
NetBOA: Self-Driving Network Benchmarking
Johannes Zerwas, Patrick Kalmbach, Laurenz

Henkel
Technical University of Munich, Germany

Gábor Rétvári
Budapest University of Technology and Economics,

Hungary

Wolfgang Kellerer, Andreas Blenk
Technical University of Munich, Germany

Stefan Schmid
Faculty of Computer Science, University of Vienna, Austria

ABSTRACT
Communication networks have not only become a critical infras-
tructure of our digital society, but are also increasingly complex and
hence error-prone. This has recently motivated the study of more
automated and “self-driving” networks: networks which measure,
analyze, and control themselves in an adaptive manner, reacting
to changes in the environment. In particular, such networks hence
require a mechanism to recognize potential performance issues.

This paper presents NetBOA, an adaptive and “data-driven” ap-
proach to measure network performance, allowing the network
to identify bottlenecks and to perform automated what-if analy-
sis, exploring improved network configurations. As a case study,
we demonstrate how the NetBOA approach can be used to bench-
mark a popular software switch, Open vSwitch. We report on our
implementation and evaluation, and show that NetBOA can find
performance issues efficiently, compared to a non-data-driven ap-
proach. Our results hence indicate that NetBOA may also be useful
to identify algorithmic complexity attacks.

CCS CONCEPTS
• Networks → Network performance evaluation; Network
experimentation; Network security; Network reliability; • Com-
puting methodologies→ Machine learning.
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1 INTRODUCTION
Motivated by the complex, manual, and error-prone operation of
today’s communication networks, as well as the increasing depend-
ability requirements in terms of availability and performance, the
network community is currently very much engaged in developing
more automated approaches to manage and operate networks. A
particularly interesting vision in this context are self-driving net-
works [10, 17]: rather than aiming for specific optimizations for
certain protocols and objectives, networks should learn to drive
themselves, maximizing high-level goals (such as end-to-end la-
tency), in a “context-aware”, data-driven manner. At the heart of
such self-driving networks hence lies the ability to adaptively mea-
sure, analyze, and control themselves. While over the last years,
many interesting first approaches have been proposed related to
how self-driving networks can control themselves [4, 10, 16], less
is known today about how self-driving networks can analyze and
measure themselves efficiently.

This paper makes the case for a data-driven approach to measur-
ing and evaluating the performance of a network in an adaptive,
self-driving manner. Indeed, existing work on automated bench-
marking and fuzzing systems either (i) targets general computing
systems and hence may not lend itself readily to be adopted in a
networked setting [19, 22, 24, 26, 30], (ii) aims at verifying logical
properties in networked systems related to policy-compliance of
configurations and implementations and ignore performance [3, 21],
or (iii) requires human assistance and software source code [14, 25]
to guide the performance evaluations and experiments, relying
on hand-crafted, and often proprietary, benchmark tools, inputs,
and system settings [5, 18, 20]. We argue that in the context of self-
driving networks the performance evaluation tool itself must also
be self-driving, taking into account the specialties of networked
systems and the environment these systems are typically used in.

In this paper, we take the position that machine learning should
become fundamental constituent in the overall network measure-
ment process, in order to allow fast, robust, and unassisted perfor-
mance evaluation of black-box networked systems. In the context
of self-driving networks, there is a number of challenges that lead
us to turn to a machine learning approach. First, a network system
is typically stateful and runs on top of a network substrate, compris-
ing black-box network devices, proprietary software, virtualization
tools, etc., which is itself a complex and stateful system. Corre-
spondingly, the useful components of network benchmarks are often
masked by disturbances of unknown source, difficult-to-explain
performance artifacts, and general white noise [18]. A machine
learning search approach has the potential to automatically adapt
to such disturbances. Second, the vastness of the parameter space,
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including static configuration parameters, software versions, hard-
ware platforms, etc., that may critically affect the performance of a
networked system may prevent comprehensive manual performance
benchmarking. A machine-driven approach on the other hand al-
leviates the network operator from manually testing through the
vast parameter and state space, eliminates the human from the
loop and guarantees unbiased results, and, critically, fosters repro-
ducibility. Third, a networked system requires valid input traffic,
imposing stringent constraints on the type and characteristics of
the input that can be posed to such a system, which is in con-
trast with conventional performance fuzzing that may use arbitrary
inputs [19, 22, 24, 26, 30]. Fourth, in the context of self-driving
networks, where the network continuously measures and adapts
itself, a means is required that can thoroughly evaluate an updated
component to ensure its correct functioning. Especially in the case
where machine learning is used to make the updates, an automated
process is required that can identify possible weak-spots and thus
avoid potential performance degradation. In such a setting, weak-
spots must be identified as fast as possible to minimize the duration
of an update cycle of a self-driving network.
Contributions. This paper proposes NetBOA, an automated net-
work traffic generator for creating “adversarial” workloads chal-
lenging implementations of black-box network entities like middle-
boxes, software and hardware switches, or other network functions.
NetBOA is designed to explore configurations of traffic workloads1
that affect critical metrics in the networking context, such as net-
work latency or CPU usage[5, 18, 20].

In order to account for complex (and as we will show: non-
proportional) performance aspects, NetBOA does not assume any
functional relation betweenworkload and performance, unlikemost
machine learning applications. In particular, this rules out gradient-
based optimization schemes. Rather, NetBOA performs black-box
optimization, using a Bayesian Optimization algorithm, which has
already been successfully applied in other contexts, e.g., the config-
uration of cloud-based workloads [1]. In other words, NetBOA is a
data-driven approach that guides the search for weak-spots through
the overall configuration space by taking a system feedback, e.g.,
the current CPU load, into account.

We demonstrate the feasibility of our approach, using a case
study with Open vSwitch (OvS), one of the most widely used soft-
ware switches in data centers. By applying NetBOA to benchmarking
OvS, we find that weaknesses in the default configuration of OvS
can be found efficiently, providing new insights compared to prior
literature [2, 7, 13, 15, 20, 27, 28].

Succinctly, we make the following contributions:

• We propose a machine-driven traffic generation framework,
NetBOA, for analyzing implementations of network entities
(switches, network functions, etc.). NetBOA relies on black-
box (Bayesian) optimization, accounts for noise, and provides
confidence intervals.
• We implement and evaluate NetBOA for a specific case study:
benchmarking Open vSwitch. Our proof-of-concept imple-
mentation shows the benefits of our approach over non-data
driven approaches.

1I.e., NetBOA “wriggles”, like a snake, through traffic configurations.

In order to ensure reproducibility and facilitate follow-up work,
we will make our measurement data available to the research com-
munity, together with this paper 2.
Organization. The remainder of this paper is organized as follows.
Sec. 2 introduces our framework, and with it the challenges be-
hind designing machine-driven measurement frameworks. Sec. 3
outlines the measurement results taken from a real testbed. Sec. 4
reports on related work. Finally, we conclude and propose future
work in Sec. 5.

2 THE NETBOA FRAMEWORK
NetBOA addresses the following problem: for a given network entity
(network function like a firewall or software switch), the goal is to
find a weak-spot, i.e., an optimal or near-optimal network traffic
configuration that maximizes (or minimizes) a network measure
(e.g., latency or CPU). Given the huge amount of settings for poten-
tial configuration parameters, as well as the possible inter-arrival
times between packets, this is a non-trivial task. Hence, NetBOA uses
Bayesian optimization to intelligently explore the configuration
space. Although alternatives to Bayesian optimization such as rein-
forcement learning, deep neural networks, linear regression might
exist to automatically learn performance models, they might show
one or more of the following shortcomings: not generalizing due
to non-linear performance behavior, not targeting at minimizing
number of samples, requiring a lot of data [1].

2.1 Black-box Optimization
A key challenge addressed by NetBOA is that the dependency be-
tween the input parameters (including workload) and performance
may be highly non-trivial. In fact, as we will see, the performance
may not even improve monotonically with lower workload. Further-
more, the objective (or performance) function can be multimodal
or noisy. Also perceiving exact performance values, e.g., from CPU
usage, is hard. Additional challenges are introduced due to (noisy)
timings.

Accordingly, simple gradient-based approaches are not appli-
cable, which is why NetBOA uses black-box optimization. That is,
NetBOA does not assume any information about how the objec-
tive (performance) function f (x), e.g., the average CPU value of a
benchmarked entity, depends on the input x , e.g., the network traf-
fic configuration parameters, and how the x is structured. On a high
level, it proceeds as follows: by querying the system, NetBOA aims
to better estimate the model describing the objective function f (x).
Given a predefined budget (e.g., a time limit or limited amount of it-
erations) for triggering the system queries, a data-driven algorithm
may be able to find near-optimal or optimal values x .

While NetBOA queries the network function for the objective
function f (x), it needs to choose the next point of evaluation. The
goal is generally to find a mode of a function with as little function
evaluations as possible. Whereas different alternatives (algorithms)
exist to solve this problem, NetBOA uses Bayesian Optimization (BO)
for its guided search. The strength of BO, in contrast to approxi-
mate gradient-based or population based approaches, is its ability
to calculate confidence intervals of the objective function given
the samples. Generally, BO needs a prior function to represent its
2https://github.com/tum-lkn/netboa-data
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Figure 1: NetBOA’ overview. A user defines the overall config-
uration ranges. After initial sampling, the orchestrate trig-
gers a traffic generation process to send traffic to a device
under test. CPU or latency can currently be used as perfor-
mance measures.

belief in f (x) given the current samples. Here, we use Gaussian
Process (GP) as most BO approaches in literature. After querying
the system, i.e., perceiving a new sample, BO updates this function
and obtains the posterior function. The posterior function always
depends on the perceived data, i.e., is purely data-driven. In order
to proceed, BO uses an acquisition function, which simply deter-
mines the potentially next best point given the updated posterior
function. In a nutshell, acquisition functions trade-off exploitation
(where the posterior shows high values) and exploration (where the
uncertainty about the current model is still high). Whereas many
options in literature exist, we use the Expected Improvement (EI)
due to its generally good performance.

2.2 NetBOA Algorithm
Alg. 1 summarizes the overall procedure of NetBOA. The main loop
(Line 1-9) consists of the use of the BO procedure to find the config-
urations and the triggering of the measurement procedure (Line 10-
18). NetBOA takes ranges of network traffic configurations as input
and produces an optimal or near-optimal configuration as output:
Input: NetBOA can take as input all the possible configuration
ranges of IP network packets: e.g., the IP address ranges for source
and destination IPs, the ranges of application ports (TCP and UDP),
the ranges of VLAN tags, etc. Moreover, NetBOA takes as input all pa-
rameters that specify the traffic pattern over time: the inter-arrival
time between packets, the burstiness of the network traffic, the over-
all sending time interval, and the total amount of network packets
to be sent. Given such configurations and a budget (as described
in the previous section), NetBOA tries to find the network traffic
configuration that maximizes (or minimizes) a target measure, e.g.,
CPU utilization of a network function or end-to-end latency of
network packets. In general, the configuration possibilities are only
limited by the underlying physical network infrastructure. How-
ever, a human operator might have to specify whether, e.g., VLAN
tags can be used or not for the targeted infrastructure. Hence, the
human is still needed in this pre-configuration process of NetBOA.

Despite the network configuration parameters, NetBOA has three
algorithm configuration parameters: the numInitialSamples, the

Algorithm 1: NetBOAMeasurement Procedure
Input: Network Traffic Configuration Ranges: xiat , xp , xb , xVLAN ,

Measurement Procedure: numInitialSamples, maxNumIterations,
confidenceLevel

Output: Optimal or Near-optimal Traffic Configuration: xopt
1 NetBOA main()
2 D ∪ {createInitialSamples(numInitialSamples)};
3 GaussianProcess.fit(D);
4 for maxNumIterations do
5 nextConfig← arдmaxx EI (x |D) ;
6 objVal← RunMeasurement(nextConfig) ;
7 D ← D ∪ (nextConfig, objVal) ;
8 GaussianProcess.fit(D);
9 return xopt ;

10 RunMeasurement proc(nextConfig)
11 currentConfidence←∞ ;
12 for count = 0; count < 12; count++ do
13 objValues← objValues ∪ takeObjAfterTime(1 s) ;
14 currentConfidence← calculateConfidence(objValues) ;
15 while currentConfidence ≥ confidenceLevel do
16 objValues← objValues ∪ takeObjAfterTime(1 s) ;
17 currentConfidence← calculateConfidence(objValues) ;
18 return objVal;

maxNumIterations, and the confidenceLevel. For our proof-of-
concept, we evaluated different settings and report on the ones that
worked best; these parameters, however could be tuned further or
even adapted dynamically, which we study in future work.
Procedure and Outputs: NetBOA starts with creating initial sam-
ples in order to make a first fit of the GP (Line 2). For an initial
fitting, at least two points are necessary. After that, NetBOA starts
with Bayesian optimization. In every iteration (and also after the
final iteration), the output of NetBOA is a sequence of N concrete
network packets over a time-interval T ; both N and T are con-
figurable parameters. This sequence of packets is then sent to a
network entity, e.g., a software switch, that processes the network
packets. As already stated, in our scenario, we keep track of all
performance metrics, e.g., CPU. Those metrics are then used to
evaluate the generated workload. Given the measurements of M
intervals, NetBOA uses BO to find the next better network traffic
configuration,M+1. Based on the BO algorithm, NetBOA prioritizes
configurations leading to (adversarial) workloads resulting in high
operator costs, e.g., high CPU or high latency. Note that NetBOA
can also be used to minimize networking costs.
Proof-of-concept. For the sake of demonstrating feasibility, in our
initial study, we consider only a limited number of configuration
parameters, however, with interval ranges, i.e., unlimited opportuni-
ties of concrete values. Concretely, NetBOA allows to configure the
network traffic configuration vector x. Here, vector x may consist
of the Inter-Arrival Time (IAT) between packets xiat , the number of
total packets with unique IP source/dst and unique src/dst ports to
be sent within one measurement round xp , the burst size of packets
sent at one point of time xb, and the number of different VLANs
within one sending round xVLAN . Note that for different network
functions, other settings can be chosen.

3 CASE STUDY: OPEN VSWITCH
We implemented a proof-of-concept of NetBOA for a specific case
study: benchmarking OvS. We compared our experimental results
using NetBOA to a Random Search (RS) procedure. In detail, for a
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Figure 2: Experimental setup consisting of three hosts and
the management running NetBOA.

pre-determined parameter setting, we run NetBOA and RS in order
to find themost challenging workload configuration, given a limited
number of iterations. Note that comparing BO-based approaches
to procedures such as random search or grid search is common in
the BO research area in general [11], and also when applying BO
to networking problems [1].

This section first presents the experimental setup, provides more
details on the settings of NetBOA, and describes the grid measure-
ment data (cf. Fig. 4) and the evaluation setting when comparing
NetBOA to Random Search. The grid search is an extensive measure-
ment of the OvS; it shows the performance behavior of OvS over
the whole configuration space. The performance evaluation of the
comparison reports on details for settings with 1-4 parameters, the
impact of the number of iterations, and the likelihood of finding
close to optimal configurations with NetBOA.

3.1 Performance Evaluation Methods
3.1.1 Experiment Setup. Fig. 2 shows the measurement setup. The
setup consists of three hosts with an Intel i7-4790 CPU at 3.60 GHz
with 16 GB of RAM. The OS is Ubuntu 18.10 with kernel 4.15.0-43.
The left machine runs the traffic generator. A simple ping client is
used to measure the latency on the data path. The machine in the
middle runs the Open vSwitch instance (version 2.9.0). OvS is used
in its default configuration: the megaflow caches are enabled. OvS
is connected with two bridges to the left and the right host. Two
rules are manually inserted: one for forwarding ICMP traffic and
one for dropping all other traffic. This rule setup is similar to [6].
A CPU monitoring tool is directly fetching the CPU time of the
OvS process. The third host provides the sink for the ping client.
Additionally, it runs the database to store all measurement results.
A fourth machine hosts the NetBOA framework.

3.1.2 NetBOA Settings. This section describes the settings of the
main parts of NetBOA, including the three main settings of the
Bayesian Optimization: prior function, acquisition function, and
the stopping conditions.
Prior function. GP is chosen as the prior function similar to many
other BO approaches [1]: the final model (CPU vs network traffic
configurations) can be described by a sample from a trained GP
instance (i.e., after having fitted the GP to the acquainted measure-
ment data). The Kernel of the GP is a Matern with smoothness
parameter between 0.5 and 1.5.

Acquisition function. Generally, different possibilities for the
acquisition function exist [1]: Probability of Improvement (PI),
Expected Improvement (EI), Gaussian Process Upper Confidence
Bound (GP-UCP). Similar to [1], NetBOA uses the EI acquisition
function, as it performs mostly better than PI and does not need
tuning in contrast to GP-UCP [1].
Stopping conditions. Different alternatives exist to stop the mea-
surement procedure. For instance, the process can stop when the
EI value reaches a pre-determined threshold, like 10%, or when
a maximum number of iterations (e.g., 50 or 100) is reached. For
NetBOA, the process stops either when 50 iterations are reached or
when the current maximum lies within 10 % of the true maximum
value (which we know from the grid measurement), to speed up
the measurement procedure.

3.1.3 Grid Measurement Data Collection. Beside our evaluation of
NetBOA, we collected data from a grid measurement over the whole
configuration space for two parameters. This data leads to a com-
plete performance model describing OvS. We provide access to the
data to enable other researchers to compare their implementations
of data-driven optimization algorithms to NetBOA using the data.

The data was collected in the testbed from Fig. 2 with a grid
search iterating over two parameters of the traffic generator: IAT
from 1ms to 14ms with step-size 0.1ms and number of packets in
one sending round from 1000 to 5000 with step-size 100.

For every point, we generated a sequence of packets according
to the configuration and repeatedly sent this sequence to the OvS
instance while collecting values of CPU load and latency until a
stopping criteria is met. In the following, we describe the collection
process of the two metrics with respect to their stopping criteria:
CPU load. We assess the CPU usage of OvS as the time spent
in the datapath (kernel) module using the proc plugin of Telegraf
(“cpu_time_system” of the OvS process). The value is fetched every
second. We repeatedly collect samples until the 95%-confidence in-
terval (CI) is smaller than 0.02 s. The resulting mean of the samples
is the value of the grid point.
Latency. Latency values are obtained as RTT (pings from host1 to
host3 in Fig. 2). Every 0.5 s, we use the “ping” plugin of Telegraf to
collect and average the RTT of 20 pings, which are sent sequentially
with a 1ms pause. This process is repeated until the 95%-CI of all
collected latency samples is smaller than 0.01ms. The mean of the
resulting samples is used as the value for the grid point.

For both metrics, we collected at least 10 samples to calculate
the CI. If the CI is still larger than the threshold after 100 collected
samples, the collection is canceled and the mean values are cal-
culated over 100 samples. Between two traffic configurations, the
data collection pauses for at least 15 s to cool down the system,
i.e., to clear the megaflow cache. NetBOA uses the same procedure
for collecting the data of the evaluation configuration points (cf.
Alg. 1-“RunMeasurements”).

3.1.4 Evaluation Settings and Random Search Description. The eval-
uation of NetBOA and RS was run on the same testbed as the grid
search measurements. The four considered parameters in Fig. 5
and Fig. 6 are IAT (xiat ), number of packets per sending round (xp),
the burst size (xb) and the number of different VLAN tags (xVLAN )
within one sending round. Table 1 lists the used parameter ranges.
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Table 1: Ranges for parameter searches with 1, 2, 3 or 4 vari-
able parameters.

# xiat xp xb xVLAN # Init. Smpls
1 [1.0, 14.0] 4000 1 1 4
2 [1.0, 14.0] [1000, 5000] 1 1 8
3 [1.0, 14.0] [1000, 5000] [1, 5] 1 12
4 [1.0, 14.0] [1000, 5000] [1, 5] [1, 5] 16
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Figure 3: Example of steps for one parameter (xiat). In the
upper row, the orange-dashed line shows data from the base-
line measurements. The black-dashed lines illustrates the
current mean values, whereas the blue shadows represent
the belief ot the BOA. The blue circles illustrate the current
searching points of the iteration (Style is chosen from [8]).

Note that xp , xb and xVLAN have discrete values, while xIAT is con-
tinuous. RS samples independently from the available parameter
space in every iteration and selects the configuration with highest
objective value.

3.2 Experimental Results
How does NetBOA work? Fig. 3 shows how NetBOA searches for
the most challenging traffic configuration in case of using only the
inter-arrival time (IAT) as our configuration parameter. All figures
show the pre-measured performance profile of the CPU over the
IAT via a red dashed line. In the first iteration, NetBOA fits the GP
to four initial samples. Note the shaded area around the blue curve:
this area illustrates the confidence area of the true values around the
current blue curve. Based on this value and the EI function, the BO
algorithm searches for the next configuration settings. The lower
plot for the first iteration shows the acquisition function. Here, the
largest EI improvement lies at IAT= 14ms. After 10 iterations, the
next samples lead the configuration towards the maximum that lies
at IAT=2.1ms.
Howdoes actually the performancemodel look like formore
than 1 parameter? Before evaluating the behavior of NetBOA
when actively searching for the most challenging configuration,
Fig. 4a shows the performance model for two configuration pa-
rameters (number of unique packets and inter-arrival time). This
performance model shows the data of an intensive grid-based mea-
surement. Here, the step size of the number of packets is 100 and
the step size of the IAT is 0.1ms. As we can see, the highest CPU
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Figure 4: CPU and latency heatmaps. Used parameters: xp
and xiat . Note that the x-axis is limited to 13ms for better
appearance.
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(b) Random Search.

Figure 5: RS vs. BO, 95% confidence intervals of mean er-
ror over the runs, i.e., the deviation of the found minimum
value from the known optimal value. For each run, themini-
mumvalue is taken into account. Note that the performance
during initial sampling is removed from the BO plot.

load (the measured time that the OvS kernel process spends here
on 1 CPU core), lies around 5000 packets and an IAT of roughly
2.1ms. The reason is that here the most flow entries are created
by the OvS process (5000) and the algorithm always removes and
reads the megaflowcache entries. This is due to the setting of 10
seconds as default rule timeout in the OvS flow caches.

Fig. 4b shows NetBOA when measuring the latency. As expected
from the OvS implementation, there are also high latency values
for lower IAT intervals. However, interestingly, the setting with
the highest latency is close to the one for the CPU. The reason is
that of course the number of table entries mainly determines the
latency, but that there is also a slight impact on the latency based
on the overall CPU load. Hence, when having precise mechanisms
for determining the latency, an attacker could also use the latency
to infer the highest CPU load. Generally, not only the amount of
rules determines the highest latency and load, but also the sending
pattern of the network traffic.
Is NetBOA better than a Random Search (RS)? In order to il-
lustrate the speedup in finding the hardest configuration, Fig. 5
compares the error in finding the worst configuration between
NetBOA and RS. Vertical error bars indicate the 95%-CIs computed
over 30 runs with different seeds for every configuration. Fig. 5
shows that for all parameter settings (1-4 parameters), NetBOA al-
ways finds more challenging configurations faster than RS. For
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Figure 6: RS vs. BO. Relative deviation of CPU load from the
known optimal value after 100 iterations.

instance, NetBOA finds the most challenging configuration for 1-3
parameters within 70 iterations (after the initial sampling). In con-
trast, the RS procedure does not find a configuration that is within
10 % of the optimum for any parameter setting within 70 iterations.
Generally, this shows that NetBOA is working well and that it is
indeed possible to find among network configurations the ones that
lead to the highest CPU load of a given network entity.
In total, how good is NetBOA? Fig. 6 shows a comprehensive sum-
mary of the comparison between NetBOA and RS. As the boxplots
of both subfigures show, NetBOA has a high probability in finding
the near-optimal configurations for 1-3 parameters. In contrast, RS
finds only a few challenging settings for 1 parameter. Note further
that NetBOA always finds a setting that has a performance of only
30 % less than the maximum. That means although NetBOA does not
find the most challenging setting, it still finds configurations that
increase the CPU load of one core by more than 20 % in contrast to
settings that send more network traffic in general over time.

4 RELATEDWORK
We see multiple research fields as related to our research.
Algorithmic Complexity Attacks. Algorithmic complexity at-
tacks, and related mechanisms for mitigation, are concerned with
finding inputs that trigger the worst-case behavior of an algo-
rithm, like regular expression matching or sorting, in an application.
SlowFuzz [26] uses evolutionary techniques to mutate the input
of applications-under-test, e.g., the PCRE library for regular ex-
pressions used by firewalls, the bzip2 compression utility, and the
hash table implementation of PHP. PerfFuzz [19] additionally uses
the program code as input and looks for maximizing the execution
paths of the components of the program code. Rampart [24] targets
the opposite use-case of algorithm attacks: it protects applications
from exhaustive CPU exhaustion DoS attacks. Instead of finding
concrete inputs that exhaust programs, Singularity [30] targets at a
higher abstraction level: analyzing given program code it tries to
find input patterns that exhaust the program application. The work
of [25] synthesizes program code of network functions in order to
find challenging network traffic configurations. NetBOA is a parallel
work that looks for challenging network traffic configurations for
network functions, however, without looking at the source code of
network functions.
Applied Bayesian Optimization. BO has successfully been used
to tune parameters in other domains, like configuration parame-
ters of deep neural networks [29]. For clouds, CherryPick [1] uses

BO to find the best configuration for cloud customers. Scout [12]
builds up on Cherrypick: it uses historical optimization data to
advance the search for better cloud configurations. Despite apply-
ing BO, there is work on improving BO itself: for instance, [23]
implements BLOSSOM, an approach that selects between multiple
acquisition functions and traditional optimization on each iteration
step. NetBOA applies BO for network traffic configurations.
Open vSwitch Network Measurements. A recent number of re-
search papers exist that measure OvS: [15] measures the forwarding
delay of OvS; [7] determines the throughput and resource footprint
of OvS. [2] and [20] propose benchmark tools to measure average
latency and throughput of OvS. Moreover, [2] also looks into the
impact of different matching and actions, table size, and queue size
settings. Jive prohibitively probes switches with "Jive Patterns" in
order to see the performance variation given different workloads
for changing rule strategies: e.g., is it better to add rules in descend-
ing or ascending order. Most interesting for us is the recent work of
Fang et al. [9]. They want to answer the question of how to find the
best software switch among different systems and workloads. We
believe that NetBOA can provide them with an automated bench-
marking tool to address this question by self-driving benchmarks
for different switches.

5 CONCLUSION
In order to provide an optimal performance and guide control,
any self-driving network needs to rely on frequent and accurate
network measurements, Our main position in this paper was that
such performance measurements should be automated, account-
ing for non-trivial performance effects and noise. Accordingly, we
proposed a blackbox, i.e., Bayesian, optimization approach and
demonstrated its feasibility and effectiveness in a specific case
study: benchmarking OvS.

We see our work as a first step and believe that our paper opens
several interesting avenues for future research. In particular, our
framework is still simple, and several optimizations can be made
to further improve performance. For instance, the initial random
sampling or the kernel selection process can be enhanced. More-
over, although recent studies argued that alternatives to Bayesian
optimization have some shortcomings, it might still be worth to an-
alyze most recent techniques such as deep reinforcement learning.
Furthermore, it will be very interesting to consider alternative case
studies using NetBOA, in particular, alternative network functions.
More generally, our paper also opens the general question of what
can and cannot be achieved by self-driving networks. For example,
can a self-driving network notice its limitations?
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