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Abstract: Min-stable multivariate exponential (MSMVE) distributions constitute an important family of dis-
tributions, among others due to their relation to extreme-value distributions. Being true multivariate expo-
nentialmodels, they also represent a natural choicewhenmodeling default times in credit portfolios. Despite
being well-studied on an abstract level, the number of known parametric families is small. Furthermore, for
most families only implicit stochastic representations are known. The present paper develops newparametric
families of MSMVE distributions in arbitrary dimensions. Furthermore, a convenient stochastic representa-
tion is stated for such models, which is helpful with regard to sampling strategies.
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1 Motivation
Min-stable multivariate exponential (MSMVE) distributions constitute an important class of multivariate dis-
tributions, in particular for real-world applications. This is mainly due to two reasons: First of all, starting
from an MSMVE distribution, one can easily derive corresponding extreme-value distributions by transform-
ing the one-dimensional margins appropriately. Extreme-value distributions in turn can be very useful for
modeling particular real-world use cases. Among others, they have been applied in environmental sciences,
e.g. when modeling the occurrence of �oods at di�erent places or maximal ozone levels at di�erent moni-
toring stations, see [15, 18], and in Finance, e.g. when modeling the dependence of extreme asset returns,
see [25, 33]. The second reason applies to applications in risk-management, respectively modeling of credit
portfolios. A natural, widespread, and robust way to model the default times of single components of such
a portfolio (e.g. bonds or loans) is based on the exponential distribution. For a portfolio manager, it is daily
business to express the default risk associated with a single credit-risky asset in terms of an exponential rate
parameter, which is often called the “credit spread”. However, given exponentially distributed univariate
marginals, it is not obvious how to model the corresponding joint distribution of multiple credit-risky assets.
In practical portfolio credit-risk management, it is quite popular to link the univariate probability distribu-
tions to a joint distribution by the use of a copula, see, e.g., [6, 40]. However, it is the authors’ conviction that
“true” multivariate exponential concepts should be used because such concepts naturally �t the intuitive
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motivation of modeling lifetimes. Such “true” multivariate exponential distributions have been de�ned in
the statistical literature, see, e.g., [12]. In [5], one can �nd further support for the application of these depen-
dence concepts. In the past, some of the criticism surrounding copula modeling in the context of portfolio
credit risk can be attributed to the lack of such a natural link between the copula model and the intuition of
lifetime modeling.
Though being a very useful class of distributions and being very well studied on an abstract level, (see, e.g.,
[20, Chapter 6]; [24, 35]), the number of knownparametricMSMVE families, in particular in large dimensions,
is rather small. Furthermore, the number of parametric models for which concrete stochastic representations
are known is even smaller. For most families, only the spectral representation of [7], or an implicit stochastic
representation as a limit distribution can be stated. However, concrete stochastic representations are helpful
for practical applications as they allow for a more intuitive understanding and can serve as a starting point
for developing e�cient simulation algorithms.
Motivated by the above considerations, there is some recent work aiming at the construction of new and �ex-
ible parametric MSMVE families in large dimensions, see, e.g., [1, 10, 13, 41]. In the same spirit, the aim of
the present paper is to develop new parametric models that have a convenient stochastic representation. We
will develop two similar classes of MSMVE distributions, giving rise to a huge quantity of parametric MSMVE
models in arbitrary dimensions (see Theorems 1 and 2). The underlying stochastic model is given by a frailty
construction, i.e. the components can be de�ned as �rst-passage times of a stochastic process across inde-
pendent trigger levels. Similar to [19], the aim is to introduce new classes of models, while an application of
these in practice requires a further, very detailed investigation of particular parametric families, which lies
outside the scope of this work.
Our �ndings have at least three important implications:

(i) They give rise to a huge class of parametric stable tail dependence functions in arbitrary dimensions.
(ii) The underlying stochastic model can be used for e�cient simulations, in particular in large dimen-

sions, to construct non-exchangeable extensions (see Lemma 1), and to investigate statistical properties
of the associated MSMVE distribution.

(iii) Based on the speci�c stochastic model, which can be interpreted as a so-called frailty construction,
one further advantage is observed: When considering large homogeneous credit portfolios, Glivenko–
Cantelli type approximations for the portfolio loss process as presented in [28] are available. Since the
default times are conditionally independent and identically distributed in suchmodels, for a large port-
folio, the portfolio loss can be approximated by the conditional default probability. The famous Vasicek
formula is derived using the same idea, see [42]. These approximations allow, e.g., for semi-analytic
evaluation of collateralized debt obligations or similar non-linear derivatives depending on the portfo-
lio loss.

The remainder of the paper is organized as follows. In Section 2, the necessary mathematical concepts are
introduced, including a brief introduction to MSMVE distributions and their connection to so-called IDT sub-
ordinators. In Section 3, a speci�c family of IDT subordinators and the related family of MSMVE distributions
is investigated. A similar example is sketched in Section 4. A note on simulation can be found in Section 5.
Section 6 concludes.

2 Mathematical prerequisites and notation
Section 2.1 recalls some background on MSMVE laws, Section 2.2 introduces IDT subordinators and the so-
called IDT-frailty model, and Section 2.3 provides an explicit construction of IDT subordinators, which is of
prime relevance for our results.
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2.1 MSMVE distributions

A random vector (X1, . . . , Xd) with support [0,∞)d on a probability space (Ω,F, P) is said to have a min-
stable multivariate exponential (MSMVE) distribution if eachminimum over arbitrary subsets of scaled com-
ponents, i.e. min{c1 Xi1 , . . . , ck Xik} for all 1 ≤ k ≤ d, 1 ≤ i1 < . . . < ik ≤ d, c1, . . . , ck > 0, is (univariate)
exponential. Relying on themin-stability as a characterizing property re�ects the philosophy of [12] to lift the
concepts and properties of the one-dimensional exponential law to higher dimensions. Furthermore, these
distributions can be seen as possible distributions of asymptotic component-wise minima, as stated in [32],
or as limiting extreme-value distributions with (negative) exponential marginals, as stated in [8].
It is well-known, see, e.g., [20, Theorem 6.2, p. 174], that the survival function F̄ of an MSMVE distribution
can be written as

F̄(x1, . . . , xd) := P(X1 > x1, . . . , Xd > xd) = exp
(
− ` (x1, . . . , xd)

)
,

xi ≥ 0, i = 1, . . . , d, where ` : Rd+ → R+ is homogeneous of order 1, i.e. `(t x) = t `(x) for all t > 0, x ∈ Rd+.
Additionally assuming all marginal laws to be unit exponentials, such a function ` is called a stable tail de-
pendence function and `(ei) = 1 is ful�lled for all unit vectors ei , 1 ≤ i ≤ d. The previously mentioned link
between MSMVE distributions and extreme-value distributions can also be stated using the concept of copu-
las (for an introduction, see, e.g., the textbooks [20] and [31]): C is the copula of an extreme-value distribution,
a so-called extreme-value copula (see [14]), if and only if

C(u1, . . . , ud) = exp
(
− `
(
− log(u1), . . . , − log(ud)

) )
, u1, . . . , ud ∈ (0, 1],

with ` a stable tail dependence function. Furthermore, the survival copula of an MSMVE vector (X1, . . . , Xd)
is exactly of this kind.
One of the major �ndings in multivariate extreme-value theory, at least known since [9] and many times re-
discovered and re-formulated since then, is a one-to-one relationship between d-dimensional MSMVEs and
certain measures on a subspace of Rd+, which is somehow comparable with the one-to-one relationship be-
tween in�nitely divisible distributions and their associated Lévy measures. A quite recent, purely analytical
derivation of this result can be retrieved from [36]. Additionally, the latter reference shows that a d-variate
function F̄ : [0,∞)d → [0, 1] is an MSMVE survival function with unit exponential marginals if and only if
the function

`(x1, . . . , xd) := − log
(
F̄(x1, . . . , xd)

)
is homogeneous of order 1, fully d-max-decreasing, and `(ei) = 1, 1 ≤ i ≤ d, so these are necessary and suf-
�cient conditions for ` : Rd+ → R+ to be a stable tail dependence function. This re�nes a result of [16]. The
homogeneity property is a reformulation of the extreme-value property of the underlying extreme-value cop-
ula in terms of the function `. The fully d-max-decreasingness property is essentially a reformulation of the
d-increasingness property of the associated MSMVE’s distribution function after transformation to survival
functions and an application of the log-transform. However, it is not easy to investigate this property analyt-
ically. Another characterization of stable tail dependence functions in terms of so-called “max-zonoids” is
given in [30].
In the well-studied bivariate case, ` is characterized by the so-called Pickands dependence function A :
[0, 1] → [1/2, 1], which is de�ned by A(t) := `(t, 1 − t). Su�cient conditions for a function to be a bivariate
Pickands dependence function are as follows, see [14, Theorem 2.3]: A is a bivariate Pickands dependence
function if and only if A is convex and max{t, 1 − t} ≤ A(t) ≤ 1, for all t ∈ [0, 1]. Concerning measures
of dependence, like concordance measures and tail dependence coe�cients, it is well-known for a bivariate
MSMVE vector (X1, X2) that these measures can be computed easily from A (see, e.g., [14, 17]), e.g.

ρ = 12
1∫

0

1(
1 + A(t)

)2 dt − 3, (Spearman’s ρ),

λL = 2
(

1 − A(1/2)
)
, (lower tail-dependence coe�cient).
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Note that ρ ≥ 0 for all MSMVE distributions. Assuming the dependence structure, respectively function A, to
be of a given parametric form, maximum likelihood, maximum pseudo-likelihood or rank-based moment es-
timators are available, see the literature on estimation of (bivariate extreme-value) copulas, e.g., [21, Chapter
5].
Our approach is dimension-free in the sense that instead of random vectors (X1, . . . , Xd) we considerMSMVE
sequences {Xk}k∈N. These are sequences of random variables such that the min-stability property holds for
all �nite subsets ofN, i.e. mini∈I{ci Xi} is exponentially distributed for all �nite I ⊂ N and ci > 0, for all i ∈ I.

2.2 The IDT-frailty model

The starting point of our considerations is a result by [27] which shows that for an exchangeable MSMVE
sequence {Xk}k∈N there exists a stochastic representation as a frailty model

Xk := inf{t > 0 : Ht > Ek}, k ∈ N, (1)

with an iid sequence {Ek}k∈N of unit exponential random variables and {Ht}t≥0 a so-called strong IDT sub-
ordinator, which is independent of {Ek}k∈N. Conversely, starting from a strong IDT subordinator, the above
construction (1) yields an exchangeable MSMVE sequence. Exchangeability means that the distribution of
each �nite sub-vector remains unchanged under arbitrary permutations of the components of the vector. A
process {Ht}t>0 is called a strong IDT subordinator in the sense of [27] if it is right-continuous, [0,∞]-valued,
non-decreasing, H0 = 0, and limt→∞ Ht = ∞, a.s., and satis�es

{Ht}
d= {H(1)

t/n + . . . + H(n)
t/n}, ∀n ∈ N, (2)

where the processes H(1), . . . , H(n) are iid copies of H. Property (2) corresponds to the de�nition of IDT pro-
cesses as used in, e.g., [29] or [11], restricted to non-decreasing processes with some additional technical con-
straints, which guarantee that {Xk}k∈N is well de�ned. It is well-known for strong IDT processes, see, e.g.,
[29], that Ht is in�nitely divisible for every t > 0 and thus, de�ning ΨH(x) := − log

(
E
[
exp(−x H1)

])
yields

a so-called Bernstein function. A function Ψ : (0,∞) → R is a Bernstein function if and only if it admits a
(unique) representation via

Ψ(x) = c + a x +
∫

(0,∞)

(
1 − e−x u

)
ν(du),

with c ≥ 0 the so-called killing term, a ≥ 0 the drift term, and ν a measure on (0,∞) satisfying
∫

(0,∞)(1 ∧
u) ν(du) < ∞, the Lévy measure. In the following, we will always ignore the so-called killing term as we only
consider distributions on [0,∞), i.e. we set it to zero. Bernstein functions are often extended to the domain
[0,∞) setting Ψ(0) := 0. The set of all Lévy measures is denoted M. For further information on Bernstein
functions, see [39]. For the Laplace transform of the one-dimensional margins of a strong IDT subordinator,
one has

E
[
exp(−x Ht)

]
= exp

(
− t ΨH(x)

)
, x ≥ 0.

Thus, for every strong IDT subordinator, there exists a Lévy subordinator with the same marginal dis-
tributions. Actually, Lévy subordinators are the best studied example of strong IDT subordinators. The
marginal distribution of Ht is of relevance for the exchangeable sequence constructed in Equation (1), since
mini∈I{Xi} ∼ Exp

(
ΨH(|I|)

)
for all �nite subsets ∅ ≠ I ⊂ N with cardinality |I|.

Theoretically, construction (1) allows to de�ne new parametric families of MSMVE distributions (and thus
stable tail dependence functions) by de�ning parametric families of strong IDT subordinators. Furthermore,
using Lemma 1, it is possible to construct not only exchangeable sequences, but also non-exchangeable
vectors, e.g. based on factor-model motivations.
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Lemma 1 (Multi-factor MSMVE distributions). Consider a probability space (Ω,F, P) supporting n + 1 ∈ N
independent, non-decreasing strong IDT subordinators H̃(i) = {H̃(i)

t }t≥0, i = 0, . . . , n, and an independent iid
sequence E1, . . . , Ed of exponential random variables with unit mean. Moreover, let A = (ai,j) ∈ Rd×(n+1) be an
arbitrarymatrixwith non-negative entries, having at least one positive entry per row.Wede�ne the vector-valued
stochastic process

H t =


H(1)
t

H(2)
t
...

H(d)
t

 := A ·


H̃(0)
t

H̃(1)
t
...

H̃(n)
t

 =


a1,0 H̃(0)

t + . . . + a1,n H̃(n)
t

a2,0 H̃(0)
t + . . . + a2,n H̃(n)

t
...

...
ad,0 H̃(0)

t + . . . + ad,n H̃(n)
t

 ,

whose component processes are all strong IDT subordinators. Then, the random vector (X1, . . . , Xd) de�ned via

Xk := inf{t > 0 : H(k)
t > Ek}, k = 1, . . . , d,

has an MSMVE law.

Proof. See [26, Lemma 4.4]. Note that by de�ning the entries of the matrix A appropriately and interpreting
the processes H̃(i) as stochastic drivers, dedicated factor models can be constructed.

Besides Lévy subordinators there exist only few parametric families of (non-trivial) strong IDT subordinators
and those are not very well investigated, yet. The aim of the present paper is to de�ne new classes of MSMVE
distributions by de�ning suitable parametric families of strong IDT subordinators in a �rst step.

2.3 A class of strong IDT subordinators

Consider an arbitrary Lévy subordinator {Λt}t≥0, i.e. a stochastically continuous process with independent
and stationary increments, which is almost surely càdlàg and non-decreasing, see, e.g., [37, De�nition 1.6],
where we assume that for every ω ∈ Ω, Λt(ω) is right-continuous in t, non-decreasing, and Λ0(ω) = 0 (see,
e.g. [37, p. 197]).We consider instances of the general exampleHt :=

∫∞
0 f (s/t) dΛs, with f a function ful�lling

certain conditions, see Lemma 2. This general example can be found, using slightly di�ering notation, e.g.,
in [29], and in [2] as an example of an in�nitely temporally selfdecomposable process. The integral could be
de�ned using the de�nition of integrals with respect to independently scattered randommeasures by [34] or
[38]. However, as we restrict ourselves to pathwise non-decreasing processes, it is possible to use pathwise
the usual Lebesgue–Stieltjes integral for expressions of the form

∫∞
0 . . . dΛs, see, e.g., [23, Example 1.56]. This

coincides a.s. with themore complex integral de�nition in [34, 38], sowe can apply their results on properties
of the integral.

Lemma 2 (A class of strong IDT subordinators). De�ning pathwise

Ht :=
∞∫

0

f (s/t) dΛs , t > 0, (3)

with H0 := 0 for f a measurable, non-negative, non-increasing, left-continuous function, f ≢ 0, ful�lling
∞∫

0

aΛ f (s) +
∞∫

0

[
1 ∧ (x f (s))

]
νΛ(dx)

 ds < ∞,

∞∫
0

∞∫
0

[
1 ∧ (x2 f (s)2)

]
νΛ(dx) ds < ∞,

where aΛ and νΛ are the drift and the Lévy measure of the subordinator Λ, yields a strong IDT subordinator
H = {Ht}t≥0 in the sense of [27].
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Proof. It is possible to de�ne the integral (3) pathwise as a Lebesgue–Stieltjes integral. However, one has to
admit the value +∞. The two integral conditions stated above are necessary and su�cient conditions for the
existence of the integral (for t = 1) with respect to independently scattered randommeasures as stated in [34,
Theorem 2.7]. One can show that the existence of that integral ensures the existence of the pathwise integral,
and furthermore, the two de�nitions coincide a.s..

The next two sections are devoted to a detailed investigation of two speci�c families, namely families based
on f1(s) = (1 − s)+ and f2(s) = log+(1/s). We derive the related strong IDT subordinators and the resulting
MSMVE distributions.

3 Family F1
We examine the construction of Lemma 2 using the function f1(s) = (1−s)+ := max{1−s, 0}, which obviously
ful�lls the conditions stated in Lemma 2: As we can estimate f1(s) ≤ 1[0,1](s), it follows that the �rst integral
expression is bounded above by aΛ +

∫∞
0 (1∧ x) νΛ(dx), and the second integral expression is bounded above

by
∫∞

0 (1 ∧ x2) νΛ(dx), which both are �nite expressions for Lévy measures. We now consider the strong IDT
subordinator

Ht :=
∞∫

0

(
1 − st

)
+

dΛs =
t∫

0

(
1 − st

)
dΛs , t > 0, (4)

with H0 := 0. The corresponding family of distributions resulting from construction (1) is called F1. The pro-
cess H has an alternative representation using integration by parts, namely

Ht := 1
t

t∫
0

Λsds, t > 0, (5)

which can be seen as some kind of moving average of the increasing process Λ. From Equation (4) it can be
seen that pathwise, Ht equals a Williamson 2-transform evaluated at 1/t, see, e.g., [43] for the de�nition of
Williamson d-transforms. Consequently,Ht = ψ(1/t) withψ a (random) convex and non-increasing function.
It can be seen from the representation in Equation (5) that Ht equals the product of a di�erentiable function
and a function that is a.e. di�erentiable, a.s.. Consequently, the paths of H are a.e. di�erentiable, a.s.. Fur-
thermore,

Ht+x − Hx = 1
t + x

x+t∫
x

Λsds −
t

x (x + t)

x∫
0

Λsds

= 1
t + x

x+t∫
x

(Λs − Λx) ds + t Λx
x + t −

t
x + t Hx

d= 1
t + x

t∫
0

Λ̃sds + t
x + t (Λx − Hx) = t

x + t H̃t + t
x + t (Λx − Hx),

where Λ̃ is an independent copy of Λ and H̃ the corresponding independent copy of H. Consequently, the
increments, given the path of Λ up to time x, can be decomposed into a stochastic component independent
of the previous evolution and a component measurable with respect to Fx := σ(Λs , 0 ≤ s ≤ x). However, as
the value of Λx can not be recovered from Hx, H is not Markovian.
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3.1 Attainable marginal distributions

In a�rst step,weanalyzepossiblemarginal distributions ofH that canarise from this construction, aswehave
seen above that these are of relevance for the corresponding distribution. Let ΨΛ be the Laplace exponent of
{Λt}t≥0, νΛ the corresponding Lévy measure, and aΛ its drift term. For the resulting strong IDT subordinator
H, we denote its associated Bernstein function by ΨH with Lévy measure νH and drift aH . Let Φ denote the
considered integral transform, i.e. Φ : L(Λ1) 7→ L

(∫ 1
0 (1 − s) dΛs

)
, where L(.) denotes the law of some

random variable, which we will use simultaneously on the level of considered Lévy measures Φ : νΛ 7→ νH .
Furthermore, de�ne

U :=
{
ν ∈M : ν(dx) = g(x)dx, g non-increasing

}
.

The corresponding class of distributions is called “Jurek class” or class of “s-selfdecomposable distributions”,
see [22], restricted to distributions on R+. It is shown in [22] that Φ : M → U is one-to-one, i.e. in particular
every Bernstein function ΨH possessing a non-increasing density can be attained by the given construction.

Lemma 3 (Lévy measures associated with H). (i) Φ : M→ U and the mapping is one-to-one.
(ii) The Lévy density gH of the measure νH is given by

gH(y) =
∞∫
y

νΛ(dx)
x , y > 0.

(iii) For any non-negative, measurable function h
∞∫

0

h(x) νH(dx) =
∞∫

0

1
x

 x∫
0

h(y) dy

 νΛ(dx).

Proof. (i) is the result in [22, Theorem 2.6] restricted to distributions on R+. We only prove (iii), as (ii) can
be proven along the same lines (see, e.g., [4, Example 6.3 (1)]). For H1 =

∫ 1
0 (1 − s) dΛs, [34, Proposition 2.6]

yields

ΨH(x) =
1∫

0

ΨΛ
(
x (1 − s)

)
ds, x ≥ 0,

as f1(s) = (1 − s)+ is obviously integrable. With [34, Theorem 2.7(iv)], one has

νH(B) =
1∫

0

νΛ
(
B/(1 − s)

)
ds =

1∫
0

νΛ(B/s) ds, B ∈ B(R+). (6)

Thus, for any non-negative, measurable function h,
∞∫

0

h(x) νH(dx) =
1∫

0

∞∫
0

h(x s) νΛ(dx) ds =
∞∫

0

1∫
0

h(x s) ds νΛ(dx)

=
∞∫

0

1
x

 x∫
0

h(y) dy

 νΛ(dx),

applying a substitution in the last step. This proves the claim.

Furthermore, it can be seen from Equation (6) that Φ is a so-called “Upsilon transform” in the sense of [4],
with dilationmeasureγ(dx) = 1[0,1]dx, fromwhichmore results can be derived, e.g., on continuity properties
of the transform Φ.
Actually, it is even possible to compute the pre-image Φ−1(g(x)dx) explicitly, given a non-increasing Lévy
density g. Using the previous results, we can conclude that for every Lévy subordinator with marginal distri-
butions in the Jurek class, we can �nd another non-decreasing process with the same marginal distributions
and a.e. di�erentiable paths, a.s..
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3.2 The corresponding MSMVE family

It is known that for all d ≥ 2, (X1, . . . , Xd) constructed as in Equation (1) exhibits an MSMVE distribution
which corresponds to a stable tail dependence function `. In the given construction, ` can be computed ex-
plicitly. In particular, it is a function of the Bernstein function ΨH . This constitutes a very �exible class of
stable tail dependence functions, since one can plug in any desired Bernstein function of the Jurek class.

Theorem 1 (Constructing parametric MSMVE distributions of family F1). For every Bernstein function ΨH
with drift aH , Lévy measure νH ∈ U, and ΨH(1) = 1, the function

`(x1, . . . , xd) = d∑d
j=1 1/x(j)

ΨH(d) −
d−1∑
i=1

(
d − i + 1∑d
j=i 1/x(j)

− d − i∑d
j=i+1 1/x(j)

)
ΨH

d − i − d∑
j=i+1

x(i)/x(j)

 (7)

is a stable tail dependence function for every d ≥ 2. A random vector (X1, . . . , Xd) with the respective MSMVE
distribution can be constructed via

Xk := inf

t > 0 : Ek <
t∫

0

(
1 − st

)
dΛs

 , k = 1, . . . , d,

with Λ = {Λt}t≥0 a Lévy subordinator with drift aΛ = 2 aH and Lévymeasure νΛ = Φ−1(νH), and an iid sequence
{Ek}k∈N of unit exponential random variables independent of Λ.

Remark 1 (` when some arguments are zero). Actually, the expression for ` in Theorem 1 is only de�ned for
values x1, . . . , xd > 0. However, since the construction yields `(x1, . . . , xd) = − log

(
E
[

exp (−Hx1 − . . . − Hxd )
])

and H0 = 0, it is obvious that the case xi = 0 for at least one i ∈ {1, . . . , d} has a simple solution: for I := {i ∈
{1, . . . , d} : xi = 0} with k := |I|, one has `(x1, . . . , xd) = `(x(1), . . . , x(d)) = `(0, . . . , 0, x(k+1), . . . , x(d)) =
`(x(k+1), . . . , x(d)) and `(0, . . . , 0) = 0. The same observation holds true for Theorem 2 below.

Proof (Theorem 1). See Appendix A.

Possible parameterizations:
We present two examples. An example with a very simple form is based on the positive α-stable case.

Example 1. ΨH(x) = xα , α ∈ (0, 1), is attainable (respectively part of the Jurek class U) as νH(dx) = g(x) dx,
with

g(x) = α
Γ(1 − α) x

−1−α , x > 0,

see [39, p. 218], which is a decreasing density and consequently, νH ∈ U. We can compute the density f of νΛ as
f (x) = (1 − α) g(x), which can be checked using Lemma 3(ii). Consequently, the associated Lévy subordinator Λ
is an α-stable subordinator. The resulting bivariate Pickands dependence function is

A(t) = t(1 − t) 2α+1 + (1 − t)1−α (1 − 2 t)1+α , 0 < t ≤ 0.5.

For α ∈ (0, 1), this interpolates between complete dependence and independence as can be seen in Figure 1.
The lower tail dependence coe�cient is given by λL = 2 − 2α. Though A appears to exhibit a kink at t = 1/2, we
know from previous computations that it is indeed di�erentiable.

Another simple class of Bernstein functions is based on the compound Poisson distribution. We present one
speci�c instance.
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Example 2. ΨH = (1 + a) x/(x + a), a > 0, is attainable as νH(dx) = g(x) dx, with

g(x) = (1 + a) a e−a x , x > 0,

which corresponds to a compound Poisson process with intensity (1 + a) and Exp(a)-distributed jumps. The
related Lévy process is a compound Poisson process with intensity (1 + a) and Γ(2, a)-distributed jumps, as can
be seen from its Lévy measure νΛ(dx) = (1 + a) a2 x exp(−a x) dx, which can again be checked using Lemma
3(ii) (a random variable is said to be Γ(c, d)-distributed, c, d > 0, if its distribution exhibits a density f of the
form f (x) = dc/Γ(c) xc−1 e−d x1{x>0}). The resulting bivariate Pickands dependence function is

A(t) = (1 + a) (1 − t)
[

4 t
2 + a + (1 − 2 t)2

1 − 2 t + a (1 − t)

]
, 0 < t ≤ 0.5,

and the lower tail dependence coe�cient is given by λL = 2/(2 + a), i.e. every value in (0, 1] is attainable.

The number of parametric families of attainable Bernstein functions is huge. For instance, [39, pp. 218–277]
list more than one hundred so-called complete Bernstein functions (for a de�nition, see Section 4.1), and
the family of complete Bernstein functions form a proper subclass of the attainable Bernstein functions. A
small selection of interesting examples can be found in Table 1. In many cases, one can also compute the
corresponding Lévy subordinator. If, e.g., H1 is distributed according to a compound Poisson distribution,
the corresponding Lévy subordinator is a compound Poisson process (CP) aswell. Figure 1 visualizes di�erent
attainable shapes of A.

Table 1: Possible choices for ΨH together with their Lévy densities. One has to add a multiplicative positive factor to adjust for
ΨH (1) = 1, which is omitted here. The restrictions α ∈ (0, 1), a > 0, β > 0, η > 0 have to hold. All examples are also complete
Bernstein functions. For a list of more than one hundred complete Bernstein functions see [39, pp. 218–277].

Name ΨH gH type of Λ
Stable xα α/Γ(1 − α) x−1−α Stable
CP1 x/(x + a) a exp(−a x) Compound Poisson
Gamma log(1 + x/β) exp(−a x)/x Sum of independent CP1 and Gamma
IG

√
2 x + η2 − η

√
0.5/Γ(0.5) x−3/2 exp(−η2/2) Sum of independent CP and IG

4 Family F2
We examine the construction of Lemma 2 using f2(s) = log+(1/s) := max{log(1/s), 0}. The corresponding
family of distributions resulting from construction (1) is called family F2. This approach does not yield closed
form solutions for arbitrary subordinators, but it allows to �nd a convenient expression for the corresponding
stable tail dependence function such that tractable instances can be constructed easily. What is interesting
in this context is that the process H itself has an alternative representation, using integration by parts, as
shown in [3, Proposition 2.4], via

Ht =
t∫

0

Λs
s ds = lim

u↘0

t∫
u

Λs
s ds, (8)

where the limit is a.s.. In the context of the construction in Equation (1), this can be interpreted as an intensity
model with intensity λs := Λs/s, s > 0, with λ0 = aΛ. It is de�ned consistently, as lims↘0 λs = aΛ a.s., see
[37, p. 351]. This is a peculiar construction, as it follows, assuming the �rst and second moment of Λ to exist,
that E[λs] = aΛ +

∫∞
0 x νΛ(dx) and Var[λs] = 1/s

( ∫∞
0 x2 νΛ(dx)

)
for s > 0. Thus, the variance of the intensity

is exploding close to 0 and is vanishing for large s.
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Figure 1: Left: Bivariate Pickands dependence functions for Example 1 (ΨH (x) = xα) and di�erent values of α. Right: The bivari-
ate Pickands dependence functions for di�erent ΨH corresponding to the α-stable case, CP1, the Gamma case, and the IG case
as de�ned in Table 1. The parameters in the example to the right are chosen such that all models exhibit a Spearman’s ρ of 0.5.

4.1 Attainable marginal distributions

From [3, Proposition 2.3] it follows that f2 ful�lls the integrability conditions in Lemma 2. Furthermore, the
corresponding integral transform is well-known and thoroughly investigated in arbitrary dimensions, see [3].
We denote the transform restricted to distributions on R+ again by Φ, and de�ne

BO :=
{
ν ∈M : ν(dx) = g(x)dx, g completely monotone

}
,

the so-called “Bondesson” class, where (see, e.g., [39, De�nition 1.3]) a function g : (0,∞)→ R is completely
monotone (c.m.) if g ∈ C∞ and

(−1)ng(n)(x) ≥ 0, for all n ∈ N ∪ {0}, x > 0.

The Bernstein functions corresponding to Lévy measures in BO are called complete Bernstein functions. [3]
show that Φ(M) = BO and that Φ is one-to-one. We provide a short proof of the �rst result as it is helpful for
understanding the transform itself. It is based on a characterization of the class BO via complete Bernstein
functions given in [39, Remark 6.4]: Ψ is the Laplace exponent of a distribution in BO if and only if it has a
representation

Ψ(x) = a x +
∞∫

0

x
x + t σ(dt), x ≥ 0,

with σ the so-called Stieltjes measure on (0,∞), which satis�es
∫∞

0 (1 + t)−1 σ(dt) < ∞.

Lemma 4 (Attainable marginal distributions using f2). Using f2, ΨH has a representation

ΨH(x) = aH x +
∞∫

0

x
x + t σH(dt), x ≥ 0,

with aH = aΛ and σH(B) :=
∫∞

0 1B(1/u)νΛ(du), B ∈ B(R). Therefore, Φ(M) = BO.

Proof. Using again [34, Proposition 2.6], it follows that

ΨH(x) =
∞∫

0

ΨΛ
(
x f2(s)

)
ds, x ≥ 0.
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Consequently

ΨH(x) =
1∫

0

ΨΛ
(
x log+(1/s)

)
ds

= aΛ x
1∫

0

log+(1/s) ds +
1∫

0

∞∫
0

1 − exp
(
−u x log+(1/s)

)
νΛ(du) ds

= aΛ x +
∞∫

0

1∫
0

1 − su x ds νΛ(du)

= aΛ x +
∞∫

0

x
x + 1/u νΛ(du) = aΛ x +

∞∫
0

x
x + t σH(dt),

with σH as de�ned above. Consequently, Φ(M) ∈ BO follows from the observation that σH as de�ned above
is a Stieltjesmeasure.Φ(M) = BO follows from the observation that σH as de�ned above is a Stieltjesmeasure
if and only if νΛ is a Lévy measure. This can be easily shown using basic inequalities.

Lemma 4 de�nes a direct connection between the characteristics of ΨH and ΨΛ as we can write the Stieltjes
measure of H in terms of the Lévy measure of Λ. We will make use of this fact below.

4.2 The corresponding multivariate distribution

As we have seen in Lemma 4, for an arbitrary Stieltjes measures σH one can �nd a corresponding Lévy mea-
sure.Wewill use this fact and state the dependence function of the resultingmultivariate distribution in terms
of the Stieltjes measures, such that arbitrary Stieltjes measures can be plugged in. Notice that Remark 1 also
applies to Theorem 2.

Theorem 2 (Constructing parametric MSMVE distributions of family F2). For every complete Bernstein func-
tion ΨH with Stieltjes measure σH and drift aH such that ΨH(1) = 1, the function

`(x1, . . . , xd) =
d∑
i=1

x(i)

aH +
∞∫

0

 d∏
j=i+1

x(i)
x(j)

1/s
s

(s + d − i + 1) (s + d − i)σH(ds)

 (9)

denotes a stable tail dependence function for every d ≥ 2. A stochastic representation of anMSMVEdistributions
(X1, . . . , Xd) with stable tail dependence function ` and unit exponential marginals is given by

Xk := inf

t > 0 : Ek <
t∫

0

log
(
t
s

)
dΛs

 ,

with Λ a Lévy subordinator with drift aΛ = aH and Lévy measure given by νΛ(B) :=
∫∞

0 1B(1/u)σH(du), B ∈
B(R), and an iid sequence {Ek}k∈N of unit exponential random variables independent of Λ.

Proof. See Appendix B.

At least two approaches are possible when looking for tractable speci�cations of family F2. As there exists
a direct link between σH and νΛ, one can start from both sides. It is, for example, possible to start from σH
corresponding to a desiredΨH and try to compute the expression in Theorem2. [39] lists the Stieltjesmeasures
for many of the known complete Bernstein functions. One could also start from a νΛ such that the Laplace
transform of the measure νΛ(du)/(n u + 1) for n ∈ N is known in closed form. This can be seen from the third
from last line of the computation in the proof of Theorem 2.
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Figure 2: The bivariate Pickands dependence functions for the same ΨH corresponding to the CP1 case, where the approach
using f1 (Example 2) is compared to the result for f2 (Example 3). The parameters are chosen such that both models exhibit a
Spearman’s ρ of 0.75.

Possible parametrization:
We present one example starting from the Laplace exponent ΨH .

Example 3. ΨH(x) = (1+a) x/(x+a), a > 0 (called CP1 in Table 1) is attainable and corresponds to a compound
Poisson distributionwith intensity (1+a) and jump-size distribution Exp(a). This coincideswith Example 2 in the
previous section, i.e. it is possible to construct a process H using f2 which has the samemarginal distributions as
the process constructed in Example 2 using f1. Thus, the minima of subsets of the two di�erent resultingMSMVE
sequences have the same exponential distributions, though their multivariate distributions di�er considerably.
The corresponding Stieltjesmeasure is determined as σH(ds) = (1+a)δa(s), where δa denotes theDiracmeasure
at a. It is easy to see that νΛ = Φ−1(σH) is given by νΛ(ds) = (1 + a)δ1/a(s), so Λ is a Poisson process with �xed
jump-size 1/a and intensity (1 + a). A closed-form solution for ` de�ned in Equation (9) is given by

`(x1, . . . , xd) =
d∑
i=1

x(i)

 d∏
j=i+1

x(i)
x(j)

1/a
a (a + 1)

(a + d − i + 1) (a + d − i) .

The bivariate Pickands dependence function for 0 < t < 0.5 can be stated as

A(t) = (1 − t) + t
(

t
1 − t

)1/a a
a + 2 .

The dependence functions of this model and the one of Example 2 are compared in Figure 2. It can be observed
that both approaches yield considerably di�erent dependence functions.

5 A note on simulation
As mentioned before, the stochastic representation of (X1, . . . , Xd) as an IDT-frailty model can be used to
develop e�cient simulation algorithms. When the involved Lévy subordinators are compound Poisson pro-
cesses, simulating is straight-forward. Other Lévy subordinators can be approximated by compound Poisson
processes or more involved schemes can be developed based on the given representation. We compare Ex-
ample 2 of family F1 with Example 3 of family F2, which both yield CP1, i.e. ΨH(x) = (1 + a) x/(x + a), a > 0,
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as the desired (complete) Bernstein function for H. In Example 2, this corresponds to Λ(1) being a compound
Poisson process with intensity (1 + a) and Γ(2, a)-distributed jumps, i.e.

H(1)
t =

t∫
0

(
1 − st

)
dΛ(1)

s , t > 0,

has the desired Laplace exponent. For the family F2, as described in Example 3, this corresponds to Λ(2) being
a Poisson process with deterministic jump-size 1/a and intensity (1 + a), i.e.

H(2)
t =

t∫
0

log
(
t
s

)
dΛ(2)

s , t > 0,

yields a second construction with the desired marginal distribution. Denoting by τi , i ∈ N, the jump times of
a Poisson process with intensity (1 + a), one can rewrite

H(1)
t =

∑
τi≤t

Gi
(

1 − τit

)
, t ≥ 0,

H(2)
t = 1

a
∑
τi≤t

log
(
t
τi

)
, t ≥ 0,

where Gi , i ∈ N, are iid Γ(2, a)-distributed. To illustrate the construction, sample paths are shown in Figure
3, where the same jump times are used to emphasize the di�erences of the resulting paths.
Based on these representations, it is clear how to sample from the construction in Equation (1). Exemplary
scatterplots can be found in Figure 4, where we transformed the marginals to uniform distributions on [0, 1]
so that samples from the related extreme-value survival copulas are obtained for reasons of better compara-
bility. Example 2 yields more samples close to the diagonal, which can be explained by the additional ran-
domness introduced through the random variables Gi. High values of Gi correspond to a steep increase of
H(1), which increases the probability of imminent triggering for both components within a short time period.

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

t

H
t

 

 

H(0)

H(1)

H(2)

Figure 3: Simulated paths of the processes H(1) and H(2) where a = 2 is chosen. For comparison, a path of the simple com-
pound Poisson process H(0) with Exp(a)-distributed jumps is added, which has the same marginal distribution. For all pro-
cesses, the same jump times are used.
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Example 2: Scatterplot and density contours
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Example 3: Scatterplot and density contours

Figure 4: Scatterplots with 800 samples of the survival copulas of the MSMVE distributions generated by Example 2 and Exam-
ple 3. The corresponding Pickands dependence functions are depicted in Figure 2 and the same parameters are chosen.

6 Concluding remarks
The present paper developed two new families of MSMVE distributions that give rise to many parametric
models. The analysis conducted has shown that these new classes are quite �exible. Similar to [19], the aim
of this paper was to introduce new classes of models, while an application of these in practice requires more
detailed investigations of particular parametric models. One clear advantage of the presented models is the
availability of concrete stochastic models allowing for e�cient simulation even in large dimensions. Further-
more, applying these models in credit-portfolio modeling yields additional advantages.
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A Proof of Theorem 1
Theorem 1. It follows from Lemma 3 that there exists a Lévy subordinator Λ with drift aΛ = 2 aH and νΛ =
Φ−1(νH). Using this Λ in our construction, we observe

P(X1 > x1, . . . , Xd > xd) = exp
(
− `(x1, . . . , xd)

)
= E
[

exp (−Hx1 − . . . − Hxd )
]

= E

exp

− d∑
i=1

∞∫
0

(
1 − s

xi

)
+

dΛs


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= E

exp

− ∞∫
0

d∑
i=1

(
1 − s

xi

)
+

dΛs


= exp

− ∞∫
0

ΨΛ

( d∑
i=1

(
1 − s

xi

)
+

)
ds

 ,

where in the last step,weuse [34, Proposition 2.6] again. FollowingRemark 1,weonly consider x1, . . . , xd > 0.
Plugging ΨΛ’s representation into above expression and integrating the �rst summand, we �nd

`(x1, . . . , xd) = aH
d∑
j=1

xj +
x(d)∫
0

∞∫
0

1 − exp
(
−u

d∑
i=1

(
1 − s

xi

)
+

)
νΛ(du) ds. (10)

We proceed with three helpful equalities:

−x(d) = − 1∑d
j=1

1
x(j)

−
d−1∑
i=1

(
1∑d

j=i+1
1
x(j)

− 1∑d
j=i

1
x(j)

)
, (11)

which follows from a telescope argument applied to the right hand side. Furthermore,

x(d) = d∑d
j=1

1
x(j)

−
d−1∑
i=1

(
1∑d

j=i+1
1
x(j)

− 1∑d
j=i

1
x(j)

)[ d∑
j=i+1

x(i)
x(j)

− (d − i)
]
, (12)

as (
1∑d

j=i+1
1
x(j)

− 1∑d
j=i

1
x(j)

)[ d∑
j=i+1

x(i)
x(j)

− (d − i)
]

= d − i + 1∑d
j=i

1
x(j)

− d − i∑d
j=i+1

1
x(j)

,

so again, we can use a telescope argument. Finally,

d∑
j=1

xj = d2∑d
j=1

1
x(j)

−
d−1∑
i=1

(
d − i + 1∑d

j=i
1
x(j)

− d − i∑d
j=i+1

1
x(j)

)(
d − i −

d∑
j=i+1

x(i)
x(j)

)
, (13)

which can be shown by rearranging(
d − i + 1∑d

j=i
1
x(j)

− d − i∑d
j=i+1

1
x(j)

)(
d − i −

d∑
j=i+1

x(i)
x(j)

)
= (d − i + 1)2∑d

j=i
1
x(j)

− (d − i)2∑d
j=i+1

1
x(j)

− x(i),

so again, we can use another telescope argument.
For the second term in Equation (10), we can compute, de�ning x(0) := 0,

x(d)∫
0

∞∫
0

1 − exp
(
−u

d∑
i=1

(
1 − s

xi

)
+

)
νΛ(du) ds

=
∞∫

0

x(d) −
d∑
i=1

x(i)∫
x(i−1)

exp

−u d∑
j=i

(
1 − s

x(j)

) ds νΛ(du)

=
∞∫

0

x(d) −
d∑
i=1

e−u (d−i+1)

u
∑d

j=i
1
x(j)

(
e
u x(i)

∑d
j=i

1
x(j) − e

u x(i−1)
∑d

j=i
1
x(j)

)
νΛ(du)

=
∞∫

0

1
u

[
u x(d) − x(d) + e−u d∑d

j=1
1
x(j)
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+
d−1∑
i=1

e
u
[∑d

j=i+1
x(i)
x(j)
−(d−i)

](
1∑d

j=i+1
1
x(j)

− 1∑d
j=i

1
x(j)

)]
νΛ(du)

(11)=
∞∫

0

1
u

{ u∫
0

x(d) −
d e−s d∑d
j=1

1
x(j)

+
d−1∑
i=1

e
s
[∑d

j=i+1
x(i)
x(j)
−(d−i)

]

×
[ d∑
j=i+1

x(i)
x(j)

− (d − i)
](

1∑d
j=i+1

1
x(j)

− 1∑d
j=i

1
x(j)

)
ds
}
νΛ(du)

=
∞∫

0

x(d) −
d e−u d∑d
j=1

1
x(j)

+
d−1∑
i=1

e
u
[∑d

j=i+1
x(i)
x(j)
−(d−i)

]

×
[ d∑
j=i+1

x(i)
x(j)

− (d − i)
](

1∑d
j=i+1

1
x(j)

− 1∑d
j=i

1
x(j)

)
νH(du)

where in the last step, we used Lemma 3(iii),

(12)=
∞∫

0

d∑d
j=1

1
x(j)

(
1 − e−d u

)
−
d−1∑
i=1

(
d − i + 1∑d

j=i
1
x(j)

− d − i∑d
j=i+1

1
x(j)

)

×
(

1 − e
u
[∑d

j=i+1
x(i)
x(j)
−(d−i)

])
νH(du).

From Equation (10) follows that one has to add the term aH
∑d

j=1 xj to the above expression in order to com-
pute `. According to Equation (13), aH

∑d
j=1 xj can be rewritten as

aH
d∑
j=1

xj = d∑d
j=1

1
x(j)

aH d −
d−1∑
i=1

(
d − i + 1∑d

j=i
1
x(j)

− d − i∑d
j=i+1

1
x(j)

)
aH

(
d − i −

d∑
j=i+1

x(i)
x(j)

)
.

Resorting all terms in Equation (10), we recover the corresponding expressions for ΨH and the claim follows.

B Proof of Theorem 2
Theorem 2. From Lemma 4 we know that there exists a Lévy subordinator Λ with drift aΛ = aH and Lévy
measure νΛ. Using this Λ in our frailty construction, we obtain as in Theorem 1

`(x1, . . . , xd) =
x(d)∫
0

ΨΛ

( d∑
i=1

log+
( xi
s

))
ds,

= aH
d∑
j=1

xj +
x(d)∫
0

∞∫
0

1 − exp
(
−u
( d∑
i=1

log+
( xi
s

)))
νΛ(du) ds,

where following Remark 1, we consider x1, . . . , xd > 0. For the second term, we rewrite

∞∫
0

x(d)∫
0

1 − exp
(
−u
( d∑
i=1

log+
( xi
s

)))
ds νΛ(du)

=
∞∫

0

x(d) −
d∑
i=1

x(i)∫
x(i−1)

exp

−u
 d∑

j=i
log
( x(j)
s

)ds νΛ(du)
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=
∞∫

0

x(d) −
d∑
i=1

x(i)∫
x(i−1)

(∏d
j=i x(j)

sd−i+1

)−u
ds νΛ(du)

=
∞∫

0

x(d) −
d∑
i=1

 d∏
j=i
x(j)

−u x(i)∫
x(i−1)

su (d−i+1)ds νΛ(du)

=
∞∫

0

x(d) −
d∑
i=1

 d∏
j=i
x(j)

−u xu (d−i+1)+1
(i) − xu (d−i+1)+1

(i−1)
u (d − i + 1) + 1 νΛ(du)

=
∞∫

0

x(d)
u

u + 1

−
d−1∑
i=1

 d∏
j=i
x(j)

−u xu (d−i+1)+1
(i)

u (d − i + 1) + 1 −

 d∏
j=i+1

x(j)

−u xu [d−(i+1)+1]+1
(i)

u [d − (i + 1) + 1] + 1

 νΛ(du)

=
∞∫

0

x(d)
u

u + 1 −
d−1∑
i=1

 d∏
j=i+1

x(j)

−u xu (d−i)+1
(i)

(
1

u (d − i + 1) + 1 −
1

u (d − i) + 1

)
νΛ(du)

=
∞∫

0

x(d)
u

u + 1 −
d−1∑
i=1

x(i)

 d∏
j=i+1

x(j)
x(i)

−u ( 1
u (d − i + 1) + 1 −

1
u (d − i) + 1

)
νΛ(du)

=
∞∫

0

x(d)
1

1 + s −
d−1∑
i=1

x(i)

 d∏
j=i+1

x(j)
x(i)

−1/s (
s

(d − i + 1) + s −
s

(d − i) + s

)
σH(ds)

=
d∑
i=1

x(i)

∞∫
0

 d∏
j=i+1

x(i)
x(j)

1/s
s

(s + d − i + 1) (s + d − i) σH(ds).

The claim follows.
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