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Abstract: Global Local Climate Zone (LCZ) maps, indicating urban structures and land use,
are crucial for Urban Heat Island (UHI) studies and also as starting points to better understand
the spatio-temporal dynamics of cities worldwide. However, reliable LCZ maps are not available on
a global scale, hindering scientific progress across a range of disciplines that study the functionality
of sustainable cities. As a first step towards large-scale LCZ mapping, this paper tries to provide
guidance about data/feature choice. To this end, we evaluate the spectral reflectance and spectral
indices of the globally available Sentinel-2 and Landsat-8 imagery, as well as the Global Urban
Footprint (GUF) dataset, the OpenStreetMap layers buildings and land use and the Visible Infrared
Imager Radiometer Suite (VIIRS)-based Nighttime Light (NTL) data, regarding their relevance for
discriminating different Local Climate Zones (LCZs). Using a Residual convolutional neural Network
(ResNet), a systematic analysis of feature importance is performed with a manually-labeled dataset
containing nine cities located in Europe. Based on the investigation of the data and feature choice,
we propose a framework to fully exploit the available datasets. The results show that GUF, OSM and
NTL can contribute to the classification accuracy of some LCZs with relatively few samples, and it is
suggested that Landsat-8 and Sentinel-2 spectral reflectances should be jointly used, for example in a
majority voting manner, as proven by the improvement from the proposed framework, for large-scale
LCZ mapping.

Keywords: Local Climate Zones (LCZs); Sentinel-2; Landsat-8; spectral reflectance; classification;
Residual convolutional neural Network (ResNet)

1. Introduction

Local Climate Zones (LCZs) have been established as an interdisciplinary scheme to describe
urban morphology on a neighborhood scale [1]. The 17 LCZ classes are based on climate-relevant
surface properties on the local-scale, mainly related to 3D surface structure (e.g., height and density of
buildings and trees), surface cover (e.g., vegetation or paved), as well as anthropogenic (anthropogenic
heat output) parameters. The scheme contains ten “built” and seven “natural” classes, which are
depicted in Figure 1, intended to be universal and applicable in cities all over the world, offering the
possibility to compare different areas of different cities with trenchant distinctions representing the
heterogeneous thermal behavior within an urban environment [2].
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Figure 1. Visualization of the LCZ concept [1].

Besides the increasing impact on urban climate science worldwide [3–8], recently, researchers have
started to use the LCZ scheme to classify the internal structure of urban areas, providing promising
information for various applications such as infrastructure planning, disaster mitigation and
population assessment [9] in this increasingly urbanized world [10]. Recently, it has been shown
that useful insights can also be gained by investigating land surface temperature in different LCZs [11],
even though LCZs are associated with air temperature when being proposed. Besides, from reliable
LCZ maps, detailed information on human settlements can be further extracted, which can directly
contribute to monitoring, assessing and decision making regarding the 2030 Agenda for Sustainable
Development and provide relevant data for the Sustainable Development Goals (SDG), specifically
SDG 11 (Sustainable Cities and Communities, “Make cities and human settlements inclusive, safe,
resilient, and sustainable.”) [12]. In 2017, ref. [13] used the LCZ framework for monitoring sustainable
urbanization and to assess the availability of adequate and safe housing, with a case study in the cities
of Johannesburg and Pretoria in South Africa. Last but not least, as an environmental factor, LCZs are
expected to enable evidence-based strategies for planning healthy and green cities worldwide [14].

Supervised classification with remote sensing data provides a valuable tool for automatic LCZ
mapping, as illustrated by the existing literature [15]. However, global LCZ mapping is still challenging
due to the limited number of high quality ground truths, as well as a large intra-class variability of
spectral signatures caused by the regional variations of vegetation and artificial materials, as well as
other variations in cultural and physical environmental factors [2].

For automatic large-scale LCZ classification, the challenges are data availability and high
generalization ability, as well as the transferability of the employed classification algorithm. Available
datasets with high potential for this task include, but are not limited to, imagery (e.g., Landsat-8,
Sentinel-1 and Sentinel-2), vector data (OpenStreetMap (OSM)) [16], settlement layers (Global Urban
Footprint (GUF)) [17–19] and VIIRS nighttime light [20–23]. It is of great importance to understand
the specific potential of each of these datasets and features, which is a common topic in hyperspectral
image analysis [24,25]. However, only little literature exists in this regard. The work in [26] investigated
the feature importance for LCZ mapping, showing that NDVI is the most important feature among the
spectral reflectance of Landsat-8, spectral indices extracted from the Landsat-8 channels and the OSM
layers (land use, building and water).

As a first step for large-scale or even global LCZ mapping, we focus on the globally available
imagery provided by the Sentinel-2 and Landsat-8 mission [27], as well as the GUF, OSM and VIIRS
nighttime light layers, using a Residual convolutional neural Network (ResNet) [28,29], as a framework
for our investigations. Our work intends to provide answers to the following questions:

• Which dataset is better suited for LCZ classification, Sentinel-2 or Landsat-8? How do the external
auxiliary datasets (GUF, OSM layers and NTL) contribute to the LCZ classification?

• How does one choose a proper dataset and suitable input features for LCZ classification, and
what is the achievable accuracy?

• What are the main challenges for LCZ classification, and what are the possible solutions?

The remainder of this paper is structured as follows: Section 2 describes our proposed experimental
setup of feature importance analysis for LCZ classification, as well as the resulting analysis and discussions.
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Based on the findings in Section 3, Section 4 proposes a framework to fully exploit the datasets and
shows the comparative LCZ classification accuracy, as well as the produced LCZ maps. Finally,
Section 5 answers the mentioned questions in Section 1 based on the achieved results, before Section 6
summarizes and concludes the work.

2. Feature Importance Analysis for LCZ Classification with Multi-Source Datasets

2.1. Study Areas and LCZ Dataset

Our study areas are spread over nine cities located in the heart of Europe, as depicted in Figure 2.

Figure 2. The nine test cities distributed across Europe.

The LCZ ground truth labels available for selected neighborhoods in the nine cities are taken from
the LCZ42 dataset [30]. Figure 3 illustrates the variability of both the sample number and the class
distribution among different cities. It should be noted that in these nine cities, LCZ Class 7 (lightweight
low-rise), which mostly indicates slums, does not exist. For each ground truth pixel, an image patch,
as well as the investigated feature was cutted around the corresponding position with a patch size of
32 × 32 as input for the network.
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Figure 3. The sample number of the LCZ ground truth in the nine cities.
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2.2. ResNet for LCZ Classification

For our investigations, we use a ResNet as the classifier, since ResNet has been shown to have
superior classification performance [28]. By explicitly reformulating the layers as learning residual
functions with reference to the layer inputs, instead of learning unreferenced functions, it has been
shown that these residual networks are easier to optimize and can gain very competitive accuracy
from considerably increased depth on the ImageNet dataset, compared to networks such as VGG and
GoogleNet. The exact architecture of the fairly simple ResNet we train is shown in Figure 4. Overall,
it has four residual blocks, and each of them consists of three convolutional layers and a shortcut
connection that by-passes two stacked convolutional layers by performing identity mapping, which
are then added together with the output of stacked convolutions. We utilize convolutional layers
with a very small receptive field of 3 × 3, and the number of feature maps increases towards deeper
blocks, doubling after each block. Max-pooling is performed over 2 × 2 pixel windows with a stride of
two. For training the network, we use the TensorFlowframework. We choose Nesterov Adam as the
optimization algorithm for our task, as it shows faster convergence than standard stochastic gradient
descent with momentum. We fix the parameters of Nesterov Adam as recommended: β1 = 0.9,
β2 = 0.999, ε = 1 × 10−8 and a schedule decay of 0.004. We use a fairly small learning rate of 0.0002.

Figure 4. The architecture of the ResNet used for LCZ classification.

2.3. Input Datasets and Features

The input features being investigated in this paper are:

• Spectral reflectance:

For each city, we have downloaded one cloud-free Sentinel-2 image and one Landsat-8 image
from Google Earth Engine (GEE) [31]: Landsat-8 surface reflectance and Sentinel-2 MSI (TOA
reflectance). Ten multispectral bands of Sentinel-2 imagery are used in this study: B2, B3, B4 and
B8 with 10-m Ground Sampling Distance (GSD) and B5, B6, B7, B8a, B11 and B12 with 20-m GSD.
The 20-m bands are up-sampled to 10-m GSD. The bands B1, B9 and B10 are not considered in
this study because they contain mostly information about the atmosphere and thus bear little
relevance to LCZ classification. Besides, nine multispectral bands of Landsat-8 imagery are also
used: five Visible and Near-Infrared (VNIR) bands and two Short-Wave Infrared (SWIR) bands
processed to orthorectified surface reflectance and two Thermal Infrared (TIR) bands processed to
orthorectified brightness temperature. All Landsat-8 bands are up-sampled to 10-m GSD, in order
to be aligned with Sentinel-2 images.

• Spectral indices:

Spectral indices are extracted from both Sentinel-2 and Landsat-8 images. The well-established
indices Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI),
Modified Normalized Difference Water Index (MNDWI) [32], Normalized Difference Built Index
(NDBI) [33], Normalized Built-up Area Index (NBAI), Band Ratio for Built-up Area (BRBA) and
Bare-Soil Index (BSI) are also considered [34], since they can provide indications about vegetation,
water, buildings, soil, etc. [2].
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• Other auxiliary data:

In addition, we were allowed to access DLR’s Global Urban Footprint (GUF), a binary layer
derived from TanDEM-X data, which indicates urban areas [19] globally. Besides, the Visible
Infrared Imager Radiometer Suite (VIIRS)-based Nighttime Light (NTL) data are downloaded
from GEE. Finally, we have downloaded the OpenStreetMap layers buildings and land use from
OpenStreetMap Data Extracts (https://www.openstreetmap.org) for each city [35]. As auxiliary
data, GUF, NTL and OSM are re-sampled to 10-m GSD.

2.4. Setup of Feature Importance Analysis for LCZ Classification

In this section, a feature importance investigation has been designed with the purpose of:
(i) evaluating the importance of the spectral reflectance and index measures from Sentinel-2 and
Landsat-8 imagery with respect to the LCZ classification; (ii) assessing and comparing the applicability
of the external auxiliary GUF and OSM layers to LCZ classification.

Table 1 shows the feature combinations being investigated in this study. Comparing the results
from the configurations S_1–S_4, the relative importance of index measures, GUF, OSM and nighttime
light can be interpreted, and the same holds for configurations L_1–L_4. Besides, a comparative
analysis of all classification results can provide a

For all experiments, we rely on cross-validation, i.e., each time, samples from eight cities are used
for training, while those from the remaining city are used for testing.

Table 1. Comparative experiment ID and the corresponding employed data and features. GUF, Global
Urban Footprint; NTL, Nighttime Light.

Data and Feature
Dataset

Sentinel-2 Landsat-8

Spectral reflectance S_0 L_0
Spectral reflectance, Indices S_1 L_1
Spectral reflectance, GUF S_2 L_2
Spectral reflectance, OSM S_3 L_3
Spectral reflectance, NTL S_4 L_4
Spectral reflectance, GUF, OSM S_5 L_5

Besides the commonly-used classification measures Overall Accuracy (OA), Averaged Accuracy
(AA), the kappa coefficient, etc., and another measure, Weighted Accuracy (WA) is also used for
assessment. WA was introduced in [36], giving different weights to different misclassifications based
on a systematical analysis of the potential climate impact of those misclassifications, taking into account
the properties such as openness, height, cover and thermal inertia. For example, the misclassification
between compact high rise and compact middle rise is less severe than that between compact high rise
and water, and is thus penalized less.

3. Results of Feature Importance Analysis

Results from the framework described in Section 2 are shown and discussed in this section.
Classification results of different data and feature configurations (as described in Table 1) are compared
in Table 2.

By comparing the results from different configurations in Table 2, we can see the different
contributions of index measures, GUF, OSM and NTL, respectively. This contribution difference for
ResNet is OSM > NTL > GUF > indices. Besides, the combination spectral reflectance-OSM is the
one configuration that provides the best accuracy for Landsat-8 imagery, and it also provides almost
the best accuracy for Sentinel-2 imagery. Index measures contribute negatively to LCZ classification in
this case, for both Sentinel-2 and Landsat-8 images. This may result from the feature extraction ability
from the raw data of the employed ResNet, thus making the extracted index measures unnecessary.

https://www.openstreetmap.org


Remote Sens. 2018, 10, 1572 6 of 14

In addition, Comparing the accuracy of S_1, S_2 and S_3 to S_0, it can be seen that no benefits can be
achieved by GUF. This explains why the accuracy of S_5 is only slightly better than S_3. This holds
also true for Landsat-8 imagery. NTL provides better results than GUF, but it still does not improve
the baseline accuracy where only the spectral reflectance is used, for both Sentinel-2 and Landsat-8.
One possible reason is the course resolution of the NTL data (724 m in both directions). In addition,
the correspondence between the value in NTL and the LCZs is not clear, so the contribution of NTL to
the LCZs differentiation might be limited, especially considering that the experiments are designed in
a cross-validation manner, where the training and test cities are completely different.

Table 2. Classification accuracy of different feature configurations, as explained in Table 1. The results
are averaged over all 9 test cities. The values highlighted in bold are the highest ones for Sentinel-2
or Landsat-8. WA, Weighted Accuracy; AA, Averaged Accuracy.

Input
Sentinel-2 Landsat-8 Stacking

S_0 S_1 S_2 S_3 S_4 S_5 L_0 L_1 L_2 L_3 L_4 L_5 S_0 + L_0

OA 0.71 0.63 0.67 0.71 0.68 0.71 0.72 0.58 0.70 0.73 0.71 0.73 0.72
WA 0.93 0.90 0.93 0.94 0.92 0.94 0.93 0.87 0.94 0.94 0.93 0.94 0.93
AA 0.46 0.41 0.45 0.49 0.46 0.50 0.48 0.37 0.47 0.50 0.48 0.50 0.48

Kappa 0.65 0.56 0.59 0.64 0.61 0.65 0.67 0.50 0.64 0.68 0.65 0.67 0.65

Table 2 shows that OSM can improve the performance of the classifier while GUF and NTL do
not contribute much to the overall classification performance, regarding the generalization ability
since the experiments are carried out in a cross-validation manner. However, how do these external
auxiliary datasets contribute to the LCZ classification in detail? This can be further explained with
Figure 5, where the feature importance for each LCZ has been shown. From Figure 5, we can see
that, for Sentinel-2 images, OSM mainly contributes to the accuracy of large low-rise, heavy industry,
dense trees, scattered trees and bush (scrub); GUF mainly contributes to the accuracy of compact
high-rise and open high-rise, while NTL mainly contributes to the accuracy of compact low-rise, open
high-rise, dense trees, scattered trees and bare rock or paved. For Landsat-8, OSM mainly contributes
to compact high-rise, compact mid-rise, compact low-rise, heavy industry and bare soil or sand; GUF
mainly contributes to open high-rise, sparsely-built, bush (scrub), bare rock or paved and bare soil
or sand, while NTL mainly contributes to the accuracy of open high-rise, bush (scrub) and bare soil
or sand.

This above-mentioned contribution difference of OSM (GUF, NTL) to the specific LCZs when
being used with Sentinel-2 and Landsat-8 images reflects the difference of Sentinel-2 and Landsat-8
images, since the OSM (GUF, NTL) is the identical dataset when being used with Sentinel-2 and
Landsat-8 images. Besides, the F-score difference between S_0 and L_0 in Figure 5 also reflects directly
the difference between the two datasets. This may be related to the difference in the spectral reflectance
and spatial resolution of these two datasets, as well as the detailed distinguishability required by the
LCZ scheme. On the other hand, from Table 2, it can also be seen that comparable overall performance
can be achieved for both Sentinel-2 and Landsat-8. This indicates the complementary information
contained in Sentinel-2 and Landsat-8 images. Unfortunately, a simple stacking of both datasets
together does not provide improvement, as can be seen by comparing the accuracy from S_0, L_0 and
S_0 + L_0, in Table 2. This motivates us to propose a better framework in Section 4.
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Figure 5. F-score of different classes corresponding to different feature inputs explained in Table 1.

Furthermore, it should be noticed that the contribution of the external auxiliary datasets mainly
comes from the LCZs with fewer samples: compact high-rise, compact low-rise, open high-rise,
sparsely built, heavy industry, bush, scrub, bare rock or paved and bare soil or sand, and spectral
reflectance (the blue bars) already provides a competitive accuracy for big LCZs: compact middle-rise,
open middle-rise, open low-rise, large low-rise, dense trees, scattered trees, low plants and water.
This is true for both Sentinel-2 and Landsat-8 images. This can also be seen from Figure 6, which
shows the relation between the F-score difference and the LCZ sample number. The F-score difference
describes the difference between the highest F-score from all six configurations (S_0, S_1, S_2, S_3,
S_4, S_5 or L_0, L_1, L_2, L_3, L_4, L_5 in Table 2) and that from configuration S_0 or L_0. It shows
that LCZs with more samples rely less on the external auxiliary datasets. Furthermore, it is noticed
that there is an obvious class imbalance problem in LCZ classification, which is not surprising as the
17 LCZs in the real world are not comparable in quantity. We will further discuss the possible solutions
for this problem, in Section 5.

Based on the above analysis, it can be concluded that the spectral reflectances of Sentinel-2 and
Landsat-8 are both valuable for large-scale LCZ classification. Furthermore, no external GUF and OSM
are needed when enough samples are available for all LCZs, which should be considered especially
for large-scale LCZ classification, because OSM data are not available everywhere, and some cities
have seen significant development since the available GUF was produced.
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4. Improving LCZ Classification Accuracy with Proper Input Configurations

Based on the findings of the importance of Sentinel-2 and Landsat-8 imagery, as well as the
extracted spectral index measures and the external auxiliary datasets, a further classification framework
is proposed by applying majority voting on results from Sentinel-2 and Landsat-8 reflectance without
external auxiliary datasets, in order to explore the joint benefits of both datasets and achieve
better accuracy.

The framework can be explained with an example: When Berlin is used as the test city, all the
other eight cities are used for training. For both Sentinel-2 and Landsat-8 imagery, we split all training
samples into ten parts class-wisely. Ten sub-classifiers are trained using ten sub-datasets for both
Sentinel-2 and Landsat-8 imagery, and each sub-dataset contains 90 percent (nine parts) of all the
training samples; for each sub-dataset, a different 10 percent (one part) is left out. Therefore, altogether,
there are 20 sub-classifiers, with ten each from Sentinel-2 and Landsat-8, respectively. In this way,
the diversity of training samples is increased.

The comparative accuracy can be seen in Table 3, where the baseline accuracy of S2_0 and L8_0
from Table 2 is also shown. The detailed classification accuracy of the proposed framework of each
test city can be seen in Table 4. The accuracy improvement of the proposed framework of each class,
averaged over all nine cities, can be seen in Figure 7.

Table 3. Improved classification accuracy by applying majority voting on results from Sentinel-2 and
Landsat-8. The results are averaged over 9 test cities.

Data, Method OA WA AA Kappa

S2 all samples used (S2_0) 0.71 0.93 0.46 0.65
majority voting on 10 sub-classifiers 0.72 0.94 0.51 0.65

L8 all samples used (L8_0) 0.72 0.93 0.48 0.67
majority voting on 10 sub-classifiers 0.75 0.94 0.45 0.70

S2 + L8 majority voting on 20 sub-classifiers 0.78 0.95 0.51 0.73



Remote Sens. 2018, 10, 1572 9 of 14

Compact high-rise

Compact mid-rise

Compact low-rise

Open high-rise

Open mid-rise

Open low-rise

Large low-rise

Sparsely built

Heavy industry

Dense trees

Scattered trees

Bush, scrub

Low plants

Bare rock or paved

Bare soil or sand
Water

0

0.2

0.4

0.6

0.8

1

F-
Sc

or
e

S2, all samples used L8, all samples used S2 + L8, majority voting on 20 sub-classifiers

Figure 7. F-score of different classes resulting from the proposed framework and the baseline method.

The produced LCZ maps using the configuration S2 + L8(in Table 3) are shown in Figure 8.

(a) Zurich

Water Bare soil or sand
Bare rock or paved Low plants
Scattered trees Bush (scrub)
Dense trees Heavy industry
Sparsely built Large low-rise
Open low-rise Open mid-rise
Open high-rise Compact low-rise
Compact mid-rise Compact high-rise

(b) Amsterdam (c) Berlin (d) Cologne (e) London

(f) Milan (g) Munich (h) Paris (i) Rome

Figure 8. The LCZ maps of the nine test cities. The GSD is 100 meter. For each city, the LCZ map is
produced with the classifier trained using the reference data from the other eight cities. Only the city
center is shown for each city, in order to keep a comparative size for different cities.
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Table 4. Classification accuracy of each city by applying majority voting on results from Sentinel-2
and Landsat-8.

City OA WA AA Kappa

Amsterdam 0.65 0.92 0.47 0.55
Berlin 0.76 0.96 0.54 0.72

Cologne 0.78 0.96 0.49 0.73
London 0.80 0.95 0.53 0.76
Milan 0.83 0.96 0.50 0.80

Munich 0.88 0.97 0.57 0.85
Paris 0.82 0.96 0.38 0.76
Rome 0.62 0.92 0.45 0.56
Zurich 0.85 0.96 0.64 0.80
MEAN 0.78 0.95 0.51 0.73

5. Discussion

Based on the results in Section 4, the choice of datasets and the remaining challenges for large-scale
LCZ mapping will be discussed in this section.

5.1. Datasets and Feature Choice for LCZ Classification

The accuracy improvement achieved by jointly using Sentinel-2 and Landsat-8, as shown in
Table 3, supports the assumption in Section 3 that the two datasets contain complementary information
for LCZ classification. OA has been improved from 0.72–0.78 and from 0.75–0.78, when using both
datasets, compared to only using Sentinel-2 and Landsat-8 images, respectively. Improvement also
exists for WA, AA and kappa. Besides, the classification accuracy is comparable among all nine test
cities, as can be seen from Table 4. Furthermore, from Figure 7, we can see that 12 of all LCZs show an
improvement after jointly using Sentinel-2 and Landsat-8 images.

Considering the analysis on the extracted index measures and the external auxiliary in Section 3
together, it is suggested that we should jointly use the reflectance of Sentinel-2 and Landsat-8 images
for large-scale LCZ mapping, and OSM can be considered according to its availability in the specific
study area. Development of more sophisticated methods to fuse the Landsat-8 and Sentinel-2 images,
or even Sentinel-1, can be an interesting direction for future work.

5.2. Class Imbalance Effect

Figure 7 also shows that the accuracies of different LCZs are quite different, from lower than
10% for compact high-rise to all most 100% for water. First of all, this is due to the class imbalance
problem, as mentioned in Section 3. Among the LCZs, there some are big classes, i.e., classes with
an abundance of labeled samples: compact low-rise, open mid-rise, open low-rise, large low-rise,
dense trees, scattered trees, low plants, water. However, there are also several small classes lacking
the same amount of labeled samples: compact high-rise, compact low-rise, open high-rise, sparsely
built, heavy industry, bush (scrub), bare rock or paved, bare soil or sand. It seems that balancing the
training samples is necessary for LCZ mapping, as also investigated and shown by our previous work
with a Canonical Correlation Forest (CCF) as the classifier [37]. Using the reflectance of Sentinel-2
over the same study area, Figure 9 illustrates the effect of different balancing methods for each LCZ.
It shows that the balancing does not improve the accuracy of the big classes, while for small classes,
several balancing methods improve the accuracy. However, of all the four exemplary methods, no one
performs the best for all LCZs. More detailed conclusions need more systematic investigations in
the future.
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Figure 9. F-score of different classes resulting from different balancing approaches.

5.3. Confusion among LCZs

Nevertheless, even after majority voting, the AA is still less than 50% for about four of the nine
test cities. The misclassification between classes can be analyzed using confusion matrices of the
classification results. For conciseness, Figure 10a depicts the combined confusion matrix of all nine test
cases, and Figure 10b highlights the misclassification errors higher than 30%.

(a) (b)

Figure 10. Combined confusion matrix of nine cities (a) and the cases with a misclassification error
higher than 30% (b).

From Figure 10b, we can see that Class 1 (compact high-rise) and Class 3 (compact low-rise) are
both falsely classified into Class 2 (compact mid-rise). Class 4 (open high-rise) is falsely classified into
Class 5 (open mid-rise). This kind of misclassification resulted from the challenge of distinguishing
height difference using optical satellite images, since high rise, mid-rise and low rise are quite similar
in the two-dimensional optical images.

The other kind of misclassification is due to inter-class similarity: Classes 9 (sparsely built) and
10 (heavy industry) are falsely classified into Class 6 (open low-rise) and 8 (large low-rise), respectively;
Class E (bare rock or paved) is falsely classified into Class 8 (large low-rise); Class C (bush, scrub) is
falsely classified into Classes A (dense trees) and D (low plants), as they appear quite similar. This is
illustrated in Figure 1.
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To solve these problems, one possible solution is to include additional datasets such as Synthetic
Aperture Radar (SAR) images to make use of radar’s unique range measurements. Another solution is
to adapt the LCZ scheme considering the feasibility of optical images, or a multi-level classification
might be beneficial. Furthermore, multi-temporal information contained in the multi-spectral satellite
images may be exploited to improve the LCZ mapping accuracy, using the state-of-the-art recurrent
convolutional neural network, as shown by [38,39]. Last but not least, negative human influence on the
ground truth should be weakened to guarantee the quality of the training samples across cities [36].

On the other hand, fortunately, some kinds of misclassification among LCZs are both technically
understandable and acceptable for applications, since structurally similar classes such as LCZs 2
(compact mid-rise) and 5 (open mid-rise) show also similar temperature conditions [7]. Besides, [5]
reported a unneglected intra-LCZ temperature variability, which is possibly due to the intra-LCZ
variation of urban structures and microscale heterogeneity of the surroundings of an LCZ. Therefore,
LCZ sub-classes are suggested to be used in order to exploit the full potential of the LCZ concept with
respect to intra-urban distinction of local-scale environments, which is also suggested by [8], especially
in high-density cities. A similar necessary adjustment regarding the LCZ scheme is also suggested
by [11] in arid cities.

6. Summary and Conclusions

This paper presents an investigation of the applicability and importance of the datasets and
features for LCZ classification, focusing on the globally available Sentinel-2 and Landsat-8 imagery.
Investigated features include spectral reflectance, index measures and the external auxiliary datasets
(GUF, OSM layers and NTL). Using ResNet, comparative experimental analysis was carried out in a
large-scale study area across nine cities in central Europe. Results based on the cross-validation show
that OSM and NTL can contribute to the overall classification performance, by mainly improving the
classification accuracy of some of the LCZs, while GUF does not offer big benefits for the employed
ResNet. Besides, comparable classification accuracy can be achieved from Sentinel-2 and Landsat-8
images, even though they display a different contribution to different LCZs.

Regarding the data and feature choice for LCZ mapping, the spectral reflectances of Sentinel-2
and Landsat-8 together are suggested to be the input features for large-scale LCZ mapping. While
we were able to prove that LCZ mapping can generally benefit from jointly using both datasets
in a simple majority voting framework, we see the need for further research regarding two main
issues: distinguishing different building heights from optical images and class imbalance in the
available samples. With these two problems solved, an even higher classification accuracy can be
achieved for this detailed classification scheme, providing accurate morphological information about
cities worldwide.
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