains-Range3 10.40 2.00 84 23.96 5.00 56 127.20 30.00 29
Ancestors-Range2 13.84 2.00 84 18.69 4.00 70 115.86 19.00 40
Descendants-Range2 11.62 2.00 76 19.22 5.00 67 119.29 24.50 30
All-Range2 10.22 2.00 84 19.44 5.00 67 117.50 21.00 34

Table 7.2.: RQ1 - Fault Localization Effectiveness - µ: mean EXAM, M: median EXAM,
Top-10 (%)

Chart Time Closure
µ M Top-10 µ M Top-10 µ M Top-10

Ancestors-Range2 13.84 2.00 84 18.69 4.00 70 115.86 19.00 40
DStar 15.12 2.00 76 18.06 3.50 70 117.03 19.50 37
Ochiai 8.62 2.00 84 17.06 4.50 67 119.97 21.00 37
Tarantula 11.86 2.00 84 20.52 6.00 67 126.37 21.00 35
MFL 11.86 3.00 80 25.20 7.00 70 463.20 500.00 8
Improved-MFL 24.06 3.00 72 23.11 4.00 59 246.08 40.00 27

Table 7.3.: RQ3 - Evaluation of Re-ranking Approach on Test Data Project Lang - µ: mean
EXAM, M: median EXAM, Top-10 (%)

µ M Top-10
Chain-Range1 4.29 2.00 89
Chain-Range2 3.67 2.00 92
Chain-Range3 3.54 2.00 94
Decendant-Rang2 4.42 2.00 87
All-Range2 3.64 2.00 92
Ancestor-Range2 3.88 2.00 90
DStar 4.62 2.00 87
Ochiai 4.65 2.00 89
Tarantula 5.45 2.00 89
MFL 4.48 2.00 90
Improved-MFL 4.14 2.00 89

7.4.2. Threats to Validity

We evaluated our approach on the 246 bugs in the Defects4J data set. While we do not claim
that our results can be generalized to bugs in the field, Defects4J is the largest available
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@Test
public void test(){
boolean result = unit.shouldReturnTrue();
if (!result) {

Assert.fail(unit.getName() +
"returned wrong value");
}

}

Figure 7.13.: Triggering a Method After Test Failure

database of real bugs for Java. However, it is possible that our findings may be restricted to
Defects4J.

As mentioned earlier, the quality of the test suite impacts the results of any FL technique.
The quality of Defects4J test suites may not reflect the quality of other projects in the real
world. Thus, the results using our techniques may not be similar to what we have produced.

While a majority of the research into FL focuses on programs with a single bug, this is
not always the case for real world software. Nevertheless, this is also the case for Defects4J.
Each buggy version in Defects4J contains only one bug.

When evaluating our approach, we made the simplifying assumption of perfect bug
detection, in that, if given a program element containing a fault, the user will be able to
localize the fault 100% of the time [185]. This allows us to evaluate the effectiveness of
each FL technique, without having to worry about the complexity of the faults themselves.
However, in practice, understanding a fault to repair it is also difficult and time-consuming.

7.5. Practical Implications

Overall, re-ranking can improve SBFL results especially for complex projects like Closure.
However, the improvement might not be enough to make it applicable in practice right away.
As the first step in our journey toward exploring the reasons behind FL ineffectiveness, we
looked deeper into some of the case that our approach could not improve the results. Based
on our observation, we propose the following technical take-away that. We do not claim
that these technical issues are the only reasons behind FL ineffectiveness. However, they
have a negative impact on the result of any FL technique.

7.5.1. Triggering a method after test failure

We observed several times that a method is being triggered immediately after tests are
failed. Consequently, FL results are skewed toward the triggered method, disturbed from
the fault itself. An example is shown in Figure 7.13.

As shown in Figure 7.13, method unit.getName() is triggered, if the test result is not as
expected. An example of this pattern is Lang-10, where all FL techniques performed poorly
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(see Figure 7.14). Executing more code after a test already asserted as a failure skews the FL
results toward giving a larger subset of the code the same suspiciousness rank. Therefore,
failures should be reported as soon as they are detected.

Figure 7.14.: Lang-10. Calling testSdfAndFdp() After the Test Failure Makes It Wrongly the
Most Suspicious Method

Combining multiple tests in one test method

One common problem in Defects4J projects is that multiple test cases are combined in one
test method. Two examples are shown in Figures 7.15 and 7.16. In the first example, the
developer has not created a test method for every simple test case. While this makes the
code more readable, it has a bad impact on FL results. The whole method is counted as a
single test case. Therefore, the coverage and call graph are computed for the whole method.
By splitting these test cases, the coverage profile is more accurate, and it is easier to detect
the fault. The solution JUnit offers to test the same method with different parameters is
called “parametrized tests”2. The developer should write one method generating the input,
and a test method that is called with every specified input.

The second example also has a negative impact on FL results. As shown in Figure 7.16,
the first test case is to inspect if unit.setValue(1) works as expected. Then the same unit
is re-used to test another method. In this case, the coverage profile and the hit spectrum
contain one test case. However, there are two unit tests. An example of these patterns is
Lang-9. Xuan and Monperrus [187] proposed an algorithm to split the test cases at every
assertion automatically.

7.5.2. Combining unit and integration test suites

As mentioned in RQ4, existing FL techniques perform better for unit test. However, manual
FL is more challenging in integration testing. Therefore, automated FL techniques are
in higher demand in integration testing. In order to improve FL results for integration

2https://github.com/junit-team/junit4/wiki/parameterized-tests
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@Test
public void test(){
assertEquals("A", unit.upperCase("a"));
assertEquals("B", unit.upperCase("b"));
assertEquals("C", unit.upperCase("c"));
}

Figure 7.15.: Combined Unit Tests

@Test
public void test2(){
int a = unit.setValue(1);
assertEquals(0, a);
int b = unit.calculate(a);
assertEquals(1, b);
}

Figure 7.16.: Combined Unit Tests

testing, we propose combining unit and integration test suites. Adding unit tests to the set
of integration tests can decrease the indistinguishability of the test suite. Integration tests
cover a large subset of methods inevitably. Adding unit tests increase the variety in the
execution profiles.

7.6. Conclusion

Despite ongoing research efforts, state-of-the-art SBFL techniques are not applicable in
practice yet. In this chapter, we proposed a re-ranking strategy which leverages dynamic
call and data-dependency graphs of failing executions to improve SBFL techniques. Our
experiments showed that to localize a bug, a developer should first look for the most
suspicious method on the call graph then look upward and inspect its parent and grand-
parents instead of inspecting the ranking list in a linear fashion. Our re-ranking strategy
outperformed the traditional SBFL techniques and also causal inference-based techniques.

While we cannot report on a second study in a different domain here and clearly see the
threats to external validity, we ourselves are sufficiently confident to repeat our own study
in a different context. Moreover, we believe that our achieved relative improvement is not
enough for the real-world, but it adds to the growing body of evidence about the potential
usefulness of fault localization techniques.

Based on our experiment and observations, we believe that the next steps in improving
the effectiveness of FL should be improving the quality of the code via finding the metrics
that influence the effectiveness of SBFL. As our first practical step toward this goal, we
suggested some technical changes that can improve the effectiveness of SBFL.
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This chapter presents a model to predict the quality of spectrum-based fault
localization. Considering the prediction, developers can decide whether to use
the fault localization tool or not.
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Input
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We saw in previous chapters that despite ongoing research in the area of SBFL, there are
still many unanswered questions. Two of the most important questions that have not been
answered are: Why are these techniques sometimes effective and sometimes ineffective?
What are the metrics that influence the effectiveness of FL? In this chapter, we try to answer
these questions by collecting 70 Static, Dynamic, Test suite, and Bug related metrics. Our
analysis results show that a combination of 4 Static, 4 Dynamic, and 2 Test metrics, gives us
a model with excellent discrimination power (AUC=0.86) which can be used in 2 ways: as a
prediction model for the effectiveness of FL, and as a confidence factor for the results of FL.
These 10 metrics are the most influential metrics on the effectiveness of FL. Thus, they can
be used as a guide to improve the code quality for more effective FL.
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8.1. Introduction

In previous chapter, we saw that what is observable from our experiments and other studies
on Defects4J is twofold. First, FL is not equally effective on all of Defects4J’s projects.
Second, the improvement ratio achieved by various techniques varies from one project to
another (see Chapters 6 and 7 and [166, 143] for instance).

In this chapter, we raise the question of why on the two observations mentioned above.
We try to understand why sometimes FL is effective and sometimes not. Is the reason in
the characteristics of the code, the test suite or the type of bugs? We are trying to learn the
metrics that influence the effectiveness of FL. Understanding these characteristics can help
in two ways. First, we would know how to improve the code to facilitate FL. Second, we
would be able to predict the effectiveness of FL. This helps us in deciding where and when
to use it to avoid wasting time and money.

Among the Defects4J projects, Closure is the project with the largest integration tests
and also the one with the least FL effectiveness. Nevertheless, for some buggy versions of
this project, FL is quite effective and successful. Thus, the effectiveness is not ruined only
by the high coverage of the test or complexity of the code. Then the question would be
what aspects of the projects are the most influential on the effectiveness of FL? The static
characteristic of the source code? Dynamic measures of the code? Test suite characteristic?
Or the bug location and bug type?

To answer these questions, we collected four groups of metrics: Static metrics, Dynamic
metrics, Test-suite metrics, and Bug characteristics. Static metrics measure the static aspects
of the whole source code. Dynamic metrics measure the dynamic aspects considering the
test runs. Test suite metrics are correlated to the test suite. Bug characteristics define the
repair patch of the bug and also the location of the bug on the call graph of failing tests. In
total, we collected 70 metrics and computed them for the buggy versions of five Defects4J
projects.

We utilized SBFL to compare the effectiveness of FL on different projects. If the faulty
block gets a very high rank in the ranking list, we say that FL is effective. Using collected
metrics as variables or features and SBFL effectiveness as labels, we formed a data set. We
did regression analysis and classification on the data set with the goal to find the most
relevant and influential metrics. The metrics that can separate an effective FL from an
ineffective one, can be used to generate a model for prediction.

The results show that among all the collected metrics, 4 static metrics (% Methods with
LoC>30, % Methods with Nesting Depth>5, % Methods with 3<=Nesting Depth<=5,
Mean # of Fields per Type), 4 Dynamic metrics (Mean Node Degree, Max. Node Out-Degree,
Graph Diameter, Response for Class), and 2 Test metrics (% Method Coverage, % Methods
Covered in Failing Tests) are the most influential metrics. Our analysis results also show
that the bug location is more influential than the bug type. The Logistic regression model
generated on the influential metrics to predict the effectiveness of FL, has an excellent
discrimination power between effective and ineffective FL (AUC=0.86). Thus, this model
can be used a priori as a prediction model to predict the effectiveness of FL, and a posteriori
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to predict the confidence of FL results.
The prediction model can be used in the following ways. In the first scenario, the

developers check the prediction results, if the effectiveness probability is very low, they
avoid running the FL tool. If the effectiveness probability is not very low, they refactor their
code to facilitate fault localization. Then, again they check the effectiveness probability. If
the effectiveness probability is high, they run the FL tool to get the hints about the location
of the bug. In the second scenario, developers run the FL tool in the debugging session.
They get the results aligned with a confidence factor. If the confidence score is high, they
trust the results and continue using the localization results. Otherwise, they avoid using
the results and inspect the code manually.

As a recap, the problem is that in spite of a lot of work put in these techniques, existing
techniques are not effective in practice yet. Introducing new techniques and ideas have
not solved the problem yet. What are the influential aspects of a project on predicting the
effectiveness of FL? How can we improve our project to facilitate FL? Is it possible to predict
the effectiveness of FL?

As a Solution, we try to learn the influential metrics on the effectiveness of automated
FL. We believe that by learning these factors, we will be able to improve our projects and
facilitate FL. Besides, using these metrics, we will be able to predict the effectiveness of FL
and avoid using it if it is going to be ineffective.

Thus, in this chapter:

• We explore the correlation between a collection of static, dynamic, test, and bug
metrics and the effectiveness of FL.

• Using the most influential metrics, we introduce a model that can be used for pre-
dicting the effectiveness of FL and for assigning a confidence factor to the results of
FL.

8.2. Methodology

In Sections 8.3 and 8.4, we describe our methodology. First, we explain the steps in
generating and populating the study data set. Then, we describe our data analysis steps.

Utilizing our generated data set, our goal is answering the following Research Questions:

• RQ1: Which group of Static, Dynamic, or Test metrics is the most influential in
predicting the effectiveness of FL?

• RQ2: Which metrics are the most influential in predicting the effectiveness of FL?
What is their impact on the effectiveness of FL?

• RQ3: Can we generate a model on the most influential metrics to predict the effective-
ness of FL? Can we generate a model using the most influential metrics to assign a
confidence factor to the results of FL?
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8.3. Generating the Data Set

To identify the factors that influence the effectiveness of FL, we utilized regression analysis
and machine learning predictive modeling, namely classification. Our goal is identifying
variables in our data that are most relevant to the predictive modeling we are working on.
In the following, we explain the steps in generating and populating our labeled data set for
regression analysis and classification.

8.3.1. Variables

The variables of the data set are the metrics for which we want to measure the influence on
the effectiveness of FL. We identified and collected four groups of metrics described in the
following. The criteria for metric selection was twofold. First, we can have a hypothesis
about why the metric influences the effectiveness of FL. Second, the metric is actionable
meaning a developer can improve the values with a good programming style. Therefore,
we did not include metrics such as “Lines of Code” that is inevitably large in large projects.

Static Metrics. Static metrics measure static characteristics of the source code. These
metrics do not include any run time or any bug related values. Table 8.1 shows the static
metrics and their short descriptions. We used Teamscale 1 and Codepro 2 tools to compute
the Static metrics.

Table 8.1.: Static Metrics
ID Metric Definition
S1 PML % of Methods with LoC>30
S2 PHFS % of Files with LoC>750
S3 PMFS % of Files with 300<LoC<750
S4 PHND % of Methods with Nesting Depth>5
S5 PMND % of Methods with 3<=Nesting Depth<=5
S6 CC Mean Cyclomatic Complexity [121]
S7 MCC # of Methods with 10<CC<20
S8 AFFC Mean Afferent Coupling [18]
S9 EFFC Mean Efferent Coupling [18]
S10 ABKD Mean Block Depth
S11 ADIH Mean Depth of Inheritance Hierarchy
S12 ALOCPM Mean # of LoC per Method
S13 ANOCPT Mean # of Constructors per Type
S14 ANOFPT Mean # of Fields per Type
S15 ANOMPT Mean # of Methods per Type

Dynamic Metrics. Dynamic metrics are the metrics measured at run-time. In addition,
we generated the call graph of tests and collected some of the graph metrics as Dynamic
metrics. The list of these metrics is shown in Table 8.2. However, we are aware that

1Available here: https://www.cqse.eu/en/products/teamscale/landing/
2Plugin available here: https://dl.google.com/eclipse/inst/codepro/latest/3.7
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the impact of the test suite on dynamic values is inevitable. We developed a tool called
jdcallgraph to generate dynamic call graphs 3.

Table 8.2.: Dynamic Metrics
ID Metric Definition
D1 VC # of Nodes in Call Graph 4

D2 EC # of Edges in Call Graph 5

D3 MAXVD Max. Node Degree 6

D4 MVD Mean Node Degree
D5 MAXVI Max. Node In-Degree 7

D6 MVI Mean Node In-Degree
D7 MAXVO Max Node Out-Degree 8

D8 MVO Mean Node Out-Degree
D9 MSND Avg. Start Node Degree
D10 GD Graph Diameter 9

D11 GR Graph Radius 10

M12 MGD Mean Geodesic Distance 11

D13 VCON Node Connectivity 12

D14 ECON Edge Connectivity 13

D15 ClCo Mean Clustering Coefficient 14 [112]
D16 SCOV % of Statement Coverage
D17 CBO Coupling Between Objects [18]
D18 RFC Response for Class [18]

Test Suite Metrics. Test suite metrics measure some characteristics of the test suite. For
each faulty program version, we generated a hit spectrum [76], a matrix which shows which
methods were executed in different test runs (see 8.3.2). Test suite metrics are measures
based on the generated hit spectra. Table 8.3 demonstrates these metrics.

Table 8.3.: Test suite Metrics
ID Metric Definition
T1 T # of Tests
T2 M # of Methods
T3 PPT % of Passing Tests
T4 PFT % of Failing Tests
T5 D Density [143]
T6 G Diversity [143]
T7 U Uniqueness [143]
T8 DDU Density×Diversity×Uniqueness [143]
T9 MatSpar Matrix Sparsity
T10 MetCov % of Method Coverage
T11 COVPT % of Methods Covered in Passing Tests
T12 COVFT % of Methods Covered in Failing Tests
T13 AVGMV Mean Covered Methods per Test

Bug Metrics. Utilizing bug characteristics, we try to characterize the bugs. To this goal,
3Available here: https://github.com/dkarv/jdcallgraph
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we considered the patches that have been used to repair the bug and defined some metrics
based on them. In addition, we considered the faulty nodes on the generated call graphs of
failing tests and computed some metrics based on the location of the faulty node on the call
graph. Although these metrics are not helpful in predicting the effectiveness of the FL (since
bugs are not known a priori), we include them in our experiment to measure the impact
of fault type and fault location on the effectiveness of FL. Table 8.4 lists the bug metrics. We
extracted metrics B1 to B8 and B14 to B24 from [163].

Table 8.4.: Bug Metrics
ID Metric Definition
B1 NF # of Files Changed in Patch
B2 NC # of Classes Changed in Patch
B3 NM # of Methods Changed in Patch
B4 NL # of Lines Changed in Patch
B5 NCH # of Chunks Changed in Patch
B6 NRP # of Repair Patterns 15

B7 NRA # of Repair Actions 16

B8 EXCP Exception Type
B9 FaultyD Mean Degree of Faulty Node
B10 FaultyInD Mean In-Degree of Faulty Node
B11 FaultyOutD Mean Out-Degree of Faulty Node
B12 FaultyCTRL Degree Centrality of Faulty Node 17

B13 SpreadCode # of Lines Between Patched Lines
B14 Add # of Added Lines
B15 Mod # of Modified Lines
B16 Rem # of Removed Lines
B17 MSIGCH # of Changed Method Signature
B18 MCARGCH # of Changed Method Call Args.
B19 AMCAL # of Added Method Calls
B20 CHCOND # of Changed Conditions
B21 AV # of Added Variables
B22 AIF # of Added If-Statements
B23 AL # of Added Loops
B24 AM # of Added Methods

8.3.2. Target Class

As mentioned earlier, we defined our problem as a regression problem or supervised
machine learning problem. To define the target labels or class labels, we used method-level
SBFL results.

Kochhar et al. [94] report that practitioners find SBFL results useful if it ranks the faulty
method in Top-5 or Top-10 ranks. Therefore, initially, we considered two settings for our
labeling. In the first setting, if the rank of the faulty method is between 1 to 10, we label it
as “effective” or “1”, otherwise it gets “ineffective” or “0” label. In the second setting, if the
faulty method has a rank between 1 to 5, it gets “effective” label, if it is between 5 to 10, it
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gets “acceptable” rank. Otherwise, it gets “ineffective” label. However, early results using
the second setting were so discouraging that we did not pursue this avenue any further.

It is worth to mention that, we tried other well-known similarity formulæ such as
Tarantula [76] and DStar [181] as well. As our experiment and other experiments [141]
show, there is not any significant difference between these formulæ. Especially since we are
considering ranges of ranks for assigning labels, our strategy can tolerate small differences.
In fact, our experiment is not sensitive to the similarity formula used.

8.3.3. Populating the Data Set

As mentioned earlier, we selected Defects4J as our study benchmark. Each instance of data
in our data set is a faulty version extracted from Defects4J. We computed our metrics on
Defects4J projects to generate data values and performed SBFL on each version to evaluate
the effectiveness of SBFL on it and generate the class labels. Figure 8.1 demonstrates a
summary view of our data set, its records, variables, and class labels. Our final data set has
341 instances and 70 variables. The “effective” label has been assigned to 193 instances 18.
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Figure 8.1.: Study Data Set

8.4. Data Analysis

To measure the correlation between our metrics and the effectiveness of FL, we use re-
gression model and five other classification techniques. In the following, we explain our
analysis steps.

8.4.1. Pearson’s Correlation

One assumption in regression models is that there is no high inter-correlations among the
predictors. Tabachnick and Fidell [169] suggest that as long as the correlation coefficients
among independent variables are less than 0.90 the assumption is met. Thus, first, we need
to find and remove correlated metrics. To this end, we use Pearson correlation [140] which

18Our data set is available here: https://figshare.com/s/c41ae04bbf0976cded8b
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is a number between -1 and 1 that indicates to which extent two metrics are linearly related.
A Pearson correlation between metrics X and Y is calculated by:

rXY =

∑n
i=1(Xi − X̄)(Yi − Ȳ )»∑n

i=1(Xi − X̄)2
»∑n

i=1(Yi − Ȳ )2
, (8.1)

where n is the number of instances, and X̄ = 1
n

∑n
i=1Xi; analogously for Ȳ .

Table 8.5 shows the list of metrics that the correlation coefficient among them is larger
than 0.9. Thus, for further analysis, we must keep only one from each group.

Table 8.5.: Correlated Metrics - (Correlation > 0.90)
Group Correlated metrics
Static (S5,S7,S9)
Dynamic (D1,D2,D3,D5,D7,D12)(D4,D6,D8)
Test (T5,T9)(T7,T8)(T2,T13)(T10,T11)(T3,T4)
Bug (B1,B2)(B11,B12)

8.4.2. Logistic Regression

We use regression analysis to describe the relationship between the FL effectiveness and
the collected metrics. Since the outcome variable, effective or not, is dichotomous, we
utilize Logistic regression [26]. The goal of an analysis using this model is to find the best
fitting and most interpretable model to describe the relationship between outcome variable
(effective or ineffective in our case) and a set of independent variables (metrics) [29].

Logistic function, on which the logistic model is based, provides estimates that are in the
range between 0 and 1. It also provides an S-shaped description of the combined effect of
the metrics on the effectiveness of FL [90].

The probability of being effective (D=1) can be denoted by the conditional probability
statement P (D = 1|X + 1, X2, ..., Xk). For convenience, we denote it as P (X) where the X is
a notation for the collection of metrics X1 through Xk. Given the Xs, the model is defined
as:

P (X) =
1

1 + e−(α+
∑

βiXi)
(8.2)

The terms α and βi in this model represent unknown parameters that we need to estimate
based on data obtained on the Xs and D for a group of instances. The general method
of estimation is called maximum likelihood [90]. The algorithm of maximum likelihood
determines the regression coefficient for the model that accurately predicts the probability
of the binary dependent variable.
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Evaluation Metric

To evaluate a Regression model, we need to evaluate the significance of coefficients, the
significance of the model, and the goodness of fit [90].

Significance of Coefficients. After estimating the coefficients, first, we need to assess
the significance of the variables in the model. This usually involves testing a statistical
hypothesis to determine whether the independent variables in the model are “significantly”
related to the outcome variable. To this goal, we use the Likelihood Ratio Test (LRT) [90]
along with the associated p-Value for the Chi-squared distribution. The LRT is computed
as:

LRT = −2× (LogLikelihood1− LogLikelihood0), (8.3)

where LogLikelihood1 is the log-likelihood for the model with one independent variable
and LogLikelihood0 is the log-likelihood for the null hypothesis model with only the
constant α. Under the hypothesis that β1 is equal to zero, LRT follows a Chi-squared
distribution with 1 degree of freedom. This means, for each independent variable, first we fit
a model containing only the constant term. Next, we fit a model containing the independent
variable along with the constant. Then, we measure the LRT. If the p-Value¿0.05, we
conclude that the variable is significant.

Table 8.6 gives the LRT results along with the associated p-Values. Column +/- shows the
coefficient sign which demonstrates the negative or positive impact of the coefficient on the
probability of being “effective”. As the results show, 25 metrics are not significant. Among
the correlated metric groups, we pick the most significant ones as the representatives of the
groups. Thus, we pick S5, D4, D7, T9, T7, T13, T10, B2, and B12 from correlated metrics for
further analysis.

Significance of model. The LRT for the overall significance of the coefficients in the
model is performed in the same way as the univariable case performed in the previous step.
First, we fit a model containing only the constant term. Next, we fit a model containing all
the significant independent variables along with the constant. Then, we measure the LRT. If
the p-Value>0.05, we conclude that at least one or more coefficients are different from zero.
The degree of freedom for the Chi-square test is equal to the number of metrics considered
in the model. The log-likelihood for the constant only model is equal to -233.3853.

Static. The fitted Regression model on Static metrics is shown in Table 8.7. Coeff. is the
estimated coefficient value. The larger the coefficient in absolute value, the stronger the
impact of the metric on the probability of being “effective” or “1”. Std. Err. is the standard
error of the estimated coefficient. tStat is t statistic for a test that the coefficient is zero. And
p-Value is the p-Value for the t statistic.

The LRT score for this model is equal to −2× (−233.3853− (−191.0476)) = 84.6754 and
P [χ2(8) > 84.6754] < 0.00001 is the p-Value for the test, which is significant. Thus, at least
one or more of the coefficients are different from zero. Before concluding that any or all of
the coefficients are nonzero, we should look at the univariable t test statistics shown in the
fourth column. Under the hypothesis that an individual coefficient is zero, these statistics

107



8. Predicting the Quality of SBFL

Table 8.6.: Significance of the Coefficients - P = P [X2(1) > LRT ]

Metric +/- LRT P Metric +/- LRT P
S1 - 24.717 <.00001 T3 - 1.487 .2226
S2 - 3.490 .0617 T4 + 1.487 .2226
S3 + 0.126 .7221 T5 - 2.9399 .0864
S4 - 36.4030 <.00001 T6 - 19.585 <.00001
S5 - 58.2877 <.00001 T7 + 19.141 <.00001
S6 - 64.228 <.00001 T8 + 9.762 .0017
S7 - 38.085 <.00001 T9 - 4.420 .0298
S8 - 1.6732 .1958 T10 + 7.378 .0066
S9 - 56.907 <.00001 T11 + 6.810 .0090

S10 + 22.075 <.00001 T12 - 20.211 <.00001
S11 + 8.592 .0033 T13 - 78.959 <.00001
S12 + 1.8136 .1780 B1 - 2.767 .0962
S13 + 39.483 <.00001 B2 - 5.885 .0152
S14 - 50.973 <.00001 B3 + 0.018 .8929
S15 + 0.501 .4790 B4 + 0.574 .4484
D1 - 80.220 <.00001 B5 + 0.225 .634
D2 - 78.866 <.00001 B6 + 2.515 .1127
D3 - 89.130 <.00001 B7 - 0.028 .8650
D4 - 45.462 <.00001 B8 - 0.012 .9102
D5 - 71.043 <.00001 B9 - 43.312 <.00001
D6 - 45.487 <.00001 B10 - 56.820 <.00001
D7 - 100.715 <.00001 B11 - 84.230 <.00001
D8 - 45.487 <.00001 B12 - 91.122 <.00001
D9 - 70.290 <.00001 B13 + 0.127 .7215
D10 - 109.442 <.00001 B14 + 4.324 .0375
D11 - 0.0936 .7596 B15 - 0.052 .8196
D12 - 79.800 <.00001 B16 - 6.502 .0107
D13 + 37.623 <.00001 B17 + 0.015 .9015
D14 + 37.623 <.00001 B18 - 3.003 .0832
D15 + 0.006 .9342 B19 - 23.890 <.00001
D16 + 0.007 .9323 B20 + 3.315 .068
D17 - 74.731 <.00001 B21 - 5.8902 .0159
D18 - 65.496 <.00001 B22 - 9.096 .0025
T1 - 11.041 .0008 B23 - 0.342 .5582
T2 - 74.789 <.00001 B24 + 0.526 .4682

follow the standard normal distribution. The p-Values computed under this hypothesis are
shown in the fifth column. If we use a level of significance of 0.05, then we can conclude that
metric S4 is significant, metric S1 is somewhat significant, and the rest are not significant.

As our goal is to obtain the best fitting model while minimizing the number of parameters,
the next step is to fit a reduced model containing only significant metrics and compare
the reduced model to the full model containing all of the metrics. The results of fitting the
reduced model are given in Table 8.8.
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Table 8.7.: Fitted Logistic Regression Model of FL Effectiveness on Static Metrics - Full
Model

Metric Coeff. Std. Err. tStat p-Value
Constant 4.1771 9.6357 0.4335 0.6646
S1 498.3868 272.6536 1.8279 0.0676
S4 30.5677 11.9219 2.5640 0.0103
S5 -2.09e-04 1.65e-04 -1.2634 0.2064
S6 -0.0135 0.0086 -1.5707 0.1162
S10 -4.4567 5.9831 5.9831 -0.7449
S11 1.3394 0.9508 0.9508 1.4087
S13 0.5271 1.1065 1.1065 0.4764
S14 -2.2365 1.2927 1.2927 -1.7301
Log-Likelihood=-191.0476

Table 8.8.: Fitted Logistic Regression Model of FL Effectiveness on Static Metrics - Reduced
Model

Metric Coeff. Std. Err. tStat p-Value
Constant 2.6635 0.7836 3.3991 6.7597e-04
S1 -301.9209 145.8237 -2.0704 0.0384
S4 -22.9781 5.9107 -3.8875 1.0126e-04
Log-Likelihood=-212.9489

The difference between the two models is the exclusion of the metrics S5, S6, S10, S11,
S13, and S14 from the first model. The LRT comparing these two models is obtained using
the equation 8.3. The LRT = 43.8026 which, with 6 degrees of freedom (8-2), has a p-Value
of P [χ2(6) > 43.8026] < 0.00001. As the p-Value is small, we conclude that the full model
is better than the reduced model. It means, there is statistical justification for including S5,
S6, S10, S11, S13, S14 in the model. However, S1 and S4 (% Methods with LoC>30 and %
Methods with Nesting Depth>5) have the greatest impacts (Table 8.7).

Dynamic. The fitted Regression model on Dynamic metrics is shown in Table 8.9. Since
LRT = 135.2666 with P [χ2(7) > 135.2666] < 0.00001, at least one or more of the coefficients
are different from zero. P-Values of t test show that metrics D4, D7, D10, and D18 are
significant and the others are not significant. Thus, we fit a reduced model using these
metrics. The fitted model is shown in Table 8.10. The LRT of comparing reduced and full
model is LRT = 24.5796 with P [χ2(3) > 24.5796] < 0.00001. Thus, again the full model is a
better fitted model. All D4, D7, D9, D10, D15, D17, D18 are adding to the model. However,
D4, D10, and D15 (Mean Node Degree, Graph Diameter, and Clustering Coefficient) have
the greatest impacts (8.9).

Test. The fitted Regression model on Test metrics is shown in Table 8.11. The LRT =
135.2720 with [χ2(7) > 135.2720] < 0.00001 shows that at least one or more coefficients are
different from zero. The reduced model is shown in Table 8.12. The full model is slightly
better than the reduced model (LRT = 6.3828 and P [χ2(2) > 6.3828] = 0.041114). Metrics
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Table 8.9.: Fitted Logistic Regression Model of FL Effectiveness on Dynamic Metrics - Full
Model

Metric Coeff. Std. Err. tStat p-Value
Constant 1.3551 0.4901 2.7647 0.0057
D4 0.9083 0.2991 3.0373 0.0024
D7 -0.0533 0.0238 -2.2362 0.0253
D9 0.0431 0.0270 1.5950 0.1107
D10 -0.2302 0.0568 -4.0510 5.1001e-05
D15 -0.4789 0.3814 -1.2556 0.2092
D17 -0.0028 0.0075 -0.3798 0.7041
D18 -0.0391 0.0152 -2.5806 0.0099
Log-Likelihood=-165.7520

Table 8.10.: Fitted Logistic Regression Model of FL Effectiveness on Dynamic Metrics -
Reduced Model

Metric Coeff. Std. Err. tStat p-Value
Constant 1.2823 0.4619 2.7763 0.0055
D4 0.5247 0.2515 2.0859 0.0370
D7 -0.0181 0.0159 -1.1434 0.2529
D10 -0.1832 0.0503 -3.6455 2.6688e-04
D18 -0.0169 0.0061 -2.7907 0.0053
Log-Likelihood=-171.0955

T1, T6, T7, T9, T10, T12, and T13 are influential. However, metrics T12, T9, T10, and T6 (%
Methods Covered in Failing Tests, hit Spectra Sparsity, % Method Coverage, and Diversity)
have the greatest impacts (8.11).

Table 8.11.: Fitted Logistic Regression Model of FL Effectiveness on Test Metrics - Full Model
Metric Coeff. Std. Err. tStat p-Value
Constant 3.1581 2.0615 1.5320 0.1255
T1 -1.5633e-04 8.5626e-05 -1.8257 0.0679
T6 -3.5986 2.1508 -1.6732 0.0943
T7 0.0512 0.1046 0.4900 0.6242
T9 4.4552 2.4041 1.8532 0.0639
T10 3.9985 0.8760 4.5647 5.0033e-06
T12 -8.2022 1.8451 -4.4455 8.7703e-06
T13 -0.0032 6.0115e-04 -5.2836 1.2667e-07
Log-Likelihood=-165.7493

Bug. The fitted Regression model on Bug metrics is shown in Table 8.13. Since LRT =
124.4032 and P [χ2(2) > 124.4032] < 0.00001, one or more of the coefficients are nonzero.
The reduced model is shown in Table 8.14. The comparison between the full and reduced
models shows LRT = 9.1822 with P [χ2(5) > 9.1822] = 0.102014. Since the p-Value is large,
exceeding 0.05, we conclude that the full model is no better than the reduced model. In fact,
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Table 8.12.: Fitted Logistic Regression Model of FL Effectiveness on Test Metrics - Reduced
Model

Metric Coeff. Std. Err. tStat p-Value
Constant -0.1683 0.3699 -0.4551 0.6491
T1 -1.2424e-04 7.6622e-05 -1.6215 0.1049
T9 5.4445 2.3595 2.3075 0.0210
T10 3.7501 0.7808 4.8030 1.5632e-06
T12 -8.1328 1.7969 -4.5260 6.011e-06
T13 -0.0037 5.4135e-04 -6.8130 9.5552e-12
Log-Likelihood=-168.9407

there is little statistical justification for including the excluded metrics in the model. Metrics
B2, B10, B12, and B14 are the influential metrics. Metrics B2 and B10 (# Classes Changed
in the Patch and Avg. In-Degree of Faulty Node) have the greatest impacts (Table 8.14).
It is noticeable that the metrics related to the location of bugs have more impact than the
metrics related to the type of bugs. This confirms the finding by Digiuseppe and Jones [39]
that there is not any observable correlation between bug type and the FL effectiveness.

Table 8.13.: Fitted Logistic Regression Model of FL Effectiveness on Bug Metrics - Full Model
Metric Coeff. Std. Err. tStat p-Value
Constant 2.5360 0.5609 4.5207 6.1630e-06
B2 -0.9182 0.4576 -2.0063 0.0448
B9 0.0568 0.0474 1.1970 0.2312
B10 -0.5983 0.2623 -2.2802 0.0225
B12 -0.2238 0.0553 -4.0414 5.3121e-05
B14 0.0870 0.0274 3.1730 0.0015
B16 -0.0338 0.0542 -0.6239 0.5326
B19 -0.5542 0.3297 -1.6806 0.0928
B21 -0.6321 0.4993 -1.2658 0.2055
B22 0.1461 0.4054 0.3604 0.71851
Log-Likelihood=-171.1837

Table 8.14.: Fitted Logistic Regression Model of FL Effectiveness on Bug Metrics - Reduced
Model

Metric Coeff. Std. Err. tStat p-Value
Constant 2.6456 0.5437 4.8662 1.1378e-06
B2 -1.0500 0.42525 -2.3207 0.0203
B10 -0.6459 0.2542 -2.5409 0.0111
B12 -0.1853 0.0336 -5.5166 3.4558e-08
B14 0.0768 0.0247 3.1091 0.0019
Log-Likelihood=-175.7748

StatDynaTest. Now, we can combine Static, Dynamic, and Test metrics in one model to
check if a combination leads to a better fitted model. We do not add Bug metric, because
Bug metrics are not known a priori and cannot be used for the prediction of FL effectiveness.
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Table 8.15 shows the respective fitted model. With LRT = 196.8849 and P [χ2(22) >
196.8849] < 0.00001, we conclude that at least one or more of coefficients are nonzero. The
reduced model is shown in Table 8.16. Again, LRT = 22.8837 with P [χ2(12) > 22.8837] =
0.028736 shows that the full model is slightly better.

However, LRT alone is not enough for comparing different models. We need more metrics
to evaluate the goodness of fit.

Table 8.15.: Fitted Logistic Regression Model of FL Effectiveness on Stat-Dyna-Test Metrics -
Full Model

Metric Coeff. Std. Err. tStat p-Value
Constant 0.6090 8.0583 0.0755 0.9397
S1 1117.7015 407.2250 2.7446 0.0060
S4 49.8753 17.2623 2.8892 0.0038
S5 -0.0004 0.0002 -1.9694 0.0489
S6 -0.0089 0.0112 -0.7993 0.4240
S10 -4.0124 4.7593 -0.8430 0.3991
S11 2.0062 1.2230 1.6403 0.1009
S13 0.5110 1.9381 0.2636 0.7920
S14 -2.6540 1.3486 -1.9679 0.0490
D4 1.54823 0.4034 3.8373 0.0001
D7 -0.0597 0.0287 -2.0750 0.0379
D9 0.0546 0.0310 1.7610 0.0782
D10 -0.2280 0.07173 -3.1786 0.0014
D15 0.8262 0.6042 1.36754 0.1714
D17 -0.0012 0.0083 -0.15113 0.8798
D18 -0.0434 0.0189 -2.2906 0.02198
T6 -5.3247 3.0852 -1.7258 0.0843
T7 0.0896 0.1316 0.6810 0.4958
T1 7.1405 0.0001 0.6159 0.5379
T9 2.7029 3.2701 0.8265 0.4084
T10 5.4856 1.3973 3.9256 0.0508
T12 -9.0923 2.5827 -3.5204 0.0004
T13 0.0020 0.0015 1.3404 0.1801
Log-Likelihood=-134.9428

Goodness of fit. Akaike Information Criterion(AIC) [3] is a measure of relative goodness
of fit for a given set of data. Thus, it can be used for model selection. AIC is defined as:

AIC = −2× LogLikelihood+ 2× (M + 1) (8.4)

where M is the number of regression coefficients estimated for metrics. In general, lower
values of AIC are preferred to larger ones. For example, between two models with 1000 and
2000 AIC values, the model with AIC=1000 is the better model. However, the AIC value
1000 on its own is meaningless and does not say anything about how well the model fits.
AIC includes a penalty for complexity (the number of metrics). We use AIC to compare our
generated models. Table 8.17 shows the results.
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Table 8.16.: Fitted Logistic Regression Model of FL Effectiveness on Stat-Dyna-Test Metrics -
Reduced Model

Metric Coeff. Std. Err. tStat p-Value
Constant -3.2941 1.9287 -1.7078 0.0876
S1 683.0652 336.5434 2.0296 0.0423
S4 29.6761 11.6280 2.5521 0.0107
S5 -0.0003 0.0001 -2.1814 0.0291
S14 -0.4629 0.5927 -0.7810 0.4347
D4 1.2675 0.3266 3.8810 0.0001
D7 -0.0261 0.0194 -1.3436 0.1790
D10 -0.2324 0.0594 -3.9100 9.2290e-05
D18 -0.0444 0.01287 -3.4533 0.0005
T10 4.8228 0.8904 5.41608 6.0926e-08
T12 -5.5064 1.7324 -3.1784 0.0014
Log-Likelihood=-146.3847

The AIC results suggest that the model generated on the combination of Static, Dynamic
and Test metrics is the best fitted model. Dynamic and Test models have better AIC scores
than Static and Bug models. That is, Dynamic and Test metrics can better distinguish
between “effective“ and “ineffective” FL.

Table 8.17.: Comparing Fitted Regression Models on the Effectiveness of FL
Metric AIC
Static-Full 400.0952
Static-Reduced 431.8978
Dynamic-Full 347.5040
Dynamic-Reduced 352.1910
Test-Full 347.4986
Test-Reduced 349.8814
StatDynaTest-Full 315.8857
StatDynaTest-Reduced 314.7694
Bug-Full 362.3674
Bug-Reduced 361.5496

Assessing the fit of model. Another way to evaluate a fitted Logistic regression is via
a classification table. The performance of a model can be evaluated by comparing the
predicted labels against the true labels of instances. One frequently used metric is Accuracy
which is measured as:

Accuracy =
# of Correct Predictions

Total # of Predictions
(8.5)

In our application, the coefficients produced by the model are used for predicting the
label in a binary way. To have a binary prediction, we must define a cutpoint (C), and
compare each estimated probability to C. If the estimated probability is larger than C then
we let the predicted label to be equal to “effective”; otherwise it is equal to “ineffective”.
The most widely used value for C is 0.5.
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To evaluate a binary classification, Accuracy is not the most suitable metric. To avoid
over-fitting and bias toward one label, we need to measure the performance of the models
at various C values. For these cases, ROC (Receiver Operating Characteristic) curves and
AUC (Area Under Curve) are better options [15]. ROC [47] is a probability curve, and AUC
[47] is the area under ROC curve and represents the degree of separability. It measures
how much model is capable of discriminating between classes. Higher the AUC, better the
model is at distinguishing between “effective” FL and “ineffective” FL.

The ROC curve is plotted with True Positive Rate (TPR) on the y-axis against the False
Positive Rate (FPR) on the x-axis.

TPR =
TP

TP + FN
, (8.6)

FPR =
TN

TN + FP
, (8.7)

where TP= # of positive instances predicted as positive, FN= # of positive instances
predicted as negative, TN=# of negative instances predicted as negative, and FP=# of
negative instances predicted as positive. An excellent model has AUC near to the 1 which
means it has a good measure of separability. When AUC is 0.5, it means the model is not
able to distinguish between classes.

Table 8.18 shows the AUC values for different models. To get a more complete evaluation,
we included the results of five other classification techniques: Decision Tree [171], Support
Vector Machine (SVM) [171], K-Nearest Neighbors (KNN) [171], Ensemble Boosted Trees
[171], and Ensemble Bagged Trees [171]. All the results are based on 10-fold cross-validation.

Sturdivant et al. [152] mention that 0.7 ≤ AUC < 0.8 is considered as acceptable dis-
crimination and 0.8 ≤ AUC < 0.9 is considered as excellent discrimination. SVM and
Logistic Regression models have the best fitted models. The Logistic regression model on
the reduced version of the combination of Static, Dynamic, and Test metrics (StatDynaTest-
Reduced) has the highest AUC value (0.86) which is excellent discrimination. Based on
AUC results, Dynamic and Test models are better fitted models than Static and Bug models.

8.5. Summary of Results

Now, we can answer the research questions and discuss the threats to validity.

8.5.1. Research Questions

RQ1: Based on regression analysis and classification results in Tables 8.17 and 8.18, the
models generated on Dynamic and Test metrics are better fitted than the models generated
on Static and Bug metrics. However, a full separation between different groups of metrics
is not possible. The impact of tests on dynamic aspects of the code is inevitable.
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Also, as shown in Table 8.16, significant Dynamic metrics measure the degree which the
call graphs are tangled. And Table 8.14 shows that the bug location is more important than
the bug type. While the dynamic call graph of the tests are tangled and highly coupled, no
matter where a bug happens it is difficult to localize it. Significant Static metrics too show
the general complexity of the code. Nevertheless, based on Table 8.18 Static metrics are the
least influential metrics.

A combination of Test, Dynamic, and Static gives the best fitted model with AUC=0.86
(see Table 8.18).

RQ2: In the following, we list the most significant features of each group along with
the reason behind their influence. Since the StatDynaTest-Reduced is the best fitted model
(Tables 8.18 and 8.17 and 8.16), we consider the metrics in this model as the most influential
metrics. The general positive or negative impact of a metric on the effectiveness of FL is
obtained from Table 8.6. The sign of the coefficients might change in combination with
other coefficients.

Static

• S1 (# Methods with LoC>30): This metric has a negative impact on the effectiveness
of FL. That is, as methods grow larger, the FL becomes more difficult. This metric
has also been recognized as a simple criterion to estimate a component failure [127].
As methods grow to do more tasks, they will be executed in a larger subset of tests
with different test goals. Having the same subset of methods executed in a large set of
tests harms the localization effectiveness. Lippert and Roock [108] recommend that
methods should not have more than an average of 30 LoC.

• S4 (% Methods with Nesting Depth>5): In addition to the LoC, as the level of nesting
of statements, for example ‘if’, ‘for’, and ‘while’, in a method increases, the effective-
ness of FL decreases. The rule of thumb suggests that the maximum nesting depth
should be restricted to 5. As an example, assume a method with 2 nested if statements
and 3 paths that have been assigned 3 tests, one for each path. If the execution of only
one of the paths leads to failure, the method is executed more frequently in passing
executions and less frequently in failing executions. Thus, it will not be considered
highly suspicious. Therefore, the nested statements should be extracted into new
methods [49].

• S5 (% Methods with 3<=Nesting Depth<=5): Similar to S4.

• S14 (Mean # of Fields per Type): Having many fields is an indication that a class has
grown too large. A class that grows too much tends to aggregate too many responsi-
bilities and inevitably becomes harder to understand and therefore to maintain. We
do SBFL at the method-level, and methods can take values as parameters and return
a value as a result. Thus, we can imagine that the exceeding number of fields need
enough number of various tests to decline ambiguity.

Dynamic:
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• D4 (Mean Node Degree): An increase in the average number of incoming and outgo-
ing calls of methods has a negative impact on the effectiveness of FL. This metric can
be seen as a measure of coupling between methods. As a larger number of methods
are connected to each other, a larger number of tests are covered in failing tests. Thus,
the list of suspicious methods grows larger.

• D7 (Max Node Out Degree): Similar to D4.

• D10 (Graph Diameter): To find the diameter of a call-graph, one first finds the shortest
path between each pair of methods. The greatest length of any of these paths is
considered as the diameter of the graph. It is clear that increasing this value has
a negative impact on the effectiveness of FL. That is, the large value of this metric
means that usually there is a large number of methods executed between two method
executions. Tests inevitably cover a large number of methods. Analogously to D4 and
D7, this makes FL harder.

• D18 (Response for Class): This metric shows the interaction of the class’ methods with
other methods. That is, again, as this number increases, a larger number of methods
are covered in tests. Thus, it can harm the effectiveness of FL. The RFC gives the count
of all methods that can be invoked in response to a message to an object of the class
or by some method in the class. The high value of RFC shows the high complexity of
the class. If a larger number of methods can be invoked in response to a message, the
testing and debugging of the class becomes complicated.

Test:

• T10 (% Method Coverage): % of method coverage has a positive impact on the
effectiveness of FL. This metric considers both passing and failing tests. A higher
coverage can add to the diversity in hit spectra. Therefore, it helps the FL.

• T12 (% Methods Covered in Failing Tests): Since all the methods in a failing test
are somehow suspicious to be faulty, as the number of methods increases, the list of
candidates for inspection grows larger.

RQ3. A Logistic regression model on the combination of metrics mentioned in RQ2 (Table
8.16) shows an excellent discrimination power. Thus, we propose to use it as a prediction
model for the effectiveness of FL. Moreover, the best-fitted model shown in Table 8.16, can
also be used to assign a Confidence Factor to the results of SBFL. This model is generated on
4 Static Metrics, 4 Dynamic metrics, and 2 Test metrics. Dynamic and Test metrics change
in every debugging session. Thus, this model can be used a posteriori to decide whether to
trust the SBFL results or not. However, to prove these claims, we need to evaluate them on
unseen data sets. Due to lack of proper data sets for testing purpose, we propose it as our outlook
on the FL improvement.
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8.5.2. Threats to Validity

We set up our experiment on Defects4J, the most frequently used benchmark in the literature.
Moreover, we used cross-validation technique to give our test and training setting more
diversity. Nevertheless, we do not claim that our experimental setup and results will be
valid for all other contexts. We explained our methodology to help other researchers to
apply it in other contexts.

As an indicator of the effectiveness of FL, we utilized the effectiveness of SBFL techniques.
We are aware that SBFL techniques are not representative of all different FL techniques.
Nevertheless, they are widely used and studied and are considered as one of the most
promising techniques [32]. As mentioned earlier, the selection of SBFL formula does not
have any impact on the results.

Quality of the test suite has a great impact on the result of this study. As mentioned
earlier the executed tests affect both Test and Dynamic metrics.

We do not claim that our metrics list is comprehensive. Initially, we collected 130 metrics.
Later, we filtered them to exclude metrics that are not actionable.

8.6. Conclusion

Despite ongoing research, state-of-the-art FL techniques are not applicable in practice yet.
In this chapter, we answered the question of what are the most influential metrics on the
effectiveness of FL.

We believe that before continuing our endeavor in finding new techniques for FL, we
need to understand why sometimes they are effective and sometimes not. The answer to
this question can shift our focus from merely introducing new techniques to the quality of
projects to facilitate fault localization.

Our analysis on 70 metrics on the Defects4J data set shows that 4 Static, 4 Dynamic,
and 2 Test metrics are the most influential ones on the effectiveness of SBFL techniques.
Developers should consider them to improve the quality of their code.

In addition, a model generated on these metrics can be used a priori to predict the
effectiveness of FL. Thus, if the effectiveness probability is not high, developers should
avoid using the FL tool and can refactor their code to facilitate FL. Also, this model can be
used a posteriori to assign a confidence factor to the results of SBFL. A smart application of
SBFL techniques, knowing where and when they would be helpful, avoids time and money
waste and adds to their usability.

Similar to the previous chapter, the difficulty of gathering needed data for another case
study prevents us from reporting on a second study. Thus, we propose the results of this
chapter’s case study as our outlook on the future of FL.
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9. Related Work

This chapter presents related work in the sub-fields of fault localization and
failure clustering. Parts of this chapter have been published in peer-reviewed
publications [55, 58, 54, 56, 150] co-authored by the author of this thesis.

A lot of research has gone into the fields of automated fault localization and failure
clustering. As a result, we split this section into the following parts.

9.1. Case Study

The Siemens suite [70] is the first benchmark of buggy programs. It consists of 7 C projects
with varying sizes between 141 and 512 LoC. All bugs are manually injected into the code.

Software-artifact infrastructure repository (SIR) [40] is another benchmark introducing
reproducible bugs. SIR consists of 85 subjects written in Java, C, C++, and C#. The subject
sizes vary from 24 to 503833 LoC. Most of the bugs introduced in SIR are artificial, either
hand-seeded or obtained by mutation. It has only one C++ subject with 1034 LoC and
artificial bugs.

CoREBench [13] is a collection of 70 regression bugs extracted from 4 C projects with
more than 145 KLoC. ManyBugs [99] consists of 1183 defects extracted from 15 C programs
with ca. 5900 KLoC.

iBugs project [27] is a database of real bugs for Java programs. It contains 3 subjects and
390 bugs extracted from version control history. 223 of the bugs are associated with failing
tests. Nevertheless, the faulty versions can only be built with an outdated version of the
JVM [81]. Defects4J [81] is a database of reproducible bugs for Java programs. It provides
357 bugs out of 5 subjects with 352 KLoC.

In contrast to Siemens and SIR, Pairika’s subjects have between 10880 and 196550 LoC
and all the bugs are real. In contrast to CoREBench, ManyBugs, Defects4J and iBugs, Pairika
is a benchmark for C++ programs.

We believe that having realistic benchmarks for both Java and C++ programs is necessary
for a realistic evaluation of our solutions. Thus, we used Pairika, LCM, and Defects4J for
our evaluations.
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9.2. Failure Clustering

Dickinson et al. [35] introduce the idea of clustering execution profiles to identify failing
executions from passing executions. Podgurski et al. [148] utilize a supervised classification
to group failing executions with similar causes. Bowering et al. [14] use Markov models to
present program executions and then cluster the models to categorize the executions. Liu
and Han [109] claim that trace similarity is not enough to cluster failing executions with
respect to the causes. They propose the idea of using fault localization and suggest that two
failing traces are similar if they roughly point to the same fault location. Jones et al. [77]
utilize the previous ideas and combine the notions of clustering based on execution traces
and clustering based on fault localization ranking to propose a new approach for clustering
failures.

Jones et al. introduce two clustering techniques, the first of which we described in
Chapter 4. As the second technique, they use fault localization results of each failing test
and all passing tests and compute the pairwise similarity of the results. Then, clusters are
formed based on similarities. In our approach in Chapter 4, we set up a training phase
to adapt their first clustering technique to our context. As a result, our execution trace
profiling and fault localization metric differ from their work. In addition, we have added a
new mechanism to select some representatives for each cluster. In addition, our approach is
methodologically different. We use this technique to segregate between failing tests rather
than locating and repairing faults in parallel.

There is more literature that focuses on parallelizing fault localization and debugging
[2, 167, 68] by using logic reasoning or integer linear programming. These studies only
focus on segregating between fault to make them more localizable. However, they cannot
cluster failing tests. On the other hand, in Chapters 4 and 5, we want to find failures
that happened due to the same underlying faults rather than debugging and finding the
underlying faults. Thus, the use case of our work is different.

Hsueh et al. [69] apply failure clustering in the context of graphical user interfaces.
They instrument the code with the aid of developers that insert probing statements. They
calculate the similarity and construct a tree. Then, considering the tree, they select some
representative tests to start debugging. They suggest that just showing the tree to developers
is beneficial. However, they do not decide about the cutting point for the clustering tree
and do not explain clearly how they choose the representatives.

DiGiuseppe and Jones [37] use semantic concepts rather than the control-flow of the
program to do failure clustering. They utilize latent-semantic-analysis to group failing
executions based on their semantic intent. Their work differs from ours in their use of
execution semantics as opposed to control-flow data. This approach would be beneficial
when execution semantics or the used languages are not similar, which is not the case in
our case study.

Rogstad and Briand [153] cluster deviations in regression testing for an industrial
database system. Since it is unlikely to find a general solution for every context, they
use context-specific profiles, namely test case specifications, and database manipulations, to
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measure the similarity between failing executions. They use the Expectation Maximization
algorithm [33] for clustering which requires a prediction for the maximum number of
clusters. Their clustering method, feature sets, and application context differ from our
work.

Recently, Pham et al. [146] grouped failing tests based on the similarity between symbolic
execution paths, generated by the symbolic execution engine KLEE [19]. They argue
that their symbolic analysis approach generates more fine-grained clusters that segregate
different faults even if the call stacks of failures are the same. However, symbolic execution
has scalability issues. For large industrial cases such as automotive companies, utilizing
symbolic execution would be expensive.

Another related line of research involves clustering crash or bug reports [28, 51, 88, 125,
157, 111, 34]. Our focus is clustering failing tests rather than crash reports, bug reports or
failing traces. These techniques explore run-time information collected in the field where
the software systems are deployed.

Our second goal in Chapter 5, using our clustering tool a priori to select tests for the next
regression test run, is somewhat related to test selection or prioritization area of research.

The aim of test prioritization [159, 189, 36, 188, 73, 45, 100, 191, 46, 48, 22, 41] is to
minimizing test time and maximizing efficiency with running fault revealing tests first.
Thus, these techniques rely on data such as statement coverage for fault detection and hope
that satisfying these coverage goals will lead to an increasing fault detection rate. Most of
these test case prioritization techniques are coverage based.

Regression test selection is a well-studied research topic [61, 52, 161, 63, 132, 186, 42,
16, 194, 53, 101, 192, 44, 122, 43]. These techniques compute test dependencies statically
or dynamically to find the tests that are affected by the code changes. Rerunning only
the affected tests reduces regression testing costs. Similarly, test-suite reduction helps in
speeding up the regression test by eliminating the redundant tests [160, 12, 21, 23, 50, 60, 62,
72, 75, 106, 114, 190, 189, 197, 156, 155, 183, 184, 193]. All these techniques are based on the
source code. However, we believe that utilizing our clustering technique, we will be able
to add semantic similarity analysis to these approaches to improve their effectiveness. In
their real world experiment report, Shi et al. [160] conclude that researchers should develop
novel test suite reduction techniques that either miss fewer failed builds or at least provide
more predictable fault detection loss.

To the best of our knowledge, our experiments explained in Chapters 4 and 5 are the
first studies addressing the challenge of reduction of failure analysis time in the context of
automotive CPSs for both SiL and HiL levels of testing. We are not aware of previous work
that has utilized SiL-level execution profiles to analyze failing tests at the HiL level. The
difference between SiL and HiL may be seen as a property specific to the domain of CPS.
We do not think so. In fact, it is very similar to the difference between unit testing with
mocks and testing of the integrated system with actual implementations. Thus, we believe
that this idea is more general and can be applied in many domains.
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9.3. Fault Localization

9.3.1. Spectrum-based Fault Localization

In their comprehensive overview of fault localization techniques [182], Wong et al. explored
eight categories of fault localization, including spectrum-based techniques. Among these
techniques were the three SBFL metrics that we considered during our evaluations (DStar2
[180], Ochiai [130], and Tarantula [78]).

Pearson et al. [142] performed a replication study on 10 claims in the literature regarding
spectrum- and mutation-based fault localization. They refuted 3 of the claims on a data
set of artificial bugs and refuted the rest of the results on the real bugs in the Defects4J
database. Furthermore, they showed no significant relationship between results on artificial
and real faults. Like Wong et al. [182], they too found DStar to be the best performing fault
localization technique, however it was considered statistically indistinguishable from 4
other techniques, including Ochiai.

Keller et al. [85] evaluated the feasibility of applying 33 state-of-the-art SBFL metrics to
a large real-world project, namely AspectJ. In a similar work, Tang et al. [172] published
accuracy graphs of SBFL metrics. Also, De Souza et al. [30] surveyed SBFL techniques, their
advances, and challenges.

Some of the studies have tried to improve the existing SBFL techniques by changing the
hit spectra. Laghari et al. [96] proposed a variant of SBFL which extends the hit spectrum
with the patterns of method calls extracted using frequent itemset mining. Zhang et al. [196]
proposed PRFL which uses PageRank algorithm to recompute the spectrum information by
considering the contributions of different tests. FLUCCS [166] uses existing SBFL formulæ
as features of the learning problem, instead of using raw spectrum data.

Test case optimization, prioritization and test suite balancing are other techniques to
improve SBFL [105, 87, 11, 59], and etc. All these works show the importance of the test
suite and also confirm our hypothesis that with limited code quality, even a good test suite
achieves limited effectiveness.

Hit Spectrum Granularity

A technique for considering multiple levels of granularity when performing fault localiza-
tion was proposed by Perez et al. [144]. However, their technique only considered one level
of granularity at a time, starting at class level, and progressively narrowing the granularity
down to the method and finally statement level for possible faulty components. In doing so,
they saw an improvement in the instrumentation overhead required. Our work differs, in
that we consider 18 different levels of program elements all at the same time. Additionally,
our approach is not intended to be an improvement to instrumentation overhead, but rather
an improvement to the overall fault localization results.

In another work [177], Wang et al. propose a multi-level similarity technique. Their
technique selects useful test cases at the class level and computes code suspiciousness based
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on comparing execution profiles at the block level. In our analysis, we also consider only
relevant TCs at class level (a property is provided by Defects4J providers). However, our
work differs, in that we consider 18 different levels when comparing the similarity not only
the basic block.

In an effort to address some of the drawbacks of the method granularity, Sohn and Yoo
[165] propose the use of Method-Level Aggregation, a technique that calculates the SBFL
scores for statements and aggregates them up to the method-level by taking the highest
scoring statement for each method. Their technique is designed to overcome the issue of
methods on a single call-chain sharing the same spectrum values, resulting in tied SBFL
scores, as well as the issue of some test cases only executing non-faulty parts of a faulty
method. They were able to show that Method-Level Aggregation can improve the accuracy
of existing techniques in some cases, but it cannot overcome the inherent limits of the
given SBFL techniques. Our syntactic block granularity aims to address these same issues.
However, it does so by considering finer-grained program elements in addition to just
method-level elements.

While our work focused on different granularities of Executable Statement Hit Spectra
(ESHS), there are other possible types of spectra that can be used with SBFL techniques.
Harrold et al. did an empirical investigation of the differences in types of spectra, where
they found that Complete Path (CPS), Path-Count (PCS), and Branch-Count (BCS) Spectra
correlate well with fault localization [64]. Unlike ESHS, CPS records the complete path that
was executed, PCS counts the number of times each intraprocedural, loop-free path was
executed, and BCS counts the number of times each conditional branch was executed.

Faults of Omission

In their survey of fault localization techniques, Wong et al. also indicate that slice-based, as
well as other fault localization techniques, struggle with localizing faults of omission [182].
However, the omission of code may still leave its mark on the program execution, such as
the traversal of an incorrect branch. They argue that this implies that the developer is still
able to identify suspicious code related to the omission error. Therefore, even though fault
localization techniques may not be able to pinpoint the exact location of missing code, they
can still provide a good starting point for where to look.

Along these lines, Lin et al. did a comprehensive study on the faults of omission in the
Defects4j data set [107]. Of the 237 bugs they considered, they found that 110 included
faults of omission. Of these bugs, they found that faults of data omission were harder to
be localized than faults of control omission. Based on their findings as to the nature of the
faults of omission in the Defects4J data set, they built a neural network model based on
dynamic slicing which helped improve the accuracy in localizing faults of omission.
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9.3.2. Fault localization with causal inference

In the first paper on utilizing causal inference for FL, Baah et al. [7] introduced a method-
ology to combine statistical techniques for counterfactual inference with causal graphical
models to obtain causal-effect estimates that are not subject to severe confounding bias.
Based on Baah’s work, Shu et al. [162] applied causal inference methodology at the method-
level. Their technique also incorporates a new algorithm for selecting covariates to use in
adjusting for confounding bias. Later, Bai et al. [9] presented NUMFL, a value-based causal
inference technique for localizing faults in numerical software. We proposed a new way to
tackle confounding bias. To be able to compare the results, we implemented and improved
MFL.

Call/data-dependency/control flow graphs

Call- and data-dependency graphs have been already used for debugging in different
studies. Ko and Myers used call graphs in their works, [91] and [92], to describe the
program behavior and to answer why and why not questions for a better debugging
experience. Zhang et al. [196] used call graphs to find the connection between source
methods in order to generate a new spectrum. Besides, as mentioned earlier, causality-
based techniques such as MFL [162] used call- and data-dependency graphs to generate
causal trees.

Liu et al. [110] used program dependence graphs to measure the accuracy of their
localization technique. Henderson and Podgurski [67] used dynamic control flow graphs
to find suspicious blocks of code. In our approach, we utilized call- and data-dependency
graphs to find the relation between the faulty and suspicious methods to propose a re-
ranking strategy for SBFL results and to assign a confidence factor to these results.

9.4. Failure Diagnosis Framework

To the best of our knowledge, there is no other tool that supports failure clustering and
fault localization in one package.

Data generation. There is plenty of code coverage, instrumenting and profiling tools.
Most code coverage tools cater to Java, followed by C, and C++, and some .NET. Among
the open source tools for C++ code coverage, we picked OpenCPPCoverage.

Nevertheless, these tools do not generate a hit spectrum based on the coverage informa-
tion. Gzoltar [20] is an Eclipse plug-in for testing and debugging Java programs which has
the hit spectra generation feature. It is also compatible with the JUnit test framework 1.
Aletheia is a Visual Studio plug-in and is compatible with Google testing framework. We
do not know any other openly accessible tool compatible with Google Test for generating
hit spectra.

1https://github.com/junit-team
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Failure clustering. As mentioned earlier, there are several works on clustering failing
(and passing) executions in the literature. Nevertheless, we are not aware of any openly
accessible tool. Aletheia’s failure clustering component receives a hit spectrum as input.
Since the hit spectrum’s representation is a simple CSV file, it is not limited to any specific
programming language. In addition, it can select some representatives for each cluster to
start the debugging process.

Fault localization. Pearson et al. [182] give a list of tools used in fault localization
studies. There are different strategies for localizing faults in the literature. BARINEL [2]
is a framework to combine spectrum-based fault localization and model-based diagnosis.
GZoltar [20] is an automated testing and debugging framework using Ochiai metric. HSFal
[80] is a slice spectrum fault locator. Pinpoint [1] is a fault localization tool using Jaccard
coefficient. Tarantula [79] is a fault localization tool using Tarantula metric. Zoltar [71]
is a spectrum-based fault localization tool. Zoltar-M [2] is a tool for detecting multiple
bugs. Aletheia’s fault localization component covers all the metrics implemented in tools
mentioned above. Besides, it covers the DStar metric.

9.5. Predicting the Quality of Fault Localization

To the best of our knowledge, [97] and its descendant [98] are the only other papers on the
prediction fault localization effectiveness. In their work, Le et al. introduced an oracle to
predict whether the output of a fault localization tool is trustworthy or not. To build their
oracle, they extracted some metrics based on the hit spectrum and fault localization scores
which are somewhat similar to our Test metrics. However, in our approach, we collected
Static, Dynamic, Test, and Bug metrics to have a more accurate model that can also be used
a priori.

Our approach in analyzing the collected metrics is similar to the approach used in [10]
for evaluating the impact of object-oriented design metrics on the quality of code. Basili
et al. introduced some metrics that can be used to predict defects in the code. Software
defect prediction is a well-studied and still active research area in the literature (e.g.,
[103, 104, 84, 66, 149]). Commonly used features in this area can be categorized into static
metrics [123, 126, 74] and process metrics [170, 128, 176, 89]. The main difference between
our paper and these papers is in the studied metrics. In addition to the static metrics, we
worked on Dynamic, Bug, and Test suite related metrics.

We utilized SBFL techniques to drive our target labels. There is a plethora of studies on
SBFL techniques in the literature (e.g., [196, 31, 24, 174, 178]). De Souza et al. in [32] and
Pearson et al. in [141] reviewed and evaluated the most frequently used techniques.
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This chapter first presents a summary of what has been done throughout the
chapters of this thesis. Subsequently, we state the results of the thesis and the
lessons learned during the development of this work. Afterward, we discuss
limitations and avenues for future work.

As discussed in previous chapters, there are two types of techniques that help in reducing
failure diagnosis time, failure clustering methods to group failing tests with respect to
hypothesized faults and automated fault localization techniques to locate the faults.

10.1. Aletheia: Failure Clustering and Fault Localization in a
Pipeline

Aletheia implements both of the above techniques to assist developers and testers to reduce
failure diagnosis time. Where there are several failing tests due to multiple underlying
faults, Aletheia helps users generate relevant data for further analysis while running the
tests. After running the tests, it extracts failing tests and clusters them based on their
underlying hypothesized faults. It also selects one (or more) representative tests for each
cluster. Users can analyze representative failing tests to find all the faults without having to
analyze all the failing tests one-by-one. Finally, if users need more help to locate the fault(s)
in the code, it applies SBFL on each of the clusters to provide users a ranked list of program
elements based on their suspiciousness to be faulty. Users can analyze the most suspicious
elements first to find the fault(s). However, only some parts of the ideas discussed in this thesis
are implemented in Aletheia.

Figure 10.1 shows Aletheia’s main components: data generation (only for C++ programs),
failure clustering, and fault localization. Each component can be used separately or the
output of each one can be used as the input for the next one. Our tool can be used as
a plug-in for Visual Studio or via command line. Aletheia is released as an open-source
tool on Github: https://github.com/tum-i22/Aletheia, and a demo video can be
found at: https://youtu.be/BP9D68DO2ZI.

10.1.1. Data Generation

The first component intends to generate and prepare data for further analysis. To generate
the data, Aletheia needs the source code and its test suite. Then, it runs test, collects
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Fault Localization

Hit/Count Spectra Ranked List of Program Elements                  

Failure Clustering

Hit Spectra Test        Similarity Data
Fault Focusing Clusters        Hit/Count Spectrum 

For Each Cluster 

Data Generation

C++ Code        Test Suite Hit/Count Spectra

Aletheia

Figure 10.1.: Aletheia with Its 3 Main Components

coverage information and aggregates them into some hit/count spectra. To collect coverage
information, it instruments the code using an open source tool, OpenCPPCoverage 1.
OpenCPPCoverage measures code coverage for C and C++. Executing a program using
this tool results in a report about which lines of code have been executed.

Aletheia first prepares test execution according to the start-up parameters of the given
test suite. Then, it calls OpenCPPCoverage to execute tests while recording the coverage
information and the test results. The final step is to generate a hit spectrum. Aletheia is able
to generate 4 different kinds of spectra: statement (which statements have been executed),
function calls (which functions have been invoked), function calls with input parameters
(same as the previous one but separating calls considering different input parameters), and
function call count (same as function calls, but recording count number of hits).

Since OpenCPPCoverage provides line coverage only, for other types of spectra, the final
step is needed to partially parse the source files to aggregate the line-level information to
provide statement- and function-level coverage.

Generated hit/count spectra are saved as csv files. Thus, they can be used as a data set
for machine learning or as the input for failure clustering and/or fault localization.

The data generation component of Aletheia is designed for C++ code and is also com-

1OpenCppCoverage, available at https://github.com/OpenCppCoverage, licensed under the GNU
General Public License version 3 (GPLv3).
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patible with Google testing framework 2. Google Test is a unit testing library for the C++
programming language, based on the xUnit architecture 3.

10.1.2. Failure Clustering

Aletheia offers failure clustering as the second component. As input, it receives a hit
spectrum (provided by the first component or by other tools such as GZoltar [20] for Java
programs). It works based on the methodology explained in Chapter 4. First, it generates
a hierarchical tree of failing tests (considering hit spectra as data set), then cuts the tree
into some clusters utilizing SBFL. The number of clusters is decided based on the fault
localization results. In the end, it selects k (user’s desired number) representatives for each
cluster. As output, users receive a csv file declaring the number of clusters, members of
each cluster, and representative tests for each cluster, and also a csv file as a hit spectrum
for each cluster (for further analysis).

10.1.3. Fault Localization

In Aletheia, four of the most popular metrics, Tarantula, Ochiai, Jaccard, and DStar (see
Chapter 2) are implemented.

10.1.4. Evaluation

We alreay evaluated the failure clustering and fault localization ideas in the previous
chapter. To complement our evaluations, we evaluate the whole framework considering
two scenarios using Pairika and project Lang from Defects4J.

Scenario 1: In the first scenario, we use project Lang to evaluate our failure clustering
and fault localization components in single and multiple fault cases. Among 65 faults
introduced for Lang in Defects4J database, only 4 of them (Bug-30, -31, -34, and -57) induce
more than two failing tests. We deliberately generate 3 cases for evaluation using these 4
bugs. In case 1, we include Lang-30, -31, and -39. In case 2, we include Lang-34. In case
3, we include Lang-57, -60, and -61. We include these combinations, in order to make the
clustering/localization tasks more challenging. For each combination, we try to consider
bugs that are in the same source file. We use Gzoltar to generate method level hit spectra.

The first option to reduce the failure analysis time is to cluster failures. Table 10.1 shows
the evaluation results. The ARed metric is obtained from Chapter 2 and denotes the
percentage of reduction in analysis time with respect to the best possible reduction. In
some cases, Aletheia might find more than one cluster for one fault. Nevertheless, there is
a huge reduction in analysis time. For example, in case 1, the 3 faults in the code induce
13 failures. Aletheia found 5 clusters. If we select one representative for each cluster, one

2https://github.com/google/googletest
3https://xunit.github.io/
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should analyze only 5 failures to find all the faults rather than 33. This yields 80% reduction.
One might get the list of representative tests and start the debugging process.

The second option is FL on found clusters in parallel. The segregation between failures,
obtained from clustering, improves the accuracy of multiple fault localization. For example,
Table 10.2 shows the ranks of faulty methods in case 3 before clustering and in found
clusters. The results show that faults might mask each other. In this case, Lang-57 with 11
failures masks Lang-60 and -61 with 1 and 2 failures.

Scenario 2: In scenario 2, we use Pairika to evaluate our data generation and fault
localization components. We did FL for 6 faults we extracted from Pairika. These faults are
in Core, Photo, and Machine Learning modules with 196550, 10880, and 19398 LoC and
10528, 166, and 39 tests respectively.

Tables 10.4 and 10.3 shows the fault localization results using DStar and Ochiai metrics
on 3 different spectra. As the results show, the faulty elements are not always ranked in
top-5.

Table 10.1.: Clustering Effectiveness Using Average/Euclidean
# of Failures # of Faults # of Clusters ARed(%)

Case 1 13 3 5 80
Case 2 27 1 1 100
Case 3 14 3 3 100

Table 10.2.: Fault Localization Effectiveness Using DStar4
Spectrum # of Bugs Rank of Faulty Function(s)

Case 3 3 (bug-57,60,61) 1-3-8
Cluster 1 1 (bug-60) 1
Cluster 2 1 (bug-57) 1
Cluster 3 1 (bug-61) 1

Table 10.3.: Best Rank of Faulty Element Using DStar4 Metric
Component Bug Id Statement Function Call Function Call w. Input
ml2 #5413 43 4 28
ml3 #5911 1 3 240
photo1 #8706 1 1 98
photo2 #5045 1 1 117
core5 #8941 248 28 88
core14 #6380 1 300 715
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Table 10.4.: Best Rank of Faulty Element Using Ochiai Metric
Component Bug Id Statement Function Call Function Call w. Input
ml2 #5413 43 4 28
ml3 #5911 1 3 240
photo1 #8706 1 1 98
photo2 #5045 1 1 117
core5 #8941 126 16 71
core14 #6380 1 38 114

10.2. Summary

This thesis presents a framework for failure diagnosis that can be used as an assistant tool
for developers to reduce failure analysis time. The following is how developers and testers
can benefit from using this framework:

Milica, a software tester at company X, is responsible for the quality of software devel-
opment and deployment. She is involved in performing automated and manual tests to
ensure the software created by developers is fit for purpose. Every week, she runs 1000
scheduled tests. Test runs take about 2 days. While running tests she collects coverage
information (see Chapters 6 and 10). If not possible, she uses the database of similarity
metrics between TCs (see Chapter 5).

After each test run, developers have 2 days to analyze failures, find bugs, repair them and
mark the analyzed failed tests as ready for the next test run. Thus, Milica collects failing
tests and clusters them (see Chapters 4 and 5). The clustering results include a prediction of
the numbers of bugs, groups of failing tests that are failing because of the same reason, and
one representative test for each cluster of failing tests. Milica, then, assign each group of
failures to one developer and asks them to analyze only the representative failing tests to
find the reasons behind failures asap.

Since locating the bugs in the code is very time consuming and tedious, Ana and Tabea,
the developers, prefer to use automated fault localization tools and receive some hints about
the location of the bugs. Ana uses the framework to predict the quality of fault localization
on her piece of code (see Chapter 8). If the results are promising, she continues using the
framework to do fault localization (see Chapter 7).

Tabea uses the prediction and does not receive promising results. She continues the
debugging process without using the framework. However, later she uses the recom-
mendations (see Chapters 7 and 8) to improve the quality of her code to facilitate fault
localization.

Note: Automated failure diagnosis techniques can be very helpful in reducing failure
analysis time regardless of the programming language. However, a minimum code and test
quality is needed. If software is of poor quality, not only our framework but any other tool
or technique cannot be effective on it. Thus, there is a prerequisite for using such tools and
techniques (see Chapter 8).
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10.3. Results and Lessons Learned

In this section, we highlight some of the most interesting results and discuss the lessons
learned during the development of this thesis.

Clustering failures can reduce failure analysis time. Our results show that failure clus-
tering is very effective in reducing failure analysis time. Clustering using coverage informa-
tion reduces more than 80%, and clustering without coverage reduces more than 60% of
analysis time.

Using syntactic blocks improves the effectiveness of SBFL. Our results show that syn-
tactic block granularity has two advantages over existing granularities including statement
and method level granularities. Syntactic blocks can help in reducing the wasted effort.
Also, they give some hints about the type of the bug and can handle so-called missing
faults.

However, the overall effectiveness of SBFL in an industrial setting depends on the quality
of the code and test suite. The wasted effort even in case of using syntactic block granularity
and re-ranking strategy might be higher than acceptable.

We can predict the effectiveness of SBFL. A model generated on 4 Static metrics (% of
Methods with LoC>30, % of Methods with Nesting Depth>5, % of Methods with 3≤Nesting
Depth≤5, and Mean # of Fields per Type), 4 Dynamic metrics (Mean Node Degree, Max
Node Out-Degree, Graph Diameter, and Response for Class), and 2 test metrics (% of
Method Coverage and % of Methods Covered in Failing Tests) can be used as a predictor
for the effectiveness of fault localization. In addition, developers can use these metrics to
improve their code to facilitate fault localization.

The location of a bug is more important than its type. Our results show that what in the
context of automated fault localization, the location of the bug is more important than its
type. However, it again shows the importance of the quality of the code. Consider a piece
of code with poor quality measures such as high coupling scores. Where ever a mistake
occurs, it would be difficult to localize it automatically.

10.4. Limitations

The difficulty of gathering data for evaluation prevented us from reporting on several
case studies. We evaluated our solution ideas on either C++ programs or Java programs.
However, a comprehensive evaluation should contain benchmarks from both languages.
Comparing the results, finding similarities and understanding dissimilarities, can help us
better understand the important factors in general and in each category.
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In our fault localization evaluations, we assumed that each buggy version contains only
one bug. However, this is not the case in practice. Although we suggest that before any
fault localization attempt, one should do clustering on failing tests to segregate between
faults, a comprehensive evaluation should also consider cases with multiple bugs. We
considered multiple bug cases in the evaluations of Section 10.1.

10.5. Future Work

In this section, we outline two avenues for future research:

Failure Clustering Regarding failure clustering, in our experiments, we used only cover-
age data or only non-coverage data. However, we believe that with combining these two,
we can improve the fault detection rate of the reduced test suites. Thus, we plan to evaluate
our approach considering a combination of non-coverage and coverage data for both failure
clustering and test selection/prioritization.

In the future, we will consider more context specific data sources for failure clustering, for
instance bus traces and log messages in car industry. Also, we plan to replace the current
random weight optimization routine for feature sets with a genetic algorithm. The genetic
algorithm can find the most promising combination of weights.

In addition, we will evaluate the effectiveness of our tool in scheduling and prioritizing
TCs. Since tests which are in the same cluster tend to fail due to the same reason, selecting
a subset of tests extracted from different clusters may help in finding the same amount of
faults using less testing resources.

Fault Localization In the previous chapters, we saw that regardless of the FL technique
used, it is not clear for developers whether the results are trustworthy or not. Even a
highly effective FL technique might provide results or hints that are skewed due to different
reasons (see Chapter 7). Thus, developers need an indicator that tells them to which extent
they can trust each sessions’ results. This confidence factor can help users to decide whether
to continue looking into the ranking list or to ignore it. As future work, we look for a
strategy to assign a Confidence Factor to the results of SBFL techniques. Our primary
experiment in this regard is the following.

In Chapter 7, we introduced a re-ranking approach based on some relations between
methods in a call graph. In addition to re-ranking, utilizing these relations, we define some
rules to assign a confidence factor to the results of SBFL. Confidence factor estimates the
probability of the fault being in the Top-10 positions. For instance, “if the parents of the
most suspicious element are ranked in Top-5, most probably one of the methods in Top-5 is
faulty”. Thus:
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The relative frequency of the cases where these rules hold and the fault is in the
Top-10 is the heuristic which we use as the confidence factor.

Although confidence factor and the prediction model described in Chapter 8 are highly
correlated, they are different. The prediction model predicts the effectiveness of SBFL on
the program under consideration. However, a confidence factor shows how much one can
trust the SBFL results in each debugging session. This may vary depending on the bug
location. Using the prediction model, developers can decide whether they can use SBFL on
a specific program. Using confidence factors, developers can determine whether they can
trust the ranking list in each debugging session.

As shown in Chapter 7, the best performing combinations of Range and Mode parameters
are Ancestor and Chain at Range 2. It means that considering parents, children, grandpar-
ents relations can be more helpful than looking into the ranking lists in a linear fashion. This
leads us to derive 27 rules shown in Table 10.5 to measure the confidence of the ranking list.

The values in the table show the relative frequency of the fault being in among Top-10
positions if the condition of the rule holds. For example, considering project Chart, if the
parent of the most suspicious method is in T-1 (Parent in T-1), in 66.66% of the cases, the
fault is in this parent-child relationship. We can use this rule as a rule to assign a confidence
factor. Thus, we translate it into “if the parent of the most suspicious element is in T-1,
with 66.66% of probability the fault is there”. Given this number, developers can decide
whether to consider or ignore the ranking list. In another example, if the parent and the
child of the most suspicious method are in Top-10 (Parent in T-10 & Child in T-10), with
71.74% probability the fault is there.

The last column shows the coverage percentage for each rule. 19.52% coverage for rule 1
means that in 19.52% of the reviewed ranking lists Parent of the most suspicious element is
also in T-1 (Note: As mentioned earlier, in SBFL, several elements can get the same rank
due to different reasons such as having the same coverage profile. Thus, it is possible that
several elements get rank 1).

Overall, the rules cover 88.84% of the cases. If none of the rules hold in a ranking list,
it does not mean that the ranking list is not helpful or is inaccurate. It only means it is
not clear how good or bad it is. We are aware that despite 88.84% coverage, this list is not
comprehensive, and external validity is a concern. However, we believe it sheds new light
on how to use SBFL results.

As the table shows, some rules are stronger than others. Also, it shows that Closure has
the least confidence values, analogously any FL technique is the least successful in Closure
(see Chapters 7 and 6).

We deliberately consider 50% confidence factor as our threshold. Thus, We extract the
rules with >=50 in all projects as our final set of confidence rules. These rules are high-
lighted in Table 10.5. The interesting point is that all these strongest rules are considering
upward relations like Ancestor-Range2.
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Table 10.5.: Confidence Factors. The Relations are with Respect to the Most Suspicious
Method in the SBFL Ranking List.

# Rule Chart Lang Time Closure Coverage(%)
1 Parent in T-1 66.66 88.88 71.42 37.03 19.52
2 Parent in T-5 66.66 90 70 50 32.27
3 Parent in T-10 75 86.36 76.92 51.06 37.45
4 Grandparent in T-1 33.33 - - 55.55 47.8
5 Grandparent in T-10 66.66 60 100 50 13.15
6 No child 100 86.95 83.33 31.81 34.26
7 Child in T-5 69.23 91.89 66.66 40 43.82
8 Child in T-10 73.33 92.30 62.5 40 47.81
9 Infinity as suspiciousness score 75 76.47 66.66 25 12.75

10 Parent in T-1 & Grandparent in T-1 33.33 - - 55.55 4.78
11 Parent in T-1 ‖ Grandparent in T-1 66.66 88.88 71.42 37.03 19.52
12 Parent in T-5 & Grandparent in T-10 50 60 100 50 9.96
13 Parent in T-5 ‖ Grandparent in T-10 72.72 90 75 50 35.46
14 Parent in T-10 & Grandparent in T-10 66.66 60 100 50 11.55
15 Parent in T-10 ‖ Grandparent in T-10 75 86.36 80 51.02 39.04
16 Parent in T-5 & Child in T-5 60 90.90 70 42.85 21.51
17 Parent in T-5 ‖ Child in T-5 70.58 91.3 66.66 45.76 54.58
18 Parent in T-10 & Child in T-10 71.42 90.90 72.72 45.16 23.90
19 Parent in T-10 ‖ Child in T-10 75 90 66.66 45.45 61.35
20 Parent in T-5 & no Child 100 88.88 66.66 50 9.16
21 Parent in T-5 ‖ no Child 78.57 88.23 81.25 40 57.37
22 Parent in T-10 & no Child 100 81.81 75 50 11.95
23 Parent in T-10 ‖ no Child 81.25 88.23 82.35 40.96 59.76
24 Parent & Grandparent are TestFun. 75 100 - - 2.79
25 Parent ‖ Grandparent is TestFun. 87.5 89.65 66.66 50 47.41
26 Parent is TestFun. & no Child 100 92.30 100 66.66 9.16
27 Parent is TestFun. ‖ no Child 87.5 86.53 63.15 36.36 60.96

To evaluate these rules, we use project Math from Defects4J as our test data. The results
are shown in Table 10.6. Each X means that the respective rule holds for the respective
buggy version. The last column shows if the faulty method is ranked in Top-10. The last
row shows the summary of the results. Rule 2 held in 5 cases. The last row shows that in 3
of these cases the fault is ranked in Top-10, and in the other 2 cases, the fault is not ranked
in Top-10. The results suggest that rules 25, 26, 5, 20, and 22 are the best performing rules.
However, this is a primary experiment, and the results are not generalizable.

The results also show none of the rules held in bugs -7, -23, and -30 where the fault is not
ranked in Top-10. For bugs -24 and -28 several rules held but the faulty method was not
listed in Top-10. We took a more in-depth look in these two versions. Considering version
Math-24, 10 methods get rank 1. Since there are parent-child relationships between these 10
methods, most of the rules hold. Considering Math-28, the most suspicious method and its
parents and children are ‘Exceptions’. This bug is one example of the issue mentioned in
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10. Conclusions

Chapter 7, regarding calling other methods after a failure. This issue skews the results from
real fault to the methods called after the failure.

Table 10.6.: Evaluation of Confidence Rules on Math Project
Rule #

Bug ID 2 3 5 12 13 14 15 20 22 25 26 Top-10?
2 X True
4 X True
5 X X True
7 False
8 True
9 X True
10 X X X X X True
11 X True
13 X False
14 X False
17 X True
21 X X X X X X X X X X X True
22 X X True
23 False
24 X X X X X X X False
25 X X X X X X X X True
26 True
27 X True
28 X X X X False
30 False

T:3
F:2

T:3
F:2

T:3
F:0

T:2
F:1

T:3
F:2

T:2
F:1

T:3
F:2

T:1
F:0

T:1
F:0

T:11
F:2

T:3
F:0

To sum up, it seems that the confidence factor analogously to SBFL is influenced by some
factors. The results suggest that the confidence value is less in projects like Closure where
SBFL has the least effectiveness. This is the second indication that quality of the code and
test suite matter in the effectiveness of automated failure diagnosis techniques. Thus, we
need to take into account the factors that influence the effectiveness of these techniques. We
recommend this path as an essential future work since we believe it sheds new light on
how to use SBFL.
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