
Learning Approach for Smart Self-Adaptive
Cyber-Physical Systems

Ana Petrovska
Department of Informatics

Technical University of Munich
Munich, Germany

ana.petrovska@tum.de

Supervisor: Prof. Alexander Pretschner
Department of Informatics

Technical University of Munich
Munich, Germany

alexander.pretschner@tum.de

Abstract—Modern Cyber-Physical Systems (CPSs) need to
be able to operate efficiently and reliably within continually
changing, uncertain, and unanticipated environments. Namely,
these systems should be capable of learning, automatically recon-
figuring themselves, and be able to cooperate and collaborate with
other CPSs. In a nutshell, exhibit human-like, smart capabilities
in an autonomic manner. However, engineering such systems is
all but trivial, primarily because we need to develop systems
at design-time that are capable of autonomously coping with
the uncertainty and change at runtime. Therefore, not only the
importance of self-adaptivity as a system’s feature increases, but
it becomes a fundamental approach for the systems to continue
meeting their functional specifications, fulfilling their business
objectives while preserving the performance—despite all the
runtime changes that the system may encounter. To tackle these
challenges, this paper proposes the initial research vision and
agenda with the envisioned contributions towards an approach
for self-adaptation of cooperative, smart CPSs through shared
knowledge and learning.

Index Terms—Self-Adaptive Cyber-Physical Systems, Context,
Change and Uncertainty, Awareness, Learning, Performance

I. MOTIVATION

In dynamic systems such as cyber-physical systems (CPSs),

the change is the only constant, and business continuity re-

quires this change to be handled at runtime. The changes may

stem internally from the system (self-changes), for example,

sensor uncertainties; or they may also be external, for instance,

caused by changing context or environment where the system

is operating (context-changes). In this work, the system’s self-*

attributes, particularly self-adaptation is explored, which aims

to support the engineering of systems at design-time that will

have the ability to autonomously and independently modify

themselves to successfully cope with the change at runtime

without external human intervention.

On a conceptual level, a self-adaptive system (SAS) consists

of (i) a managed element that gains the ability to exhibit

self-adaptation; and (ii) adaptation logic (AL), which is the

“brain” of the SAS and the unit that gives the ability to

the managed-element to self-adapt. Across the literature, the

AL has been referred with different terms such as managing

system [1], autonomic manager [2], etc. The AL is often

realized accordingly to the MAPE-K (Monitor, Analyse, Plan,

Execute) [2] closed feedback loop with shared Knowledge

among all the elements of the loop. For simplicity in this

paper, we will put the focus on the knowledge component

of MAPE-K only.

The SAS operates in and interacts with the context, which

is a relevant part of the environment for a specific system,

and influences the system’s behavior and state but cannot be

influenced by the developers of the system. This means that

the potential behavior of the context—consequently the input

that the system receives at runtime—can not be fully predicted

during the development of the system. Therefore the system

needs to have mechanisms to cope with the change in the

system itself and in the context during system operation. In

other words, the scope of this work is to explore to what

extent we can develop software that can handle conditions

that were not fully anticipated at the time when the software

was developed [1].

The majority of the previous works: architecture-based [3],

[4], model-based [5]–[8], reflection-based [9], service-oriented

[10], [11], requirements-based [12], [13], formal methods

based [14]–[16], and even learning-based [17] focused on

providing approaches where the AL is predetermined and

consists of “hard-coded” knowledge. This knowledge usually

presents an abstraction of relevant aspects of the CPS(s)—

or the managed element(s), the context and the system’s

adaptation goals. It is created at the design time and does not
improve during the operation time of the system. However,

having predetermined AL cannot provide adequate adaptation

when the CPSs and the context are dynamic and changing

unpredictably during runtime. Therefore, these changes should

accordingly reflect on the AL. The AL should mimic human-

like activities like learning and storing knowledge, which

would allow making smarter decisions based on the previously

encountered situations, and the currently perceived state of the

systems and the context.

II. RESEARCH OBJECTIVES

Problem. The knowledge that is encoded in the AL of a

SAS at design-time, cannot fully anticipate the behavior of

the managed element (or the CPS) and the context, in which

the SASs will be operating during runtime.

Solution. An approach that will deal with both uncertainties
that come from sensors and changing contexts of multiple

CPSs by developing more complex AL.

234

2019 IEEE 4th International Workshops on Foundations and Applications of Self* Systems (FAS*W)

978-1-7281-2406-3/19/$31.00 ©2019 IEEE
DOI 10.1109/FAS-W.2019.00061

Contribution. Collaborative AL that realizes adaptation

strategies based on higher-order or global-system-level context

models, built through aggregating knowledge of what was

perceived from the distributed context monitoring from all the

involved SAS. Additionally, the AL continuously stores and

considers all the previously encountered contextual situations.

Therefore, the initially encoded knowledge in the AL at

design-time enhances and improves during runtime.

An application from the robotics domain will be used

to evaluate this approach and all the concepts developed

throughout this thesis. The initial evaluations will be done on a

simulated multi-robot system, and real hardware will be used

for the final evaluation. Our robotics system consists of two

robots, each considered as a separate SAS. We have divided

the system’s goals into two groups: mission goals and self-

adaptation goals. The mission goal is related to the functional

requirements of the system: both robots keep a room clean,

in which new dirt is continuously and perpetually appearing

at random locations. The self-adaptation goals are two-fold

and are associated with the non-functional requirements. First,

optimization of the overall system performance by minimizing

the time needed for the room to be cleaned and to be kept

clean, despite the changing context originating from having

two robots deployed in the same room and the random

appearance of dirt (new tasks for the robots). Our initial

evaluations show ∼ 10% decrease in the system performance,

only by having two robots deployed in the room instead of one.

The second self-adaptation goal is increased fault tolerance

by preventing robots from failure and deadlocks, despite the

systems’ sensors’ uncertainties. The goals in our system are

fixed; therefore, we don’t have a goal-driven self-adaptation.

III. CHALLENGES AND METHODOLOGY

To accomplish the objectives described in the previous

section, we need to overcome two major challenges.

Distributed context monitoring and knowledge aggrega-
tion. In our work, the overall proposed system is decentralized,

i.e., no central unit has a complete overview or does global

monitoring of the context. Consequently, the robots do not

know on which places in the room the new dirt appears.

Therefore, there are two possibilities: (1) No knowledge

aggregation—each robot is cleaning a dedicated space in the

room. In this case, both robots behave as independent systems.

Consequently, not knowing what is happening with the other

robot and its local context brings inefficiency to the overall

performance. With no aggregation of the knowledge, only a

local minimum is possible, and we need a global minima

of the time required for the room to be cleaned/kept clean.

(2) Collaboratively aggregating knowledge from both robots,

as two different sources, through distributed monitoring—

building more complex, collaborative AL which will allow

dealing with situations when specific places in the room get

dirtier than others. However, aggregating knowledge in the AL

adds an additional layer of complexity. The partial observation

of the context persists even after cumulating the knowledge,

due to the sensors range limitations of the robots. And the

other more significant problem are the cases where there are

conflicts in the perceptions or the monitoring, concretely when

both robots perceive different information in the same location,

due to sensors uncertainties.

Collaborative tasks assignment. After the locations of

the newly appearing dirt are identified, the second challenge

is how to assign these locations to the robots? The robots

should traverse the shortest path possible to the task destination

(the dirt location) and at the same time traverse paths with

a higher probability of new dirt appearing—so that dirt can

also be cleaned along the way. A potential solution can

be a manipulation of locations to be visited by each robot

considering the current state of the aggregated context model

and the stored previously encountered contextual situations.

The latter is a grid probability map of the dirt appearances at

particular locations/cells in the room, which is updated every

time a new dirt is detected. This solution will potentially lead

to a better and smarter path planning.

To address both of the open challenges, we want to propose

a data-driven approach and investigate different AI solutions

for intelligent decision making and learning, which will bring

us from the monitored data on the local level by each managed

element (or CPS) to global-level, aggregated AL. We plan to

conduct experiments using the simulated robotic system to

learn the context and optimize the performance for different

contextual situations.

Although there have been a few proposed approaches in the

literature of self-adaptive systems that have utilized different

ways of learning [18]–[20], none of these approaches relies

on higher-orders of general, aggregated context models, and

collaborative AL that involves cooperative strategies between

multiple SASs and considers stored knowledge based on the

past experiences. To show the applicability and the generaliz-

ability of approach we will evaluate in on a real system and

potentially on an application in another domain.

IV. RESEARCH PLAN AND FUTURE WORK

My doctoral research is halfway through its four-year pe-

riod. Hence the visions and some of the contributions for the

fulfillment of the research objectives are still to be considered

partial. The research plan is shown on the table below.

Goals Description Deadline Status

G1 Finding the thesis topic
G1.1 Systematic mapping study on sensors,

uncertainties, CPSs
12/2017 completed

G1.2 Uncertainties classification 07/2018 completed
G1.3 Systematic mapping study on self-

adaptive CPSs utilizing different (ma-
chine) learning techniques

07/2018 completed

G2 Theoretical part
G2.1 Identify approaches for engineering

SASs
07/2018 completed

G2.2 Propose conceptual model of SASs 09/2018 completed
G2.3 Design approach for smart self-

adaptive CPSs
10/2018 completed

235

G3 Practical part
G3.1 Investigate and design a reference

problem
10/2018 completed

G3.2 Design and implement a ROS-based
robotics system testbed for evaluation
based on the previously identified ref-
erence problem using simulation

12/2018 completed

G3.3 Decide on what real hardware could
be used for evaluation, assemble the
TurtleBots 3 and deploy the previously
implemented software system

05/2019 ongoing

G3.4 Implement aggregating knowledge
from two sources

10/2019

G3.5 Implement queue manipulation ap-
proaches

10/2019

G3.6 Evaluate using simulation 10/2019
G3.7 Evaluate on the real hardware 02/2020

G4 Thesis writing 02/2021

REFERENCES

[1] Danny Weyns. Software engineering of self-adaptive systems: an
organised tour and future challenges. Chapter in Handbook of Software
Engineering, 2017.

[2] Jeffrey O Kephart and David M Chess. The vision of autonomic
computing. Computer, (1):41–50, 2003.

[3] David Garlan, S-W Cheng, A-C Huang, Bradley Schmerl, and Peter
Steenkiste. Rainbow: Architecture-based self-adaptation with reusable
infrastructure. Computer, 37(10):46–54, 2004.

[4] Naeem Esfahani, Ehsan Kouroshfar, and Sam Malek. Taming uncertainty
in self-adaptive software. In Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of soft-
ware engineering, pages 234–244. ACM, 2011.

[5] Jacqueline Floch, Svein Hallsteinsen, Erlend Stav, Frank Eliassen,
Ketil Lund, and Eli Gjorven. Using architecture models for runtime
adaptability. IEEE software, 23(2):62–70, 2006.

[6] Luciano Baresi, Liliana Pasquale, and Paola Spoletini. Fuzzy goals for
requirements-driven adaptation. In Requirements Engineering Confer-
ence (RE), 2010 18th IEEE International, pages 125–134. IEEE, 2010.

[7] Mathieu Acher, Philippe Collet, Franck Fleurey, Philippe Lahire, Sabine
Moisan, and Jean-Paul Rigault. Modeling context and dynamic adapta-
tions with feature models. In 4th International Workshop Models@ run.
time at Models 2009 (MRT’09), page 10, 2009.

[8] Douglas Eskins and William H Sanders. The multiple-asymmetric-utility
system model: A framework for modeling cyber-human systems. In
Quantitative Evaluation of Systems (QEST), 2011 Eighth International
Conference on, pages 233–242. IEEE, 2011.

[9] Éric Tanter, Jacques Noyé, Denis Caromel, and Pierre Cointe. Partial
behavioral reflection: Spatial and temporal selection of reification. ACM
SIGPLAN Notices, 38(11):27–46, 2003.

[10] Radu Calinescu, Lars Grunske, Marta Kwiatkowska, Raffaela Mirandola,
and Giordano Tamburrelli. Dynamic qos management and optimization
in service-based systems. IEEE Transactions on Software Engineering,
37(3):387–409, 2011.

[11] Valeria Cardellini, Emiliano Casalicchio, Vincenzo Grassi, Stefano Ian-
nucci, Francesco Lo Presti, and Raffaela Mirandola. Moses: A frame-
work for qos driven runtime adaptation of service-oriented systems.
IEEE Transactions on Software Engineering, 38(5):1138–1159, 2012.

[12] Andres J Ramirez, Betty HC Cheng, Nelly Bencomo, and Pete Sawyer.
Relaxing claims: Coping with uncertainty while evaluating assumptions
at run time. In International Conference on Model Driven Engineering
Languages and Systems, pages 53–69. Springer, 2012.

[13] Jon Whittle, Pete Sawyer, Nelly Bencomo, Betty HC Cheng, and Jean-
Michel Bruel. Relax: Incorporating uncertainty into the specification of
self-adaptive systems. In Requirements Engineering Conference, 2009.
RE’09. 17th IEEE International, pages 79–88. IEEE, 2009.

[14] Antonio Filieri, Carlo Ghezzi, and Giordano Tamburrelli. Run-time
efficient probabilistic model checking. In Proceedings of the 33rd
international conference on software engineering, pages 341–350. ACM,
2011.

[15] Paolo Arcaini, Elvinia Riccobene, and Patrizia Scandurra. Modeling and
analyzing mape-k feedback loops for self-adaptation. In Proceedings of
the 10th international symposium on software engineering for adaptive
and self-managing systems, pages 13–23. IEEE Press, 2015.

[16] Zuohua Ding, Yuan Zhou, and Mengchu Zhou. Modeling self-adaptive
software systems by fuzzy rules and petri nets. IEEE Transactions on
Fuzzy Systems, 26(2):967–984, 2018.

[17] Christopher Simpkins, Sooraj Bhat, Charles Isbell Jr, and Michael
Mateas. Towards adaptive programming: integrating reinforcement
learning into a programming language. ACM Sigplan Notices,
43(10):603–614, 2008.

[18] Ahmed Elkhodary, Naeem Esfahani, and Sam Malek. Fusion: a
framework for engineering self-tuning self-adaptive software systems. In
Proceedings of the eighteenth ACM SIGSOFT international symposium
on Foundations of software engineering, pages 7–16. ACM, 2010.

[19] Alessia Knauss, Daniela Damian, Xavier Franch, Angela Rook, Hausi A
Müller, and Alex Thomo. Acon: A learning-based approach to deal
with uncertainty in contextual requirements at runtime. Information and
software technology, 70:85–99, 2016.

[20] Ilias Gerostathopoulos, Dominik Skoda, Frantisek Plasil, Tomas Bures,
and Alessia Knauss. Architectural homeostasis in self-adaptive software-
intensive cyber-physical systems. In European Conference on Software
Architecture, pages 113–128. Springer, 2016.

236

