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Abstract

We study the decay B̄ → Xsγ in Randall–Sundrum models with an IR-localised bulk Higgs. The two 
models under consideration are a minimal model and a model with a custodial protection mechanism. We 
include the effects of tree- and one-loop diagrams involving 5D gluon and Higgs exchanges as well as QCD 
corrections arising from the evolution from the Kaluza–Klein scale to the typical scale of the decay. We find 
the RS corrections to the branching fraction can be sizeable for large Yukawas and moderate KK scales T ; 
for small Yukawas the RS contribution is small enough to be invisible in current experimental data.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

One of the best studied processes in flavour physics is the inclusive radiative B̄ → Xsγ decay. 
On the experimental side numerous experiments [1–8] provide an ever increasing amount of data; 
leading to the current HFAG average [9] of

Br(B̄ → Xsγ )
exp
Eγ >1.6 GeV = (342 ± 21 ± 7) × 10−6 , (1)

where all contributing experimental results were converted as to correspond to a lower photon 
energy cut of 1.6 GeV. A further improvement of this number can be anticipated: the Belle II 
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experiment is expected to be able to measure the branching fraction with an uncertainty of about 
6% [10].

On the theory side, the fact that the rare radiative decay provides both powerful check for 
the Standard Model (SM) of particle physics and is sensitive to physics beyond the SM (BSM) 
fuelled a tremendous effort (see e.g. [11–14] and the references therein) to understand the intri-
cacies of the b → sγ transition. The most recent result [15] is given by

Br(B̄ → Xsγ )thEγ >1.6 GeV = (336 ± 23) × 10−6 . (2)

It is in very good agreement with experiment, cp. (1), and therefore provides non-trivial con-
straints to any New Physics model that can generate additional flavour-changing neutral currents 
(FCNCs).

Extra-dimensional models of the Randall–Sundrum (RS) type [16] are known to have a partic-
ularly rich flavour phenomenology and can, despite an inherent protection mechanism [17], give 
rise to sizeable FCNCs. The characteristic five-dimensional metric of RS models can be written 
as

ds2 =
(

1

kz

)2 (
ημνdxμdxν − dz2

)
, (3)

in conformal coordinates. Here k = 2.44 · 1018 GeV is of order of the Planck scale MPl. The 
fifth coordinate z is restricted to the interval [1/k, 1/T ]. The boundaries z = 1/k and z = 1/T

are typically referred to as Planck and IR brane respectively. The a priori arbitrary scale T is 
assumed of the order of a TeV in order to alleviate gauge-gravity hierarchy issues [18].

One of the main reasons for the popularity of these models is the interplay of (SM) flavour 
and properties of 5D wave functions [19–21]. In particular, mass and CKM hierarchies can be 
related to the strength of the Planck or IR brane localisation of the corresponding KK zero-
mode wave functions [22]. This intimate relationship of geometry and flavour makes the study 
of flavour physics observables all the more intriguing. For most processes like meson mixing 
[23,24] or electroweak pseudo-observables [25–27] the RS contribution arises (to leading order) 
from tree-level corrections to dimension-six operators, e.g., four-quark operators in the case of 
meson mixing.

In the last few years loop-induced processes, that is processes that to leading order do not re-
ceive contributions from tree-level diagrams in RS models, have been studied quite extensively. 
Observables that have been investigated include μ → eγ [28–30], (g − 2)μ [31,32], Higgs pro-
duction and decay [33–38] as well as c → uγ and c → ug [39]. The latter process just as μ → eγ

receives contributions from Kaluza–Klein (KK) states of the Higgs (in models where these are 
present). The subtleties involving their determination have only recently been pointed out [40].

The decay B̄ → Xsγ has been studied previously in the context of RS models in [41] in the 
5d picture and in [42] using a Kaluza–Klein mode decomposition. [42] maintains its focus on the 
decay B̄ → K∗ μ+ μ−. Both works consider only the dominant effects of 5D penguin diagrams 
and neglect the so-called wrong-chirality Higgs couplings terms [28,43]. This is equivalent to an 
RS model with a naively brane-localised Higgs that does not arise from a well-defined limiting 
procedure.

In this letter we want to consider the case of a bulk Higgs field. This scenario is quite general 
as it requires us to take into account both Higgs and KK Higgs contributions. In order to keep 
the advantages of the original setup, we still impose that the bulk Higgs is strongly IR localised. 
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Following the construction of [44] for the bulk Higgs gives a 5D wave function for the Higgs 
vacuum expectation value (vev) of the form

v(z) =
√

2(1 + β)

1 − ε2+2β
k3/2T β+1vSM zβ+2. (4)

Here ε = T/k, vSM ≡ v � 246 GeV and β is a parameter related to the 5D mass of the Higgs 
scalar. The typical width of the zero-mode profile is determined by 1/(βT ); the limit β → ∞
leads to a maximally localised ‘bulk’ Higgs. For our subsequent analysis we always tacitly as-
sume that this limit has been taken.1 We will focus on two types of RS models: the minimal 
model with the same gauge and fermion multiplets as the Standard Model and the custodially 
protected model [47,48] with an extended matter and gauge sector (see [49] for details on the 
specific setup).

This setup was also used in our work of lepton flavour violation [30] and we refer the reader 
to it and to [31] for explicit expressions for the 5D action and associated Feynman rules. For 
the study of the b → sγ transition we can directly transfer the results of [30] to the quark sec-
tor. For simplicity, we only consider the effects of the strong interaction and the Higgs boson. 
Electroweak effects could be included in full analogy to the existing computation of flavour vi-
olation in the lepton sector, however, their inclusion will not lead to a fundamentally different 
phenomenology. Since we focus on QCD effects, we do not investigate the phenomenologically 
interesting decay B → K∗�+�−; it receives tree-level contributions from four-fermion operators 
with both quark and lepton fields, which cannot be generated by gluon exchanges.

The general strategy of the calculation then follows [31]. We start with a fully 5D theory 
and integrate out the compact fifth dimension by matching onto an effective Lagrangian at the 
KK scale T . We will only consider operators of at most dimension six and the corresponding 
effective Lagrangian is the renowned Buchmüller–Wyler Lagrangian [50]. This step is presented 
in Section 2.

We then transition from the symmetric to the broken electroweak phase. The Wilson coef-
ficients of the resulting operators are subsequently evolved from the high scale T down to the 
typical scale of the process b → sγ , μb. This is discussed in Section 3. The phenomenological 
implications of the resulting corrections to the coefficients in the weak Hamiltonian are shown 
in Section 4. We conclude in Section 5.

2. Matching at the scale T

A starting point for a completely general analysis of flavour-violating processes in BSM mod-
els is the Buchmüller–Wyler Lagrangian [50]. The new heavy degrees of freedom have been 
removed by matching onto the effective (dimension-six) Lagrangian. This will capture the dom-
inant effects of any new physics model and only SM fields and dynamics are needed in any 
subsequent analysis. The price for taming a BSM model in this way is encoded in the (poten-
tially) up to 2499 Wilson coefficients.2 Each of these has to be determined by integrating out 
heavy degrees of freedom above the matching scale.

Here we are only interested in the dominant contribution to b → s transitions in a specific 
class of RS models. That is, we only consider the flavour-changing transitions that are mediated 
by KK gluons and the (KK) Higgs. This greatly limits the number of operators that have to be 

1 See [30] for details on how the limit has to be taken if 5D loops with a (dimensional) regulator are involved.
2 If all possible flavour structures are counted [58].
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considered. It is then convenient to consider the following effective Lagrangian at the KK scale 
μKK = T :

Ldim 6 ⊃ 1

T 2

[
a

g
ij Q̄i�σμνT ADj GA

μν + a
γ

ij Q̄i�σμνDj Fμν + h.c.

+ b
QQ
ij Q̄iγ

μT AQi Q̄j γμT AQj + b
QU
ij Q̄iγ

μT AQi Ūj γμT AUj

+ b
QD
ij Q̄iγ

μT AUi D̄j γμT ADj + bDD
ij D̄iγ

μT ADi D̄j γμT ADj

+ bDU
ij D̄iγ

μT ADi Ūj γμT AUj

+ . . .
]

, (5)

where we dropped operators that either will not contribute to leading logarithmic (LL) accuracy 
to b → sγ or are generated by exchange of SU(2), U(1) gauge bosons. Qi corresponds to a 
quark doublet of with generation index i; D and U are down- and up-type singlets. G and F are 
gluonic and electromagnetic field strength tensors, respectively; T A is a generator of SU(3) in 
the fundamental representation. Note that the Lagrangian is defined in the unbroken electroweak 
phase and all quarks are still massless. Hence the indices i, j = 1, 2, 3 are not commensurate 
with e.g. up, charm or top. The ellipses indicate a sizeable set of omitted operators that either 
cannot be generated via QCD effects or whose contribution to b → sγ is suppressed.

In writing (5) we tacitly assumed that we are in a flavour basis where the 5D fermion mass 
matrix is diagonal. Furthermore, (5) already reflects the fact that we will need the coefficient 
of the electromagnetic dipole operator, i.e. instead of working with the field strength tensors 
of SU(2)L and U(1)Y we only included the linear combination that will form the photon after 
EWSB. Using Fierz transformations it is possible to rewrite some of the operators in (5) by 
removing the T a ⊗T a colour structure. This procedure is useful for a general analysis of flavour 
violation as one can use a minimal operator basis [51]. For our simplified analysis this is not 
needed.

The Wilson coefficients a and b will set the initial conditions for the RGE evolution from μKK

to the electroweak scale μEW ∼ MW ∼ mtop where they will induce shifts in the coefficients of 
the well-known weak Hamiltonian. A subsequent evolution down to the scale μb can then be 
performed in the standard way.

Before moving on to the results for the matching calculation let us briefly review the pa-
rameters of the RS model that are relevant to our analysis. As for any BSM study of flavour 
the Yukawa matrices are of crucial importance. An RS Lagrangian incorporates two 5D dimen-
sionless Yukawa matrices, Yu and Yd , corresponding to the couplings of the Higgs to up- and 
down-type SU(2)L singlets. We always impose that these matrices are anarchic, that is, the ma-
trix elements are roughly of O(1) and have random phases. Furthermore, as already mentioned 
above, each 5D Lagrangian (independent of the presence of a custodial protection mechanism) 
contains a 5D mass Mψi

for each 5D fermion field ψi . In practice, it is convenient to work 
with dimensionless parameters cψi

= Mψi
/k. Hence, we have in total nine 5D mass parameters: 

cQi
, cUi

, cDi
with i = 1, 2, 3. In order to obtain a phenomenologically viable low-energy theory 

that reproduces not only the SM quark masses but also the CKM matrix the mass parameters 
cannot be completely unrelated. E.g. cDi

, the mass parameters for the down-type singlets are 
usually not too far from −0.5. See [25] for details on the relation of the various parameters for 
anarchic RS models.



146 P. Moch, J. Rohrwild / Nuclear Physics B 902 (2016) 142–161
2.1. Gluon-mediated four-fermion operators

The simplest way to match the 5D theory in AdS5 onto the effective Lagrangian is using 5D 
Feynman rules [52]. This method is well established, see e.g. [29,31,35] for various applications. 
In particular, it avoids dealing directly with KK sums at the price of a more complicated integral 
structure in loops diagram. However, for operators that can be generated by tree-level interactions 
in the 5D theory no such complications occur and the matching calculation is straightforward.

A further simplification for tree-level matching comes from the fact that there is only a very 
limited number of 5D vertex integrals that can occur. In particular, for intermediate gluons there 
is only one independent structure. The four-fermion Wilson coefficients differ only by symmetry 
factors and 5D mass parameters. We can then use the more general results of [30] for the match-
ing onto four-lepton operators. One only needs adjust the couplings and gauge-group factors 
accordingly.

We find e.g. for the Wilson coefficient of the operator Q̄iγ
μT AQiD̄j γμT ADj

b
QD
ij = (igs)

ln(k/T )

k
T 2

1/T∫
1/k

dx

(kx)4

1/T∫
1/k

dy

(ky)4
f

(0)
Qi

(x)
2
f

(0)
Dj

(x)
2
�

ab,ZMS
gluon (0, x, y) , (6)

where the zero-mode subtracted 5D gluon propagator is given by [31]

�
ab,ZMS
gluon (q → 0, x, y) =�(x − y)δab ik

ln k
T

(
1

4

{
1/T 2 − 1/k2

ln k
T

− x2 − y2 + 2x2 ln(xT )

+ 2y2 ln(yT ) + 2y2 ln
k

T

}
+O(q2)

)
+ (x ↔ y) (7)

and the 5D wave functions are

f
(0)
Qi

(x) = T 1/2−cQi k2x2−cQi

√
1 − 2cQi

1 − ε1−2cQi

g
(0)
D/Ui

(x) = T 1/2+cD/Ui k2x2+cD/Ui

√
1 + 2cD/Ui

1 − ε1+2cD/Ui

(8)

where ε = T/k.
Up to terms suppressed by the ratio ε one then obtains

b
QD
ij = b0 + b1(cQi

) + b1(−cDj
) + b2(cQi

, cDj
) (9)

with [31]

b0 = −gs
2

4

1

ln(1/ε)
,

b1(c) = −gs
2

4

(5 − 2c)(1 − 2c)

(3 − 2c)2

ε2c−1

1 − ε2c−1
,

b2(cQ, cD) = −gs
2

2

(1 − 2cQ)(1 + 2cD)(3 − cL + cD)

(3 − 2cQ)(3 + 2cD)(2 − cL + cD)
ln

1

ε

ε2cQ−1

1 − ε2cQ−1

ε−2cD−1

1 − ε−2cD−1
.

(10)
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Fig. 1. Topologies of 5D one-loop diagrams that contribute to the matching onto aγ/g at order αs . The external boson in 
the diagrams in first line can be a gluon or a photon. Internal bosons lines represent a 5D gluon propagator.

The Wilson coefficients of all other operators are related to bQD
ij . They only differ by sym-

metry factors that take into account the exchange of identical quarks and the potentially different 
external wave functions f (0) and g(0). In particular, one finds

b
QU
ij = b

QD
ij {cDj

→ cUj
} b

QQ
ij = 1

2
b

QD
ij {cDj

→ −cQj
} (11)

bDD
ij = 1

2
b

QD
ij {cQi

→ −cDi
} bUD

ij = b
QD
ij {cQi

→ −cUi
} . (12)

2.2. Dipole operators

The determination of the dipole coefficients aγ and ag is much more involved. Following the 
calculation of [31] the O(αs) contribution to aγ requires the computation of the diagrams shown 
in the upper row of Fig. 1. The contribution to ag involves the same diagrams (with the external 
photon replaced by a gluon) and the additional non-abelian diagrams shown in the lower row 
of Fig. 1. Since the determination of the electromagnetic dipole operators for leptons requires 
all topologies (see [31,32]) both aγ and ag can be obtained from known results by rescaling 
each individual diagram with a simple factors. This also implies directly that the 5D Rξ gauge 
invariance check for the leptonic calculation [31,32] can be carried over to the case of diagrams 
with (KK) gluons.

Let us consider an example: The first diagram in the first row of Fig. 1 with both the internal 
and the external boson gluons. The contribution to ag can be obtained from the known result for 
same diagram topology with an external photon and an internal hypercharge boson B . Starting 
from this result we set all fermion hypercharges Yf to 2, trade the U(1) couplings g′ for gs and 
replace the global factor iQf e from the photon vertex with − 1

2Nc
igsT

A. All other diagrams can 
be determined analogously.

The way the computation of the dipole operator coefficients in [31] is set up, we need to 
include contributions to the dipole structure from one-loop diagrams with an insertion of a 
four-quark operator, see Fig. 2. These extra terms ensure that the Wilson coefficient is scheme in-
dependent. This otherwise occurring scheme dependence is a well-known fact in flavour physics, 
see e.g. [60,61]. By adding the contribution of the four-quark operators we can work with a 
scheme independent “effective dipole coefficient” analogous to the construction of [62].

Due to the required chiral structure only four-quark operators that involve both doublet Q and 
singlets D can contribute: Q̄iγ

μT AUiD̄j γμT ADj . Up to a trivial colour factor this additional 
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Fig. 2. Diagram topology that cancels the residual scheme dependence in aγ/g . The box denotes an insertion of a 
four-fermion operator.

contribution is then again completely analogous to the one in the lepton case and we refer to [31]
for a detailed calculation.

2.2.1. Higgs contributions
It is well known that loop diagrams with internal Higgs exchanges lead to a contribution to 

the dimension-six dipole operators that depends on products of three Yukawa matrices [30,39]. 
This contribution can be sizeable and is an important source of flavour violation [28]. Therefore 
it is important to consider this Higgs contribution alongside the previously discussed gauge-
contribution.

For a bulk Higgs we further need to consider the effect of its KK excitations. The mass of 
the first few Higgs KK states is roughly proportional to the inverse width of the corresponding 
zero-mode [40,44,45]. Nonetheless these modes do not necessarily decouple even for a strongly 
localised zero-mode. This non-decoupling was first shown in [40]; the typical impact of the Higgs 
KK tower is comparable to the effect of the zero-mode alone and therefore non-negligible for the 
determination of the dipole operator coefficient.

Let us first consider the effect of the zero-mode Higgs only. We can partially use the results 
of [30] for the leptonic dimension-six dipole operator to construct the corresponding result in 
the quark sector. Again we only need to replace U(1) charges and add SU(3) colour factors 
as appropriate. For diagrams where a Higgs is emitted from an external leg and not from the 
loop (see the diagram in Fig. 3 for an example), one further has to distinguish two different 
contributions: those where the external quark propagator propagates KK modes and so-called 
off-shell terms that arise if the external propagator is a mass-less zero-mode, but the 1/p2 pole 
in the propagator is cancelled by powers of p in the numerator, see [31] for a detailed discussion. 
The latter terms are basically irrelevant for leptons as they are effectively suppressed by a SM 
lepton Yukawa coupling. They may however play a role in the quark sector due to the large top 
Yukawa coupling and we include these terms in ag/γ .

It is convenient to use the definition Dμ = ∂μ + iQf eAμ + igsT
AGμ for the SM covariant 

derivative with Aμ, Gμ being photon and gluon field; e is the charge of the positron. This defi-
nition then coincides with the choice usually employed in studies of the b → sγ transition, see 
e.g. [46,55], and makes the expressions in the subsequent sections consistent with the standard 
literature.

In the minimal RS model we then find

a
γ

ij

∣∣∣
Higgs

= − e

192π2

T 3

k4

T 8

2k8

(
(2Qe − Qd − Qu)FQ − QdFd + (2Qe − Qu)Fu

)
− e T 3

(2Qd + Qu − Qe) f
(0)
Q (1/T )[YdY

†
d Yd ]ij g

(0)
d (1/T ) (13)
192π2 k4 i j
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a
g
ij

∣∣∣
Higgs

= gs

192π2

T 3

k4

T 8

2k8

(
2FQ + Fd + Fu

)
− gs

192π2

T 3

k4
3f

(0)
Qi

(1/T )[YdY
†
d Yd ]ij g

(0)
dj

(1/T ) , (14)

where the Fq are abbreviations for

Fd = f
(0)
Qi

(1/T )[Yd ]ikF (−cdk
)[Y †

d ]khf
(0)
Qh

(1/T )2[Yd ]hj g(0)
dj

(1/T )

FQ = f
(0)
Qi

(1/T )[Yd ]ikg(0)
dk

(1/T )2[Y †
d ]khF (cQh

)[Yd ]hjg(0)
dj

(1/T )

Fu = f
(0)
Qi

(1/T )[Yi]ikF (−cuk
)[Y †

u ]khf
(0)
Qh

(1/T )2[Yd ]hjg(0)
dj

(1/T )

FT3 = f
(0)
Qi

(1/T )[Yd ]ikFT3(cdk
)[Y †

d ]khf
(0)
Qh

(1/T )2Yd
hjg

(0)
dj

(1/T ), (15)

with

F(c) ≈ − k4

T 5

(3 − 2c) + (1 + 2c)ε4c−2 − (3 − 2c)(1 + 2c)ε2c−1 − (1 − 2c)2ε1+2c

(1 + 2c)(3 − 2c)(1 − ε2c−1)2
,

FT3(c) ≈ − k4

T 5

1 − ε1−2c

1 − 2c
. (16)

In writing the expression for FT3(c) we assume that the mass parameter c is not too far from 
−0.5, which is realised for all parameter points that reproduce the low energy parameters of the 
SM.

In the custodially protected model the Higgs contribution to the dipole is given by

a
γ

ij

∣∣∣
Higgs

= − e

192π2

T 3

k4

T 8

2k8

(
(2Qe − Qd − Qu)(FQ + FT3) − QdFd + (2Qe − Qu)Fu

)
− e

192π2

T 3

k4 (4Qd + 2Qu − 2Qe) f
(0)
Qi

(1/T )[YdY
†
d Yd ]ij g

(0)
dj

(1/T ) (17)

a
g
ij

∣∣∣
Higgs

= gs

192π2

T 3

k4

T 8

2k8

(
2FQ + 2FT3 + Fd + Fu

)
− gs

192π2

T 3

k4
6f

(0)
Qi

(1/T )[YdY
†
d Yd ]ij g

(0)
dj

(1/T ) . (18)

The terms in (13), (14), (17) and (18) with factors of Fq , q = T3, Q, u, d , correspond to the 
off-shell contributions.

As already mentioned we also need to take into account the effect of Higgs KK modes. In 
[30] we absorbed the effect of the KK bosons in global factors called Ri . These were assumed to 
be roughly independent of the 5D mass parameters and therefore allowed for compact analytic 
expressions. Nevertheless there is a nontrivial dependence of the KK contribution on the 5D mass 
parameters; in particular for diagrams with a Higgs emission from an external line. In the lepton 
sector this effect is quite small especially when compared to the sizeable numerical uncertainties; 
we therefore neglected it in [30]. In the quark sector the wide range of 5D masses leads to more 
noticeable effects; since we can only determine these numerically we do not give an explicit 
expression. To give an idea of the potential size: the left panel in Fig. 3 shows the additional 
effect of the mass dependence (without numerical uncertainties) for the diagram shown on the 
right of the same figure. One can see that the effect is indeed of the order a few percent for 
leptons, but can potentially be of O(1) for quarks. It is therefore not feasible to use a simple 
analytic approximation as was done in the lepton sector.
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Fig. 3. Illustration the additional dependence of the 5D mass parameter dependence of the KK Higgs contribution for 
the diagram on the right. cQint , cQext are the 5D masses of the internal doublet propagator and the external doublet 
zero-mode. For leptons generally only a small region in the upper right corner (cQ ∼ 0.4–0.7) would be required.

Furthermore, we need to include KK Higgs corrections to the off-shell contributions to the 
Wilson coefficients. Again these terms are not necessarily suppressed in the quark sector, as the 
third generation Yukawa couplings are sizeable. However, we can only determine this contribu-
tion analytically for the Higgs zero-mode and not for the Higgs KK modes; it is only accessible 
numerically, but is quite small, only about 25% of the corresponding zero-mode effect.

We therefore treat the effect of whole Higgs KK modes similarly to how the gauge-
contribution is handled. Here we only remark that the total effect of the KK modes is smaller 
than the effect of the Higgs zero-mode but not parametrically so, see also [30,40].

2.3. Beyond QCD

We only considered contributions to the Wilson coefficients that proportional to αs or, in the 
case of dipole operators, enhanced by 5D Yukawa couplings. Obviously, exchange of hyper-
charge bosons and SU(2) bosons will also generate four-fermion operators, contribute to both 
dipoles and give rise to operators of the schematic form �†Dμ� q̄γ μq . The latter class of oper-
ators will contribute to e.g. flavour-changing Z couplings.

The U(1) gauge coupling at a scale of 1 TeV is roughly αU(1) ∼ 0.01. The SU(2)L coupling 
is significantly larger with αSU(2)(μ = 1 TeV) ∼ 0.032, but still smaller than αs(μ = 1 TeV) =
0.09. The fact that the weak coupling is only about a factor of three smaller than the strong cou-
pling may warrant including weak effects in the matching calculation. Including the effect of the 
other gauge bosons is not a principle problem; their contribution to the four-fermion coefficients 
as well as the dipole coefficients can directly be obtained from results for leptonic dipoles in the 
literature, see [30].

A further effect that would have be taken into account when considering weak corrections is 
the modification of SM parameters and relations that have been utilised in the SM computation. 
In particular the relation of GF and the W mass, that is frequently used when rewriting the SM 
expressions is affected by higher-dimensional operators (see [53] for the general case and [54]
for the a discussion within the RS model).

It should be noted that KK Higgses do not give rise to relevant contributions to the four-
fermion operators if the Higgs zero-mode is strongly localised towards the IR brane, which we 
always assume. An exchange of a SM Higgs can give a contribution to the four-fermion oper-
ators. But only in a second matching step at the intermediate scale μint ∼ MW when the Higgs 
degrees of freedom would be removed. In this case the flavour-changing Higgs coupling arise 
from dimension-six operators of the form Q̄i�Dj �†� (see e.g. [43]). However, even then the 
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contribution will be suppressed by an additional SM b-quark Yukawa coupling. We therefore 
ignore these contributions.

3. Running to the low scale

The typical energy release in a decay of the type B̄ → Xsγ is of the order of the b quark mass 
and a typical scale choice is thus μb = MB/2 ≈ 2.6 GeV. From the Standard Model calculation 
of b → sγ in the framework of the weak effective Hamiltonian, see [55] for an overview, it is 
known that the RGE evolution from the weak scale μW ∼ MW down to μb introduces sizeable 
operator mixing [56,57].

Our matching calculation was performed the scale μKK ∼ T and QCD corrections are bound 
to be of importance. We then have two possible strategies: We can either evolve the terms in the 
dimension-six Lagrangian from the high scale μKK to the electroweak scale within the unbroken 
SM, then change to the broken phase and complete the evolution down to the scale μb. The 
required anomalous dimensions for the first step can be found e.g. in [53,58,59]. Alternatively, 
we can work with the “broken” operator basis already at the high scale and perform the evolution 
down to the low scale in one step (taking into account the top-mass threshold). The first approach 
is more in the spirit of a matching onto a set of dimension-six operators. The second option 
has simpler “logistics” as we only need consider a single RGE. Both strategies are valid and 
ultimately must be equivalent in a situation where no additional dynamics between μKK and 
μW need to be taken into account.

However, for the specific process at hand the second option has the additional advantage that 
the structure of the required evolution equation has been studied in some detail in [63]. While 
[63] ultimately focuses on scenarios with e.g. a flavour-changing Z′, their operator basis contains 
the full set of normal and colour-flipped four-quark operators. We therefore choose to follow this 
approach.

Let us for clarity introduce the effective Hamiltonian at the high scale μKK , that is used in 
[63]

H(b→s) = −4GF√
2

V �
tsVtb

[
�C7γ (μKK)Q7γ + �C8g(μKK)Q8g + �C′

7γ (μKK)Q′
7γ

+ �C′
8g(μKK)Q′

8g

+
∑

A,B=L,R

∑
q=u,c,t,d,s,b

�C
q

1 [A,B](μKK)Q
q

1 [A,B]

+ �C
q

2 [A,B](μKK) Q
q

2 [A,B]
+

∑
A,B=L,R

�Ĉd
1 [A,B](μKK) Q̂d

1 [A,B] + �Ĉd
2 [A,B](μKK) Q̂d

2 [A,B]
]

(19)

where the operators are given by

Q7γ = emb

16π2
s̄ασμνPRbαFμν Q8g = gs mb

16π2
s̄ασμνPRT A

αβbβGA
μν

Q′
7γ = emb

16π2
s̄ασμνPLbαFμν Q′

8g = gs mb

16π2
s̄ασμνPLT A

αβbβGA
μν

Q
q

1 [A,B] = (s̄αγ μPAbβ) (q̄βγμPBqα) Q
q

2 [A,B] = (s̄αγ μPAbα) (q̄αγμPBqα)

Q̂d [A,B] = (s̄αγ μPAdβ) (d̄βγμPBbα) Q̂d [A,B] = (s̄αγ μPAdα) (d̄αγμPBbα) (20)
1 2
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with PL/R = 1
2 (1 ∓ γ5) as usual and α, β are colour indices. Note that while the usual current–

current and penguin operators

Q1 = (s̄αγ μPLcβ) (c̄βγμPLbα) Q2 = (s̄αγ μPLcα) (c̄βγμPLbβ)

Q3 = (s̄αγ μPLcα)
∑

q=u,c,d,s,b

(q̄βγμPLqβ) Q4 = (s̄αγ μPLcβ)
∑

q=u,c,d,s,b

(q̄βγμPLqα)

Q5 = (s̄αγ μPLcα)
∑

q=u,c,d,s,b

(q̄βγμPRqβ) Q6 = (s̄αγ μPLcβ)
∑

q=u,c,d,s,b

(q̄βγμPRqα)

(21)

are not included in (19), they do enter the renormalisation group equations. This operator basis 
is obviously non-minimal as e.g. Q1 and Qc

2[L, L] are related via Fierz identities. As we only 
consider the LO corrections due to new physics, this does not invalidate the RG analysis [55].

In total we have to consider 70 operators. Fortunately, there are only a few independent entries 
in the leading order (LO) anomalous dimension matrix. Most of which can be taken from [60,61]
once the different operator normalisation has been taken into account.3 The remaining entries 
can be taken directly from [63] where the use of effective, scheme-independent coefficients Ceff

7γ , 

C
eff
8g is implied. In the following we tacitly assume that C7/8 refers to the effective quantity and 

forgo to display the superscript. We will not give the anomalous dimensions explicitly and refer 
to the original literature for details.

With the anomalous dimensions at hand, the renormalisation group evolution equation (RGE)

μ
d

dμ
�Ci(μ) = αs(μ)

4π
[γ T ]ij �Cj(μ) (22)

can be solved in the standard way, provided the initial conditions at the high scale μKK are 
known. As the anomalous dimension matrix γ is sparse, a basis where the evolution is diagonal 
can be determined very efficiently. For the strong coupling constant we use αs(MZ) = 0.1185
with decoupling of the top quark at mt = 170 GeV.

Once the evolution down to μb has been performed the result for the branching fraction of 
B̄ → Xsγ can be obtained using the formula [63,64]

Br (B → Xsγ )|Eγ >1.6 GeV

Br (B → Xsγ )|SM
Eγ >1.6 GeV

= 1∣∣C7γ (μb)SM
∣∣2 + N

(∣∣C7γ (μb)
∣∣2 +

∣∣∣C′
7γ (μb)

∣∣∣2 + N

)
.

(23)

Here we use a minimum photon energy of Emin
γ = 1.6 GeV; the same as was used for the 

HFAG world average. Here the N is a non-perturbative correction [65–68] and we use N(Eγ =
1.6 GeV) = 3.6 × 10−3.

Since we work in leading order in the new physics contribution, BSM effects only induce a 
shift in the Wilson coefficients

C
(′)
7γ (μb) →

[
C

(′)
7γ (μb)

]
SM

+ �C
(′)
7γ (μb) . (24)

3 In [55] the corresponding operators Q1−8 are only rescaled by a factor of 1/4 compared to their definition in 
(20), (21). The anomalous dimensions remain therefore the same.
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The SM value of the dipole coefficients

C7γ (μb) = −0.368 (25)

can be taken from [15]. The primed coefficient C7γ is tiny as it is suppressed by ms/mb and can 
be neglected.

For completeness we also give the formulae for the related process b → sg. It can be treated 
completely analogously; here the shifts in the coefficients C(′)

8g(μb) are required. The NLL SM 
prediction was determined in [69]. The partial width for the process b → sg is given by

�
(
B̄ → sg

) = αs(mb)m
5
b

24π2

∣∣GF V �
tsVtb

∣∣2 |D|2 + �brems
fin . (26)

The explicit expressions for �brems
fin and D can be found in [69]. The branching fraction is then 

obtained as

Br(b → sg) ≈ �(b → sg)

�(b → ceν̄e)
Bexp

sl . (27)

With Bexp
sl ≈ 0.105 ± 0.005 being the experimental semi-leptonic branching fraction of the B-

meson. In the SM one finds [69]

BrSM(b → sg) = (5.0 ± 1.0) × 10−3 . (28)

The last missing piece for our analysis are the initial conditions for the RGE. That is, we need 
the Wilson coefficients �C in (19).

3.1. Initial conditions

The Wilson coefficient in Hb→s at the high scale μKK can be obtained from the Wilson 
coefficients of the dimension-six operators in (5). We need to rotate into the low-energy mass 
basis and replace the SM Higgs field (if present) by its vacuum expectation value v/

√
2:

� →
(

φ+
1√
2
(v + h + iG)

)
Qi → PL

(
Uu

ijuj

Ud
ij dj

)
Ui → V u

ijPRuj Di → V d
ijPRdj . (29)

We only take into account terms that contribute to the Wilson coefficients in (19) and drop all 
others.

As an example, let us consider the term bDU
ij D̄iγ

μT aDiŪj γ
μT aUj in the dimension-six 

Lagrangian. Using the substitution rules (29) we find

bDU
ij D̄iγ

μT ADiŪj γμT AUj −→ βDU
sbququ

s̄γ μT APRb q̄uγμT APRqu =
= − 1

2Nc

βDU
sbququ

s̄γ μPRb q̄uγμPRqu + 1

2
βDU

sbququ
s̄αγ μPRbβ (q̄u)βγμPR(qu)α

= − 1

2Nc

βDU
sbququ

O
qu

2 [R,R] + 1

2
βDU

sbququ
O

qu

1 [R,R] (30)

where a simple single sum over qu = u, c, t is implied. Here we defined βDU
sbququ

= [V d ]†
si ×

[V u]†
bDUV d V u . In general we will use the abbreviation
quj ij ib jqu
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βFF ′
ABCD = [RF ]†

Ai[RF ′ ]†
Cjb

FF ′
ij RF

iBRF ′
jD (31)

with the appropriate flavour rotation matrices RF(′)
.

Comparing (30) with (19), we obtain

4GF V �
tsVtb√
2

�C
qu

1 [R,R](μKK) = 1

2T 2
βDU

sbququ
,

4GF V �
tsVtb√
2

�C
qu

2 [R,R](μKK) = − 1

2NcT 2
βDU

sbququ
. (32)

The remaining four-quark operators can be related to operators in the weak Hamiltonian in the 
same fashion. For clarity, we have relayed the expressions for the Wilson coefficient of (19) to 
Appendix A.

Similarly, we can obtain the effective dipole operator coefficients. Introducing the abbrevia-
tion αγ/g = U

†
d aγ/gVd we find

4GF V �
tsVtb√
2

C7γ (μKK) = 16π2

emb T 2
α

γ

sb

v√
2

+
∑

q=d,s,b

Qq mq CF

mb T 2
β

QD
qbsq

4GF V �
tsVtb√
2

C′
7γ (μKK) = 16π2

emb T 2
[αγ ]†

sb

v√
2

+
∑

q=d,s,b

Qq mq CF

mb T 2
β

QD
sqqb

4GF V �
tsVtb√
2

C8g(μKK) = 16π2

gs mb T 2
α

g
sb

v√
2

−
∑

q=d,s,b

mq

2Nc mb T 2
β

QD
qbsq

4GF V �
tsVtb√
2

C′
8g(μKK) = 16π2

gs mb T 2
[αg]†

sb

v√
2

−
∑

q=d,s,b

mq

2Nc mb T 2
β

QD
sqqb . (33)

All quantities on the right-hand side of (33) are implied to be evaluated at the scale μKK . The 
terms containing a β-coefficient arise from the one-loop diagrams with an insertion of a four-
fermion operator. They ensure that the (effective) coefficient �C7γ is scheme independent, see 
Section 2.2.

4. Phenomenology

To see the potential effect of the additional contribution to C(′)
7γ on the B → Xsγ decay we 

need to scan over the parameter space of the RS model. We will, as mentioned before, consider 
a minimal and a custodially protected RS model with an IR-localised bulk Higgs. The model pa-
rameters include the 5D masses of the fermions as well as the two Yukawa couplings Yd and Yu. 
These parameters are not independent as we need to impose the condition that low-energy param-
eters of the SM are reproduced within uncertainties. We take into account the SM quark masses 
(at the scale T ) and the CKM angles and phase; here we make use of the analytic approximations 
of [25]. A further restriction is imposed by hand on the dimensionless Yukawa matrices as we 
require them to be anarchic. That is, the matrix elements all have roughly a common magnitude 
of O(1) and arbitrary phase. Similar to the analysis in [30] we consider two samples of Yukawas: 
one with a maximum entry size of Ymax = 3 (representing the case of large Yukawa couplings) 
and one with an upper bound of Ymax = 1/2 (representing the case of small Yukawa couplings).
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Fig. 4. Br(B → Xsγ ) as a function of the KK scale T . The blue (dark grey) points correspond to the data set with 
large Yukawas, Ymax = 3. The orange (light grey) points correspond to Ymax = 1/2. The horizontal lines indicate the 
experimental value of and uncertainty on the branching fraction. The left panel shows the result for the minimal RS 
model, the right panel for the custodially protected model.

The main result of our scan through the RS parameter space is shown in Fig. 4. It shows 
the branching fraction B̄ → Xsγ as a function of the KK scale4 T for the minimal RS model 
(left panel) and the custodially protected model (right panel). The blue (dark grey) points corre-
spond to Ymax = 3, the orange (light grey) points to Ymax = 1/2. The current experimental central 
value, see equation (1), is represented by the solid horizontal line; the dashed lines indicate the 
uncertainty.

We find that the branching fraction is, especially for small Yukawas, predominantly larger 
than in the SM. This is due to a sizeable contribution from C′

7γ , that lacks an unsuppressed 
interference term with the SM contribution—its contribution to the branching fraction is always 
positive. In addition to that the contribution to C′

7γ is generally larger than the contribution to 
the unprimed dipole coefficient. The reason for this, as was observed already in [41], is that the 
5D profile of the doublet Q3 (that very roughly corresponds to the bL after EWSB) is typically 
larger than the profiles of the down-type singlets D near the IR brane; consequently the operator 
Q′

7,γ ∝ (sR)ασμν(bL)αFμν receives a larger BSM contribution.
Only for the Ymax = 3 sample one can observe data points with a significantly reduced branch-

ing fraction compared to the SM. This is due to a destructive interference of CSM
7γ and �C7γ that 

can counteract the contribution due to C′
7γ if the Higgs contribution to C7,γ (μKK) is large. This 

effect is more pronounced in the custodially protected model where the additional fermion states 
enhance the dipole coefficient, cp. (13) and (17). For small Yukawas the phenomenology of min-
imal and custodially protected model is quite similar. This is to some extent a consequence of 
working only with QCD- and Higgs-mediated contributions to the Wilson coefficient; QCD is 
treated the same in both models while the electroweak sector is extended and features additional 
bosonic modes. In the Ymax = 1/2 scenario the main distinction between the two models—the 
Higgs contribution—is suppressed.

The smallness of the Higgs contribution for Ymax = 1/2 and the consequently smaller 
�C7γ (μKK) also make the inclusion of operator mixing mandatory. To see this we consider 
two quantities: the full �C7γ (μb) as obtained from the RGE (22) and �C7γ (μb)|naive which is 
also obtained via (22) but we set the Wilson coefficients of all four-fermion operators at the high 
scale μKK to zero. We then consider the ratio �C7γ (μb)|naive/�C7γ (μb). The deviation of the 

4 Note that the mass of the first KK excitation of the gluon is roughly given by 2.5 × T [70].
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Fig. 5. Left panel: Effect of operator mixing on �C7γ . The histogram shows the distribution of |�C7γ (μb)| without 
operator mixing relative to the full |�C7γ (μb)| with mixing (see text for details). The blue (dark grey) and orange 
(light grey) histogram corresponds to Ymax = 3 and Ymax = 1/2. Right panel: Correlation of �C8g and �C7γ in the 
custodially protected RS model for T = 4 TeV. The triangle represents the SM values of C7γ and C8g . Same colour 
coding as in the left panel.

ratio from one indicates the relative importance of the four-fermion operators for the b → sγ

transition. Histograms of �C7γ (μb)|naive/�C7γ (μb) are shown in the left panel of Fig. 5. For 
simplicity we only show the plot in the minimal model for T = 4 TeV. For large Yukawas, 
Ymax = 3 in blue (dark grey), neglecting the contribution of from four-fermion operators leads 
on average to an increase of �C7γ (μb) by 5%. For a few Yukawa data sets the shift can be of 
the order of ±15%. In the case of small 5D Yukawa coupling (shown in orange) ignoring the 
four-fermion operator mixing basically always increases �C7. This can lead to an overestimate 
of the BSM contribution to the B̄ → Xsγ branching fraction by up to 40%. Hence including 
the mixing is relevant and should not be neglected. This is of course quite general as FCNCs 
mediated by new, massive gauge bosons usually create simultaneous contributions to �C7γ and 
to the �C

q

1,2[A, B] as is indicated by the need to include the four-fermion operators to obtain a 
scheme-independent result.

For completeness we also show the correlation of �C7γ (μb) and �C8γ (μb) in the right panel 
of Fig. 5. We see that on average the BSM contribution to C7γ is smaller than the contribution 
to C8g as was also noted in [24]. This is more noticeable for the small Yukawa sample shown in 
orange (light grey). The two Wilson coefficients are then clearly correlated and one observes a 
“lower bound” on �C7γ for a given value of �C8γ . However, with Ymax = 3, it is straightforward 
to find parameter points where �C7γ is much larger than the BSM contribution to C8g . The 
reason for this is the following: The zero-mode Higgs contribution to ag and aγ are almost 
proportional to each other, see equations (13)–(17). However, the sizeable KK Higgs contribution 
has a more complicated structure; it contributes in a different way to ag and to aγ . This blurs the 
correlation.

Finally, comparing with the experimental value for B̄ → Xsγ we find that for Ymax = 1/2
the RS model parameter space is generally compatible with experimental data for T > 2 TeV. 
Since electroweak precision observables already put stricter bounds on the KK scale [25,26], 
B̄ → Xsγ does not give any new constraints on the KK scale. Nonetheless, sizeable corrections 
of about 5–10% are still possible. For large Yukawas the situation is much more intriguing, 
especially in the custodially protected model. As the large effects come almost exclusively from 
the Higgs exchange contribution to the dipole coefficients ag/γ they are strongly dependent on 
the specific form of the anarchic Yukawa matrices. It is difficult to deduce any hard bounds 
on the RS parameter space. However, the total BSM correction to the branching fraction can 
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be quite substantial. Even for T ∼ 5 TeV it is easy to find parameter points outside the current 
experimental limits. Consequently, the new Belle II searches would have the potential to discover 
the impact of KK states on B̄ → Xsγ with masses well above 10 TeV. The search at the B-factory 
is therefore complementary to other powerful indirect search avenues like Higgs production and 
decay or dipole moments — experiments at vastly different energy scales.

5. Conclusion

We have studied the flavour violating radiative transition b → sγ in RS models with an IR 
localised bulk Higgs. For simplicity, our analysis is restricted to QCD- and Higgs-mediated BSM 
effects. We followed the strategy of [31] and matched the five-dimensional RS model onto the 
SM effective theory including dimension-six operators. Here we could make use of our recent 
results [30] for lepton-flavour violation in the RS model. In particular the complicated 5D loop 
integrals that determine the dimension-six quark dipole coefficients could be recovered from the 
electromagnetic dipole coefficient for leptons. This way we can include the effect of 5D loops 
with internal gauge, Higgs as well as KK Higgs bosons.

After the transition to the broken electroweak phase, we used the results of [63] to include 
the effect of operator mixing due to RGE evolution from the KK scale T to μb to LL accuracy. 
This is necessary as already in the SM the QCD corrections are sizeable and the dipole operator 
coefficient alone is not regularisation scheme independent. We find that for small Yukawa cou-
plings, i.e., for small Higgs contributions to the dimension-six dipoles, the mixing of additional 
four-fermion Wilson coefficients into C7,8 can be sizeable and should not be neglected. We ex-
pect this to be true in any BSM model where dipole and four-fermion operators are generated via 
exchange of the same intermediate states.

While our results for the Wilson coefficients are general, we assumed anarchic Yukawa 
couplings to study the phenomenology of the decay B̄ → Xsγ in both the minimal and the cus-
todially protected RS model. We find that the additional contributions to the branching fraction 
can be sizeable for large Yukawas and moderate KK scales T .

The strong sensitivity of the RS contribution to the specific form of the Yukawa matrices 
makes it challenging to directly constrain the parameter space of the model. Nonetheless, the de-
cay is a useful tool that complements other powerful probes for the KK scale in the quark sector, 
like Higgs production/decay [35,37,38]. More importantly, for large 5D quark Yukawas there 
can be observable deviations of Br(B̄ → Xsγ ) from its SM value even for masses of the first 
KK excitation of around 10 TeV. For small 5D Yukawas couplings (Ymax ∼ 0.5) the impact of 
the RS model is mild; for KK scales that are not in conflict with electroweak precision measure-
ments the B̄ → Xsγ branching fraction generally agrees with the current world average within 
uncertainties. In this case the aforementioned alternative search channels are more promising.

6. Note added

While this work was in its final stage, [71] was published. [71] presents a detailed analysis of 
the b → sγ transition in the minimal RS model with an exactly brane-localised Higgs. It is to 
our knowledge also the first computation of the RS contribution to dipole operators that does not 
rely on an expansion in the ratio of electroweak and KK scale. In addition to QCD and Higgs 
effects also electroweak effects are taken into account, but the model does, by construction, not 
involve Kaluza Klein Higgs contributions. [71] includes QCD operator mixing, but neglects the 
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effect of the four-fermion operators. Since we consider the case of a localised bulk Higgs with 
KK modes, it is most useful to compare with the case of small Yukawa couplings; in this case the 
quite different Higgs sector does not play an all too dominant role. We then find RS corrections 
to Br(B̄ → Xsγ ) that are of similar but slightly smaller in size to those found [71]. This seems 
not unexpected as we neglect electroweak corrections to the dipole, but do include mixing with 
dimension-six fermion operators, which tends to give rise to a slightly smaller �C7γ coefficient.
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Appendix A. Wilson coefficients of the extended electroweak Hamiltonian at the scale 
μKK

In the following we collect the coefficients of the various four-fermion operators in (19). To 
this end we first map each operator in the dimension-six Lagrangian unto operators in the broken 
electroweak theory and extract the Wilson coefficients by comparing with (19). For brevity, let 
us first introduce the abbreviation V = 4GF V �

tsVtb√
2

.

b
QU
ij Q̄iγ

μT AQiŪj γμT AUj −→ β
QU
sbququ

s̄γ μT APRb q̄uγμT APRqu =
= − 1

2Nc

βsbququ s̄γ μPLb q̄uγ
μPRqu + 1

2
βsbuu s̄αγ μPLbβ (q̄u)βγ μPR(qu)α

= − 1

2Nc

βsbququ O
qu

2 [L,R] + 1

2
βsbququ O

qu

1 [L,R] (34)

gives

V�C
qu

1 [L,R](μKK) = 1

2T 2
β

QU
sbququ

V�C
qu

2 [L,R](μKK) = − 1

2NcT 2
β

QU
sbququ

. (35)

bDD
ij D̄iγ

μT ADiD̄j γμT ADj −→
= − 1

Nc

βDD
sbdd Od

2 [R,R] + βDD
sbdd Od

1 [R,R] − 1

Nc

βDD
sddb Ôd

2 [R,R]
+ βDD

sddb Ôd
1 [R,R] (36)

− 1

Nc

βDD
sbbb Ob

2 [R,R] + βDD
sbbb Ob

1 [R,R] − 1

Nc

βDD
sbss Os

2[R,R] + βDD
sbss Os

1[R,R]
(37)
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V�Cs
1[R,R](μKK) = 1

2
βDD

sbss V�Cs
2[R,R](μKK) = − 1

2
βDD
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T NcT



P. Moch, J. Rohrwild / Nuclear Physics B 902 (2016) 142–161 159
V�Cb
1 [R,R](μKK) = 1
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sbbb V�Cb
2 [R,R](μKK) = − 1

NcT 2
βDD

sbbb
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= − 1

Nc

β
QQ
sbuu Ou

2 [L,L] + β
QQ
sbuu Ou

1 [L,L]

− 1

Nc

β
QQ
sbdd Od

2 [L,L] + β
QQ
sbbb Od

1 [L,L] − 1

Nc

β
QQ
sddb Ôs

2[L,L] + β
QQ
sddb Ôs

1[L,L]

− 1

Nc

β
QQ
sbss Od

2 [L,L] + β
QQ
sbss Os

1[L,L] − 1

Nc

β
QQ
sbbb Ob

2 [L,L] + β
QQ
sbbb Ob

1 [L,L]
(39)

gives

V�Cs
1[L,L](μKK) = 1

T 2
β

QQ
sbss V�Cs

2[L,L](μKK) = − 1

NcT 2
β

QQ
sbss

V�Cb
1 [L,L](μKK) = 1

T 2
β

QQ
sbbb V�Cb

2 [L,L](μKK) = − 1

NcT 2
β

QQ
sbbb

V�Cd
1 [L,L](μKK) = 1

T 2
β

QQ
sbdd V�Cd

2 [L,L](μKK) = − 1

NcT 2
β

QQ
sbdd

V�Ĉd
1 [L,L](μKK) = 1

T 2
β

QQ
sddb V�Ĉd

2 [L,L](μKK) = − 1

NcT 2
β

QQ
sddb

V�C
qu

1 [L,L](μKK) = 1

T 2
β

QQ
sdququ

V�C
qu

2 [L,L](μKK) = − 1

NcT 2
β

QQ
sbququ

. (40)

Finally,

b
QD
ij Q̄iγ

μT AQiD̄j γμT ADj −→
= − 1

2Nc

β
QD
uusb Ou

2 [R,L] + 1

2
β

QD
uusb Ou

1 [R,L]

− 1

2Nc

β
QD
sbdd Od

2 [L,R] + 1

2
β

QD
sbdd Od

1 [L,R] − 1

2Nc

β
QD
ddsb Od

2 [R,L]

+ 1

2
β

QD
ddsb Od

1 [R,L]

− 1

2Nc

β
QD
sddb Ôd

2 [L,R] + 1

2
β

QD
sddb Ôd

1 [L,R] − 1

2Nc

β
QD
dbsd Ôd

2 [R,L]

+ 1

2
β

QD
dbsd Ôd

1 [R,L]

− 1

2Nc

β
QD
sbss Os

2[L,R] + 1

2
β

QD
sbss Os

1[L,R] − 1

2Nc

β
QD
sssb Os

2[R,L]

+ 1
β

QD
sssb Os

1[R,L]

2
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− 1

2Nc

β
QD
sbbb Ob

2 [L,R] + 1

2
β

QD
sbbb Ob

1 [L,R] − 1

2Nc

β
QD
bbsb Ob

2 s[R,L]

+ 1

2
β

QD
bbsb Ob

1 [R,L] (41)

gives

V�C
qu

1 [R,L](μKK) = 1

2T 2
β

QD
ququsb V�C

qu

2 [R,L](μKK) = − 1

2NcT 2
β

QD
ququsb

V�Cd
1 [R,L](μKK) = 1

2T 2
β

QD
ddsb V�Cd

2 [R,L](μKK) = − 1

2NcT 2
β

QD
ddsb

V�Cd
1 [L,R](μKK) = 1

2T 2
β

QD
sbdd V�Cd

2 [L,R](μKK) = − 1

2NcT 2
β

QD
sbdd

V�Ĉd
1 [R,L](μKK) = 1

2T 2
β

QD
dbsd V�Ĉd

2 [R,L](μKK) = − 1

2NcT 2
β

QD
dbsd

V�Ĉd
1 [L,R](μKK) = 1

2T 2
β

QD
sddb V�Ĉd

2 [L,R](μKK) = − 1

2NcT 2
β

QD
sddb

V�Cs
1[L,R](μKK) = 1

2T 2
β

QD
sbss V�Cs

2[L,R](μKK) = − 1

2NcT 2
β

QD
sbss

V�Cb
1 [L,R](μKK) = 1

2T 2
β

QD
sbbb V�Cb

2 [L,R](μKK) = − 1

2NcT 2
β

QD
sbbb

V�Cs
1[R,L](μKK) = 1

2T 2
β

QD
sssb V�Cs

2[R,L](μKK) = − 1

2NcT 2
β

QD
sssb

V�Cb
1 [R,L](μKK) = 1

2T 2
β

QD
bbsb V�Cb

2 [R,L](μKK) = − 1

2NcT 2
β

QD
bbsb.

(42)
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