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Abstract— Falsification aims to disprove the safety of systems
by providing counter-examples that lead to a violation of safety
properties. In this work, we present two novel falsification
methods to reveal safety flaws in adaptive cruise control
(ACC) systems of automated vehicles. Our methods use rapidly-
exploring random trees to generate motions for a leading vehicle
such that the ACC under test causes a rear-end collision. By
considering unsafe states and searching backward in time,
we are able to drastically improve computation times and
falsify even sophisticated ACC systems. The obtained collision
scenarios reveal safety flaws of the ACC under test and can be
directly used to improve the system’s design. We demonstrate
the benefits of our methods by successfully falsifying the safety
of state-of-the-art ACC systems and comparing the results to
that of existing approaches.

I. INTRODUCTION

Safety is a mandatory requirement for the ever increas-
ing automation of vehicles. However, ensuring safety is a
challenging task; even in supposedly simple scenarios like
vehicle following (cf. adaptive cruise control (ACC) system
in Fig. 1), the variety of stop-and-go behaviors of other
vehicles may impose safety-critical situations.

Verifying that motion planning algorithms ensure certain
standards is often done by testing the system in a multitude
of simulations using large databases of test cases and traffic
scenarios [1]–[3]. However, simulations have the significant
disadvantage that they may miss testing certain scenarios
that inevitably lead to unsafe situations. In contrast, formal
verification approaches are able to provide strong safety
guarantees by verifying that each action of the vehicle
conforms to a formal specification [4]. Nevertheless, safety
only holds if the used specification appropriately models
the desired safety definition and no implementation mistakes
have been made.

To reveal safety-critical flaws in a system, falsification
approaches try to disprove the safety instead of proving it
[5]. Falsification for motion planning aims to find motions
that start in a safe state but eventually enter collision states
(cf. Fig. 2). The obtained motions serve as counter-examples
and can be used to revise the system’s design. Falsification
should be an integral part in the development of automated
vehicles; however, falsification approaches for automated
vehicle functions still have a huge potential in terms of
computational efficiency and applicability [6].
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Fig. 1: To follow a leading vehicle, ACC systems adjust the velocity of the
ACC-equipped vehicle so that the headway ∆s = slead−sacc is larger than
a safe distance ssafe.

A. Related work

In the following paragraphs, we a) provide a brief
overview of safety mechanisms in state-of-the-art ACC sys-
tems and b) review existing techniques for generating safety-
critical scenarios for automated vehicles.

a) Adaptive cruise control systems: ACC systems au-
tomatically adjust the velocity of the controlled vehicle to
maintain a certain headway to a leading vehicle [7], [8].
Reviews about major ACC developments can be found in
[9], [10]. Proportional integral ACCs (PI-ACCs) use PI
controllers to adjust the headway and are still widely used be-
cause of their simplicity [11], [12]. Their safety relies mainly
on the chosen gains to react to sudden changes in the behav-
ior of the leading vehicle. The Intelligent Driver Model ACC
(IDM-ACC) implements a more complex control scheme by
switching between different driving modes [13]. As a result,
the IDM-ACC can switch between comfortable or rather safe
parameterizations. Nevertheless, these ACC systems do not
incorporate dedicated collision avoidance mechanisms.

Collision avoidance ACCs (CA-ACCs) explicitly consider
collision avoidance by quickly adjusting their response be-
havior if the desired headway cannot be maintained [14].
Recently proposed ACCs make use of formal methods (FM-
ACC), e.g., set invariance theory or formalized traffic rules,
to provide safety guarantees during operation [15]–[18].
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Fig. 2: Falsification of motion planning aims to find counter-examples that
transition the system under test from an initial safe state x0 ∈ X0 ⊂ Xsafe

to a collision state x ∈ Xcol.



b) Generating safety-critical scenarios: To test ACC
systems, some approaches synthesize safety-critical scenarios
[5], [19]–[22], e.g., by making use of Monte Carlo simulation
(MCS) to automatically generate a variety of random sce-
narios. Although MCS approaches quickly generate various
scenarios, they are not designed to specifically find scenarios
leading to collisions.

The authors of [23] propose a systematic approach to test
collision avoidance systems by primarily simulating scenar-
ios in which leading vehicles suddenly perform emergency
braking maneuvers. More sophisticated methods make use of
reachability analysis, neural networks, performance metrics,
or evolutionary algorithms to automatically generate safety-
critical scenarios for fully automated vehicles [24]–[29].
Rapidly-exploring random trees (RRTs) [30] are used in
[31]–[33] to falsify the safety of a given system, since RRTs
are well suited to efficiently explore large search spaces.

B. Contributions

This paper proposes two approaches based on RRTs to
falsify the safety of ACC systems. Since the aforementioned
falsification methods are often computationally expensive
and do not exploit domain knowledge to efficiently generate
counter-examples, our contributions tackle these issues by:

1) drastically improving the performance of forward
searches by integrating unsafe states, which eventually
lead to collisions and are much easier to reach than
collision states (cf. Fig. 2);

2) presenting a novel falsification approach that employs a
backward search scheme and can successfully falsify
sophisticated ACC systems in significantly less time
than that of forward searches; and

3) demonstrating that our approaches successfully falsify
state-of-the-art ACC systems from the literature in rea-
sonable time and outperform classical forward search
and MCS.

The remainder of this paper is organized as follows. Sec. II
introduces necessary mathematical definitions and the prob-
lem statement. Next, our falsification algorithms to generate
safety-critical situations are presented in Sec. III. In Sec. IV,
the proposed approaches are used to falsify the safety of
state-of-the-art ACC systems in numerical experiments, and
the results are compared to that of Monte Carlo falsification.
Conclusions are presented in Sec. V.

II. DEFINITIONS AND PROBLEM STATEMENT

A. Vehicle configuration

Let us introduce X ⊂ R2 as the set of feasible states
x of a vehicle. The state vector x = [s, v]T consists of
the position s and the velocity v, each in the longitudinal
direction. Acceleration and jerk are denoted by a and j,
respectively. We assume discrete-time systems with a time
step size of ∆t > 0. We further introduce U ⊂ R as the
set of admissible control inputs u = a of the state transition
function fmotion, which describes the longitudinal dynamics

of a vehicle:[
s(tk+1)
v(tk+1)

]
︸ ︷︷ ︸

x(tk+1)

=

[
1 ∆t
0 1

] [
s(tk)
v(tk)

]
+

[
1
2∆t2

∆t

]
u︸ ︷︷ ︸

fmotion(x(tk),u)

, (1)

with bounded velocity, acceleration, and jerk: 0 ≤ v ≤ vmax,
amin ≤ u ≤ amax, jmin ≤ j ≤ jmax, where amin, jmin ∈ R<0

and j(tk) = (u(tk)−u(tk−1))/∆t. We adhere to the notation
x
(
[t0, tn]

)
to describe a trajectory of states x(ti) ∈ X for

ti ∈ {t0, t1, . . . , tn} that satisfy (1) and its constraints, and
we use u

(
[t0, tn]

)
analogously to describe an input trajectory.

As shown in Fig. 1, we consider situations in which
an ACC-equipped vehicle is following another vehicle. The
variables of the leading and ACC vehicle are denoted by
the subscript �lead and �acc, respectively. By defining the
reference point for the position of the leading vehicle at its
rear end and of the ACC vehicle at its front, the relative
distance between both vehicles is ∆s := slead − sacc (cf.
Fig. 1). Their relative velocity is defined as ∆v := vlead−vacc.

We treat the ACC control law under test as a black box:

uacc = fACC
(
xacc(tk), xlead(tk), δ

)
, (2)

where fACC is unknown and δ is the reaction delay of the
system, e.g., processing time of sensors and actuator delays.
For brevity, we combine fACC and fmotion in the function
fACC-motion

(
xacc(tk), xlead(tk), δ

)
, which returns xacc(tk+1).

B. Safety definition

To define safe states, we use the established safety def-
inition that the ACC vehicle must remain collision-free at
all times [34]. This must hold even if the leading vehicle
suddenly performs emergency braking, i.e., ubrake

lead (ti) :=
max

(
alead(ti−1)+jmin,lead∆t, amin,lead

)
. In response, an ACC

vehicle that conforms with [34] will fully brake; during its
reaction delay, we allow arbitrary acceleration, which can be
over-approximated by full acceleration. Thus, for our safety
analysis, we assume that the ACC vehicle applies the control
inputs

ubrake
acc (ti) :=


min

(
aacc(ti−1) + jmax,acc∆t,

amax,acc
)
, ti − tk < δ,

max
(
aacc(ti−1) + jmin,acc∆t,

amin,acc
)
, otherwise,

where tk is the point in time at which the leading vehicle
starts emergency braking. Let tstop

acc denote the point in time
at which the ACC vehicle is at a standstill.
Definition 1 (Safe distance)
The ACC vehicle can definitely avoid a rear-end collision,
if it maintains at least the minimal safe distance ssafe to the
leading vehicle:

ssafe(tk) := inf
({

∆s(tk)
∣∣∀ti ∈ {tk, tk+1, . . . , t

stop
acc } :

∆s(ti) > 0
})
,

where ∆s(ti) is obtained by simulating the leading and ACC
vehicle according to (1) from v(tk) with ubrake

lead

(
[tk, t

stop
acc ]
)

and
ubrake

acc

(
[tk, t

stop
acc ]
)
, respectively.



Our definition is based on [34] and [35] with the following
extensions: in contrast to [34], we allow for a reaction delay
of the ACC vehicle; in contrast to [35], we do not assume
that the ACC vehicle maintains constant velocity during the
reaction delay, but we allow for arbitrary acceleration; and in
contrast to both, we consider limited jerk to allow for more
realistic braking profiles.
Definition 2 (Unsafe distance)
The ACC vehicle definitely cannot avoid a rear-end collision
with impact velocity of at least vcol (which is a parameter
≥ 0), if the leading vehicle performs emergency braking at
tk and if the ACC vehicle maintains less than or equal the
maximum unsafe distance sunsafe to the leading vehicle:

sunsafe(tk) := sup
({

∆s(tk)
∣∣∃ti ∈ {tk+1, tk+2, . . . , t

stop
acc } :

∆s(ti−1) > 0 ∧ ∆s(ti) ≤ 0 ∧ |∆v(ti)| ≥ vcol
})
,

where ∆s(ti−1), ∆s(ti), and ∆v(ti) are obtained by simu-
lation as in Def. 1 except that we set δ = 0 so that the ac-
celeration during the reaction delay is under-approximated.

Algorithmically, Def. 1 and 2 can be evaluated by simulat-
ing both vehicles from their given current states at tk with
ubrake

lead

(
[tk, t

stop
acc ]
)

and ubrake
acc

(
[tk, t

stop
acc ]
)
. The safe distance is

obtained by adding ∆s(tk) to the minimal required offset
of the relative position so that both position profiles do
not intersect (cf. soffset

safe in Fig. 3a). The unsafe distance is
obtained by adding ∆s(tk) to the maximal possible offset of
the relative position so that both position profiles intersect
and that the absolute value of the relative velocity at this
point in time is at least vcol (cf. ∆v(ti) in Fig. 3b).
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(a) Simulated position profiles.
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(b) Simulated velocity profiles.

Fig. 3: State plots of the leading and ACC vehicle to determine the safe
and unsafe distance.

Definition 3 (Sets of safe, unsafe, and collision states)
Using Def. 1 and 2, we define the set of all safe states of the
ACC vehicle at time tk as

Xsafe(tk) :=
{
xacc(tk) ∈ X

∣∣∆s(tk) ≥ ssafe(tk)
}
,

the set of unsafe states as

Xunsafe(tk) :=
{
xacc(tk) ∈ X

∣∣∆s(tk) ≤ sunsafe(tk)
}
,

and the set of collision states as

Xcol(tk) :=
{
xacc(tk) ∈ X

∣∣∆s(tk) ≤ 0 ∧ |∆v(tk)| ≥ vcol
}
.

Note that X = Xsafe(tk) ∪ Xunsafe(tk) only holds if δ = 0
and vcol = 0.

We use Def. 3 in our approach to detect if we have already
generated an unsafe situation for the ACC system. Therefore,
we model the search space of our RRT by combining the
state spaces of both vehicles. Thus, a node z(tk) of the search
tree T is defined as state tuple: z(tk) :=

(
xacc(tk), xlead(tk)

)
.

We denote a node as safe if xacc(tk) ∈ Xsafe(tk), as unsafe if
xacc(tk) ∈ Xunsafe(tk), and as colliding if xacc(tk) ∈ Xcol(tk).

C. Problem statement

In order to falsify an ACC system (cf. Fig. 2), we aim to
find a time series of inputs for the leading vehicle ulead(ti),
ti ∈ {t0, t1, . . . , tcol}, so that when starting in a safe state
xacc(t0) ∈ Xsafe(t0), the ACC vehicle will eventually collide
with the leading vehicle at tcol > t0 : xacc(tcol) ∈ Xcol(tcol).

III. FALSIFICATION APPROACHES

To quickly find counter-examples bridging the sets
Xsafe(tk) and Xunsafe(tk), we efficiently explore the search
space using RRTs (see Sec. III-A). We have developed two
methods to build the RRT: 1) We search forward in time
by creating random behaviors of the leading vehicle and by
evaluating the reactions of the ACC vehicle (see Sec. III-B).
However, this strategy may require many simulation runs if
the set of unsafe states is very small, which is the case for
many ACC systems (e.g., an ACC with advanced collision
avoidance). 2) Thus, our second approach starts from unsafe
states and searches backward in time (see Sec. III-C). As
a result, we can find counter-examples in fewer simulation
runs.

A. Rapidly-exploring random trees

RRTs are a popular approach for motion planning and
have already been used for falsification (cf. Sec. I-A). The
standard approach (e.g., [30], [36]) starts at an initial set of
nodes and generates new nodes from time step tk to tj as
follows. After drawing a random sample in the search space,
the node znear(tk) that is closest to the sample according
to a distance measure is selected as its parent. Then, the
optimal input u is applied to drive the system from the parent
node as close as possible to the sample, resulting in the new
node znew(tj). This procedure can be repeated such that the
same number of nodes, denoted by the parameter znum, is
generated for each time step. We have made modifications
to this standard approach, which are introduced next and are
combined with the standard approach in Alg. 1.

Our sampling process is performed in relative coordinates
∆z := [∆s,∆v]T , since only these are relevant for the
criticality. To avoid generating behavior that mostly uses the
minimal or maximal possible input, we do not sample in
the complete search space, but restrict the sampling range
depending on the states of already existing nodes. Therefore,
we first compute the minimum and maximum differences,
∆zmin(tk) and ∆zmax(tk), between the states of all nodes
at the current time step tk. To favor an increase of the relative
coordinates, we add a bias to obtain the sampling range
Z(tk) := [∆zmin(tk) − ∆zmin

add ,∆zmax(tk) + ∆zmax
add ] (cf.

line 1 of Alg. 1).



Algorithm 1 EXPLORE(T , tk, tj , Xacc(tj))

Input: search tree T , current time tk, desired time tj , set
of states Xacc(tj)

Output: generated node z(tj)
1: Z(tk) ← T .GETSAMPLINGRANGE(tk)
2: ∆z(tj) ← DRAWSAMPLE(Z(tk))
3: znear(tk) ← T .GETNEARESTNODE(∆z(tj))
4: xacc(tj) ← GETSUCCESSORSTATE(znear(tk), Xacc(tj))
5: ulead ← CALCINPUT(znear(tk), ∆z(tj) + xacc(tj))
6: xlead(tj) ← fMOTION(znear(tk), ulead)
7: return znew(tj) ←

(
xacc(tj), xlead(tj)

)

As a distance measure for the selection of the nearest node
znear(tk) (cf. line 3), we use the L2 norm with normalized
state values. The normalization is done using the mean and
standard deviation of all nodes z(tk) to avoid the preference
of low numerical values in the position and velocity when
selecting the closest node.

As an additional input, our algorithm requires the set of
states of the ACC vehicle at the next time step, denoted by
Xacc(tj). From Xacc(tj), we select the state xacc(tj) that is
the successor of the state of the ACC vehicle in znear(tk)
(cf. line 4). This allows us to compute the input ulead that
drives the leading vehicle as close as possible to the sampled
configuration in global coordinates ∆z(tj) + xacc(tj) (cf.
line 5).

B. Forward search

First, we present the standard forward search approach
known from the literature and then our novel extensions; the
complete approach is summarized in Alg. 2.

We initialize the search tree T with znum randomly selected
safe nodes. In each time step tk, we apply the ACC control
law (2) and the motion equation (1) to all state tuples(
xacc(tk), xlead(tk)

)
such that we obtain the set of states of

the ACC vehicle Xacc(tk+1) at the next time step (cf. line 6 to
8 of Alg. 2). Then, we randomly generate the future behavior
of the leading vehicle by exploring the search space using
the RRT of Alg. 1 (cf. line 10 of Alg. 2). Before advancing
to the next time step, we can optionally remove childless
nodes to reduce the memory consumption.

Our extension, illustrated in Fig. 4, allows us to find the
state trajectory leading to a collision more quickly. At each
time step during the forward search, we check if we have
already generated an unsafe node (cf. line 4 of Alg. 2). Since
an unsafe state implies that the ACC vehicle will eventually
collide if the leading vehicle fully brakes (cf. Def. 2), we let
the leading vehicle perform emergency braking (cf. line 14 of
Alg. 2) until we have generated a collision node (cf. Fig. 4).

C. Backward search

Searching backward in time is especially difficult, since we
cannot compute the inverse of the ACC control law, which
would be required to simulate the ACC vehicle backward in
time (unless the ACC system is flat [37]). Thus, we generate
random inputs for the ACC vehicle to obtain states of the

Xsafe(·)
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t0 t1 tcol−2 tcol−1 tcol

forward sampling z(tk) collision node

Fig. 4: Falsification by searching forward in time. Starting in safe states
at t0, the RRT is built until an unsafe node is found (i.e., xacc(tk) ∈
Xunsafe(tk)). Then, the leading vehicle performs emergency braking, which
will result in a collision.

Algorithm 2 Falsification by forward search

1: T .INITIALIZE(Xsafe(t0), znum)
2: k ← 0
3: while not T .HASCOLLISIONNODE(tk) do
4: zunsafe(tk) ← T .FINDUNSAFENODE(tk)
5: if zunsafe(tk) is null then
6: for all z(tk) in T do
7: Xacc(tk+1).ADD(fACC-MOTION(z(tk), δ))
8: end for
9: while T .NUMNODES(tk+1) < znum do

10: znew(tk+1) ← T .EXPLORE(tk, tk+1, Xacc(tk+1))
11: T .ADDNEWNODE(znew(tk+1))
12: end while
13: else
14: xlead(tk+1) ← fMOTION(zunsafe(tk), ubrake

lead (tk))
15: xacc(tk+1) ← fACC-MOTION(zunsafe(tk), δ)
16: T .ADDNEWNODE(xacc(tk+1), xlead(tk+1))
17: end if
18: k ← k + 1
19: end while
20: return T .COLLISIONTRACE

ACC vehicle at previous time steps. However, we need to
ensure that the ACC system drives the ACC vehicle into
unsafe states again, since we are only interested in generating
behaviors that lead to a collision.

Fig. 5 and Alg. 3 illustrate our solution. First, we initialize
the search tree T at an arbitrary time th with znum randomly
selected unsafe nodes. The falsification successfully termi-
nates if we have generated a safe node (with an optional
larger headway distance); otherwise, we continue searching
backward in time.

To obtain the states of the ACC vehicle at the next time
step tk−1 (backward in time), we create random inputs for
all xacc(tk) in T (cf. lines 4 to 6 of Alg. 3). The new states
for the leading vehicle at tk−1 are generated by the RRT
of Alg. 1 as in the forward search (cf. line 8 of Alg. 3).
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Fig. 5: Falsification by searching backward in time. Starting in unsafe states
at th, the RRT is built by sampling backward in time until a safe node is
found. Yet, a node znew(tk) generated by the backward search is discarded
as invalid, if applying the ACC control in a forward simulation does not
result in a node z′(tm), tk ≤ tm ≤ th, in which xacc(tm) ∈ Xunsafe(tm).

Algorithm 3 Falsification by backward search

1: T .INITIALIZE(Xunsafe(th), znum)
2: k ← h
3: while not T .HASSAFENODE(tk) do
4: for all z(tk) in T do
5: Xacc(tk−1).ADD(RANDOMINPUT(z(tk)))
6: end for
7: while T .NUMNODES(tk−1) < znum do
8: znew(tk−1) ← T .EXPLORE(tk, tk−1, Xacc(tk−1))
9: for m← k − 1; m ≤ h; m++ do

10: z′(tm) ← T .FORWARDSIM(znew(tk−1), tm, δ)
11: if ISUNSAFENODE(z′(tm)) then
12: T .ADDNEWNODE(znew(tk−1))
13: break
14: end if
15: end for
16: end while
17: k ← k − 1
18: end while
19: return T .COLLISIONTRACE

Next, we require to check whether the ACC system will
still cause a collision when starting at the new generated
node znew(tk−1) (cf. lines 9 to 15 of Alg. 3). Therefore,
we iteratively simulate forward in time to obtain z′(tm)
for tk ≤ tm ≤ th by applying the ACC control law (2),
which uses as input the states of the leading vehicle saved
in T (cf. forward simulation in Fig. 5). Note that z′(tm) is
generally different than znew(tm). Only if znew(tk−1) itself
or any z′(tm) is an unsafe node, the new node znew(tk−1)
is added to the tree; otherwise, we discard the new node as
invalid (cf. invalid node in Fig. 5). The final collision trace
is obtained by continuing the forward simulation from the
unsafe node with emergency braking of the leading vehicle
until the guaranteed collision.

IV. NUMERICAL EXPERIMENTS

We evaluate our forward and backward search by falsify-
ing different ACC systems. Our implementation in Python
is available at gitlab.lrz.de/tum-cps/safety-falsification-acc.
All simulations were executed on a machine with an Intel
Xeon Gold 6136 3.00 GHz processor and 128 GB of DDR4
2666 MHz memory. The safety-critical scenarios presented
next are included in the CommonRoad benchmark suite1 [3]
and are visualized in the video attachment of this paper.
Tab. I lists the parameters of the numerical experiments,
where nforward and nbackward are the user-defined maximum
number of iterations of the forward and backward search,
respectively.

A. Introduction to tested ACC systems

The four ACC control laws chosen for falsification vary
in their safety integrity, as discussed in Sec. I-A. Their
control laws are briefly introduced in this section, and their
parameters are listed in Tab. II, where vdes denotes the
desired velocity of the ACC vehicle, tdes the desired time
gap between the leading and ACC vehicle, and ∆smin the
desired minimum relative distance. We assume a reaction
delay of 0 s to provide a best case situation for the ACC
systems.

1) Proportional integral ACC (PI-ACC): The PI-ACC
[11] uses a PI controller:

u = kp
(
∆v + kq∆sPI

err

)
+ ki

1

∆t

(
∆v + kq∆sPI

err

)
, (3)

1commonroad.in.tum.de

TABLE I: User-defined parameters of the falsification.

Description Parameter with value

Time step size ∆t = 0.1 s

Max. number of time steps nforward = 12000, nbackward = 600

Number of nodes znum = 250

Increase of sampling range ∆zmin
add = [0 m, 0 m/s]T ,

∆zmax
add = [1.0 m, 0.25 m/s]T

Minimal impact velocity vcol = 0 m/s

Limit on jerk jmin = −10.0 m/s3, jmax = 10.0 m/s3

Limit on acceleration amin = −8.0 m/s2, amax = 1.5 m/s2

Limit on velocity vmax = 50.8 m/s

TABLE II: Parameters of the ACC systems. The values for the PI-ACC,
IDM-ACC, and CA-ACC are from [11], [13], and the authors of [14],
respectively. The parameters ∆smin, kp, ki, kq, and b are adapted to increase
the collision avoidance performance.

General PI-ACC [11] IDM-ACC [13] CA-ACC [14]

vdes = 30 m/s kp = 0.2 1/s b = 0.02 m/s2 K1 = 0.1 1/s2

tdes = 1.5 s ki = 0.1 K2 = 5.4 1/s2

∆smin = 3 m kq = 0.1 1/s P = 20 m

δ = 0 s h0 = 0.1 s Q = 1

hc = 0.2 s2/m

https://gitlab.lrz.de/tum-cps/safety-falsification-acc
https://commonroad.in.tum.de


where kp is a proportional gain, ki an integral gain, kq a
positive constant factor, and ∆sPI

err the spacing error ∆sPI
err :=

∆s − ∆smin + vacch. The time headway h favors a larger
spacing at higher velocities:

h =


1, h0 − hc∆v ≥ 1,

h0 − hc∆v, 0 < h0 − hc∆v < 1,

0, otherwise,
(4)

where h0 is a constant time headway and hc a constant factor.
2) Intelligent Driver Model (IDM-ACC): We use the

variant of the IDM for increased safety as proposed in [13].
Its control law is given by

u = amax

[
1−

(
vacc

vdes

)4

−
(

∆sIDM
des

∆s

)2
]
, (5)

where ∆sIDM
des := ∆smin + vacctdes + vacc∆v

2
√
amaxb

.
3) ACC with collision avoidance (CA-ACC): The CA-

ACC [14] uses the control law

u = K1∆sCA
err +K2∆vR(∆s), (6)

where K1 and K2 are constant gains and ∆sCA
err :=

min
(
∆s − ∆smin − vacctdes, (vdes − vacc)tdes

)
. The error

response function R(∆s) is

R(∆s) =
−1

1 + Pe−
∆s
Q

+ 1, (7)

where Q is the aggressiveness coefficient, and P is the
perception range coefficient.

4) ACC with safety guarantees (FM-ACC): The FM-ACC
[15] is divided into two modes, a nominal control mode
and an emergency control mode. The nominal mode uses
model predictive control (MPC) and is applied as long as
it can satisfy the safe distance. If it cannot find safe input
values, the emergency control mode executes a pre-defined
emergency deceleration profile so that the ACC vehicle is
formally guaranteed to remain collision-free.

B. Forward search

The forward search is able to falsify the PI-ACC and
IDM-ACC, but cannot find a counter-example for the CA-
ACC and FM-ACC. The state trajectories leading to one
of the obtained collisions for the PI-ACC and IDM-ACC
are shown in Fig. 6 and Fig. 7, respectively. Tab. III lists
the required computation times, the time tunsafe at which
the ACC vehicle first entered the set of unsafe states, and
the initial and final states of both vehicles. Even though
we set vcol = 0 m/s (cf. Tab. I), the generated collisions
have an impact velocity of 4.6 m/s and 2.2 m/s for the PI-
ACC and IDM-ACC, respectively. In real traffic, the obtained
trajectories of the leading vehicle are likely to occur during
stop-and-go traffic on a highway.

C. Backward search

The backward search is able to falsify the CA-ACC, even
though the forward search finds no counter-example. Fig. 8
shows the trajectories xlead([t0, tcol]) and xacc([t0, tcol]) that
are obtained from a backward search; we continued the
backward search not only until a safe node is found, but
until ssafe(t0) ≥ 100 m and ∆s(t0) ≥ 235 m, which signif-
icantly increased the required computation time (cf. results
in Tab. IV without this addition). Tab. III lists the details
of the falsification result. The generated counter-example
corresponds to a traffic situation in which the leading vehicle
is forced to brake due to a traffic jam. Note that the ACC
vehicle could have avoided a collision by braking earlier.

By applying the backward search to the FM-ACC, we
were able to identify an error in the code generation of the
FM-ACC. After correcting the code generation, the FM-ACC
remains collision-free in the backward search, whereas the
PI-ACC and IDM-ACC are falsified in every simulation run.

D. Comparison of the computational efficiency

We evaluate the computational efficiency of falsifying an
ACC system by comparing the forward search with and
without the consideration of unsafe states, backward search,
and MCS with each other. To improve the sampling of
MCS so that it is more uniform over the input space (since
|amin| 6= |amax|), we bias the sampling with a beta distribution
Beta(α = 14, β = 2). All four approaches attempt to find
a collision against the PI-ACC, IDM-ACC, and CA-ACC in
100 simulation runs with an iteration limit of n = 600, where
a run is aborted as soon as a collision node is generated
(the remaining parameters are set as presented in Tab. I
and Tab. II). The results of the comparison are given in
Tab. IV. The standard forward search (without considering
unsafe states) finds 4306 transitions into unsafe states for
the PI-ACC and 76 for the IDM-ACC, but it does not
exploit these situations to generate a collision. As we can
see, the consideration of unsafe states drastically improves

TABLE III: Falsification using the forward search for PI-ACC and IDM-
ACC and the backward search for CA-ACC.

Parameter PI-ACC IDM-ACC CA-ACC

Comp. time 3 min 2 min 16 min

tunsafe 53.1 s 53.2 s 5.3 s

aacc(t0) 0.0 m/s2 0.0 m/s2 −5.2 m/s2

alead(t0) 0.0 m/s2 0.0 m/s2 −2.1 m/s2

vacc(t0) 0.0 m/s 9.3 m/s 42.9 m/s

vlead(t0) 0.0 m/s 19.5 m/s 18.9 m/s

∆s(t0) 5.0 m 8.0 m 237.9 m

ssafe(t0) 0.0 m 0.0 m 100.0 m

aacc(tcol) −7.4 m/s2 −1.0 m/s2 −8.0 m/s2

alead(tcol) 0.0 m/s2 0.0 m/s2 0.0 m/s2

vacc(tcol) 4.7 m/s 1.4 m/s 2.7 m/s

vlead(tcol) 0.0 m/s 0.0 m/s 0.0 m/s

ssafe(tcol) 1.4 m 0.5 m 0.4 m
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Fig. 6: The forward search finds a trajectory for the leading vehicle so that the PI-ACC causes a collision (CommonRoad ID: S=ZAM ACC-1 1 T-1:2018b).
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Fig. 7: The forward search finds a trajectory for the leading vehicle so that the IDM-ACC causes a collision (CommonRoad ID: S=ZAM ACC-1 2 T-
1:2018b).
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Fig. 8: The backward search finds a trajectory for the leading vehicle, which is executed forward in time, so that the CA-ACC causes a collision
(CommonRoad ID: S=ZAM ACC-1 3 T-1:2018b).

the efficiency. The advantages of the forward search are its
simple setup and large variance of the generated counter-
examples. The advantage of the backward search is that it can
falsify more ACC systems as compared to the other methods.

V. CONCLUSIONS

This paper presents two novel approaches to efficiently
falsify the safety of adaptive cruise control systems. By
integrating unsafe states in the standard forward search
approach, we already achieve an improvement in the required
computation time of up to 8 times. With this approach,
however, we were not able to falsify all ACC systems in
a reasonable time period. In contrast, our backward search
approach is able to falsify even the sophisticated ACC system
with collision avoidance in every test run. By starting the
search from a set of unsafe states, our backward search
algorithm is able to find counter-examples 300 times faster
than standard approaches.

Our proposed methods allow developers to detect safety
flaws in their system at early stages of the development with
minimal effort. While the forward search can be used to
generate diverse traffic scenarios, the backward search aims
to quickly find an unsafe solution. In the future, we would
like to add stress testing of the string stability and extend our
method to falsify planning systems that combine longitudinal
and lateral motions.
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TABLE IV: Comparison of the standard forward search without considering
unsafe states (S-FS), our proposed forward search with considering unsafe
states (FS), our proposed backward search (BS), and Monte Carlo simulation
(MCS) in 100 simulation runs with an iteration limit of n = 600.

Results for PI-ACC S-FS FS BS MCS

Number of obtained collisions 0 94 100 1

Avg. number of iterations 600.00 81.14 1.08 594.15

Avg. computation time 84.80 s 10.78 s 0.30 s 17.82 s

Results for IDM-ACC S-FS FS BS MCS

Number of obtained collisions 0 13 100 11

Avg. number of iterations 600.00 553.58 1.00 545.51

Avg. computation time 82.88 s 73.77 s 0.45 s 16.25 s

Results for CA-ACC S-FS FS BS MCS

Number of obtained collisions 0 0 100 0

Avg. number of iterations 600.00 600.00 1.08 600.00

Avg. computation time 84.70 s 81.62 s 0.29 s 8.83 s
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