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Abstract

We perform a comprehensive study of charged lepton flavour violation in Randall–Sundrum (RS) models 
in a fully 5D quantum-field-theoretical framework. We consider the RS model with minimal field content 
and a “custodially protected” extension as well as three implementations of the IR-brane localized Higgs 
field, including the non-decoupling effect of the KK excitations of a narrow bulk Higgs. Our calculation pro-
vides the first complete result for the flavour-violating electromagnetic dipole operator in Randall–Sundrum 
models. It contains three contributions with different dependence on the magnitude of the anarchic 5D 
Yukawa matrix, which can all be important in certain parameter regions. We study the typical range for the 
branching fractions of μ → eγ , μ → 3e, μN → eN as well as τ → μγ , τ → 3μ and the electron electric 
dipole moment by a numerical scan in both the minimal and the custodial RS model. The combination 
of μ → eγ and μN → eN currently provides the most stringent constraint on the parameter space of the 
model. A typical lower limit on the KK scale T is around 2 TeV in the minimal model (up to 4 TeV in the 
bulk Higgs case with large Yukawa couplings), and around 4 TeV in the custodially protected model, which 
corresponds to a mass of about 10 TeV for the first KK excitations, far beyond the lower limit from the 
non-observation of direct production at the LHC.
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1. Introduction

Rare lepton decays are among the promising indirect probes for physics beyond the Standard 
Model (SM). This is especially true for processes featuring lepton-flavour violation (LFV). For 
such decays the SM contribution vanishes for all practical purposes due to the small neutrino 
masses, and the experimental signature is typically very clean. The absence of a SM background 
makes the study of the decays μ → eγ and μ → 3e as well as muon-to-electron conversion in 
nuclei in extensions of the SM also theoretically cleaner than the study of lepton observables 
unrelated to flavour violation. The reason for this is that in the latter case the search for new 
physics involves the search for tiny deviations in observables such as (g − 2)μ, which must then 
be measured and predicted to very high precision.

The warped extra-dimensional Randall–Sundrum (RS) models, originally introduced to ad-
dress the relative weakness of gravity [1] and the gauge-gravity hierarchy problem [2], generi-
cally also have a rich flavour structure. Further, they provide a geometric interpretation for the 
flavour hierarchies observed in the SM: the wave functions of SM fermions in the fifth dimen-
sion when localized to varying degree naturally generate a hierarchical flavour sector [3–6]. 
Despite the fact that the RS model is to some extent protected from large flavour-changing neu-
tral currents (FCNCs) [7], the strongest constraint on the scale of the extra dimension comes 
from Kaluza–Klein (KK) gluon mediated �F = 2 processes—notably in the kaon system [8]. 
However, these bounds can, to some degree, be avoided by imposing some structure on the 
quark Yukawa matrices in the five-dimensional (5D) theory [9] or by extending the strong gauge 
group [10]. Nonetheless, direct searches at the LHC for KK states are no longer very promising 
as the scales that can be probed in direct production are comparably low. This is precisely the 
situation were low-energy precision observables can help considerably constraining the model.

In this work we calculate the lepton-flavour violating four-fermion and electromagnetic dipole 
operators induced by the RS bulk fields at the tree- and one-loop level, respectively. We then 
study the μ → 3e and μ → eγ transitions, and muon-to-electron conversion in nuclei in the min-
imal and custodially protected RS model with three different implementations of the Higgs field 
localized on or near the TeV brane of the model. Lepton-flavour violating processes have been 
studied in the context of the RS model in the past, beginning with [6,11,12]. Particularly relevant 
are [13], which gives the first comprehensive analysis of charged LFV, and [14] with the first fully 
five-dimensional treatment of loop effects, which dominate the μ → eγ decay. However, neither 
of the two can be said to provide a complete description of the loop-induced dipole operator co-
efficient, which leads us to reconsider LFV phenomenology building on our recent work [15–17]
on penguin transitions in the RS model. In this approach we integrate out the five-dimensional 
(5D) bulk and match the RS model on the SM extended by gauge-invariant dimension-six oper-
ators [18,19], which is then used to study the processes of interest. This two-step procedure is 
justified, since the scale of the fifth dimension, related to the mass of the lightest KK excitation, 
is already constrained to be much larger than the electroweak scale. This approach allows for a 
transparent and complete calculation of gauge- and Higgs-boson exchange induced dipole tran-
sitions, which has already been applied to the flavour-diagonal case of the anomalous magnetic 
moment of the muon [15–17]. Here we focus on the flavour-changing leptonic transitions. We 
also add a 5D treatment of the bulk Higgs and the non-decoupling effect in the localization limit 
recently pointed out in [20]. Depending on the exact realization of the RS model loop-effects 
can be sizeable also for μ → 3e and muon conversion, which at first glance are dominated by 
tree-level physics, and may introduce new correlations between μ → eγ and those observables. 
In our study we do not impose additional flavour symmetries on the Yukawa matrices of the 
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model and stick to the so-called minimal and custodially protected models. This implies that 
we do not attempt here a description of neutrino masses and mixing in the RS framework—in 
the minimal RS model the neutrinos remain massless—and only consider charged lepton flavour 
violation, which arises in the RS models independent from neutrino masses. In order to simul-
taneously generate hierarchical charged lepton masses and large neutrino mixing, RS models 
with additional flavour structure such as minimal flavour violation or discrete symmetries were 
considered [21–23], as well as mechanisms to suppress lepton flavour violation [24,25]. These 
have implications for LFV at tree-level, even eliminating tree-level LFV completely, but do not 
modify the structure of loop-induced LFV processes, whose complete computation is the main 
result of this work.

The outline of this paper is as follows. The starting point of our analysis in Section 2 is the 
effective SM Lagrangian including dimension-six operators. We restrict ourselves to operators 
that can be generated in the Randall–Sundrum model at tree-level and to loop-induced dipole 
operators relevant to LFV processes. After expressing the Lagrangian in terms of fields in the 
broken phase, we match onto an effective low-energy theory. This allows us to use results from 
the literature to determine the LFV observables as functions of the dimension-six operator short-
distance coefficients. In Section 3 we discuss three variants of localizing the Higgs field on or 
near the TeV brane and give the results for the corresponding short-distance coefficients in the 
minimal and custodially protected RS models using and extending results from [15,17]. LFV 
phenomenology of μ → eγ , μ → 3e and μ–e conversion and the correlations among these ob-
servables are presented in Section 4. We further correlate these observables with the electron 
electric dipole moment (EDM) and compare the constraining power of present limits on LFV 
observables and the electron EDM. We conclude in Section 5.

2. From the 5D theory to low-energy observables

In conformal coordinates the metric for the five-dimensional space–time of the Randall–
Sundrum model is given by

ds2 =
(

1

kz

)2 (
ημνdxμdxν − dz2

)
, (1)

where k = 2.44 · 1018 GeV is of order of the Planck scale MPl. The fifth coordinate z can take 
values from z = 1/k (Planck brane) to z = 1/T (IR brane). The scale T determines the mass of 
the KK excitations in the effective 4D spectrum and is assumed to be of the order of a few TeV. 
We denote by ε = T/k the small ratio of the two scales.

The specific RS model is characterised by the particle content and the associated boundary 
conditions on the two branes. The two most common models are the minimal and the custodially 
protected model [28,29]. The latter has an extended particle spectrum and gauge group to enforce 
a protection mechanism for the electroweak ρ parameter and the Zbb̄ vertex. In both models the 
Higgs is localized on or close to the IR brane. The prescription how the Higgs is localized is 
part of the model setup itself, see also [30,31]. Here we will closely follow the notation and 
conventions of [15,17] for the minimal RS model and the model with custodial protection. We 
therefore refer to these references for the exact definition of the 5D Lagrangians.

However, it is useful to introduce the parameters of the 5D Lagrangian relevant for the study 
of lepton-flavour violation. The 5D Lagrangian contains two parameter sets related to flavour. On 
the one hand there is the 5D mass Mψi

for each 5D fermion field ψi . The corresponding dimen-
sionless 5D mass parameter is cψ = Mψ /k. To obtain a phenomenologically viable low-energy 
i i
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theory that reproduces the measured lepton masses the cψi
have to take values not too far from 

1/2 for SU(2) doublets and from −1/2 for singlets. On the other hand, the 5D Higgs Lagrangian 
incorporates 5D Yukawa couplings y(5D). It is customary to work with the dimensionless Yukawa 
matrices Y = y(5D) k in the minimal model,1 and Y, Yu in the custodial model. We generally as-
sume that each is roughly O(1) and anarchic. Furthermore, the Higgs field is localized on or near 
the IR brane. There are several ways to do this. A genuine brane Higgs is exactly localized on 
the IR brane and its potential 5D structure cannot be resolved by construction. An IR localized 
bulk Higgs can be resolved, and one also needs to consider possible effects of Kaluza–Klein 
states of the Higgs as was pointed out in [20]. If the Higgs is exactly brane-localized one can 
in principle introduce a separate Yukawa coupling for the coupling of right-handed doublets and 
left-handed singlet to the Higgs. However, for simplicity we assume that these so-called wrong-
chirality Higgs couplings [13,32] are equal to their “normal” counterparts. In the following, we 
only discuss the different Higgs localizations separately if they give rise to distinct results.

Ultimately, we match the full 5D Lagrangian onto an effective 4D dimension-six Lagrangian 
following [15] and determine the physically interesting observables as functions of the corre-
sponding Wilson coefficients. The matching calculation is performed in Sec. 3. In the remainder 
of this section we take the SM effective theory including dimension-six operators as the starting 
point to compute the low-energy observables. We will consider only operators of dimension six 
that can be generated by the RS model at tree- or one-loop level.2

2.1. The dimension-six Lagrangian

Let us start by considering the effective SU(2)×U(1)-symmetric Lagrangian up to dimension 
six,

L = LSM + 1

T 2
Ldim-6 + higher-dimensional operators , (2)

where we did not include the single dimension-five operator as it cannot contribute to charged 
LFV. We also extracted the scale, where the effective description breaks down, given by T in the 
RS model. At dimension six the operators relevant to the following analysis of LFV observables 
can be taken directly from [18,19]

Ldim-6
LFV = aB

ij (L̄iσ
μνEj )�Bμν + aW

ij (L̄iτ
AσμνEj )�WA

μν + h.c.

+ bLL
ijkl(L̄iγ

μLj )(L̄kγμLl) + bLE
ij (L̄iγ

μLi)(Ēj γμEj )

+ bEE
ij (Ēiγ

μEi)(Ēj γμEj ) + c1
ij�

†i
←→
D μ�(ĒiγμEj )

+ c2
ij�

†i
←→
D μ�(L̄iγμLj ) + c3

ij�
†i

←−→
τADμ�(L̄iτ

AγμLj )

+ hij (�
†�)L̄i�Ej + h.c.

+
∑

�=E,L

∑
q=Q,U,D

b
�q
ij (�̄iγ

μ�i)(q̄j γμqj ) + b
LτQ
ij (L̄iτ

Aγ μLi)(Q̄j τ
AγμQj ) , (3)

1 For the exactly brane-localized Higgs field. For the bulk Higgs case, the relation between the 5D Yukawa coupling 
Yβ and Y is given by (42).

2 For recent model-independent analyses of LFV using the effective Lagrangian, see [33,34]. Note that these references 
use different conventions for operator normalisation, covariant derivatives and momentum flow compared to the present 
work.
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where L (Q) denotes doublet and E (U, D) singlet lepton (quark) fields. Furthermore, 

�†
←−→
iτADμ� = 1

2 (�†iτADμ� − �†i
←−
D μτA�) and �†←→D μ� = 1

2 (�†Dμ� − (Dμ�)†�) with 
the covariant derivative defined as

Dμ = ∂μ − ig′ Y
2

Bμ − igT AWA
μ , (4)

and T A the SU(2) generators in the appropriate representation (e.g. T A = τA/2 with τA the Pauli 
matrices for the doublet), and Y the hypercharge. The hermitian conjugate in (3) only applies to 
terms in the same line. Of all the operators given in (3) only the dipole operators in the first line 
cannot be generated at tree-level in the RS model. The restricted flavour structure of some of the 
four-fermion operators anticipates properties of the RS model at the tree-level. Even though we 
aim to study lepton flavour violation, the operators with two quark and two lepton fields have to 
be included in Ldim-6

LFV , since they contribute to muon conversion in nuclei.3

The transition from the theory with unbroken to the one with broken electroweak gauge sym-
metry proceeds via the standard substitution rules,

� →
(

φ+
1√
2
(v + h + iG)

)
Li → UijPL

(
νj

�j

)
Ei → VijPR�j (5)

Qi → PL

(
Uu

ijuj

Ud
ij dj

)
Ui → V u

ijPRuj Di → V d
ijPRdj (6)

and

Dμ → ∂μ − ieQAμ − ig

cW

(T 3 − s2
WQ)Zμ − ig√

2
(T 1 + iT 2)W+

μ − ig√
2
(T 1 − iT 2)W−

μ ,

(7)

with Zμ = cWW 3
μ − sWBμ, and Aμ = cWBμ + sWW 3

μ. Inserting (5) and (7) into (3) generates 
many operators, most of which cannot contribute to the processes we are interested in, see [15]
for details. We are only concerned with operators that can contribute at tree-level (if they are 
generated at loop- or tree-level in the full 5D theory) or at loop-level (if they are generated 
already at tree-level). This leaves us with the Lagrangian

Ldim-6
LFV → Lbroken

LFV = αA
ij + αA

ji

�

2

v√
2

(�̄iσ
μν�j )Fμν + αA

ij − αA
ji

�

2

v√
2

(�̄iσ
μνγ5�j )Fμν

+ βEE
ijkl(�̄iγ

μPR�j )(�̄kγμPR�l) + βLE
ijkl(�̄iγ

μPL�j )(�̄kγμPR�l)

+ βLL
ijkl(�̄iγ

μPL�j )(�̄kγμPL�l)

− γ 1
ij

gv2

4cW

Zμ(�̄iγμPR�j ) − [γ 2
ij + γ 3

ij ]
gv2

4cW

Zμ(�̄iγμPL�j )

3 It is worth noting that since the 5D RS models are non-renormalizable and themselves only effective descriptions of 
some yet more fundamental dynamics, the 5D generalizations of the operators appearing in (3) could already be present 
as higher-dimensional operators in the RS Lagrangian. These effects would be suppressed by a factor (T /�UV)2 � 1, 
where �UV is the UV cut-off of the RS model, relative to the effects we consider here. Since the coefficient of the dipole 
operator is loop-induced in the RS model, the underlying assumption of our treatment is that there is no tree-level dipole 
effect at order 1/�2

UV in the UV completion of the RS model, which could compete with the loop-induced transition at 
order 1/T 2.



566 M. Beneke et al. / Nuclear Physics B 906 (2016) 561–614
+ γ 3
ij

gv2

2
√

2
W+,μ(ν̄iγμPL�j ) + h.c.

+ ηij

3v2

2

h√
2
(�̄iPR�j ) + ηij

v3

2
√

2
(�̄iPR�j ) + h.c.

+ βEu
ijkl(�̄iγ

μPR�j )(ūkγμPRul) + βEd
ijkl(�̄iγ

μPR�j )(d̄kγμPRdl)

+ β
EQ
ijkl(�̄iγ

μPR�j )(ūkγμPLul) + β
EQ
ijkl(�̄iγ

μPR�j )(d̄kγμPLdl)

+ βLu
ijkl(�̄iγ

μPL�j )(ūkγμPRul) + βLd
ijkl(�̄iγ

μPL�j )(d̄kγμPRdl)

+ (β
LQ
ijkl − β

LτQ
ijkl )(�̄iγ

μPL�j )(ūkγμPLul)

+ (β
LQ
ijkl + β

LτQ
ijkl )(�̄iγ

μPL�j )(d̄kγμPLdl) , (8)

with PL/R = 1
2 (1 ∓ γ5), and

αA
ij = [U†aAV ]ij , γ 1

ij =
∑
m,n

[V †]imVnj c1
mn ,

ηij =
∑
n,m

[U†]imhmnVnj , γ x
ij =

∑
m,n

[U†]imUnj cx
mn (x = 2,3) ,

βLL
ijkl =

∑
m,n,o,p

[U†]imUnj [U†]koUpl b
LL
mnop, βFF′

ijkl =
∑
m,n

[M†]imMmj [M ′ †]knM
′
nlb

FF′
mn .

(9)

Here aA
ij = cWaB

ij − sWaW
ij , M(′) ∈ {U, V, Uu, V u, Ud, V d} are the appropriate flavour rotation 

matrices for the fermion F (′), and a similar definition applies to βLτQ
ijkl .

2.2. From the effective Lagrangian to LFV observables

The main observables for charged lepton flavour violation are radiative transitions of the type 
�1 → �2γ , lepton conversion in a nucleus, and tri-lepton decays �1 → �2��. These processes are 
usually studied in high intensity, low energy set-ups. The typical energy release of the process is 
the mass of the initial (charged) lepton, a muon or a tau. Starting from the effective Lagrangian 
at the electroweak scale discussed in the previous section, we construct an effective low-energy 
Lagrangian by integrating out the heavy gauge bosons and quarks and the fluctuations associ-
ated with scales above the charged lepton mass. For μ → eγ , muon conversion and μ → 3e

this low-energy theory has been discussed in great detail in the literature, see e.g. [27,35], and 
especially [26].

We follow [26] and consider first the radiative decay μ → eγ . The Lagrangian takes the form4

Lμ→eγ =ARmμ�̄eσ
σρFσρPR�μ + ALmμ�̄eσ

σρFσρPL�μ + h.c. , (10)

where the label on the field � denotes the lepton flavour. This Lagrangian is supposed to be 
valid at scales below the electron mass—all quantum fluctuations involving leptons have been 
integrated out and have been absorbed into the two coefficients of the dipole operators. In fact 
instead of this Lagrangian we might just as well consider the general U(1)em invariant vertex 
function for on-shell fermions (the photon momentum q is ingoing)

4 Our convention for AL,R and gi below differs from [26], Eq. (54) by the factor −4GF /
√

2 and complex conjugation.
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�μ(p,p′) = ieQ�ūμ(p′, s′)
[
γ μF1(q

2) + iσμνqν

2mμ

F2(q
2) + σμνqν

2mμ

γ5F3(q
2)

+
(
q2γ μ − /qqμ

)
γ5F4(q

2)

]
ue(p, s) . (11)

The on-shell dipole form factors of the electromagnetic muon–electron vertex are related to the 
coefficients AL and AR by

AR = Q�e(F2(0) − iF3(0))

4m2
μ

AL = Q�e(F2(0) + iF3(0))

4m2
μ

, (12)

where Q� = −1 is the electron charge in units of the positron charge e. Up to terms suppressed 
by powers of the electron mass the branching fraction can be written as

Br(μ → eγ ) = m5
μ

4π�μ

(|AL|2 + |AR|2) . (13)

Here �μ is the total decay width of the muon. The generalization to �i → �jγ is obvious.
The process μ → 3e is described by the extended Lagrangian [26]

Lμ→3e = ARmμ�̄eσ
σρFσρPR�μ + ALmμ�̄eσ

σρFσρPL�μ

+g1 �̄ePR�μ �̄ePR�e + g2 �̄ePL�μ �̄ePL�e

+g3 �̄eγ
νPR�μ �̄eγνPR�e + g4 �̄eγ

νPL�μ �̄eγνPL�e

+g5 �̄eγ
νPR�μ �̄eγνPL�e + g6 �̄eγ

νPL�μ �̄eγνPR�e + h.c. (14)

Note that the coefficients AL,R and gi have mass dimension −2. The appearance of the same 
coefficients AL,R as in (10) indicates that all quantum fluctuations are again integrated out. In 
practice, absorbing e.g. electron loop diagrams involving a four-fermion operator into AL,R and 
into a loop correction to the gi is convenient as we do not have to treat the different lepton 
flavours separately. In particular, in writing (14) the effect of the off-shell (q2 
= 0) form factors 
in (11) is absorbed into the gi coefficients (see [26] for details). In any case, since this represents 
a loop correction to the Wilson coefficients which are already generated at the tree-level, we 
neglect these effects in our calculation.

The branching fraction of μ → 3e can easily be expressed through the coefficients gi and 
AL,R [26]5:

Br(μ → 3e) = m5
μ

1536π3�μ

[ |g1|2 + |g2|2
8

+ 2(|g3|2 + |g4|2) + |g5|2 + |g6|2

−8e Re
[
AR(2g∗

4 + g∗
6) + AL(2g∗

3 + g∗
5)
]

+64e2(ln
mμ

me

− 11

8
)(|AL|2 + |AR|2)

]
(15)

with �μ the muon decay width. The first line arises from tree-level KK exchange in the RS model, 
while the second and third involve the loop-induced dipole operator coefficients. The reason for 

5 The sign of the interference term (second line in (15)) depends on the convention for the covariant derivative. In 
the convention of [26] the sign is ‘+’. This is compensated by the Wilson coefficients AL,R , the sign of which is also 
convention dependent.
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keeping these formally suppressed terms is not only the logarithmic enhancement paired with a 
large numerical coefficient. One-loop corrections to the gi may have a similar logarithmic en-
hancement and the large factors of 8 and 64 might be misleading, since it can be absorbed into the 
definition of the coefficients AL,R , which come with a 1/(4π)2 loop suppression. The important 
point is that one-loop corrections to the gi introduce only a small shifts in the coefficients without 
altering the general properties. On the other hand, the dependence on AL,R implies sensitivity 
to different aspects of the underlying model. In RS models AL,R have a specific dependence on 
the Yukawa couplings, which can provide an important contribution to the branching fraction in 
sizeable parts of the model parameter space. In these regions the effect of AL,R should not be 
neglected, as it will significantly alter the signatures of the RS model in flavour observables.

Muon conversion in nuclei is mediated by both, operators containing quark fields and electro-
magnetic dipole operators. The effective Lagrangian is [26,36]

LμN→eN = ARmμ�̄eσ
σρFσρPR�μ + ALmμ�̄eσ

σρFσρPL�μ

+
∑

q=u,d

c
q
VR�̄eγ

νPR�μq̄γνq +
∑

q=u,d

c
q
VL�̄eγ

νPL�μq̄γνq

+
∑

q=u,d,s

mqmμ

M2
H

c
q

SL�̄ePR�μq̄q +
∑

q=u,d,s

mqmμ

M2
H

c
q

SR�̄ePL�μq̄q

+ αsmμ

M2
H

cL
gg�̄ePR�μGA,σρGA

σρ + αsmμ

M2
H

cR
gg�̄ePL�μGA,σρGA

σρ + h.c. (16)

Here MH denotes the Higgs mass, and GA
μν is the gluon field strength tensor. We do not include 

operators with pseudo-scalar, axial vector or tensor quark currents. Their contributions are sup-
pressed by the nucleon number of the target nuclei and can be neglected. We also neglect the 
strange quark in the vector operators, since the coefficient is not enhanced by the strange-quark 
mass. The conversion branching fraction depends on properties of the nucleus that participates 
in the reaction. The expression, taken from [35,36] and adjusted to match our conventions, is

Br(μN → eN) = m5
μ

4�capture

∣∣∣∣ARD + 4

[
mμmp

M2
H

(
C̃

p

SL − 12πC̃
p
L,gg

)
Sp + C̃

p
VLVp

+{p → n}
]∣∣∣∣ 2

+ {L ↔ R} , (17)

where �capture is the total muon capture rate for nucleus N . The coefficients D, Vp/n, Sp/n (the 
superscript refers to the proton and neutron) encode properties of the target nucleus, see [35]. 
The tilded coefficients are defined as

C̃
p

SL =
∑

q=u,d,s

c
q

SLf
p
q , (18)

C̃
p
L,gg = cL

ggf
p
Q, (19)

C̃
p
VL =

∑
q=u,d

c
q
VLf

p
Vq

, (20)

and analogously for the p → n and L → R cases. The form factors f p,n
q and f p,n

Vq
parametrize 

the coupling strengths of the quark scalar and vector currents of flavour q to nucleons, respec-
tively. f p,n represent the scalar couplings of heavy quarks (c, b or t ).
Q
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Fig. 1. Left: Matching of LFV couplings of the Z-boson onto four-fermion operators in the low-energy theory. Right:
Higgs exchange diagram that contributes to g1,2 and c

q
SR/L

.

We now determine the coefficients of the low-energy effective Lagrangians in terms of the 
Wilson coefficients of the dimension-six Lagrangian. The tree-level matching of the four-fermion 
operators in (8) to those in (14), (16) is straightforward. Further contributions arise from the 
lepton-flavour violating Z-boson interactions �iγμPL,R�jZ

μ together with a SM coupling once 
the intermediate Z is integrated out, see Fig. 1 (left). For example, in case of μ → 3e, the inser-
tion of �eγ

μPR�μZμ evaluates to

iM = iγ 1
12

[
2s2

W − 1

2
ūe(p2)γ

μPRuμ(p1) ūe(p4)γμPLve(p3)

+ s2
W ūe(p2)γ

μPRuμ(p1) ūe(p4)γμPRve(p3) + Fierzed diagram

]
, (21)

which gives a contribution to g3 and g5. Similarly, insertions of γ 2,3 will lead to contributions to 
g4 and g6. Contributions to cq

VR follow analogously. Thus we find the relations:

g1 = g2 = 0 (22)

g3 = 1

T 2

(
s2
Wγ 1

12 + βEE
1211 + βEE

1112

)
(23)

g4 = 1

T 2

(
2s2

W − 1

2
(γ 2

12 + γ 3
12) + βLL

1211 + βLL
1112

)
(24)

g5 = 1

T 2

(
2s2

W − 1

2
γ 1

12 + βLE
1112

)
(25)

g6 = 1

T 2

(
s2
W(γ 2

12 + γ 3
12) + βLE

1211

)
, (26)

cu
VR = 1

2T 2

[
βEu

1211 + β
EQ
1211 + 1

2
γ 1

12

(
1 − 8

3
s2
W

)]
(27)

cu
VL = 1

2T 2

[
β

LQ
1211 − β

LτQ
1211 + βLu

1211 + 1

2

(
γ 2

12 + γ 3
12

)(
1 − 8

3
s2
W

)]
(28)

cd
VR = 1

2T 2

[
βEd

1211 + β
EQ
1211 + 1

2
γ 1

12

(
−1 + 4

3
s2
W

)]
(29)

cd
VL = 1

2T 2

[
β

LQ
1211 + β

LτQ
1211 + βLd

1211 + 1

2

(
γ 2

12 + γ 3
12

)(
−1 + 4

3
s2
W

)]
(30)

c
q

SL = − v√
2mμT 2

η12 (31)

c
q

SR = − v√
2

[η†]12 , (32)

2mμT
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as well as [37,38]

cL
gg = − 1

12π

∑
q=c,b,t

c
q

SL, cR
gg = − 1

12π

∑
q=c,b,t

c
q

SR . (33)

It should be noted that g1 and g2 receive contributions from the tree-level Higgs exchange 
diagram, Fig. 1 (right diagram), with an insertion of one flavour-changing Higgs operator 
h�̄iPR�j + h.c., but these are suppressed by powers of the electron mass (light lepton mass 
in the general case) and we neglect them. The same diagram (with the two fermion lines on the 
right being quarks) also generates cq

SL. Here we should comment on a (well-known) subtlety. 
Naively, the operator L̄i�Ej�

†� in (3) modifies the Yukawa interaction according to

yij√
2

h�̄iPR�j → yij√
2

h�̄iPR�j − hij

3v2

2
√

2T 2
h�̄iPR�j (34)

after electroweak symmetry breaking but before flavour rotations. Here yij is not the SM Yukawa 
coupling but the coefficient of the operator L̄i�Ej in the dimension-four Lagrangian. However, 
the fermion mass matrix is also modified by dimension-six operator,

yij v√
2

→ mij = yij v√
2

− hij

v3

2
√

2T 2
. (35)

Since the flavour rotation matrices U and V by construction diagonalize the modified mass 
term mij , we have to rewrite the shift of the Yukawa couplings as (see also [32])(

1√
2
yij − hij

3v2

2
√

2T 2

)
h�̄iPR�j →

(
mij

v
− hij

v2

√
2T 2

)
h�̄iPR�j . (36)

As a consequence the factor 3/2 in the flavour-violating Higgs interaction h�̄iPR�j + h.c. of (8)
must be replaced by 1 for the computation of cq

SL, cq

SR above.
We did not include the effect of the RS bulk on the effective gluon-Higgs interaction. The 

operator αshGμνGμν receives sizeable contributions from KK fermions in the loop [30,31,39,
40]. These corresponding contributions to cL,R

gg after integrating out the Higgs boson are formally 
of the order v2/T 4, but are enhanced by the traces of products of 5D Yukawa matrices. We only 
work in leading order in the 1/T 2 expansion, so we drop these terms based on power counting 
arguments. In practice, it turns out that cL,R

gg (with or without this additional correction) gives a 
much smaller contribution to the LFV branching fractions than, e.g., cq

VR, and could be ignored 
altogether.

The determination of the coefficients AL,R is more complicated. One can identify three 
contributions: (1) from tree or one-loop diagrams involving the operators in the dimension-
six Lagrangian [15,17]. (2) from dimension-eight operators, which may become relevant if the 
dimension-six contributions are suppressed. We will discuss them later specifically in the con-
text of the RS model. (This contribution can effectively be included via a modification of the 
a

ij
B,W Wilson coefficients.) (3) from enhanced two-loop “Barr–Zee type diagrams” with a flavour-

changing Higgs coupling [41], see [42] for a discussion in the context of μ → eγ . An example 
diagram, which avoids the coupling of the Higgs boson to a light lepton through the coupling to 
a top or gauge-boson loop, is shown in Fig. 2. These terms are known to give sizeable contribu-
tions in models where the Higgs interactions are the dominant sources of new flavour violation. 



M. Beneke et al. / Nuclear Physics B 906 (2016) 561–614 571
Fig. 2. Example of a Barr–Zee type diagram. The box denotes the insertion of the lepton-flavour violating Higgs interac-
tion. The internal gauge boson can be a Z or a photon.

In the RS model this is generally not the case. Nonetheless we include these terms as they may 
become relevant in specific scenarios. We obtain6

mμAR = αA
12

v√
2T 2

−
∑

k=1,2,3

Q�e

16π2T 2
m�k

βEL
1kk2

− Q�e

3(4π)2T 2

(
s2
W

[
mμ(γ 2

12 + γ 3
12) + meγ

1
12

]
+ mμγ 2

12 − 3

2
mμγ 3

12 − 3

2
meγ

1
12

)

+ ABZ

[
η12

v2

√
2T 2

]
(37)

mμAL = [αA†]12
v√
2T 2

−
∑

k=1,2,3

Q�e

16π2T 2
m�k

βEL
k21k

− Q�e

3(4π)2T 2

(
s2
W

[
me(γ

2
12 + γ 3

12) + mμγ 1
12

]
+ meγ

2
12 − 3

2
meγ

3
12 − 3

2
mμγ 1

12

)

+ ABZ

[
η

†
12

v2

√
2T 2

]
(38)

where [42]

ABZ = Q�eαem
√

2GF v

32π3

[
2NcQ

2
t f (rt ) − 3f (rW ) − 23

4
g(rW ) − 3

4
h(rW )

− f (rW ) − g(rW )

2rW
+ 1 − 4s2

W

4s2
W

{
1 − 4Qts

2
W

4c2
W

2NcQt f̃ (rt , rtZ )

− 1

2
(5 − s2

W/c2
W)f̃ (rW , rWZ) − 1

2
(7 − 3s2

W/c2
W)g̃(rW , rWZ) − 3

4
g(rW )

− 3

4
h(rW ) − 1 − s2

W/c2
W

4rW

(
f̃ (rW , rWZ) − g̃(rW , rWZ)

)}

− 1

4s2
W

(
D(3a)

e (rW ) + D(3b)
e (rW ) + D(3c)

e (rW ) + D(3d)
e (rW ) + D(3e)

e (rW )

+D(4a)
e (rZ) + D(4b)

e (rZ) + D(4c)
e (rZ)

)]
(39)

6 In practice, we can drop the terms proportional to the lighter lepton mass, here me .
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with rt = m2
top/M

2
Higgs, rtZ = m2

top/m2
Z , rWZ = m2

W/m2
Z , rW = m2

W/M2
Higgs, rZ = m2

Z/M2
Higgs, 

and Nc = 3, Qt = 2/3. The functions f, g, h and f̃ , g̃ can be found in [42] and the functions DX
a

in [43]. Note again that relative signs in (37), (38) depend on the convention for the covariant 
derivative.

All expressions for μ → 3e and μ → eγ in this section can be trivially extended to τ → eγ or 
τ → 3μ by exchanging the appropriate flavour indices, masses and widths. We note that we do 
not take into account the running of the Wilson coefficients between the high and the low scale, 
see e.g. [44–46] for the anomalous dimensions of the dimension-six operator basis.

3. Wilson coefficients for lepton flavour violation in the RS model

Several of the dimension-six operator Wilson coefficients have already been computed in [15]
for the minimal RS model and in [17] for the custodially protected model. These works focus 
on the anomalous magnetic moment of the muon and therefore only included a subset of the 
operators that are needed for studies of lepton flavour violation. We extend the computation to 
the flavour-off-diagonal transitions here.

3.1. Treatment of the 5D Higgs field

Before going into the details of the determination of the missing Wilson coefficients we need 
to address the treatment of the Higgs field. It is now well established that the physics of the RS 
model with an IR-brane localized Higgs depends on how the localization is implemented, see 
e.g. [15,16,30,31,39]. In effect one needs to specify whether the 5D structure of the Higgs field, 
that is, its 5D wave function, can be resolved within the model or not. If one regularizes the delta 
function in the fifth coordinate z, which localizes the Higgs close to the IR brane, by a narrow 
box-shaped profile,

δ(z − 1/T ) = lim
δ→0

T

δ
�(z − 1 − δ

T
) , (40)

this is equivalent to specifying the order of limits for the regulator δ and the regulator of the 4D 
loop integrals, for example a dimensional regulator (ε → 0) or a cut-off (� → ∞). Removing 
the regulator ε first while keeping δ finite corresponds to the case where the Higgs localization 
width δ/T can be resolved by the modes propagating in the loop.7 If δ → 0 first, the Higgs 
width remains unresolved. The latter case corresponds to a truly brane localized Higgs, whereas 
the first scenario assumes a “narrow bulk Higgs” (in the terminology of [31]). Due to these 
non-commuting limits the RS model is only fully defined with a prescription on how the order 
of limits should be taken.

When the Higgs field permeates the bulk, even if only close to the IR brane, the question 
arises what is the effect of the KK Higgs states. Since their masses are of order T/δ these ef-
fects have previously been assumed to be small and have not received much attention. However, 
recent work [20] has shown that the sum of all KK Higgs contributions does not decouple in 
the localization limit. In the following we include a computation of Higgs KK effects in the 5D 
formalism. In order to have a consistent description of KK Higgs modes, we abandon the ad-hoc 
regularization (40) and implement the Higgs field as a full 5D scalar doublet. Since we require 

7 This is more readily seen with a momentum cut-off �. For � → ∞ with fixed small but finite δ the particles propa-
gating in the loop can resolve the Higgs localization as the loop momentum can be larger than T/δ.
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both a vacuum expectation value and a zero-mode profile that is strongly localized near the IR 
brane we need to introduce additional brane potentials on both the IR and UV brane. We will 
follow the construction of [47] (see also [48]) and thus use the same Higgs profile as in [20]. 
The details of this realization together with useful formulae are collected in Appendix A. The 5D 
profile of the vacuum expectation value takes the form

v(z) =
√

2(1 + β)

1 − ε2+2β
k3/2T β+1vSM zβ+2, (41)

where vSM ≡ v � 246 GeV denotes the SM Higgs vacuum expectation value (vev), and the zero 
mode profile is, up to small corrections of order v2/T 2, proportional to v(z). The parameter β is 
related to the 5D mass of the Higgs field and determines the degree of IR localization; the larger 
β the stronger the localization. Since we start with a genuine bulk field it is always implied that 
β is finite until all other regulators have been removed.

In order to obtain the correct SM parameters in the low-energy limit the Yukawa matrices and 
the Higgs self-coupling must themselves depend on β . For the Yukawa matrices we indicate this 
dependence by a superscript β , while no superscript refers to the β-independent, dimensionless 
matrix. The relation is (see Appendix A.3)

Yβ = Y√
k

2 − cLi
+ cEj

+ β√
2(1 + β)

(42)

with cLi
, cEj

the 5D mass parameters of the lepton fields in the Higgs–Yukawa interaction.
Ultimately, we are interested in large values of β . Whenever we give a result for the bulk 

Higgs case that does not show an explicit dependence on β , we tacitly assume that the β → ∞
limit has been taken, and the result should be valid up to corrections of O(1/β). We will consider 
three different implementations of the Higgs field:

• an exactly brane localized Higgs, that is we use (40) (necessary to avoid ambiguities in the 
calculation), but take δ → 0 first;

• a delta-function localized narrow bulk Higgs, that is we use (40), but keep δ finite until all 
other regulators are removed, then δ → 0. No Higgs KK modes are considered;

• a true bulk Higgs with the β-profile (41) and KK modes.

The second scenario is somewhat inconsistent as a Higgs field with a resolvable width should 
be accompanied by resolvable KK excitations. We will still consider it, as it turns out that this 
precisely captures the effect of the bulk Higgs zero-mode in the IR-localized β → ∞ limit of 
the third scenario. Below we will discuss explicitly the different localization prescriptions only 
if they lead to a difference in the Wilson coefficients.

3.2. Tree-level dimension-six operators

3.2.1. Four-fermion operators
The tree-level diagram contributing to the matching of the Wilson coefficients of four-fermion 

operators is shown in generic form in Fig. 3. The exchanged particle could be an off-shell KK 
gauge boson or a KK Higgs excitation. The latter vanishes for β → ∞ and can safely be ignored, 
which can be verified by explicit analytic calculation, see Appendix A.4. The contribution from 
the remaining gauge-boson exchange diagram can be inferred from known results [15,17] by ad-
justing hypercharge and weak isospin factors. In case of bijkl and bij , there are two contractions 
LL EE
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Fig. 3. Generic topology of 5D diagrams that give rise to the four-fermion operators upon integrating out the exchanged 
particle. External states can be doublets or singlets. Consequently the intermediate boson can be a B or ZX or the SU(2) 
W gauge boson, if all external states are doublets. Due to the chirality of the external states the fifth component of the 
boson cannot propagate.

giving rise to an additional “t-channel” diagram. In the following we summarize the results for 
the four-fermion operators appearing in (3).

The Wilson coefficient of the four-lepton operator 
(
L̄iγμLi

) (
Ēj γ

μEj

)
is given by

bLE
ij = YLYE

4

[
g′2 (b0 + b1(cLi

) + b1(−cEj
) + b2(cLi

, cEj
)
)+ (g2 − g′2) b2(cLi

, cEj
)
]
(43)

with

b0 = −1

4

1

ln(1/ε)
, (44)

b1(c) = −1

4

(5 − 2c)(1 − 2c)

(3 − 2c)2

ε2c−1

1 − ε2c−1
, (45)

b2(cL, cE) = −1

2

(1 − 2cL)(1 + 2cE)(3 − cL + cE)

(3 − 2cL)(3 + 2cE)(2 − cL + cE)
ln

1

ε

ε2cL−1

1 − ε2cL−1

ε−2cE−1

1 − ε−2cE−1
. (46)

As in [15] we drop terms suppressed by the tiny ratio ε = T/k. The result for the minimal RS 
model can be obtained from this expression by setting the coupling to the ZX to zero, which cor-
responds to removing the (g2 − g′2) term in (43). Using these expressions the Wilson coefficient 
of the operator 

(
ĒiγμEi

) (
Ēj γ

μEj

)
takes the form

bEE
ij = YE

2YL

bLE
ij (cLi

→ −cEi
) . (47)

Here and above YE and YL are the hypercharges of singlet and doublet lepton field, respectively. 
For the operator (L̄iγ

μLj )(L̄kγμLl) there are contributions from abelian ZX or B bosons as 
above, and additionally from the exchange of a W boson. The abelian contribution due to ZX, 
B exchange is given by

bLL
ijkl,B+Z = YL

2YE

δij δkl b
LE
ik (cEk

→ −cLk
) (no sum over i, k) (48)

The non-abelian bosons generate the operator 
(
L̄iτ

Aγ μLi

) (
L̄j τ

AγμLj

)
, which is not part of 

our basis, and has to be rewritten using the SU(2) Fierz identity(
L̄iτ

Aγ μLi

)(
L̄j τ

AγμLj

)
= 2

(
L̄iγ

μLj

) (
L̄j γμLi

)− (
L̄iγ

μLi

) (
L̄j γμLj

)
. (49)

We then find the Wilson coefficient of (L̄iγ
μLj )(L̄kγμLl) to be
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Fig. 4. Generic topologies that contribute to operators of the type �†iDμ� (ψ̄iγμψj ). External fermion states can be 
either E or L. Intermediate and external gauge bosons can be abelian or non-abelian, the external Higgses are indicated 
by dashed lines.

bLL
ijkl = bLL

ijkl,B+Z + g2

4

(
b0 + b1(cLi

) + b1(cLj
) + b2(cLi

,−cLj
)
)
δilδkj

− g2

8

(
b0 + b1(cLi

) + b1(cLk
) + b2(cLi

,−cLk
)
)
δij δkl . (50)

The Wilson coefficients of the seven quark-lepton four-fermion operators are even simpler 
to compute as there are never two identical fields and all operators but one, 

(
L̄iγ

μτALj

)(
Q̄kτ

AγμQl

)
, are generated via the exchange of an abelian gauge boson. The result is

b
�q
ij = Y�Yq

4
g′2[b0 + b1(s�c�i

) + b1(sqcqj
) + b2(s�c�i

,−sqcqj
)
]

+ Y�Y
X
q

4
(g2 − g′2)b2(s�c�i

,−sqcqj
) (51)

b
LτQ
ij = g2

4
(b0 + b1(cQj

) + b1(cLi
) + b2(cLi

,−cQj
)) (52)

with � ∈ (L, E) and q ∈ (Q, U, D). sf is −1 for a singlet fermion f and +1 for a dou-
blet, Yf is the hypercharge of fermion f , and YX

q = T 3
R − 4 tan2 �W/(3(1 − tan2 �W)) with 

T 3
R = {−1, −2, 0} for q = Q,D,U . The second line in (51) is only present in the custodially 

protected model. The dependence on the 5D mass parameters of the quarks shows that muon 
conversion depends not only on the model parameters of the lepton sector. However, ultimately 
we only need operators which are built of light quarks fields after EWSB, and of these only the 
quark-flavour diagonal part. Since both the up- and the down-quark sector masses are hierar-
chical, the RS Froggatt–Nielsen mechanism generates hierarchical flavour rotation matrices in 
the quark sector (see e.g. [49]). Consequently, the b2(cx, cy) terms—the only terms that are si-
multaneously sensitive to 5D quark parameters and contribute to the flavour-non-diagonal lepton 
couplings—are suppressed for light quarks, and we neglect them. The only unsuppressed sources 
of LFV are then the terms b1(cLi

) or b1(−cEi
).

3.2.2. Higgs–fermion operators

The tree-level matching coefficients of the Higgs–fermion operators �†i
←→
D μ� (ψ̄iγμψj ) fol-

low from the diagrams in Fig. 4, where the ones with an external gauge field are related to those 
without by gauge invariance.
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The diagrams in the first row of Fig. 4 have already been computed in [15,17] for the minimal 
and custodial RS model. Their contribution to the Wilson coefficients ca

ij = ca
i δij , a = 1, 2, 3 is 

given by

c1
i = g′2YE

8

(
1 − 1

ln 1/ε
−

[
(1 + 2cEi

)(5 + 2cEi
)

(3 + 2cEi
)2

− 2(1 + 2cEi
) ln 1/ε

(3 + 2cEi
)

]
ε−2cEi

−1

1 − ε−2cEi
−1

)

+ (g2 − g′2)YE

4

[
(1 + 2cEi

) ln 1/ε

(3 + 2cEi
)

]
ε−2cEi

−1

1 − ε−2cEi
−1

, (53)

c2
i = g′2YL

8

(
1 − 1

ln 1/ε
−

[
(1 − 2cLi

)(5 − 2cLi
)

(3 − 2cLi
)2

− 2(1 − 2cLi
) ln 1/ε

(3 − 2cLi
)

]
ε2cLi

−1

1 − ε2cLi
−1

)

+ (g2 − g′2)YL

4

[
(1 − 2cLi

) ln 1/ε

3 − 2cLi

]
ε2cLi

−1

1 − ε2cLi
−1

, (54)

c3
i = g2

8

(
1 − 1

ln 1/ε
−

[
(1 − 2cLi

)(5 − 2cLi
)

(3 − 2cLi
)2

− 2(1 − 2cLi
) ln 1/ε

3 − 2cLi

]
ε2cLi

−1

1 − ε2cLi
−1

)
.

(55)

As in the case of the four-fermion operators the minimal RS model results can be obtained by 
removing the terms proportional (g2 −g′2). The Wilson coefficients are independent of the Higgs 
localization provided the limit β → ∞ is taken in the bulk Higgs case.

The diagrams in the second row of Fig. 4 also exist, but it turns out that they are numerically 
small compared to the previous contribution. Hence, we only give the explicit expression for the 
minimal RS model:

δc1
ij = − T 8

k8
gEi

(1/T )gEj
(1/T )F (cLk

)Y
†
ikYkj (56)

δc2
ij = δc3

ij = 1

2

T 8

k8
fLi

(1/T )fLj
(1/T )F (−cEk

)YikY
†
kj (57)

with

F(c) = − k4

T 5

(1 + 2c) + (3 − 2c)ε2−4c − (1 + 2c)(3 − 2c)ε1−2c

(1 + 2c)(3 − 2c)(1 − ε1−2c)2
. (58)

A similar expression is found in the custodially protected model. The smallness of this contri-
bution arises from the zero-mode profiles of the light external leptons. We ignore the Yukawa 
contributions δca

ij in the subsequent analysis.

3.2.3. Yukawa-type operators
The dominant contribution to the Wilson coefficient of the dimension-six Yukawa-like oper-

ators (�†�)L̄i�Ej is generated by diagrams of the type shown in Fig. 5. In the minimal RS 
model there is only one diagram as the two intermediate fermions must be a doublet and a singlet 
lepton. In the custodially protected model both triplet fermions, T3 and T4, can substitute the 
singlet. The contribution to the Wilson coefficient is then given by

hij = Ncs

3
× T 3

k4
f

(0)
Li

(1/T )[YY †Y ]ij g(0)
Ej

(1/T ) (59)

where Ncs equals one in the minimal and two in the custodially protected model.
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Fig. 5. Diagram topology that gives the dominant contribution to the operator (�†�)L̄i�Ej .

For completeness we remark that the diagrams in the second line of Fig. 4 also contribute to 
the Wilson coefficient of (�†�)L̄i�Ej through derivative terms that can be eliminated by the 
fermion equation of motion, such as /DLi = yij�Ej . In the minimal model we find

δhij = −1

2

T 8

k8
gEl

(1/T )gEj
(1/T )F (cLk

)yilY
†
lkYkj

−1

2

T 8

k8
fLi

(1/T )fLl
(1/T )F (−cEk

)YikY
†
klylj . (60)

Due to the appearance of the small SM lepton Yukawa matrix y this contribution is tiny. This 
also holds true in the custodially protected model, and hence in the numerical analysis we neglect 
this term. However, in studies of flavour violation involving third generation quarks (notably top 
quarks) the contribution can be sizeable and must be included.

3.3. Loop-induced dipole operators

The dipole operators are generated by genuine 5D one-loop penguin diagrams. We distinguish 
between two classes of diagrams—those with internal gauge-boson exchange proportional to 
one Yukawa coupling Y and those with Higgs exchange, which involve three Yukawa couplings. 
A diagram such as shown in Fig. 6 below counts as gauge-boson exchange, since it involves 
only a single Y . As we only need the electromagnetic dipole operator for the LFV processes 
under consideration, we reduce the number diagrams needed for the one-loop coefficient aij by 
imposing that the external gauge boson is a photon. In addition, we set the Higgs doublet in the 
operators L̄i�σμνEjBμν , L̄iτ

A�σμνEjW
A
μν to its vacuum expectation value. The complete set 

of non-vanishing diagrams can be found in [15] for the minimal RS model and in [17] for the 
custodial RS model.

3.3.1. Internal gauge boson exchange
We start the discussion with the gauge-boson contribution. There are three different regions 

of 4D loop momentum that have to be distinguished. In the first region all propagators are zero-
mode propagators. This is only possible for the diagrams that are already present in the minimal 
RS model as the additional fields in the custodially protected model do not have massless modes 
[7]. This region corresponds to a SM contribution and must be removed. As explained in [15]
this can be done by subtracting the zero-mode from a single 5D gauge-boson propagator.

When the 4D loop momentum is much smaller than the KK scale T and the loop contains 
at least one KK mode propagator, this propagator can be contracted to a point. The resulting 
diagram corresponds to a four-dimensional diagram with an insertion of a higher-dimensional 
tree-level operator. The leading dimension-six contributions are in one-to-one correspondence 
with the one-loop matrix elements of the operators considered in the previous subsection.

In the last region the 4D loop momentum is of the order of the KK scale T . Only this region 
contributes to the dipole matching coefficient aA

ij . We extract this contribution by expanding the 
propagators in the external momenta. This automatically removes the low-momentum region and 
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Fig. 6. Example diagram with internal KK Higgs modes.

prevents double-counting of the insertions of tree operators [15]. As the amplitude of the dipole 
operator is proportional to σμνqν we only have to expand to linear order in the external momenta. 
The remaining calculation requires the numerical evaluation of integrals over the modulus of 
the 4D loop momentum and several bulk coordinate integrals in the interval [1/k, 1/T ]. The 
complete numerical calculation was performed for the minimal RS model in [15] and for the 
custodially protected model in [17]. Here we use the results of [17] as the routines used there 
for the numerical evaluation have been considerably improved compared to [15]. We perform 
the calculation in 5D Rξ gauge and use the spurious dependence of the numerical result on 
the gauge-fixing parameter as an additional estimate of the numerical uncertainty. From this we 
conclude that the numerical accuracy is below 0.1%, which translates to an error of about 5% for 
the flavour-non-diagonal LFV terms after rotation to the standard mass basis. This is sufficient 
for our purposes.

For completeness we remark that some diagrams induce a scheme-dependence of the dipole 
coefficient aA

ij via finite but IR-sensitive ε × 1/ε terms. This scheme dependence is cancelled by 
the scheme dependence of the 4D one-loop penguin diagrams with insertions of βLE

ij , γ a
ij [15].

In principle there could be an additional momentum region. The width of the Higgs localiza-
tion introduces the new scales T/δ and βT for a delta-localized and a bulk Higgs, respectively. 
In [16] it was shown that the effect of this additional momentum scale does not contribute to 
the gauge-boson exchange diagrams for δ → 0 (or, equivalently, β → ∞) when only the Higgs 
zero-mode is considered. For the bulk Higgs case it still needs to be shown that the contribution 
of the infinite tower of Higgs KK modes also vanishes for β → ∞. To this end let us examine 
the diagram shown in Fig. 6. Up to a constant prefactor it is given by

∫
ddl l2

(2π)d

1
T∫

1
k

dzdxdy

k13z5x5y3
Y

β
ij f

(0)
Li

(z)f
(0)
Ej

(x)�(0)(y)�ZMS
� (l, z, y)F+

Li
(l, x, z)

∂

∂l2
�ZMS

B (l, y, x).

(61)

For the explicit expressions for the zero-mode subtracted gauge boson propagator �ZMS
B and 

the fermion propagator F+
Li

we refer to [15]. The Higgs propagator ��(l, z, y), its zero-mode 

subtracted version �ZMS
� (l, z, y), the Higgs zero-mode �(0)(y), and the Yukawa coupling Yβ are 

discussed in Appendix A.
We now show that the KK Higgs contribution is O(1/β) and therefore can be neglected for 

large β . The Yukawa matrix Yβ and zero-mode profile �(0)(y) both scale as 
√

β . Since the 
zero-mode profile is localized near the IR brane, the associated 5D coordinate integral over y is 
effectively restricted to the interval [(1 − 1/β)1/T , 1/T ] of length 1/(βT ). Hence the y inte-
gration introduces a factor of 1/β . The integration over y then compensates the factor β from 
the product Yβ�(0)(y) independent of the magnitude of the 4D loop momentum l. For l � T
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Fig. 7. Integrand as a function of the loop-momentum l for β = 10 (black, dotted), β = 20 (blue, dashed) and β = 40
(green, solid). For clarity all curves have been rescaled relative to the maximum of the integrand for β = 10. For loop 
momenta in excess of βT the integrands show a universal 1/l2 behaviour. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.)

and l ∼ T , the Higgs propagator scales as 1/β and, after a change of integration variables from 
{x, y, z} to {y, y − z, z − x}, one finds that the integrand is dominated by the region where the 
distance z–y is of the order 1/β (see also Appendix A.4). Putting all factors together, we con-
clude that the integrand scales as 1/β2 for small loop momenta, and hence the integral over these 
momentum regions also vanishes for β → ∞. For loop-momenta l of order βT , we can expand 
the fermion and boson propagator for large momenta, in which case they become simple and 
their dependence on the loop momentum can readily be extracted. The Higgs propagator is more 
complicated, but it can only depend on the scale βT and therefore scales as 1/(βT ). We find that 
the product of all three propagators together with the derivative ∂/∂l2, which counts as 1/(βT )2, 
compensates the factor l5 ∼ (βT )5 from d4l l2 ∼ dll5. We are left with the two integrals over 
y − z and z − x. For l ∼ βT the integrand is exponentially suppressed for |z − x| > 1/l and 
|y − z| > 1/l, and hence each of the coordinate difference integration regions is effectively re-
stricted to size 1/(βT ). We then find that the total scaling of the integrand in this momentum 
region is ∝ 1/β2. The integral over dl can only compensate one inverse power of β and we 
conclude that the integral over the region l ∼ βT vanishes as well for β → ∞. For very large 
loop momentum l � βT we can expand all propagators. Now all bulk coordinate differences 
are constrained to be within about 1/l (l is now the largest scale) and the 5D Higgs propagator 
scales as 1/l. This ensures the convergence of the integral as the integrand vanishes as 1/l2 for 
l → ∞. The parameter β only enters through the integral over y, which is cancelled by Higgs 
profile and Yukawa coupling, hence the integrand is independent of β . This universal behaviour 
allows for a straightforward determination of the contribution of the region l � βT :

∞∫
βT

dl

l2
= 1

βT
. (62)

Hence the integral over this region vanishes in the large β limit. Since this holds in all regions, 
we conclude that KK Higgs contribution vanishes as 1/β .

This can be verified numerically as shown in Fig. 7. The three curves correspond to different 
values of β (10, 20 and 40, respectively). For better visibility all curves are normalized to the 
maximum of the β = 10 curve. The maximum of the integrand is close to l ∼ βT and exempli-
fies the 1/β2 scaling of the integrand in that region. For large modulus of the (euclidean) loop 
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Fig. 8. Contour plot of Aij in the custodially protected RS model normalized to its value for cL = |cE | = 0.7 as a 
function of the 5D mass parameters cL and cE for T = 1 TeV, k = 2.44 · 1018 GeV.

momentum the three curves lie on top of each other consistent with the β independent asymptotic 
expression. Consequently, the integral over l as well as the contribution to the dipole operator 
coefficient vanishes for β → ∞.

To understand the numerical size of the Wilson coefficient ag
ij generated by the gauge-boson 

contribution it is convenient to factorize all terms that combine to the 4D Yukawa matrix before 
rotation to the mass basis:

a
g
ij = Yij

T 3

k4
f

(0)
Li

(1/T )g
(0)
Ej

(1/T )Aij = yijAij . (63)

The remaining short-distance function Aij depends only on the 5D bulk masses of the external 
fermion fields with flavours i, j and the RS scales k and T . Aij can be interpreted as a measure 
of the misalignment between the mass matrix of the lepton sector and the dipole coefficient ag

ij

before rotation to the mass basis. If the Aij were all equal, no LFV would be generated by the 
gauge-boson exchange diagrams. Fig. 8 shows the result of the numerical computation of Aij

for the custodially protected model at the KK scale T = 1 TeV. There is a small asymmetry in 
the dependence of Aij on the bulk mass parameters of the external lepton fields, which arises 
from 5D diagrams with non-abelian gauge bosons as the W bosons do not couple equally to 
singlet and doublet fields. To reproduce the 4D lepton mass matrix the bulk mass parameter cL

of the doublet muon (electron) has to be around 0.57 (0.66) and the masses of the corresponding 
singlets around −0.57 (−0.66), if the SM mass hierarchy is carried by both singlet and dou-
blets. As illustrated in the figure the variation of Aij in this region is around ±(2–3)%. In an 
extreme case where e.g. all singlets are “delocalized” with bulk mass parameter cE = −0.5, the 
bulk mass of the doublet muon (electron) has to be around 0.64 (0.8), and the variation is less 
pronounced. For the minimal RS model the dependence of Aij on the bulk mass parameters is 
slightly smaller in the region of mass parameters relevant to muons and electrons than in the 
custodially protected model [15,16]. It follows that the gauge-boson exchange contribution αg

ij

to the dipole coefficient has smaller off-diagonal elements by a factor 30 to 50 compared to the 
flavour-conserving diagonal entries8—the RS model has a built-in protection from large gauge-
boson induced LFV transitions. It is interesting to note that the variation of Aij increases for 
decreasing absolute value of both bulk masses. Since typically the absolute values of the 5D 
bulk masses decrease with decreasing magnitude of the 5D Yukawa couplings, a smaller abso-

8 This factor is responsible for the larger numerical error for the flavour-violating transitions mentioned above.
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Fig. 9. Additional Higgs-exchange diagrams in the custodially protected model.

lute value of the 5D Yukawa couplings leads to more pronounced LFV transitions from internal 
gauge-boson exchange.

3.3.2. Internal Higgs exchange
Unlike gauge-boson exchange the internal Higgs-exchange contribution depends strongly on 

the Higgs localization.

3.3.2.1. Delta-function localized Higgs We first consider the delta-function localized Higgs 
(40). For the minimal RS model the result for a delta-localized bulk Higgs without KK modes 
was determined in [15] to be

aH
ij = Qμe

192π2

T 3

k4
· T 8

2k8 (FL − FE) + Qμe

192π2

T 3

k4
f

(0)
Li

(1/T )[YY †Y ]ij g
(0)
Ej

(1/T ), (64)

where

FE =f
(0)
Li

(1/T )YikF (−cEk
)Y

†
khf

(0)
Lh

(1/T )2Yhjg
(0)
Ej

(1/T ),

FL =f
(0)
Li

(1/T )Yikg
(0)
Ek

(1/T )2Y
†
khF (cLh

)Yhjg
(0)
Ej

(1/T ) . (65)

Here the three times repeated indices k and h are summed over only once and the function F(c)

is defined in (58). The expression in the first line arises via “off-shell contributions” (see [15,16]) 
and is suppressed by fermion zero-mode factors. The last, numerically dominant line (64) is not 
present for the exactly brane-localized setup. As a consequence the Higgs-exchange contribu-
tion, which involves three Yukawa matrices, is suppressed in the minimal model with an exactly 
brane-localized Higgs boson.

The corresponding result for the custodially protected model was partially determined in [17]. 
However, due to a misplaced SU(2) index the two diagram topologies (absent in the minimal 
model) shown in Fig. 9 were missed.9 These diagrams have a non-trivial dependence on the 
Higgs localization. In the following we compute these missing diagrams. Note that the exchanged 
Higgs refers to the zero mode, since for now we have adopted the theta-function regularized 
delta-function Higgs profile.

To illustrate the computation we consider explicitly the sum of the two right-most diagrams 
in Fig. 9 where the photon couples to the fermion line. Up to prefactors that depend on the U(1) 
and SU(2) charges of the fermions, and after some simplifications the contribution to the dipole 
operator structure is given by the integral

9 Note that for external quarks, i.e. for the calculation of the electromagnetic dipole coefficient of quarks, the diagrams 
are present even in the minimal RS model.
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Inew = T 3

δ3

T 9

k12

�2∫
0

dl2

16π2

1/T∫
(1−δ)/T

dx dy dzf
(0)
Li

(x)YikY
†
khYhjg

(0)
Ej

(z)

× 1

2

[
∂l2

(
l4∂l2

(
F−

Xk
(l, x, y)F+

Yh
(l, y, z)

))
+ l2∂l2∂l2

(
d−F+

Xk
(l, x, y)d−F+

Yh
(l, y, z)

)]
, (66)

where we used the notation of [15] for the different fermion propagator functions and applied 
a momentum cut-off � to the loop integral. The fermion X can be part of the SU(2)L singlets 
ξ2, T3, T4 while Y is part of the custodial bi-doublet ξ1. Both propagator functions d−F+ in the 
second line obey Dirichlet boundary conditions at y = 1/T , while the propagator functions F+
and F− have Neumann boundary conditions on the IR brane. That is, the second term in square 
brackets contains wrong-chirality Higgs couplings [13], whereas the first features right-chirality 
Higgs couplings (correct-chirality in the language of [20]).

Consider first the first term the square brackets in (66). The l2 integral can be carried out 
trivially, since it is a total derivative. Only the upper limit gives a non-zero contribution. Then we 
use that for l2 ∼ �2 � T 2 and x, y close to 1/T , the fermion propagators can be simplified,

F−
X (l, x, y) ≈ F+

Y (l, x, y) ∝ i

l
cosh(l(1/T − x))el(y−1/T )�(x − y) + {x ↔ y} , (67)

which allows all coordinate integrals to be evaluated analytically. The result is quite involved 
and depends crucially on the expression e−(�δ)/T , such that it vanishes for � → ∞ at fixed, 
finite δ, but is equal to 1 for δ → 0 with fixed �.10 Hence, for a narrow bulk Higgs (small but 
finite δ, � → ∞ first) the first term in square brackets in (66) does not contribute to the dipole 
Wilson coefficient. This reproduces known results [20,50] for the right-chirality Higgs couplings. 
On the other hand, for the exactly brane-localized Higgs, the dipole coefficient receives a finite 
unsuppressed contribution. This effect is only present in the custodially protected model, since 
in the minimal model the diagrams do not exist. The contribution of the second term in the 
square brackets in (66) can be computed following the approach of [16]. Here situation is exactly 
opposite: the narrow bulk Higgs leads to a finite contribution, whereas the integrals vanish when 
the Higgs width δ is taken to zero before the regulator of the loop integral is removed, i.e. for the 
exactly brane-localized Higgs. The total result is

Inew =

⎧⎪⎪⎨
⎪⎪⎩

1

32π2T 2
· T 3

k4
f

(0)
Li

(1/T )[YY †Y ]ij g(0)
Ej

(1/T ) “exactly localized”

− 1

96π2T 2
· T 3

k4
f

(0)
Li

(1/T )[YY †Y ]ij g(0)
Ej

(1/T ) “narrow bulk”

(68)

The contribution of the left diagram in Fig. 9 can be obtained analogously.
Putting all diagrams together and including the SU(2) and hypercharge factors we find in the 

custodially protected RS model for the narrow bulk Higgs

10 In dimensional regularisation the calculation is more tedious. The second line of (66) can be written as a total deriva-
tive plus an evanescent term ∝ (d − 4). The non-commuting limits manifest themselves in form of factors of δε or in 
combinations of incomplete Gamma functions like �(−1 + ε, δ). The final result coincides with the one obtained above 
with the cut-off regulator.
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Fig. 10. Example diagram with an internal Higgs exchange and three Yukawa couplings. The internal Higgs can represent 
the zero-mode or the tower of KK modes.

aH
ij = Qμe

192π2

T 3

k4
· 2 · f (0)

Li
(1/T )[YY †Y ]ij g(0)

Ej
(1/T ) , (69)

and for the exactly brane-localized Higgs

aH
ij = Qμe

192π2

T 3

k4
· (−3) · f (0)

Li
(1/T )[YY †Y + YuY

†
u Y ]ij g(0)

Ej
(1/T ) . (70)

In both equations we neglected terms similar to the first line in (64), which are suppressed by 
lepton masses and/or lepton zero-mode profiles. These terms are always subleading in the custo-
dially protected model irrespective of the Higgs localization, and we ignore them in the further 
analysis. Note that aH

ij has opposite signs for the narrow bulk and exactly brane-localized Higgs.

3.3.2.2. Bulk Higgs with a β profile Next we consider the case of a bulk Higgs with the β pro-
file (41). The dominant contributions were studied in some detail in [20] and numerical estimates 
were obtained by summing a large number of KK modes.11 Using 5D propagators the effect of 
the Higgs zero mode can be computed analytically for large β . To see this let us focus on the 
simplest diagram, shown in Fig. 10. Other contributions can be obtained analogously, but may 
require appropriate expansions of the fermion propagators for a fully analytic result. For light 
external fermions the dominant contribution can be written as

IH = QμeY
β
ih

[
Yβ

]†
hk

Y
β
kj

∫
d4l

(2π)4

1
T∫

1
k

dz dy dx dw

k19x5y4z5w5
f

(0)
Li

(z)g
(0)
Ej

(w)d−F+
Lk

(p, x,w)

×��(l, x, z)�(0)(w)
[
d−F+

Eh
(p′ − l, z, y)F+

Eh
(p − l, y, x)γ μ(/p − /l)

+F−
Eh

(p′ − l, z, y)d−F+
Eh

(p − l, y, x)(/p′ − /l)γ μ
]

(71)

11 At this point it is worth recalling that the dipole transitions are not sensitive to the UV cut-off �UV of the RS 
model. That is, whether the summation of KK modes is extended to infinity or truncated when the KK mass reaches 
�UV, results in differences suppressed by inverse powers of �UV, which can be absorbed into the coefficient functions 
of higher-dimensional operators. Equivalently, in the 5D treatment the integrations can be done over the entire loop 
momentum and bulk space without imposing an explicit cut-off. This is completely analogous to the standard practice 
of performing the loop integral over all four-momenta for UV-finite observables in the Standard Model, even though the 
Standard Model is most likely only valid up to a certain scale. When this logic is applied to summing KK modes of a 
narrow bulk Higgs in the RS model, since the non-decoupling effects is related to the new scale βT , it is, of course, 
implied that T � βT � �UV. Otherwise the issue of Higgs localization could not be separated from the UV completion 
of the RS model.
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where we chose p, p′ for the incoming and outgoing fermion momentum, respectively. The inte-
gral over the w coordinate can be taken right away as we can set p to zero in the external fermion 
propagator:

E(x,β, cL, cE) ≡
1
T∫

1
k

dw

k5w5
g

(0)
E (w)d−F+

L (p = 0, x,w)�(0)(w)

= i

√
1 + 2cE

1 − ε1+2cE

√
2(1 + β)

1 − ε2+2β

1

2 − cL + cE + β

(T x)2+cLε−5/2

1 − ε2cL−1

×
[
(T x)2−cL+cE+β(1 − ε2cL−1) + (T x)1−2cL(ε2cL−1 − ε1+cL+cE+β)

− (1 − ε1+cL+cE+β)
]
. (72)

After expanding the remaining integrand for small p, p′ we perform the integral over the photon 
vertex bulk position y using the completeness and orthogonality relations. We then find

IH = QμeY
β
ih

[
Yβ

]†
hk

Y
β
kj

∫
d4l

(2π)4

1
T∫

1
k

dz dx

k10x5z5
f

(0)
Li

(z)E(x,β, cLk
, cEj

)��(l, x, z)

×
[

i

2
l2∂2

l2
d−F+

Eh
(l, z, x)

]
(pμ + p′μ) . (73)

This leaves us with only three integrals over x, z and the loop momentum.
Let us first consider the Higgs zero-mode contribution by substituting ��(l, x, z) → i/ l2 ×

�(0)(x)�(0)(z). Since β is large but finite until all integrals have been carried out and all regula-
tors removed, we can perform the momentum integral directly in d = 4 dimensions. To this end, 
we switch temporarily to the mode picture for the fermion propagator, evaluate the integral∫

d4l

(2π)4

1

(l2 − m2
n)

3
= − i

2(4π)2

1

m2
n

, (74)

and resum the mode expansion back into 5D propagators, which results in

I(0)
H = −iQμe Y

β
ih

[
Yβ

]†
hk

Y
β
kj

1
T∫

1
k

dz dx

k10x5z5
f

(0)
Li

(z)E(x,β, cLk
, cEj

)�(0)(x)�(0)(z)

× 1

2(4π)2
d−F+

Eh
(0, z, x)(pμ + p′μ) . (75)

Since the zero-momentum limit of the fermion propagator has a simple form, the two remaining 
integrals are elementary. The final analytic expression is lengthy and valid for any positive value 
of β . We refrain from giving the explicit expression. However, the limit β → ∞ is straightfor-
ward. After using (149) to relate the Yukawa matrices for the bulk Higgs to the couplings for the 
delta-regularized Higgs we recover the same answer as in [15],

I(0)
H → − iQμe

96π2T 2

T 3

k4
f

(0)
Li

(1/T )YihY
†
hkYkj g

(0)
Ej

(1/T ) (pμ + p′μ) . (76)
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This observation is general: the Higgs zero-mode contribution of the bulk Higgs in the β → ∞
limit is always equal to the one of the theta-function regularized brane Higgs, see (64) and (69). 
In other words, the localization limit of the bulk Higgs is independent of the bulk profile at finite 
Higgs localization width.

We still have to determine the contribution from the tower of KK Higgs excitations in the 
loop. To illustrate the computation in the 5D framework, we consider again the diagram shown 
in Fig. 10. The KK contribution is obtained by the replacement ��(l, x, z) → �ZMS

� (l, x, z)
in (73). An analytical evaluation seems difficult even for β � 1. Before turning to the numerical 
calculation we shall first show that the KK contribution does not go to zero for large β despite the 
fact that the lowest KK masses are of order βT . This confirms the non-decoupling effect found 
in [20], now in the 5D framework. To this end we look at the different loop-momentum regions 
separately. There are two relevant scales, the KK scale T and the Higgs localization scale βT . 
This leads to several momentum regions that allow for various expansions of the propagators. 
The expanded forms can then either be integrated directly or at least their β scaling can be 
determined.

• For small loop momenta l � T we can expand both the fermion and the Higgs propagator 
around l = 0. We can then analytically integrate the x and z coordinates as in (75). In this 
region the scaling with β must be the same as the scaling of the Wilson coefficient of the 
four-fermion operator discussed in Section 3.2.1 and in Appendix A.4. That is, for large 
β the integrand scales as 1/β . Hence, the total contribution from this region vanishes for 
β → ∞.

• The second region is l ∼ T . For the Higgs propagator we can use the same expansion for 
small euclidean momenta as for l � T but the fermion propagator can no longer be ex-
panded. Nonetheless, d−F+

E (l, x, z) does not introduce an additional β dependence in this 
momentum region. We recover the overall scaling ∝ 1/β for fixed values of l just as for 
l � T . The only difference to the region with l � T is the scaling of the integrand with the 
loop momentum l, which no longer is a simple power law. However, for l ∼ T , the scaling 
of the integral with β is the same as the integrand, that is 1/β , and hence the contribution 
from this region also vanishes for β → ∞.

• For loop momentum l of the order βT we can make use of an expansion of modified Bessel 
functions of the form Iβ(βx) and Kβ(βx) for large β , given by

Iβ(βx) ∼
√

1

2πβ

eβf (x)

(1 + x2)1/4
g(x) , Kβ(βx) ∼

√
π

2β

e−βf (x)

(1 + x2)1/4
g̃(x) . (77)

The exact expressions for the functions f, g and g̃ can be found in [51,52]. Here we only 
need that f , g and g̃ depend on β only via terms that vanish at least as fast as 1/β for 
β → ∞ and that f (x) is a strictly monotonically increasing function of x. Using these ex-
pansions one can show that the Higgs propagator retains the same 1/β scaling as in first two 
regions. Taking into account the behaviour of the fermion propagator for l � T we find that 
d4l l2 ∂2

l2
d−F+(l, z, x) counts as a factor of dl l or equivalently dl · (βT ). This cancels the 

1/β from the Higgs propagator and leaves us with the coordinate integrals. Their counting is 
easier to determine when the integral over w has not yet been carried out. The integral over 
w then cancels the 

√
β factors from the Higgs zero-mode profile and one Yukawa coupling. 

Every integral over a coordinate difference counts as 1/β (compare the discussion of KK 
effects in the gauge contribution). Including the two remaining Yukawa couplings, we find 
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that the integrand scales as 1/β in the region l ∼ βT . Hence the integral over the domain 
l ∼ βT takes a constant value for β → ∞.

• Finally, for l � βT we expand the Higgs propagator for large momenta, since it is now 
dominated by the scale l and no longer by βT . Consequently, the Higgs propagator scales 
as 1/l, and the distance |x − z| is limited to be of order 1/l. This effectively trades two 
powers of 1/(βT ) for two powers of 1/l compared to result in the l ∼ βT region, resulting 
in the scaling ∝ β/l2 of the integrand. The final integral over the modulus of l is therefore 
convergent and since

∞∫
βT

dl
β

l2
= 1

T
, (78)

the high-momentum region also gives a finite β-independent contribution to the dipole op-
erator coefficient.

Since in every region the integral over l either vanishes (l � T , l ∼ T ) or converges (l � βT

and l ∼ βT ) to a constant, the contribution to the dipole Wilson coefficient due to the Feynman 
diagram in Fig. 10 tends to constant for large β as announced. For large values of β the integral 
is further dominated by the high-momentum regions and therefore the 5D masses of the fermions 
enter predominantly via the external zero-modes.

The left panel of Fig. 11 shows the numerical result for the integrand as a function of the loop 
momentum l and demonstrates the expected inversion of the order of the curves for different β
values from the intermediate to the high-momentum regions.12 The right panel shows the KK 
Higgs contribution as a function of β normalized to the zero-mode contribution in the β →
∞ limit. The plot illustrates the approach of KK contribution to a constant. The relatively fast 
convergence with increasing β is a feature of the simple diagram topology under consideration. 
The plot shows that the KK Higgs contribution while somewhat smaller than the corresponding 
zero-mode contribution is of the same order of magnitude [20].

A similar scaling analysis can be applied to all other diagrams involving KK Higgs modes. 
We will not discuss them in detail, as we have to resort to a numerical evaluation. In Appendix B
we give the numerical ratio of the KK tower to the zero-mode contribution for each diagram 
topology. The final result for dipole operator coefficient generated by the exchange of the KK 
Higgses is

a
H,KK
ij = Qμe

192π2

T 3

k4
·AKK · f (0)

Li
(1/T )[YY †Y ]ij g(0)

Ej
(1/T ) (79)

in the minimal model and

a
H,KK
ij = Qμe

192π2

T 3

k4
· f (0)

Li
(1/T )

[
Acs

KKYY †Y +Bcs
KKYuY

†
u Y

]
ij

g
(0)
Ej

(1/T ) (80)

in the custodially protected model, which should be compared to the second line of (64) and (69), 
respectively. Here we again dropped the suppressed “off-shell terms” similar to those in the first 
line of (64). The numerical values of the coefficients are

12 Note that the solid curve for β = 160 does not reach the asymptotic region of very large loop momentum l � βT , 
while β = 10 is on the small side for the β � 1 scaling to hold. When taking the coordinate integrals analytically 
(possible in some of the momentum regions) we encounter ratios of � functions such as �(6 +β)/�(7 +β), which scale 
as 1/β for large β , but β ∼ 10 is not quite large enough to make this manifest.
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Fig. 11. Left: Absolute value of the integrand for the diagram of Fig. 10 with zero-mode subtracted Higgs propagator as 
a function of the loop momentum l. The curves correspond to β = 10 black (dotted), 40 blue (dashed) and 160 green 
(solid). The KK scale was set to T = 1 TeV. Right: KK Higgs contribution to the dipole operator as a function of β
normalized to the β → ∞ limit of the Higgs zero-mode contribution. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.)

AKK = 0.46(0.04) Acs
KK = 1.4(0.2) Bcs

KK = 0.1(0.05) , (81)

where the number in parenthesis shows the estimated error due to the extrapolation to β = ∞. 
The sizeable relative uncertainty in Bcs

KK comes from large cancellations among the various con-
tributions to the coefficient. In the minimal (custodial) model the KK contribution is about 50% 
(75%) of the zero-mode contribution.

Irrespective of the Higgs localization, the dipole coefficient aH
ij generated by Higgs exchange 

is in general misaligned relative to the mass matrix. For the bulk Higgs case the numerically 
dominant terms scale as YY †Y in both the minimal and custodially protected RS model (which 
includes YuY

†
u Y ). After rotation to the mass basis this potentially generates large LFV transitions. 

For the same reason, even after the rotation to the mass basis, unlike the gauge boson contribu-
tion, the Higgs contribution depends strongly on the values of the 5D bulk mass parameters and 
the 5D Yukawa matrices. It usually increases with the magnitude of the Yukawa matrix entries. 
In the minimal RS model with an exactly brane-localized Higgs, however, aH is much smaller 
than for the bulk Higgs case (recall that in this scenario only the first line of (64) is present).

3.4. Dimension-eight operators

The effects of dimension-eight operators are suppressed relative to the dimension-six ones 
by a factor of O(v2/T 2) and therefore negligible. However, for LFV observables this counting 
can be numerically upset, as noted in [14], since the leading dimension-6 contribution to the 
dipole operator from gauge-boson exchange is suppressed by a factor of 30–50 due to the near-
alignment discussed above and in [15,17]. Relevant dimension-eight effects can arise directly 
from dimension-eight operators and indirectly from v2/T 2 corrections to the field rotation to the 
mass basis.

The first class corresponds to the descendant (L̄iσ
μνEi)�Xμν�

†� (X = B, W ) of the 
dimension-six dipole operator (L̄iσ

μνEi)�Xμν , which after EWSB give rise to the same dipole 
vertex structure. However, the dimension-eight operator has a coefficient function proportional 
to YY †Y even for the internal gauge-boson exchange contribution, and does not suffer from the 
alignment suppression of terms proportional to Y . Depending on the value of T , the dimension-
eight contribution may then be the dominant source of flavour violation. This is relevant only for 
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the case of an exactly brane localized Higgs in the minimal RS model, where the contributions to 
the dimension-six dipole Wilson coefficient cubic in the Yukawa coupling due to Higgs exchange 
are also suppressed (see previous subsection).

The second class of dimension-eight effects arises from the fact that the tree-level relation

v√
2

U
†
ij

√
1 − 2cLj

1 − ε
1−2cLj

Yjk

√
1 + 2cEk

1 − ε1+2cEk

Vkn = diag{me,mμ,mτ } (82)

that defines the rotations U , V to the mass basis [3] receives corrections due to multiple Higgs 
vev insertions.13 The diagonalization condition has the form

v√
2
U

†
ij

√
1 − 2cLj

1 − ε
1−2cLj

[
Y − v2

6T 2
YY †Y

]
jk

√
1 + 2cEk

1 − ε1+2cEk

Vkn = diag{me,mμ,mτ } , (83)

cf. (35). The modified U and V field rotation matrices applied to the Lagrangian (3) generate 
an additional source of LFV which formally enters at the same level in the v/T counting as 
dimensions-eight operators, which can be taken into account by the substitution

a
g
ij → a

g
ij + v2

6T 2
a

g
ij

∣∣∣
Y→YY †Y

(84)

The direct effect of the dimension-eight operators is more difficult to estimate. We have to 
evaluate the contributions to the dipole-like operators that appear at the dimension eight level, 
i.e.,

Ldim-8 ⊃ 1

T 4
a

B,dim-8
ij (L̄i�σμνEj )Bμν�

†� + 1

T 4
a

W,dim-8
ij (L̄iτ

A�σμνEj )W
A
μν�

†�.

(85)

The computation of the electromagnetic dipole coefficient adim-8
ij = cos�W a

B,dim-8
ij −

sin�W a
W,dim-8
ij would require the computation of roughly 150 different diagrams in the 5D 

theory for the minimal RS model alone.
Fortunately, only some of these diagrams actually contribute. For the following we consider 

only the minimal RS model with an exactly brane-localized Higgs. For the other Higgs localiza-
tions the dimension-six dipole is always dominant and dimension-eight terms are negligible as 
discussed above. We then have two fundamentally different contributions: from the so-called 
wrong-chirality Higgs couplings (WCHC) and from the ordinary Higgs couplings to lepton 
modes with the same chirality as the SM zero modes. It turns out that for the exactly brane-
localized Higgs the WCHC contribution can be computed analytically and is simply given by

a
dim-8,WCHC
ij = −1

3
a

g
ij

∣∣∣
Y→YY †Y

(86)

in terms of the dimension-six gauge-boson exchange contribution.
To illustrate how this result arises let us consider the left-most diagram in Fig. 12 (W8 in the 

notation of [15]), which contributes to the matching of the aW
ij coefficient. There are 10 ways 

to add two additional external Higgs lines to the fermion line. However, since δ/T (δ being the 
Higgs localization regulator) is much smaller than the dimensional regulator or, equivalently, 
than the inverse loop momentum cut-off, we find that only the three diagrams shown to the right 

13 The square root factors arise from the explicit expressions for the lepton zero-mode profiles.
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Fig. 12. Example of a diagram contributing to the matching onto the dimension-six dipole operator and several related 
diagrams that contribute to the dimension-eight operator.

in Fig. 12 give a non-vanishing WCHC contribution for δ → 0. In each case the integrals over 
the Higgs vertices can be taken analytically. In the above example the WCHC contributions of 
the two right-most diagrams cancel, and the remaining diagram can be expressed in terms of 
the associated dimension-six diagram as shown in (86). Similarly the descendants of all other 
dimension-six diagrams can be shown to satisfy (86).

Hence the effect of the WCHC can be included via the redefinition

a
g
ij → a

g
ij − v2

6T 2
a

g
ij

∣∣∣
Y→YY †Y

(87)

where we used that the Higgs fields will assume their vacuum expectation value (�†� → v2/2). 
Combining this with (84), we find that the direct and indirect contribution cancel. That is, at 
the dimension-eight level the WCHCs do not generate sizeable flavour-changing transitions by 
lifting the misalignment suppression and can be ignored.

This leaves us with the dimension-eight contributions that have no WCHCs. In the minimal 
model as defined in [15] there are no such contributions from the diagrams with non-abelian 
vertices. Then there are only seven non-vanishing diagrams that involve an internal W boson, 
but about 50 diagrams with a hypercharge boson. Fortunately, the limited particle content of the 
minimal model allows us to recast the expressions of all diagrams in the form of the original 
dimension-six diagram with modified fermion lines. For instance, the second diagram in Fig. 12
has terms without WCHCs, but differs from the original diagram only by the two additional 
(zero-momentum) Higgs insertions that modify one fermion propagator. This can easily be cal-
culated as the Higgs vertices can be treated analytically. Since the flavour-dependence of the 
fermion propagators (excluding zero-modes) is relatively mild, one can use the single-flavour 
approximation, where the Yukawa matrices are the only flavour-dependent quantities. It is then 
straightforward to compute the contribution to the dimension-eight coefficients. We find

adim-8
ij ≈ −0.4 a

g
ij

∣∣∣
Y→YY †Y

. (88)

This size is in agreement with the estimate given on the basis of a subset of diagrams in [14], 

where the non-abelian contribution was found to be aW,dim-8
ij ≈ −0.31 aW

ij

∣∣∣
Y→YY †Y

. The minimal 

model requires a KK scale T > 4 TeV in order to pass the constraints set by electroweak precision 
observables [49]. Hence the dimension eight contribution to αij is suppressed by an additional 
factor v2/T 2 of at least 1/500. We therefore neglect the contribution of the dimension-eight 
terms to the off-diagonal elements of αij , since it is smaller than the effect of the Barr–Zee 
diagrams which also feature three Yukawa couplings without the need to take the dimension-eight 
term into account.

For the custodially protected model the dimension-eight coefficient would be much harder 
to compute. Not only does the number of non-trivial Feynman diagram topologies increase sig-
nificantly, but the larger particle content leads to numerous non-vanishing possibilities to assign 
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the various fermion species to each topology. However, independent of the Higgs localization 
there always exists an unsuppressed dimension-six contribution proportional to YY †Y , hence the 
dimension-eight terms are never relevant.

4. Phenomenology

The Standard Model in its original form [53] does not allow for flavour violation in the lepton 
sector. Even after introducing neutrino masses, the charged LFV processes are suppressed by the 
tiny neutrino masses and too small to be detected in any foreseeable experiment. Any signal of 
charged LFV is a clear sign of physics beyond the SM. In our analysis of LFV in RS models, we 
focus on the three processes with the highest current experimental sensitivity, μ → eγ , μ → ēee

and muon conversion in a gold atom. The best current limits for the branching fractions are 
[54–56]

Br (μ → eγ ) < 5.7 × 10−13 MEG (89)

Br (μ → ēee) < 1 × 10−12 SINDRUM (90)

BrAu (μN → eN) < 7 × 10−13 SINDRUM II . (91)

The limit on muon conversion in gold is more stringent than current limits extracted using other 
nuclei, see e.g., [57,58] (titanium) or [59] (lead).

In Section 2.2 these three observables were expressed in terms of the Wilson coefficients of the 
dimension-six SM effective theory Lagrangian, which in turn were determined by integrating out 
the fifth dimension of the RS model. We now calculate the branching fractions of the observables 
for a given set of 5D input parameters. Before performing a scan through the parameter space 
of the model, it is useful to have some qualitative understanding of the effects of the various 
dimension-six Wilson coefficients. We will generally assume that the 5D Yukawa matrices are 
anarchic, without imposing any additional flavour symmetries.

4.1. Estimates

We first consider the effect of the dimension-six dipole operator, where we distinguish two 
different contributions: from the Higgs-exchange diagrams, which involve three Yukawa matri-
ces, and from gauge-boson exchange, which involves only one. The gauge contribution leads to 
naturally suppressed flavour-violating couplings, whereas the Higgs contribution does not have 
a built-in flavour protection. For not too small Yukawa couplings the Higgs contribution is dom-
inant. We mainly focus on μ → e transitions, for which the dipole coefficients α12 and α21 are 
relevant.

To obtain an estimate of the Higgs-exchange contribution let us start with Wilson coefficient 
[see (69) and (80)]

aH
ij = Qμe

192π2

T 3

k4
· f (0)

Li
(1/T )[(2 +Acs

KK)YY †Y +Bcs
KKYuY

†
u Y ]ij g(0)

Ej
(1/T ) (92)

in the custodially protected model with a bulk Higgs. An analogous expression holds in the 
minimal model [(64) and (79)]. For an exactly brane-localized Higgs, aH

ij is of similar size as 
above for the custodially protected model, cf. (70), but suppressed in the minimal model due to 
the absence of the second line of (64). Now we recall that the relation of fermion zero-mode 
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profiles, the 5D Yukawa matrix and SM Yukawa matrix (before rotation into the mass basis) is 
given by

yij = T 3

k4
f

(0)
Li

(1/T )Yij g
(0)
Ej

(1/T ) . (93)

If the fermion mass hierarchy of the diagonalized SM Yukawa matrix is carried democratically 
by left- and right-handed fermion modes, i.e.

yij ∼
√

mimj

v/
√

2
, (94)

we arrive at the estimate

aH
ij ∼ Qμe

√
2mimj

192π2v

[
(2 +Acs

KK)Y 2
� +Bcs

KKY 2
u,�

]
, (95)

where we assume that

Y 2
� ≡ [YY †Y ]ij

Yij

Y 2
u,� ≡ [YuY

†
u Y ]ij

Yij

(96)

are approximately independent of ij (“anarchy”). For anarchic Yukawa matrices we also expect 
that the rotation matrices U and V follow the same hierarchy |Uij | ∼ |Vij | ∼ min (

√
mi/mj ,√

mj/mi) and hence, barring accidental cancellations, it follows from (9) that α12 =
[U†]1kaklVl2 ∼ a12.

Further using that Acs
KK ≈ 1.4 � BKK we obtain14

αH
12 ∼ 5Qμe

√
memμ

192π2v
Y 2

� , (97)

which yields

Br (μ → eγ )|Higgs dipole ∼ 5 · 10−9 × 1 TeV4

T 4
Y�

4 . (98)

If the dipole also dominates μ → 3e one can combine (13) and (15) to obtain the relation

Br (μ → 3e)

Br (μ → eγ )
= 2αem

3π

[
log

mμ

me

− 11

8

]
≈ 0.006 , (99)

which translates into an estimate of

Br (μ → 3e)|Higgs dipole ∼ 3 · 10−11 × 1 TeV4

T 4
Y�

4 . (100)

For muon conversion one finds

BrAu (μN → eN)|Higgs dipole ∼ 1.5 × 10−11 × 1 TeV4

T 4
Y�

4 . (101)

We emphasize that these are crude estimates. Even in the anarchic case the random phases of 
the different elements can lead to cancellations or add coherently. However, they provide useful 
guidance to the results of the numerical scan discussed below.

14 Our estimates always yield α21 ∼ α12, hence we only give α12 explicitly.
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Fig. 13. Left: Gauge contribution to Br (μ → eγ ) (T = 1 TeV) for fixed Yukawa structure as a function of the absolute 
Yukawa coupling size. Right: The Wilson coefficient γ 1

12 following the approximation (108) as a function of Yukawa 
coupling size for T = 1 TeV. The O(mμ/mτ ) term is not included.

The Barr–Zee contribution is similar to the Higgs contribution, since the dominant contri-
bution to the ηij Wilson coefficient is also proportional to a product of three Yukawa factors. 
Comparing the prefactors in (37) we find that the Barr–Zee contribution to the dipole coefficient 
is smaller by a factor of about 170 than the contribution from the 5D Higgs loops. Thus we expect 
a μ → eγ branching fraction of about

Br (μ → eγ )|BZ ∼ 2 · 10−13 × 1 TeV4

T 4
Y 4

� , (102)

if only the BZ contribution existed. The BZ contribution to the other processes is also smaller by 
a factor of about 1702.

Due to the Y 4
� dependence the Higgs-exchange induced dipole operator is less important for 

small Yukawa coupling. In this case, and also for the special case of the brane-localized Higgs in 
the minimal RS model, the dipole operator generated by gauge-boson exchange becomes crucial. 
We do not have an analytical expression for the gauge-boson contribution, but we know that there 
would be no flavour violation from it, if the function Aij in (63) was independent of ij . The 
5D mass parameters must decrease with the absolute values of the Yukawa couplings in order 
to guarantee the correct values for the SM masses fermion masses. Aij varies more strongly for 
smaller absolute values of the 5D mass parameters, see Fig. 8, and therefore the flavour-changing 
gauge-boson contribution should increase with decreasing Yukawa coupling. To verify this we fix 
the Yukawa matrix structure, that is the ratios of all matrix elements, and scale the maximal entry 
Ymax from 2 to 0.3. For simplicity we assumed symmetric 5D mass parameters cLi

= −cEi
. 

The resulting μ → eγ branching fraction from ag
ij alone in the minimal model is shown in 

Fig. 13 (left). The precise value of Br (μ → eγ ) obviously depends on the arbitrarily chosen 
Yukawa matrix structure, but the variation with the size Y� of the Yukawa couplings is not very 
large compared to the fourth-power law of the Higgs-exchange contribution. For the Yukawa 
matrix used in Fig. 13 we find a μ → eγ branching fraction of a few × 10−12.

This agrees with the estimate based on the functional form of the gauge-boson induced dipole 
coefficient ag

ij . The numerical value of the Wilson coefficient is [15,17]

a
g
ij ≈ −6 (19) · 10−4 yij . (103)

The value without (in) parenthesis is valid for the minimal (custodial) model and is independent 
of the details of the Higgs localization. yij is the 4D Yukawa matrix in the flavour eigenbasis. 
The matrix relation ag ∝ y is only violated by corrections of about (2–3)% as discussed in Sec-
tion 3.3. This violation is the source of charged LFV as it introduces small off-diagonal elements 
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in the dipole coefficients αij in the mass eigenbasis after EWSB. Using (94) and applying a factor 
2/100 for the 2% of misalignment between yij and ag

ij , we estimate

αA,12 ∼ 2.6 (8.1) · 10−8 × 2

100
(104)

for the coefficient relevant to μ → e transitions. Again, we regard this as a rough estimate, since 
there may be cancellations when the rotation into the mass basis is performed. We then find:

Br (μ → ēγ )|gauge dipole ∼ 0.5 (5) · 10−11 × 1 TeV4

T 4
(105)

Br (μ → ēee)|gauge dipole ∼ 0.3 (3) · 10−13 × 1 TeV4

T 4
(106)

BrAu (μN → eN)|gauge dipole ∼ 0.2 (2.2) · 10−13 × 1 TeV4

T 4
(107)

Note that this contribution is independent of the typical size of anarchic Yukawa coupling up 
to the O(1) variation shown in Fig. 13. It is typically smaller than the Higgs contribution, but 
provides the “gauge-boson floor” to the dipole coefficient, since it is less sensitive to 5D model 
parameters than the Higgs contribution and always present. In the custodially protected model 
the rate is a factor of 10 larger than in the minimal model.

The previous estimates were based on the assumption that the dipole operator dominates the 
LFV amplitudes. This is not always the case, especially for the μ → 3e and muon conver-
sion process. Next, we therefore consider the impact of the four-fermion and fermion–Higgs 
operators, which are generated at tree-level. In both cases the dimension-six Wilson coeffi-
cients are independent of the 5D Yukawa matrices. However, a dependence on the Yukawa 
matrices enters through the rotation to the mass basis after EWSB. For illustration we con-
sider the operator (Ēiγ

μEj ) �†i
←→
Dμ� with Wilson coefficient c1

ij = c1
i δij and restrict ourselves 

to the minimal model. For all three muon flavour-violating processes the relevant matrix ele-
ments are V †

1j c
1
jkVk2. Flavour violation arises, because c1

i depends on the bulk mass parame-

ter cEi
, hence c1

ij while diagonal is not proportional to the unit matrix in flavour space. We 

can estimate V †
1j c

1
jkVk2 by making use of hierarchical fermion zero-mode functions. Assuming 

fE1(1/T ) � fE2(1/T ) � fE3(1/T ) and symmetric mass parameters we can employ the rough 
estimate |Vij | ∼ min (

√
mi/mj , 

√
mj/mi) with mi being the SM lepton masses to obtain

γ12 = V
†
1j c

1
jkVk2 ∼

√
me

mμ

(c1
2 − c1

1 +O(mμ/mτ )) . (108)

We can use this formula to study the dependence of γ a
ij on the size of the 5D Yukawa couplings. 

Since the product of Yukawa matrix and 5D fermion zero-mode profiles must reproduce the SM 
mass matrix to leading order in v/T , the 5D profiles and therefore the 5D mass parameters are 
correlated with the Yukawa matrix. The simplest estimate (assuming symmetric mass parame-
ters) yields the correlation 1/

√
Y� ∼ f

(0)
Ei

(1/T ), where here Y� is the generic size of the anarchic 
Yukawa matrix element. In the following we do not distinguish this Y� from the one defined in 
(96) for order-of-magnitude estimates. Since the ca

i Wilson coefficients arise from a coordinate 

integral over a single fermion-gauge boson vertex they will roughly scale as [f (0)
Ei

(1/T )]2, that 
is 1/Y�. This behaviour was already observed and explained in [13]. The right panel of Fig. 13
shows γ 1 as a function of Y� (keeping the lepton masses fixed). The curve can be fitted by 
12



594 M. Beneke et al. / Nuclear Physics B 906 (2016) 561–614
Y�
−0.94 confirming the above scaling. This scaling is quite general, although if the mass hier-

archy is mainly driven by the right-handed modes, the mass factors in the estimate (108) must 
change to account for the change in the relation (94).

Similar estimates can be obtained for the four-fermion operator coefficients. Here we have 
terms with different dependencies on flavour. The Wilson coefficient bLE

ij of (L̄iγμLi) (Ēj γ
μEj )

has three contributions denoted by b0, b1 and b2, see (43). b0 does not depend on the 5D 
masses and hence does not contribute to flavour-changing processes. b1 depends on a single 
bulk mass parameter and has the same scaling ∝ 1/Y� as the ca Wilson coefficients. The b2
function depends on two bulk mass parameters and scales roughly as 1/Y�

2. However, as dis-
cussed below (52), for light leptons this term is suppressed and not relevant. This would be 
different for processes involving fermions with zero-modes that are IR brane localized such as 
the (right-handed) top quark, in which case the ratio of exponentials in b2 no longer compensates 
the logarithmic enhancement factor and b2 becomes the dominant term in (43).

From (37), (22ff) and (27ff) we see that the four-fermion coefficients usually appear in com-
bination with the coefficients of the Higgs-lepton operators. For a typical RS model parameter 
point, which reproduces the lepton masses, the Higgs-lepton operator coefficients are larger by a 
factor log ε relative to the four-fermion operator coefficients. This allows us to use (108) to es-
timate the effect of the tree-level operators on the generically tree-dominated LFV observables. 
We find

Br (μ → ēee) ∼ few · 10−12 × 1 TeV4

T 4

1

Y�
2

(109)

BrAu (μN → eN) ∼ few · 10−9 × 1 TeV4

T 4

1

Y�
2

, (110)

where we used the parameters given in Table 1. We stress again that these numbers are rough 
estimates, which depend strongly on the precise structure of the flavour rotation matrices V
and U . Thus we have three separate contributions to μ → ēee and muon conversion with different 
dependence on the size of the 5D anarchic Yukawa coupling (Y 4

� , Y 0
� , Y−2

� ).

4.2. Numerical analysis

In the previous subsection we attempted to give an idea about the size and the relative im-
portance of the various contributions to our three main LFV observables. While such estimates 
are useful to understand the rough dependence of our results on the input parameters, espe-
cially the Yukawa coupling size, they cannot replace a study of the full parameter dependence. 
To this end we next perform a numerical scan over the “generic” parameter space. We analyze 
four RS models: the minimal RS model (as defined in [15]) as well as a custodially protected 
model (as defined in [17]), each with either an exactly brane-localized or a bulk Higgs including 
its KK excitations in the β → ∞ limit. We refer to these models as M-bulk (minimal, bulk), 
M-brane (minimal, exactly brane-localized), C-bulk (custodial, bulk) and C-brane (custodial, 
exactly brane-localized).

The 5D input parameters needed for the numerical evaluation of the dimension-six Wilson 
coefficients are the 5D Yukawa matrices Y (and Yu in the custodially protected model), the 5D 
bulk mass parameters cψ = Mψ/k of the leptons and the KK scale T . In case of the exactly 
brane-localized Higgs the wrong-chirality Yukawa couplings can in principle differ from the 
“standard” correct-chirality Yukawa couplings, but for simplicity we assume them to be equal. 
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Table 1
Input parameters for the numerical analysis. For the couplings of scalar quark currents to the nucleons we use the results 
of [36] and fix the value of the nucleon–pion σ -term to 50 MeV. The � indicates that we use the average of the values 
given in the references.

mμ 0.105658 GeV [60] me 5.10998 · 10−4 GeV [60]
s2
W

0.231 [60] MH 125.7 GeV [60]
MZ 91.187 GeV [60] MW 80.385 GeV [60]
mt 173 GeV [60] �μ 2.99598 · 10−19 GeV [60]
D[Au] 0.189 [35] Sp[Au] 0.0614 [35]
Sn[Au] 0.0918 [35] Vp[Au] 0.0974 [35]
Vn[Au] 0.146 [35] �Au

capture 8.71 · 10−18 GeV� [61,62]
D[Al] 0.0362 [35] Sp[Al] 0.0155 [35]
Sn[Al] 0.0167 [35] Vp[Al] 0.0187 [35]
Vn[Al] 0.0173 [35] �Al

capture 4.64 · 10−19 GeV [62]

f u
Vp

2 f d
Vp

1

f u
Vn

1 f d
Vn

2

f u
p 0.018 f d

p 0.034
f u
n 0.016 f d

n 0.038
f s
n 0.043 f s

n 0.043

The quark flavour parameters would affect our analysis only through suppressed terms, which 
are omitted (see Section 3).

Since we do not want to give up the idea of “natural” Yukawa matrices, we further assume 
that the moduli of the complex Yukawa matrix entries are O(1) and anarchic. To illustrate how 
the size of the 5D Yukawa matrix entries affects the different observables, we adopt two scan 
strategies. In both the modulus of the matrix elements is larger than 0.1, but in the first (second) 
scan the maximal modulus Ymax is bounded by 0.5 (3 for the second). The phases are arbitrary. 
Further, we require that the measured values of the charged lepton masses are reproduced by the 
chosen sets of 5D parameters. Contrary to the minimal RS model the custodially protected RS 
model includes a right-handed neutrino and a Dirac mass term for the neutrinos. Here we only 
require the neutrino masses to be below 0.1 eV. However, we do not demand that the PMNS 
matrix is reproduced by the 5D parameter sets, since the precise values of the neutrino masses do 
not affect charged LFV, and since, as mentioned in the introduction, the explanation of neutrinos 
masses and mixings is considered to lie outside the present model frameworks, as must obviously 
be the case for the minimal models. In practice, we randomly generate 5D Yukawa matrices 
within the above mentioned constraints, and then fix the 5D mass parameters cψi

such that the 
correct lepton masses are obtained. For fixed value of the KK scale T and given scan strategy, we 
generate about 2 · 105 Yukawa matrices. For each of these we calculate the Wilson coefficients 
and then the branching fractions of μ → eγ , μ → e conversion, μ → 3e, τ → μγ , and τ → 3μ. 
The required low-energy parameters are shown in Table 1. We also added the material constants 
of aluminium, which serves as the target for the next generation of muon conversion experiments.

4.2.1. Minimal model
The results of our numerical scan through the constrained parameter space are best illustrated 

in two-dimensional scatter plots, which visualize the typical range of values for the branching 
fractions and correlations between the observables. It is important to keep in mind that the point 
densities in these scatter plots should not be used as a measure for the likelihood of the corre-
sponding value in a given model.
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Fig. 14. 2D scatter plots of the branching ratios μ → eγ and μ → 3e for fixed T (4 TeV upper row, 8 TeV lower row) 
with Ymax = 0.5 in orange (light grey) and Ymax = 3 in blue (dark grey), respectively. The left panels show the results for 
the M-bulkmodels, the right panels for the M-brane ones. The current experimental bounds on the branching fractions 
are given by solid lines. The region above/to the left is excluded. The sensitivity of future experiments is shown by the 
dashed lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.)

Fig. 14 shows the values and correlation of the μ → eγ and μ → 3e branching fractions in 
the minimal RS model for two different values of T , T = 4 TeV (top) and T = 8 TeV (bottom). 
T = 4 TeV is also roughly the lower bound on the KK scale from electroweak precision observ-
ables [49]. The left panels correspond to the M-bulk scenario, the right panels to the M-brane 
case. Each plot shows the results for Ymax = 3 in blue (dark grey) and for Ymax = 1/2 in orange 
(light grey). The current and expected future experimental upper bounds are shown by solid and 
dashed lines, respectively.

All four plots feature a sharp lower bound for μ → 3e given the μ → eγ rate, which is pre-
cisely given by the relation (99). μ → 3e branching fraction values in the vicinity of this bound 
are dominated by the contributions from the dipole operator. For very large dipole coefficients 
or equivalently very large μ → eγ branching fraction, the tri-lepton decay is always dominated 
by the dipole, and the two observables are strongly correlated. This generates the prominent thin 
line directed to the upper-right in the M-bulk model with large Yukawa couplings.

In the bulk Higgs case μ → eγ is, as expected, quite sensitive to the upper bound Ymax. This 
is a consequence of the YY †Y terms in the dipole coefficient. They are naturally flavour-violating 
and scale with Y 2

max. Consequently, the scan with larger Yukawa entries includes points with sub-
stantially larger μ → eγ branching fraction than the small Yukawa coupling scan. However, the 
dipole coefficient has two components. While the Higgs and the small Barr–Zee contributions 
scale as Y 2

max and vanish when the 5D Yukawa couplings go to zero, the gauge boson exchange 
contribution is not very sensitive to the Yukawa coupling size. In fact, for a generic anarchic 
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Fig. 15. Correlation of the branching ratios for μ → eγ and μ → e (upper row) and for μ → 3e and μ → e (lower row), 
both for T = 4 TeV. The left panels show the results for the M-bulk, the right panels for the M-brane model.

Yukawa it grows mildly with decreasing Yukawa size, see Fig. 13. Thus there has to be a smooth 
transition from the “Higgs-dominated” to the “gauge-dominated” regime when the Yukawa cou-
pling decreases.

To illustrate this point we included three curves in the plots for the bulk Higgs case defined as 
follows. We chose three (random) Yukawa matrices with Ymax = 3 and scale the matrices down 
to Ymax = 0.25, keeping the relative size of the matrix entries fixed. The curves show the result-
ing trajectories. For large Yukawa couplings the curves all run close to the dipole dominance 
bound. With decreasing Yukawa couplings Br(μ → eγ ) and Br(μ → 3e) first also decrease 
following the change in the dipole coefficient. Then the growing effects of the tree-level oper-
ators begin to dominate μ → 3e and the corresponding branching fraction begins to increase, 
while Br(μ → eγ ) continues to decrease. For even smaller Yukawa coupling the gauge-boson 
exchange contribution to Br(μ → eγ ) exceeds the rapidly decreasing Higgs contribution and 
Br(μ → eγ ) reaches a hard lower limit.

The exactly brane-localized Higgs case displayed in the right panels of Fig. 14 behaves the 
same in this respect. However, since the leading Higgs contribution is suppressed for the ex-
actly brane-localized Higgs, the range of values for Br(μ → eγ ) is almost independent of Ymax. 
A change in Ymax predominantly affects Br(μ → 3e), which increases for smaller Ymax due to 
the larger coefficients of four-fermion and fermion–Higgs operators. This also explains the drop 
shape of the scatter plot for Ymax = 1/2. Points with large μ → 3e branching fraction arise from 
large tree-level Wilson coefficients either due to the structure of the Yukawa matrix or due to 
accidentally small couplings. In both cases the process μ → eγ also receives sizeable contribu-
tions from the tree operators leading to the roughly linear correlation in the upper-right corner of 
the scatter points.
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Values and correlations of μ → 3e and μ → eγ with muon conversion in gold are shown 
in Fig. 15 (colour coding as in the previous figure). The top row shows μ → eγ against μ → e

(M-bulk left, M-brane right). The two observables are essentially uncorrelated in the bulk Higgs 
scenario. This agrees with our previous observation that muon conversion is mostly insensitive to 
the dipole coefficient aA

ij which governs the μ → eγ branching fraction. Only in rare cases is the 
dipole operator large enough to dominate also muon conversion leading to the noticeable spike 
towards the right in the upper-left plot. In the exactly brane-localized Higgs case (upper-right 
panel), correlations are absent only for Y� = 3. As mentioned before, for Y� = 1/2 μ → eγ

receives non-negligible contributions from tree-level operators, which manifests itself in a weak 
correlation.

For the same reasons μ → 3e and μ → e (bottom row) are strongly correlated for small 
Yukawa couplings in M-brane model, but only feature a lower bound on the branching fraction 
of μ → 3e for a given Br(μ → e) in the other scenarios. As noted in the previous subsection, 
the branching fraction of μ → e decreases with increasing values for Y�. This effect can best be 
seen in the upper left panel of Fig. 15. The slopes of the three sample trajectories also verify this 
effect.

4.2.2. Custodially protected model
Fig. 16 shows the combined results for the custodially protected model. The left panels corre-

spond to the bulk Higgs model C-bulk and the right panels to the exactly brane-localized model 
C-brane. The colour coding is the same as above. Here the KK scale T was fixed to 8 TeV, since 
for T around 4 TeV it is already non-trivial to find points, which are not in conflict with the muon 
conversion bound.

The broad picture for model C-bulk is almost the same as for M-bulk. The shape of the distri-
butions does not change. Quantitatively, the custodially protected model generates significantly 
larger branching fractions. In particular, the μ → eγ branching fraction, which is most sensitive 
to the magnitude of the dipole operator coefficient, is typically enhanced by a factor of about 
five. This was to be expected as the main difference in the custodially protected model is a larger 
gauge- and Higgs-contribution to the dipole coefficient aA

ij . Again the dipole operator creates a 
correlation of μ → eγ and μ → 3e especially for the larger value of Ymax.

For the C-brane model the distributions are very different from the result in the M-brane 
model. This is a consequence of the new additional terms (70) in aH

ij . This additional contribu-
tion to the dipole coefficient is only slightly larger than the corresponding contribution for a bulk 
Higgs. The phenomenology for bulk and brane Higgs case is therefore quite similar in the cus-
todial RS model. The bounds imposed by the non-observation of LFV are comparable, although 
more restrictive for the exactly brane-localized Higgs.

The fact that the sign of aH
ij depends on the Higgs localization does not lead to a noticeable 

effect. If the dipole operator is dominated by the Higgs contribution, a sign flip of the coefficients 
aij only affects terms in (13), (15) and (17) that come from an interference of the dipole with 
a four-fermion operator. In general, these terms do not provide the dominant contribution to the 
branching fractions. The situation would be different if the RS contribution could interfere with a 
sizeable SM contribution to LFV observables. An observed enhanced or reduced rate could then 
be used to discriminate the brane from the bulk Higgs model.15

15 This is precisely what is observed in Higgs production, see e.g. [31].
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Fig. 16. Correlation of the branching ratios for μ → eγ and μ → 3e (top row), μ → eγ and μ → e (middle row), and 
μ → 3e and μ → e (bottom row) for T = 8 TeV in the custodially protected model. Model points with Ymax = 1/2 are 
indicated by orange (light grey) points. For Ymax = 3 we use blue (dark grey) points. The left panels show the results for 
the C-bulk, the right panels for the C-brane model. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.)

4.2.3. EDM constraint
The randomly sampled Yukawa matrices also generate electric dipole moments (EDMs) of 

the leptons through the non-hermitian part of αA
ij , see (8). In case of the electron the relation is 

given by

de = Qee

2me

F3(0) = me i (AR − AL) , (111)

where the form factor F3 now refers to the flavour diagonal electron–photon vertex, and AL,R

are defined as in (37), (38) with subscripts 12 replaced by 11, and mμ by me.
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We checked that the present experimental limit on the electron electric dipole moment [63],

|de| < 8.7 · 10−29 e cm (at 90% CL) , (112)

does not affect our conclusions. That is, while up to 90% of the randomly scanned model points 
in the sample with Ymax = 3 (and up to 25% in the Ymax = 0.5 sample) fail the EDM constraint 
for the bulk Higgs models, the EDM and the LFV observables are uncorrelated, so that the 
ranges covered by the scatter plots look almost exactly the same, when the points failing the 
EDM constraint are excluded. Only the tips of some of the spikes pointing to the upper-right in 
the scatter plots are cut-off in the Ymax = 3 sample, but these points are also excluded by LFV 
constraints (see solid lines in the previous figures). The predicted values of |de| and the μ → eγ

branching fraction are shown in Fig. 17 for the different RS models and values of T considered 
in this analysis. The featureless shape of the area filled by the sampled points illustrates the lack 
of specific correlations. The scaling of both observables with Y� is visible (orange/light grey vs. 
blue/dark grey sample) whenever there is an unsuppressed contribution from Higgs exchange.

We can turn this question around and ask what are the expectations for value of the electron 
EDM after the LFV constraints on the RS models are taken into account. To this end we create 
histograms of |de| for our samples before and after applying the present LFV constraints. The 
M-brane models are special, since the Higgs contribution is strongly suppressed. In these models 
the EDM distribution peaks at a few times 10−30 e cm for T = 4 TeV, well below the present limit 
(112) and is hardly altered by the LFV constraints. The tail of the distribution above about a few 
times 10−29 e cm is, however, cut away independent of the value of the Yukawa coupling. This 
is different for the other models where the distribution and impact of constraints is sensitive to 
the maximally allowed Yukawa coupling Ymax. This is illustrated on the example of the M-bulk 
model in Fig. 18, where the left two panels refer to T = 4 TeV, Ymax = 0.5 and the right ones to 
T = 8 TeV, Ymax = 3. The respective upper plot shows the distribution of de before (orange/light 
grey) and after (dark grey/blue) the LFV constraints are applied. The second distribution is hardly 
visible, as most of the models in these two samples are excluded by the LFV constraints. In 
the second row we therefore show the normalized distribution for the two cases. In the first 
case, T = 4 TeV, Ymax = 0.5 the tail of larger values of de is cut away, while the peak of the 
distribution remains at the same value as without the LFV constraints. In the second case, T =
8 TeV, Ymax = 3, most of the distribution without LFV constraints lies above the EDM bound 
(112) indicated by the vertical line. When the LFV constraints are taken into account the expected 
value of the electron EDM reduces by more than an order of magnitude. We note that with LFV 
constraints applied the current EDM bound is always close to the upper end of the distribution. 
In other words, quite generally, the lepton-flavour violating processes put similar generic bounds 
on the electron EDM as the current bound from the direct EDM measurement. Of course, these 
conclusions hold in the parameter space of RS models with anarchic Yukawa couplings in a 
statistical sense, and not for any particular model.

4.3. A note on LFV τ decays

Tau decays offer another opportunity to study LFV. However, the short lifetime of the τ and 
its high mass make it unsuited for studies in low-energy facilities. The best bounds on processes 
like τ → eγ or τ → 3μ come from BaBar [64], Belle [65] as well as LHCb [66].

The RS model naturally generates higher rates for τ → μ, e transitions than for μ → e transi-
tions, since there is a close relation of lepton masses with the corresponding zero-mode profiles, 
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Fig. 17. Correlation of the electron EDM with the μ → eγ branching ratio for all six scenarios. Data sets with Y� = 1/2
are indicated by orange (light grey) points. For Y� = 3 we use blue (dark grey) points. The left panels show the results 
for the bulk Higgs, the right panels for the exactly brane-localized Higgs. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.)

which also control the size of LFV. However, the fantastic sensitivity of past and future exper-
iments searching for muon flavour violation still makes searches in the muon sector the most 
promising avenue, unless an additional flavour structure suppresses muon flavour violation.

Nevertheless, it is instructive to provide the expectations for tau LFV in the RS model. In 
Fig. 19 we show the values and correlation of the τ → μγ and τ → 3μ branching fractions. The 
colour coding is the same as in the previous subsection. The solid lines correspond to the current 
best upper bounds on the branching fractions. Compared to the bounds in the muon sector the 
current limits from tau decays are not restrictive even for T = 4 TeV. An improvement of more 
than five orders of magnitude would be required for constraints as severe as those from muon 
decays.
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Fig. 18. Histograms of the electron EDM distribution of the M-bulk sample before (orange/light grey) and after (dark 
grey/blue) the LFV constraints are applied for T = 4 TeV, Ymax = 0.5 (left) and T = 8 TeV, Ymax = 3 (right). The first 
row shows the absolute number of representatives of the sample, the second the normalized distribution. The vertical line 
indicates the current bound (112) on the EDM. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)

Fig. 19. Correlation of the branching ratios of τ → μγ and τ → 3μ for T = 4 TeV in the minimal model. The left panel 
shows the bulk Higgs, the right the exactly brane-localized Higgs case.

Qualitatively, the τ → μγ vs. τ → 3μ plot is similar to the corresponding “muonic” plots 
(first row in Fig. 14). The main difference is the large effect of the four-fermion and fermion–
Higgs operators. For the exactly brane-localized Higgs this generates the strong correlation for 
small Yukawa couplings Ymax = 0.5. In the bulk Higgs case this effect prevents scatter points 
close to the dipole-dominance line.
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4.4. Discussion

In the following we summarize and emphasize the main conclusions from the phenomenolog-
ical study. Based on the topologies of the decays we (naively) expected that μ → e conversion 
in nuclei and μ → 3e are driven by the current–current operators (�̄e��μ) (ψ̄�ψ), whose Wil-
son coefficients are determined by the tree-level four-fermion and Higgs–fermion coefficients, 
ca
ij and bij , in the dimension-six SM effective Lagrangian (3). Whereas the rate for radiative 

muon decay should primarily be determined by the loop-induced dipole operator. This situation 
would be ideal, as the two groups of processes would then provide complementary information 
on the underlying RS model through the different parameter dependencies of the relevant Wilson 
coefficients.

However, and this is our main message #1, we find that this is not generally the case. In 
particular, the process μ → 3e can receive sizeable contributions from dipole operators. This can 
even be the dominant effect as indicated by the prominent dipole dominance line in the plots. 
In the minimal RS model with an exactly brane-localized Higgs and small Yukawa couplings 
the situation can also be reversed. Then μ → eγ receives relevant contributions from tree-level 
coefficients and is no longer governed by the dipole operator alone. This makes it clear that it 
is necessary to consider all dimension-six operators for every observable to arrive at a reliable 
picture of LFV in the RS model.

From our numerical analysis we also see that it is important to include both, the Higgs and the 
gauge-boson exchange contribution to the penguin diagrams that generate the dipole Wilson co-
efficient αA

ij , because they exhibit a fundamentally different dependence on the parameters—most 
notably the Yukawa coupling. Only the full dipole coefficient including all contributions gives an 
accurate description of the μ → eγ decay over a large range of Yukawa sizes. Without the Higgs 
contribution the dominant effect for large Yukawa couplings is completely missed. Whereas the 
presence of the gauge-boson exchange contribution prevents the dipole from becoming irrele-
vant for small Yukawa couplings. This manifests itself in a lower bound on Br(μ → eγ ), which 
depends only on the structure of the Yukawa matrix but not on the overall size of the couplings. 
This is our main message #2: in RS models Higgs and gauge-boson induced flavour violation can 
both be important and only a full calculation of the dipole operator coefficient gives a reliable 
picture of LFV over all of the parameter space.

The scans suggest that anarchic RS models with minimal particle content typically need KK 
scales T larger than 4 TeV to be compatible with the current data on charged LFV. For models 
with a bulk Higgs the combination of μ → eγ and muon conversion makes the bound on T
almost insensitive to the size of the Yukawa matrix. For an exactly brane-localized Higgs the 
situation is more complicated. T � 4 TeV is still valid for small Yukawa couplings. However, 
in this model the limit on T comes mainly from muon conversion data. As discussed above, 
muon conversion is dominated by tree-level operators whose Wilson coefficients decrease for 
increasing Y�. Thus, the bound on T gets weaker the larger the Yukawa couplings. For Ymax = 3
we can still find numerous data point that satisfy all constraints for T as low as 2 TeV. In the 
custodially protected model on the other hand, the larger particle content generally leads to larger 
Wilson coefficients. Consequently, the lower bound on admissible KK scales T is higher. It is 
noteworthy that in the custodially protected model the bound on T is essentially independent of 
the Higgs localization for all three observables.

The limits on the KK scale T will significantly improve in future experiments. Especially 
the next generation muon conversion searches will provide strong constraints on RS models. Our 
analysis was performed for a gold target nucleus—DeeMe [67], Mu2E [68] and COMET [69] use 
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silicon and aluminium target nuclei, respectively. Aluminium and silicon have an approximately 
20 times smaller muon capture rate compared to gold, which enhances the branching fraction, but 
the wave-function overlap integrals (D, V, S) relevant to muon conversion are also smaller, see 
Table 1. Thus an expected lower bound on the branching fraction of 7 × 10−17 for aluminium 
is roughly equal to a bound around 10−16 in gold [35] (indicated by the dashed lines in the 
plots). This combined with the expected improvement on Br(μ → eγ ) during the next run of 
the MEG experiment [70] could exclude the parameter space of anarchic RS models (custodially 
protected or minimal) up to a lowest KK resonance mass of 20 TeV, which corresponds to T �
8 TeV. The current μ → 3e constraint is less constraining than the one from muon conversion. 
However, the proposed Mu3e experiment [71] aims for sensitivity to a branching fraction of 
about 10−16. At this level μ → 3e alone will be able to exclude anarchic models with T �
5 TeV. Naturally, should LFV be observed in any of the new experiments, the model-dependent 
correlations among different processes can be used to further constrain the RS parameter space. 
Hence, our main message #3: LFV violation provides very strong constraints on RS models, and 
future experiments will further strengthen them.

It is interesting to compare the charged LFV constraints on the RS model and its KK scale to 
those derived from other processes. The non-observation of direct KK gluon production forces 
T to be larger than only about 1 TeV. This cannot compete with the bounds from electroweak 
precision observables, notably the S and T parameter, which are essentially model-independent. 
They only depend on the particle content of the model and to a lesser degree on the 5D Higgs 
profile [72]. For the two models discussed in this work the electroweak precision observable 
bounds are T > 2.3 TeV (custodially protected) and T > 4 TeV (minimal) [49]. For not too 
large Yukawa couplings the RS contribution to (g − 2)μ is model-independent in the same sense 
[15,17]. However, in this case the SM contribution is non-zero and given the present situation of 
experiment and SM theory, the bounds on the KK scale are not competitive.

If one allows for a somewhat stronger dependence of the bounds on the model parameters, 
Higgs production (and subsequent decay) is also an interesting observable. It depends more 
strongly on the (mainly quark) Yukawa matrices Yu, Yd than the oblique parameters, but is still 
far less sensitive to its detailed structure than processes like μ → 3e, because Higgs production 
depends to leading order only on the traces of Y †

uYu, Y †
d Yd . The trace of a product of anarchic 

matrices follows a narrower distribution than an individual matrix element. One finds that T has 
to be larger than 2 (4) TeV @ 95% CL for Y� ≈ 3 in the minimal (custodially protected) model 
with a narrow bulk Higgs [31]. For smaller Yukawa couplings the bound becomes weaker as the 
effect on the production cross section decreases with Y�. For the exactly brane-localized Higgs 
the constraints are stronger, and one finds the same bounds on T as above already for Y� ≈ 1. 
As we have seen the situation is different for LFV observables. In the minimal model an exactly 
brane-localized Higgs leads to weaker bounds than a bulk Higgs, and in the custodially protected 
model the bound from the bulk Higgs (with KK modes) is comparable to the one in the exactly 
brane-localized scenario. Thus for large quark Yukawa couplings and the exactly brane-localized 
Higgs, Higgs production provides at least equally strong bounds on the KK scale than the non-
observation of charged LFV. The LHC will be able to improve on this further in the future. In 
all other cases the next generation LFV experiments will be able to set the most stringent limits 
on the KK scale. Of course, this comparison assumes that the magnitude of anarchic Yukawa 
couplings is roughly the same in the quark and lepton sectors.

The quark-sector Yukawa couplings also enter the RS modification of meson oscillations, 
where in particular εK , which measures CP violation in kaon mixing, is very sensitive to coloured 
KK states [8,9]. If we follow [8] and estimate this effect from the dominant left–right four-quark 
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operator (QiγμT AQi)(Djγ
μT ADj ) along the lines of Section 4.1, we find that T in excess of 

8 TeV is needed to avoid conflict with experimental data. We have seen in the previous section 
that for any given data point μ → eγ can differ by orders of magnitude from the simple estimate, 
since cancellations may or may not be present for a given set of 5D Yukawa and mass parameters. 
The same is true in the quark sector and much smaller modifications of εK than indicated by the 
naive estimate are possible, see [9]. We confirmed this independently using the results of [73]. 
Thus, from an analysis similar to the one performed in the previous section, as well as from [9], 
the limit of the TeV brane scale from εK is around T = 7 TeV—quite close to the one expected 
from the next generation LFV experiments. However, contrary to εK , whose ultimate reach is 
limited by the theoretical precision of the SM prediction, the potential of LFV observables, in 
particular of μ → e conversion, is not yet exhausted. In any case, given that the quark and lepton 
Yukawa couplings may exhibit different patterns, independent tests of the RS model in both the 
quark and lepton flavour sectors in a wide range of observables are not redundant.

Our findings can be compared to the results of [13], which provided the first detailed analysis 
of lepton flavour violation in the minimal RS model in the KK mode picture. The branching ratio 
of μ → eγ is determined from the Higgs-exchange contribution to the dipole Wilson coefficient 
alone, which is computed via one-loop diagrams involving the Higgs zero-mode and first fermion 
KK excitation. Muon conversion and μ → 3e are computed from the tree-level Wilson coeffi-
cients, while the dipole contribution is neglected. Both exactly brane-localized and bulk Higgs 
scenarios are investigated. We can compare with our full results only for the bulk Higgs case as 
their exactly brane-localized Higgs result for the dipole operator is cut-off dependent. Despite 
these caveats the overall size of the bound on the KK scale T for a bulk Higgs is compatible 
with the one found above. The main difference is the dependence of the branching fractions on 
the model parameters. As [13] only includes the Higgs contribution,16 the dipole coefficient has 
a straightforward dependence on the Yukawa coupling size Y�. The identification of the depen-
dence on the Yukawa coupling size as a distinguishing feature of tree-level and loop-induced 
observables, i.e. muon conversion and tri-lepton decay as opposed to �′ → �γ , is however valid 
only for medium-size Yukawa couplings, since otherwise the neglected gauge-boson contribution 
with its different dependence on Y� becomes relevant for small Y�, and for large Y� the tri-lepton 
decay is dominated by the dipole operator and therefore effectively also loop-induced.

We can also compare our results with [14]. Here the Higgs-exchange contribution to the dipole 
operator is not considered. The dipole coefficient is computed in the 5D framework from a subset 
of gauge-boson exchange diagrams including a dimension-eight effect with three Yukawa ma-
trices. Comparing orders of magnitudes their results for μ → eγ and μ → 3e are similar to our 
exactly brane-localized Higgs case in the minimal model. In particular, the lower bound on the 
μ → eγ branching fraction for small Yukawa couplings is also present in their estimates.

5. Summary

In this paper we have undertaken a comprehensive study of charged lepton flavour violation 
in Randall–Sundrum models. The approach follows the strategy developed in [15], that is we 
assume that the KK scale is significantly larger than the electroweak scale and match the RS 
theory to the SM effective theory including dimension-six operators by integrating out the extra 
dimension in a fully 5D quantum-field-theoretical framework. Some of the Wilson coefficients of 

16 The absence of the KK modes does affect the qualitative characteristics of the Higgs contribution.
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the dimension-six operators could be taken from [15,17] and the remaining ones were computed 
here. We considered the RS model with minimal field content and an extended model with ad-
ditional fields to protect low-energy precision measurements from custodial symmetry violating 
contributions. We further considered three implementations of the IR-brane localized Higgs field. 
The exactly localized case and the limiting cases of a bulk Higgs with and without KK Higgs 
excitations. The third scenario was motivated by the recent work [20], which demonstrated the 
non-decoupling of Higgs KK modes in the KK mode picture. We confirm this finding within the 
5D framework.

Our calculation is the first complete one of dimension-six effects (more precisely those 
not suppressed by powers of small lepton masses), and considerably sharpens previous results 
from [13,14,16]. This concerns in particular the Wilson coefficient of the electromagnetic dipole 
operator L̄iσ

μνEjFμν . Not only does it depend on the way the Higgs is localized near the 
IR brane, which has phenomenological consequences. It also receives three contributions with 
different dependence on the magnitude of the anarchic 5D Yukawa matrices, which can all be 
important in certain parameter regions. Amongst these the gauge-boson exchange contribution is 
computationally the most demanding. As already emphasized in the discussion of our results in 
the previous section the interplay of the three contributions leads to distinctive features in the scan 
of the parameter space and it is important to include them all. We also find that μ → 3e can re-
ceive sizeable contributions from dipole operator, while in some cases μ → eγ receives relevant 
contributions from tree-level operators and is no longer governed by the dipole operator alone.

Assuming generic anarchic Yukawa matrices we studied the typical range for the branching 
fractions of μ → eγ , μ → 3e, μN → eN as well as τ → μγ , τ → 3μ in both the minimal 
and the custodially protected RS model. The combination of μ → eγ and μN → eN currently 
provides the most stringent constraints on the parameter space of the models. A typical lower 
limit on the KK scale T is around 2 TeV in the minimal model (up to 4 TeV in the bulk Higgs 
case with large Yukawa couplings), and around 4 TeV in the custodially protected model, which 
corresponds to a mass of up to 10 TeV for the first KK excitations, far beyond the lower limit 
from the non-observation of direct production at the LHC. The next-generation LFV experiments 
will push the lower limit on the KK scale T further up. Given their projected sensitivity each 
of μ → eγ , μN → eN and μ → 3e will contribute to improving the current bound. When 
combining all searches, the non-observation of lepton-flavour violation will exclude anarchic RS 
models without additional flavour symmetries up to a KK scale of T ∼ 8 TeV, which corresponds 
to KK gluon masses of about 20 TeV.

We also correlated the electric dipole moment predicted by the RS models with lepton flavour 
violating observables in the presently considered scenario of random anarchic Yukawa matrices. 
We find that the non-observation of charged LFV in current experiments imposes a similar bound 
on the electron EDM as the one set by the direct EDM measurement.
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Appendix A. The bulk Higgs

For the bulk Higgs we follow [47,48]. The 5D Higgs action reads

S� =
∫

d4x

1
T∫

1
k

dz
1

(kz)5

[
gMN (DM�)† (DN�) − μ2

z2
�†�

− δ(
√

g55(z − 1/T ))V1/T − δ(
√

g55(z − 1/k))V1/k

]
. (113)

The brane potentials are

V1/k = m1/k �†�, V1/T = −m1/T �†� + λ
(
�†�

)2
(114)

with m1/k = (2 + β)k. We define β = √
4 + μ2. Note that in [47] the IR brane potential is, up to 

normalization, written as

V1/T = λ̃

2k2

[
�†� − v2

TeV

2

]2

(115)

where the coupling constant λ̃ is dimensionless. For our purposes the form of (114) is more 
convenient. The choice for the UV potential parameter m1/k leads to a Higgs vacuum expectation 
value (vev) that rises towards the IR brane for positive β .

A.1. Zero mode and vacuum expectation value

The zero-mode equations of motion are given by(
z3∂zz

−3∂z − μ2

z2

)
�(0)(z) = −m2

0�
(0)(z) (116)

∂z�
(0)

�(0)

∣∣∣∣∣
z=1/k

= m1/k ,
∂z�

(0)

�(0)

∣∣∣∣∣
z=1/T

= m1/T

T

k
(117)

The boundary conditions ensure that the boundary terms arising from integration by parts vanish. 
m2

0 is the squared mass of the zero mode in the unbroken phase. As we will see below it is 
tachyonic and of the order of the physical Higgs mass, i.e. much smaller than the KK scale T .

The general solution of the differential equation is

�(0)(z) =N0z
2 (Jβ(m0z) + CYβ(m0z)

)
. (118)

The UV-brane boundary condition can be used to determine

C = − Jβ+1(m0/k)

Yβ+1(m0/k)
≈ 2−2(1+β)π

�(1 + β)�(2 + β)

(m0

k

)2+2β

for m0 � k . (119)

Observing that Jβ(x)/Yβ(x) ∝ x2β for small arguments, we find that

Jβ(m0z) � CYβ(m0z) (120)
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for m0 � T . We can use this approximation for the zero mode to obtain

�(0)(z) =N0z
2Jβ(m0z) ≈N0z

2+β +O(m0z) . (121)

The overall normalization is given by
1
T∫

1
k

dz

(kz)3
�(0)(z)

2 = 1 ⇒ N0 ≈
√

2(1 + β)

1 − ε2+2β
k3/2T 1+β . (122)

Up to higher terms in m0/T the zero-mode mass is determined by the equation

∂z�

�

∣∣∣∣
z=1/T

= T (2 + β) − m0
Jβ+1(m0/T )

Jβ(m0/T )
= m1/T

T

k
. (123)

Expanding the Bessel function for small argument, we find

m1/T

T

k
− T (2 + β) = − m2

0

2(1 + β)T
+ higher-order terms , (124)

which implies

m2
0 ≈ 2(1 + β)

(
2 + β − m1/T

k

)
T 2 . (125)

Note that m0 must be small compared to T , otherwise the expansions above would not have been 
allowed. We return to this point below.

The 5D profile of the vev is not needed in our computation, since it is done in the unbroken 
electroweak phase. The Higgs vev only enters at the 4D level in the effective Lagrangian—as 
a low-energy parameter determined from experiment. Still it is instructive to see how the vev 
profile arises. To this end we substitute � → 1√

2
(v + h) into the Lagrangian (113) and expand 

all terms (see [31] for a more detailed derivation). We can use that 4D derivatives on v vanish. 
This leads to the equations

(−∂z + T

k
m1/T − 3

T

k
λv2)h|z→1/T = 0 (126)

(∂z − m1/k)h|z→1/k = 0 (127)

(−∂z + T

k
m1/T − T

k
λv2)v|z→1/T = 0 (128)

(∂z − m1/k)v|z→1/k = 0 (129)

along with the standard equation for Higgs bulk profiles. This gives the solution

v(z) =Nvz
2+β , (130)

which is strongly IR localized already for moderately large, positive values of β . The IR bound-
ary condition determines

N 2
v = (

m1/T − (2 + β)k
) 1

λ
T 4+2β . (131)

Equivalently, by requiring that W boson acquires the correct mass

Nv =
√

2(1 + β)

1 − ε2+2β
T β+1k3/2vSM. (132)

With this input we can compute the physical Higgs mass



M. Beneke et al. / Nuclear Physics B 906 (2016) 561–614 609
m2
H = m2

0 + 6(1 + β)
T 2

k
λv(1/T )2

= 2(1 + β)
(
(2 + β)k − m1/T + 3λv(1/T )2

) T 2

k
. (133)

Using

λ
v(1/T )2

k
= m1/T

k
− (2 + β) (134)

this result can be rewritten into

m2
H = 4(1 + β)λ

v(1/T )2

k
T 2 !≈ (125 GeV)2 (135)

and

m2
0 = −m2

H

2
< 0 . (136)

Thus we find |m2
0| � T 2, which was necessary to justify the expansion in the broken phase. 

We note that the requirement that mH ≈ 125 GeV implies a fine-tuning between the parameters 
m1/T and (2 + β)k, see (125). We further note the relations

λv(1/T )2 = m2
H

4(1 + β)T 2
k , (137)

m1/T = (2 + β)k + m2
H

4(1 + β)T 2︸ ︷︷ ︸
�1

k . (138)

A.2. Higgs propagator

The 5D Higgs propagator is determined by the equations[
p2 − μ2

z2
+ z3∂zz

−3∂z

]
��(p, z, z′) = i(kz′)3δ(z − z′) , (139)

∂z��(p, z, z′)
∣∣
z=1/k

= m1/k��(p,1/k, z′) , (140)

∂z��(p, z, z′)
∣∣
z=1/T

= m1/T

T

k
��(p,1/T , z′) , (141)

which can be solved in the standard way, see e.g. [15]. After Wick rotation to euclidean space, 
the full Higgs propagator is given by

�φ(p, z, z′) = �(z − z′) ik3z2z′ 2

×
(
Iβ+1

(p
k

)
Kβ(pz′) + Kβ+1

(p
k

)
Iβ(pz′)

) (
Iβ+1

( p
T

)
Kβ(pz) + Kβ+1

( p
T

)
Iβ(pz)

)
Iβ+1

(p
k

)
Kβ+1

( p
T

)− Kβ+1
(p

k

)
Iβ+1

( p
T

)
+{z ↔ z′} , (142)

where K and I are modified Bessel functions. It is useful to not only have the full propagator, 
but also the zero-mode subtracted propagator. We only work to leading accuracy in v/T , that is 
we approximate

m1/T

T

k
= (2 + β)T . (143)
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The Higgs zero mode is then massless, and its profile is proportional to the vev profile derived 
previously. The zero mode can readily be removed from euclidean propagator via

�ZMS
φ (p, z, z′) = �φ(p, z, z′) − i

(−p2)
�(0)(z)�(0)(z′) , (144)

since removing the zero mode corresponds to removing the pole at p2 = 0 from the full propa-
gator.

A.3. Yukawa matrix scaling

For the bulk Higgs field the Yukawa coupling develops a dependence on the Higgs 5D mass 
μ or, equivalently, β . To see how this dependence arises let us compare the situation with the 
delta-regularized narrow bulk Higgs (40). In the latter case, we find for the 4D SM lepton Yukawa 
matrix the standard expression

yij = f
(0)
Li

(1/T )g
(0)
Ei

(1/T )
T 3

k4
Yij + higher terms

=
√

1 − 2cLi

1 − ε1−2cLi

√
1 + 2cEj

1 − ε
1+2cEj

Yij . (145)

For the bulk Higgs the bulk action contains the interaction term

S ⊃ −
1
T∫

1
k

dz

(kz)5

∫
d4x Y

β
ij L̄i(x, z)�(x, z)Ej (x, z) + h.c. , (146)

where L, E, � are 5D fields, and Yβ is the dimensionful bulk Higgs Yukawa coupling. Inserting 
zero modes and integrating over z, we obtain (up to terms suppressed by powers of ε)

yij = Yβ

√
1 − 2cLi

1 − ε1−2cLi

√
1 + 2cEj

1 − ε
1+2cEj

√
2(1 + β)k1/2

2 − cLi
+ cEj

+ β
. (147)

Since the SM Yukawa coupling should remain finite for large β , the bulk-Higgs Yukawa coupling 
scales as

Yβ ∝ 2 − cLi
+ cEj

+ β√
2(1 + β)

β→∞→
√

β√
2

. (148)

Comparing the expressions (145) and (147) we identify

Yβ = Y√
k

2 − cLi
+ cEj

+ β√
2(1 + β)

. (149)

A.4. KK Higgs example: four-fermion operators

To gain some intuition for the properties of the Higgs KK modes we consider the example 
of the Feynman diagram in Fig. 20, which might contribute to the matching of four-fermion 
operators of the form L̄iEj L̄kEl . The corresponding Wilson coefficient is given by
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Fig. 20. Left panel: Diagram contributing to the matching onto L̄iEj L̄kEl . The intermediate Higgs propagator is zero-

mode subtracted to remove long-distance contributions. Right panel: Wilson coefficient CLELE
1111 as a function of β for 

T = 1 TeV, cL1 = −cE1 = 0.6 and Y = 1.

CLELE
ijkl

T 2
= iY

β
ij Y

β
kl

1
T∫

1
k

dx

(kx)5

1
T∫

1
k

dy

(ky)5
f

(0)
Li

(x)g
(0)
Lj

(x)�ZMS
φ (p = 0, x, y)f

(0)
Lk

(y)g
(0)
Ll

(y) .

(150)

For vanishing four-momentum exchange the zero-mode subtracted Higgs propagator has the 
particularly simple form

�ZMS
φ (0, x, y) = − ik3x2−βy2−β

2β

[
T 2βx2βy2β

(
β
(
T 2

(
x2 + y2

)
− 2

)
− 2

2 + β

)

+x2βθ(y − x) + y2βθ(x − y)

]
, (151)

where we dropped terms suppressed by powers of T/k. With this expression the integrals over x
and y in (150) are straightforward, and CLELE

ijkl can be determined analytically for all values of β . 
CLELE

ijkl vanishes as 1/β in the limit β → ∞, as illustrated in the right panel of Fig. 20.
This result can be understood by looking at the defining expression. The scaling with β is 

determined by three factors: the Yukawa matrix scaling, the scaling of the Higgs propagator, and 
the scaling of the integration variables x, y in the relevant integration regions. The two Yukawa 
couplings each contribute a factor of 

√
β . The Higgs propagator is slightly more complicated. 

Let us examine the three terms square brackets in (151) separately. The first term (without step-
functions) does not feature an immediate suppression for large β , since the 1/β in the prefactor 
of the square bracket is cancelled. The suppression arises only after integration over the bulk 
coordinates. To see this, we write x and y in the overall factor (T 2xy)β as 1/T (1 − x0/β) and 
1/T (1 − y0/β), respectively, such that x0 and y0 measure the distance of x, y from the IR brane 
in units of 1/(βT ), the typical scale for Higgs KK excitations. We then find factors of the form 
(1 − x0/β)β and (1 − y0/β)β , which behave as e−x0 and e−y0 for large β , respectively. Hence 
the first term counts as O(1) only for x and y within 1/(βT ) of the IR brane. The 5D coordi-
nate integrals then count as 1/(βT ) each, and the contribution of the first term in (151) to the 
Wilson coefficient is of order (

√
β)2 × 1 × 1/β2, which vanishes for large β . The remaining two 

terms in (151) have different properties. There is a global factor of 1/β , but there is no require-
ment that x, y are close to the IR brane. Let us focus on the second term, which is non-zero 
only for y > x. It contains the factor (x/y)β , which ensures that the contribution to the Wilson 
coefficient is exponentially suppressed if x � y (1 − 1/β). Changing integration variables from 
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Fig. 21. Left panel: dR/dl as a function of the loop momentum for β = 10, 20, 40, 80, 160 (curves from left to right) for 
the diagrams in the last line of (153). Right panel: Corresponding ratio R as a function of 1/β (no uncertainties shown).

x, y to y, x − y shows that the integral over x − y counts as 1/(βT ), while the integral over y
is effectively unconstrained. Thus the overall total scaling is (

√
β)2 × 1/β × 1/β , which also 

vanishes for large β . The same argument with x ↔ y ensures that the third term in (151) does 
not contribute to CLELE

ijkl for β → ∞.

Appendix B. KK Higgs contributions

The contribution of KK Higgs modes to aH
ij is proportional to the corresponding contribution 

for the Higgs zero-mode for each diagram topology. It is therefore convenient to study the ratio 
of the two contributions,

R = aH
KK

aH
ZM

. (152)

Up to small corrections this ratio is also independent of the flavour of the propagating states. 
The Higgs KK contribution can then be obtained by multiplying the zero-mode result by the 
corresponding R. It should be noted that not all topologies shown below actually contribute to 
aH
ij in a specific RS model, either because the combination of SU(2) and U(1) group factors 

vanishes or because the model does not have Feynman rules that allow for the particular diagram 
to exist. Note that we do not separate contributions from wrong- and correct-chirality Higgs 
couplings. The numbers refer to the sum of both type of contributions, and are given by:

R ≈ 0.27(0.01) R ≈ 0.27(0.01)

R ≈ 0.08(0.01) R ≈ 0.08(0.01)

R ≈ 0.15(0.05)

R ≈ 0.77(0.08) (153)
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Our error estimates are shown in parenthesis. It arises from the numerical integration error and an 
estimate for the extrapolation error to β = ∞, since a numerically stable evaluation is possible 
only up to β ≈ 200–300. The numerically most challenging diagrams are the ones where the 
photon is emitted from the Higgs, since they contain products of KK Higgs propagators. We 
also note that the KK Higgs contribution converges relatively slowly as β → ∞, if the diagrams 
involve an external Higgs attachment to a fermion line in the loop, as illustrated in Fig. 21. The 
typical scaling with powers of β in the different momentum regions discussed in the main text 
does not set in until β ∼ 40. This behaviour agrees with observations made in [20].
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