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Abstract: In this paper, we present our novel approach for the crowdsourced dynamic vertical
mapping of buildings. For achieving this, we use the barometric sensor of smartphones to estimate
altitude differences and the moment of the outdoor to indoor transition to extract reference pressure.
We have identified the outdoor–indoor transition (OITransition) via the fusion of four different
sensors. Our approach has been evaluated extensively over a period of 6 months in different
humidity, temperature, and cloud-coverage situations, as well as over different hours of the day,
and it is found that it can always predict the correct number of floors, while it can approximate the
altitude with an average error of 0.5 m.

Keywords: indoor mapping; outdoor–indoor transition; CityGML; dynamic mapping; vertical
mapping

1. Introduction

Indoor maps have become a necessity in robotics, augmented reality, location-based services, mobile
ad hoc networks, and search and rescue missions. Because of the high manual effort of generating indoor
maps, there have emerged approaches for the dynamic generation of two-dimensional indoor maps
through crowdsourced sensor data (e.g., [1,2]). However, these approaches require precise localization.
Although many localization providers argue having achieved an average accuracy of 6 m in horizontal
localization, none of them provides vertical localization. This has as a result pushed back milestones
scheduled by initiatives that are focused on accelerating the research of indoor localization, as these
milestones require storey-level localization. Such initiatives are the Enhanced 911 [3] in the United States,
and the Enhanced 112 in the European Union [4], as well as the European Accessibility Act [5]. The main
reason for the lack of vertical localization providers is the limited information available, for example,
the lack of precise altitude indication for every floor in a building in existing maps. To the best of our
knowledge, no approach for the dynamic vertical mapping using crowdsourced smartphone sensor
data has been proposed.

This paper aims to automate the indoor vertical mapping process, while enriching existing maps
with indoor information. In this way, we enable maps to carry information regarding the number
of floors in a building and the corresponding altitude of each floor. We achieve this using the novel
method we use to fuse the barometric sensor of smartphones with other sensors for the extraction of
the ambient reference pressure in locations, which can be used for precise altitude estimation.
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More specifically, we first use sensor data extracted from light, proximity, Global Positioning
System (GPS), and magnetic sensors to identify the user’s transition from the outside to the inside of a
building. Once we recognize this transition, we use it as a landmark for the extraction of the reference
pressure. We then use this extracted reference pressure to estimate the altitude differences for every
step of the user using the barometric formula. For better clustering between altitude values, we filter
out vertical transitions (e.g., stairs or elevators), as they do not belong to floors. Because there is no user
who is going to visit all the floors of a building, altitude values from multiple users are aggregated for
the identification of the number of floors in a building and the height of each floor. Finally, these data
are used to generate three-dimensional (3D) models following the standards as defined by the City
Geography Markup Language (CityGML) Level of Detail 2, while an enhancement to the standard
models is proposed in order to enable it to carry floor information as well as the altitude of each floor.
Various studies attempt to vertically localize humans or objects via pressure sensors [6,7]. However,
they all assume reference sensor stations permanently installed in the building. Hence, these are highly
infrastructure-dependent approaches. Additionally, several studies attempt to vertically localize
objects or humans, mostly triangulating them, using the WiFi received signal strength [8], cellular
network antennas [9] or Bluetooth Low Energy (BLE) beacons [10]. Unfortunately, every triangulation
method highly depends on the assumption of the existence of particular infrastructure, as well as the
line of sight. This means that the strength of the signal, and as a consequence the distance estimation,
is influenced when the observer is standing in front of the infrastructure (e.g., BLE beacons) or behind
it. Finally, approaches for the dynamic generation of vertical maps have also been proposed [11–13].
However, these approaches suggest the use of outdoor characteristics for mapping indoors. This is not
feasible, most of the time, as a result of the uniform shape of various buildings, which does not allow
any subspace discretization. Additionally, most of the buildings contain underground structures that
cannot be recognized through any outdoor model (e.g., subway stations).

Our approach, with an absolute average error of a 0.507 m vertical disposition in three different
buildings, although it is infrastructure-independent, performs equally or even outperforms existing
approaches, such as in [7], with a 0.8 m vertical disposition, and in [14] with a 0.86 m vertical disposition,
which are infrastructure-dependent.

1.1. Background on the Barometric Formula

The atmospheric pressure is the weight exerted by the overhead atmosphere on a unit area of a
surface. The barometric formula describes how this atmospheric pressure is reduced when the altitude
is increased and vice versa. The unit of pressure is 1 hPa = 1 mbar = 100 Pa.

The barometric formula reads:

P = Pb ∗
[

Tb
Tb + Lb ∗ (h− hb)

] g0∗M
R∗Lb

(1)

where hb is the reference altitude, Tb and Pb are the temperature and pressure at the reference point,
Lb is the standard temperature lapse rate of 6.49 K/km, P is the pressure at the current point at height h,
R is the universal gas constant 8.3144621 J/K/mol, g0 is the earth’s gravity acceleration 9.80665 m/s2

and M is the molar mass of the earth’s air 0.0289644 kg/mol.
Equation (1) can be altered for estimating altitude to give the following:

h = hb +
Tb
Lb
∗
[(

P
Pb

)− R∗Lb
g0∗M

− 1

]
(2)

The barometer equation is valid within a few kilometers of the earth’s surface, within which the
lapse rate, gravity acceleration and air composition can be considered constant, given that Pb and Tb
consistently refer to the reference height hb. According to the barometric formula, a 1 mbar difference
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in pressure, with a 15 ◦C ambient temperature, leads to a 8.33 m altitude change, while a 1 m change
of altitude leads to a 0.1201 mbar change in pressure.

1.2. Contribution

The contributions of this paper can be summarized as follows:

• We introduce a novel infrastructure-independent method for the dynamic vertical mapping.
• We introduce a novel approach for the reference pressure estimation through the identification

of the outdoor–indoor transition (OITransition) of the user through the fusion of three different
sensors. In this way, the need of calibration between sensors becomes obsolete.

• We propose an enhancement of the CityGML level of detail two plus (LoD2+) method that
provides the indoor geometry of buildings at lower levels of detail.

This paper is an extension of work already presented in [15]. More specifically, in this paper, we
have extended the approach, by including an additional sensor for the OITransition discovery. This
additional sensor is the magnetic sensor, and more information about it is available in Section 3.3.3.
Additionally, the method has been extended and sensor fusion functionality has been added in the
reference pressure area component. More information is available in Section 3.3.4. Moreover, the
evaluation has been extended with additional collected data over longer period of time, as can be
seen in Section 4. Finally, as a result of the above-mentioned extensions of our approach, we have
achieved a more accurate identification for the recognition of the OITransition discovery with a true
positive score of 99.3% instead of 94.2% in the past. This makes our method more robust against
various building characteristics.

1.3. Paper Structure

In this paper, the related work is introduced in Section 2; the approach is described in Section 3;
the evaluation is presented in Section 4; the paper concludes in Section 5, where limitations to validity
are also presented; the resulting models are presented in Appendix A; and the list of collected data is
presented in Appendix B.

2. Related Work

Enhancing CityGML models with indoor geometry has already been discussed in [11]. In this
study, the LoD2+ method was introduced. The method is robust and was implemented successfully
using Nef Polyhedra. However, the authors used some prior knowledge, such as building facades
and available data modeled following the LoD2 format. As a result, this method is not applicable to
general cases because not all buildings contain sufficient information that can be used for mapping
indoor areas.

Apple holds a patent that focuses on the visualization of information in indoor 3D places [16]. They
do not consider altitude estimation, but instead they assume the existence of indoor maps with locations
that specify where vertical transitions may occur, annotated on the map, and a two-dimensional
localization mechanism. Additionally, they assume that users can be localized in a particular floor
using a particle filter-based framework, which is responsible for assessing the probability of a vertical
transition. In this framework, the confidence is quantified on the basis of WiFi access points and the
receive signal strength.

Kaiser et al. [17] point out the need of detecting vertical transitions because of the limitation of the
Zero Velocity Update (ZUPT) algorithm to identify vertical displacements. To solve this problem, they
introduce a moving platform detection module. This works by combining accurate sensors, not those
available on a smartphone, such as an accelerometer, barometer and magnetometer. These use ZUPT
for localization and a Simultaneous Localization and Mapping (SLAM) algorithm for reducing the
remaining drift. They estimate altitude using the barometric sensor, while they also use it to identify
landmark phases. In addition, they attempt to identify the boundaries of vertical movements. The
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intuition for the use of acceleration for the detection of vertical transitions is that the acceleration
caused by external factors is weaker than that caused by the pedestrian. However, their approach
focuses on correcting real-time localization and assumes the existence of indoor maps.

Li et al. [7] suggest using barometers for 2.5-dimensional (2.5D) (floor-level) localization. They
examine how the barometric formula performs for altitude determination. They researched the
robustness of altitude estimation on different devices that record differences from 2.1 to 2.5 hPa,
which is translated to an offset of multiple floors. They noted that the variation of pressure over 2 h
could reach an equivalent of a 10 m height change. They also examined latency robustness as well as
stability in the short term, where they noticed changes of 0.1 hPa every 10 min. On the basis of their
experiments, they argue that it is impossible to accurately determine height using a barometer in an
indoor environment in an absolute manner. They strongly point out the necessity of a reference station.
In their study, they used a reference station 5 km away. However, a reference station is not always
available, and using other devices such as reference stations requires calibration, which is not realistic
in a real-world scenario.

Xia et al. [6] propose the use of multiple barometers as reference points for the floor positioning of
smartphones with built-in barometric sensors. This method does not require knowledge of the accurate
heights of buildings and storeys. It is robust against temperature and humidity, and it considers
the difference in the barometric pressure-change trends and different floors. The intuition is that
atmospheric pressure decreases as the altitude increases. Hence, pressure changes that correspond to
altitude changes are possible to be calculated using a reference pressure and the barometric formula.
As they argue, humidity does not significantly affect the accuracy of the system for indoor altitude
estimation; thus, they use the gas constant for dry air and the air molar mass of dry air instead of humid
air. On the basis of the barometric formula and using built-in barometric sensors of smartphones as
well as information from a local weather station, they are capable of achieving a good discretization
between different floor levels. For the current temperature, they consult a local weather station online
service. However, this approach is heavily dependent on dense existing infrastructure, while it focuses
only on localization and assumes the existence of maps, which describe the location of each sensor.

Bollmeyer et al. [18] use barometers for medical applications in which a precise altitude estimation
of the patient’s body is needed. A challenge in this case is the disturbances due to macroscopic flow,
such as the influence of ventilation, the opening and closing of doors, or the weather. Calibration
between sensors is also needed, in order to compensate for the offset between different sensors. In their
research, they created a small sensor network, with sensors attached to the patient body, as well as a
reference stationary sensor. They measure a maximum error of 21 cm, but they suggest that a second
sensor might reduce the maximum error to 10 cm. However, in our application scenario, we do not
focus on such accurate vertical localization; we are looking for an infrastructure-independent approach.

Liu et al. [14] argue that the estimation of altitude via GPS is applicable only outdoors,
although even there, its error can be 2.5 times the error of the horizontal location. As a result,
they suggest barometers for vertical localization. Their main limitation is the lack of reference points,
because the only available reference stations are meteorological stations, which are often sparsely
located, while they broadcast periodically, usually at 1 h intervals. Therefore, they introduce the
concept of ad hoc reference points. They integrate information from multiple points, while they also
use forecast models to estimate air pressure on demand. Besides reference meteorological stations,
they additionally use other smartphones when the elevation indication is accurate enough. In order
to retrieve better accuracy from other phones, first, they take into account all the reference points
that are within a specified distance and time period, and then they give higher weights to reference
stations that are closer in distance as well as in time. They also assign a different credibility to different
reference stations. Hence, a reference station will be more reliable if its location is known and can
report better pressure. They score errors of less than 3 m in outdoor walking, 6 m in mountain climbing,
and 0.9 m in indoor floor localization. However, an ad hoc reference sensor reading will constantly
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have the need of being extracted; it is not clear how this can be achieved, particularly without maps
that describe those reference locations.

3. Approach

In this section, we present the main components of our approach. As visualized in Figure 1, the
approach is composed of the Sensor Data Collection module, which collects the data from smartphone
users via an application that has been developed for the purpose of this research and can be found
in ref. [19]. After smartphone pressure sensor data are collected, noise is filtered out in the Signal
Filtering module. The Reference Pressure Extraction module has two roles: (1) to filter outdoor data,
and (2) to identify locations where pressure readings can be extracted. In the Stair Removal module,
features that belong to intermediate heights (i.e., stairs or elevators) are rejected. Remaining pressure
readings are later used in the barometric formula for Altitude Estimation. In the Data Aggregation
module, we combine data from multiple users, while the Floor Estimation module has two roles:
(1) to identify the number of floors in a set, and (2) to estimate the altitude of each floor. Finally, in the
CityGML Generator module, a CityGML Model is dynamically generated.

Figure 1. The overall architecture of our system [15].

3.1. Sensor Data Collection

The sensor data collection module collects sensor data from pressure, light, GPS, proximity and
magnetic sensors. Data collected during different temperatures, days, times and humidity situations,
labeled with a time-stamp and a unique user identifier, are streamed on a server developed for this
purpose through a client–server approach via HTTP protocol, in JSON format. Our collected data are
openly available in [20].

3.2. Signal Filtering

For smoothing the collected data, the Savitzky–Golay filer [21] is used. Savitzky–Golay is a
moving average filter, which applies local regression to a subset of our entire dataset. More specifically,
it smooths data by replacing each data point with the average of the neighboring data points within a
defined span. This approach is equivalent to
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ys(i) =
1

2N + 1
∗
(

y(i + N) + y(i + N − 1) + ... + y(i− N)

)
where ys(i) is the smoothed value for the ith data point, N is the number of neighboring data points
on either side of ys(i), and 2N + 1 is the span.

3.3. Reference Pressure Extraction

The reference pressure is essential for estimating the altitude differences on the basis of the
barometer equation using pressure data. The reference pressure is extracted from areas that fulfil the
following preconditions: (1) they are common for all user data of each building, (2) they are located
indoors, and (3) the pressure fluctuations are low. Such an area is the one that follows the OITransition,
as everyone inside a building was at some point in time outside, while it is located indoors where the
pressure disturbances are low.

3.3.1. Light Sensor

As has been already suggested by Zhou et al. [22], the OITransition can be identified by
aggregating multiple smartphone sensor data. A very promising sensor for this is the ambient
light sensor, considering the fact that there is a difference of the light intensity between indoors and
outdoors. For identifying the OITransition, in our research, we fuse light and proximity sensors, with 7
and 25 Hz recording rates, respectively. The first sensor helps us to identify the transition, and the
second is used as a supportive sensor, indicating when to trust the data, as it can indicate that an object
blocks the light sensor.

As can be seen in Figure 2, the light intensity drops when entering the building during the day
and increases during the night, while the proximity sensor indicates whether to trust the light sensor,
because of various phone poses (e.g., phone in pocket). Hysteresis thresholding is used for maximizing
the margins of the signal that belong outdoors and indoors. Finally binary classification is applied on
the basis of the high and low distribution frequency, while the decision of whether the data is collected
during day or night taken from the hour angle ω0 of the sun (negative at sunrise; positive at sunset) is
computed with

cos ω0 = − tan φ · tan δ

where φ is the latitude of the observer on the earth and δ is the sun’s declination.

Figure 2. Light data from six outdoor–indoor transitions (OITransitions) collected during the same day,
five during day time and one during night. As can be seen, during the OITransition (after the 70th
sample), the light intensity rapidly decreases during the day (left axis) and increases during the night
(right axis).
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Hysteresis Threshold

The hysteresis thresholding algorithm uses multiple thresholds to find rapid changes in a signal.
The algorithm is thus used to discriminate indoor and outdoor locations. Figures 3 and 4 show that
it allows the identification of OITransitions with great accuracy. First, we estimate the upper and
lower thresholds for the hysteresis thresholding, on the basis of a histogram analysis. In the histogram
analysis, we compute frequency distributions of discrete light intensities. We select the upper and
lower thresholds on the basis of the pattern of the distribution. If an OITransition exists in the sensor
data segment, then the distribution forms a bimodal pattern and the thresholds are selected from
the lower and higher peaks of the distribution. Alternatively, if the sensor data segment contains an
OITransition, the distribution shows a symmetric pattern and it is not be taken into consideration
as a potential OITransition segment. After the upper and lower thresholds have been defined, the
upper threshold is used to find the start of a rapid transition. Once a start point is found, then the path
is traced from the rapid signal transition through the signal, segment by segment, marking indoors
whenever it is above the lower threshold. It stops marking indoors only when the value falls below
the lower threshold.

Figure 3. Outdoor–indoor transition (OITransition) classification using light. The binary flag of 1
(orange line and right axis) indicates indoor area. We note that during the period after sample 7× 105,
the smartphone was in a pocket. However, it is wrongly classified as indoors. This demonstrates the
need for fusion with the proximity sensor, which can indicate whether the phone is exposed (the light
sensor can be trusted) or not.

Figure 4. Outdoor–indoor transition (OITransition) classification using light at night. The binary flag
of 1 (orange line and right axis) indicates indoor area.

Unfortunately, as can be seen in Figure 4, the accuracy of the indoor classification at night-time is
reduced in comparison to during the day time.
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3.3.2. GPS Uncertainty

Another characteristic of the OITransition is the rapid increase of the GPS uncertainty. As a
result, in our approach, we recorded the GPS uncertainty with a sampling frequency of proximately
1 Hz. As can be seen in Figure 5, at the moment of the transition (after the 80th sample), the GPS
uncertainty increased from less than 10 m to almost 60 m. Hysteresis thresholding [23] was applied
for the maximization of the margin between low GPS accuracy (indoors) and high-accuracy data
(outdoors) for better classification. More specifically, GPS uncertainty was first smoothed via a
Gaussian smoothing filter. Then multiple hysteresis thresholding was applied in order to enhance the
margin and hence the accuracy of the OITransition classification. The approach can be seen in Figure 6.
As can be seen in the figure, raw GPS uncertainty (red line) was first smoothed with a Gaussian filter.
Then hysteresis thresholding was applied to the smoothed signal (magenta line).

Figure 5. GPS uncertainty data from five outdoor–indoor transitions (OITransitions). As can be seen,
at the moment of the transition after the 100th sample, the uncertainty rapidly increased.

Figure 6. Smoothing and hysteresis thresholding of raw GPS uncertainty signal.

OITransition Detection and Histogram Analysis

Before hysteresis thresholding was applied, the raw GPS uncertainty signal was smoothed via a
Gaussian smoothing filter. Then multiple hysteresis thresholding was applied to enhance differences
between segments of the signal that belonged outdoors or indoors. This approach is detailed explained
in Section 3.3.1 and visualized in Figure 6.

For the identification of an OITransition in the data segment, as well as for the definition of the
threshold in the hysteresis thresholding, histogram analysis was applied in the entire GPS uncertainty
signal segment. As can be seen in Figure 7, the frequency of different uncertainty radii is visualized
in the histograms. As can be seen in Figure 7c, the histogram forms a bimodal pattern when an
OITransition occurs. This is a recognizable characteristic of a segment of uncertainty data that contains
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an OITransition. Once a transition is identified, the two peaks of the signal are used as the upper and
lower thresholds in the hysteresis thresholding algorithm.

Figure 7. Frequency of GPS uncertainty from data collected from outdoors (a), indoors (b) and during
an OITransition.

On the other side, as can be seen in Figure 7a,b, the histograms show a more symmetric pattern,
which is an indication that the data are extracted from a single place; this place is either indoors or
outdoors. More specifically, as can be seen in Figure 7b, the GPS uncertainty is high—more than
20 m—which is an indication that the particular segment has been extracted from exclusively indoor
locations. On the other side, as can be seen in Figure 7a, the GPS scores a low uncertainty—less than
15 m—which is an indication that the data are extracted from exclusively outdoor locations.

3.3.3. Magnetic Signal

The magnetic sensor can detect disturbances of the ambient magnetic field, as a result of steel
elements inside the walls of a building. Hence, the intensity of the magnetic field can be used
as an indicator for identifying the OITransition [24]. In this section, we introduce a process for
the identification of the OITransition by measuring the disturbances of the magnetic field. For the
identification of OITransitions, we combine a Gaussian filter and the moving window standard
deviation. In the following example, we selected a magnetic dataset from the collected data [20] from
four of our buildings. The corresponding magnetic signal is shown in Figure 8:

The route that corresponds to the signal shown in Figure 8 begins outdoors, followed by four
indoor transitions and four outdoor transitions. Towards the end of the time interval, the third outdoor
transition occurred when exiting the fourth building.

In the first step, disturbances in the signal were found using the moving window standard
deviation with a window size of 20 samples along the time axis. The resulting signal is shown
in Figure 9 (orange line). Once disturbances were identified, a second moving standard deviation
extraction was applied to the new generated signal. This time, the window size corresponded to
200 samples. The result is illustrated in Figure 9 (purple line).
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Figure 8. Magnetometer signal from walking into four consecutive buildings.

Figure 9. Magnetometer signal from walking into four consecutive buildings and corresponding
smoothed moving Standard Deviation (STD) of moving STD with kernel size of 500.

In the third step, a Gaussian filter was applied to the resulting signal in order to smooth it with a
kernel of 500 samples. As can be seen in Figure 9 (red line), this contributed to the identification of the
four blobs that correspond to the duration—one by one—of the indoor walking activities. They then
could be used to distinguish indoors from outdoors.

Finally, in order to enable binary classification between indoor and outdoor areas, a moving STD
was performed, followed by another Gaussian filtering step. The resulting signal was then used to
determine the start and end of the indoor areas. The final classification can be seen in Figure 10 (black
line), where the value 1 corresponds to indoors and 0 corresponds to outdoors.

3.3.4. Fusion

The sensor fusion was made as is described in Table 1. The sensors that have been taken into
consideration are the proximity, the light, GPS and the magnetic field sensor. Their decision is fused
as follows:

• If the proximity sensor indication is false, this implies that there is no obstacle blocking the
light sensor. As a result, three sensors are available. Hence, the result is determined on the basis
of the voting fusion. For example, if the light and GPS sensors identify that the particular data
segment is extracted from indoors, then the segment is classified as an indoor data segment.

• On the other side, if the proximity sensor indicates “true”, then we have only two sensors
available. The majority voting can thus not be applied here. Hence, in such a case, the logic
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operation and is applied. For example, if the magnetic sensor indicates disturbances—and as a
result, indoors—but the GPS uncertainty is low, which indicates outdoor space, then the segment
is classified as outdoors.

Figure 10. Magnetometer signal from walking into four consecutive buildings and corresponding
smoothed moving STD of the disturbance, with kernel size of 200 samples, and the final
binary classification.

Table 1. Fusion Rules.

Proximity Light GPS Magnetic Indoor Outdoor Fusion Model

False 0 0 0 F T Voting
False 0 0 1 F T Voting
False 0 1 0 F T Voting
False 0 1 1 T F Voting
False 1 0 0 F T Voting
False 1 0 1 T F Voting
False 1 1 0 T F Voting
False 1 1 1 T F Voting
True — 0 0 F T and
True — 0 1 F T and
True — 1 0 F T and
True — 1 1 T F and

3.4. Stair Removal

In the stair removal phase, sets of features with high disturbances in the pressure readings are
rejected, as they mostly correspond either to vertical transitions (e.g., stairs or elevators) or to outliers
(e.g., high wind velocities). Such features of high disturbance are identified using the moving window
standard deviation.

This approach is equivalent to
σ =
√

κ

where

κ = σ2 =
1

N − 1

(
q− s2

N

)
with

q =
N

∑
i=1

x2
i and s =

N

∑
i=1

xi

where xi is the instance of the input signal and N is the number of elements.
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3.5. Altitude Estimation

The altitude is estimated on the basis of the barometer Equation (2) as follows:

h =

[(
P0

Pi

) 1
5.25

− 1

]
∗ Tb + 273.15

0.0069
(3)

where P0 is the reference pressure extracted from the location where the OITransition was identified,
Pi is the current pressure value and Tb is the temperature value in ◦C, which is extracted via openly
available weather stations online.

3.6. Data Aggregation

Data aggregation is essential for identifying all floors inside a building, as not all users are expected
to visit all floors. In the data aggregation module, multiple recorded data are fused. Grouped by their
GPS coordinates and combined with the building outline, extracted from OpenStreetMap [25], it is
ensured that the data always correspond to the same building. More specifically, altitude information
estimated from multiple users and labeled by their unique users identifier (UUID) are sorted by their
time-stamp and fused together for the classification phase. Because the reference pressure for the
altitude estimation is extracted by the same device as that used for estimating it, approximately at
the same location for all the users, because of the novel approach for reference altitude extraction on
the basis of the identification of the OITransition, there is no need to calibrate any sensor between
different phones. In this paper we consider all existing entrances of a building to be at the same
altitude. However, in the case of multiple entrances at different altitudes, the entrance altitude, as well
as the longitude and latitude, can be extracted from [25], and then the OITransition can be used for the
identification of the entrance location. Once the entrance location is identified, the difference between
the global altitude of the entrance can be used for locally referring the floor height.

3.7. Number of Floors Estimation

Because the number of floors as well as the label of every floor (i.e., the corresponding altitude)
are unknown, for classification, we used a classifier able to cope with unlabeled data. The classifier
K-means was selected because of its simplicity and its relatively low processing demand. For
estimating K, the elbow method was selected. The classification process is divided into two main steps.
The first step is the identification of K, which corresponds to the true number of floors. In the second
step, the center of each cluster is recognized, which corresponds to the altitude of every floor.

3.7.1. Identification of K

Because the number of floors is unknown (K), it has to be estimated in the first step. For this
purpose, the elbow method [26] was chosen. The elbow method is a clustering analysis method, and
it enables the interpretation and validation of the consistency within the cluster analysis. It takes
into consideration the percentage of variance explained as a function of the number of clusters: the
optimum number of clusters is reached when adding another cluster no longer improves the modeling
of the data. If we plot the variance as a function of the number of clusters, the first clusters will add
much information, but with an increasing number of clusters, the marginal gain will drop and the
graph will flatten out, indicating the optimum number of clusters. Identifying the correct number for
K is essential, as it corresponds to the number of floors. A wrong estimation of K can lead to large
errors in the estimated altitude of each floor.

3.7.2. The Centroid of the Clusters

After K is identified, the classification is made using K-means, as the cluster label (i.e., the altitude
of each floor) is unknown. The input to the algorithm is the computed vector of filtered pressure data
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and the estimated number of floors. The algorithm’s output is then a vector with the assigned classes
for every input point and the cluster centroids.

3.8. Implementation in CityGML

In our research, we concentrate on the derivation of the floor numbers and their heights. This
does not allow us to create a complete LoD4 model. As a result, we enhance the LoD2 model geometry
with the hull geometry for each floor. For this purpose, we introduce LoD2+, as visualized in Figure 11.

Figure 11. The proposed level of detail two plus (LoD2+) model, which carries information about the
number of stores as proposed by [11] and their corresponding altitudes.

In LoD2 and higher LoDs, the outer facade of a building can be modeled semantically by
the _BoundarySurface. The _BoundarySurface is a part of the building’s exterior shell with an
assigned function such as the wall WallSurface, roof RoofSurface, ground plate GroundSurface,
outer floor OuterFloorSurface, outer ceiling OuterCeilingSurface or ClosureSurface. For indoor
modeling FloorSurface, InteriorWallSurface, and CeilingSurface can be used [27]. In [11], the
authors enhance the CityGML scheme with a new feature class, Storey, which has five attributes:
class, function, usage, storeyHeightAboveGround and storeyVolume.

To model the indoor geometry, we keep the LoD2 representation using _BoundarySurface and
add indoor geometry for each storey using FloorSurface, InteriorWallSurface, and CeilingSurface, as
well as the feature class Storey introduced by [11]. In addition, we propose a further attribute of the
feature class Storey: storeyAltitude. This attribute is necessary for our application, as the output of a
navigation device is an altitude and not the height above the ground. This extension is not included in
the current version of the CityGML specification, however we suggest to include it in the next release.

For the dynamic generation of the CityGML model, citygml4j [28] was used. This is an open-source
library for Java, which binds the XML Schema definitions of CityGML to a Java object model.
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4. Evaluation

In this section, we present the evaluation of the proposed method for the dynamic vertical
mapping from user smartphone data as shown in Table 2. More specifically, in Section 4.1, the
difference in calibration between the two phones used in this experiment is presented. Section 4.2
presents the robustness of our algorithm against various human walking velocities. In Section 4.3, the
performance of the identification of OITransitions is evaluated. In Section 4.4, the evaluation of the
identification of the number of floors and their altitude estimation during various weather conditions
is presented. For the evaluation of the stair removal Section 4.2, data were collected from three different
human walking velocities. Finally, a detailed evaluation, with datasets collected over a period of
6 months from three different buildings, is presented in Section 4.4.

Table 2. Collected Data used for evaluation. The table shows the date of collecting the data, the
time, the indicated temperature from AccuWeather (T A) and Google (T A) (unit: ◦C), the relative
humidity from the same two sources (H A) and (H G), and the ambient pressure from AccuWeather
(P A) (unit: Pa). The buildings belong to the Technical University of Munich (TUM) main campus area
and are (1) Agness 27, (2) Adelheid 13A, (3) Agness 33 and (4) TUM main campus.

Date & Time T A T G H A H B P A ID

May 10, 10:20 9 10 70 74 1011 1
May 10, 21:40 11 13 61 45 1006 1
May 12, 18:20 21 19 40 52 1004 1
May 9, 17:00 10 9 49 52 1016 1
May 9, 10:40 8 9 75 72 1017 2
May 9, 17:30 10 11 49 55 1016 2

May 10, 22:00 11 11 61 65 1006 2
May 12, 18:30 21 19 40 45 1004 2
May 9, 10:10 8 9 75 60 1017 3
May 9, 16:40 10 9 49 59 1016 3

May 10, 10:00 9 8 70 40 1011 3
May 12, 17:50 21 19 40 43 1004 3
Feb 11, 14:30 6 2 70 72 1019 3
Feb 12, 19:00 0 1 87 80 1028 3
Feb 21, 21:30 7 0 93 83 1017 3
Mar 21, 13:30 13 8 58 64 1010 3

4.1. Different Phone Calibration

In this section, we discuss the use of our algorithm for two different smartphones. As can be seen
in Figure 12, there is an offset between the sensor readings of the two phones. This implies that there
cannot be a single point of reference for both sensors and highlights the need for calibration between
the two phones. However, as can be seen, the offset between the two sensors is almost stable. As a
result, this effect demonstrates the need of self-reference that our approach offers. Hence, considering
the fact that each phone will extract reference pressure from its own sensor and the fact that the offset
between different phones is stable, our proposed approach will work for any given barometric sensor
calibrated under any given circumstances.
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Figure 12. Data collected from an iPhone 7 and a Samsung Galaxy S6, while the user had climbed three
floors upwards and the same number of floors downwards.

4.2. Evaluation of Stair Removal

For testing the robustness of our algorithm against different walking velocities in the stair removal
component, we recorded data with three different walking velocities, approximately 1×, 1.2× and
1.5×, while climbing five pairs of stairs on a building, as can be seen in Figure 13. As demonstrated
in the results (Table 3), the algorithm scored a precision of 94%, recall of 93.8% and F-score of 93.9%
on correctly identifying the stairs, with the same sliding window length for all datasets. The sliding
window size was 50 samples long or approximately 10 s, while it slid for every sample or approximately
every 250 ms.

Figure 13. Dataset used for the evaluation of the stair removal method. The data was collected from
the same route for three different visits and walking velocities, approximately 1×, 1.5× and 2× [15].

Table 3. Confusion matrix of stair removal.

Fast Normal Slow

Floors Stairs Floors Stairs Floors Stairs

Floors 1584 58 2037 0 2683 0
Stairs 179 296 76 404 157 472

4.3. Evaluation of Reference Pressure Extraction

The reference pressure value for the altitude estimation with the barometric formula corresponds
to the location that follows the entrance of a building, as detailed described in Section 4.3. As a
result, the identification of the OITransition is necessary in order to identify the building entrance.
The transition is identified by monitoring peaks and drops by monitoring peaks and drops in the
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readings of a number of sensors and their fusion, as suggested by [22] and described in Section 4.3.
However, in our scenario, the ambient light, the GPS uncertainty and the disturbances of the magnetic
field are taken into consideration, rather than the WiFi Received Signal Strength (RSS) and the Global
System for Mobile Communications (GSM) RSS. The approach has been evaluated in three different
buildings with four collected datasets for each building, during day and night. Our collected data and
the algorithm used for the evaluation are open-source and can be found in [20].

As can be seen in Figure 14, the OITransition (red dots) was successfully identified in all of our
datasets. Additionally, the entrance location could also be approximately determined by our approach.
This was considered as the place of the transition, for example, the space between the last low GPS
uncertainty values and the first high GPS uncertainty values. As a result, we could additionally
estimate the spatial error of our approach for the OITransition identification. Hence, the entrance
location latitude has been approximated by an average of 1.6 m, while the entrance longitude has been
approximated by an average of 5.5 m. This score was lower than the GPS average error outdoors,
which was between 10 and 12 m.

Figure 14. Locations that correspond to the detection of the outdoor–indoor transition (OITransition).
The figure includes nine different determined locations for the entrance to the building (red dots) [15].

Furthermore, five out of nine times, the entrance location was identified at the latitude of 48.1489,
while two times it was identified at the latitude of 48.14895 and once it was identified at the latitudes
of 48.14885 and 48.149. The final latitude was to be decided on the basis of the median, which was
48.14894251, while the true entrance latitude as mapped in the open street maps was 48.1489277.
Hence, our algorithm scored an error of 0.00001◦, which corresponded to less than 1.64 m. Regarding
the longitude, three out of nine times the entrance was localized at the longitude 11.5677, twice at
11.56775 and once at 11.56755, 11.5676, 11.56765 and 11.568. The final entrance location was estimated
from the median at 11.568, when the true entrance was located at longitude 11.568. As a result, our
algorithm had an error of 0.00004◦, which corresponded to approximately 4.614 m.

Finally, in Tables 4–6, a detailed evaluation of the OITransition determination for each sensor and
the sensor fusion for all 3 buildings and 12 datasets is presented. According to the tables, our algorithm
scored an average of 96.8% for precision, 94.2% for recall and 95.5% for the F-score, for identifying
the OITransition using a GPS sensor. It scored 93.6% for precision, 96.3% for recall and 94.9% for the
F-score for OITransition detection with a light sensor. It scored 88.8% for precision, 89.2% for recall and
89% for the F-score for OITransition detection with a magnetic sensor. It scored 99.4% for precision,
90.7% for recall and 94.8% for the F-score for the fusion of all sensors on the basis of the voting fusion.
When the light sensor was not available or when the proximity sensor indication was true, it scored
99.1% for precision, 97.3% for recall and 98.2% for the F-score.
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Table 4. Confusion matrix of Building I.

GPS Light Magnetism Fusion

Indoor Outdoor Indoor Outdoor Indoor Outdoor Indoor Outdoor

Indoor 614 21 6121 210 3323 519 1,162,298 302,269
Outdoor 21 696 163 5526 144 2776 1329 746,993

Table 5. Confusion matrix of Building II.

GPS Light Magnetism Fusion

Indoor Outdoor Indoor Outdoor Indoor Outdoor Indoor Outdoor

Indoor 390 3 5748 1069 2911 460 1,228,507 25,114
Outdoor 20 805 220 4428 0 2383 6915 820,470

Table 6. Confusion matrix of Building III.

GPS Light Magnetism Fusion

Indoor Outdoor Indoor Outdoor Indoor Outdoor Indoor Outdoor

Indoor 127 0 4963 154 7749 179 1,186,784 41,546
Outdoor 29 184 264 3788 1552 3571 13,700 924,258

As a result, we can conclude that the OITransition can be recognized and represents a robust
means for the extraction of the reference pressure. Additionally, the GPS sensor scored the lowest false
positives, while the light sensor scored the lowest false negatives. Furthermore, the fusion of the three
sensors scored the lowest false positive rate, and the false positive rate dropped only by 0.3% when
the light and magnetic field sensor were the only sensors that were fused.

4.4. Evaluation

This section presents a long-term evaluation for the number of floors and the floor heights
determined for the buildings TUM main campus (library; Section 4.4.1), Building B (Section 4.4.2), and
Deutsche Akademie (Section 4.4.3). The ground truth was obtained via a high-precision laser range
meter device. We observed these buildings for about 6 months to evaluate the effects of long-term
weather conditions on the measurements.

4.4.1. Building 1: TUM Main Campus

TUM main campus has five floors and a ground floor. The true height for each floor is listed in
Table 7. Nineteen datasets were collected from TUM main campus, over a 4 month period. The average
duration of the datasets collected was 14.2 min, with an average of 3204 samples from the pressure
sensor. All the collected datasets are available in [20]. We collected data from various hours during
daylight and night; different routes were traveled inside the building, at different temperatures,
humidity levels and ambient pressure, and finally with different cloud coverage. After smoothing
and clustering the data as explained in Section 3.2, the OITransition was identified as described in
Section 3.3. The accuracy of this component is presented in Section 4.3, in Table 4. Once the OITransition
was estimated and the reference pressure was extracted, the altitude of every pressure reading that
belonged to indoors was computed. Once all the pressure readings were translated into altitude, they
were imported to the elbow method for floor number identification.
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Table 7. Ground truth, estimated altitude and error for Technical University of Munich (TUM)
Main Campus.

Floors 0 1 2 3 4 5

Real floor altitude (m) 0 5.3 10.68 15.05 19.47 24.41
Estimated floor altitude (m) 0 4.81 10.03 14.48 18.86 23.74
Error 0 0.48 0.65 0.57 0.61 0.66

As can be seen in the elbow method results, in Figure 15a, the number of floors (i.e., clusters,
K = 6) in our dataset has been identified correctly for the aggregated dataset as well as for the May and
June datasets, for which all floors of the building were visited. The threshold selected for all datasets
was 99.12% for the distortion percentage, and for the clustering, the K-means algorithm was selected.
Additionally, it can be seen that for the February dataset, the number of floors predicted was five
(Ktemp = 4), as the fifth floor was not visited during this month. For March, the predicted number of
floors was four (Ktemp = 3), as the two highest floors were not visited during that month. For April,
the predicted number of floors was three (Ktemp = 2). Finlay, in the datasets extracted during July, the
predicted number of floors was four (Ktemp = 3), and the third cluster’s distortion fell slightly above
the 99.12% threshold.

To demonstrate the performance of the altitude estimation or the label of each class
(i.e., the centroid of each cluster), the corresponding estimated floor altitude is visualized together
with the ground truth in Figure 16a and is listed in Table 7. As can be seen for the aggregated dataset,
the maximum error was at 0.66 m, while the minimum error was at 0.48 m. In Figure 16a, it can also be
seen that the fact that some datasets were non-visited floors (i.e., July, April, March and February) did
not cause a problem to our database, as these floor altitudes were ignored.

Figure 15. Elbow method result for three test buildings (a) TUM Main Campus, (b) Building B,
(c) Deutsche Akademie.

4.4.2. Building 2: Building B

Building B consisted of five floors and an additional ground floor. The true height for each
floor is available in Table 8. We have collected data following the same strategy as mentioned above.
Twenty-five datasets were collected from Building B in Munich. All collected datasets are available
in [20]. After following the procedure described above, for smoothing, clustering and identifying
the OITransition, we extracted the reference pressure and then the altitude of every pressure reading
that belonged indoors. Finally, once we translated all the pressure readings into altitudes, they were
imported to the elbow method for floor number identification.
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Figure 16. Estimated altitude and ground truth for each floor height for three test buildings (a) TUM
Main Campus, (b) Building B, (c) Deutsche Akademie.

Table 8. Ground truth, estimated altitude and error for Building B.

Floors 0 1 2 3 4 5

Real floor altitude (m) 0 4.17 7.31 10.5 13.7 16.8
Estimated floor altitude (m) 0.022 3.86 7.24 9.92 13.26 15.68
Error 0 0.31 0.073 0.585 0.44 1.12

As can be seen in the elbow method results, in Figure 15b, the number of floors (i.e., clusters,
K = 6) in our dataset has been identified correctly for the aggregated dataset as well as for the May and
June datasets, for which all floors of the building were visited. The threshold selected for all datasets
was 99.12% for the distortion percentage, and for the clustering algorithm, the K-means algorithm was
selected. Additionally, it can be seen that for the July dataset, the number of floors predicted was two
(Ktemp = 1), as the four higher floors were not visited during this month.

Regarding the height estimation, the corresponding estimated floor altitude and ground truth are
presented together in Figure 16c, as well as in Table 8. As can be seen, in the aggregated dataset, the
maximum error was at 1.12 m, while the minimum error was at 0.31 m. In the figure, it can also be
seen that for the July dataset, only two floors were visited.

4.4.3. Building 3: Deutsche Akademie

We collected 20 datasets from Deutsch Akademie. This consists of five floors and a ground floor.
All collected datasets are available in [20]. The true height for each floor is available in Table 9. Once
we estimated the OITransition and extracted the reference pressure, then the altitude of every pressure
reading that belonged indoors was computed. Once all the pressure readings were translated into
altitude, they were imported to the elbow method for floor number identification.

The ground truth of this building is illustrated in Table 9.
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Table 9. Ground truth, estimated altitude and error for DeutschAkademie.

Floors 0 1 2 3 4 5

Real floor altitude (m) 0 3.54 6.51 9.31 12.2 14.9
Estimated floor altitude (m) 0 3.1 6 8.9 11.59 14.67
Error 0 0.4 0.45 0.38 0.61 0.23

As can be seen in the elbow method results, in Figure 15c, the number of floors (i.e., clusters, K = 6)
in our dataset has been identified correctly for the aggregated as well as the May and June datasets,
for which all floors of the building were visited. The threshold selected for all datasets was 99.12%
for the distortion percentage and the clustering algorithm was selected for the K-means algorithm.
Additionally, it can be seen that for the June 1 and 13 datasets, the number of floors predicted was five
(Ktemp = 4), as the third floor was not visited during this period. For June 14 and 15 as well as for
June 21 and 22, the predicted number of floors was four (Ktemp = 3), as the two floors were not visited
during these period. More specifically, the non-visited floors were the first and second, for the first
dataset and the two highest floors for the later dataset.

On the other hand, the corresponding estimated floor altitude and ground truth are visualized
together in Figure 16c and Table 9. As can be seen for the aggregated dataset, the maximum error was
at 0.61 m, while the minimum error was at 0.23 m. In the figure, it can also be seen that some datasets
being non-visited floors (i.e., June 14–15 and 23–29) did not cause a problem to our database, as these
floor altitudes were ignored.

5. Conclusions

This paper describes our novel framework for the dynamic mapping of the vertical characteristics
of a building. The proposed method makes use of a new sensor available in the latest smartphones
(the last from 2017), and the barometric sensor, which indicates the ambient pressure and manages
uncertain sensor data collected from crowdsourcing. The method estimates the altitude of the collected
data with the use of the barometric formula. For achieving this, we introduce a novel approach for
the extraction of the reference pressure at the OITransition of the user, which is identified through
sensor fusion. More specifically, the GPS uncertainty, the magnetic disturbances and the ambient light
are taken into consideration for identifying the transition, while the proximity sensor is also used
as a supportive sensor. We faced an unsupervised classification problem, in which the number of
floors—or the number of clusters—as well as the altitude—or the label of each class—for each floor
were unknown. To resolve this problem, a clustering analysis technique called the elbow method
and the popular K-means clustering algorithm were used. Finally, we propose a way to map these
characteristics by enhancing the standards of the CityGML, enabling it to carry information about the
vertical characteristics of a building in lower LoDs.

Although it has been demonstrated in the paper that our approach can work with any barometric
sensor (Section 4.1), as the offset between different barometric sensors is stable, our approach has been
extensively evaluated only for the Samsung Galaxy S6 [29].

Additionally, we noticed that when a significant delay follows the OITrsansition and precedes
ascending to different floors, the vertical localization error increases. This is due to the long-term
instability of the ambient air pressure. The same happens when there is lack of data from one floor.
It is very likely that such data will not be taken into consideration in the clustering analysis and finally
in the clustering phase. This will result in a missing floor in the final model.
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Appendix A. Appendix I: Final Models

In this section, the final models together with photographs of the buildings are presented. Those
models have been generated dynamically and without the intervention of a user. The outline of the
buildings has been extracted from [25]. The CityGML models are available in [20].

Figure A1. Final CityGML level of detail two plus (LoD2+) model for the TUM main campus building.

Figure A2. Final CityGML level of detail two plus (LoD2+) model for Building B.

Figure A3. Final CityGML level of detail two plus (LoD2+) model for the Deutsche Akademie building.

Appendix B. Appendix II: Collected Data

In this section, we list all the data that were collected for the evaluation of our model. All the
collected data are available in [20], and they include measurements from the following sensors:
acceleration, gyroscope, pressure, light, proximity, GPS, magnetometer, pedometer, WiFi, pressure
and GSM sensors.
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Table A1. Collected data from TUM main campus. The table shows the data acquisition date, the
time, the visited floors (V Floors), the indicated temperature from AccuWeather (T A) and Google (T A)
(unit: ◦C), the relative humidity from the same two sources (H A) and (H G), and the ambient pressure
from AccuWeather (P A) (unit: Pa).

Date Time V Floors T A T WC H A H WC P A P WC W S Cloud Cov.

10 Feb 4:30 PM 0, 1 −1 −2 91% 82% 1020 1020 Normal NG
11 Feb 3:30 PM 0, 1, 3, 4 6 6 87% 84% 1020 1021 Normal NG
12 Feb 8:00 PM 0, 2 0 1 87% 79% 1028 1027 Normal NG
27 Feb 4:00 PM 0, 1 14 13 38% 70% 1014 1014 Normal 13%
18 Mar 8:30 PM 0, 3 9 8 81% 64% 1010 1011 Normal 100%
21 Mar 2:30 PM 0, 1, 2 13 13 58% 56% 1010 1010 Normal 90%
26 Mar 12:30 AM 0, 1, 2, 3 4 2 80% 62% 1020 1023 Normal 0%
28 Mar 10:00 AM 0, 1 6 8 60% 69% 1024 1024 Normal 0%
7 Apr 09:30 PM 0, 1, 2 11 9 57% 60% 1022 1023 Normal 20%

11 Apr 11:00 AM 0, 1 9 11 61% 49% 1024 1024 Fast 60%
11 Apr 11:30 AM 0, 2 9 11 61% 49% 1024 1024 Slow 60%
1 May 07:50 PM 0, 3 5 5 86% 90% 1014 1014 Normal 100%
1 May 08:30 PM 0, 1, 2 5 5 86% 90% 1014 1014 Normal 100%
1 May 08:17 PM 0, 1, 2, 3,4, 5 5 5 86% 90% 1014 1014 Normal 100%
1 May 07:35 PM 0, 1 5 5 86% 90% 1014 1014 Normal 100%
17 May 9:00 PM 0, 1 20 21 52% 43% 1018 1020 Normal 0 %
18 May 3:00 PM 0, 1, 3 26 24 44% 55% 1014 1012 Normal 13%
19 May 1:30 PM 0, 1, 4 23 23 56% 53% 1008 1008 Normal 40%
20 May 12:30 PM 0, 1, 5 13 14 58% 49% 1022 1021 Normal 35%
21 May 9:40 PM 0, 2 14 14 71% 65% 1023 1023 Normal 0%
22 May 1:30 PM 0, 2, 3 19 21 59% 48% 1019 1018 Normal 0%
25 May 12:00 AM 0,2,4 16 17 54% 55% 1022 1023 Normal 40%
27 May 11:00 AM 0, 2, 5 20 23 55% 46% 1022 1021 Normal 0%
29 May 6:30 PM 0, 1, 2 29 29 30% 32% 1015 1015 Normal 20%
30 May 6:30 PM 0, 3 29 28 37% 36% 1014 1014 Normal 0%
31 May 6:30 PM 0, 3, 4 25 26 43% 48% 1019 1017 Normal 20%
13 Jun 3:00 PM 0, 3, 5 22 25 40% 43% 1019 1017 Normal 0%
13 Jun 7:40 PM 0, 3, 4 22 24 43% 40% 1017 1017 Normal 20%
15 Jun 5:00 PM 0, 1, 3 28 31 39% 35% 1016 1015 Normal 13%
21 Jun 5:30 PM 0, 2, 3 31 22 73% 37% 1016 1015 Normal 63%
22 Jun 5:30 PM 0, 4 31 22 73% 37% 1016 1015 Normal 63%
28 Jun 7:40 PM 0, 4, 5 23 23 60% 57% 999 999 Normal 20%
1 July 9:30 PM 0, 1, 4 19 19 60% 57% 999 999 Normal 20%
2 July 9:15 PM 0, 1, 5 17 16 77% 84% 1021 1020 Normal 40%

Table A2. Collected data used for evaluation of Building B. The table shows the data acquisition date,
the time, the visited floors (V Floors), the indicated temperature from AccuWeather (T A) and the
Weather Channel (T WC), the humidity from the same two sources (H A) and (H WC), the ambient
pressure from AccuWeather (P A) and from the Weather Channel (P WC), the walking speed (W S) and
the cloud coverage.

Date Time V Floors T A T WC H A H WC P A P WC W S Cloud Cov.

17 May 10:30 PM 0, 1 19 18 55% 45% 1018 1020 Normal 0%
18 May 9:00 AM 0, 1, 2 25 26 59% 62% 1014 1012 Normal 12%
19 May 2:00 PM 0, 1, 3 23 24 56% 53% 1008 1008 Normal 40%
20 May 1:25 PM 0, 1, 4 14 15 54% 44% 1022 1021 Normal 54%
21 May 6:00 AM 0, 1, 5 8 9 87% 88% 1026 1027 Normal 0%
22 May 2:00 PM 0, 2 19 22 59% 46% 1019 1018 Normal 59%
23 May 5:22 AM 0, 2, 3 10 11 93% 84% 1017 1018 Normal 13%
24 May 5:00 AM 0, 2, 4 17 16 67% 71% 1020 1021 Normal 20%
26 May 5:23 AM 0, 2, 5 6 8 100% 92% 1021 1021 Normal 0%
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Table A2. Cont.

Date Time V Floors T A T WC H A H WC P A P WC W S Cloud Cov.

27 May 4:00 AM 0, 1, 2 24 26 43% 38% 1021 1020 Normal 0%
28 May 6:00 AM 0, 2, 3 16 17 58% 61% 1019 1019 Normal 20%
29 May 7:30 PM 0, 3 28 28 30% 32% 1014 1011 Normal 20%
30 May 5:00 AM 0, 3, 4 15 19 82% 64% 1015 1014 Normal 0%
31 May 5:00 AM 0, 3, 5 17 17 93% 94% 1019 1019 Normal 100%
12 Jun 5:00 AM 0, 1, 3 15 21 87% 63% 1015 1015 Normal 20%
13 Jun 6:00 AM 0, 2, 3 16 17 58% 61% 1019 1019 Normal 20%
19 Jun 5:00 AM 0, 4 9 13 93% 73% 1023 1022 Normal 20%
21 Jun 6:00 PM 0, 4, 5 28 31 50% 34% 1015 1015 Normal 40%
22 Jun 4:30 PM 0, 1, 4 30 31 34% 34% 1016 1015 Normal 0%
23 Jun 9:00 AM 0,2,4 25 27 60% 52% 1015 1015 Normal 90%
26 Jun 9:00 AM 0, 3, 4 21 21 64% 58% 1016 1015 Normal 0%
27 Jun 7:00 AM 0, 5 17 18 93% 93% 1012 1011 Normal 88%
28 Jun 6:00 AM 0, 1, 5 8 9 87% 88% 1026 1027 Normal 0%
30 Jun 5:00 AM 0, 1 14 13 71% 74% 1007 1007 Normal 20%
4 July 5:00 AM 0, 1 13 15 87% 77% 1022 1022 Normal 20%

Table A3. Collected data used for evaluation of Deutsch Akademie building. The table shows the data
acquisition date, the time, the visited floors (V Floors), the indicated temperature from AccuWeather
(T A) and the Weather Channel (T WC), the humidity from the same two sources (H A) and (H WC),
the ambient pressure from AccuWeather (P A) and from the Weather Channel (P WC), the walking
speed (W S) and the cloud coverage.

Date Time V Floors T A T WC H A H WC P A P WC W S Cloud Cov.

19 May 1:00 PM 0, 1 22 23 60% 56% 1008 1008 Normal 13%
22 May 10:50 AM 0, 1, 2 16 18 67% 56% 1020 1019 Normal 0%
24 May 3:30 PM 0 ,1, 3 17 17 48% 45% 1022 1022 Normal 88%
25 May 11:00 AM 0, 1, 4 16 16 54% 59% 1023 1022 Normal 40%
26 May 6:00 PM 0, 1, 5 22 23 40% 49% 1018 1018 Normal 0%
29 May 5:00 PM 0, 2 29 31 26% 30% 1015 1014 Normal 0%
30 May 6:00 PM 0, 2, 3 28 29 39% 37% 1014 1014 Normal 0%
1 Jun 7:00 PM 0, 2, 4 24 24 46% 46% 1019 1019 Normal 20%
13 Jun 3:30 PM 0, 2, 5 23 26 40% 38% 1018 1016 Normal 0%
13 Jun 7:00 PM 0, 1, 2 23 24 43% 41% 1017 1016 Normal 0%
14 Jun 9:00 AM 0, 3 16 18 67% 57% 1020 1019 Normal 0%
15 Jun 4:30 PM 0, 3, 4 27 30 67% 57% 1020 1019 Normal 0%
15 Jun 5:40 PM 0, 3, 5 28 29 41% 39% 1016 1015 Normal 13%
21 Jun 5:00 PM 0, 1, 3 31 22 73% 37% 1016 1015 Normal 63%
22 Jun 3:00 PM 0, 2, 3 30 33 34% 28% 1016 1015 Normal 13%
22 Jun 8:00 PM 0, 4 29 30 34% 28% 1016 1015 Normal 20%
23 Jun 7:30 PM 0, 4, 5 30 33 34% 28% 1016 1015 Normal 13%
26 Jun 8:30 AM 0, 1, 4 19 21 72% 61% 1016 1015 Normal 13%
28 Jun 7:00 PM 0, 2, 4 23 23 60% 56% 999 999 Normal 95%
29 Jun 2:00 PM 0, 3, 4 19 22 63% 50% 1001 1000 Normal 95%
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