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Abstract: This paper presents an approach to estimate the attitude of skis for an entire ski jump 
using wearable, MEMS-based, low-cost Inertial Measurement Units (IMUs). First of all, a kinematic 
attitude model based on rigid-body dynamics and a sensor error model considering bias and scale 
factor error are established. Then, an extended Rauch-Tung-Striebel (RTS) smoother is used to 
combine measurement data provided by both gyroscope and magnetometer to achieve an attitude 
estimation. Moreover, parameters for the bias and scale factor error in the sensor error model and 
the initial attitude are determined via a maximum-likelihood principle based parameter estimation 
algorithm. By implementing this approach, an attitude estimation of skis is achieved without further 
sensor calibration. Finally, results based on both the simulated reference data and the real 
experimental measurement data are presented, which proves the practicability and the validity of 
the proposed approach. 
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1. Introduction 

Nowadays, IMUs based on Micro-Electro-Mechanical Systems (MEMS) are becoming quite 
competitive solutions in sports applications for motion measurements. This is due to their relatively 
low price, wearability, and convenience to set up. In the ski jumping field, there are researchers who 
made big efforts in applying IMU measurements to ski jumping studies. Chardonnens et al. [1] built 
an IMU-based system to successfully measure the three-dimensional kinematics for ski jumpers. 
Logor et al. [2] attached 10 IMUs on different body segments and measured the ski jumpers’ 
movement. Moreover, they also calculated forces and moments acting on the joints. Brock et al. [3] 
developed an inertial motion capture system for ski jumpers, based on processing the IMU raw data 
using a complementary filter.  

When using low-cost IMUs, it is common that sensors are affected by large sensor errors. Most 
obvious among them are bias and scale factor errors. In the previous mentioned studies, the 
experiments explicitly included calibration procedures so that sensor errors are already removed or 
minimized before data processing. However, in some cases, measurements are performed without 
knowing these effects in advance, resulting in raw data with significant errors. Also, the error in the 
measurements can adversely influence the initial attitude estimation. In addition, for low-cost IMUs, 
these sensor error parameters may be slowly time-varying and changed for another turn-on, which 
renders calibrations after the experiment meaningless.  

In this paper, a method to post-processing the IMU raw data without calibration is proposed by 
estimating the gyroscope’s bias and the scale factor error and bias of the magnetometer through the 
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filter error method for parameter estimation. The extended Rauch-Tung-Striebel (RTS) smoother, 
which is embedded in the method, is also able to estimate the attitude of the skis by combining 
gyroscope and magnetometer measurements.  

2. Problem Formulation 

2.1. Attitude Kinematic Equations 

In this paper, we choose Euler angles in z-y-x rotation sequence from the local earth frame(I), 
fixed to the jumping hill, which is considered ‘inertial’ for our application, to the ski body fixed frame 
(B): the yaw angle 휓, the pitch angle 휃, and the roll angle 휙 as our attitude parameters. The IMUs 
are mounted on both skis close to the bindings. Thus, the propagation equation of attitude kinematics 
for Euler angles is 

휙̇
휃̇
휓̇

=
1 sin(휙)tan(휃) cos(휙)tan(휃)
0 cos(휙) −sin(휙)
0 sin(휙) cos(휃)⁄ cos(휙) cos(휃)⁄

흎 . (1) 

where 흎 = 휔 , 휔 , 휔 ,  is the angular velocity denoted in the body frame.  

2.2. Sensor Error Models 

The inertial measurement data are considered to exhibit zero-mean, white, additive Gaussian 
noise. Also, when employing MEMS-based low-cost IMUs, a way to model sensors errors is to 
consider biases and sometimes also scale factor errors. Due to the short time span under our 
investigation, those are considered constant. 

For gyroscope measurements 흎 , we consider measurement noise 풘  and a constant bias 
Δ흎 = [Δ휔 Δ휔 Δ휔 ]  involved in the measurements 

흎 = 흎 + Δ흎 +풘 , (2) 

For the magnetometer measurement data (풎) , in addition to the measurement noise 풗 	 
and the bias Δ풎, we consider a magnetometer scale factor error 

(풎) = (푰 + 푲 )(풎) + Δ풎+ 풗 , (3) 

where (풎) = (푚 ) 푚 (푚 )  is the actual magnetic strength vector denoted in the body 
frame; 푰  is a 3-by-3 identity matrix; and, 푲 = 푑푖푎푔([퐾 , 퐾 , 퐾 , ]) is the magnetometer’s 
scale factor error matrix.  

2.3. System Equations 

In general, the nonlinear system equations with process noise 풘 and measurement noise 풗 are 

풙̇(풕) = 풇[풙(풕),  풖(풕),  휣, 풘(풕)], (4) 

풚(푡) = 품[풙(푡),  풖(푡),  휣], (5) 

풛(풕풌) = 풚(풕풌) + 풗(풕풌). (6) 

In our case, we choose system states as 풙 = [휙 휃 휓] . The gyroscope measurements serve as 
system inputs 풖 = 휔 , 휔 , 휔 , , the gyroscope biases still need to be corrected for 
further calculation so that we rewrite Equation (2) as 흎 = 흎 − Δ흎−풘 . The parameters 
to be estimated are 휣 = [휙 휃 휓 Δ휔 Δ휔 Δ휔 Δ푚 Δ푚 Δ푚 퐾 , 퐾 , 퐾 , ]  
where 휙 , 휃 , and 휓 	  are the initial attitude. 풚 = 휙 휃 휓 (푚 ) 푚 (푚 ) are the 
system outputs, where (풎) = (푰 + 푲 )(풎) + Δ풎. For a certain date and place, the magnetic 
strength vector in the local north-east-down frame (풎)  is a constant, which can be calculated by 
The World Magnetic Model 2015 [4]. Furthermore, we can link (풎)  with the outputs (풎)  by the 
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transformation matrices, as 	(풎) = (푚 ) 푚 (푚 ) = 푴푩푰(휙, 휃,휓) ∙ 푴푰푵 ∙ (풎) , where 
푴푰푵 is a constant transformation matrix from the local north-east-down frame to the inertial frame. 
Accordingly, the system measurements are 풛 = 휙 휃 휓 (푚 ) 푚 (푚 ) , where 휙, 휃, 
and 휓 are the pseudo attitude measurements which will be introduced in Section 3.2.  

3. Methods 

3.1. Extended Rauch-Tung-Striebel Smoother 

The Extended RTS smoother is a batch state estimation method for post-processing applications. 
It contains the Extended Kalman Filter (EKF) as a forward filter and combines it with a backward and 
smoothing pass to not only use the measurements before the current estimation point as EKF but also 
the measurements in the future to further improve the estimation quality. More detailed descriptions 
can be found in [5,6]. For the sake of brevity, the governing EKF equations for the forward pass are 
omitted. After executing the forward filtering, the smoother runs backward in time 푘 = 푁	 − 	1, … ,0 
with 

푲   = 푷 | 휱 푷 | , (7) 

풙 = 풙 | +푲 풙 + 풙 |  with 풙 = 풙 | , (8) 

푷 = 푷 | −푲 푷 | 	− 	푷  with 푷 = 푷 | , (9) 

where the superscript f denotes the variables, which were stored during the forward pass, the 
superscript s denotes the smoother variables. The subscript k indicates the time step, and the subscript 
with format 푖|푗 is to be read as “the estimation at time i using information up to time j”. 풙 denotes 
the state estimate, and 푷 is the covariance matrix of the state estimation error. 푁	stands for the total 
number of measurement time points.  

3.2. Pseudo Attitude Measurements 

When estimating the initial attitude by using magnetometer measurements with sensor errors 
involved, it will be difficult to distinguish the influence of the initial attitude and the magnetometer 
bias. To solve this problem, we propose to use also the geometrical shape information of the in-run 
as pseudo attitude measurements to improve the parameter estimation result.  

The construction of the in-run is standardized and parameterized by [7]. Thus, we know that, 
from the starting point of the jump until the beginning of the in-run transition curve (the in-run ramp), 
the trajectory has to follow a straight line with a gradient angle 훾; on the take-off table, there has to 
be a second straight part with a gradient angle 훼. The value of 훾 and 훼 can be found out in the 
jumping hill certificate for each certified hill, such as in [8]. Also, for ski jumping in the in-run phase, 
the skis always move along the in-run track. Therefore, we can assume that the pseudo pitch angle 
during two straight part is around θ = −훾	(푖푛 − 푟푢푛	푟푎푚푝)  and θ = −훼	(푡푎푘푒 − 표푓푓	푡푎푏푙푒) 
respectively, and both pseudo roll, and yaw angle are approximately ϕ = ψ = 0∘	(푒푛푡푖푟푒	푖푛 − 푟푢푛).  

3.3. Maximum-Likelihood Principle Based Parameter Estimation 

With the system equations in Section 2.3, we can now formulate the original problem into a 
parameter estimation problem using the filter error method with internal RTS smoother. The filter 
error method is based on the maximum likelihood principle, which considers the probability of 
obtaining the measurements, given a set of parameters. The maximum likelihood parameter 
estimates are then those parameter values, which maximize this probability. Detailed descriptions of 
the classic maximum-likelihood parameter estimation methods can be found in [9]. 

After introducing pseudo attitude measurements, the cost function needs to be modified to 
adapt to the character of the attitude pseudo measurements, since they are only valid for parts of a 
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jump and absent otherwise. Thus, at different time instants, the number of available measurements 
varies. To solve this problem, we propose to divide the entire time frame into different phases, where, 
within one phase the number of available measurements is constant; different phases still share the 
same parameters. 

Then, we can treat each phase as a sub-problem that is optimized using a maximum likelihood-
like principle. Therefore, we have the modified cost function to be minimized as  

퐽 = 퐽 (휣, 푹 ) =
1
2 풛 , −풚 , 푹 풛 , − 풚 , +

푁
2 푙푛|푹 | +

푁 푛 , 	
2 푙푛(2휋)  (10) 

where 푁  is the total number of the phases; 푁  is the total number of the time points in phase i; 
푛 ,  is the number of outputs for phase i; 풚 , 	 is the estimated system output by the extended RTS 
smoother; 푹 	 is an estimate of the covariance matrix of the residual 풓 , = 풛 , − 풚 ,  for phase i, 
which is calculated separately as  

푹 =
1
푁 풛 , − 풚 , (휣) 풛 , − 풚 , (휣)  (11) 

With cost function (10), the estimated parameters can be calculated iteratively by using 
numerical optimization methods, such as Gauss-Newton or Levenberg-Marquardt, with 

휕퐽
휕휣 =

휕퐽 (휣, 푹 )
휕휣 =

휕풚
휕휣 푹 (풛 − 풚 )  (12) 

휕 퐽
휕휣 =

휕 퐽 (휣, 푹 )
휕휣 =

휕풚
휕휣 푹

휕풚
휕휣  (13) 

3.4. Initial Guess for the Gyroscope Bias 

During the implementation, we found that the algorithm is very sensitive to the initial guess of 
the gyroscope bias. Normally, ski jumpers will take off the ski after the jump and put them on the 
ground for few seconds. During this time, the skis can be considered in a static state. These parts of 
the time-series are easily identified in the data. Since the angular velocity should be zero in a steady 
state, we choose the mean value of the gyroscope in three axes as the initial guess for the gyroscope 
bias, which should be close to the true value.  

4. Results and Discussion 

4.1. Simulation-Based Result 

To validate the algorithm, a set of simulated data was generated, based on the results using the 
real measurement data. Thus, the simulated date set share the typical angular movements of the skis 
as the real case. Sensor errors and zero-mean, normally distributed, white noise are added to the 
calculated reference angular velocity and magnetic data to generate artificial gyroscope and 
magnetometer measurements for estimation.  

The estimation result for simulation data can be seen in Figure 1. In this case, the noise added to 
the gyroscope and magnetometer are with standard deviations of 0.05 rad/s and 1 microtesla (µT) 
respectively, and the noise matrices in the extended RTS smoother are set accordingly. The initial 
state error covariance matrix is set as 푃 = 10 ∙ 퐼 , since the initial value are already set to their 
estimated parameter values. The relative deviations of the estimated sensor error parameters	are 
defined as 훩 − 훩 	훩⁄ , where 훩  are the parameters’ estimation values, and 훩 		 are the true 
values. The maximal relative deviation in this case is 5.21% in Δ푚 , and the relative deviation for the 
gyroscope biases are all less than 1%. In Figure 1a, the estimated attitude shows a nice fit with the 
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created reference. Furthermore, from Figure 1b, we can see that the attitude estimation errors are all 
smaller than 1 degree in this case. This result indicates that the algorithm is valid for estimating the 
sensor error parameters and the attitude of the skis. 

  
(a) (b) 

Figure 1. Result for simulated reference data: (a) Comparison between simulated reference (red) and 
estimated Euler angles (blue); (b) The estimation errors in the Euler angles, all of the errors are smaller 
than 1 degree. 

4.2. Real Measurement Based Result 

The real measurement data is recorded during summer training season for young athletes on 
the Adlerschanze (HS108) [8] in Hinterzaten, Germany. The IMUs comprise of the following sensors: 
(1) gyroscope: InvenSense ITG-3200; (2) accelerometer: Analog Devices ADXL345; and (3) magneto-
meter: Honeywell HMC5883L and record data at a frequency of 100 Hz. For each jumper, two IMUs 
are attached to the skis behind the bindings. The attitude estimation result based on the real 
measurement data can be found in Figure 2.  

  
(a) (b) 

  
(c) (d) 

Figure 2. Result for real measurement data: (a) Estimated Euler angles of the left ski (red), the right 
ski (yellow) and the pseudo attitude measurements (blue); (b) Estimated output (풎)  (red) and the 
magnetometer measurements (blue) of the left ski; (c) The gyroscope measurements of the left ski 
corrected estimated bias; (d) The estimation of relative standard deviation for the left ski. 

The extended RTS smoother noise covariance matrices, as well as initial conditions were turned 
to obtain a good fit. The initial guess for gyroscope bias is set as in Section 3.4, and the initial guesses 
for other sensor error parameters are all set to 0. The result fits nicely with both the pseudo attitude 
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measurements and the magnetic field strength. Figure 2a shows the attitude estimation result of both 
skis, in which each phase of the jump, including the in-run, flying phase, landing, and outrun, can be 
clearly distinguished. Additionally, during flying phase, we can see slightly asymmetry movement 
of the skis. For brevity reasons, in Figure 2b,c only shows the result of the left ski. Comparing to the 
simulation-based case, there is more noise from the vibration of skis involved, which can be seen in 
both gyroscope and magnetometer measurements. The estimated relative standard deviation of the 
sensor error parameters, which is based on the Cramer Rao bounds [9], shows a good estimation 
quality. This result demonstrates the validity of the proposed method.  

5. Conclusions 

In this paper, an approach to post-processing raw IMU data is presented, which is able to achieve 
a solid attitude estimation of the skis even in the absence of calibration values. According to the result 
on the simulated reference data, the algorithm can successfully estimate the sensor error parameters 
as well as the initial attitude. Furthermore, it has been successfully applied to real measurement data. 
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