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Abstract: A conflict control system with state constraints is under consideration. A method
for finding viability kernels (the largest subsets of state constraints where the system can
be confined) is proposed. The method is related to differential games theory essentially
developed by N. N. Krasovskii and A. I. Subbotin. The viability kernel is constructed as
the limit of sets generated by a Pontryagin-like backward procedure. This method is
implemented in the framework of a level set technique based on the computation of
limiting viscosity solutions of an appropriate Hamilton–Jacobi equation. To fulfill this,
the authors adapt their numerical methods formerly developed for solving time-dependent
Hamilton–Jacobi equations arising from problems with state constraints. Examples of
computing viability sets are given.
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1. Introduction

In many technical control problems, it is necessary to keep a controlled system within prescribed
state constraints in the presence of disturbances. Such a control process is usually considered on a large
(infinite) time interval, and no performance index is used. One approach to such problems is given by
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robust control theory [1] based on the methods of stability theory. Viability theory [2] can be considered
as an alternative approach. Namely, a viable subset of the state constraint determines a feedback strategy
that can keep the state vector within this subset. One can design such a feedback strategy, using the
extremal aiming procedure described in [3]. A method for constructing the viability kernel (the maximal
viable subset of the state constraint) is proposed in [4]. This method is based on the necessary and
sufficient viability conditions formulated in terms of contingent cones. The book [5] considers a wide
range of questions related to the analysis and construction of viability sets. A procedure for constructing
viability kernels for control systems (without any conflict controls) is proposed in [6].

The present paper extends the short communication [7] and the report [8]. A constructive method
for finding viability kernels is described and theoretically analyzed. The approach used is related to the
theory of differential games (see [3,9]). The viability kernel is constructed as the limit of sets generated
by a Pontryagin-like backward procedure (see [9]). The idea of such a passage to the limit was proposed
in [10] for linear systems with discrete time. In the paper presented, an approximation scheme for finding
the solvability kernel for a general class of nonlinear autonomous controlled system is proposed. This
algorithm is numerically implemented in terms of level sets. The idea consists in the computation of
the limit in the time of viscosity solutions (see [11,12]) of an appropriate Hamilton–Jacobi equation.
To implement this idea, the authors adapt their numerical methods formerly developed for solving
time-dependent Hamilton–Jacobi equations arising from problems with state constraints. Examples of
computing viability sets are given.

2. Differential Game and Viability Kernels

Consider a differential game with the autonomous dynamics:

ẋ = f(x, u, v), x ∈ Rn, u ∈ P ⊂ Rp, v ∈ Q ⊂ Rq (1)

Here, x is the state vector, u and v are control parameters of the first and second players, respectively,
and P and Q are compacts of the corresponding dimensions. We suppose that f satisfies standard
requirements: continuity in x, u and v; the Lipschitz condition in x; and a growth condition that provides
the continuability of the solutions to any time interval.

Based on the conflict control system (1), consider for any v ∈ Q the differential inclusion:

ẋ ∈ Fv(x) = co{f(x, P, v)} (2)

Definition 1 (u-stability property [3]). Let T be an arbitrary time instant. A set W ⊂ (−∞, T ]×Rn is
said to be u−stable on the interval (−∞, T ] if for any initial position, (t∗, x∗) ∈ W , for any time instant,
t∗ (t∗ ≤ t∗ ≤ T ), for any v ∈ Q, there exists a solution, x(·), to the differential inclusion (2) with the
initial state x(t∗) = x∗, such that (t∗, x(t∗)) ∈ W .

Definition 2 (viability property [2]). A set K ⊂ Rn is said to be viable if for any x∗ ∈ K, for any
v ∈ Q there exists a solution x(·) to the differential inclusion (2) with the initial state x(0) = x∗ such
that x(t) ∈ K, t ≥ 0.

Definition 3 (viability kernel [2]). For a given compact set G ⊂ Rn denote by V iab(G) the largest
subset of G with the viability property. This subset is called the viability kernel of G.
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The following assertions follow from Definitions 1–3:

(1) The closure of a u-stable (viable) set is a u-stable (viable) set.
(2) The union of any family of u-stable (viable) sets is a u-stable (viable) set.
(3) If W ⊂ (−∞, T ]× Rn is a u-stable closed set, then for any initial position, (t∗, x∗) ∈ W , for any

v ∈ Q, there exists a solution, x(·), to the differential inclusion (2) with the initial state x(t∗) = x∗

such that (t, x(t)) ∈ W, t∗ ≤ t ≤ T.

The first assertion follows from the compactness and semi-continuity of solution sets of differential
inclusions; see e.g., [13], and notice that the solution set of Equation (2) depends, even Lipschitz
continuous, on the initial state. The second assertion follows from the definition of u-stability
(viability). The third assertion can be proven by considering ever finer subdivisions of the interval [t∗, T ],
step-by-step constructing solutions of Equation (2) that satisfy the assertion at nodes of the subdivisions
and using the compactness of the solution sets of Equation (2).

Assertion (3) shows that Definition 2 is a special case of Definition 1 with T =∞ and W = R×K.
Assertions (1) and (2) provide the existence of the viability kernel, V iab(G), for any compact set, G, if
there exists at least one viable subset of G. Thus, the following problem can be considered.

Problem. Given a compact set G ⊂ Rn it is required to construct the viability kernel, V iab(G).

To solve this problem, fix an arbitrary T ∈ R and introduce the set N = (−∞, T ] × G. Due to
Assertions (1) and (2), there exists a closed maximal u-stable on the interval (−∞, T ] set W ⊂ N . For
any time instant, t ≤ T , denote

W (t) = {x ∈ Rn : (t, x) ∈ W}

Remark 1. The family {W (t) : t ≤ T} has the property of monotonicity: W (t1) ⊂ W (t2)

for t1 ≤ t2 ≤ T . Really, if W is a u-stable set, then the set Ŵ defined by the cross-sections
Ŵ(t) = ∪τ≤tW(τ) is also u-stable. Therefore, the maximal u-stable set, W , must have the required
monotonicity property.

These facts immediately follow from the above definitions, and they are left to the reader to prove.

Proposition 1. Let {Xi}∞i=0 be a sequence of nonempty compact sets such that Xj ⊂ Xi if j > i, and
let X =

⋂∞
i=0Xi, then X 6= 6© and Xi converge to X in the Hausdorff metric.

Proof. First, X is nonempty as the intersection of embedded compacts. Second, assume that the
convergence is absent. Then, there exists an ε > 0, such that Ak := Xk

⋂
cl(Xε

0 \ Xε) 6= 6©
for all k ≥ 0. Here, the upper index, ε, denotes the ε-neighborhood of sets, and the symbol “cl”
denotes the closure operation. The sets Ak, k ≥ 0, are compact and embedded. Therefore, there exists
x ∈

⋂
k≥0Ak = X

⋂
cl(Xε

0 \Xε), which is a contradiction.

Theorem 1. If W (t) 6= 6© for any t ≤ T , then there exists the Hausdorff limit lim
t→−∞

W (t) and:

lim
t→−∞

W (t) =
⋂
t≤T

W (t) = V iab(G) 6= 6©

Otherwise, there is not any viable subset of G.
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Proof. Denote K :=
⋂
t≤T W (t) for brevity. If for any t ≤ T , the set, W (t), is nonempty, then K is

also nonempty as the intersection of nonempty embedded compacts. Show that K is viable in the sense
of Definition 2. Choose arbitrary x∗ ∈ K, v ∈ Q and δ > 0. By Proposition 1, for any ε > 0, there
exists tε, such that:

K ⊂ W (t) ⊂ Kε, for all t ≤ tε (3)

The condition, x∗ ∈ K, implies the inclusion, x∗ ∈ W (tε − δ). By virtue of u-stability of the set W ,
there exists a solution, x(·), of Equation (2) with the initial state x(tε−δ) = x∗, such that x(tε) ∈ W (tε).
With the autonomy of the differential inclusions (2), we conclude the existence of a solution, x(·), of
Equation (2), such that x(0) = x∗ and x(δ) ∈ Kε.

Thus, for arbitrarily small ε > 0, there exists a solution, x(·), of Equation (2) that satisfies the
relations, x(0) = x∗ and x(δ) ∈ Kε. Since the solution set of Equation (2) is compact, this gives a
solution, x(·), such that x(0) = x∗ and x(δ) ∈ K. Thus, we have proven the viability property of K, and
relation (3) proves the Hausdorff convergence of W (t) to K as t→ −∞.

Assume now that K ′ ⊂ G is a viable set, such that K ⊂ K ′. As was noticed in the comment to
Definition 2, the viability property of K ′ means the u-stability property of the set (−∞, T ]×K ′. Since
(−∞, T ] × K ′ ⊂ N , and W is the maximal u-stable set belonging to N , then (−∞, T ] × K ′ ⊂ W .
Thus, K ′ ⊂ W (t) for all t ≤ T , and therefore, K ′ ⊂

⋂
t≤T W (t) = K. This proves Theorem 1.

3. Approximation

Immediate implementation of Theorem 1 for finding V iab(G) requires precise computing of the sets
W (t) for t ∈ (−∞, T ]. If, for example, the step-by-step backward procedure from [9] related to the
dynamic programming method is used, then the computational error grows infinitely as t → −∞. The
algorithm proposed in the current paper uses the idea of decreasing the step of the backward procedure
simultaneously with the passage to the limit as time goes to infinity. The algorithm looks as follows:

K0 = G

Ki+1 =
⋂
v∈Q

[
⋃
x∈Ki

(x− δi+1Fv(x)) + δ2i+1βS]
⋂

G (4)

Here, S is the unit closed ball in Rn, β = LM , L is the Lipschitz constant of Fv, and M = sup{|f | :
f ∈ Fv(x), x ∈ G, v ∈ Q}.

Theorem 2. Let the family {Ki} be defined by Equation (4), where the sequence {δi} is such that δi → 0

and
∑∞

i=1 δi =∞. If Ki 6= 6© for any i > 0, then there exists the Hausdorff limit, lim
i→∞

Ki, and

lim
i→∞

Ki = V iab(G) 6= 6©

Otherwise, there is no viable subset of G.

Before starting the proof of Theorem 2, we prove three auxiliary lemmas. The first lemma shows
a discrete u-stability of the family {Ki} generated by Equation (4). Assume just for the simplicity of
subsequent calculations that δjL ≤ 1 for all j > 0. This requirement allows us to avoid the consideration
of terms of the form

∑s
i=l+1 δ

3
i in the proof of Lemma 1, which reduces the amount of calculations.
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Lemma 1. Let l and s be integers such that 0 < l < s. Let v ∈ Q be fixed. If x∗ ∈ Ks, then there
exists a solution, x(·), of Equation (2) with x(0) = x∗, such that x(σ) ∈ Kω

l , where σ =
∑s

i=l+1 δi,
ω = 4LMeLσ

∑s
i=l+1 δ

2
i .

We first prove the following two auxiliary propositions.

Proposition 2. Let v ∈ Q and x1, x2 ∈ Rn. If |x1 − x2| ≤ α, then for any solution, x1(·), of differential
inclusion (2) with the initial state x1(0) = x1, there exists a solution, x2(·), with the initial state x2(0) =

x2, such that |x1(t)− x2(t)| ≤ αeLt.

Proof of Proposition 2. The proof immediately follows from the Filippov–Gronwall inequality
obtained in [14], Theorem 1.

Proposition 3. Let v ∈ Q, j > 0 and α > 0 be fixed. If x0 ∈ Kα
j , then there is a solution, x(·), of

Equation (2) with the initial condition x(0) = x0, such that x(δj) ∈ Kα1
j−1, where α1 = αeLδj + 4MLδ2j .

Proof of Proposition 3. Choose v ∈ Q, j > 0 and α > 0. Let x0 ∈ Kα
j . Then, there exists a point,

x∗ ∈ Kj , satisfying |x0 − x∗| ≤ α. By the definition of Kj , there are a point x̄ ∈ Kj−1 and vectors
ḡ ∈ Fv(x̄) and h̄, |h̄| ≤ 1, such that:

x∗ = x̄− δj ḡ + LMδ2j h̄ or x̄ = x∗ + δj ḡ − LMδ2j h̄

Using the Lipschitz property of the right-hand side of Equation (2), choose a vector, g∗ ∈ Fv(x∗), to
provide the inequality |g∗ − ḡ| ≤ L|x∗ − x̄|. Denote x̂ = x∗ + δjg∗ and calculate:

|x̂− x̄| ≤ δj|g∗ − ḡ|+ LMδ2j ≤ δjL|x∗ − x̄|+ LMδ2j ≤ 2LMδ2j + L2Mδ3j

Accounting for the technical assumption δjL ≤ 1, j > 0, simplifies the last estimate as follows:

|x̂− x̄| ≤ 3LMδ2j (5)

Let g(x) ∈ Fv(x) be the nearest point to g∗ for every x ∈ Rn. Obviously, the function x → g(x) is
continuous and satisfies the following inequality, due to the Lipschitz property of Fv(·):

|g(x)− g∗| ≤ L|x− x∗| (6)

Suppose x(·) is a solution of the differential equation ẋ = g(x) with the initial state x(0) = x∗. Then:

x(δj)− x̂ =

∫ δj

0

(g(x(ξ))− g∗)dξ

The last equation and the estimate (6) yield the inequality:

|x(δj)− x̂| ≤ δjLmax
{
|x(ξ)− x∗| : ξ ∈ [0, δj]

}
≤ δ2jLM

and, with Equation (5), it holds that:

|x̄− x(δj)| ≤ 4LMδ2j
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By Proposition 2, there exists a solution, x0(·), of Equation (2) with the initial state x0(0) = x0,
such that:

|x0(δj)− x(δj)| ≤ αeLδj

Then:
|x0(δj)− x̄| ≤ αeLδj + 4LMδ2j

and therefore:
x0(δj) ∈ Kα1

j−1, α1 = αeLδj + 4LMδ2j

Proposition 3 is proven.

Proof of Lemma 1. Let x∗ ∈ Ks be chosen. Setting D = 4ML and applying Proposition 3, we
construct a solution, x(·), of Equation (2) that satisfies the conditions:

x(0) = x∗ ∈ Ks

x(δs) ∈ Kα0
s−1, α0 = Dδ2s

x(δs + δs−1) ∈ Kα1
s−2, α1 = α0e

Lδs−1 +Dδ2s−1
...

x(δs + δs−1 + ...+ δl+1) ∈ Kαp

l , αp = αp−1e
Lδl+1 +Dδ2l+1

It is easy to estimate αp to obtain the inequality:

αp ≤ eLσD
s∑

i=l+1

δ2i

where σ =
∑s

i=l+1 δi. This proves Lemma 1.

Lemma 2. If Ki 6= 6© for all i > 0, then the set:

K =
⋂
k≥1

cl
⋃
i>k

Ki

is nonempty and possesses the viability property.

Proof. If Ki 6= 6© for all i > 0, then K is nonempty as the intersection of nonempty embedded
compacts. Let x∗ ∈ K, v ∈ Q and δ > 0 be arbitrary. For any ε > 0, one can choose a large integer, k,
to satisfy the following conditions:

(a) cl
⋃
i≥kKi ⊂ Kε (see Proposition 1);

(b) δi < ε for all i ≥ k.

Choose m > k, such that
∑m

i=k+1 δi > δ. Since x∗ ∈ K, it holds that x∗ ∈ cl
⋃
i>mKi. Hence, for

any ξ > 0, there exist an integer s > m and a point, xξ ∈ Ks, such that |xξ − x∗| < ξ. Using the
Lipschitz continuity of the solution set of Equation (2) (see Proposition 2), one can choose the value of ξ
to be so small that for any solution, xξ(·), with xξ(0) = xξ, there exists a solution, x(·), with x(0) = x∗,
satisfying |xξ(δ)−x(δ)| < ε. By virtue of Condition (b) and the choice of k,m and s, there exists l ≥ k,
such that ∣∣∣ s∑

i=l+1

δi − δ
∣∣∣ < ε
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Set σ =
∑s

i=l+1 δi and D = 4LMeLσ. By Lemma 1, there exists a solution, xξ(·), of Equation (2)
with xξ(0) = xξ and xξ(σ) ∈ Kω

l , where ω = D
∑s

i=l+1 δ
2
i . With Condition (b), it holds that

ω ≤ D
( s∑
i=l+1

δi

)
ε = Dσε ≤ D(δ + ε)ε = D1ε

Taking into account the obvious inequality |xξ(δ)− xξ(σ)| ≤Mε, we have:

xξ(δ) ∈ KD2ε
l

where D2 = D1 +M.

Condition (a) implies the inclusion Kl ⊂ Kε, and therefore:

xξ(δ) ∈ KD3ε

where D3 = D2 + 1.

Using the choice of ξ, we obtain the existence of a solution, x(·), of Equation (2) with x(0) = x∗ and
x(δ) ∈ KD4ε, where D4 = D3 + 1. Since ε is arbitrary and the solution set of Equation (2) is compact,
there exists a solution, x(·), such that x(0) = x∗, x(δ) ∈ K. This proves Lemma 2.

Lemma 3. If a set K ′ ⊂ G has the viability property, then K ′ ⊂ Ki for all i > 0.

Proof. Define the following sequence:

K̃0 = G,

K̃i+1 =
⋂
v∈Q

[
⋃
z∈K̃i

Xv(z, δi+1)]
⋂

G (7)

where:
Xv(z, τ) = {x(τ) : x(0) = z, ẋ(ζ) ∈ −Fv(x(ζ)), 0 ≤ ζ ≤ τ}.

One can easily check the following properties of {K̃i}:

(a) K̃0 = G, K̃i ⊂ G, i ≥ 1.

(b) For any point x∗ ∈ K̃i and any vector v ∈ Q, there is a solution, x(·), of Equation (2), such that
x(0) = x∗ and x(δi) ∈ K̃i−1.

(c) If x∗ ∈ G, but x∗ 6∈ K̃i, then there exists v ∈ Q such that for any solution, x(·), of Equation (2)
with x(0) = x∗ it holds that x(δi) 6∈ K̃i−1.

Arguing by induction, one can easily prove the maximality of {K̃i} in the following sense: for any
family, {K ′i}, with Properties (a) and (b), the inclusion K ′i ⊂ K̃i holds for any i > 0. However, the
viability property of K ′ implies that the family obtained by the replication of K ′ has Properties (a),
except for K ′ = G, and (b). Hence, K ′ ⊂ K̃i for i > 0. To complete the proof, it remains to check the
inclusion K̃i ⊂ Ki for all i > 0. To do this, the following proposition will be proven.

Proposition 4. For arbitrary v ∈ Q, τ > 0, and any solution, x(·), of the differential inclusion
ẋ ∈ −Fv(x) with the initial state x(0) = x∗, there exists a vector, g∗ ∈ Fv(x∗), such that:

|x∗ − τg∗ − x(τ)| ≤ LMτ 2



Mathematics 2014, 2 75

Proof of Proposition 4. Let g(ξ) ∈ −Fv(x∗) be the nearest point to ẋ(ξ) for any ξ ∈ [0, τ ]. It is evident
that the function ξ → g(ξ) is measurable, and the following inequality holds:

|g(ξ)− ẋ(ξ)| ≤ L|x∗ − x(ξ)|

This implies the estimate:

|x∗ − τg∗ − x(τ)| ≤ Lτ max{|x∗ − x(ξ)| : ξ ∈ [0, τ ]}

where:
g∗ = −1/τ

∫ τ

0

g(ξ)dξ ∈ Fv(x∗)

Taking into account the obvious inequality:

max{|x∗ − x(ξ)| : ξ ∈ [0, τ ]} ≤Mτ

we obtain the desired estimation, which proves Proposition 4.

Thus, Lemma 3 is also proven.

Proof of Theorem 2. Define K by Formula (4). If Ki 6= 6© for all i > 0, then K is nonempty and
viable by Lemma 1.

Show the maximality of K. To this end, consider an arbitrary viable set, K ′. Lemma 3 says that
K ′ ⊂ Ki, i > 0, and therefore:

K ′ ⊂
⋂
k≥1

cl
⋃
i>k

Ki = K

This proves the maximality of K.
Prove now the Hausdorff convergence. Take an arbitrary ε > 0 and use Proposition 1 to choose an

integer, k, such that
⋃
i>kKi ⊂ Kε. Taking j > k and accounting for Lemma 3 yield the relations:

K ⊂ Kj ⊂
⋃
i>k

Ki ⊂ Kε

which prove the convergence of Kj to K in the Hausdorff metric.
Notice, if there exists a viable set K ′ ⊂ G, then, for every j > 0, the condition K̃j 6= 6© implies that

K̃j+1 6= 6© (these sets are defined by Equation (7)). Hence, K̃i 6= 6© for all i > 0. As was noticed
in the proof of Lemma 3, the inclusion K̃i ⊂ Ki holds for any i > 0. Therefore, Ki 6= 6© for any
i > 0. Thus, the case Ks = 6©, for some s > 0, contradicts with the existence of viable subsets of G.
Theorem 2 is proven.

Remark 2. For a linear differential game with the dynamics:

f(x, u, v) = Ax+Bu+ Cv

relations (4) turn into the following ones:

K0 = G

Ki+1 = {[(E − δi+1A)Ki − δi+1B · P + δ2i+1βD)]∗δi+1C ·Q}
⋂

G (8)
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Here, E is the identity matrix, and the sign “∗” denotes the geometric difference. If the sets, G,P
and Q, are convex polyhedra, and D is the unit cube in Rn (any bounded polyhedron containing the unit
closed ball is appropriate), then all setsKi produced by Equation (8) are polyhedra, too. These formulas
were used as the basis for a computer algorithm. A computer program developed by the authors permits
the implementation of Equation (8) for the space dimension up to three.

Consider the case where the right-hand side of Equation (2) does not depend on v. In this case,
Definition 2 coincides with the usual definition of viability (see [2]), and the sets W (t) appearing in
Theorem 1 can be found as follows: W (T − τ) = XG

−F (τ), where:

XG
−F (τ) = {x(τ) : ẋ(ξ) ∈ −F (x(ξ)), x(ξ) ∈ G, ξ ∈ [0, τ ]}

Thus, the following theorem holds.

Theorem 3. If XG
−F (τ) 6= 6© for any τ > 0, then there exists the Hausdorff limit, lim

τ→∞
XG
−F (τ), and:

lim
τ→∞

XG
−F (τ) = V iab(G) 6= 6©

Otherwise, there are no viable subsets of G.

The approximation theorem is now formulated as follows.

Theorem 4. Let

K0 = G

Ki+1 =
[ ⋃
x∈Ki

(x− δi+1F (x)) + δ2i+1βS
]⋂

G

where S is the unit ball, β = LM, L is the Lipschitz constant of the right-hand side of differential
inclusion (2) and:

M = sup{|f | : f ∈ F (x), x ∈ G}

Suppose the sequence {δi} satisfies the conditions δi → 0 and
∑∞

i=1 δi = ∞. If Ki 6= 6© for all
i > 0, then there exists the Hausdorff limit, limi→∞Ki, and:

lim
i→∞

Ki = V iab(G) 6= 6©

Otherwise, there are no viable subsets of G.

4. Numerical Scheme

The idea of the numerical method consists in the representation of the viability kernel as a level set of
an appropriate function. Assume that the constraint set, G, is described by the relation:

G = {x ∈ Rn, g(x) ≤ 0}

where g is a Lipschitz continuous function. It is required to construct a function, V , such that:

V iab(G) = {x ∈ Rn, V (x) ≤ 0}
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Define the Hamiltonian of the inclusion (2) as follows:

H(x, p) = max
v∈Q

min
f∈Fv(x)

〈f, p〉

Let V be a Lipschitz function satisfying the conditions:

(i) V(x) ≥ g(x) for all x ∈ Rn ;

(ii) for any point y0 ∈ Rn and any function ϕ ∈ C1, such that V − ϕ attains a local minimum at y0,
the following inequality holds: H (y0,∇ϕ(y0)) ≤ 0.

Proposition 5. The function:

V (x) = inf{V(x) : V satisfies the conditions (i) and (ii)}

has the property:
V iab({x ∈ Rn, g(x) ≤ c}) = {x ∈ Rn, V (x) ≤ c}

Notice that Condition (i) provides the embedding of the level sets of V into the corresponding level
sets of g. Condition (ii) provides the u-stability of functions V (see [15,16]), and therefore, the u-stability
of the function V . The operation “inf” provides the minimality of the resulting function, i.e., the
maximality of its level sets. Thus, Proposition 5 is valid.

Unfortunately, the direct application of this proposition to the computation of V is impossible, because
the validation of Condition (ii) is very difficult algorithmically. On the other hand, Theorem 1 shows that
the function V can be computed as limt→−∞ V (t, ·), where V (t, x) is the value function of the differential
game with the Hamiltonian H(x, p) and the objective functional J(x(·)) = maxτ∈[t,0]{x(0), g(τ)};
see [16]. This remark allows us to use the numerical methods developed for constructing time-dependent
value functions in differential games with state constraints (see [15,16]).

Let us outline the numerical methods of [15,16] and show how they should be adopted to our aims.

Consider the following finite difference scheme. Let δ > 0 be the backward time step and h :=

(h1, ..., hn) space discretization steps. Set |h| := max{h1, ..., hn}. For any continuous function V :

Rn → R, define:
F (V ; δ)(x) := max

v∈Q
min

f∈Fv(x)
V
(
x+ δf

)
− δ2β2 (9)

Denote by:

Vh(xi1 , ..., xin) = V(i1h1, ..., inhn), gh(xi1 , ..., xin) = g(i1h1, ..., inhn)

the restrictions of V and g to the grid.
Let Lh be an interpolation operator that maps grid functions to continuous functions and satisfies the

estimate:
‖Lh[φh]− φ‖ ≤ C|h|2 ‖D2φ‖ (10)

for any smooth function, φ. Here, φh is the restriction of φ to the grid, ‖ · ‖ the point-wise maximum
norm, D2φ the Hessian matrix of φ and C an independent constant.
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Notice that Estimate (10) is typical for interpolation operators (see, e.g., [17]). Roughly speaking,
interpolation operators reconstruct values and gradients of interpolated functions, and therefore, the
expected error is given by Equation (10).

As an example, consider a multilinear interpolation operator constructed in the following way
(see [15]).

Let m ∈ 1, 2n be an integer and (jm1 , ..., j
m
n ) the binary representation of m, so that jmi is either zero

or one. Thus, each multi-index (jm1 , ..., j
m
n ) represents a vertex of the unit cube in Rn, and m counts the

vertices. Introduce the following functions:

ωm(x1, ..., xn) =
n∏
i=1

(1− xi)1−j
m
i x

jmi
i , m = 1, ..., 2n (11)

Notice that the i-th member in the product (11) is either 1 − xi or xi depending on the value of jmi .
Consider a point x = (x1, ..., xn) ∈ Rn. Denote by xi the lower and by xi = xi+hi the upper grid points
of the i-th axis, such that xi ≤ xi ≤ xi. Let φhm, m = 1, ..., 2n, be the values of a grid function, φh, in the
vertices of the n-brick

∏n
i=1[xi, xi] (the vertices are ordered in the same way as the vertices of the unit

n-cube above). The multilinear interpolation of φh at (x1, ..., xn) is:

Lh[φh](x) =
2n∑
m=1

φhm · ωm
(
x1 − x1
h1

, ...,
xn − xn
hn

)
Let {δ`} be a sequence of positive reals, such that δ` → 0 and

∑∞
`=0 δ` =∞. Consider the following

grid scheme:
Vh`+1 = max

{(
F
(
Lh[Vh` ]; δ`

))h
, gh
}
, Vh0 = gh, ` = 0, 1, ... (12)

Notice that F
(
Lh[Vh` ]; δ`

)
is a continuous function, which is then restricted to the grid and then

compared with the grid function gh.
Relations (9) and (12) can be interpreted as follows. The shift, δf , of the argument of the function V

in Equation (9) means the opposite shift of level sets of V; compare with Equation (4). The minimum
over f means the union of level sets of V , and the maximum over v results in the intersection of the level
sets. The subtraction of the value, δ2β2, means adding of the ball δ2βS to the level sets. Moreover, the
maximum in Equation (12) means the intersection of the level sets with the constraint set, G. Therefore,
the numerical scheme (12) implements the relation (4) in the language of level sets.

Consider another numerical grid scheme (see [16]) that approximately implements the limit
limt→−∞ V (t, ·). Introduce the following upwind operator:

F (V ; δ)(x) = V(x) + δmax
v∈Q

min
f∈Fv(x)

n∑
i=1

(pRi f
+
i + pLi f

−
i )

where fi are the components of f , and:

a+ = max {a, 0}, a− = min {a, 0}
pRi = [V(x1, ..., xi + hi, ..., xn)− V(x1, ..., xi, ..., xn)]/hi

pLi = [V(x1, ..., xi, ..., xn)− V(x1, ..., xi − hi, ..., xn)]/hi
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Notice that the new operator, F , can be immediately applied to a grid function and returns a
grid function.

The numerical scheme is now of the form:

Vh`+1 = max
{
F
(
Vh` ; δ`

)
, gh
}
, Vh0 = gh, ` = 0, 1, ... (13)

Notice that the application of the algorithm (13) requires the relation δ`/h ≤ 1/(M
√
n) for all `

(remember that M is the bound of Fv); see [15] and [16]. On the other hand, numerical experiments
show a very nice property of this method: the noise usually coming from the boundary of the grid area is
absent, so that the grid region may not be too much larger than the region where the solution is searched.
The algorithm (12) does not possess such a property, so that larger grid regions are necessary in this case.
On the other hand, this algorithm admits larger steps, δ`, which can compensate for the necessary extent
of the region.

5. Examples

Example 1. The first example illustrates Theorem 3 (the case of one player). Let the differential inclusion
be of the form:

ẋ ∈ x+ αS

where x ∈ R2 is the state vector, S the unit ball of R2 and α > 0 a positive real number. Let G = rS,
where r > α. According to Theorem 3, consider the differential inclusion in reverse time (utilize the
symmetry of S):

ẋ ∈ −x+ αS (14)

Using the function 1
2
(x21 + x22) as the Lyapunov function, one can easily see that any solution of

Equation (14) does not leave G. Therefore,

XG
−F (τ) = {x(τ) : x(0) ∈ G, ẋ(ξ) ∈ −x(ξ) + αS, ξ ∈ [0, τ ]}

i.e., XG
−F (τ) is the attainable set of System (14) at the time instant, τ . A calculation shows that the

support function of XG
−F (τ) is given by the formula:

%(XG
−F (τ), l) = (α + (r − α)e−τ )|l|

Thus, Theorem 3 yields that V iab(G) = αS.

Example 2. The second example illustrates Theorem 2 and the application of the grid algorithm (13).
Consider a pendulum with a moving suspension point. The dynamics of the object is described by
the system:

θ̇ = w

ẇ =
3

ml2
u− 3(ggr + v1)

2l
sin θ − 3 v2

2l
cos θ

(15)

Here, θ is the deflection angle, l the length, m the mass, ggr the gravity acceleration, u the torque
applied to the pendulum at the suspension point (control) and v1 and v2 the vertical and horizontal
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accelerations of the suspension point, respectively, (disturbances). The following values of parameters
and bounds on the control and disturbances are chosen:

l = 1 m, m = 1 kg, ggr = 9.81 m/s2

|u| ≤ 0.9 N m, |v1| ≤ 3 m/s2, |v2| ≤ 1.5 m/s2

The constraint set, G, is the unit circle given by the relation g(θ, w) :=
√
θ2 + w2 ≤ 1, and the

sequence {δ`} is chosen as δ` = 0.001/ ln(3 + `). The grid is formed by dividing the region [−1.2, 1.2]2

into 100× 100 square cells.
The run tests of the algorithm (13) show that:

max
over grid

|Vh`+1 − Vh` | < 5 · 10−7 if ` ≥ 50, 000

which is the stopping criterion. The runtime on a laptop with six threads is approximately 1 min. Figure 1
shows the viability kernel obtained as V iab(G) = {(θ, w) : Vh` (θ, w) ≤ 1}.

Figure 1. The viability kernel for the problem (15) with the above described data.

V
ia
b(
G

)

G

-

6

θ

w

6. Conclusions

Our experience shows that the grid methods outlined in this paper are appropriate for solving nonlinear
problems of the dimension up to four. The next steps will be aimed towards dimensions five and six,
which requires the use of sparse representations of grid functions and the supercomputing systems that
are available nowadays. Such results will allow us to consider, e.g., aircraft applications related to
essentially nonlinear takeoff and landing problems with complex state constraints.
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