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Abstract: Quite recently, a method has been presented to reconstruct
X-ray scattering tensors from projections obtained in a grating interferom-
etry setup. The original publications present a rather specialised approach,
for instance by suggesting a single SART-based solver. In this work, we
propose a novel approach to solving the inverse problem, allowing the use
of other algorithms than SART (like conjugate gradient), a faster tensor re-
covery, and an intuitive visualisation. Furthermore, we introduce constraint
enforcement for X-ray tensor tomography (cXTT) and demonstrate that this
yields visually smoother results in comparison to the state-of-art approach,
similar to regularisation.
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1. Introduction and background

Most applications of X-ray imaging limit themselves to attenuation, providing images with
strong contrast between highly absorbing structures such as bones or artificially contrasted
arteries, and lowly absorbing background such as tissue. From a physical point of view, how-
ever, more information could be acquired, for instance by means of X-ray interferometry. For
decades, this technique was limited to laboratory setups, as it requires highly coherent X-ray
illumination, and thus a synchrotron or an equivalent source.

Only some few years ago, Pfeiffer et al. [1] have demonstrated a novel setup for X-ray grat-
ing interferometry: As shown in Fig. 1, an ‘ordinary’ setup of X-ray tube (T), specimen (S)
and detector (D) has been extended by inserting a source grating (G0) after the tube, making
the incoming illumination partly coherent, and two more gratings (G1, G2) forming the inter-
ferometer itself. Instead of a single image per orientation/angle as would be done in ‘classical’
computed tomography, multiple images are acquired while interferometry grating G1 is shifted
sideways, thus producing several images of the same situation with different interference pat-
terns. Based on such images, three signal components can be extracted per perspective: An
absorption image as commonly used in X-ray computed tomography, a phase-contrast and a
dark-field component [2]. Example images are given in Fig. 2.

Despite certain problems such as phase wrapping, tomographic phase-contrast reconstruc-
tions have since become quite popular, particularly due to their improved soft-tissue contrast,
and improving them is an active field of research.
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Fig. 1. Sketch of an X-ray grating interferometry setup. X-ray tube (T), source grating (G0),
shifting interferometer grating (G1), specimen (S), static interferometer grating (G2), and
detector (D).

Fig. 2. Three components of a sample projection of a tooth: Absorption, phase contrast and
dark field. The contrast of these images has been manually improved for better visibility,
and the images have been cropped. The structure in the lower-left quadrant is the sample
holder.

A straight-forward three-dimensional tomographic reconstruction of the dark-field signal
yields a volumetric representation of the respective X-ray scattering magnitudes. Such infor-
mation can be of practical value when isotropic scattering is of interest. Previous studies have
shown its potential for lung and breast imaging [3–5], micro-bubble contrast agents [6] and
material testing [7]. In all these cases, dark-field reconstructions have been shown to provide
contrast where the other two signals, phase-contrast and absorption, only yield poor results at
best.

Tomographic reconstruction of the anisotropic component of the dark-field signal on the
other side has not yet gained much attention. Only recently, Malecki et al. [8] have presented
tensor-valued tomographic reconstruction, thus taking directional information into account. In
addition to the usual tomographic axis, the sample is also rotated around the other two axes
using an Euler cradle. The authors present a first mathematical model and a specialised SART-
based reconstruction algorithm, thus obtaining the first scattering tensor reconstructions. In-
formally speaking, they obtain an ellipsoid at every voxel, and its size and shape hints at the
structure of the specimen at this location. In particular, plate-like scattering ellipsoids hint at
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Fig. 3. Expected X-ray scattering (blue ellipsoids) at fibre- or tube-like structures (grey).
Vice versa, we will interpret the smallest half-axes of reconstructed scattering ellipsoids as
fibre directions for visualisation.

(a) Sampling directions. (b) Coefficients. (c) Ellipsoid fit.

Fig. 4. Sampling directions, and ellipsoid fitting for a single voxel. Usually, we use K = 13
directions for reconstruction, but limit ourselves to K = 7 in this sketch, for clarity. They
consist of the standard base vectors – red, green, blue in (a) for x, y, z, respectively – and
diagonals – black. For a given voxel x, reconstruction yields a scattering coefficient ζk(x)
for every sampling direction ε̂k. These are indicated by bold black marks in (b), and we
mirror them along the negative sampling direction, yielding the small black marks. Finally,
an ellipsoid can be fitted to that scaled, mirrored ‘bouquet’ afterwards, see (c).

fibre- or tube-like structures, as sketched in Fig. 3.
The only other work on scattering tensor reconstruction has recently been presented by

Bayer et al. [9]. In contrast to the aforementioned approach, this group uses the single to-
mographic axis of rotation only and relies on extended mathematical modelling. In particular,
they apparently do not reconstruct full scattering tensors, but projections of fibre directions
onto the tomographic plane, and thus a stack of two-dimensional projections rather than a vol-
ume of three-dimensional shapes. Apart from X-rays, another well-known tensor-based imag-
ing modality is diffusion tensor magnetic resonance imaging (DTI) [10] – which only shares
visualisation techniques.

In this paper, we use the approach of Malecki et al., and present several algorithmic im-
provements. Among them are, most importantly, a novel, more generic description for solving
X-ray tensor tomography (XTT) problems [11], and two ways to enforce tensor-shapes during
reconstruction.

2. Methods

Scattering is not a scalar entity (as X-ray attenuation is), but a tensor-valued one, that is a
three-dimensional shape per location. This requires a more complicated mathematical model.

Malecki et al. [8] propose to consider a finite set of K pre-defined, normalised, well-
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(a) Scaled sampling vectors. (b) Ellipsoids with axes.

Fig. 5. Different variants of the same data, a downsampled detail from an actual result.
Reconstruction is performed in terms of scaling the sampling directions (a), the scattering
tensors are obtained by retrospectively fitting ellipsoids in a voxel-wise fashion (b). The
colours indicate the directions of the smallest half-axes, see Fig. 8(a).

distributed sampling directions ε̂k ∈ R3 rather than a tensor. Here, and in the remainder of
the paper, we use the ‘hat’ to denote normalised vectors, that is ‖ε̂k‖2 = 1 ∀k = 1, . . . ,K. For
each of these ε̂k and every voxel xi, a corresponding scattering coefficient ζk(xi) ∈ R will be
reconstructed, and the tensor itself can later be approximated by voxel-wise fitting of tensor
descriptions to these ‘bouquets’ of weighted directions. This entire process is sketched for a
single voxel in Fig. 4, a visual account of a larger region is given in Fig. 5. Note that the exact
orientation of the sampling directions is rather arbitrary, and the choice does not require any
knowledge about the expected reconstruction outcome. The sampling directions are just auxil-
iary, virtual entities, allowing to avoid an explicit description of the scattering tensor at a given
location by considering its projection onto a finite set of well-distributed reference directions
instead. They are chosen from a single hemisphere only, as the scattering tensors are supposed
to be symmetric.

Based on this approach, Malecki et al. derive a forward model for X-ray scattering [12–14],
resembling the Beer-Lambert law describing X-ray absorption:

d j = exp

[
−
∫

L j
∑
k

〈
|l̂ j× ε̂k|(ζk(x)ε̂k), t̂ j

〉2
dx

]
(1)

Here, d j ∈R denotes the j’th scalar dark-field measurement, and L j the corresponding ray with
normalised direction l̂ j ∈R3. Note that despite acquiring two-dimensional projections, we treat
the individual pixels as independent measurements with corresponding rays. Index j = 1, . . . , J
extends over all pixels of all projection images hence. The normalised sensitivity direction
t̂ j ∈R3 is orthogonal to the grating lines and parallel to the surfaces of the – mutually parallel –
gratings, and thus depends on the perspective during measurement j.

Considering Eq. (1) in more detail, the true scattering measurement at every voxel x along
the ray is generally modelled as finite sum of K measurements along the pre-defined sampling
directions ε̂k. For every such summand, two things need to be taken into account: Scattering
must be possible to occur at all, considering the direction l̂ j of the incoming X-ray with re-
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Fig. 6. Viewing directions and Euler cradle. Only the perspectives marked by red lines are in
the ‘normal’ viewing plane as used in standard CT applications. Blue lines mark additional
off-plane perspectives. The dashed black line indicates the trajectory of the X-ray source-
detector “camera” around the green cube, representing a specimen. The coverage gaps are
due to limitations imposed by the Euler cradle.

spect to ε̂k. This fact is modelled by the magnitude of the cross-product | ·× · |, thus excluding
head-on views. Furthermore, if scattering occurs, only components along sensitivity direction
t̂ j contribute to the measurement as modelled by the scalar product 〈·, ·〉 [13,14]. Vice versa, in
order to have a good sampling of the scattering tensors, more than just the usual tomographic
scanning perspectives are taken into consideration while scanning, see Fig. 6.

Returning to Eq. (1), factoring out the (unknown) squared scattering coefficients ηk(x) :=
ζk(x)2 from the squared scalar product and defining the weight factor

vk j := (|l̂ j× ε̂k|〈ε̂k, t̂ j〉)2 (2)

yields a formulation very similar to the well-known Radon transform:

− ln d j =
∫

L j
∑
k

vk j ·ηk(x) dx (3)

= ∑
k

vk j

∫
L j

ηk(x) dx (4)

Note that the factors defined in Eq. (2) are independent of the unknowns, and can thus be
precomputed for more efficient reconstruction.

2.1. Reconstruction

Obviously, Eq. (4) is a weighted sum of line integrals. In particular, in a discretised setting, it
can be rewritten as scalar product

m j = − ln d j = ∑
k

vk j 〈a j,ηηηk〉 = ∑
k

vk j aT
j ηηηk (5)

where ηηηk ∈ RI is the vector of the squared coefficients for the kth sampling direction for all
voxels (I is the number of voxels). a j denotes the system matrix row for measurement j, and
is thus part of the ‘standard’ matrix as used for an equivalent attenuation reconstruction. This
vector contains geometric information about the arrangement of X-ray source, specimen and
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sensor during measurement j, an information already included abstractly in Eq. (4) as ray L j.
Let A = (a j), A ∈ RJ×I , denote the entire system matrix describing all J line integrals. Fur-
thermore, let Dk = diag(vk1,vk2, . . .) denote a diagonal scaling matrix containing the weighting
factors from Eq. (2) for sampling direction k. Then, using Eq. (5) and defining the measurement
vector m = (m j) = (− ln d j), a huge linear system can be derived:

m =


v11aT

1

v12aT
2

...
v1JaT

J

ηηη1 +


v21aT

1

v22aT
2

...
v2JaT

J

ηηη2 + · · · +


vK1aT

1

vK2aT
2

...
vKJaT

J

ηηηK (6)

=


v11

v12
. . .

v1J




aT
1

aT
2
...

aT
J

ηηη1 +


v21

v22
. . .

v2J




aT
1

aT
2
...

aT
J

ηηη2 + · · · (7)

= D1 A ηηη1 + D2 A ηηη2 + · · · + DK A ηηηK = ∑
k

Dk A ηηηk (8)

= (D1 A, D2 A, . . . , DK A)


ηηη1
ηηη2
...

ηηηK

 (9)

≡ Hs (10)

This linear system has K times as many unknowns than the corresponding system for comput-
ing a ‘traditional’ tomographic attenuation reconstruction: The original system matrix A is of
size J× I, and H is of size J× IK. In practical settings, that is when reconstructing a suffi-
ciently sized three-dimensional volume, the system matrix A is already far too large to fit into
computer memory. Instead of handling the matrix directly, projector software is typically used
that simulates the ray, thus computing the entries of A on the fly [15].

When reconstructing scattering tensors, it is desirable to use existing software infrastructure
that has been put into place for other tomographic reconstruction scenarios rather than solving
Eq. (10) directly. Consequently, in their original work, Malecki et al. suggest a specially crafted
variant of SART [16, 17] for reconstructing the unknown squared coefficients ηηηk.

Using Eq. (5), however, a much more generic approach can be taken, supporting arbitrary
iterative solvers such as particularly the better-behaving method of Conjugate Gradients (CG)
[18,19]. Let x1 = approximate(A,b,x0) denote an auxiliary function running a single iteration
of an iterative linear solver such as CG or SART, thus very approximately ‘solving’ the linear
system Ax= b. Then, an iterative algorithm solving the tensor reconstruction problem (5) can be
defined: A single iteration q essentially consists of ‘approximately solving’ K modified linear
systems

(Dk ·A) t(q)k = m̃(q−1)
k (11)

for each sampling direction k using function approximate as previously defined, where right-
hand side vector

m̃(q−1)
k = m−∑

l 6=k
Dl ·A ·ηηη

(q−1)
l (12)

denotes a reduced measurement vector relevant for sampling direction k, based on the estimates
ηηη
(q−1)
l of the previous iteration, and t(q)k an intermediate, temporary vector. The latter is then
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used to compute the current iterate via relaxation as

ηηη
(q)
k =

K−1
K

ηηη
(q−1)
k +

1
K

t(q)k . (13)

Altogether, this proposed approach can be thought of as simultaneously solving K linear sys-
tems in an interleaved sense. This entire proposed generic tensor reconstruction approach is
given in alg. 1. Note that the scattering coefficients need to be extracted after reconstruction of
all ηηηk by component-wise application of the square root:

ζk(x) =
√
|ηk(x)| (14)

Using the absolute magnitude of ηk is a valid security measure, considering the symmetry of
the tensors.

Alg. 1 Generic tomographic X-ray tensor reconstruction. A denotes the system matrix describ-
ing the imaging process, Dk a scaling matrix containing weighting factors as defined in Eq. (2).
m is the measurement vector, and ηηη

(q)
k a vector containing the qth iterate of the voxel-wise

squared scattering coefficients corresponding to sampling direction k. approximate is a func-
tion running a single iteration of an arbitrary iterative linear solver.

η
(0)
k = 0 ∀k

for iterations q do
// pre-compute weighted forward projections
for sampling directions k ∈ {1, . . . ,K} do

WFPk = Dk ·A ·ηηη
(q−1)
k

end for

for sampling directions k ∈ {1, . . . ,K} do
// compute right-hand side
RHS = m−∑l 6=k WFPl

// run a single solver iteration
TEMP = approximate(Dk ·A,RHS,ηηη(q−1)

k )

// update coefficients with relaxation
λ = 1/K
ηηη
(q)
k = (1−λ ) ηηη

(q−1)
k +λ TEMP

end for

// optionally enforce constraints
end for

2.2. Ellipsoid Fitting

After reconstruction, that is after executing several iterations as described in section 2.1, voxel-
wise scattering coefficients ζk for the sampling vectors ε̂k have been recovered. Malecki et
al. propose to fit ellipsoids to these weighted vectors in order to obtain voxel-wise tensors. In
particular, they propose to use an iterative ellipsoid fitter [20], apparently intended for rather
degenerate cases where ellipsoids need to be matched to just a couple of ill-distributed sample
points.
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However, as shown in Fig. 4, the sampling locations are well-distributed, and we propose to
use principal component analysis [21–23] (PCA) instead of the iterative approach, thus saving
considerable computation time.

In more detail, at every voxel xi, a set of 2K direction vectors

Si := {±
√
|η1(xi)| · ε̂1, ±

√
|η2(xi)| · ε̂2, . . .} (15)

= {±ζ1(xi) · ε̂1, ±ζ2(xi) · ε̂2, . . .} (16)

can be defined by scaling the normalised sampling directions ε̂k with the positive and negative
reconstructed corresponding coefficients ζk(xi) = |ηk(xi)|1/2. Again, this is due to the symme-
try of the scattering tensors. Note that the mean of this set trivially equals 0. Let Ci ∈ R3×3

denote the covariance matrix of Si. Then, its eigen-decomposition

Vi ·Λi =Ci ·Vi (17)

yields a diagonal matrix Λi ∈ R3×3 containing the three eigenvalues λ i,1, λ i,2, λ i,3 of the set’s
covariance matrix Ci, and an orthogonal matrix Vi ∈O(3)⊂R3×3 containing the corresponding
mutually orthonormal eigenvectors vi,1, vi,2, vi,3 as column vectors.

Let η i = ∑k |ηk(xi)|/K denote the average squared scattering magnitude at voxel xi, and
λ i = (|λ i,1|+ |λ i,2|+ |λ i,3|)/3 the corresponding average eigenvalue magnitude. Define a size
correction factor σi := η i/λ i for scaling the statistically defined ellipsoid to the point set S.
Then, the scattering ellipsoid at voxel xi is defined by half-axis lengths ri,1 = [σiλ i,1]

1/2, ri,2 =

[σiλ i,2]
1/2, ri,3 = [σiλ i,3]

1/2 with respect to the orthonormal basis formed by vectors vi,1, vi,2,
vi,3.

2.3. Constraint enforcement

As it will turn out in the experiments, unconstrained reconstruction of the scattering coefficients
yields useful but noisy results. Instead of just fitting ellipsoids retrospectively, it makes sense
to enforce ellipsoidal shapes during reconstruction. Therefore, we propose to post-process the
scattering coefficients at the end of every iteration as indicated in the last comment of alg. 1,
thus forcing them to evolve in the vicinity of the manifold of ellipsoid-shaped tensors.

2.3.1. Hard ellipsoid constraint

An obvious approach to reach this aim is to fit ellipsoids after every iteration, and to project
the reconstructed squared coefficients ηηηk onto them. We refer to this method as hard ellipsoid
constraint as the coefficients will really be forced into ellipsoidal shapes.

In detail, after the computation of all squared coefficients ηηη
(q)
k in iteration q, we visit ev-

ery voxel xi and fit an ellipsoid as described in section 2.2, thus obtaining a coordinate frame
Vi = [vi,1,vi,2,vi,3]∈R3×3 and corresponding half-axes ri,1,ri,2,ri,3 ∈R. Then, the reconstructed
coefficients ηηη

(q)
k are replaced with the projections of the respective normalised sampling direc-

tions ε̂k onto this ellipsoid.
In detail, to do this for every sampling direction k and voxel xi, we first rotate the (by

design normalised) vector into the ellipsoid’s coordinate frame, thus obtaining a unit vector
[xi,k, yi,k, zi,k]

T =V T
i ε̂k. By definition, the scaled vector σi,k · [xi,k, yi,k, zi,k]

T , σi,k ∈ R, resides
on the surface of the ellipsoid if

σi,k
2

[(
xi,k

ri,1

)2

+

(
yi,k

ri,2

)2

+

(
zi,k

ri,3

)2
]
= 1. (18)
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(a) Hard constraint. (b) Soft constraint.

Fig. 7. Constraint enforcement. In both cases, the reconstructed coefficients are forced to
be close to the manifold of valid ellipsoids while iterating. The hard constraint (a) projects
back onto ellipsoids directly, where a – in this toy example exaggerated – scattering coef-
ficient (dotted black line) is shortened appropriately (solid black line). The soft constraint
smoothes the coefficients with respect to the other sampling directions of the same voxel
respecting the angular relation, thus favouring ellipsoids in a relaxed sense. This is done
using a Gaussian smoothing kernel based on the scalar product as shown in (b), ranging
between 0 (blue) and 1 (yellow), before normalisation.

This Eq. can simply be solved for σi,k
2, and considering that squared coefficients are recon-

structed, the correctly projected coefficients are

ηηη
(q)
i,k = σi,k

2 (19)

for all voxels xi and directions k. See Fig. 7(a) for an illustrative sketch.

2.3.2. Soft ellipsoid constraint

Alternatively, we propose to use a softer variant favouring ellipsoids but allowing some more
freedom. Essentially, this is done by smoothing the K direction coefficients per voxel, over the
ellipsoid. We refer to this approach as soft ellipsoid constraint. Note that we still only consider
individual voxels and their K coefficients; we do not take a neighbourhood into account as one
would do for smoothness constraints in regularised X-ray attenuation reconstruction.

In detail, we first compute the pair-wise absolute scalar products between all K normalised
sampling directions, and obtain a matrix S ∈ [0,1]K×K , Sk,l = |〈ε̂k, ε̂l〉|. In order to increase the
influence of more similar sampling directions, we additionally apply a Gaussian and obtain a
matrix G ∈ RK×K , Gk,l = exp[−(Sk,l − 1)2/2µ] with some selectable mean µ . The larger µ is
chosen, the higher will be the influence of the smoothing.

To process coefficient k, a matching convolution kernel can be defined by normalising the kth
row of G to a sum of 1, denoted as gT

k , ∑l [gT
k ]l = 1. Collecting all K coefficients into a vector,

the regularised kth value for voxel xi computes as

ηηη
(q)
i,k = 〈gT

k , [ηηη
(q)
i,1 , . . . ,ηηη

(q)
i,K ]〉. (20)

In other words, this approach can be considered as angle-dependent Gaussian smoothing of the
squared coefficients ηk(xi) over all directions k for every individual voxel xi. This constraint is
illustrated in Fig. 7(b).

2.4. Visualisation

A last, vital point for X-ray tensor tomography is a proper visualisation of the results. This is
of particular importance as the voxel-wise tensors can not be accurately shown using rendering
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(a) (b)

Fig. 8. Colour coding of streamline visualisation. We use colours sampled from a sphere
(a) to give visual cues about the orientation of the ‘fibres’. Note that the colour ball is
symmetric with respect to the x-y-, x-z-, and y-z-planes. In a sample picture of the carbon
knot (b), looking down from a slightly elevated perspective, vertically (green), horizontally
(red) and obliquely (orange and yellow) oriented parts can be easily distinguished.

techniques intended for scalar-valued data. Apart from plotting the ellipsoids themselves, a
prominent option is to visualise derived shapes.

Interested in fibre- and tube-like structures, we therefore propose a streamline visualisation
based on the classical Runge-Kutta method [24–26] (RK4). This metaphor is well-known in the
field of diffusion-tensor magnetic resonance imaging (DTI) [10,27], and commonly referred to
as tractography. As sketched in Fig. 3, plate-like ellipsoids hint at fibres in the direction of
the smallest half-axes. We employ RK4 to trace streamlines along these smallest half-axes,
adapted to account for the symmetric, ‘bidirectional’ nature of ellipsoid axes (compared to a
vector field). This is done by inverting directions queried from the raw ellipsoid axes whenever
the scalar product with the direction of an incoming fibre is negative, i.e. new directions are
chosen to continue the streamline in forward direction. Furthermore, we employ colour coding
to give cues about the orientation of these fibres. An example is shown in Fig. 8.

Note that the streamlines do not necessarily correspond to real fibres, and there is no intention
for this to be the case. The streamlines are to be interpreted as scattering visualisation, however,
using a model which is likely similar to the invisible structure.

3. Experiments

We have implemented the proposed reconstruction algorithm within CampRecon [28], a C++
framework for solving linear inverse problems. The discrete integration along lines Ax and its
adjoint AT b are approximated roughly via intersections between ray and pixels as proposed
by Siddon [29], using the GPU-based X-ray projector developed by Fehringer et al. [15] in
OpenCL. All experiments have been run on a computer with dual Intel Xeon E5-2687W pro-
cessors and a Nvidia Tesla K20 accelerator.

In general, we have computed reconstructions of three datasets, the carbon ‘knot’, a knotted
bunch of carbon fibres embedded in hot glue, the tree ‘branch’, a short piece of raw wood,
and a ‘tooth’. Photographies of the samples are given in Fig. 9. X-ray images of all samples
have been acquired in our experimental setup, see Fig. 10. We use 732 projections of 321×321
pixels for the knot, 551 projections of 301×301 pixels for the branch, and 902 projections of
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(a) Knot. (b) Branch. (c) Tooth.

Fig. 9. Photographies of the samples. Knot (a), branch (b), and tooth (c).

Fig. 10. Wide-angle view of the actual setup. From left to right: X-ray source (T) with
source grating (G0) directly in front of it, at the center the phase grating (G1), then the
Euler cradle with sample (S), and adjacent to it the analyser grating (G2, in the cross-shaped
holder); behind the latter the X-ray detector (D, hidden).

701×701 pixels for the tooth, with trajectories resembling the one in Fig. 6. The projections in
Fig. 2 have been taken from the tooth dataset.

All samples were measured at an acceleration voltage of 60 kVp. Eight phase steps were
recorded per projection with a flat panel detector (Varian) with pixel pitch of 127 µm. The
exposure time was 1 s per phase step. A π/2 phase grating for the design energy of 45 kV
composed of 8 µm high Ni lines and period of 5 µm was used. The two other gratings were
absorption gratings with 170 µm high Au lines and a period of 10 µm. The interferometer was
symmetric with both inter-grating distances being 92.7 cm.

Each of the datasets was reconstructed without constraint enforcement, with hard, and with
soft ellipsoid enforcement, each time with K = 13 sampling directions. In all cases, we exe-
cuted 100 iterations of alg. 1 and do not employ any other stopping criterion. We use a single
iteration of CG as function approximate. Note that this corresponds to a single Landweber step
with respect to the sub-problem. For the soft constraint, we generally use an experimentally es-
tablished smoothing mean of µ = 0.1, unless stated otherwise. Reconstruction times are about
1.75 hours for the branch (2513 voxels), 2 hours for the knot (2013 voxels), and 15.5 hours for
the tooth (301× 501× 291 voxels). Relating the number of voxels with the input projections,
it is clear that the linear system m = Hs as defined in Eq. (10) is underdetermined in all our
experiments. The ratios of measurements to unknowns are 24.3 % for the branch, 70.4 % for
the knot, and 77.7 % for the tooth, respectively.

Furthermore, we have obtained a reconstruction of the knot produced with the original SART-
variant proposed by Malecki et al., for comparison.
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Fig. 11. Behaviour of the algorithm for the knot. The plots show the normalised residual
norm r(q) as defined in Eq. (21) over iterations q (left) and the normalised mean update ∆(q)

as defined in Eq. (22) over iterations q (right). The unconstrained version yields smaller
residuals, but the updates are noisy.

4. Results

4.1. Numerical behaviour

In order to check the behaviour of the three algorithm variants (unconstrained, soft, and hard
ellipsoid constraint), we have computed the normalised residual norms

r(q) := ‖m−∑
k

Dk ·A ·ηηη
(q)
k ‖2 / ‖m‖2 (21)

for iterations q ∈ {1, . . . ,100}, and also the normalised mean updates

∆
(q) := mean

k
‖ηηη(q)

k −ηηη
(q−1)
k ‖2 / ‖ηηη(q)

k ‖2. (22)

Sample plots of these sequences for the knot are given in Fig. 11. There, the curves for both
measures flatten out with increasing number of iterations. The unconstrained variant tends to
reach a smaller residual norm, while the update norms appear to oscillate. Vice versa, the con-
strained variants show larger residual norms, but smooth updates. For other datasets, we obtain
similar curves.

4.2. Comparison with state of art

Next, in order to compare our method with the original SART-based method of Malecki et al.,
we compare an unconstrained reconstruction of the knot with a reference result, see Fig. 12.
As Malecki’s results can not be considered as ground truth, we restrict ourselves to a visual
comparison.

4.3. Knot

Figure 13 shows volume renderings of raw scattering coefficients relating to a single sampling
direction, but for the three different constraint enforcement schemes. Most importantly, the
unconstrained version shows considerable streak artefacts, and the constrained versions do not.

Figure 14 and Media 1 show streamline visualisations of the knot. As can be seen, enforcing
the two constraints yield visually smoother fibres that are more densely packed. Again, note
that these fibres visualise the scattering ellipsoids, and are not to be considered reconstructions
of the raw carbon fibres.
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(a) Attenuation. (b) Malecki’s reconstruction. (c) Our reconstruction.

Fig. 12. Comparison of attenuation reconstruction (a), Malecki’s tensor reconstruction (b),
and our (unconstrained) tensor reconstruction (c). The first image is included for reference,
to show that scattering data is of a considerably different nature than usual attenuation
reconstructions. The two scattering reconstructions are largely equivalent, considering the
different algorithms with different parameters.

(a) Unconstrained. (b) Soft constraint. (µ = 0.10) (c) Hard constraint.

Fig. 13. Volume renderings of the knot’s scattering coefficients for sampling direction
ε̂k = [0,0,1]T . The unconstrained reconstruction (a) shows strong streak artefacts, the two
constrained versions (b) and (c) are much clearer.

4.4. Branch

Figure 15 and Media 2 show streamline visualisations of the branch. For this dataset, enforc-
ing ellipsoid constraints has even more prominent effects. Considering the structure of wood,
scattering will be caused primarily by the tiny vessels transporting water towards the leaves.
That is, streamlines are supposed to run mainly in parallel to the axes of the branches. In the
unconstrained case, reconstruction of scattering along the main branch fails almost entirely, but
the constrained versions are able to recover more reasonable scattering streamlines there.

We also modify the smoothing parameter µ for the soft constraint. In particular, a ‘comb-
ing’ effect can be observed for stronger constraint enforcement where streamlines are nicely
aligned to each other, but ‘combed’ away from their expected location, see the side branches in
Fig. 15(d). On the other side, a smaller value of µ will increase the amount of noise but cause
the reconstruction to stay closer to the data. Especially the side branches appear to benefit from
a smaller parameter, as the ‘combing’ effect is considerably reduced, and the main branch still
reconstructs properly.
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(a) Unconstrained. (b) Soft const. (µ = 0.10) (c) Hard constraint.

Fig. 14. Streamline visualisation of the knot’s scattering ellipsoids. (Also see Media 1.)
The streamlines are supposed to follow the directions of the carbon fibres, see Fig. 9(a), but
are not intended to accurately reconstruct individual fibres. The unconstrained version (a)
shows noise, the two constrained versions (b) and (c) are visually considerably smoother.
The ‘waves’ in the lower right appear to be additional scattering caused by the sample
holder.

4.5. Tooth

The reconstruction results of the tooth are given in Fig. 16 and in Media 3. This sample is
particularly intriguing: Teeth generally consist of a hard crown of highly mineralised enamel,
and a root covered by cementum. Below these layers, the core of the tooth consists of dentine
and, embedded within, the pulp chamber containing living tissue, blood vessels and nerves.
Dentine is a fibrous material and less mineralised than enamel. Tiny dentinal tubules (about
2 µm in diameter) are passing through it in radial direction, between pulp chamber and the sur-
face (but not through the enamel). These tubules are generally not visible in X-ray attenuation
reconstructions of usual resolution, due to their small size.

Despite this, however, the scattering caused by them can be measured and reconstructed.
Note that the results in Fig. 16 have been masked using the reconstruction of the attenuation
signal. This is necessary as the contents of the pulp chamber, relicts of the tissue, cause consid-
erable isotropic scattering themselves – clearly visible as distinct black region in the scattering
projection in Fig. 2(c).

The influence of constraint enforcement is similar to the one observed for the other samples.
However, at the lower parts of the roots, the soft constraint also yields streamlines caused by
pulp chamber scattering.

5. Discussion

As shown in the first experiments, the proposed reconstruction algorithm apparently shows
reasonable behaviour in our experiments. Plots similar to the ones shown in Fig. 11 can be
produced for all experiments that we have conducted so far. Note that these plots only provide
hints that the iteration does not become unstable, they neither indicate image quality nor do
they prove convergence.

Comparing with the state of art, the unconstrained variant of our algorithm yields a result
quite similar to Malecki’s original SART-modification, considering the different nature and
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(a) Unconstrained. (b) Soft const. (µ = 0.08)

(c) Soft const. (µ = 0.10) (d) Hard constraint.

Fig. 15. Streamline visualisation of the branch. (Also see Media 2.) Scattering is supposed
to be caused by the tiny tubular vessels embedded in wood that transport water towards
the leaves. The streamlines are thus supposed to run mainly in parallel to the individual
branches. The unconstrained version (a) fails to recover useful scattering along the main
branch. The lightly constrained versions (b) and (c) show more reasonable scattering there.
The hard constraint overshoots and produces wavy patterns along the main branch, and
introduces a ‘combing’ effect for the other branches. The latter can already be seen in (c).

parameters of the two methods.
The constrained variants of our method have been shown to produce considerably less arte-

facts and visually smoother, non-oscillating updates. As most notable example, the main branch
of the wood sample inherently requires some kind of constraint enforcement, to push the re-
construction towards a reasonable result. On the other side, exaggerated constraint enforcement
may lead to new artefacts, particularly unexpected wavy patterns or ‘combed’ directions, as can
also be seen for the wood sample, for instance. It appears that constraint enforcement is neces-
sary, but its influence must be limited. From our point of view, soft constraint enforcement with
a conservatively chosen parameter µ is the most promising approach.

In general, a remarkable feature of X-ray tensor tomography is that scattering effects caused
by sub-voxel-sized structures can be recovered, thus giving insight into the microstructure. In
our case, this holds for both, the vessels in the branch, and the dentinal tubules in the tooth.
Of course, important future work will be an exact correlation of X-ray scattering results with
suitable high-resolution pictures of the samples, through µCT or microscopy, for instance.

An important consequence of our work is that the assumption of pure ellipsoids appears not
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(a) (b) (c)

(d) (e) (f)

Fig. 16. Reconstruction results of the tooth. (Also see Media 3.) Volume rendering of X-ray
attenuation (a) showing enamel (white) and dentine (gray). Equivalent attenuation volume
rendering showing dentine only (b). Scattering streamlines obtained without constraint (c),
with soft constraint with µ = 0.08 (d) and µ = 0.10 (e), and with hard constraint (f). Scat-
tering is caused by dentinal tubules, tiny structures in radial direction, as indicated by the
streamlines. The pulp chamber was obtained by masking.
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to be entirely correct, considering the deterioration with stronger constraint enforcement. Based
on sampling directions, our reconstruction is agnostic of that assumption, but future work will
need to look into more appropriate scattering descriptions. Furthermore, even after flattening
out, the residual norm is still rather large. Usually, this would hint at a mathematical problem.
Considering the visual quality of the reconstructions and the curve of the update norm, however,
this may also be caused by Eq. (1) only partially describing the dark-field signal. Both (highly
related) questions will need to be subject to future investigation from a physics perspective.

Considering the proposed algorithm, many interesting mathematical questions are still open
and will need to be tackled in future work. As pointed out by a reviewer, it should be possible
to position the proposed algorithm in the context of other, well-established solution algorithms,
such as column-based block iterative algorithms [17], for the huge system defined in Eq. (10).
Particularly interesting will be an investigation of two points: First, our algorithm computes
the weighted forward projections WFPk based on the previous iterates, and thus exclusively
uses the previous state to update the solution. This decision has been made from an engineer-
ing prespective, and to avoid bias towards the scattering coefficients that are processed earlier.
From a mathematical point of view, however, it may be beneficial to only use the previous state
where necessary and the already known current state where possible. The second question is
the dependence on the exact choice of function approximate. In this context, it will also be
useful to attempt to solve the original linear system directly. More advanced mathematical top-
ics include an investigation of the convergence, and the influence of the constraint enforcement
schemes onto it. Finally, another important open question is inter-voxel regularisation such as
total variation minimisation.

6. Conclusion

We have presented a new processing chain for X-ray tensor tomography. In particular, we have
detailed a generic formulation for solving the inverse problem using arbitrary linear solvers,
firmly based on the forward model and avoiding the tight coupling to SART, along with con-
straint enforcement schemes improving the reconstructions considerably. Furthermore, we have
presented a way for quick recovery of the ellipsoids, and we have introduced streamline visu-
alisation to XTT.

A lot of work still needs to go into XTT. At this point, the mechanical design of the setup
requires small samples, and the radiation exposure is considerable. The latter is due to both the
large number of acquisitions (more perspectives, more acquisitions per perspective), and the
additional absorption caused by the interferometer grating between sample and detector, thus
requiring higher radiation at the specimen in order to obtain good detector readings. Further,
more theoretical open questions have already been outlined above. Nevertheless, application in
ex-vivo imaging or material testing is well within reach today, and improvements are subject of
active research.
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