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À mon grand-père et à la mémoire de ma grand-mère,

les docteurs Guy et Monique Parat.





Acknowledgments

I would like to express my deepest gratitude to Prof. Aurélien Tellier, my supervisor, for
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Abstract

The genetic makeup of all populations of animals or plants have been forged by their own

unique demographic history. However among these populations, domesticated species

show some common particularities. A good understanding of the genetic diversity of do-

mesticated species is needed to maximize the selection efficacy of breeding programs. In

the first part of this thesis we study the genetic diversity, genetic structure and demo-

graphic history of cultivated rye (Secale cereale L.). We genotyped 620 individuals from 14

global rye populations with a different end use (grain or forage) at 32 genome-wide simple

sequence repeat markers. We reveal the relationships among these populations, their sizes

and the timing of domestication events using population genetics and model-based infer-

ence with approximate Bayesian computation. Our main results demonstrate (i) a high

within-population variation and genetic diversity, (ii) an unexpected absence of reduction

in diversity with an increasing improvement level and (iii) patterns suggestive of multiple

domestication events. We suggest that the main drivers of diversification of winter rye are

the end use of rye in two early regions of cultivation: rye forage in the Mediterranean area

and grain in northeast Europe. The lower diversity and stronger differentiation of eastern

European populations were most likely due to more intensive cultivation and breeding of

rye in this region, in contrast to the Mediterranean region where it was considered a sec-

ondary crop or even a weed. We discuss the relevance of our results for the management

of gene bank resources and the pitfalls of inference methods applied to crop domestication

due to violation of model assumptions and model complexity.
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viii

In a second part of the thesis, we focus on animal domesticates for which pedigree data

is collected. We show that, whereas genetic data is only informative about the population

mutation rate, the product of the effective population size times the mutation rate, and

not about these quantities individually, this hurdle can be overcome by combining genetic

data with pedigree information. To successfully use pedigree data, however, important

aspects of real populations such as the presence of two sexes, unbalanced sex ratios and

overlapping generations have to be taken into account. We present here an extension of

the classic Wright-Fisher model accounting for these effects and show that the coalescent

process under this model reduces to the classic Kingman coalescent with specific scaling

parameters. We further derive the probability of a pedigree under that model and show

how pedigree data can thus be used to infer demographic parameters. We present a

computationally efficient Markov chain Monte Carlo-based inference approach, combining

pedigree information and genetic data summarized by the site frequency spectrum that

allows for the joint inference of the mutation rate, sex-specific population sizes and the

fraction of overlapping generations. Using simulations we then show that these parameters

can be accurately inferred from pedigrees spanning just a few generations, as are available

for many species. We finally apply the pedigree part of the model to a real cattle pedigree

from the Fleckvieh breed. We finally discuss future possible extensions of the model

and the inference framework necessary for applications to wild and domesticated species,

among others, accounting for more complex demographies and the uncertainty in assigning

pedigree individuals to specific generations.
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Zusammenfassung

Die genetische Beschaffenheit von Tier- und Pflanzenpopulationen wird durch deren einzigartige de-

mographische Entwicklung bestimmt. Um die Selektionswirksamkeit von Zuchtprogrammen zu steigern,

ist ein umfangreiches Wissen der genetischen Diversität erforderlich. Diese Thesis vermittelt Einblicke

bezüglich der genetischen Diversität, Struktur und demographischen Entwicklung von Roggen (Secale

cereal L.). Dies geschieht durch die Verwendung der ABC auf 32 SSR Markern, in 14 Populationen mit

verschiedenem Endverbrauch (Getreide bzw. Futtermittel). Der zweite Teil der Thesis beschäftigt sich

mit domestizierten Tierarten. Wir ermittelten, dass die effektive Populationsgröße und Mutationsrate

durch die Kombination aus genetischen und Stammbaum-Daten, getrennt betrachtet werden können. Zu

diesem Zweck erweiterten wir das klassische Wright-Fisher-Modell, um zwei Geschlechter, unausgeglich-

ene Geschlechterverhältnisse, sowie sich überschneidende Generationen zu berücksichtigen. Letztlich

entwickelten wir daraus einen Inferenzansatz, der in Generationen, in denen Stammbaumdaten fehlen,

ein neu skaliertes n-Koaleszenzmodell verwendet.

Résumé

La composition génétique des populations animales et végétales est forgée par leur histoire démographique.

Comprendre la diversité génétique des espèces domestiquées est essentielle pour optimiser l’efficacité des

programmes de sélection. La première partie de cette thèse présente une étude de la diversité génétique,

de la structure et de l’historique démographique du seigle (Secale cereal L.) à l’aide de approximate

Bayesian computations sur 32 marqueurs SSR dans 14 populations utilisée à des fins différentes (grain ou

fourrage). La deuxième partie de la thèse porte sur les animaux domestiques. Nous montrons qu’il est

possible d’estimer séparement la taille effective de la population et le taux de mutation en combinant des

données génétiques au pedigree. À cette fin, nous étendons le modèle classique de Wright-Fisher à deux

sexes, des sex-ratios deséquilibrés et des générations chevauchantes. Nous développons une approche

d’inférence utilisant un n-coalescent mis à l’echelle dans les générations hors du pedigree.
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Chapter 1

General introduction

1.1 Domestication

1.1.1 Definition of domestication

Domestication is a relationship between two populations of different species, in this thesis,

humans, the domesticator, and a plant or animal population of interest, the domesticate.

There is little agreement on the characterization of this relationship. While some authors

mostly stress the human side of the relationship, highlighting the intentionality of domes-

tication and the control over reproduction and every other aspects of the domesticates’

life cycle (e.g., Cauvin 2000), other authors put more weight on the other partner in that

relationship, underlining Darwin’s concept of unconscious selection and the evolutionary

mechanisms that allows the plant or animal to take advantage of domestication to increase

its fitness benefit (Rindos 1984). The third way is to see domestication as a balance be-

tween the benefits of both the domesticator and the domesticate. In this sense, Zeder

(2015) defined domestication as ”a sustained multigenerational, mutualistic relationship

in which one organism assumes a significant degree of influence over the reproduction and

care of another organism in order to secure a more predictable supply of a resource of

interest, and through which the partner organism gains advantage over individuals that

1



2 CHAPTER 1. GENERAL INTRODUCTION

remain outside this relationship, thereby benefiting and often increasing the fitness of

both the domesticator and the target domesticate.”

1.1.2 The domestication syndrome

Domestication often entails morphologic (phenotypic) changes. Some of these modified

traits, such as larger seeds or fruits, apical dominance, and loss of dispersal mechanisms,

are found in almost every domesticated plant species. They are known under the name

domestication syndrome (Hammer 1984).

The evolution of traits due to domestication can be the result of intentional selection

by humans but often started as unconscious selection (Smith 2006). For example, in

the case of grains, early farmers were sowing part of the harvested grain, thus, giving a

competitive advantage to the grain that simultaneously reached maturity, did not shatter

or fall from the ear, and could therefore be harvested and potentially sown (Hillman

and Davies 1990). It is still debated whether these morphologic changes are crucial to

domestication, and can therefore be used as archaeological markers, or appeared slowly

after long periods of cultivation as a side effect of the use of a particular agricultural

technique as using a sickle to harvest grain (Balter 2007; Fuller and Allaby 2009).

In mammals, some traits also occur in association with domestication independently

in many species such as de-pigmentation patches, reduced facial skeleton, floppy ”lop”

ears, or smaller brain size. Although these changes are suspected to be related to se-

lection for docility and to arise as a symptom of modified neural crest cell migration or

multiplication (Wilkins et al. 2014), the exact mechanisms relating morphological traits

and domestication, and even more so, their genetic basis are still uncertain.
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1.1.3 The genetic impact of domestication: demography versus

selection

One of the first impact of domestication on the plant or animal partner is the modification

of the selective pressures acting on the domesticate. In most cases, the domesticators are

not intentionally applying a selective pressure on a particular trait but rather, by their

actions, relax the selective pressures which typically applies to the free-living organisms

(e.g., predation or water access) and shifts the selection to new factors arising from their

relationship (e.g., docility).

By sampling a few individuals from the wild and implanting them in new environ-

ments, domestication also strengthens drift by creating bottlenecks and potential founder

effects in domesticated populations (Tenaillon et al. 2004). These events are part of what

population geneticists call the demographic history or, simply, demography of the popu-

lation. Demography can be defined as the set of changes that occur over a period of time

in populations mostly with reference to size, geographical distribution and migration.

The demographic events linked to domestication lead to a loss of selection efficacy

and an increase of drift. Alleles get randomly fixed accelerating further the genetic,

and sometimes morphologic, differentiation of the domesticates compared to the wild

population (Glémin and Bataillon 2009).

Population geneticists have developed a multitude of tools and models to study the

effect of genetic drift, mutation, migration and natural selection on the patterns of genetic

diversity. Many of these tools have been applied to domesticated populations with success.

1.1.4 Further steps of improvement

Deliberate breeding to encourage specific traits appears often later in the domestication

process and leads to the development of so called improvement traits. Improvement of

the domesticates’ characteristics that suit the needs of humans is a continuous process
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but technological steps can modify the speed and the genetic implication of this process.

For example, in plants the term landraces has many definitions but it is often used to

describe a diverse but distinct population that acquired its specificities through isolation,

local adaptation and unconscious selection or very basic mass selection. Later on, with

the generalization of international breeding companies and, even later, gene banks and

marker assisted selection (MAS), so called varieties were defined. These varieties usually

present a lower level of genetic diversity over the whole genome. In the most extreme

cases, there is no diversity left and varieties are completely homozygous (e.g., lettuce)

or diversity is limited to fixed differences between completely homozygous parents (e.g.,

maize). However varieties can also contain small chromosomal regions of high diversity

due to the recent introgression of favorable traits from landraces or wild relatives.

In the case of animals, breeds were defined very early on based on the morphological

appearance of the animal and close monitoring of reproduction. These breeds were first

obtained by local crossings and improved using mass selection. But, similarly to the case

of plants, with the increased use of techniques such as artificial insemination or MAS, less

weight is put on the visible traits of the animals but rather on the performance. As a

result, the reproductive population size within breeds has decreased leading to a decrease

of genetic diversity whereas the census size of some commercially successful breeds have

strongly increased.

1.2 Inferring demography in domesticated species

1.2.1 From history to the detection of domestication genes

This thesis consists of two main parts with one common purpose: the study of demo-

graphic history through genetics in domesticated species. Understanding these species’

demography in terms of genetics offers a window into the past that is complementary

to archaeological studies. The ancestors of the genetic material sampled at present time
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only represents a small part of the domesticated individuals. Conversely, plant or animal

rests found by archaeologists are not necessarily actual ancestors of our current crops or

livestock (Gross and Olsen 2010). These differences explain some of the discrepancies be-

tween genetic and archaeological results, or even paleogenomics results such as the study

of ancient maize DNA (Jaenicke-Després et al. 2003). While archeology can help trace the

historical spread of a crop, knowledge of the genetic structure of contemporary popula-

tions can shed light on other aspects of the domestication history, such as the development

of different cultivation methods or crop end uses, and their impact on the current genetic

diversity.

Studying the neutral demography of domestication also brings insights into the relative

weight of random genetic drift and selection. Indeed, demographic events and increased

genetic drift due to domestication can leave traces in the genome easily confused with the

ones of selection. The inferred demographic models can serve as a null model to detect

sites under selection and find candidate genes involved in domestication and improvement

(Tenaillon et al. 2004).

Last but not least, a better qualification of available genetic material, such as popu-

lation structure and effective population size are necessary for a better population man-

agement in breeding programs. This knowledge helps to maintain the genetic diversity

of a species and allows a better use of this material for breeding and improvement, fully

exploiting the genetic potential of populations.

1.2.2 Cultivated rye

The first part of the thesis is focused on inferring demography in a plant domesticate,

cultivated rye (Secale cereale L.). Scientific literature describing the history of rye is scarce

compared to cereals of higher economic importance. However, rye constituted in the past

an important resource and still does in several regions of northern and eastern Europe.

Rye is used as a grain crop for bread making, brewing, distilling and animal feed and
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as a forage crop in the form of green chop, pasture, green manure or haylage (Miedaner

2010). Modern rye breeding populations, referred to as varieties in this thesis, are adapted

to two main end uses, grain or forage, or to a mixture of both; however the impact of use

on genetic diversity and structure remains unclear.

From an archaeological perspective, there is a general agreement that cultivated rye

originated from the Fertile Crescent (Khush 1963). Wild relatives or weedy forms reached

Europe probably through a northern route, and remains were present at archaeological

sites dating to the late Neolithic age in Poland and Romania, to the Bronze Age in the

Czech Republic, Slovakia and Ukraine and to the Iron Age in Germany, Denmark and

Crimea (see references in Zohary et al. 2013). Studies on archaeological remains indicated

that rye most likely spread as a weed among wheat and barley fields throughout Europe

(Behre 1992). Therefore, the first domestication of rye most probably happened through

conscious or unconscious selection by early Neolithic farmers, around 4,500 BC (Behre

1992; Khush 1963).

A number of research studies have investigated the genetic diversity and structure

of rye populations. Based on different marker systems and plant material sets, previous

studies identified three factors that led to a clustering of rye populations: spring or

winter growth habit (Ma et al. 2004), population history (geographical origin, relatedness

and dispersion routes) and level of improvement (Persson et al. 2001). Indeed, because

landraces are old, locally adapted populations that underwent little or no mass selection,

they usually present higher levels of diversity than the officially registered varieties that are

usually more recent (later than the 1940s for rye) and are products from breeding cycles

(Villa et al. 2005). However, the literature also contains conflicting results concerning

expected levels of genetic diversity between populations. For example, contrary to a

study on Portuguese rye populations by Matos et al. (2001), Ribeiro et al. (2012) suggest

that the diversity of Portuguese populations was higher than the diversity of northern

Europe (Persson and Von Bothmer 2002). Additionally, as expected in most crops but
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contrary to what has been shown in previous studies (e.g., Persson et al. 2001), Ribeiro

et al. (2012) found higher levels of diversity in rye landraces than in varieties. To address

these discrepancies in the literature, we analyzed rye population samples over a wide

geographical range using simple sequence repeat (SSR) markers. In addition to assessing

the genetic diversity and structure of several populations of grain, forage and weedy rye,

we use this information to infer their history.

1.2.3 Pedigree records in animal domesticates

In the second part of the thesis, we build a new framework for the analysis of genetic

data from populations with available individual-based pedigrees. Modern population ge-

netics is primarily based on coalescent theory (Wakeley 2009), which assumes no prior

information on the true (parent-offspring) relationship between genetic lineages. We pos-

tulate that the pedigree of a sample contains information about the demography of the

population at least partially complementary to the information contained in the genetic

data. A method exploiting the full information should therefore improve the inference of

demographic parameters. Indeed, several methods have been proposed to use pedigree in-

formation to infer demographic processes using the increase of inbreeding over time under

a given reproduction model (Falconer and Mackay 1996; Gutiérrez et al. 2008). Addi-

tionally, a method that allows the simulation of pedigrees under a given demographic and

reproductive model and draws genealogies inside these pedigrees was developed (Gasbarra

et al. 2005), and could be used, in an ABC framework, for inference. However, there is

currently no general inference framework for such data.

Pedigree information is available for many populations or species, in particular for

managed populations under conservation management or domesticated animals under ac-

tive breeding (e.g., Clutton-Brock et al. 1982; Ellegren 1999; Cunningham et al. 2001;

Mc Parland et al. 2007). Yet many of these species have important life history traits that

are not reflected in the standard Wright-Fisher model, including overlapping generations
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and two sexes. Additionally, in most domesticated species, fewer males are reproducing

than females but males can reproduce over a longer time period, spanning several gener-

ations. While such life history traits have an impact on the response of the population

to selection and are therefore accounted for in breeding programs (Hill 1974), changes in

allele frequencies due to drift remain well described by scaling the models with an appro-

priate effective population size (Ne; Wright 1931; Engen et al. 2007). As a consequence,

demographic inference in domesticated species using coalescent theory does usually not

model overlapping generation or sex biased population sizes.

However, simple scaling does not extend to models incorporating pedigree informa-

tion. To address this, we present here a Wright-Fisher-based diploid two-sex model with

overlapping generations well describing pedigrees observed from domesticated breeding

programs. Other specific traits that did not prevent us from modelling the population

using pedigree information, such as skewed offspring distribution or reproductive success

(i.e., selection at the phenotypic, individual, level) are implicitly accounted for through

their impact on the effective population size of each sex. This is a particularly interesting

aspect of our model as differences in offspring number variance between males and females

are common in both domesticated and wild animal populations. We then show how this

model results in a simple scaling of the standard coalescent in the absence of pedigree

information and derive some analytical and numerical solutions to obtain estimates of the

model parameters using the information contained in the SFS and pedigree data jointly.

This also allows for the estimation of important life history characteristics such as the

degree of overlapping generations and sex specific population sizes from such data.

An additional advantage of our framework is its ability to infer effective population

sizes (Ne) and mutation rates (µ) jointly. Under the standard coalescent framework, both

parameters are simply scaling the coalescent tree and hence only their product can be

estimated, usually in the form θ = 4Neµ. Wakeley and Takahashi (2003) showed that

a joint estimation becomes feasible if the sample size n exceeds Ne since the rate of
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coalescence in the first few generations is a function of the ratio n/Ne and hence contains

information about Ne regardless of µ. This was later used to infer gene specific mutation

rates in humans from deep sequencing data Nelson et al. (2012); Schaibley et al. (2013).

As we show here, pedigree information also contains information about Ne independent of

µ, enabling the joint inference of both demography and mutation rate even in case where

n� Ne.

1.2.4 Outline

Seven chapters constitute this thesis. Following this brief introduction, Chapter 2 in-

troduces the theoretical concepts and methods used in this thesis and that might not

be familiar to the reader. After which, the first part focusing on plant domestication

and improvement describes the use of mirosatellite data to investigate cultivated rye. It

presents in Chapter 3 the description of genetic diversity and demography of weedy and

domesticated rye populations at different levels of improvement and in Chapter 4 the

inference of neutral demographic models for a subset of these rye populations. These

results have been published in Molecular Ecology (Parat et al. 2016). The second part

centered on animal domesticates that have pedigree records, with cattle as an example,

presents in Chapter 5 a new method to infer demography using jointly pedigree data and

genetic information and in Chapter 6, applications of this model to simulated and real

data. Finally a general conclusion summarizes the results and points of discussion of this

work.





Chapter 2

State of knowledge

A classic approach to infer demographic and selective forces in domesticated and wild

species is to model the effect of such forces on allele frequencies at polymorphic sites.

The polymorphism data consists of simple sequence repeats (SSR) or single nucleotide

polymorphisms (SNP) for several individuals of a given population. The underlying pa-

rameters of the evolutionary forces are inferred by matching the observed patterns to the

ones produced by simulations or to expectations from a model. The inference is based

on likelihood or Bayesian methods. In the following, I introduce the neutral population

models, mutational models, summary statistics for genetic data, and inference methods

that are used (as such or adapted) in this thesis.

2.1 The models

2.1.1 The Wright-Fisher model and its coalescent approxima-

tion

The Wright-Fisher model (Fisher 1922, 1930b; Wright 1931) is one of the most widely

used models to describe the impact of drift and demographic forces on allele frequencies.

This is mainly due to the simplicity of interpreting it in both biological and mathematical

11
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terms. In its original form, this model describes a population of diploid monoecious

organisms of constant size Ncens. In the following, we call N = 2Ncens the number of

chromosomes at any generation. Generations are discrete and the number of offspring for

each parent is binomially distributed. (See Box 1 for a more rigorous description.) When

N is sufficiently large, it can be convenient to approximate the binomial distribution

by a Poisson distribution of mean and variance 1. In other terms, the generations are

not overlapping and the N descendant chromosomes in generation g + 1 are randomly

equiprobably distributed among, and only among, the N potential parental chromosomes

of generation g (Figure 2.1).

Biologically, this means that the expected reproductive success of every individual in

the population is the same, i.e., there is no selection. There is no population substructure

such as geographical distance or ecological barriers and the variance of offspring numbers

is low, 1 − (2Ncens)
−1. The genetic process of allele transmission is then added to this

demographic ancestry process: given two possible alleles segregating in the population,

the allele carried by a parent is transmitted to all its descendants.

Because the population is finite and reproduction is a random process, some individual

will not have any descendant and will therefore leave no genetic evidence that can be

observed at present (Figure 2.1).
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Box 1: The Wright-Fisher model

In a forward in time setting, the Wright-Fisher model describes a constant diploid

population of constant size Ncens, with N = 2Ncens chromosomes, that reproduce

with discrete generations. Each chromosome in a generation g + 1 is the child

of one chromosome from generation g. Conversely, the number of chromosome

children of the j-th chromosome from generation g is a random variable νj as-

suming a symmetric multinomial distribution: P{νj = nj(j = 1, 2, . . . , N)} =

N !/n1!n2! . . . nN !NN . To insure that the population remains constant, νj is con-

strained such that
∑N

j=1 νj = N . Let us assume that each chromosome carries

a bi-allelic locus with alleles A1 or A2 and that no mutation can occur. The

probability that an allele in i copies in the present generation is found in j copies

in the next generation is then

pij =

(
N

j

)
(i/N)j[1− (i/N)]N−j, i, j = 0, 1, 2, . . . , N. (B.1)

Denoting X(g), the number of chromosomes carrying the allele A1 at generation

g, we observe that X(.) is a Markovian random variable with transition matrix

P = {pij}.

Some properties of this model are well known (Ewens 2004), especially:

1. The largest non-unit eigenvalue of P: λmax = 1−N−1

2. The probability that two chromosomes taken at random have the same

chromosome parent: π2 = N−1

3. The variance of offspring allele frequency:

V[x(g+1)|x(g)] = x(g)[1− x(g)]N−1, where x(g) = X(g)/N is the fraction

of individuals of generation g carrying the allele A1.
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This stochastic process and the changes in allele frequencies that it entails are known

as genetic drift. Furthermore, allele frequencies of individuals that have descendants at

present time will only be observed if these descendants are sequenced. In most cases, the

n sampled chromosomes represent only a small proportion of the reproductive population

(n << N). Note that due to the progress in sequencing technology, this hypothesis can

be violated. Indeed, some populations are sampled extensively and the sample size can be

of the order of magnitude or larger than the reproductive population. Such oversampling

leads to different ancestry shapes and requires adjustments of the derived models that

will not be detailed here (Wakeley and Takahashi 2003).

Wright-Fisher
model

Backward 
Wright-Fisher model

n-coalescent

Time

Individuals
without offspring Sampled individuals

and their ancestors Coalescent events

T5

T4

T3

T2

Figure 2.1: From the Wright-Fisher model to the n-coalescent in a haploid popula-

tion.

Within the same Wright-Fisher model, but looking only at the ancestry of a sample

rather than at the whole population, we can observe very different genealogical pat-

terns (Figure 2.1). From this observation and assuming that the population is very large
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(N → ∞), Kingman (1982a) derived a continuous, backward in time approximation:

the n-coalescent.

Box 2: The n-coalescent process (Kingman 1982b)

For any natural number n, let En denote the finite set of equivalence relations

on {1, 2, . . . , n}. Let ξ be an equivalence relations on {1, 2, . . . , n} and η an

equivalence relation that can be obtained from ξ by merging two of its equivalence

classes. Such merger is referred to as a coalescent event. For R ∈ En, if the

continuous-time Markov chain {Rt; t ≥ 0} is an n-coalescent, and ignoring terms

of order (δt)2, we can write:

Pr(Rt+δt = η|Rt = ξ) = δt (B.2)

thus Pr(Rt+δt 6= ξ|Rt = ξ) =
∑

η P (Rt+δt = η|Rt = ξ) = diδt

Pr(Rt+δt = ξ|Rt = ξ) = 1− diδt,
(B.3)

where i is the number of equivalence classes of ξ, and di =
(
i
2

)
= i(i− 1)/2 is the

number of ways to choose two equivalence classes from ξ to be merged.

It follows that the sojourn times or waiting times Ti in any state ξ, are inde-

pendent and follow an exponential distribution with parameter di, such that the

probability density of the Ti is di exp(−dit) with t > 0.

Kingman’s n-coalescent is the mathematical process describing the path, backward in

time, of the ancestral lineages of n sampled chromosomes. This describes the sequential

connections between their genetic ancestors (see Figure 2.1). The n-coalescent is a binary

branching process. Starting at time 0 with n lineages from the n sampled chromosomes,
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the n-coalescent process merges pairs of lineages successively until only one linage is left,

the most recent common ancestor (MRCA) of the sample. (For a more formal definition,

see Box 2.) The times Ti between two successive coalescent events during which there are

exactly i ancestral lineages are independent and exponentially distributed with parameter(
i
2

)
(Figure 2.1).

Kingman (1982a) also shows that this process describes the ancestral genetic process

for a sample of finite size n in the limit as N approaches infinity in the Wright-Fisher

model. The intuition behind this result is that, the number of lineages from the sample’s

ancestry is finite (i ≤ n), therefore, as N grows to infinity, the probability that some of

these lineages share a parent approaches 0. Moreover, the probability of more than two

such lineages share the same parent, so-called multiple mergers, or that several groups

of lineages share a parent at the same generation, simultaneous mergers (Figure 2.2),

declines even faster to 0 and can therefore be neglected. (For a more formal derivation,

see Box 3.)

Multiple merger Simultaneous
multiple mergers

Figure 2.2: Schematic representation of multiple merger and simultaneous multiple

mergers in coalescent genealogies.
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Box 3: The Wright-Fisher model and the n-coalescent

As noted by Kingman (1982b), in a backward setting, the Wright-Fisher model

can be formulated as: each chromosome of the generation g + 1 chooses its

parent at random, independently and uniformly from the N chromosomes of

g. Therefore, two chromosomes have a different parental chromosome at the

previous generation with probability 1− (1/N) and have the same parent with

probability 1/N . Three chromosomes have the same parent with probability

1/N2, four with probability 1/N3 and so on.

Using the same notations as in Box 2, we can describe this process backward in

time as a discrete-time Markov chain {Rg} whose state space is En, the finite

set of equivalence relations on {1, 2, . . . , n}, with transition probability:
Pr({Rg+1} = η|Rg = ξ) = 1

N

Pr({Rg+1} = ξ|Rg = ξ) = 1− di
N

+O( 1
N2 )

Pr({Rg+1} = ζ|Rg = ξ) = O( 1
N2 ),

(B.4)

where ζ is an equivalence relations on {1, 2, . . . , n} that can be formed from η

by merging more than two of its equivalence classes.

We recognize the similarities between this formulation of the Wright-Fisher model

and the earlier formulation of the n-coalescent (Box 2) when the time is rescaled

in N . Indeed, it can be proven (Kingman 1982b), that if R[Nt] denotes the

process on En in time rescaled in N , it converges in distribution as N → ∞ to

the continuous-time Markov chain Rt, that we described as the n-coalescent.
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2.1.2 The concept of effective population size

Natural populations are never as simple as the models used to describe them. The effective

population size (Ne) is defined as the size an ideal population should have to exhibit

the same amount of genetic drift or inbreeding than our natural population. A small

Ne implies strong genetic drift and fast loss of heterozygosity (i.e., fast loss of genetic

diversity). Ne does not exist in nature, but it is a useful construct to understand the

different evolutive forces; it serves as a conversion rate between the standard model and

the reality or at least a more complex, more realistic model.

The three traditional types of Ne used in the Wright-Fisher framework are N e
e (Ewens

2004), based on the eigenvalue of the transition matrix P described in Box 1, N i
e, the in-

breeding population size based on the probability that two chromosomes taken at random

are descendant of the same parental chromosome, and N v
e , based on the variance of the

frequency of an allele given its frequency at the previous generation (Kimura and Crow

1963). The respective formulas can be directly derived from the three equations in Box 1.

If the natural population follows strictly a Wright-Fisher model, the census size Ncens

equates the effective population size and all three definitions of Ne give the same result.

In more realistic, more complex models including separate reproductive types (sex), pop-

ulation size changes or population structure, the census size will differ from Ne and N e
e ,

N i
e, and N v

e might take different values or, in the case of N v
e , not even exist (Ewens 1982).

From its definition, it is obvious that N i
e relates to the probability of two lineages

coalescing and therefore, in almost all cases, the coalescent effective population size N c
e , if

it exists, is equal to the inbreeding effective size as defined in Nordborg and Krone (2002).

Therefore, in the following, Ne designates N i
e when used in a discrete Wright-Fisher setting

and N c
e when used for a continuous coalescent process.

Similarly to the Wright-Fisher case, different definitions of N c
e have been proposed to

fit specific cases such as the presence of recombination and hitchhiking (Gillespie 2000)

or to be very general and accept even other structures of genealogy than Kingman’s
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n-coalescent (Möhle 2001). Other definitions limit the existence of N c
e to models that

converge to the n-coalescent (Nordborg and Krone 2002; Sano et al. 2004; Wakeley and

Sargsyan 2009), or, even further, to n-coalescent with a linear change in time scale (Sjödin

et al. 2005), but yield the same value of N c
e if it exists.

As stated in the previous section, the coalescent process arises from the Wright-Fisher

model as a limit when N goes to infinity and time is rescaled by N . The coalescent process

itself is independent of the population size, meaning that the waiting times between

coalescent events relative to each other are not affected by N but the absolute waiting

times in generations grow linearly with N . Time scaling is an important concept in

coalescent theory as many other models converge to a n-coalescent when time is scaled

”appropriately”. Therefore, in the literature, the scaling factor is sometimes included in

Ne for convenience but, due to the many different definitions of Ne and potentially non-

linear scaling factors, this might obscure the meaning of Ne and bring further confusion

into its biological interpretation (Nordborg 2001).

2.1.3 Model extensions and robustness of the coalescent

Under its original form, the Wright-Fisher model and its coalescent approximation have

few but very strong assumptions that are violated in most, if not all, natural populations:

diploid monoecious individuals, a constant population size and a binomial offspring dis-

tribution. Several extensions have been proposed to encompass a wider range of possible

demographic scenarios and life history traits.

Dioecious populations

The first hypothesis that needs to be relaxed is the monoecious reproduction system.

Monoecy describes a sexual reproduction system without mating types or where all in-

dividuals carry both mating types (hermaphrodites). The relaxation of this constraint

is already discussed in the seminal paper from Wright (1931), where it is shown that
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patterns of allele frequency fluctuations are approximately equivalent in a group of mo-

noecious individuals with random fertilization or in a population equally divided between

females and males. It is also shown that, in a population comprising Nf reproducing

females and Nm reproducing males, replacing the population size by

4NmNf

Nm +Nf

(2.1)

results in the same rate of loss of heterozygosity as in a monoecious population where

selfing is prevented. If Nf and Nm are different, the effective population size is thus

mainly under the influence of the smallest of the two population sizes. A comparable result

has been derived for the coalescent of a two-sex population by Möhle (1998a). Although

Möhle’s model differs in that it considers a strictly monogamous population where couples

are formed randomly but siblings always share both their mother and their father (full-

siblings), the coalescent limit holds in both models with simply a different scaling factor.

Genetic drift is doubled in the monogamous model compared to the random union of

gametes model.

Both dioecy with unbalanced sex ratios and monogamy are common traits in domes-

ticated populations. It is especially true for animal domesticates where males can have

a much larger progeny than females and therefore, a smaller number of males is usually

used for reproduction. A certain degree of monogamy can occur in species that produce

litters (i.e., multiple births) as well as in plant breeding, where all seeds obtained from a

plant by plant crossing are full siblings.

Changing population sizes

The second hypothesis that can be relaxed is the constant population size. It is straight-

forward to include population size changes in a Wright-Fisher model by changing N in

function of time in the transition probability of the Markov chain (Box 1). Interestingly,

as in the case of dioecious populations, the effective size is influenced largely by the occur-
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rence of small sizes. In other terms, population size fluctuations tend to increase drift and

inbreeding and therefore decrease diversity compared to the same average but constant

population size. In the case of random or cyclic size changes and if the population stays

relatively big, Ne can be approximated by the harmonic mean of the population sizes

(Wright 1938b; Nei et al. 1975).

Looking backward in time, the intuition for this result is that the probability of two

lineages not coalescing before a time T or, expressed differently, the probability that

the waiting time for the coalescent event is equal or greater that T when observing two

lineages can be written:

Pr(t ≥ T ) =
T−1∏
t=0

1− 1

2Nt

, (2.2)

where Nt is the population size at a time t. If Nt is large enough for every t in that

interval, we can use the approximation log(1− y) ≈ −y and write:

Pr(t ≥ T ) ≈ exp

(
1

2NHT

)
, (2.3)

whereNHT is the harmonic mean ofN over T generations (Charlesworth and Charlesworth

2010). However, such an approach is only relevant for rapid fluctuations of the population

size (faster than the coalescent process) without very severe bottlenecks (Charlesworth

and Charlesworth 2010).

To study population size changes at a larger time scale, one can build explicit models

of deterministic population size changes. In these models, the times Ti between coalescent

events are not independent anymore. Two main types of such models have been studied

in population genetics: the geometric (or exponential) growth model and the stepwise

population size change model.

The exponential growth model can be defined as follows: a population growing expo-

nentially at rate r, forward in time, up to a present size N0 has size N(t) = N0e
−rt, t

generations in the past. It is often used due to two important properties: (1) it has some
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Exponential growthStepwise decline Constant N=10000

Large π
Large variance of S
Tajima's D > 0

Small π
Small variance of S
Tajima's D < 0

Tajima's D ~ 0

Figure 2.3: The impact of different demographic models on (A) the coalescent tree

and (B) the site frequency spectrum.

biological relevance, as it is the continuous version of the geometric model that represent

the first phase of a logistic growth, and describes well the growth of a population in an un-

limited environment (i.e., infinite resources, no carrying capacity, density-independence);

(2) the probability that the first coalescence among i lineages occurs in generation t,

derived from Pr(t ≥ T ) (Slatkin and Hudson 1991), as well as the joint distribution of

times Ti between coalescent events can be analytically derived (Griffiths and Tavare 1994).

These probabilities provide a foundation to use this model in inference methods by facil-

itating the simulation of genealogies or allowing the calculation of maximum likelihood

estimates of population demographic parameters, namely r and the starting time of the

expansion.
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When the population is exponentially growing, the probability that two lineages share

a common ancestor at the next generation (i.e., coalesce) decreases, external branches tend

to be longer and genealogies are more star-shaped (Figure 2.3). Conversely, exponential

population decay increases the length of internal branches.

Coalescent simulations based on the method from Slatkin and Hudson (1991) can also

be adapted to other deterministic models of population size changes such as the piecewise-

constant (also called stepwise, Figure 2.3) and piecewise-exponential model (Donnelly and

Tavare 1995). This method is described in Box 4. Generalization of the joint probabilities

calculated analytically in the exponential case is more complex and leads to numerically

instable integrals that can only be calculated for small sample sizes (Griffiths and Tavaré

1998; Polanski et al. 2003) or requires additional approximations (Chen and Chen 2013).

By approximating size changes with piecewise constant population sizes or by com-

bining these result into a piecewise exponential model, one can model fairly complex

demographic scenarios with good precision. However, increasing model complexity im-

plies an increase in the number of parameters defining the demographic scenario, and

therefore, one needs to find efficient compromises in model parametrization to avoid over-

parametrization (Lapierre et al. 2017).

Population size changes play an important role in the genetic makeup of domesticated

species. Domestication is traditionally thought to be associated to a rapid decrease in

population size, the ”domestication bottleneck”, often modeled as a stepwise or expo-

nential population size decrease, followed by some recovery. However, such short strong

bottlenecks were not found in several perennial crops and recent studies of ancient DNA

have also challenged this hypothesis in several annual crops such as maize, sorghum and

barley (Allaby et al. 2019). The complex history of these species and the ongoing debate

on the existence of a domestication bottleneck versus more progressive effects of domesti-

cation on population size reduction and diversity loss of crops, show the need for accurate

and versatile models of population size variation.
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Box 4: Simulating genealogical trees in varying populations

Let us assume that the offspring distribution variance is that of a Wright-Fisher

model and that time is measured in N = M(0) generations where M(g) is the

population size g generations in the past. If there exist an increasing continuous

function Λ(t) with density λ(.), for which

lim
N→∞

bNtc∑
i=1

1/M(i) = Λ(t), (B.5)

where 0 < Λ(t) <∞ for t > 0, then,

Pr(Ti < t|Tn + . . .+ Ti+1 = τi) = exp

[
−
(
i

2

)∫ ti+τi

τi

λ(s)ds

]
. (B.6)

There, the density λ(t) represents the ratio of the population size now to the

population size t generations ago, that is ert for the exponential growth model

and for the stepwise model, λ(t) is 1 before the step and N0/N1 after the step.

One can simulate coalescent times following the algorithm
Draw n− 1 independent random variable Un, . . . , U2 uniformly distributed

between 0 and 1 ;

Set τn = 0 and i = n ;

while j > 1 do
Simulate Ti by solving the equation

Ui = Pr(Ti < t|Tn + . . .+ Ti+1 = τi) ;

Set τi−1 = τi + Ti ;

j = j − 1 ;

end
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Population structure

The standard Wright-Fisher model hypothesizes random mating, also called panmixia,

implying that individuals are spread homogeneously in the population and that all pairs

of individuals have the same probability to mate. Panmixia, is a central concept in pop-

ulation genetics, it is one of the strongest hypotheses of the Hardy Weinberg equilibrium

(HWE, Box 5, Hardy 1908; Weinberg 1908). In nature, however, physical distances or

geographic barriers (e.g., rivers, deserts), as well as behavioral (e.g., social herd or pack

life) and genetic constraints such as mating types can lead to some pairs of individuals

having a lower (or higher) probability than others to mate together. This violation of the

random reproduction between individuals is often called population structure. This leads

to a deficit of heterozygotes compared to the expected value following the HWE in the

population taken as a whole, although each subpopulation is at equilibrium (Hartl and

Clark 2007). This reduction of heterozygosity can be quantified using Wright’s coeffi-

cient of inbreeding calculated from the pedigree (Wright 1922) or by Wright’s F-statistics

(Wright 1949). The latter is defined as the fraction of the decrease of heterozygosity

within a level of structure to the heterozygosity among levels of structure.

The index of fixation (FST), is one of these statistics and measures all effects of pop-

ulation structure combined:

FST =
HT −HS

HT

, (2.4)

where HS is the average expected heterozygosity under HWE within random mating sub-

populations (S) and HT is the expected heterozygosity under HWE in the total population

(T ), taken as a whole. FST can theoretically vary between 0 and 1 but rarely reaches 1.

Following Wright’s guidelines (Wright 1978), values lower than 0.05 indicate no to lit-

tle genetic differentiation whereas values above 0.25 already indicate substantial genetic

differentiation. By analogy and considering a diploid individual as a level of structure,

two more indices are commonly defined, FIS, the inbreeding coefficient of an individual

(I) relative to the subpopulation, thus comparing expected and observed heterozygosity,
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non-zero values revealing non-panmictic subpopulations, and FIT, the inbreeding coeffi-

cient of an individual relative to the total population, that results from the combination

of all processes within and among subpopulations. These indices are ultimately related

through the formula: 1− FIT = (1− FIS)(1− FST).

Box 5: Hardy-Weinberg principle

In an ideal population assuming:

• Diploid organism with sexual reproduction

• Identical allele frequencies in males and females

• Random mating (panmixia)

• Non-overlapping generations

• Infinite population size (i.e., no genetic drift)

• No migration

• No mutation

• No natural selection,

the genotype frequencies at a bi-allelic site with alleles A1 and A2 follow the

relation: f(A1A1) = p2; f(A1A2) = 2p(1− p); f(A2A2) = (1− p)2, where p is

the allele frequency of the allele A1 in the population.

The mechanism that results in this relation can be represented by a simple table:

Male gametes

A1 A2

Female gametes
A1 p2 p(1− p)

A2 p(1− p) (1− p)2

Other possible genetic effects of population structure entail the apparent increase of

genetic diversity when sampling across subpopulations compared to a sample in a pan-

mictic population of the same size, and the potential decrease of diversity when sampling
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within a single subpopulation (see Section 2.2 for more details).

Several models have been proposed to describe population structure and migration

between subpopulations explicitly.

In the most extreme case, subpopulations are separated at a given time t and stop

exchanging genetic material. The subpopulations become completely independent from

each other and each behaves as a population. In a coalescent framework, this means that

the lineages can only coalesce within their own subpopulation until they reach time t after

which the remaining lineages in all subpopulations can freely coalesce independently of

their subpopulation of origin.

In less extreme cases, the separation between the subpopulations is not total, subpop-

ulations can still exchange genetic material (individuals, eggs, seeds, pollen,. . . ). This is

called migration. The simplest model of population structure with migration is the island

model (Wright 1931). In this model, all subpopulations, or demes, are identical in size and

have the same probability of exchanging migrants among themselves. Because all d demes

are exchangeable, only two coalescent probability have to be considered: the probability

for two lineages to coalesce if they are in the same deme (Tii) and the probability if they

are in different demes (Tij). We recall the known results:

Tii ≈ 2dNe (2.5)

Tij ≈ 2dNe +
d− 1

2m
, (2.6)

where m is the migration rate and Ne the effective population size.

This model is particularly interesting because of its simplicity but does not account for

one of the most common factors of population structure, geographic distance. Indeed, in

most natural populations, individuals that are geographically close have a higher chance

to reproduce with one another than with distant individuals. To account for this, Wright

(1943) described spatial structure in continuous populations using the concept of isolation

by distance. The individuals are spread along a line (or across a plane) with a given
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density and can reproduce with distant individuals following a given migration distribution

centered on their place of birth.

A discrete deme model was develop to describe the same phenomenon of isolation

by distance, the stepping stone model (Kimura 1953; Kimura and Weiss 1964), in which

populations can only exchange migrants with their nearest neighbors, thus accounting

for both the geographical distance of populations and the discrete characteristics of the

environment (e.g., mountains, rivers) or life history traits (gregarious behavior) of many

organism. In that case, the probability of coalescence for two lineages depends on the

distance between their demes.

None of these models are very realistic but they lead to more general results such

as, for example, the relation between FST and Nem (e.g., Wright 1943), that can be

used to estimate population structure and migration using genetic data. Furthermore,

in a coalescent framework, the island model can be extended and genealogies can be

simulated for variable deme sizes and different, possibly changing, migration probabilities

between demes. These complex models can account for all sources of population structure

including geographical distance. The simulated coalescent trees can then be used for

inference. Inference results can however be biased by a misspecification of the number of

existing demes, now and in the past, or the partial sampling of demes, therefore, estimated

migration rates should be treated with caution (Slatkin 2005).

Control over the domesticate’s reproduction is one of the pillars of the domesticator-

domesticate relationship and is contrary to the principal of panmixia. By isolating indi-

viduals from their wild ancestors, adapting populations to local conditions and specific

purposes or creating distinct races and varieties, the domesticator creates new repro-

duction barriers, and therefore, population structure. However, the domesticator might

also force migration among geographically and genetically distant populations, creating

complex structure patterns that would not be observed in the wild.
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Overlapping generations

The Wright-Fisher model considers generations as discrete or non-overlapping. This oc-

curs in some natural populations, for example in insect populations that reproduce simul-

taneously and quickly thereafter, die, such that no adult from the previous generation can

mate with an offspring from a latter generation. In a less drastic manner this hypothesis

is usually considered to be true for humans in the sense that, usually, the reproduction

period of parents and of their children do not overlap in time. However, in many popu-

lations this hypothesis is violated. Overlapping generations can occur through different

processes, for example, a long and early reproductive period as for many vertebrates and

trees, or the existence of a conservation form (seeds, spores, eggs or pupae that are able

to survive over several generations) as for many plants, fungi and insects. Conservation of

genetic material over several generations can also be artificial, in seed libraries or sperm

banks. However, one should note that conservation forms, natural or artificial, do not

necessarily lead to overlapping generations. Generations only overlap when individuals

reproduce with individuals of distinct generations. For example, if a parent mates with

its own progeny, a common practice in breeding.

There are two main ways of dealing with populations that present overlapping gener-

ations: (1) use a so-called continuous model or a discrete birth-death process that does

not need a strict concept of generation unlike the Wright-Fisher model, or (2) modify the

Wright Fisher model to include explicitly overlapping generations.

The most common birth-death process allowing overlapping generations is defined as

the Moran model (Moran 1958). The Moran model is a birth and death model for haploid

populations: at each time step, t = 1, 2, 3, . . ., an individual is chosen to reproduce and

produces one offspring, then, at the same time step, an individual is chosen at random

to die. The individual that dies can be the individual that has just reproduced but not

its new offspring. This implies that the population size remains constant, that the death

event and the birth event are independent, and that the lifetime of individuals in the
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population is geometrically distributed. From this definition, it is also clear that no more

than two individuals can share the same parent at the same time step and two or more

coalescent events cannot happen simultaneously. This explains why exact results can be

derived for the Moran model using the n-coalescent. The direct relation between the

Moran model and the n-coalescent is convenient but the Moran model presents strong

constraints on the age distribution that do not necessarily fit well natural populations.

More flexible models of overlapping generations, based on the Wright-Fisher model,

have been developed to describe natural populations with particular history traits like

seed banking (Kaj et al. 2001) or perenniality (Abu Awad et al. 2016). In most cases,

these models can be approximated by a time-rescaled coalescent assuming that N is large,

but this depends on the age distribution (Blath et al. 2013). In simple terms, if the time

spent in a dormant state, (i.e., when the lineage cannot coalesce), is much shorter than

the waiting time for a coalescent event, it does not influence the structure of the genealogy

but only its rate.

Separation of time scales and robustness of the coalescent

In the previous sections describing violations of the coalescent it is repeatedly noted that as

long as the disturbance of the model or the movement between model compartments (two

sex, population size change, migration, overlapping generations) happens much faster than

coalescent events, the coalescent process is unchanged in the limit and only the time scale

is affected. This property is sometimes referred to as the separation of time scales and has

been formally investigated in the general setting of Markov processes by Möhle (1998b).

The overall robustness of the n-coalescent (Möhle 1998c, 1999; Möhle and Sagitov 2001),

that is the fact that many population models using very different assumptions converge

to the n-coalescent when Ne goes to infinity, is one of the reason for the popularity of this

model. It implies that, in most cases, as long as Ne is reasonably large and the genetic

sample smaller, the central property of simple binary merger of the n-coalescent remained
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true and one can use the same process with appropriate scaling to model the population

of interest.

Offspring distributions

The Wright-Fisher multinomial offspring distribution implies a very low variance of the

number of offspring per parent. In many natural populations however, some parents

might, by chance, have much more offspring than others. This phenomenon is distinct

from selection in the sense that a high or low number of offspring is not related to a

particular trait or allele and will not be passed down to the next generation. As a simple

example of high offspring variance one can consider two frogs laying eggs in similar ponds,

one of the pond is dried out to build a road causing the death of all offspring of one of

the frogs whereas most offspring of the other frog might survive and reproduce.

Following Crow and Kimura (1970), let us consider the number of offspring νi of

chromosome i in 1, 2, . . . , N as a random variable from a distribution with mean ξ and

variance σ2.

The probability π2 that two randomly picked chromosomes come from the same parent

is then

π2 =

∑(
νi
2

)(
Nξ
2

) =
σ2/ξ + ξ − 1

N − 1
. (2.7)

By definition, inbreeding Ne is then the inverse of this probability. Assuming the

population is constant and that all individuals are exchangeable and thus have on average

same number of offspring, ξ = 1 and Ne = (N − 1)/σ2.

High offspring variance increases therefore genetic drift or, in a coalescent framework,

shortens the waiting time between coalescent events by a factor 1/σ2.

However, if the offspring variance is very large, the probability that more than two

lineages join in the same coalescent event might not be negligible anymore and the ances-

tral process might not converge to Kingman’s n-coalescent. Two different problems are

highlighted here and should be distinguished. First, the approximation of the genealogy
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of a sample of n chromosome by the n-coalescent might be of poor quality. Indeed, one

of the underlying assumption of the n-coalescent approximation is the infinite population

size. In practice, for a small sample size, a Ne of several hundreds to few thousand indi-

viduals is sufficient to use this approximation but, if the variance of offspring numbers is

large (i.e., not negligible compared to Ne), Ne will be strongly reduced, leading to a poor

performance of the approximation. Namely, the model produces fewer external branches

than occurs in reality.

Second, Kingman (1982b) showed that, in a population of N diploid individuals, if

the variance σ2
N of the (random) number of offspring genes from one parental gene νN

converges to a positive limit as N goes to infinity and if the supremum of all moments of

νN are bounded, then, as N goes to infinity, the ancestral properties of a sample of size n

in an exchangeable Cannings model converge to those of the n-coalescent, where Cannings

models (Cannings 1974, 1975) are a wide family of models including the Wright-Fisher and

the Moran model (Box 6). Other limit processes such as the Λ-coalescent (Pitman 1999;

Sagitov 1999) and the Ξ-coalescent (Schweinsberg 2000), allowing respectively multiple

and simultanious mutliple mergers (Figure 2.2), arise for other exchangeable Canning

models as described in Möhle and Sagitov (2001).

Biologically, such skewed offspring distribution is known to occur in marine organisms

but could also apply to plants where the production of seeds exceeds largely the carrying

capacity of a population, or insects, viruses and microbial pathogens that experience

rapid population boom and bust (Tellier and Lemaire 2014). It might also occur to a

lesser extent in domesticated animal populations where a handful of animals, usually

males, are mated to a large part of the population over one or two generations to bring

or increase the frequency of traits of interest into that population.
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Box 6: The Cannings family (Cannings 1974, 1975)

For a population with constant size N , no mutation and two alleles (A1 and A2),

the Cannings exchangeable model is defined as a Markov chain based on a set of

exchangeable 2-dimensional random variables {Di, Ri}, where Di is 1 if the i-th

individual survives and 0 otherwise, and Ri is the number of descendants of the

i-th individual, such that

Xt+1 =
Xt∑
1

Di +
Xt∑
1

Ri,

where Xt is the number of individuals carrying allele A1. In order to have a

constant population size, the process is constraint by

N∑
1

Di +
N∑
1

Ri = N.

The Cannings models allow a more general definition of discrete time population

models depending on the distribution of {Di, Ri} or of their sum Qi.

For example, the Wright-Fisher model can be defined as a Cannings model with

Di is 0 for all i and R has a multinomial distribution. In the Moran model,

no distinction is made between surviving at the next generation and having an

offspring, and the distribution of Q is such that Q = 1 with probability 1/N ,

Q is a permutation of {0, 2, 1, 1, . . . , 1} with probability (N − 1)/N and cannot

take any other value.
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2.1.4 Mutations

In the previous sections, we have focused on the relation between individuals (or chromo-

somes) which defines the shape of the genealogies and the rate of coalescent. However,

when working with genetic data, we only can observe the combined result of genealogy

and mutation, for example under the form of allele frequencies in the sequence data of

sampled individuals. Several models have been developed to describe mutational pro-

cesses for different types of genetic data. The first type of data collected was phenotypes

such as the color of a flower, the texture of peas or the patches of cows. These phenotypes

were in general considered as bi-allelic markers, following Mendelian inheritance, with a

given mutation rate u conferring the derived phenotype and v reverting to the wild phe-

notype (Wright 1931). In most cases, both mutation rates are sufficiently small and the

time scale at which one observes phenotypes short enough that models without mutation

describe well how alleles, present at a given frequency, are segregating in the population

in following generations (see the Hardy-Weinberg equilibrium in Box 5 and the original

Wright-Fisher models in Box 1). The first molecular markers were proteins, isozymes and

allozymes (Hunter and Markert 1957), and later appeared DNA markers detected with

the help of restriction enzymes (e.g., restriction fragment length polymorphism, RFLP;

Grodzicker et al. 1974) or PCR reactions, hybridization techniques and sequencing, al-

lowing the detecting of simple sequence repeat (SSR, microsatellites and minisatellites),

single nucleotide polymorphisms (SNPs) or copy number variation (CNV). Using DNA

markers, we can now observe the interaction of mutation and genealogy.
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2.2 Data and summary statistics

2.2.1 Single nucleotide polymorphisms (SNPs) and their sum-

mary statistics

Mutational models

Nowadays, single nucleotide polymorphisms (SNPs) are widely available and have become,

in the last years, one of the most common form of genetic data. The two main models that

have been developed to describe the behavior of such mutations are the infinitely many

allele model (IAM Kimura and Crow 1964) and the infinitely many sites model (Kimura

1969). The infinite allele model considers that mutations appear randomly and that a

given site can be affected several times but that the allele arising from these repeated

mutations will always be distinct. Mutations are irreversible, that is, no back mutation is

allowed. The infinite sites model is even more conservative, and states that mutations are

random but because of the low rate of mutation µ per base pair, mutations do not modify

the same site several times. These approximations of infinitely many sites or alleles might

not hold for some fast mutating organisms like RNA lytic viruses with µ ∼ [10−4–10−3]

(Drake et al. 1998), or for certain regions of the genome (e.g., hot spots or hypermutable

sites, Hodgkinson et al. 2009) but are overall reasonable in many multicellular plants and

animals, especially for small sample sizes.

Typically, µ is of the order of 10−6–10−10 per base per replication in unicellular or-

ganisms (Drake et al. 1998), of the order of 10−8 per base per generation in the nuclear

genome of multicellular animals such as Drosophila melanogaster, humans or mice (Baer

et al. 2007). For plants, estimations are scarce. Recent work from Ossowski et al. (2010)

give a mutation rate of 7×10−9 base substitutions per site per generation for Arabidopsis

thaliana’s nuclear genome, but the mutation rate per generation might be very variable

between annual plants and long lived trees (Klekowski and Godfrey 1989). Animal mito-

chondrial DNA tend to have a higher mutation rate than nuclear DNA (nDNA) whereas
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plant mitochondrial and chloroplast DNA would tend to have a 1/6, respectively 1/2,

lower mutation rate than nDNA (Wolfe et al. 1987). See Lynch et al. (2016) for a more

complete review of mutation rates.

Interestingly, without recombination, both infinitely many sites and infinitely many

alleles models are similar. Indeed, one can either consider each nucleotide as a site or

consider a non-recombining fragment as a site and the different haplotypes as the alleles.

If one sees haplotypes as different alleles, then recombination could, like mutation but

with a different process, create new alleles whereas this in not permitted in the IAM

(Ewens 2004).

Because a mutation is a rare event that occurs randomly during cell multiplication,

the accumulation of mutation on a chromosome can be assimilated to a Poisson process

with parameter µ, the mutation rate. When applying this same process along a genealogy,

it means that the number of mutations that occurs on a lineage between two coalescent

events is, in expectation, proportional to both the mutation rate and the length of the

branch. Consequently, factors affecting the shape of the genealogy described in previous

sections similarly affect the mutations observed in the genome. Conversely, in an inference

perspective, it implies that the number and frequency of observed SNPs contain informa-

tion about the demography, reproductive system and life history traits of the individuals.

This forms the basis for the population genetics field. The proportionality of mutation

and branch length has, however, one adverse effect: mutation rate and effective popu-

lation size cannot be distinguished and are therefore combined in a scaling factor, the

population mutation rate (θ); for haploids, θ = 2Neµ and θ = 4Neµ for diploids. Indeed,

as shown in Section 2.1.1, time and therefore the length of the genealogy is rescaled in

Ne for haploids or 2Ne for diploids. This rescaling factor is multiplied by 2 for historical

reasons related to the concept of heterozygosity or pairwise differences (eq. 2.11).
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The site frequency spectrum (SFS)

As shown in previous sections, demography influences the shape of the genealogy, in

particular the relative length of internal and external branches (Figure 2.3). When looking

only at a sample of genetic data from a single time point, there is no way of knowing

on which branch of genealogy the observed polymorphism appeared. Nevertheless, the

number of times a mutation is found in a genetic sample gives information about the type

of branch on which it appeared, internal or external. Therefore, a useful and convenient

way of summarizing this information is to class and sum mutations following the number

of individuals in the sample carrying them. Historically, this was first proposed for the

infinite allele model under the form of the Ewens’ sampling formula (Ewens 1972) based

on the diffusion approximation. This work, predates the formulation of the n-coalescent,

and reaches the same results using diffusion equations instead of Markov chains. In terms

of n-coalescent genealogies, this means summing the length of all branches ordered by

growing number of leaves (i.e., sampled chromosomes) they lead to (Figure 2.3).

The resulting histogram is called the site frequency spectrum (SFS) and has dimension

n − 1, where n is the size of the sample. The expected number of mutations appearing

at a given frequency in the whole population was derived under different mutational

models (Fisher 1930a; Wright 1938a) and different offspring distributions (Haldane 1939)

for discrete forward models. Later with the development of the diffusion approximation

and of the n-coalescent, the case of sample SFS was treated by Kimura (1964) and Tajima

(1983). All different method result, to some constant coefficient, in the expectation

E[ξi] = θ/i 1 ≤ i ≤ n− 1, (2.8)

where ξi is the number of segregating sites for which the derived allele is found exactly i

times in the sample.

In practice it is not always possible to infer the ancestral state of a mutated nucleic
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acid and, often, a mutation present once in a sample could as well be the reverse mutation

present n − 1 times in this sample. In such cases where no sufficiently good out-groups

are available to distinguish the derived from the ancestral allele, the SFS is said to be

un-rooted or folded, as the classes of the SFS are summed as if it was folded in its center

such that ηi = ξi+ξn−i

1+δi,n−i
, where δi,j, Kronnecker’s δ, is 1 when i = j and 0 otherwise.

Several one-dimension summary statistics have been developed to summarize the in-

formation contained in sampled genetic data. Many of them can be derived from the

folded SFS, for example, the number of segregating sites (S), the nucleotide diversity (π)

and Tajima’s D, a statistic to detect departure from the neutral model.

The number of segregating sites

Long before the n-coalescent was formalized, the relation between θ and the expected

number of observed segregating sites E(Sn) in a sample of size n, in the case of the

Wright-Fisher model, for independent sites (Ewens 1974) or for a chromosome without

recombination (Watterson 1975), infinitely many sites, and Poisson distributed mutations,

was already known and, for small n, had the form:

E(Sn) ≈ θ
n−1∑
i=1

1

i
. (2.9)

Rearranging this equation yields one of the unbiased estimators of θ, noted θ̂S in the

following.

In his paper, Watterson (1975) gave the probability generating function for Sn without

recombination, in the case of the Wright-Fisher and the Moran models, yielding the

variance

V(Sn) ≈ E(Sn) + θ2

n−1∑
i=1

1

i2
. (2.10)

More interestingly, he noted, precursor to coalescent theory, that Sn is the sum of

the number of new mutations occurring during generations when there were exactly i +
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1 distinct ancestors in the genealogy Yi, and that for small samples, the Yi are i − 1

independent, approximately geometrically distributed random variables in the Wright-

Fisher case and exactly so in the Moran model.

Pairwise differences

Another commonly used measure of genetic variation is the average number of pairwise

differences among sequences of a sample, π (Nei and Li 1979; Tajima 1983), that is

π =
1(
n
2

) n−1∑
i=1

n∑
j=i+1

dij (2.11)

in which dij is the number of differences between the i-th and j-th sequences. In the

standard n-coalescent, E[π] = θ and V ar[π] = n+1
3(n−1)

θ + 2(n2+n+3)
9n(n−1)

θ2, giving θπ, another

unbiased estimate of θ but with a higher variance than θS for large samples (Tajima 1983).

The number of pairwise differences can also be derived from the unfolded SFS as

π =
1(
n
2

) i=1∑
n−1

i(n− i)ξi, (2.12)

or the folded SFS since π puts symmetrical weights on the unfolded SFS classes.

Theta estimators and tests for neutrality

A common way of testing neutrality is to compare two unbiased estimator of θ. The most

often used test based on this principle was proposed by Tajima (1989) and depends on

the difference between θ̂π and θ̂S.

DT =
θ̂π − θ̂S√
V̂[θ̂π − θ̂S]

, (2.13)
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where V̂ is the unbiased estimate of the variance of θ̂π − θ̂S that can be calculated from

V[θ̂π − θ̂S] = V[π]− 2Cov[π, S]/a1 + V[S]/a2
1, yielding

V̂ =
c1S

a1

+
c2S(S − 1)

a1
2 + a2

(2.14)

with c1 = n+1
3(n−1)

− 1
a1

, c2 = 2(n2+n+3)
9n(n−1)

− n+2
na1

+ a2
a21

, a1 =
∑n−1

i=1
1
i

, and a2 =
∑n−1

i=1
1
i2

.

Other estimators of deviation from neutrality based on theta estimators, include Fu

and Li’s D (Fu and Li 1993) and Fay and Wu’s H (Fay and Wu 2000) respectively taking

the form

DFL =
θ̂S − θ̂η1√
V̂[θ̂S − θ̂η1]

and HFW =
θ̂π − θ̂H√
V̂[θ̂π − θ̂H ]

,

where θ̂η1 and θ̂H are unbiased estimators of θ. These are respectively, the singleton

estimator, depending on the singleton class of the site frequency spectrum η1, and Fay

and Wu’s estimator that is similar to θπ but that particularly weights high frequencies in

a non-symmetrical way, requiring the unfolded SFS.

2.2.2 Simple sequence repeats and their summary statistics

Simple sequence repeats (SSRs) have a different mutational dynamic than SNPs. In

regions of low complexity, the amount of errors during replication is increased and repeated

motifs tend to be gained or lost due to slippage (misalignment of DNA strands during

replication), recombination errors or point mutations. Due to the high rate of mutation

causing both gain and loss of repeat units there is a high potential for homoplasy (similar

motif acquired by independent mutations) and the infinite allele model (IAM) is not

adapted anymore. Conversely the concept of repeat units being added or removed implies

that allelic states are not interchangeable and that there is a positive correlation between

the number of mutations needed, and thus time, and the difference in repeat number.

This observation led to the application of models developed for the study of charge state
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of proteins development such as the stepwise mutation model (SMM) (Ohta and Kimura

1973; Wehrhahn 1975). However, mutation essays showed that the number of repeat units

being gained or lost is not always constant (Weber and Wong 1993), and larger, non-unit,

changes in repeat numbers might occur that are not compatible with the SMM. In such

cases, the two-phase mutation model or generalized stepwise mutation model (GSM), that

allows for such large changes in repeat numbers is more suited (Rienzo et al. 1994). See

Box 7 for the model definition.

Box 7: The two-phase mutation model from Rienzo et al. (1994)

The two-phase mutation model or generalized stepwise mutation model allows

multistep mutations. When a mutation occurs, it can belong to the one-step

phase with probability p or to the multistep phase with probability 1 − p. In

the one-step phase, the new allele is either one repeat unit larger or smaller

than its ancestor. In the original model both probabilities are equal but this

can easily be relaxed. In the multistep phase, the change in the number of

repeat units is drawn from a specified distribution, gj, that allows for various

sizes of changes in repeat number. In the original model, gj was assumed to

be a symmetric geometric distribution with a specified variance, σ2
j , such that,

gj = Cαi for j ≤ 1, gj = g−j. The normalization constant C was chosen to satisfy∑∞
i=1 gj = 1/2 and α is then determined by the σ2

j . Under this original form, the

two-phase mutation model requires, thus, three parameters: the mutation rate

(µ), the fraction of one-step mutations (p), and, if p < 1, the variance of the

distribution of larger step mutations (σ2
j ).

The number of sites sequenced for SSR is fixed and many statistics based on the

segregating sites or the SFS are meaningless for these markers. But one can take advantage

of the quantity of possible alleles, as well as the correlation between time and the length
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of the repeat motifs to build informative summary statistics.

The literature on the measures of differentiations for SSR markers is very rich and, as

it is not the central object of this thesis, only a few examples will be detailed.

Several modifications of the traditional measure of population differentiation, the fix-

ation index FST (Malécot 1948; Wright 1949), were proposed to build statistics adapted

to the specificities of SSR markers. First Nei (1973) proposed the GST statistic, an equiv-

alent of Wright’s FST for the multiple allele case. However, the maximum value that GST

can take depends on the number of populations and the total number of alleles, compli-

cating greatly the interpretation or comparison of this statistic among studies. Therefore,

Hedrick (2005) proposed a normalized version of the statistic called G′ST that can take all

values between 0 and 1 independently of the total number of alleles present. Jost (2008)

introduced a differentiation statistic (D) in the case of multiple alleles that has similar

properties than G′ST.

In parallel to these measures of differentiations, several statistics were developed to

take advantage of the stepwise mutation process of SSR markers. Two related measures

of differentiation that account for the difference between microsatellite allelic sizes, RST

(Slatkin 1995) and ΦST (Michalakis and Excoffier 1996) have been defined as analogous

of GST and FST respectively. The distance δµ2 proposed by Goldstein et al. (1995) also

accounts for allelic size but has been developed under a strict stepwise mutation model.

Allele size-based measures of differentiation, that assume a stepwise mutation process,

might not reflect the behavior of all SSR markers and, even if they do, might be less

efficient than allele identity-based statistics when the contribution to population differen-

tiation of mutation is negligible compared to that of drift. Therefore, Hardy et al. (2003)

proposed a test to determine whether stepwise-like mutations contributed to genetic dif-

ferentiation. Furthermore, different differentiation statistics capture different aspects of

population structure and can present different limitations. Using a combination of these

statistics provides therefore further insights into population structure and demography.
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The information contained in allele sizes cannot only be used to gain knowledge on

population differentiation but also to measure population size changes, and more specif-

ically, recent bottlenecks. For this purpose, Garza and Williamson (2001) developed a

statistic, the M -ratio, based on the ratio of the number of alleles, K, by the range of al-

lele size R. The principle underlying this statistic is that, during a bottleneck, K reduces

strongly due to the loss of alleles by drift whereas only the loss of the biggest or smallest

alleles reduces the range of allele sizes. Therefore, if the biggest and smallest alleles are

not rarer than the average length ones, that is if the allele length frequency distribution

is not bell-shaped, R will be less affected by the bottleneck than K. This statistic is

informative for recent bottlenecks but its interpretation can be difficult. In particular,

the molecular signature of a bottleneck can be obscured by substructure and migration

(Busch et al. 2007) and the value of the M -ratio is sensitive to the sample size and to

the violation of the stepwise mutations model. Indeed, very frequent multistep mutations

can increase the number of gaps in the allele size distribution. Even when the markers

follow a generalized stepwise mutation model with rare multistep mutations (p < 0.10),

occasional mutations may greatly affect allele size, either by rare but large steps in the

normal mutation process or through other processes, such as modification of the flanking

sequences.

2.2.3 Pedigree data

In this thesis, we define the pedigree as the list, or tree, representing ties between individ-

ual parents and their offspring as recorded for many domesticated animals (e.g., cattle or

horses). Concretely, the standard format for a pedigree is a list of individuals and for each

individual the identity of its mother and its father, if known. Models based on pedigrees

are very similar to those used to study genealogies but both structures are distinct and

many different genealogies can be built within a given pedigree. For many populations,

especially among domesticated species, pedigree data has been recorded long before any
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genetic data was available. Applying the same Wright-Fisher model described for genealo-

gies to this type of data enabled the calculation of inbreeding coefficients (Wright 1922)

from which population size or structure could be inferred.

2.3 Bayesian statistics and inference

Bayesian statistics use data under the form of the likelihood to update a prior belief into

a posterior probability distribution. Using Bayes’ rule on conditional probabilities for a

continuous variable, we write

f(θ|x) =
f(x, θ)

f(x)
=

f(x|θ)f(θ)∫
f(x|θ)f(θ)dθ

, (2.15)

where f(θ|x) is the conditional density of θ given x, f(θ) is the so-called prior density of

θ and f(x) is the marginal probability of x, f(x, θ) is the joint density of x and θ.

In most cases, the integral in the denominator cannot be calculated; so this equation

has to be solved using properties of conjugacy or numerical calculation such as Monte

Carlo Markov Chains (MCMC). In more complex cases, even the likelihood cannot be

calculated and one has to use likelihood free methods such as approximate Bayesian

computations (ABC).

2.3.1 Monte Carlo Markov Chain (MCMC)

Monte Carlo Markov Chains is a family of algorithms used to sample from a posterior

density by constructing a Markov chain that accepts this same posterior density as its

stationary distribution. The most common MCMC algorithms are the so-called random

walk algorithms in which the chains are moving randomly in the parameter space. In this

family, the Metropolis (Metropolis et al. 1953) and the more general Metropolis-Hasting

(Hastings 1970) algorithms are often used in cases where the conditional distribution of

the target distribution cannot be exactly sampled.
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Box 8: The Metropolis-Hasting algorithm

Given a n-dimensional vector x of parameters

Initialization: Choose arbitrary initial values for each parameter of the

vector, x0

while steps do

foreach xt in xt do

Draw a random value x′ from a proposal distribution Pr(xt → x′);

Calculate the ratio: r = Pr(x′)
Pr(xt)

Pr(xt→x′)
Pr(x′→xt)

if r > 1 then

accept: xt+1 = x′

else

Draw a random value u ∼ Uniform(0,1);

if u < r then accept: xt+1 = x′

else reject: xt+1 = xt

end

end

end

If the proposal distribution is symmetrical around 0, the ratio becomes r = Pr(x′)
Pr(xt)

.

This is the Metropolis algorithm.

The principle of the Metropolis-Hasting algorithm is to propose a new position in the

parameter space based on a kernel distribution, evaluate the probability of the proposed

new state, and accept or reject the move of the chain accounting for both the Likelihood

ratio of the new position compared to the previous one as well as the probability of

proposing the move and reversing it. A more detailed description of the algorithm can be

found in Box 8.
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If the jump distribution allows to reach every point of the parameter space, this

algorithm guarantees that the target posterior distribution is the stationary distribution

of the Markov chain. Nevertheless, the parametrization of the algorithm, in priority the

jump kernels of the chain, has a very strong impact on the time (number of steps) needed

to reach this equilibrium distribution and to obtain a sufficient sampling of the parameter

space. If the jumps are too short, the chain might stay too long around local optima

and not explore efficiently the parameter space in a realistic run time. Chains starting in

different regions of the parameter space might not converge (might give different results).

If the jumps are too long, the space is sampled almost randomly, proposing very unlikely

regions of the parameter space. The acceptance rate is then very low and the movements

of the chain look jagged with long plateaus separated by long distance jumps.

2.3.2 Approximate Bayesian Computations (ABC)

When the likelihood function is not available but data can be simulated using a model,

approximate Bayesian computations (ABC, Tavaré et al. 1997; Pritchard et al. 1999;

Beaumont et al. 2002) can be used to obtain the posterior distribution. The basis of ABC

is the so-called rejection algorithm: (i) sample random parameter values in their respective

marginal prior distributions, (ii) simulate a data set for each vector of parameters using

the model, and finally (iii), comparing the simulated data sets to the observed one, reject

the datasets that are further away from the observed data than a defined threshold ε

(Figure 2.4).

Parameter estimation

The posterior density of model parameters given the observed data is estimated by the

density of the parameters used to generate the datasets the closest to the observed data

(i.e., not rejected). In most cases, the tolerance threshold ε needs to be greater than 0 in

order to accept any simulation. However choosing a too great ε might lead to a strongly
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biased estimation of the posterior distribution. For small ε values, the relation between the

parameters and the accepted simulated data can be considered linear. Therefore, Beau-

mont et al. (2002) proposed to apply a local weighted linear regression on the accepted

data points in order to weight simulations depending on their distance to the observed

data, and project the parameter values on the vertical of the observed data (Figure 2.4A).

Because linearity cannot always be assumed, Blum and François (2010) proposed to apply

a non-linear regression. These regression methods aspire to give an approximate answer

to the following question: ”knowing that we observe some value y′, close to the data

value y, when simulating with parameter x, which parameter should we use to observe

exactly y.” Such regressions can mitigate the effect of a strictly positive ε, but if ε is too

large or the assumptions underlying the regression are not met, regressions can also have

adverse effects on the results (Beaumont et al. 2002). Therefore, both the estimations of

the posteriors before and after the regression should be studied (Figure 2.4B).

Model choice

Using ABC to estimate parameters relies on the use of a specific simulation model. Deter-

mining the appropriate model for a given dataset is not an easy task and can usually not

be automated. However, ABC can be used to compare several models using the Bayes’

factor. In that case, the same rejection procedure is applied until the last step where

only the generating model is considered and not the parameter values. A first estimate of

the Bayes Factor is given by the number of accepted simulations generated by one model

divided by the number of accepted simulations generated by the other models. For model

choice, Beaumont (2008) proposed to apply a weighted multinomial logistic regression

and, similarly as for parameter estimation, Blum and François (2010) proposed using

feed-forward neural networks. Whether one uses the simple rejection method or one of

the available rejection-regression methods, the sensitivity of the results to the choice of ε

should always be verified.
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Refining ABC

Several questions arise when applying ABC to more complex models or datasets. Firstly,

as the dimensionality of the data increases, the probability of simulating a dataset close

to the observed data decreases. To alleviate this problem and to allow the method to

remain computationally efficient, data can be summarized by a set of values that capture

the effect of the model parameters on the data but is of lower dimension than the ob-

served data itself: the summary statistics. If the summary statistics are sufficient, that

is if they capture completely the information contained in the data about the parameters

of the model, no error will be induced by this simplification. In this case, the estimated

posterior density will be identical to the theoretical posterior density that could be ob-

tained from the whole dataset. However, except in few particular cases (Sunn̊aker et al.

2013), finding sufficient statistics is not possible. Therefore, several methods have been

developed to choose summary statistics that reduce the dimensionality of the data while

remaining informative (although potentially non-sufficient): PCA, PLS (Wegmann et al.

2009), regression (Fearnhead and Prangle 2012). These methods use different statistical

tools but have the same underlying principle. They aim to find, in an extended set of

summary statistics, the optimal combination of statistics that decrease the amount of

redundant information or noise irrelevant to the estimation while minimizing the loss of

information. In all cases, the informativeness of the statistics is defined for a given model

and a given set of parameter range and prior distribution. The analysis is performed on

a data set simulated within this parameter range and prior distribution. Therefore, if

the model and parameter range are badly chosen, information that is relevant to the real

demographic processes might be deemed irrelevant for the simulated processes and this

information will be lost. This problem is not specific to ABC but inherent to all model

based estimation methods and should be taken into account. A possible way to verify

such adverse effects of summary statistics is to use the estimated parameters to generate

data and compare it to the untransformed observed data or at least to the extended set of
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summary statistics before applying any reduction. This problem is even more crucial and

proposed solutions scarcer in the case of model choice (Robert et al. 2011). The two main

approaches proposed in that case are the computationally intensive automatic summary

statistic selection proposed in Chu et al. (2013) and the logistic regression based meth-

ods from Prangle et al. (2014). More recently, the ABC random forest method proposed

by Pudlo et al. (2016) circumvents this issue by being more robust to overfitting and

uninformative summary statistics.

This leads to a second concern raised by ABC, as well as by any other Bayesian statistic

method: the choice of the prior distributions and parameter range. If the choice of the

parameter range or the prior distribution is too narrow, the resulting posterior distribution

will not reflect the likelihood function. Conversely, choosing too wide parameter range

with uninformative priors might lead to another dimensionality problem, namely, the

parameter space will not be explored well enough within a realistic amount of simulations.

In practice, it means that the model choice can be affected by the chosen priors, especially

if models with different parameters are compared.
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Figure 2.4: Schematic representation of a run of approximate Bayesian computa-

tions. (A) The simulated parameter value as a function of the resulting summary statistic.

The gray points are the simulations rejected by the algorithm. Their summary statistic are too

distant from the observed value marked by a black dashed line. The tolerance region ε around

the observed value is delimited by the two blue lines. The orange line shows the slope of the local

regression. As an example, arrows show how the regression would affect two points, circled in

orange. (B) represents the uniform prior density from which the parameter is drawn (in black),

the posterior density before the regression also called truncated prior (in blue), and the posterior

density after the regression (in orange). The dashed line represents the mode of the posterior

density, that is the estimated parameter value.
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Chapter 3

Rye population diversity and

structure

3.1 Introduction

The archaeological evidence presented in the introduction already gives some insights

into the history of rye. However, how genetic diversity was affected and how more recent

populations fit in this history remains largely unknown as shown by the contradictions in

the few previous genetic studies. In this chapter, we use microsatellite data to describe

the diversity of 14 rye populations and investigate their structure and to shed light on the

domestication and use diversification process.

3.2 Material and methods

3.2.1 Sampling and SSR genotyping

We chose 14 open-pollinated winter rye populations to represent rye growing areas in

Europe and the Americas. Different gene banks and plant breeders provided the seeds

that were propagated through several cycles of cross-pollination under isolation. We

53
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Figure 3.1: Geographical distribution of sampled rye populations. Crosses, circles,

and triangles indicate weedy, grain and forage populations, respectively. For convenience, popu-

lations are named with the 3-letter ISO codes (International Organization for Standardization,

ISO 3166) and in case of multiple populations per country we use the 2-letter ISO codes followed

by a consecutive number.

randomly sampled between 37 and 45 S0 plants per population, representing a total of

620 S0 individuals (Figure 3.1; Table 3.1).

Genomic DNA of the 620 individuals was extracted from leaf samples as described in

Rogowsky et al. (1991), and then all were genotyped with 32 unlinked and genome-wide

distributed SSR markers following established protocols (Table 3.2). Briefly, separation

of fragments by polymerase chain reaction (PCR) was carried out on a 3130xl Genetic

Analyzer (Applied Biosystems Inc., Foster City, CA, USA). Alleles were assigned us-

ing the software GeneMapper v. 4.0 (Applied Biosystems Inc., Foster City, CA, USA).

The software determined fragment lengths using size standards of a known length. All

SSR-marker data necessary to reproduce the analysis as well as PCR primers and PCR

conditions have been archived on Dryad (doi: http://dx.doi.org/10.5061/dryad.q0694).
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Table 3.1: Populations under study and their genetic diversity. The level of genetic

diversity of each population was estimated based on 32 SSR markers and described with the

parameters number of alleles, number of private alleles (Ap), average number of effective alleles

(Ae), observed heterozygosity (Hobs), gene diversity (expected heterozygosity, Ĥ) and inbreeding

coefficient (FIS).

Code Origin Usage Breeding level Individuals Alleles Ap Ae Hobs Ĥ FIS Population name
IR1 Iran Weedy Primitive rye 44 161 8 2.99 0.46 0.59 0.23 Altevogt 14160
IR2 Iran Weedy Primitive rye 45 233 17 3.89 0.52 0.67 0.21 IRAN GP.IX
TUR Turkey Weedy Primitive rye 45 243 41 4.37 0.55 0.69 0.19 Türkischer Unkrautroggen
ESP Spain Forage n.i. 37 174 8 3.24 0.47 0.61 0.22 R778 (‘Villablanca’*)
BRA Brazil Forage n.i. 44 140 4 2.58 0.47 0.57 0.18 Centeio Branco
USA USA Forage Variety 45 132 2 2.48 0.45 0.54 0.16 Florida Black
PRT Portugal Forage Landrace† 45 199 9 3.22 0.52 0.63 0.15 R1008 (‘Malhadas’*)
ARG Argentina Forage Landrace‡ 45 87 0 1.81 0.29 0.45 0.35 Pico Gentario
DE1 Germany Grain Old variety 45 114 0 2.21 0.39 0.48 0.21 Carokurz
RU1 Russia Grain Landrace 45 125 5 2.62 0.43 0.57 0.23 Karelische Landsorte
RU2 Russia Grain Landrace 44 109 0 2.23 0.39 0.48 0.17 Leningrader Landsorte
BLR Belarus Grain Variety 43 156 3 2.6 0.49 0.56 0.12 Belorusskaja
DE2 Germany Grain Old variety 45 118 2 2.27 0.39 0.48 0.18 Halo
POL Poland Grain Improved landrace 45 120 0 2.19 0.4 0.49 0.16 Dankowskie Selekcyjne
n.i., no information. *Synonymous name. †Matos et al. (2001). ‡Stracke et al. (2003)

Most fragments displayed stepwise variation in length as expected from varying num-

bers of microsatellite repeats. The size of the rest of the fragments deviated from this

expected pattern due to additional insertions or deletions outside of the microsatellite

motif. To improve the SSR marker data quality, we checked allele assignments manually

and set ambiguous results to ”missing data”. For the population genetics statistics, we

considered null alleles as additional valid alleles for each marker. The global statistical

trend remained similar whether null alleles were considered as valid or set to missing, for

example, the populations with a higher expected heterozygosity conserved this character-

istic (Table 3.3).
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Table 3.2: Overview of the SSR markers used for genotyping of 14 rye populations.

Information is given on source, chromosome, and parameters describing the variability of markers

[number of alleles, PIC, private alleles (Ap), effective alleles (Ae), observed heterozygosity (Hobs),

gene diversity (expected heterozygosity, Ĥ), population differentiation (FST, Jost’s D)]

Marker Source Chrom. Alleles PIC Ap Ae Hobs Ĥ FST D

scm266 I 1R 6* 0.39 2 1.72 0.16 0.42 0.16 0.11

rms1280 K 1R 6 0.59 1 2.86 0.33 0.65 0.25 0.34

scm247 I 1R 6 0.70 1 3.93 0.30 0.75 0.19 0.41

rms1107 I 1R 21 0.68 6 3.30 0.43 0.70 0.16 0.28

rms1238 K 2R 8* 0.77 2 4.91 0.41 0.80 0.15 0.40

scm290 I 2R 7 0.57 1 2.63 0.43 0.62 0.17 0.24

rms1138 K 2R 19 0.62 5 2.86 0.53 0.65 0.17 0.26

scm276 I 2R 6 0.58 0 2.64 0.49 0.62 0.18 0.24

rms1230 K 2R 6* 0.73 0 4.21 0.22 0.76 0.23 0.46

rms1254 K 3R 9 0.59 1 2.72 0.42 0.63 0.22 0.29

rms1028 I 3R 22 0.78 7 4.95 0.65 0.80 0.19 0.45

rms1323 K 3R 20 0.52 9 2.18 0.46 0.54 0.17 0.18

scm294 I 3R 4 0.33 2 1.66 0.36 0.40 0.09 0.06

rms1026 I 4R 14 0.61 6 3.02 0.53 0.67 0.25 0.36

scm047 H 4R 2 0.30 0 1.60 0.28 0.37 0.20 0.11

rms1181 H 4R 4 0.41 0 2.10 0.33 0.52 0.13 0.14

rms1218 K 5R 6 0.67 1 3.57 0.86 0.72 0.11 0.23

rms1259 K 5R 8 0.73 2 4.19 0.23 0.76 0.25 0.48

scm260 I 5R 15 0.76 3 4.67 0.30 0.79 0.16 0.41

rms1205 K 5R 10* 0.65 3 3.16 0.27 0.68 0.21 0.34

rms1237 K 5R 13 0.79 3 5.17 0.55 0.81 0.24 0.54

rms1278 I 5R 13 0.65 3 3.29 0.53 0.70 0.21 0.34

rms1090 I 6R 14 0.65 4 3.27 0.53 0.69 0.19 0.33

rms1121 I 6R 33 0.91 9 11.30 0.73 0.91 0.16 0.67

scm107 H 6R 3 0.41 0 2.09 0.42 0.52 0.21 0.20

rms1197 K 7R 13* 0.67 4 3.37 0.23 0.70 0.16 0.30

scm322 I 7R 4 0.56 1 2.75 0.53 0.64 0.15 0.22
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Table 3.2 – Continued from previous page

Marker Source Chrom. Alleles PIC Ap Ae Hobs Ĥ FST D

rms1018 I 7R 28 0.88 11 9.30 0.74 0.89 0.12 0.55

rms1187 K 7R 3 0.36 1 1.85 0.41 0.46 0.09 0.08

scm063 H 7R 3 0.54 0 2.60 0.53 0.62 0.18 0.24

rms1188 K 7R 8 0.57 2 2.68 0.20 0.63 0.20 0.27

rms1012 I 7R 40 0.92 9 12.80 0.70 0.92 0.15 0.70

Sum: 374 99

Mean: 11.7 0.62 3.09 3.86 0.44 0.67 0.18 0.32

Standard deviation: 9.2 0.16 3.10 2.61 0.17 0.14 0.04 0.16

Min.: 2 0.30 0 1.60 0.16 0.37 0.09 0.06

Max: 40 0.92 11 12.84 0.86 0.92 0.25 0.70

H: Hackauf and Wehling (2002); K: Khlestkina et al. (2004); I: Internal KWS LOCHOW GMBH;

*: occurrence of a null allele among the alleles of a marker.

Each marker was tested for deviations from the Hardy–Weinberg equilibrium (HWE)

within populations using the X2 goodness-of-fit test with a Benjamini–Hochberg correc-

tion for multiple testing (Table 3.4), and marker informativeness was measured as the

polymorphism information content (PIC, Botstein et al. 1980). We defined the follow-

ing groups of populations by rye main ancestral end use: grain, which assembled the

populations of northeast European ancestry; forage, which assembled the populations

of Mediterranean ancestry and weedy rye, for the weedy populations from the center of

diversity (Table 3.1).

3.2.2 Genetic diversity and population structure

We computed for each population the total number of alleles, number of private alleles

(Ap), number of effective alleles (Ae, Kimura and Crow 1964), observed heterozygosity

(Hobs), gene diversity (Ĥ, Nei 1987) and Garza–Williamson’s M (Garza and Williamson

2001). The analysis of molecular variance (AMOVA, Excoffier et al. 1992) was com-

puted with Arlequin v.3.5.1.3. The total variance was partitioned into components due
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Table 3.3: Populations under study and their genetic diversity after removing null

alleles. The level of genetic diversity of each population is estimated based on 32 SSR markers

and described with the parameters number of alleles, number of private alleles (Ap), average

number of effective alleles (Ae), observed heterozygosity (Hobs), gene diversity (expected het-

erozygosity, Ĥ), inbreeding coefficient (FIS), Garza-Williamson (GW) and the modified Garza-

Williamson (GW*) statistics, calculated by using the range over all populations.

Code Usage # Individuals Alleles Ap Ae Hobs Ĥ FIS GW GW*
IR1 Weedy 44 154 8 2.91 0.46 0.58 0.21 0.35 0.24
IR2 Weedy 45 229 17 3.81 0.53 0.67 0.21 0.39 0.31
TUR Weedy 45 238 41 4.35 0.56 0.70 0.20 0.41 0.33
ESP Forage 37 171 8 3.20 0.47 0.60 0.22 0.38 0.26
BRA Forage 44 136 4 2.55 0.47 0.55 0.15 0.35 0.22
USA Forage 45 128 2 2.42 0.46 0.53 0.13 0.40 0.21
PRT Forage 45 196 9 3.21 0.52 0.62 0.16 0.38 0.28
ARG Forage 45 84 0 1.81 0.30 0.40 0.25 0.41 0.17
DE1 Grain 45 110 0 2.13 0.39 0.47 0.17 0.36 0.20
RU1 Grain 45 121 5 2.56 0.44 0.56 0.21 0.36 0.20
RU2 Grain 44 104 0 2.19 0.41 0.46 0.11 0.36 0.18
BLR Grain 43 153 3 2.59 0.50 0.56 0.11 0.39 0.23
DE2 Grain 45 115 2 2.24 0.40 0.47 0.15 0.36 0.19
POL Grain 45 117 0 2.16 0.41 0.48 0.15 0.39 0.21

to differences among the three defined groups (Va), differences among populations within

those groups (Vb) and differences among individuals within populations (Vc). Variance

components (Va, Vb and Vc) were used to calculate the fixation indices (F -statistics; FCT,

FSC, FST) according to Weir and Cockerham (1984). F -statistics were preferred to al-

lele size-based measures of differentiation based on the results of the allele permutation

test proposed by Hardy et al. (2003), which was performed across loci for each pair of

populations using the software SPAGeDi 1.5 (Hardy and Vekemans 2002, Figure 3.2).

However, the allele size dataset, without null alleles, was used for the computation of

Garza–Williamson’s M . This statistic is used to detect recent bottlenecks and is based

on the ratio of the number of microsatellite alleles to the observed range in allele size.

Although its interpretation can vary depending on mutational models and demography, an

M value lower than 0.68 would generally be considered significant (Garza and Williamson

2001). The genetic differentiation among weedy, forage and grain groups was denoted as
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IR1 IR2 TUR ESP BRA USA PRT ARG DE1 RU1 RU2 BLR DE2

IR2 0.71

TUR 0.53 0.99

ESP 0.06 0.16 0.97

BRA 0.58 0.94 0.78 0.08

USA 0.05 0.32 0.87 0.41 0.21

PRT 0.28 0.55 0.34 0.00 0.18 0.01

ARG 0.98 0.09 0.33 0.74 0.16 0.09 0.77

DE1 0.89 0.85 0.33 0.54 0.69 0.46 0.39 0.56

RU1 0.53 1.00 0.96 0.72 0.83 0.72 0.18 0.29 0.14

RU2 0.79 0.27 0.64 0.73 0.87 0.96 0.90 0.65 0.40 0.85

BLR 0.96 0.81 0.79 0.12 0.67 0.40 0.89 0.13 0.63 0.69 0.45

DE2 0.72 0.60 0.93 0.69 0.81 0.76 0.02 0.42 0.34 0.15 0.82 0.29

POL 0.38 0.70 0.79 0.99 0.79 0.82 0.00 0.31 0.09 0.09 0.59 0.18 0.62

Figure 3.2: P-values of Hardy et al.’s (2003) allele permutation test across loci for

each pair of population. A non-significant test means that allele identity-based statistics of

population differentiation (e.g., FST) perform better than allele size-based ones (e.g., RST or

δµ2). Significant values are indicated in red.

FCT, among populations within groups as FSC and among populations denoted as FST.

The within-population fixation index FIS was also computed. Jost’s D (Jost 2008) was

used as an alternative measure of population differentiation. Measures of genetic diversity

and pairwise FST were aggregated over usage groups and levels of improvement (Table 3.6).

A neighbor joining tree was drawn based on FST distances using the R-package ”ape”

v. 3.2 (Paradis et al. 2004). We calculated the pairwise distance between populations

based on the proportion of shared alleles (Dps, Figure 3.3) as described in Bowcock et al.

(1994). Population structure was further investigated by a Bayesian clustering approach

implemented in the STRUCTURE software v. 2.2 (Pritchard et al. 2000). Burn-in period

and Markov Chain Monte Carlo iterations were both set to 50,000. Ten runs were executed

for each number of assumed subgroups K (K = 1, 2, ..., 15). Resulting membership
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Table 3.4: P-values of χ2 goodness-of-fit test for HWE within each population.

Highlighted in gray are the p-values significant (HWE cannot be assumed) after a correction for

multiple testing using the Benjamini and Hochberg procedure (1995) on each population inde-

pendently, using a false discovery rate of 0.05. All population are significantly in disequilibrium

using Fisher’s method (conservative).

SSR marker IR1 IR2 TUR BRA ESP PRT USA ARG BLR DE1 DE2 POL RU1 RU2
scm266 0.58 0.21 0.00 0.00 0.00 0.00 0.00 0.76 0.24 0.00 0.69 0.00 0.00 0.00
rms1280 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.11 0.19 0.92 0.46 0.69
scm247 0.00 0.00 0.38 0.00 0.00 0.41 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00
rms1107 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.69 0.00 0.19 0.00 0.32 0.42 0.17
rms1238 0.00 0.00 0.00 0.01 0.00 0.00 0.06 0.05 0.00 0.85 0.00 0.02 0.00 0.00
scm290 0.19 0.00 0.53 0.84 0.51 0.00 0.50 0.13 0.31 0.80 0.48 0.26 0.02 0.15
rms1138 0.58 0.04 0.06 0.11 0.44 1.00 0.01 0.04 0.00 0.57 0.28 0.25 0.70 0.20
scm276 0.51 0.30 0.12 0.01 0.92 0.76 0.99 0.00 0.82 1.00 0.88 0.90 0.00 0.75
rms1230 0.00 0.01 0.00 0.83 0.00 0.00 0.00 0.00 0.40 0.00 0.00 0.00 0.00 0.00
rms1254 0.04 0.15 0.02 0.81 0.65 0.12 0.38 0.00 0.11 0.98 0.29 0.98 0.59 0.61
rms1028 0.02 0.03 0.67 0.04 0.52 0.53 0.77 0.07 0.03 0.93 0.00 0.02 0.32 0.54
rms1323 0.98 1.00 0.17 0.75 0.04 0.00 0.43 0.03 0.68 0.52 1.00 0.97 0.91 0.19
scm294 0.88 0.37 0.46 0.66 0.80 0.40 0.92 0.65 0.42 0.78 0.95 0.86 0.27 0.76
rms1026 0.11 0.15 0.82 0.25 0.33 0.00 0.45 0.01 0.10 0.66 0.83 0.46 0.07 0.75
scm047 0.41 0.84 0.37 0.01 0.06 0.17 0.30 0.01 0.51 0.29 0.92 0.42 0.63 0.75
rms1181 0.01 0.17 0.00 0.03 0.00 0.00 0.73 0.00 0.51 0.26 0.52 0.17 0.17 0.10
rms1218 0.00 0.00 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.07
rms1259 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.06 0.00
scm260 0.00 0.04 0.00 0.93 0.00 0.00 0.00 0.46 0.00 0.64 0.52 0.00 0.69 0.00
rms1205 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.44 0.02 0.00
rms1237 0.52 0.40 0.00 0.94 0.00 0.00 0.00 0.00 0.08 0.00 0.05 0.96 0.69 0.10
rms1278 0.01 0.41 0.04 0.47 0.67 0.95 0.73 1.00 0.94 0.13 0.92 0.62 0.17 0.18
rms1090 0.90 0.99 0.02 0.68 0.22 0.17 0.74 0.00 0.89 0.89 0.68 0.00 0.86 0.85
rms1121 0.28 0.36 0.68 0.33 0.41 0.87 0.00 0.01 0.19 0.29 0.59 0.98 0.33 0.80
scm107 0.02 0.28 0.70 0.03 0.18 0.03 0.44 0.00 0.28 0.46 0.50 0.11 0.94 0.69
rms1197 0.00 0.00 0.06 0.59 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.99 0.27 0.00
scm322 0.86 0.90 0.71 0.60 0.32 0.71 0.17 0.29 0.75 0.68 0.48 0.52 0.52 0.00
rms1018 0.10 0.56 0.00 0.60 0.56 0.83 0.60 0.06 0.98 0.04 0.98 0.87 0.69 0.62
rms1187 0.12 0.61 0.74 0.69 0.22 0.17 1.00 0.31 0.49 0.65 0.71 0.39 0.38 0.38
scm063 0.94 0.31 0.83 0.00 0.17 0.75 0.85 0.00 0.54 0.98 0.91 0.61 0.64 0.93
rms1188 0.00 0.00 0.95 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
rms1012 0.20 0.30 0.91 0.00 0.98 1.00 0.05 0.00 0.04 0.00 0.58 0.71 0.04 0.00
# signif. tests 15 11 10 11 14 16 14 20 10 9 9 8 7 11

coefficients from each run were averaged by individual and visualized in a bar chart.

The average log-likelihood (± standard deviation) was calculated for each K to deduce

the most probable number of subgroups. Ten individual runs per K were plotted to

check convergence. Additionally, ∆K was calculated according to Evanno et al. (2005) to

determine the optimum K for the uppermost hierarchical level of structure (Figure 3.5).
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3.3 Results

3.3.1 SSR genotyping

Genotyping of 620 individuals from 14 winter rye populations with 32 genome-wide SSR

markers resulted in 374 alleles, including 99 private alleles (Table 3.1). One individual

from each of the populations IR1, BRA and RU2 was excluded from the analyses due

to more than 33% of missing data. On average, we observed 11.7 ± 9.2 (range: 2–40)

alleles per locus, of which 7.07 ± 10.87 (range: 0–41) were private alleles (Ap). Across

populations, the observed heterozygosity per SSR was 0.44 ± 0.17, and the expected het-

erozygosity Ĥ was 0.67 ± 0.14. Hobs was smaller than Ĥ for all of the 32 SSRs, except the

locus rms1218 (Table 3.1). That deviation is expected due to the structure in populations.

Individuals are more likely to reproduce with individuals of their own population increas-

ing inbreeding. However, sites also showed deviation from Hardy–Weinberg equilibrium

within populations (Table 3.4). Deviation from the Hardy–Weinberg equilibrium can be

due to multiple factors among which population substructure and sampling bias are the

most common. The latter might explain the high number of deviating sites in ARG and

PRT.

3.3.2 Genetic diversity of populations

The weedy populations showed, as expected, a high genetic diversity with TUR having

both the highest number of alleles per SSR (7.6 on average) and the highest heterozygosity

(Hobs = 0.55 and Ĥ = 0.69; Table 3.1). Contrary to expectations, we found no pattern

of reduced diversity in varieties compared with landraces. Indeed, the five populations

showing the lowest diversity (< 2.3 alleles per marker and Ĥ < 0.5) included two vari-

eties (DE1 and DE2) and three landraces (ARG, POL and RU2). Interestingly, four of

the five populations were of northeast European ancestry and mainly used for grain pro-

duction. The South American landrace ARG showed an especially low genetic diversity
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(Ĥ = 0.45) and had the highest inbreeding coefficient (FIS = 0.35), indicating a possible

small population size and strong bottleneck during its establishment or sampling bias.

The lowest FIS value was found for the grain population BLR (FIS = 0.12). AMOVA

results showed that molecular variation was mainly (79.70%) found among individuals

within populations as expected for cross-pollinated species, whereas variation observed

among populations within groups explained 16.39% and the variance among groups only

3.91% of the total genetic variability (Table 3.5). Although variance among groups was

small, permutation tests indicated that both populations and groups explained variance

significantly better than random assignments (P < 0.01). We further investigated the

differentiation among populations and groups below.

Table 3.5: AMOVA results including fixation indices FCT, FSC and FST for the total

population. The genetic differentiation among weedy/forage/grain groups is denoted as FCT,

among populations within groups as FSC and among populations as FST.

Source of variation Proportion of
explained variation

Among groups 0.04
Among populations within groups 0.16
Within populations 0.80
Fixation indices
FCT 0.04
FSC 0.17
FST 0.20
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3.3.3 Genetic relationships between the populations

Pairwise FST and Jost’s D values were calculated to indicate the level of differentiation

between populations (Figure 3.6). As expected, we found a relationship among FST,

Jost’s D and genetic diversity, as pairwise population comparisons containing popula-

tion PRT achieved lower values and comparisons containing DE1, RU2 or ARG revealed

higher values than the other comparisons (Table 3.1; Figure 3.6 This resulted from the

enhanced effect of drift in populations with small size that increased allele fixation and

differentiation between populations (DE1, RU2 or ARG exhibited the smallest expected

heterozygosity; Table 3.1). The relationship between diversity and ancestry appeared

to be consistent overall as we observed low FST and Jost’s D values within weedy and

forage groups and among these two groups, while the grain group showed higher values

within and among group differentiation. The neighbor joining tree (Figure 3.7) confirmed

that these results showing a clear group containing the weedy populations, a relatively

close but clearly separated group of three forage populations (BRA, ESP and USA) and

distinct groups containing the grain populations as well as the two forage populations

ARG and PRT. These three clusters could also be observed in the pairwise distance be-

tween populations based on the proportion of shared alleles (Figure 3.3). As expected

for poorly differentiated populations with few private alleles, FST and Jost’s D showed a

similar ordering.

However, note that Jost’s D indicated a generally higher differentiation than FST

(Figure 3.6) because it was less biased by the high mutation rate of microsatellite markers

(Jost 2008).

3.3.4 Population structure analysis

Individual-based grouping was investigated using STRUCTURE for values of K ranging

from 2 to 15 (Figure 3.4) The log-likelihood curve for different K values did not show a clear

plateau (Figure 3.5). However, the log-likelihood values started stabilizing around K =
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IR1 IR2 TUR ESP BRA USA PRT ARG DE1 RU1 RU2 BLR DE2

IR2 2.49

TUR 2.76 2.66

ESP 2.52 2.53 2.76

BRA 2.38 2.55 2.77 2.31

USA 2.31 2.48 2.68 2.27 2.09

PRT 2.49 2.47 2.78 2.33 2.35 2.27

ARG 2.41 2.75 3.03 2.46 2.15 2.11 2.37

DE1 2.45 2.73 2.91 2.38 2.30 2.26 2.38 1.85

RU1 2.30 2.51 2.81 2.36 2.18 2.12 2.31 2.14 2.17

RU2 2.53 2.66 2.95 2.48 2.34 2.16 2.45 2.14 2.13 2.03

BLR 2.39 2.47 2.77 2.33 2.25 2.27 2.21 2.16 2.25 2.19 2.19

DE2 2.38 2.58 2.95 2.29 2.27 2.18 2.23 1.90 2.03 2.07 2.07 1.97

POL 2.32 2.59 2.87 2.28 2.13 2.16 2.25 1.88 2.06 2.02 2.02 1.95 1.80

Figure 3.3: Pairwise distance between populations based on the proportion

of shared alleles (Dps). The proportion of shared allele is calculated as: ps =∑n
i=1min (freq(i)Pop1; freq(i)Pop2) /n, where n is the total number of alleles for all loci present

in at least one of the two population samples. The corresponding distance is obtained as -ln(ps).

Contrary to FST this measure of distance tends to increase with the diversity as can be seen

here for BLR. Indeed the more alleles are present in a population the more likely many of them

will not be shared.

10 indicating a possible optimal number of groups between 10 and 12. The differentiation

of groups reflected the ancestral main end use and origin of the rye populations.

At K = 2, the optimal number of groups based on ∆K, the first subgroup (green)

comprised the forage and weedy populations IR1, IR2, TUR, BRA, USA and ESP and

was clearly separated from the second subgroup (red) of grain populations BLR, DE1,

POL, DE2, RU1 and RU2. The forage population ARG was also found in this group of

grain populations. Those subgroups were already observed in the pairwise FST and Jost’s

D statistics. The subgroup comprising forage and weedy populations showed a low level

of differentiation, whereas the grain populations were highly differentiated from the forage

and weedy as well as among themselves. The forage population PRT could not be assigned

to either of the groups as the individuals exhibited mixed membership coefficients. When
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2 3 4 85 6 7 9 10 11 12 13 14 15 K

IR1

IR2

TUR

ESP

BRA

USA

PRT

ARG

DE1

RU1

RU2

BLR

DE2

POL

10 10 10 10 10 10 10 10 10 10 10 10 10 10

Figure 3.4: STRUCTURE results. Bar plots of tested numbers of subgroups are shown

from left (K = 2) to right (K = 15). Individuals were plotted on the y-axis and have been sorted

according to population assignment given on the right side. Each horizontal line represents the

individual’s proportion of membership to a given number of subgroups. The number of assumed

subgroups is indicated on top.
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(A) (B)

(C)
Evanno's ΔK

Figure 3.5: Graphical analyses of STRUCTURE’s log-likelihood for numbers of

assumed subgroups K from 1 to 15. (A) Average log-likelihood ± standard deviation. (B)

Log-likelihood for ten individual runs to visualize convergence. (C) Evanno et al.’s (2005) ∆K

(with ∆K = m|L′′(K)|/s[L(K)]) for K between 2 and 14.

increasing K from five to seven, several geographical subgroups appeared: (1) the three

weedy rye populations IR1, IR2 and TUR, (2) the two Russian populations RU1 and

RU2, (3) the eastern and central European populations BLR, POL and DE2, (4) the

ESP population from Spain with BRA and USA and (5) the German population DE1

with the Argentinian population ARG. These clusters were similar to those observed in

the neighbor joining tree (Figure 3.7). At K = 10, most of the populations appeared

separated from each other except IR2 and TUR in the weedy group and BLR, DE2 and

POL in the grain group. The high fragmentation of membership coefficients observed
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for the sampled individuals of IR2 and PRT reflected the very high diversity observed in

these populations. At K = 12, only the two populations BLR and DE2 clustered together,

agreeing with the low FST and Jost’s D between these populations (Figure 3.6).
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Figure 3.6: Pairwise FST (above the diagonal) and D (below the diagonal) values.

Leading zeros of all values are not shown.
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Figure 3.7: Neighbor joining tree based on FST distances. The populations are colored

depending on their usage: blue for weedy, green for forage and orange for grain populations.
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3.4 Discussion

In this study, 14 winter rye populations were genotyped with SSRs. These populations

had different within population levels of diversity (number of alleles and heterozygosity)

while FST and Jost’s D values revealed differentiation among the 14 populations and

confirmed the assumption of considerable population structure within cultivated rye. The

STRUCTURE analysis revealed two main subgroups indicating a differentiation according

to both geography and end use, which can be described as ”southern European forage

rye” vs. ”northern European grain rye”. The observed genetic diversity and population

structure of a global collection of rye populations with different end uses and improvement

levels suggest that (1) forage populations have reached a lower diversification level than

grain ryes and (2) the strong structuration of populations according to geography and

usage might explain discrepancies in previous studies.

3.4.1 Cultivated ryes are at different diversification stages

For any crop plant, it is assumed that genetic diversity decreases from its wild form over

landraces to modern varieties (Feuillet et al. 2008; Yamasaki et al. 2005). Following this

hypothesis, we tested whether the present sets of rye populations showed a decrease in

genetic diversity concurrent with an increase in improvement status. We confirmed that

primitive rye populations had a significantly higher level of genetic diversity than the

landraces and varieties. Noticeably, the genetic diversity levels of landrace and variety

populations were comparable; whereas differences in genetic diversity could be seen be-

tween grain and forage rye populations independently of the improvement status. Despite

the high number of populations in this study, our statistical power to distinguish clearly

between these two patterns was somewhat limited because the landraces and varieties

were unequally distributed between grain and forage populations. There was a higher

pairwise differentiation among grain than among forage rye populations (FST and Jost’s

D), which indicated that these groups probably followed different domestication and/or
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artificial selection paths. The lower diversity found in grain populations suggested that

the differentiation might have been accelerated by successive bottlenecks that go hand

in hand with domestication and selective breeding, especially in cases of adaptation to

diverse environments as was the case between ARG and RU2 (FST = 0.35). Therefore,

we suggest that the early end use of rye explains its peculiarity compared with most

other cereals. In northeast Europe, rye was used exclusively for grain early on and was,

therefore, submitted to a longer and more intensive selection consisting of successive bot-

tlenecks and diversification of populations for local adaptation. Conversely, in southern

Europe, where wheat performed better, rye cultivation was neglected, and it was mainly

used as forage or remained as a weed among other crops and selection was less intensive.

This divergent end use and breeding is much more ancient than the distinction between

landraces and varieties and had a much stronger impact on diversity patterns and among

population differentiation. Our results might explain the discrepancies found in earlier

studies on rye as highlighted in the introduction. In fact, studies sampling from either

forage or grain populations or across both usages would obtain very different results when

comparing genetic diversity. This is especially true when stratifying the data based on

the landrace or variety status of the populations (Table 3.6).
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Table 3.6: Genetic diversity and FST aggregated (A) over usage groups and (B)

over levels of improvement.

(A) Alleles/site Hobs Ĥ Allelic Range GW

Weedy
Mean 9.91 0.52 0.69 34.22 0.42

s.d. 7.41 0.19 0.16 48.45 0.19

Forage
Mean 7.59 0.48 0.63 22.75 0.41

s.d. 5.82 0.21 0.16 24.94 0.18

Grain
Mean 6.44 0.40 0.60 28.19 0.37

s.d. 4.26 0.16 0.15 43.77 0.17

Weedy Forage
Forage 0.059
Grain 0.093 0.062

(B) Alleles/site Hobs Ĥ Allelic Range GW

Weedy
Mean 9.91 0.52 0.69 34.22 0.42

s.d. 7.41 0.19 0.16 48.45 0.19

Landraces
Mean 7.03 0.41 0.61 29.84 0.38

s.d. 4.94 0.18 0.16 44.74 0.18

Varieties
Mean 6.25 0.44 0.61 26.50 0.40

s.d. 4.09 0.17 0.16 43.71 0.18

Weedy Landraces
Landraces 0.087
Varieties 0.081 0.033
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3.4.2 Impact of population management and the signature of

bottlenecks

Our analyses highlighted possible issues concerning the sampling and management of

these various populations. Despite generally high levels of diversity, all populations, in-

cluding weedy ones, exhibited signs of recent bottlenecks with low GW values. The fact

that the three groups have the same average value for the GW statistic (0.38) suggests

that the detected bottlenecks might be due to the maintenance of accessions in seed banks

rather than previous population history. The ARG sample showed a relatively low genetic

diversity and comparatively high inbreeding. Both facts might indicate that a recent bot-

tleneck effect occurred in the original production area of South America. We hypothesize,

however, that the genetic bottleneck is an artifact, caused by small and biased sampling

of the original South American population, or because of recurrent bottlenecks during the

maintenance of accessions in seed banks. Similar conclusions could be drawn for DE1,

an old German variety, and RU2, a landrace of northwest Russia, although the effects on

genetic diversity were less severe than for ARG. Another point of interest in our study

is the unexpected shared ancestry between populations. For example, the grouping of

ARG with DE1 among the European grain rye populations in the STRUCTURE analysis

was unexpected, as DE1 originates from northern Germany and ARG from Argentina. It

is noteworthy that a common ancestry is not known between these populations. In ad-

dition, STRUCTURE suggests that a high admixture occurred between PRT and other

populations possibly resulting from severe seed and/or pollen contamination. In sum-

mary, genetic bottlenecks can occur in population management due to few seeds collected

from the original population, limitations during seed propagation in gene banks (Börner

et al. 2005; Chebotar et al. 2003) or because of the small number of seeds distributed

by gene banks and made available for research. Moreover, introgression/contamination

likely explains unexpected genetic similarities among populations although this cannot be

confirmed as the breeding history is often unknown.
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3.4.3 High diversity in weedy ryes

The three weedy rye populations in our study represented an area of Turkey and Iran, a

region considered to be within the cereals’ domestication center (Badr et al. 2000; Behre

1992; Khush 1963; Nesbitt and Samuel 1998) and the center of maximum diversity for rye

with regard to cytological and morphological aspects (Khush 1963). We found that, as ex-

pected, the three populations of weedy rye IR1, IR2 and TUR showed diversity parameters

higher than the cultivated populations in this study since we used wild grown popula-

tions, which are more closely related to the wild rye ancestor and have most probably not

been subjected to strong bottlenecks. The comparison of membership coefficients from

the STRUCTURE analysis among IR2 individuals revealed high heterogeneity within this

population. This observation is not surprising since the original seed collection from 1930

was composed of seeds from individuals growing in a wide area around Elburz-Karaj in

Iran, and these were taken together as one population (Kranz 1957; Kuckuck 1956). In

contrast, the weedy population TUR was collected from a single wheat field (Hartwig H.

Geiger, personal communication). We expected individuals distributed over a wider area

to be more genetically diverse and to deviate more from HWE compared with individ-

uals from a population in close spatial proximity. Despite the sampling differences, IR2

and TUR showed comparable levels of diversity although IR2 exhibited an excess of rare

alleles.





Chapter 4

Rye population demography

inference

4.1 Introduction

In the previous chapter, we described the diversity and structure of 14 rye populations

without making hypotheses about their demographic history. However, statistics such

as FST and diversity are strongly influenced by population size and other demographic

events through genetic drift. Moreover, we observed a strong impact of the end use on

diversity but it is still unknown when the primary use diversification took place.

In this chapter, we formally model different demographic scenarios to investigate the

demographic history of 12 of the previously introduced 14 rye populations. The Por-

tuguese (PRT) and Argentinean (ARG) populations showed atypical characteristics of

very high and very low diversity, respectively, suggesting a demographic history that

could not be described by the same type of model.

75
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4.2 Material and Methods

Different scenarios of population split were studied using ABC. This method allowed us

to compare demographic scenarios and estimate population parameters using prior knowl-

edge about rye history without evaluating the likelihood function analytically. Due to the

large number of populations analyzed (12), the number of possible demographic models of

population split was very large. Moreover, preliminary ABC analyses demonstrated that

models allowing for complex relationships between populations had poor reliability (see

Discussion and Figure 4.7). To maximize the statistical power of the ABC method, we

studied a simplified model with three populations defined as one weedy and two derived

populations (Figure 4.1). Each of these population trios was composed of one of three

ancestral weedy populations (IR1, IR2 and TUR), one of the derived grain populations

(BLR, DE1, POL, DE2, RU1 and RU2) and one of the forage populations (BRA, ESP,

and USA). The weedy population of each trio was characterized by the population size

Na, while the derived grain and forage populations were characterized by sizes Ng and

Nf, respectively. The grain and forage populations were founded from the weedy popu-

lation at times-to-merger T2Mg and T2Mf generations ago, respectively. The founding

event was modeled as a bottleneck, characterized by its length BTLg (or BTLf) and by

its strength BTNg (or BTNf), where we define the strength of a bottleneck as the ratio

of the population size before and after the change. At times TSa, TSg and TSf ago,

the weedy, grain and forage populations underwent a short bottleneck of strength PSa,

PSg and PSf, respectively. This recent bottleneck was introduced to mimic the effects of

repetitive sampling and gene bank conservation (Figure 4.1; Table 4.1).

All bottlenecks were modeled as stepwise population size changes. Our scenario mod-

eled the origin of rye in the Fertile Crescent that was assumed to be a weedy population,

and subsequent bottlenecks associated with the export and spread of rye as grain or for-

age to diverse parts of the world. Based on archaeological studies that show that rye

was brought from the Fertile Crescent to northern Europe through an eastern migration
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Figure 4.1: Graphical representation of the simulated demographic model. A forage

(f) and a grain (g) population split ”time-to-merger” (T2Mf and T2Mg) years ago, respectively,

from a weedy population of constant population size Na. At the time of the split, the forage

and the grain populations suffered a stepwise bottleneck (BTN) of strength BTNf and BTNg,

respectively, over one generation, following which they have constant population sizes Nf and

Ng, respectively.

route (via the Caucasus), we excluded models where the northern grain populations came

indirectly from the ancestral weedy ones through the southern forage rye lineage (Zohary

et al. 2013).

We used ABCtoolbox (Wegmann et al. 2010) to perform the ABC and 2,000,000

simulations were performed with the coalescent simulator fastsimcoal (Excoffier and Foll

2011). The model was defined by the 15 parameters described above for which we assumed

prior distributions with wide bounds as information on rye domestication was scarce

(Table 4.1). We simulated 32 independent SSR loci following a generalized stepwise

model (GSM) with a mean mutation rate (MU) drawn from a log-uniform distribution
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between 10−5 and 10−2. These priors are consistent with mutation rates obtained from

plant species such as wheat species, Triticum turgidum (Thuillet et al. 2002) and maize,

Zea mays (Vigouroux et al. 2002). The average proportion (PGSM) of mutations that

affected the allele size by more than one step was drawn from a uniform distribution

between 0.2 and 0.5. The mutation rate at each locus was drawn independently from a

gamma distribution of mean MU and shape ALPHAMU, the latter varying between 2 and

30. This allowed for heterogeneity in mutation rates among loci (Excoffier et al. 2005; Xu

et al. 2005). Similarly, PGSM per locus was drawn from a gamma distribution of shape

ALPHAP with uniform priors between 1 and 4. The range for the prior distribution of the

times-to-merger was chosen based on archaeological findings on rye domestication (Behre

1992), namely that forage and grain populations were established no more recently than

1,000 but not more than 15,000 years ago. Since rye is an annual plant, years were simply

considered equivalent to generations. The simulated data were summarized by the mean

and standard deviation of genetic diversity and differentiation statistics over the 32 loci.

The statistics for each population are the number of alleles, expected heterozygosity and

private alleles; and over all populations, we used the average, sum and standard deviation

of the number of alleles, heterozygosity, Jost’s D over all populations and pairwise FST

(detailed list can be found in Table 4.2).

All statistics were calculated with arlsumstat (Excoffier and Lischer 2010) except pri-

vate alleles and Jost’s D that were calculated with a custom Perl script.
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Table 4.1: Definition and prior distribution of the model parameters.

Parameter name Parameter definition Prior distribution
ANCESTRAL SIZE
(Na)

Diploid effective size of
the ancestral population

Log-uniform
[100; 30000]

GRAIN DEME SIZE
(Ng)

Diploid effective size of
the grain population

Log-uniform
[100; 15000]

FORAGE DEME SIZE
(Nf)

Diploid effective size
of the grain population

Log-uniform
[100; 15000]

GRAIN TIME TO MERGER
(T2Mg)

Time since the split of the grain population
from the ancestral one (years ago)

uniform
[1000; 15000]

FORAGE TIME TO MERGER
(T2Mf)

Time since the split of the forage population
from the ancestral one (years ago)

uniform
[1000; 15000]

GRAIN BOTTLENECK RATIO
(BTNg)

Size of the grain deme during
the one generation bottleneck,
relative to its present size

Log-uniform
[0.01; 0.5]

FORAGE BOTTLENECK
RATIO (BTNf)

Size of the forage deme during
the one generation bottleneck,
relative to its present size

Log-uniform
[0.01; 0.5]

GRAIN BOTTLENECK
LENGTH (BTLg)

Span of the grain bottleneck
after split from the ancestral population

Log-uniform
[1; 2000]

FORAGE BOTTLENECK
LENGTH (BTLf)

Span of the forage bottleneck
after split from the ancestral population

Log-uniform
[1; 2000]

ANCESTRAL SAMPLING
RATIO (PSa)

Strength of the most recent
bottleneck of the ancestral population

Log-uniform
[1; 100]

GRAIN SAMPLING RATIO
(PSg)

Strength of the most recent
bottleneck of the grain population

Log-uniform
[1; 100]]

FORAGE SAMPLING RATIO
(PSf)

Strength of the most recent
bottleneck of the forage population

Log-uniform
[1; 100]

ANCESTRAL SAMPLING TIME
(TSa)

Time since the start of the bottleneck
of the ancestral population (years ago)

Log-uniform
[1; 100]

GRAIN SAMPLING TIME
(TSg)

Time since the start of the most recent
bottleneck of the grain population

Log-uniform
[1; 100]

FORAGE SAMPLING TIME
(TSf)

Time since the start of the most recent
bottleneck of the forage population

Log-uniform
[1; 100]

MU Mean mutation rate over loci Log-uniform
[10−5; 10−2]
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Table 4.2: Summary statistics for model choice and parameter estimation.

Abbreviation Description
K 1

Mean number of alleles per site within each population (of a trio) m,eK 2
K 3
Ksd 1

Standard deviation of the number of alleles per site within each population
e

Ksd 2
m,e

Ksd 3
mean K Mean number of alleles per site over all 3 populations e
sd K Standard deviation of the mean number of alleles per site over all populations e
tot K Mean total number of alleles over all 3 populations e
GW 1

Mean per site Garza-Williamson’s M for each population
e

GW 2
m,e

GW 3
GWsd 1

Standard deviation of the mean per site Garza-Williamson’s M for each population m,eGWsd 2
GWsd 3
mean GW Mean per site Garza-Williamson’s M over all 3 populations e
sd GW Standard deviation of the mean per site Garza-Williamson’s M over all 3 populations m,e
tot GW Mean total Garza-Williamson’s M over all 3 populations e
H 1

Mean per site heterozygosity for each population m,eH 2
H 3
Hsd 1

Standard deviation of the mean per site heterozygosity for each population
e

Hsd 2
m,e

Hsd 3
mean H Mean per site heterozygosity over all 3 populations e
sd H Standard deviation of the mean per site heterozygosity over all 3 populations e
tot H Mean total heterozygosity over all 3 populations m,e
FST 2 1

Pairwise Fst for each possible pair of population m,eFST 3 1
FST 3 2
Jost D Jost’s D over all populations m,e
Private K 1

Total number of private alleles within each population m,ePrivate K 2
Private K 3

m: model choice procedure, e: parameter estimation
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4.2.1 ”Scenario” choice

For each trio of populations, we performed a ”model choice” procedure to distinguish

between two scenarios: (1) the forage population split from the weedy population at an

earlier time than the grain population so that T2Mf > T2Mg and conversely (2) the

weedy-grain split occurred before the weedy-forage split so that T2Mg > T2Mf. We

computed acceptance rates for each scenario based on the simulations associated with the

smallest Euclidean distances to the observed data (Pritchard et al. 1999). For a given

relative distance δ to the observed data, we computed the Bayes Factor (BF) for scenario

1 against scenario 2 by dividing the number of retained simulations in the respective

scenarios. In very rare cases, the two split times were equal, and these were not considered

in the model choice. The model choice procedure was done using a range of relative

distances δ (from 0.005% to 1%) as indicated in Pritchard et al. (1999). For each trio

of populations, we manually checked that the statistical support for one scenario did not

depend on δ (Figure 4.2). We summarized the Bayes Factor for scenario 1 against scenario

2 for all trios of populations using the 5,000 simulations fitting best (namely, a relative

distance of δ = 0.25%). The dimensionality of the summary statistics was reduced using

a logistic regression on 500,000 simulations (Prangle et al. 2014). Statistics included

in the regression were chosen based on significance and Bayesian information criterion

(Table 4.2).
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Figure 4.2: Cumulative counts of accepted simulations for each scenario depending

on the total number of accepted simulations for four representative trios taken as

examples. Blue line: number of accepted simulations from Scenario 1 (earlier forage split); red

line: number of accepted simulations from Scenario 2 (earlier grain split).

Acceptance rate ratios do not seem to vary much depending on the total number of accepted

simulations. Either the models are clearly differentiated or not (e.g., last figure down). In

the last case the ratio will always stay close to 1. None of the trios presented curves that are

apart for a small number of simulations but cross or come close together before 5000 accepted

simulations.
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4.2.2 Parameter estimation

For each trio of populations, we estimated all parameters of our model but reported the

results for the five most important: the population sizes (Na, Nf and Ng) and the times-

to-merger for the grain and the forage populations (T2Mg and T2Mf). The dimension of

the summary statistics was reduced using a linear regression for each of the five estimated

parameters as well as for the mutation rate per the method of semi-automatic approximate

Bayesian computation proposed by Fearnhead and Prangle (2012). The coefficients of the

linear regression were estimated using 500,000 simulations (Table 4.2). The Leuenberger

and Wegmann (2010) post-sampling GLM adjustment was used to estimate the posterior

probability of the parameters, based on the 0.25% of the simulated datasets (i.e., 5,000

simulations) closest to the observed data. Smaller relative distances (0.05% or 0.1%) gave

similar results but less smooth densities. The shapes of the posterior distributions for each

of these parameters are reported in Figure 4.5, and the mode and credibility intervals are

given in Table 4.3.

4.2.3 Validation of the ”scenario” choice and estimation proce-

dure

We evaluated the power of the ABC method to discriminate between scenarios and to es-

timate parameters by analyzing 1,500 pseudo-observed datasets (PODs). The PODs were

sampled from the model and prior distribution as described above and transformed using

the regression coefficient used for transforming the summary statistics of the observed

data. We evaluated the number of times that the correct scenario was found for a trio

of populations, the so-called confusion matrix (Bertorelle et al. 2010), and the difference

between the estimated and the true parameter value (as the mean percent error and the

root relative mean square error).
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Table 4.3: Estimations, 50% and 95% highest probability density (HPD) of the de-

mographic parameters. For each population, is given the average of the parameter estimation

(mode) and ranges over all trios this population is part of.

Estimated
parameter

Pop. Average
marginal
mode

Range of
estimations
over all trios

Min – max
HPD50

Min – max
HPD95

Ancestral deme size IR1 22958 18146 – 27130 13421 – 29998 6639 – 29998
IR2 26558 20065 – 30001 15869 – 29998 8394 – 29998
TUR 26715 21456 – 30001 16410 – 29998 8118 – 29998

Grain deme size BLR 9505 6163 – 11151 4070 – 14136 1828 – 15000
DE1 8767 7363 – 10509 5008 – 13723 2387 – 15000
POL 9372 6540 – 11833 4448 – 14561 2058 – 15000
DE2 9226 6540 – 11487 4448 – 14561 2120 – 15000
RU1 9273 6163 – 12189 4192 – 14999 1939 – 15000
RU2 8705 7148 – 10826 4862 – 13723 2317 – 15000

Forage deme size BRA 10070 5983 – 12933 3951 – 15000 1774 – 15000
USA 9611 5474 – 12189 3614 – 15000 1672 – 15000

Grain time to merger BLR 2698 2325 –2988 1249 – 4396 1000 – 8704
(years ago) DE1 2933 2491 – 3402 1414 – 5059 1000 – 9615

POL 2629 2160 – 3402 1166 – 5059 1000 – 9533
DE2 2698 2077 – 3568 1083 – 5142 1000 – 9615
RU1 2339 1994 – 2657 1083 – 3899 1000 – 8787
RU2 3099 2491 – 3734 1331 – 5556 1000 – 10527

Forage time to BRA 2993 2574 – 3651 1331 – 5556 1000 – 9947
merger (years ago) USA 2634 2160 – 3237 1166 – 4728 1000 – 8953
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Figure 4.3: Graphical summary of the ABC results regarding forage and grain time-

to-merger. Bayes Factor (BF) for Scenario 1: T2Mf > T2Mg over Scenario 2: T2Mf < T2Mg

for each trio of populations (weedy, grain and forage). The BF has been estimated as the ratio

of the number of accepted simulations for each scenario when taking 5000 simulations fitting

best (d = 0.25 %). The dots above the horizontal (red) line represent a BF > 1, indicating that

Scenario 1 (i.e., the split of the forage population is older than split of the grain population)

is more strongly supported by the trio under consideration than Scenario 2 (i.e. the split of

the grain population is older than split of the forage population). The distance to the BF = 1

horizontal line indicates the strength of evidence for the given scenario. Dots on or close to the

BF = 1 line indicate a lack of support for one or the other order of split.
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4.3 Results

As we used a common set of simulations for all population trios, the Spanish forage

population ESP was kept in the model choice procedure but was not used for parameter

estimation because of its smaller sample size (37 individuals). A smaller sample size could

potentially lead to an overestimation of the time-to-merger due to incommensurable sum-

mary statistics (e.g., number of alleles, private alleles and FST). Our power analysis of the

model choice procedure showed that we had moderate power to discriminate between the

two scenarios (percentage of PODs attributed to the wrong scenario was 32%). Addition-

ally, we achieved high power in only some of our parameter estimations as shown by low

(8% for population sizes) to high (55% for times) mean percent error (Table 4.4 and Ta-

ble 4.5; Figure 4.6). The ABC model selection indicated different split orders of the forage

and grain populations depending on the considered trios, as indicated by the BF per trio

in Figure 4.3 (the forage population is on the x-axis). Most of the trios involving the USA

forage population had BF < 1; therefore, we concluded that the split of this population

from the weedy group occurred more recently than splits of the other two forage popula-

tions. The grain populations DE1 and RU2 consistently split earlier than the three forage

populations from the different weedy populations. In contrast, the grain population RU1

split later than all of the forage populations (Figure 4.3). We summarized the estimation

results in Figure 4.4, by representing each mode of the marginal posterior distributions of

the time-to-merger for the forage and grain populations. Table 4.3 indicates the minimum

and maximum values of highest posterior density (HPD) 50% and 95% calculated over all

posterior distributions of a given time split. Note that, as expected, the similar estimated

values of times-of-split of the grain populations BLR, POL and DE2 were in line with

the pairwise FST, Jost’s D values and the STRUCTURE analysis in Chapter 3. Indeed,

two populations showing a recent split from the ancestral weedy population would exhibit

lower genetic differentiation between them than if they had diverged a longer time ago

due to the action of genetic drift. These results would also fit a scenario where a single
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ancestral population deriving from the weedy population would have later on split to give

rise to those three grain populations. The ancestral population sizes of the weedy group

were estimated to be higher than those of the incipient populations. IR1 was estimated to

be the smallest weedy population but with a higher effective population size of N = 23,000

than all grain and forage populations, whose effective population sizes were found to be

in the range of 8,700 and 10,100. The population sizes matched the overall expectations

based on heterozygosity, except for RU1 that had a lower population size than expected

(Table 3.1 and Table 4.3).

Table 4.4: Confusion matrix for the model choice procedure. The values are in per-

centage of the total number of 1,250 pseudo-observed datasets (PODs) scenarios simulated for

each order of split.

Estimated
Forage older Grain older

True
Forage older 0.69 0.31
Grain older 0.33 0.67

Table 4.5: Error measures: mean percent error (MPE), relative mean square error

(rMSE) and root relative mean square error (RrMSE) for the estimation of the

demographic parameters. The values are calculated on the estimation of the logarithm

of population sizes and grain and forage time to merger from 1,500 pseudo-observed datasets

(PODs) randomly drawn from the prior distributions.

Ancestral
Size

Forage
Size

Forage time to
merger

Grain
Size

Grain time to
merger

MPE (%) 5.13 8.32 55.84 8.52 54.35
RMSE (%) 26.59 28.25 86.54 29.26 82.77
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Figure 4.4: Graphical representation of the marginal mean and range of estimation

of the time-to-merger from the ABC analysis. The branching represents the estimated

time since the split from the weedy population (ya) for a given population average over all trios

containing this population. The colored dots represent the estimations for each of these trios of

populations.
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4.4 Discussion

4.4.1 Several domestication events

The ABC results showed that some of the grain and forage populations may have split at

different times from the weedy population. This differences can be attributed to different

domestication events, possibly explaining the high genetic distances between geographi-

cally close populations. The estimated split times of the weedy populations were spread

over 760 years from the Bronze Age (RU2) to the Iron Age (RU1), a period for which there

is supporting archaeological evidence of rye populations in Europe. These results agree

with the hypothesis of multiple domestication events proposed by archaeological studies

in rye (Behre 1992; Burger et al. 2008; Khush 1963; Sencer and Hawkes 1980; Zohary

et al. 2013). ABC performed using a single domestication event model with one forage

and one grain ancestor splitting from the weedy population giving rise to our various rye

populations, with or without migration between them (Figure 4.7), were also tested, but

we could not reproduce the data (results not shown), corroborating the previous results.

Different waves of breeding or domestication in northern European populations would

explain the patterns of population differentiation and the STRUCTURE results (cf. K =

5). For instance, despite their spatial proximity, the two Russian landraces RU1 and

RU2 are differentiated from the eastern and central European populations BLR, POL

and DE2 that cluster together. Ma et al. (2004) reported a similar distinction between

Russian cultivars and those from Norway, Finland, Estonia, Ukraine and Poland. In con-

trast, we found similar times-of-split (360 years apart) for the two forage populations:

USA and BRA from the American continent. USA is one of several of the southern North

American varieties that originated from the Italian cultivar ”Abruzzi”, imported by the

US Department of Agriculture in the early 1900s to be used for pasture or as a cover

crop (Briggle 1959). This explains why, in our study, USA genetically clustered with the

southern European population ESP. The low differentiation between USA and BRA and
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their high shared population membership at K = 7 were also expected as BRA (”Cen-

teio Branco”, which means white rye) was one of the first rye populations brought from

the USA and introduced to Brazil in 1984 (De Mori et al. 2013). However, we cannot

draw any definitive conclusions on the multiplicity of domestication events because of the

variance in split time estimates from different trios and the fact that, despite their likely

common origin, the difference between time-of-split estimates for USA and BRA is of the

same order of magnitude as the differences among grain populations (Figure 4.4).

Some trios led to very different parameter estimations than most trios involving the

same population, i.e., outliers, increasing the variance between estimations. For example,

two trios of POL and DE2 had a very ancient split time compared with other estimates

for these populations (Figure 4.4). In several cases, the outlier trios all contained the

same TUR weedy population. We conclude that the three weedy populations are not

identical and might relate in different ways to the true ancestor of the sampled cultivated

rye populations. They exhibit an unknown history and possibly complex relationships

with each other and to cultivated rye.

4.4.2 Bottlenecks and other complex demographic features

Our ABC results highlight the difficulty of capturing complex demographic domestication

events using simplified modeling and summary statistics based on microsatellite data. As

very little is known about the history of the populations studied here, we have built a

simple model of a population split using the scarce information obtained from archaeolog-

ical studies, our analyses of genetic diversity and preliminary ABC simulations. We have

modeled strong bottlenecks associated with population splits (founding events) as well as

very recent bottlenecks to mimic the effect of conservation in gene banks. However, sev-

eral other bottlenecks may have occurred in the history of the populations explaining low

values of the Garza–Williamson statistics (between 0.35 and 0.41; Table 3.1) and in some

cases, admixture events that would explain the mixed membership coefficients obtained
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from STRUCTURE analyses for PRT and POL.

The bottlenecks detected mostly occurred in the last 500 generations, i.e., more re-

cently than domestication, otherwise the populations would have recovered sufficiently

and the GW statistics would be comparable to that of a population of constant size

(Garza and Williamson 2001). Many cultivated species are known to have repeatedly

experienced such complex demographic events in their history (Glémin and Bataillon

2009). Ultimately, the power of the ABC to study domestication (e.g., Cornille et al.

2012) depends on the system studied (population history, type of markers and genera-

tion time), prior knowledge and violation of the model hypotheses. This calls for caution

when performing an ABC. While it is possible to use more complex models such as many

populations with bottlenecks, splits and introgression/gene flow, statistical power for the

estimation of parameters will be low. Typically, the model choice procedure will lead to a

low rate of correct assignment and parameter estimation does not give credible posterior

distributions. In this study, we chose as an alternative to derive sets of very simple models,

each consisting of a limited number of populations and parameters. While it is clear that

not accounting for these more complex features (i.e., repeated bottlenecks, admixture,

substructure and migration) might bias our results, our model fitted the data reasonably

well while giving sufficient power to compare scenarios (as shown in the moderate error

rates in the confusion matrix; Table 4.4) and to infer the parameters of interest. There-

fore, we concluded that the ABC can be assumed to give realistic estimates for relative

split times between the grain/forage populations and the weedy populations, providing

new insights into the history of these populations.
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Figure 4.5: Prior, truncated prior (posterior before GLM), and posterior (after

GLM) distributions for the five estimated demographic parameters and the mu-

tation rate for one representative population trio. For all trios used for parameter

estimation, the highest posterior density is at least twice the prior density and the estimated

value is never on the extreme limit of the interval prior.
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Figure 4.6: Model Choice error rate as a function of the absolute difference between

the forage and the grain ”times of split”. The more the times of split of the forage and of

the grain populations are different the higher is the power to distinguish the two models. As the

two parameters T2Mf and T2Mg are i.i.d. sampled from U(1000 ; 15000), the density of their

absolute difference is fz(z) = 2
14000 −

2z
140002

. This means that the PODs are mostly sampled in

the region of lesser power leading to an overestimation of the error rate.
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Figure 4.7: Graphical representation of demographic models with a single domesti-

cation event for all forage population and one for all grain populations with (A) or

without (B) migration within groups. The simulations performed under these models and

within a wide parameter space cannot at all reproduce the data and are therefore abandoned

in the ABC. Furthermore, adding other features such as longer bottlenecks or one additional

(recent) bottleneck per populations to these models does not improve reproducibility of the data.
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Chapter 5

Pedigree modelling and demographic

inference

5.1 Introduction

In this chapter, we first present the model combining pedigree and genetic data and later

describe how this model can be used to infer demographic and mutational parameters

from that data.

5.2 The Model

To account for life history traits very common in animal populations, we extend the classic

Wright-Fisher model to a diploid species with two sexes and overlapping generations.

Our model, which is schematically depicted in Figure 5.1, assumes discrete generations

consisting of Nf female and Nm male individuals. We further assume random mating;

that is, in each generation, and going backward in time, each individual picks at random

a female and a male of the previous generation as mother and father, respectively.

We model overlapping generations by allowing individuals to pick their parents not

97
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MRCATime

3

Figure 5.1: Graphical representation of the proposed two-sex model with overlap-

ping generations. Shown are female (circles) and males (squares) individuals along with their

parent-offspring relationships (black edges). The doted boxes on each side represent the female

and male gamete storages populated with gametes of individuals from the pedigree. For the

individuals of generation 0 (grayed) genetic data is available and the thick lines represent the

genealogy of these individual. Dotted lines indicate the part of the genealogy before gMax for

which the continuous time approximation is used. The tick mark on the time scale represent

the depth of this pedigree, d = 3.

from the directly preceding generation but from an earlier one with probabilities bf and

bm for female and male parents, respectively. In this case, however, the choice of the

actual distant parent is delayed and the lineage is just stored. In biological terms, these

stored lineages thus represent gametes of a defined sex from previous generations, and

we refer to this compartment as “gamete storage” in the following. At the beginning of

a generation, the so stored gametes then pick a parent in the current generation with
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respective probabilities 1− bf and 1− bm, and otherwise remain in storage, which implies

that the number of generations between parents of a given sex and their offspring are

exponentially distributed (with parameter − log(bf ) and − log(bm) respectively).

For simplicity, we only considered here the case of constant population sizes Nf , Nm

and probabilities to jump a generation bm, bf .

Derivation of the coalescent

Two-sex models were previously shown (Möhle 1998b) to be approximated accurately

by the time-changed Kingman coalescent (1982a). Similarly, Blath et al. (2013) recently

showed that models with overlapping generations due to seed banks, or in our case gamete

storage, also result in a simple scaling of the classic coalescent if the average time lineages

spend in storage is relatively small compared to the waiting time between coalescent

events. Here we derive the appropriate scaling for the model introduced above.

We begin with the rate of coalescent and note that only the lineages that are in

individuals of the active populations can coalesce, whereas lineages currently stored in

the dormant gamete storage have first to re-enter the active populations. We describe

in Figure 5.2, the four resulting compartments: the active female (Af ) and male (Am)

populations as well as the female (Df ) and male (Dm) gamete storages, and the rate

at which lineages move between compartments. This system is at equilibrium when,

for each compartment, the same number of lines are expected to enter and exit the

compartment (i.e., ∆, the change of number of lineages in each compartment is null,

∆Af = ∆Df = ∆Am = ∆Dm = 0). To obtain the fraction of lineages that can coalesce

with each other when the system is at equilibrium, we solve the following system of

difference equations:
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Figure 5.2: Diagram of the transition probabilities between the different sub-

populations of the model: the active female (Af ) and active male (Am) populations,

and the female (Df ) and male (Dm) gamete storages. The number of lineages at t0 is

shown in each compartment, where n0 is the initial number of individuals genetically sampled

(i.e, sequenced).
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2
.

The global rate of coalescence P(Coal) is then given by sum of the rates per compart-

ment weighted by the fraction of lineages residing in them. Since the coalescent rates are

zero in the gamete storages and 1/2Af and 1/2Am in (Af ) and (Am), respectively, we
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have

P(Coal) =
1

2Nf

[
(1− bf )2

(1− bm) + (1− bf )

]2

+
1

2Nm

[
(1− bm)2

(1− bm) + (1− bf )

]2

.

If bf = bm = 0, the obtained rate reduces to

P(Coal) =
1

2

Nm +Nf

4NmNf

,

as previously found for two-sex models (Möhle 1998b). If bf = bm = b and Nf = Nm =

N/2 the rate reduces to

P(Coal) =
(1− b)2

2N
,

in accordance with the results of the monoecious seed bank model of Kaj et al. (2001).

Following Kingman’s approach, the distribution of time of coalescent under our model

is Ti ∼ exp
(
i
2

)
with time scaled in 2Ne with

Ne =
NfNm(2− bm − bf )2

Nf (1− bm)4 +Nm(1− bf )4
. (5.1)

We next derive the rate of novel mutations in the presence of overlapping generations.

Importantly, the number of germline mutations may not scale linearly with time. Indeed,

in females, most of these mutations occur during early development, and in males age

effect on the germline mutation load is not necessarily proportional to the age, as has

been shown for humans (Campbell and Eichler 2013). We model this effect using two

mutation rates: µ per generations spend in the active populations and µ∗ = εµ per

generation spent in the gamete storage. From the compartment model introduced above,

we obtain the average fraction of time tb that linages spend in one of the gamete storages
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as

tb =
Df +Dm

Af + Am +Df +Dm

=
bf − 2bfbm + bm

(1− bm) + (1− bf )
,

which results in the average effective mutation rates per generation

µ̄ = (1− tb)µ+ tbεµ

= µ− bf − 2bfbm + bm
(1− bm) + (1− bf )

(1− ε)µ .

When ε < 1, that is, when the mutation rate in the gamete storage is lower than the

mutation rate in the active population, the average mutation rate per generation decreases

with increasing values of bf and bm. Conversely, the time between coalescent event in-

creases with bf and bm. When time is measured in terms of number of mutations occurring

between two coalescent events, those two phenomena partially compensate each other. In

other terms, the length of the branches measured in number of mutations increases slower

with increasing bf and bm, than the length of the branches in generations. In the following

we use the term ”mutational time” to describe coalescent time in generations corrected

by the effect of ε on the mutation rate; that is, a lower average mutation rate if ε < 1

and a higher one if ε > 1.

5.3 Inference

We introduce here a Maximum Likelihood (MLE) method to infer jointly the demographic

θd = {Nf , Nm, bf , bm} and mutational θm = {µ, ε} parameters of the model introduced

above. This estimation is based on genetic data summarized by the site frequency spec-

trum (SFS) and available pedigree information in terms of child-parent relationships (fil-

iation) that form one or several connected networks spanning two or more generations

(P). The relevant likelihood function can be decomposed as
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L(M) = P(SFS|P , θd, θm)P(P|θd)

=
∑
G

[
P(SFS|G, µ)P(G|P , θd, ε)

]
P(P|θd) , (5.2)

where the sum runs over the unknown genealogies G representing the genetic rela-

tionships between all sampled individuals up to the the most recent common ancestor

(MRCA). While the pedigree and the genealogies share similar features, they should not

be confused.

In the following sections, we first derive each term of the likelihood function individ-

ually, and then give a detailed description of an inference framework under this model.

5.3.1 The Pedigree

Let Pg be the way in which the individuals of generation g−1 in the pedigree are assigned

to their parents in generation g. Note that generations as well as the choice of the mother

and the father are considered as independent events thus their likelihood can be multiplied

and we obtain

P(P|θd)=
∏
g≥1

P(Pg|θd)=
∏
g≥1

P(Pf,g|θd)P(Pm,g |θd) , (5.3)

where Pf,g and Pm,g represent the assignment of individuals to their mothers and fathers,

respectively.

The pedigree spans between the generation of the most recent individual g = 0 and

the generation of the last known parent that we call gMax. To derive the probability of

the pedigree, we consider all individuals at generation 0 in the pedigree as numbered (i.e.,

identifiable). These individuals then choose their parents from the previous generation,

but are constrained in their choices by the pedigree. A parent chosen by an identifiable

individual becomes automatically identifiable itself as it is the unique mother, father

respectively, of a unique, identifiable individual. The chosen, now identifiable, parents
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choose in turn their own parents from the previous generations according to the pedigree

information and this process continues until the top of the pedigree is reached.

Here we derive P(Pf,g|θd) for this process for the individuals of generation g − 1,

of which exactly Bf,g−1 will enter the gamete storage as their mother is from a distant

generation, and the remaining individuals, B̄f,g−1, will choose a mother from generation

g. Within these B̄f,g−1 individuals, the first individual of each of the Mg groups of siblings

chooses a distinct mother from the population, which they do in turn with probabilities

1,
Nf−1

Nf
, . . .

Nf−Mg

Nf
. The Mg so chosen mothers, which have become identifiable themselves,

are chosen by their remaining offspring with probability 1
Nf

each. The resulting probability

of this process is

P(Pf,g |θd) = αfg

(
1

Nf

)B̄f,g−1−Mg

bf
Bf,g−1(1− bf )B̄f,g−1 , (5.4)

where we used the notation

αfg =
Nf !

N
Mg

f (Nf −Mg)!
.

The same holds true analogously for P(Pm,g|θd) by replacing the subscript f by m and

using Fg, the number of fathers in generation g, instead of Mg.

A maximum likelihood estimate of Nf , Nm, bf and bm is easily obtained by taking the

first derivative of the logarithm of eq. 5.3. For bf , this yields

d

dbf
logP(P|θd) =

∑gMax

g=1 Bf,g−1

bf
−
∑gMax

g=1 B̄f,g−1

(1− bf )
,

which admits the maximum likelihood estimate

b̂f =

∑gMax

g=1 Bf,g−1∑gMax

g=1 B̄f,g−1 +Bf,g−1

,

and analogously for bm. For Nf , the first derivative is
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d

dNf

logP(P|θd)=

gMax∑
g=1

F(Nf )−F(Nf −Mg)−
B̄f,g−1

Nf

, (5.5)

where F is the digamma function defined as the logarithmic derivative of the factorial

function. This probability function is defined for Nf > Mg. Its maximum, if it exists, can

be found numerically.

5.3.2 Genetic data

Coalescence is the merging of two or more genetic lineages. In a diploid population,

an offspring may inherit one of two possible chromosomes of each parent. There are

thus 2l ways in which l offspring lineages can be assigned to the two chromosomes of

a single parent (Figure 5.1). Enumerating all possible genealogies constrained by even

a small but fully resolved pedigree, as done for two lineages in Wakeley et al. (2012),

is computationally already very challenging for large sample sizes, and easily becomes

prohibitive if the pedigree is only partially known. We thus chose to turn to simulations

to evaluate the sum in eq. 5.2, as is commonly done in the absence of pedigree information

(e.g., Excoffier et al. 2013; Nielsen 2000; Nelson et al. 2012):

∑
G

[
P(SFS|G, µ)P(G|P , θd, ε)

]
≈ 1

Nγ

∑
γ

P(SFS|G = γ, µ) ,

where the genealogies γ ∼ P(G|P , θd, θm) are simulated under model parameters M

and constrained by the pedigree P .

Simulating genealogies inside a pedigree is straight forward and only requires binary

choices when following lineages backward in time through the pedigree. Simulations

within the pedigree also allows for more complex sampling schemes such as sampling

(sequencing) individuals over several generations, even within families (e.g., father-son

sequencing). In a pedigree without missing parents, the topology of genealogies is con-

straint enough to permit the efficient simulation of many genealogies at once by prop-
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agating through the pedigree the number of genealogies that makes a specific binary

gamete choice. In case of only partial pedigree information, lineages reaching parents of

which only one or none of the parents are known choose their unknown parents randomly

from the whole population, or enter the gamete storage (Figure 5.1). Lineages that exit

the pedigree due to missing parents can also reenter the pedigree in a later generation by

chance. Due to the extremely large number of possible topologies, in this case, the process

needs to be simulated per generation (discrete process) and for each genealogy separately.

Simulations are therefore time consuming in case of limited pedigree information. How-

ever, at a certain generation in the past that we term gMax, the pedigree does not contain

any information about ancestors anymore and the genealogy is then only constraint by

the parameters of the model. The expected time to the MRCA of a large sample of diploid

individuals is approximately 4×Ne generations where Ne is usually larger than 200. For

most available pedigrees, gMax is thus reached long before the MRCA. We therefore make

use of the appropriately scaled coalescent approximation introduced above to simulate

the genealogies from gMax backwards to the MRCA (Figure 5.1).

To calculate P(SFS|G = γ, µ), the probability of the genetic data summarized by the

SFS given a genealogy γ, we use the classic infinite site mutation model with Poisson

distributed mutations at rate µ per site. Under this model, and assuming that sites are

independent, the probability that a mutation results in a derived sample allele frequency

of i is given by the summed length Li of all branches with i leaves and the probability of

the SFS is thus given by a multinomial distribution

P(SFS|G = γ,M) = e−µL
µSLS1

1 ... L
Sn−1

n−1

S1! ... Sn−1!
, (5.6)

where Si is the number of segregating sites being shared by i chromosomes in the sample

of size n and L the total length of the genealogy γ (Fu 1998). We note that the branch

lengths Li is measured in mutational time, that is a generation spent in the gamete storage

only adds ε to the branch length.



5.3. INFERENCE 107

The maximum likelihood estimate of µ can be obtained analytically by differentiating

the logarithm of eq. 5.6, which yields the estimator

µ̂ =
S

L
,

where L is the total length of the genealogy in mutational time. In the absence

of pedigree information, for instance for the part of the genealogy simulated under the

coalescent approximation, the total length of the genealogy is only available measured

in generations. In this case, the time spent in gamete storage is averaged over the tree

branches and the ML estimate becomes

µ̂ =
S

4N̂e(1− tb + tbε)Lc
, (5.7)

where Lc is the total length of the genealogy in coalescent time (i.e., in θ generations)

tb is the average time spend in the gamete storage, equal to b̂ in our model, and b̂ and N̂e

are the ML estimates of b and Ne, respectively.

5.3.3 Inference algorithm

An exact analytical or numerical solution for the joint maximum likelihood of all pa-

rameters is not available. We therefore combine some of our analytical derivations with

numerical evaluations using MCMC in the following inference algorithm:

Algorithm 1

1. We sample vectors of demographic parameters θ
(i)
d ∼ P(θd|P), i = 1, . . . , I from their

joint posterior distribution given the pedigree using an MCMC framework.

2. For each sampled vector of parameters θ
(i)
d , we simulate G = 100 genealogies con-

straint by the pedigree P.
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3. For each θ
(i)
d we then compute the MLE estimate µ̂(i) according to eq. 5.7 using the

sampled genealogies.

4. Finally, we compute the joint likelihood of all model parameters for each pair of θ
(i)
d

and µ(i) according to eq. 5.2, again using the simulated genealogies.

Our inference scheme is thus closely related to a grid search on the model parameters

where we make use of the pedigree information to conduct the simulation-based likelihood

evaluation only at promising locations of the parameter space. The proposed combination

of MCMC sampling and MLE is possible because the population size is constant and the

maximum likelihood of µ̄ does only depend on the total length of the genealogies and

not on their topology. As shown in Chapter 6, this method is an efficient compromise

between speed and accuracy. Further advantages and limitations are discussed below, in

section 5.4.

The MCMC sampling in step 1 is implemented using a standard Metropolis algorithm

(Metropolis et al. 1953) in which a single parameter is updated per iteration using a

Gaussian proposal kernel mirrored at prior limits. We use uniform priors on all parameters

except the population sizes for which we use log-uniform priors and propose updates on

the logarithmic scale during the MCMC to account for their prior easily spanning several

orders of magnitude. The implementation of the method in C++ is available upon request.

5.4 Discussion

In this chapter, we developed a model explicitly accounting for two sexes and overlapping

generations. Under this model, genealogies follow a standard coalescent provided that

time is rescaled appropriately and that the expectation of the age distribution (i.e., the

number of generations between parent and offspring) is finite and in particular small

compared to the effective population size. This is generally true in our model, under
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realistic parameter values. This new model allowed us to infer parameters jointly from

genetic data and pedigree information.

5.4.1 Random sampling

Random sampling of the most recent individuals of the pedigree (i.e., individuals without

known offspring) is an implicit assumption in the construction of this model and related

inference method. For example, individuals sampled based on the amount of pedigree

information recorded for their ancestry, are more likely to be related within that pedigree

than individuals chosen at random. In this case, the number of siblings in the pedigree

increases leading to an underestimation of the population size. Moreover, random sam-

pling of the current generation does not guarantee that any missing information occurs

at random in the pedigree, potentially leading to ascertainment bias.

This phenomenon is not specific to the pedigree model and can occur in classical pop-

ulation genetics inference without a pedigree. If individuals within a population are more

likely to be sequenced if they are unrelated, for example with the aim of maximizing the

diversity of the sequenced panel, an ascertainment bias is introduced and the population

size might be overestimated. However, the effect might be stronger when using the pedi-

gree in inference. Indeed, Wakeley et al. (2012) showed that the coalescent process is

robust to demographic events that strongly affect the pedigree.

5.4.2 Multi-generational sampling

In our inference method, the genealogies of the genetic samples are drawn within the

known pedigree. Therefore, sequences of individuals that are from different generations

within the time of the pedigree can be used to calculate the SFS, whether these individuals

are known to be related or not. If the relationship between the sampled individuals is

recorded in the pedigree, the true probability of coalescence between their lineages will

be more accurately represented in the simulations. Sequencing data from sire-son pairs,
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a common practice in cattle sequencing projects (e.g., Hayes et al. 2012), can therefore

readily be used within our framework.

In conclusion, we presented here a new model and some theoretical results on how

to combine pedigree and genetic information for the inference of demographic and muta-

tional process and showed that these processes can be disentangled if sufficient pedigree

information is available. This is widely unexplored territory as most methods use in-

dividual or genealogy based models. But the availability of both pedigree and genetic

data for many species, in particular domesticated animals, motivates the development of

methods that combines such data. While an application to real data may pose additional

challenges, our work is a first step towards such a method and extensions of our approach

to more complex demographies and other features of real populations are readily possible.

If done properly, the application of these to real data has the potential to give us deep

insight into the mutational process in natural populations.



Chapter 6

Application to simulated and real

data

6.1 Introduction

The model and inference framework developed in the previous chapter allows the estima-

tion of male and female population sizes, rate of overlapping generations and mutation

rate but the quality of the estimation depends on the amount of information contained

in the pedigree and the genetic data. We therefore perform simulations, to explore some

of the possible variables that might impact the accuracy of the estimation such as, the

number of the generations over which the pedigree is known, the number of individuals

and the current generation for which ancestry has been recorded, or the true population

sizes. This chapter describes the inference performed over these simulations as well as

inference performed on a real pedigree from a cattle population.

111
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6.2 Simulations

To test the performances of our inference method, we used a custom R script to simulate

pseudo observed datasets (PODs) consisting of a pedigree and a corresponding SFS for a

sample of 50 individuals, unless specified differently. The pedigree includes all ancestors of

the sampled individuals until the predefined depth d as well as the parents of all lineages in

gamete storage at generation d (Figure 5.1). Thus, the generation of the oldest individual

contained in the pedigree gMax is such that gMax ≥ d. We set bf = bm = b for all simulations

and generated an SFS by simulating 2000 loci of 10 kb each with µ = 5× 10−9 and ε = 0.

For each simulation presented here, the MCMC in step 1 of Algorithm 1 was run for

4.5×106 steps thinned out to keep only every 500th parameter combination, of which the

first 200 were discarded as a burn-in (resulting in 8800 sampled parameter vectors θd).

We use a normal distribution for the kernel of all three estimated demographic parameters

(Nf ,Nm and b). The MCMC parameters relative to each of these demographic parameters

can be found in Table 6.1.

We first used simulations to assess the benefit of having pedigree data as a function of

the pedigree depth across 10 independently generated PODs with demographic parameters

realistic for domesticated breeds (Nf = 5000, Nm = 500 and b = 0.2). As shown in

Figure 6.1, our method is capable of accurately disentangling the effects of the mutation

rate and population sizes on genetic diversity already if limited pedigree information is

available. Indeed, reliable estimates are obtained for all parameters including sex-specific

population sizes, the frequency of overlapping generations as well as the mutation rate if

a pedigree of depth four or more is used (Figure 6.1).

Interestingly, the rate of overlapping generations b is estimated well across the whole

parameter range in the presence of sufficient pedigree data (Figure 6.2), but smaller

population size seems to be consistently estimated more accurately than larger sizes.

This is visible as a reduced accuracy in the inference of the female compared to male size

in Figure 6.1, but also occurs if the population sizes of both sexes are equal (Figure 6.2
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Table 6.1: MCMC parameters used to estimate parameter on simulated data.

Parameter Value
Burnin 10000
Total number of steps (incl. burnin) 4500000
Number of genealogies per steps 100

Parameters relating to b:
Initial value 0.5
Minimum value 0.001
Maximum value 0.8
Variance of the normal jump kernel 0.02

Parameters relating to both Nf and Nm:
Initial value 10000
Minimum value 25
Maximum value 50000
Variance of the normal jump kernel 0.5

and 6.3). We explain this as follows. The information about the population size of a

pedigree is mostly contained in individuals sharing parents (i.e., half or full siblings). If the

population is large but the number of individuals in the pedigree relatively small, few to

no siblings are observed and the power to estimate the population size decreases. Indeed,

when there are no siblings in the pedigree, the likelihood of the population size increases

monotonously but reaches a kind of plateau before the true value is reached (eq. 5.5). This

leads to an overestimation of the population size in the absence of genetic information and

the inability to disentangle Ne from µ if such data is available. As an example, consider

the posterior distributions shown in Figure 6.4 for the case of Nf = 5, 000 and a pedigree

depth of one.

We next quantified the effect of pedigree depth and width (number of individuals

at g = 0) on the accuracy of inferring population sizes. Maybe not surprisingly we

found that much more information is contained in small but deep compared to large but

shallow pedigrees (Figure 6.3). Indeed, increasing the width beyond just a handful of

individuals seems to hardly increase estimation accuracy except for very small population

sizes, probably due to the oversampling effect described by Wakeley and Takahashi (2003).
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Figure 6.1: Parameter inference as a function of pedigree depth (d). Shown are the

mean and standard deviation over 10 simulated datasets. The true parameter values used for

all simulations (A) Nm = 500, (B) Nf = 5000, (C) b = 0.2, and (D) µ = 5× 10−9 are indicated

by gray horizontal lines.

The reason for this is that the number of individuals included in a completely re-

solved pedigree is growing rapidly with each generation going further back into the past

(Derrida et al. 2000, Figure 6.5), and so are the number of observed parent-offspring rela-

tionships informative about population size. Indeed, around 80% of the whole population

is included in a complete pedigree of width 50 individuals at only few generations in the

past, depending on the population size. At a depth of four, which we found to result in

good estimates, about 7.5% or 750 individuals are part of the complete pedigree of 50

individuals from a population of 10,000 individuals (Figure 6.5).

6.3 Application to a real cattle pedigree

Bovine races are a good example of domesticated species with sex-biased populations and

sex-biased overlapping generation rate for which pedigree records are kept. By fitting the

presented model to the pedigree of a Fleckvieh population (Jansen et al. 2013), graciously

provided by Prof. Dr. Ruedi Fries, we infer the female and the male population sizes as

well as overlapping generation parameters.

The Fleckvieh pedigree is constituted of 4822 individuals from which 88 are the root

individuals with no recorded descent, 3094 are dams and 1640 are sires. Generations have
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Figure 6.2: Estimated (A) Ne in function of simulated Ne and (B) b in function of

simulated b, in log-log scale. The vertical bares represent the standard deviation over 10

datasets. The gray diagonal marks the identity line.

been fixed based on the date of birth when available, assuming 4 year generations on

average. When the date of birth was unknown, the generation number was given using

relation information with other recorded individuals. In total, the pedigree contains

records over 22 generations.

In the model, the individuals are considered as uniquely identified (not exchangeable)

and the choice of parents independent across generations. The pedigree can therefore

be summarized in a table recording the number of individuals in the six different com-

partments: female and male parents (M for mother and F for father), female and male

gametes choosing a parent in the active population (B̄f and B̄m respectively), female and

male in gamete storage (Bf and Bm, respectively), at each generation (Table 6.2).

The geometric model chosen to model overlapping generations seems to fit the observed

pedigree (Figure 6.6). The maximum likelihood estimates (MLE) for the probability to

move to, or stay, in gamete storage b̂ is 0.0324 for maternal gametes and 0.438 for paternal

gametes. Assuming a constant population size during the generations recorded in the
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Nf = Nm = 500 Nf = Nm = 5000A. B. C.Nf = Nm = 100

Figure 6.3: Power to infer population sizes as a function of pedigree width and

depth. The surface of each dot represents the root mean squared errors (RMSE) over 10

simulations with population sizes (A) Nf = Nm = 100, (B) Nf = Nm = 500 and (C) Nf =

Nm = 5, 000. The RMSE is comprised between 1.681× 10−3 for depth = 40 and width = 36 in

(C) and 3.716 for depth = 1 and width = 7 in (A).

pedigree, the MLE of the female and male population sizes are 7151 and 252 respectively.

The log-likelihood contour plot in Figure 6.7 gives additional information about the shape

of the likelihood function around the MLE values, showing a greater uncertainty (flatter

likelihood surface) around the estimation of the female population size than around the

male one, probably due to the larger population size of females and lower connectivity in

the pedigree (i.e., less siblings from the same mother).

The effective population size (Ne) of the sampled Fleckvieh population is 4513 when

calculated from eq. 5.1 with the MLE. Using the classical two sex formula from Wright

(1931), as in Eq. 2.1 ignoring the overlapping generation coefficients, the effective popu-

lation would only be 974.
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Figure 6.4: Examples of posterior distributions of population sizes based solely on

pedigree information. Shown are posterior distributions of the female (yellow) and male

(blue) population sizes of simulations conducted with 5000 female and 500 male individuals

(vertical solid lines) calculated using MCMC. Distributions obtained from pedigrees of depth

four are plotted as solid lines, those obtained from pedigrees of depth 1 as dotted lines.

6.4 Discussion

In this chapter, we show using simulations that including pedigree information not only

improves the estimates of demographic parameters, but also allows to disentangle the

effects of demographic and mutational processes on genetic diversity and hence to estimate

these processes jointly.
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Figure 6.5: Average number of individuals entering the pedigree per generation

starting with 50 individuals at generation 0. In each generation, each individual picks a

female and male individual at random as parents, leading to an initial increase in the number

of individuals in a pedigree. The probability to have Mg+1 = i distinct mothers in generation

g + 1 given Mg distinct mothers in generation g is given by

P(Mg+1 = i|Mg) =
1

NMg

(
N

i

) i−1∑
j=0

(−1)j
(
i

j

)
(i− j)Mg ,

and hence

E[Mg+1|Mg] = N − (N − 1)Mg

(N)Mg−1

and analogously for the expected number of fathers E[Fg+1|Fg]. The total number of individuals

in the pedigree at generation g is thus E[Φg+1|Φg] = E[Mg+1|Mg] + E[Fg+1|Fg].
When the curve reaches a plateau, marked by the dots, approximately 80 % of the population

is sampled.
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Generations in maternal gamete storage
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Figure 6.6: Empirical (histogram) and fitted geometric (dots) distribution of the

time gametes spend in storage when choosing (A) a father or (B) a mother.

6.4.1 Amounts of data needed and implications for real appli-

cations

Our simulations show that the pedigree information of 50 individuals tracing back four

generations is sufficient to obtain accurate joint estimates of the female and male effec-

tive population sizes, the proportion of overlapping generations and the mutation rate.

Importantly, obtaining this amount of pedigree information is realistic for many popula-

tions of interest. For example, such pedigrees are available for several human populations

(e.g., Hussin et al. 2015), for many domesticated animals breed of cattle and horses (e.g.,

Cunningham et al. 2001; Mc Parland et al. 2007) and for some wild animals (e.g., Clutton-

Brock et al. 1982; Ellegren 1999).

Unfortunately, we could not find a dataset with both sequencing and pedigree data for

a population. For many populations with a known pedigree, very low coverage sequence

data filled using imputation or SNP array data are available but SFS build from such
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Figure 6.7: Log-likelihood surface for a range of female and male population sizes of

the Fleckvieh population. The box probabilities are fixed to their MLE values b̂f = 0.0324

and b̂m = 0.438. The heat map indicates the highest log-likelihood values with white and lower

values with darker red.

data are often of poor quality due to ascertainment bias. We expect the estimation of the

mutation rate to be particularly sensitive to such bias.

However, we note that the amount of pedigree information required for accurate in-

ference does depend on the population size with more data being required for larger

populations. This stems from the fact that most of the information about the popula-

tion size contained in a pedigree depends on the number of individuals sharing common

ancestors. As a random sample is expected to contain less such individuals in a large

population than in a smaller one, it will contain less information. Since the number of

common ancestors increases more rapidly with the depth than the width of a pedigree,
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deep pedigrees of a few individuals contain much more information than shallow pedi-

grees of many individuals. As we discussed, the number of distinct ancestors in previous

generations rapidly decreases with depth and reaches about 80% of the population within

only few generations (Derrida et al. 2000, Figure 6.5). However, these results consider a

complete pedigree and are expected to be mitigated in presence of missing information.

Having only little pedigree data available will make it difficult to disentangle the effect

of mutation and drift. A particular characteristic of such a situation is that the posterior

distribution of the population sizes given the pedigree data alone will be very flat and

often extend to very large population sizes. In such cases, the samples generated with our

MCMC will likely not be distributed densely enough around the joint MLE to warrant

accurate inference. In the extreme case of no pedigree information, the joint likelihood

surface of the mutation rate and population sizes will form a ridge and the estimate

produced by our stochastic inference method will single out a random combination not

necessarily reflective of the true parameters. However, as we have shown, already limited

pedigree information of a few individuals over a few generations is sufficient to result in

accurate inference.

6.4.2 Limitations of the model and possible extensions

While our theoretical and simulation results are very promising, we note that its applica-

tion to real data may present some challenges. Firstly, the concept of generation, while

convenient, is an artificial construct to discretize time that has little biological meaning

for many long lived species. As a consequence, attributing the individuals of a pedigree

to specific generations can be difficult. However, it is possible to extend our inference

framework to also integrate over the attribution of individuals to generations as

L(M)=

∫ ∑
G

[P(SFS|G,M)P(G|P ,M)]P(P|M)P(P∗|P)dP ,
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where we denote by P∗ the pedigree data without generation information (hence only

relationships). Here, Pr(P∗|P) = 1 if the pedigree P is compatible with P∗, that is, if

all parents are from an older generation than all of their offspring and the most recently

born individual is from generation 0, and Pr(P∗|P) = 0 otherwise. Unfortunately, none of

the parameters’ MLE is trivial to derive because finding the maximum of this likelihood

function implies finding the optimal set of pedigrees P . However, an MCMC method

sampling such pedigrees can be envisioned to infer parameters under such an extended

model.

Secondly, our model assumes a geometric age distribution that seems to apply rela-

tively well to the Fleckvieh population studied here but might not be realistic for other

species. Our approach can be extended to other age distributions as long as they converge

toward some form of rescaled coalescent. Example of such seed or gamete storage mod-

els have been given by Kaj et al. (2001) and Blath et al. (2013). Our results also show

that cattle males are overlapping generations more often than females. This is expected

knowing breeding practices and from biology, indeed the reproduction period of males is

longer than the one of females. However this effect might be much stronger in the most

recent generations due to the use of artificial insemination. This could bias our model

and change the scaling of genealogy branches over time in an unexpected way.

Thirdly, demographic events such as population size changes, migration between pop-

ulations or complex mating systems, e.g., monogamy or harem models, may be needed to

describe real populations. The introduction of such demographic events in the discrete

generation pedigree model is fairly easy. For example, population size changes can be

directly implemented in eq. 5.4 by using generation specific values of Nf and Nm. The

way demographic events shape coalescent processes is well described for many cases and

they apply to our model if appropriately scaled.

Complex mating systems or reproductive skew are well described for generation by

generation models (Gasbarra et al. 2005) however in a continuous setting, some non-
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standard coalescent models are known to arise in some cases (Eldon and Wakeley 2006).

In the pedigree part of the model, we assume that individuals choose their parents at

random and that each choice is independent. However, we consider that parents become

identified when chosen by an offspring and therefore, only the relation between the total

number of parents chosen and the number of offspring choosing among them matters. For

example, having one parent with 3 offspring and one with 5 leads to the same outcome

in terms of the population size probability than having two parents with 4 offspring

each. It might however not lead to the same genealogy shapes, as these are constraint by

the pedigree. Depending on the type of true offspring distribution observed and how it

deviates from the expected Poisson distribution, discrepancies could appear between the

effective population size defined for the pedigree and for genealogies. These discrepancies

might also be different if they arise from randomly over-dispersed offspring distributions

or from selection. Further investigation is needed to find such offspring distributions and

evaluate the robustness of the model to these deviations.

In less extreme cases, specific mating systems can be well approximated by strongly

skewed sex ratio (Nunney 1993) which our model already incorporates in its current form.

For example, in the Fleckvieh population we estimate the population size to be much

larger for females than for males (Figure 6.7), as expected in cattle. Similarly, selection

at the phenotypic level might result in a few individuals being more successful. This

leads to a reduction of the effective population size that is accounted for by our method.

However, at the genetic level the sequenced loci are considered neutral.
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Table 6.2: Tabular representation of the Fleckvieh pedigree.

g M F B̄f B̄m Bf Bm g M F B̄f B̄m Bf Bm

0 0 0 0 1 2 1 11 443 242 7 288 305 482
1 2 1 2 4 12 11 12 300 215 7 141 186 333
2 12 7 0 32 62 32 13 180 132 2 41 100 201
3 59 23 7 50 94 83 14 96 86 3 14 50 83
4 91 46 7 115 145 79 15 50 50 2 8 34 37
5 140 46 8 129 183 170 16 33 30 2 5 20 24
6 179 66 6 188 247 185 17 20 21 1 1 26 28
7 241 104 12 241 328 282 18 25 22 0 0 12 12
8 322 138 16 349 422 314 19 11 11 0 0 5 5
9 413 163 11 411 477 409 20 5 5 0 0 1 1
10 470 230 13 457 451 405 21 1 1 0 0 1 1

22 1 1 0 0 0 0



Chapter 7

Conclusion

The overall goal of this thesis is to investigate the demography of domesticated species us-

ing genetic data by adapting and applying population genetics methods to the specificities

of such species.

In the first part, focused on plants, we analyze the diversity and structure of 14 rye

populations and further infer the demographic history of 11 populations among them.

We thereby increase our knowledge about this crop and its genetic history but we also

challenge expectations from population genetics theory with a real complex dataset of a

domesticated species. Thus explaining discrepancies between previous studies on rye and

highlighting confounding effects that might contribute to discrepancies described in other

species. As expected wild, weedy rye were more diverse than other accessions but not

all landraces were more genetically diverse than varieties due to differences in selection

pressure relating to the confounded effects of usage (grain or forage) and geography. The

relation between these confounding factors can itself be explained by the performance of

rye compared to competing crops (e.g., wheat) in different environments. We therefore

advise to take into account the origin and use of the crop to choose populations to sample

for later studies. This study also highlighted that it is likely that rye domestication has

occurred several times independently and that these different events can still be observed

125
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in the genome. Using more markers or adding SNP markers that have a lower mutation

rate and are therefore more informative about distant past would be needed to get a better

picture of early domestication of rye. Finally, all population including wild material seem

to have suffered recent bottlenecks that probably arose due to conservation methods and

reproduction within seed banks.

In the second part of the thesis, focusing on animal domesticates for which pedigree

data is readily available, we create a model that allows the joint use of pedigree and

genetic information. We show that the availability of pedigree information allows to both

estimate parameters that are confounded in genetic data such as the effective population

size, (effective) sex ratio, and mutation rate. The described model and inference method

allow to estimate with relatively high accuracy the demographic parameters of interest on

simulated data. When applied to a real pedigree of a Fleckvieh population, the method

shows results conform to expectations such as a higher rate of overlapping generation and

smaller reproductive population size of males compared to females.

In conclusion, demographic history and life history traits of domesticated species are

very complex but the methods developed for natural populations can be adapted and

used to infer demography from its impact on genetic patterns. Combining those methods

to specifically designed tools using the additional information recorded for breeding and

conservation purposes increases inference accuracy and gives access to previously elusive

population parameters.

Limitation of this work and implications for future research relating to specific results

are discussed per chapter but all chapters of this thesis highlight the importance of recent

past events in the inference of the demographic history of domesticated species. Recent

demographic history can have a strong influence on the genetic makeup of the population

and thereby obscure its ancient history. Highly mutable markers such as SSR and pedi-

gree data are both great tools to infer recent past events. However, as shown in chapter 3

and 4, events that induce a loss of diversity, such as bottlenecks, lead to irreversible infor-
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mation loss. This information cannot be recovered even if the recent history is perfectly

known. This underlines further the importance of appropriate population management

and conservation in seed banks.

More genetic data such as provided by whole genome sequencing would mitigate the

effect that the loss of information due to bottlenecks has on inference. Moreover, linkage

between sites observed in sequence data can itself be used to infer demographic history

of populations (Li and Durbin 2011; Harris and Nielsen 2013). Combining full genome

sequencing data with SSR markers would therefore offer more power to infer demography

on a broader time scale from the most recent conservation bottlenecks to the beginning

of domestication.

The model and inference method proposed in chapter 5 could as well be adapted to

take advantage of linkage information from whole genome data. In its current state, the

method considers all sites independent and does not model recombination. However, the

way the pedigree constrains genealogies extends to linked loci. Linkage is only broken

through recombination that occurs randomly at each reproduction event. Instead of

simulating genealogies independently through the pedigree, it is also possible to simulate

recombination and possibly estimate recombination rate.

Selection at the scale of the individual is hard coded into the pedigree. Individuals

that carry favorable alleles have more reproducing offspring and will therefore be over-

represented in the pedigree. Genealogies of neutral sites whether they are linked or not

to selected alleles will be constrained by that pedigree. Conversely, chromosome segrega-

tion and recombination are the processes that lead to different genealogies within a fixed

pedigree. Modeling linkage within the known pedigree could therefore help finding sites

under selection with higher accuracy than methods that do not account for the pedigree.
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